Structural mechanics analysis of fabric-reinforced membranes in proton exchange membrane water electrolysis

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/17606
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/17737
dc.contributor.author Kink, Julian
dc.contributor.author Ise, Martin
dc.contributor.author Bensmann, Boris
dc.contributor.author Junker, Philipp
dc.contributor.author Hanke-Rauschenbach, Richard
dc.date.accessioned 2024-06-27T12:36:28Z
dc.date.available 2024-06-27T12:36:28Z
dc.date.issued 2023
dc.identifier.citation Kink, J.; Ise, M.; Bensmann, B.; Junker, P.; Hanke-Rauschenbach, R.: Structural mechanics analysis of fabric-reinforced membranes in proton exchange membrane water electrolysis. In: Journal of The Electrochemical Society 170 (2023), Nr. 11, 114513. DOI: http://doi.org/10.1149/1945-7111/ad0663
dc.description.abstract Membranes are a key component of proton exchange membrane water electrolysis (PEMWE) cells and are exposed to various stressors during operation, which can significantly reduce cell lifetime. PEMWE membranes incorporating woven web layers within the membrane structure for mechanical reinforcement are a promising, commonly used industrial strategy to mitigate the formation of membrane defects. Within this study the structural mechanics of a PEMWE cell is investigated, specifically the woven web reinforced membrane. Experimental tensile tests are conducted on the membrane to obtain stress-strain data. These measurements were utilized to parameterize a geometrically simplified model of the woven web reinforced membrane through a tensile test simulation. The validated model is applied in a 2D-cell simulation to identify resulting stresses and strains in the membrane during various electrolysis operation modes. The results herein allow the used PEMWE cell geometry to be systematically evaluated and optimized with respect to mechanical membrane stability. For the applied PEMWE cell setup, no failure is to expect during normal operation, including varied temperatures and differential pressure. Increasing the gap size at the edge of the electrochemically active cell area, however, leads to large deformations when the gap becomes larger than 0.2 mm. eng
dc.language.iso eng
dc.publisher Bristol : IOP Publishing
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Cells eng
dc.subject Cytology eng
dc.subject Elasticity eng
dc.subject Electrolysis eng
dc.subject Proton exchange membrane fuel cells (PEMFC) eng
dc.subject Reinforcement eng
dc.subject Strain eng
dc.subject Structural design eng
dc.subject Tensile testing eng
dc.subject Electrolysis cell eng
dc.subject Exposed to eng
dc.subject Industrial strategies eng
dc.subject Mechanical reinforcement eng
dc.subject Proton exchange membranes eng
dc.subject Reinforced membranes eng
dc.subject Structural mechanics eng
dc.subject Structural mechanics analysis eng
dc.subject Water electrolysis eng
dc.subject Web layer eng
dc.subject Membranes eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc 540 | Chemie
dc.subject.ddc 660 | Technische Chemie
dc.title Structural mechanics analysis of fabric-reinforced membranes in proton exchange membrane water electrolysis eng
dc.type Article
dc.type Text
dc.relation.essn 1945-7111
dc.relation.issn 0013-4651
dc.relation.doi https://doi.org/10.1149/1945-7111/ad0663
dc.bibliographicCitation.issue 11
dc.bibliographicCitation.volume 170
dc.bibliographicCitation.firstPage 114513
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber 114513


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken