Multiplicative, Non-Newtonian Viscoelasticity Models for Rubber Materials and Brain Tissues: Numerical Treatment and Comparative Studies

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Ricker, A.; Gierig, M.; Wriggers, P.: Multiplicative, Non-Newtonian Viscoelasticity Models for Rubber Materials and Brain Tissues: Numerical Treatment and Comparative Studies. In: Archives of Computational Methods in Engineering 30 (2023), Nr. 5, S. 2889-2927. DOI: https://doi.org/10.1007/s11831-023-09889-x

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/14814

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 42




Kleine Vorschau
Zusammenfassung: 
In many aspects, elastomers and soft biological tissues exhibit similar mechanical properties such as a pronounced nonlinear stress–strain relation and a viscoelastic response to external loads. Consequently, many models use the same rheological framework and material functions to capture their behavior. The viscosity function is thereby often assumed to be constant and the corresponding free energy function follows that one of the long-term equilibrium response. This work questions this assumption and presents a detailed study on non-Newtonian viscosity functions for elastomers and brain tissues. The viscosity functions are paired with several commonly used free energy functions and fitted to two different types of elastomers and brain tissues in cyclic and relaxation experiments, respectively. Having identified suitable viscosity and free energy functions for the different materials, numerical aspects of viscoelasticity are addressed. From the multiplicative decomposition of the deformation gradient and ensuring a non-negative dissipation rate, four equivalent viscoelasticity formulations are derived that employ different internal variables. Using an implicit exponential map as time integration scheme, the numerical behavior of these four formulations are compared among each other and numerically robust candidates are identified. The fitting results demonstrate that non-Newtonian viscosity functions significantly enhance the fitting quality. It is shown that the choice of a viscosity function is even more important than the choice of a free energy function and the classical neo-Hooke approach is often a sufficient choice. Furthermore, the numerical investigations suggest the superiority of two of the four viscoelasticity formulations, especially when complex finite element simulations are to be conducted.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2023
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 19 45,24%
2 image of flag of United States United States 8 19,05%
3 image of flag of United Kingdom United Kingdom 3 7,14%
4 image of flag of Sweden Sweden 2 4,76%
5 image of flag of Saudi Arabia Saudi Arabia 2 4,76%
6 image of flag of Mexico Mexico 2 4,76%
7 image of flag of Italy Italy 2 4,76%
8 image of flag of France France 2 4,76%
9 image of flag of Poland Poland 1 2,38%
10 image of flag of Czech Republic Czech Republic 1 2,38%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.