Deep learning approach to predict optical attenuation in additively manufactured planar waveguides

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Pflieger, K.; Evertz, A.; Overmeyer, L.: Deep learning approach to predict optical attenuation in additively manufactured planar waveguides. In: Applied Optics 63 (2024), Nr. 1, S. 66-76. DOI: https://doi.org/10.1364/ao.501079

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/16588

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 12




Kleine Vorschau
Zusammenfassung: 
The booming demand for efficient, scalable optical networks has intensified the exploration of innovative strategies that seamlessly connect large-scale fiber networks with miniaturized photonic components. Within this context, our research introduces a neural network, specifically a convolutional neural network (CNN), as a trailblazing method for approximating the nonlinear attenuation function of centimeter-scale multimode waveguides. Informed by a ray tracing model that simulated many flexographically printed waveguide configurations, we cultivated a comprehensive dataset that laid the groundwork for rigorous CNN training. This model demonstrates remarkable adeptness in estimating optical losses due to waveguide curvature, achieving an attenuation standard deviation of 1.5 dB for test data over an attenuation range of 50 dB. Notably, the CNN model’s evaluation speed, at 517 µs per waveguide, starkly contrasts the used ray tracing model that demands 5–10 min for a similar task. This substantial increase in computational efficiency accentuates the model’s paramount significance, especially in scenarios mandating swift waveguide assessments, such as optical network optimization. In a subsequent study, we test the trained model on actual measurements of fabricated waveguides and its optical model. All approaches show excellent agreement in assessing the waveguide’s attenuation within measurement accuracy. Our endeavors elucidate the transformative potential of machine learning in revolutionizing optical network design.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2024
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 6 50,00%
2 image of flag of United States United States 3 25,00%
3 image of flag of China China 3 25,00%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.