Modeling, Discretization, Optimization, and Simulation of Phase-Field Fracture Problems

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Khimin, D.; Kolditz, L.; Kosin, V.; Mang, K.; Wick, T.: Modeling, Discretization, Optimization, and Simulation of Phase-Field Fracture Problems. Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 2023, 125 S. DOI: https://doi.org/10.15488/15172

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 309




Kleine Vorschau
Zusammenfassung: 
This course is devoted to phase-field fracture methods. Four different sessions are centered around modeling, discretizations, solvers, adaptivity, optimization, simulations and current developments. The key focus is on research work and teaching materials concerned with the accurate, efficient and robust numerical modeling. These include relationships of model, discretization, and material parameters and their influence on discretizations and the nonlinear (Newton-type methods) and linear numerical solution. One application of such high-fidelity forward models is in optimal control, where a cost functional is minimized by controlling Neumann boundary conditions. Therein, as a side-project (which is itself novel), space-time phase-field fracture models have been developed and rigorously mathematically proved. Emphasis in the entire course is on a fruitful mixture of theory, algorithmic concepts and exercises. Besides these lecture notes, further materials are available, such as for instance the open-source libraries pfm-cracks and DOpElib.The prerequisites are lectures in continuum mechanics, introduction to numerical methods, finite elements, and numerical methods for ODEs and PDEs. In addition, functional analysis (FA) and theory of PDEs is helpful, but for most parts not necessarily mandatory.Discussions with many colleagues in our research work and funding from the German Research Foundation within the Priority Program 1962 (DFG SPP 1962) within the subproject Optimizing Fracture Propagation using a Phase-Field Approach with the project number 314067056 (D. Khimin, T. Wick), and support of the French-German University (V. Kosin) through the French-German Doctoral college ``Sophisticated Numerical and Testing Approaches" (CDFA-DFDK 19-04) is gratefully acknowledged.
Lizenzbestimmungen: CC BY-NC-ND 3.0 DE
Publikationstyp: Other
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2023-11-11
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 104 33,66%
2 image of flag of China China 47 15,21%
3 image of flag of United States United States 45 14,56%
4 image of flag of India India 12 3,88%
5 image of flag of France France 12 3,88%
6 image of flag of No geo information available No geo information available 8 2,59%
7 image of flag of Netherlands Netherlands 7 2,27%
8 image of flag of Korea, Republic of Korea, Republic of 6 1,94%
9 image of flag of Hong Kong Hong Kong 6 1,94%
10 image of flag of Singapore Singapore 5 1,62%
    andere 57 18,45%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.