Spatial Extent of Fluorescence Quenching in Mixed Semiconductor–Metal Nanoparticle Gel Networks

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/14239
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/14353
dc.contributor.author Rosebrock, Marina
dc.contributor.author Zámbó, Dániel
dc.contributor.author Rusch, Pascal
dc.contributor.author Pluta, Denis
dc.contributor.author Steinbach, Frank
dc.contributor.author Bessel, Patrick
dc.contributor.author Schlosser, Anja
dc.contributor.author Feldhoff, Armin
dc.contributor.author Hindricks, Karen D. J.
dc.contributor.author Behrens, Peter
dc.contributor.author Dorfs, Dirk
dc.contributor.author Bigall, Nadja C.
dc.date.accessioned 2023-07-24T07:18:37Z
dc.date.available 2023-07-24T07:18:37Z
dc.date.issued 2021
dc.identifier.citation Rosebrock, M.; Zámbó, D.; Rusch, P.; Pluta, D.; Steinbach, F. et al.: Spatial Extent of Fluorescence Quenching in Mixed Semiconductor–Metal Nanoparticle Gel Networks. In: Advanced Functional Materials 31 (2021), Nr. 41, 2101628. DOI: https://doi.org/10.1002/adfm.202101628
dc.description.abstract In this work, mixing and co-gelation of Au nanoparticles (NPs) and highly luminescent CdSe/CdS core/shell nanorods (NRs) are used as tools to obtain noble metal particle-decorated macroscopic semiconductor gel networks. The hybrid nature of the macrostructures facilitates the control over the optical properties: while the holes are trapped in the CdSe cores, the connected CdSe/CdS NRs support the mobility of excited electrons throughout the porous, hyperbranched gel networks. Due to the presence of Au NPs in the mixed gels, electron trapping in the gold NPs leads to a suppressed radiative recombination, namely, quenches the fluorescence in certain fragments of the multicomponent gel. The extent of fluorescence quenching can be influenced by the quantity of the noble metal domains. The optical properties are monitored as a function of the NR:NP ratio of a model system CdSe/CdS:Au. By this correlation, it demonstrates that the spatial extent of quenching initiated by a single Au NP exceeds the dimensions of one NR, which the Au is connected to (with a length of 45.8 nm ± 4.1 nm) and can reach the number of nine NRs per Au NP, which roughly corresponds to 400 nm of total electron travel distance within the network structure. eng
dc.language.iso eng
dc.publisher Weinheim : Wiley-VCH
dc.relation.ispartofseries Advanced Functional Materials 31 (2021), Nr. 41
dc.rights CC BY-NC 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0
dc.subject aerogels eng
dc.subject hydrogels eng
dc.subject mixing eng
dc.subject multicomponent eng
dc.subject nanoparticles eng
dc.subject noble metals eng
dc.subject semiconductors eng
dc.subject.ddc 620 | Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc 540 | Chemie
dc.subject.ddc 530 | Physik
dc.title Spatial Extent of Fluorescence Quenching in Mixed Semiconductor–Metal Nanoparticle Gel Networks eng
dc.type Article
dc.type Text
dc.relation.essn 1616-3028
dc.relation.issn 1616-301X
dc.relation.doi https://doi.org/10.1002/adfm.202101628
dc.bibliographicCitation.issue 41
dc.bibliographicCitation.volume 31
dc.bibliographicCitation.firstPage 2101628
dc.description.version publishedVersion eng
tib.accessRights frei zug�nglich
dc.bibliographicCitation.articleNumber 2101628


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken