Tailored Porous Transport Layers for Optimal Oxygen Transport in Water Electrolyzers: Combined Stochastic Reconstruction and Lattice Boltzmann Method

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/17495
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/17625
dc.contributor.author Liu, Jiang
dc.contributor.author Li, Min
dc.contributor.author Yang, Yingying
dc.contributor.author Schlüter, Nicolas
dc.contributor.author Mimic, Dajan
dc.contributor.author Schröder, Daniel
dc.date.accessioned 2024-06-04T08:04:07Z
dc.date.available 2024-06-04T08:04:07Z
dc.date.issued 2023
dc.identifier.citation Liu, J.; Li, M.; Yang, Y.; Schlüter, N.; Mimic, D. et al.: Tailored Porous Transport Layers for Optimal Oxygen Transport in Water Electrolyzers: Combined Stochastic Reconstruction and Lattice Boltzmann Method. In: ChemPhysChem 24 (2023), Nr. 18, e202300197. DOI: https://doi.org/10.1002/cphc.202300197
dc.description.abstract The porous transport layer (PTL) plays an integral role for the mass transport in polymer electrolyte membrane (PEM) electrolyzers. In this work, a stochastic reconstruction method of titanium felt-based PTLs is applied and combined with the Lattice Boltzmann method (LBM). The aim is to parametrically investigate the impact of different PTL structures on the transport of oxygen. The structural characteristics of a reconstructed PTL agree well with experimental investigations. Moreover, the impact of PTL porosity, fiber radius, and anisotropy parameter on the structural characteristics of PTLs are analyzed, and their impact on oxygen transport are elucidated by LBM. Eventually, a customized graded PTL is reconstructed, exhibiting almost optimal mass transport performance for the removal of oxygen. The results show that a higher porosity, larger fiber radius, and smaller anisotropy parameter facilitate the formation of oxygen propagation pathways. By tailoring the fiber characteristics and thus optimizing the PTLs, guidelines for the optimal design and manufacturing can be obtained for large-scale PTLs for electrolyzers. eng
dc.language.iso eng
dc.publisher Weinheim : Wiley-VCH Verl.
dc.relation.ispartofseries ChemPhysChem 24 (2023), Nr. 18
dc.rights CC BY-NC 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0
dc.subject mass transport eng
dc.subject microporous materials eng
dc.subject pore size distribution eng
dc.subject two phase flow eng
dc.subject water electrolysis eng
dc.subject.ddc 540 | Chemie
dc.title Tailored Porous Transport Layers for Optimal Oxygen Transport in Water Electrolyzers: Combined Stochastic Reconstruction and Lattice Boltzmann Method eng
dc.type Article
dc.type Text
dc.relation.essn 1439-7641
dc.relation.issn 1439-4235
dc.relation.doi https://doi.org/10.1002/cphc.202300197
dc.bibliographicCitation.issue 18
dc.bibliographicCitation.volume 24
dc.bibliographicCitation.firstPage e202300197
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber e202300197


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken