Electrospun Ca3Co4−xO9+δ nanofibers and nanoribbons: Microstructure and thermoelectric properties

Zur Kurzanzeige

dc.identifier.uri http://dx.doi.org/10.15488/13970
dc.identifier.uri https://www.repo.uni-hannover.de/handle/123456789/14084
dc.contributor.author Kruppa, Katharina
dc.contributor.author Maor, Itzhak I.
dc.contributor.author Steinbach, Frank
dc.contributor.author Beilin, Vadim
dc.contributor.author Mann‐Lahav, Meirav
dc.contributor.author Wolf, Mario
dc.contributor.author Grader, Gideon S.
dc.contributor.author Feldhoff, Armin
dc.date.accessioned 2023-06-29T07:13:04Z
dc.date.available 2023-06-29T07:13:04Z
dc.date.issued 2022
dc.identifier.citation Kruppa, K.; Maor, I.I.; Steinbach, F.; Beilin, V.; Mann‐Lahav, M. et al: Electrospun Ca3Co4−xO9+δ nanofibers and nanoribbons: Microstructure and thermoelectric properties. In: Journal of the American Ceramic Society 106 (2023), Nr. 2, S. 1170-1181. DOI: https://doi.org/10.1111/jace.18842
dc.description.abstract Oxide-based ceramics offer promising thermoelectric (TE) materials for recycling high-temperature waste heat, generated extensively from industrial sources. To further improve the functional performance of TE materials, their power factor should be increased. This can be achieved by nanostructuring and texturing the oxide-based ceramics creating multiple interphases and nanopores, which simultaneously increase the electrical conductivity and the Seebeck coefficient. The aim of this work is to achieve this goal by compacting electrospun nanofibers of calcium cobaltite Ca3Co4−xO9+δ, known to be a promising p-type TE material with good functional properties and thermal stability up to 1200 K in air. For this purpose, polycrystalline Ca3Co4−xO9+δ nanofibers and nanoribbons were fabricated by sol–gel electrospinning and calcination at intermediate temperatures to obtain small primary particle sizes. Bulk ceramics were formed by sintering pressed compacts of calcined nanofibers during TE measurements. The bulk nanofiber sample pre-calcined at 973 K exhibited an improved Seebeck coefficient of 176.5 S cm−1 and a power factor of 2.47 μW cm−1 K−2 similar to an electrospun nanofiber-derived ceramic compacted by spark plasma sintering. eng
dc.language.iso eng
dc.publisher Oxford [u.a.] : Wiley-Blackwell
dc.relation.ispartofseries Journal of the American Ceramic Society 106 (2023), Nr. 2
dc.rights CC BY 4.0 Unported
dc.rights.uri https://creativecommons.org/licenses/by/4.0
dc.subject electron microscopy eng
dc.subject electrospinning eng
dc.subject microstructure eng
dc.subject thermoelectric properties eng
dc.subject.ddc 660 | Technische Chemie
dc.title Electrospun Ca3Co4−xO9+δ nanofibers and nanoribbons: Microstructure and thermoelectric properties eng
dc.type Article
dc.type Text
dc.relation.essn 1551-2916
dc.relation.issn 0002-7820
dc.relation.doi https://doi.org/10.1111/jace.18842
dc.bibliographicCitation.issue 2
dc.bibliographicCitation.volume 106
dc.bibliographicCitation.date 2023
dc.bibliographicCitation.firstPage 1170
dc.bibliographicCitation.lastPage 1181
dc.description.version publishedVersion
tib.accessRights frei zug�nglich


Die Publikation erscheint in Sammlung(en):

Zur Kurzanzeige

 

Suche im Repositorium


Durchblättern

Mein Nutzer/innenkonto

Nutzungsstatistiken