Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise

Download statistics - Document (COUNTER):

Luo, Y.; Lyu, M.-Z.; Chen, J.-B.; Spanos, P.D.: Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise. In: Theoretical and Applied Mechanics Letters (TAML) 13 (2023), Nr. 3, 100436. DOI: https://doi.org/10.1016/j.taml.2023.100436

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/14825

Selected time period:

year: 
month: 

Sum total of downloads: 25




Thumbnail
Abstract: 
Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their probabilistic responses is difficult due to their non-Markovian property. The recently developed globally-evolving-based generalized density evolution equation (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established. In particular, it is proved that in the GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying linear function, and can be analytically determined. In this sense, an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original high-dimensional linear fractional differential system can be constructed such that their transient PDFs are identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems, the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 8 32.00%
2 image of flag of United States United States 7 28.00%
3 image of flag of Vietnam Vietnam 2 8.00%
4 image of flag of United Kingdom United Kingdom 2 8.00%
5 image of flag of China China 2 8.00%
6 image of flag of Taiwan Taiwan 1 4.00%
7 image of flag of Turkey Turkey 1 4.00%
8 image of flag of Spain Spain 1 4.00%
9 image of flag of Chile Chile 1 4.00%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse