Energetic evaluation and optimization of hydrogen generation and compression pathways considering PEM water electrolyzers and electrochemical hydrogen compressors

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16647
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16774
dc.contributor.author Zachert, Lars
dc.contributor.author Suermann, Michel
dc.contributor.author Bensmann, Boris
dc.contributor.author Hanke-Rauschenbach, Richard
dc.date.accessioned 2024-03-18T07:45:00Z
dc.date.available 2024-03-18T07:45:00Z
dc.date.issued 2021
dc.identifier.citation Zachert, L.; Suermann, M.; Bensmann, B.; Hanke-Rauschenbach, R.: Energetic evaluation and optimization of hydrogen generation and compression pathways considering PEM water electrolyzers and electrochemical hydrogen compressors. In: Journal of The Electrochemical Society 168 (2021), Nr. 1, 014504. DOI: https://doi.org/10.1149/1945-7111/abcf1a
dc.description.abstract Electrochemical hydrogen compression is seen as a promising alternative to mechanical compression in the context of power-togas plants. It can be carried out either as direct co-compression in a water electrolyzer (WE) or via a separate electrochemical hydrogen compressor (EHC). This study analyzes the specific energy demand of different hydrogen generation and compression pathways using WEs and EHCs, both based on proton exchange membrane (PEM) technology, for pressures up to 1000 bar. The energy demand is systematically investigated as a function of design parameters such as pressure, current density, temperature and membrane thickness and presented in overpotential-specific and gas-crossover dependent shares. The analysis reveals intrinsic differences in the compression behavior of WEs and EHCs. In the EHC, permeated hydrogen is simply re-compressed back to the cathode. In the WE, instead, water has to be split again to compensate for the hydrogen loss, causing energetic disadvantages with increasing hydrogen pressure. Moreover, using an EHC enables design parameters to be optimized separately regarding hydrogen generation and compression. Therefore, at low current densities, compression via EHC is already favorable to co-compression via WE for pressures above 4 bar. With increasing current density, however, this intersection point shifts up to pressures above 200 bar. eng
dc.language.iso eng
dc.publisher Bristol : IOP Publishing
dc.relation.ispartofseries Journal of The Electrochemical Society 168 (2021), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Compressors eng
dc.subject Current density eng
dc.subject Electrolytic cells eng
dc.subject Energy management eng
dc.subject Proton exchange membrane fuel cells (PEMFC) eng
dc.subject Compression behavior eng
dc.subject Hydrogen compression eng
dc.subject Hydrogen compressors eng
dc.subject Hydrogen generations eng
dc.subject Intrinsic differences eng
dc.subject Low current density eng
dc.subject Mechanical compression eng
dc.subject Proton-exchange membrane eng
dc.subject Hydrogen production eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc 540 | Chemie
dc.subject.ddc 530 | Physik
dc.title Energetic evaluation and optimization of hydrogen generation and compression pathways considering PEM water electrolyzers and electrochemical hydrogen compressors eng
dc.type Article
dc.type Text
dc.relation.essn 1945-7111
dc.relation.issn 0013-4651
dc.relation.doi https://doi.org/10.1149/1945-7111/abcf1a
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 168
dc.bibliographicCitation.firstPage 014504
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber 014504


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken