Deep learning approach to predict optical attenuation in additively manufactured planar waveguides

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16588
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16715
dc.contributor.author Pflieger, Keno
dc.contributor.author Evertz, Andreas
dc.contributor.author Overmeyer, Ludger
dc.date.accessioned 2024-03-15T09:40:20Z
dc.date.available 2024-03-15T09:40:20Z
dc.date.issued 2024
dc.identifier.citation Pflieger, K.; Evertz, A.; Overmeyer, L.: Deep learning approach to predict optical attenuation in additively manufactured planar waveguides. In: Applied Optics 63 (2024), Nr. 1, S. 66-76. DOI: https://doi.org/10.1364/ao.501079
dc.description.abstract The booming demand for efficient, scalable optical networks has intensified the exploration of innovative strategies that seamlessly connect large-scale fiber networks with miniaturized photonic components. Within this context, our research introduces a neural network, specifically a convolutional neural network (CNN), as a trailblazing method for approximating the nonlinear attenuation function of centimeter-scale multimode waveguides. Informed by a ray tracing model that simulated many flexographically printed waveguide configurations, we cultivated a comprehensive dataset that laid the groundwork for rigorous CNN training. This model demonstrates remarkable adeptness in estimating optical losses due to waveguide curvature, achieving an attenuation standard deviation of 1.5 dB for test data over an attenuation range of 50 dB. Notably, the CNN model’s evaluation speed, at 517 µs per waveguide, starkly contrasts the used ray tracing model that demands 5–10 min for a similar task. This substantial increase in computational efficiency accentuates the model’s paramount significance, especially in scenarios mandating swift waveguide assessments, such as optical network optimization. In a subsequent study, we test the trained model on actual measurements of fabricated waveguides and its optical model. All approaches show excellent agreement in assessing the waveguide’s attenuation within measurement accuracy. Our endeavors elucidate the transformative potential of machine learning in revolutionizing optical network design. eng
dc.language.iso eng
dc.publisher Washington, DC : Optical Soc. of America
dc.relation.ispartofseries Applied Optics 63 (2024), Nr. 1
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Convolutional neural networks eng
dc.subject Deep learning eng
dc.subject Multimode fibers eng
dc.subject Neural network models eng
dc.subject Convolutional neural network eng
dc.subject.ddc 530 | Physik
dc.title Deep learning approach to predict optical attenuation in additively manufactured planar waveguides eng
dc.type Article
dc.type Text
dc.relation.essn 2155-3165
dc.relation.issn 1559-128X
dc.relation.doi https://doi.org/10.1364/ao.501079
dc.bibliographicCitation.issue 1
dc.bibliographicCitation.volume 63
dc.bibliographicCitation.firstPage 66
dc.bibliographicCitation.lastPage 76
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken