Improving tropospheric corrections on large-scale Sentinel-1 interferograms using a machine learning approach for integration with GNSS-derived zenith total delay (ZTD)

Show simple item record

dc.identifier.uri http://dx.doi.org/10.15488/16385
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/16512
dc.contributor.author Shamshiri, Roghayeh
dc.contributor.author Motagh, Mahdi
dc.contributor.author Nahavandchi, Hossein
dc.contributor.author Haghshenas Haghighi, Mahmud
dc.contributor.author Hoseini, Mostafa
dc.date.accessioned 2024-02-26T10:31:01Z
dc.date.available 2024-02-26T10:31:01Z
dc.date.issued 2020
dc.identifier.citation Shamshiri, R.; Motagh, M.; Nahavandchi, H.; Haghshenas Haghighi, M.; Hoseini, M.: Improving tropospheric corrections on large-scale Sentinel-1 interferograms using a machine learning approach for integration with GNSS-derived zenith total delay (ZTD). In: Remote Sensing of Environment 239 (2020), 111608. DOI: https://doi.org/10.1016/j.rse.2019.111608
dc.description.abstract Sentinel-1 mission with its wide spatial coverage (250 km), short revisit time (6 days), and rapid data dissemination opened new perspectives for large-scale interferometric synthetic aperture radar (InSAR) analysis. However, the spatiotemporal changes in troposphere limits the accuracy of InSAR measurements for operational deformation monitoring at a wide scale. Due to the coarse node spacing of the tropospheric models, like ERA-Interim and other external data like Global Navigation Satellite System (GNSS), the interpolation techniques are not able to well replicate the localized and turbulent tropospheric effects. In this study, we propose a new technique based on machine learning (ML) Gaussian processes (GP) regression approach using the combination of small-baseline interferograms and GNSS derived zenith total delay (ZTD) values to mitigate phase delay caused by troposphere in interferometric observations. By applying the ML technique over 12 Sentinel-1 images acquired between May–October 2016 along a track over Norway, the root mean square error (RMSE) reduces on average by 83% compared to 50% reduction obtained by using ERA-Interim model. eng
dc.language.iso eng
dc.publisher Amsterdam [u.a.] : Elsevier Science
dc.relation.ispartofseries Remote Sensing of Environment 239 (2020)
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject Gaussian processes (GP) regression eng
dc.subject Global navigation satellite system (GNSS) eng
dc.subject Large-scale eng
dc.subject Machine learning (ML) eng
dc.subject Sentinel-1 eng
dc.subject Synthetic aperture radar (SAR) eng
dc.subject Troposphere eng
dc.subject Zenith total delay (ZTD) eng
dc.subject.ddc 050 | Zeitschriften, fortlaufende Sammelwerke
dc.subject.ddc 550 | Geowissenschaften
dc.title Improving tropospheric corrections on large-scale Sentinel-1 interferograms using a machine learning approach for integration with GNSS-derived zenith total delay (ZTD) eng
dc.type Article
dc.type Text
dc.relation.essn 1879-0704
dc.relation.issn 0034-4257
dc.relation.doi https://doi.org/10.1016/j.rse.2019.111608
dc.bibliographicCitation.volume 239
dc.bibliographicCitation.firstPage 111608
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Files in this item

This item appears in the following Collection(s):

Show simple item record

 

Search the repository


Browse

My Account

Usage Statistics