Evaluation of biofilm colonization on multi-part dental implants in a rat model

Download statistics - Document (COUNTER):

Blank, E.; Grischke, J.; Winkel, A.; Eberhard, J.; Kommerein, N. et al.: Evaluation of biofilm colonization on multi-part dental implants in a rat model. In: BMC Oral Health 21 (2021), Nr. 1, 313. DOI: https://doi.org/10.1186/s12903-021-01665-2

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/16575

Selected time period:

year: 
month: 

Sum total of downloads: 4




Thumbnail
Abstract: 
Background: Peri-implant mucositis and peri-implantitis are highly prevalent biofilm-associated diseases affecting the tissues surrounding dental implants. As antibiotic treatment is ineffective to fully cure biofilm mediated infections, antimicrobial modifications of implants to reduce or prevent bacterial colonization are called for. Preclinical in vivo evaluation of the functionality of new or modified implant materials concerning bacterial colonization and peri-implant health is needed to allow progress in this research field. For this purpose reliable animal models are needed. Methods: Custom made endosseous dental implants were installed in female Sprague Dawley rats following a newly established three-step implantation procedure. After healing of the bone and soft tissue, the animals were assigned to two groups. Group A received a continuous antibiotic treatment for 7 weeks, while group B was repeatedly orally inoculated with human-derived strains of Streptococcus oralis, Fusobacterium nucleatum and Porphyromonas gingivalis for six weeks, followed by 1 week without inoculation. At the end of the experiment, implantation sites were clinically assessed and biofilm colonization was quantified via confocal laser scanning microscopy. Biofilm samples were tested for presence of the administered bacteria via PCR analysis. Results: The inner part of the custom made implant screw could be identified as a site of reliable biofilm formation in vivo. S. oralis and F. nucleatum were detectable only in the biofilm samples from group B animals. P. gingivalis was not detectable in samples from either group. Quantification of the biofilm volume on the implant material revealed no statistically significant differences between the treatment groups. Clinical inspection of implants in group B animals showed signs of mild to moderate peri-implant mucositis (4 out of 6) whereas the mucosa of group A animals appeared healthy (8/8). The difference in the mucosa health status between the treatment groups was statistically significant (p = 0.015). Conclusions: We developed a new rodent model for the preclinical evaluation of dental implant materials with a special focus on the early biofilm colonization including human-derived oral bacteria. Reliable biofilm quantification on the implant surface and the symptoms of peri-implant mucositis of the bacterially inoculated animals will serve as a readout for experimental evaluation of biofilm-reducing modifications of implant materials.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2021
Appears in Collections:Forschungszentren

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 3 75.00%
2 image of flag of Germany Germany 1 25.00%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse