The effects of severe plastic deformation on the mechanical and corrosion characteristics of a bioresorbable Mg-ZKQX6000 alloy

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/16393
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16520
dc.contributor.author Vaughan, M.W.
dc.contributor.author Karayan, A.I.
dc.contributor.author Srivastava, A.
dc.contributor.author Mansoor, B.
dc.contributor.author Seitz, J.M.
dc.contributor.author Eifler, R.
dc.contributor.author Karaman, I.
dc.contributor.author Castaneda, H.
dc.contributor.author Maier, H.J.
dc.date.accessioned 2024-02-27T07:23:26Z
dc.date.available 2024-02-27T07:23:26Z
dc.date.issued 2020
dc.identifier.citation Vaughan, M.W.; Karayan, A.I.; Srivastava, A.; Mansoor, B.; Seitz, J.M. et al.: The effects of severe plastic deformation on the mechanical and corrosion characteristics of a bioresorbable Mg-ZKQX6000 alloy. In: Materials Science and Engineering C: Materials for Biological Applications 115 (2020), 111130. DOI: https://doi.org/10.1016/j.msec.2020.111130
dc.description.abstract In this work, a bioresorbable Mg-ZKQX6000 (Mg–6Zn–0.6Zr–0.4Ag–0.2Ca (wt%)) alloy was severely plastically deformed via equal channel angular pressing (ECAP) according to three unique hybrid routes at low temperatures (200 °C to 125 °C). The roles of ECAP processing on microstructure, and ensuing mechanical properties and corrosion rates, are assessed. Microstructurally, ECAP induces a complex plethora of features, especially variations in grain sizes and precipitates' sizes, distributions, and morphologies for individual cases. Mechanically, ECAP generally refined grain size, resulting in ultra-high strength levels of about 400 MPa in ultimate tensile strength for several cases; however, deformation via ECAP of precipitates induced embrittlement and low elongation to failure levels. Corrosion testing, conducted in simulated bodily fluid at bodily pH levels to mimic conditions in the human body, revealed consistent corrosion rates across several techniques (mass loss, hydrogen evolution, and electrochemical impedance spectroscopy (EIS)), showing that severe plastic deformation deteriorates corrosion resistance for this material. In-situ corrosion monitoring explained that corrosion accelerated after ECAP due to the creation of heterogeneous, anodic shear zones, which exhibited dense regions of refined grains and fine precipitates. Suggestions for future design and thermomechanical processing of Mg alloys for bioresorbable orthopedic implants are provided. eng
dc.language.iso eng
dc.publisher Amsterdam : Elsevier
dc.relation.ispartofseries Materials Science and Engineering C: Materials for Biological Applications 115 (2020)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Anodic dissolution eng
dc.subject Bioresorbable orthopedic implants eng
dc.subject Corrosion eng
dc.subject Equal channel angular pressing eng
dc.subject Magnesium eng
dc.subject Severe plastic deformation eng
dc.subject.ddc 600 | Technik
dc.title The effects of severe plastic deformation on the mechanical and corrosion characteristics of a bioresorbable Mg-ZKQX6000 alloy eng
dc.type Article
dc.type Text
dc.relation.essn 1873-0191
dc.relation.issn 0928-4931
dc.relation.doi https://doi.org/10.1016/j.msec.2020.111130
dc.bibliographicCitation.volume 115
dc.bibliographicCitation.firstPage 111130
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken