Miniaturized free-flow electrophoresis: production, optimization, and application using 3D printing technology

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Preuss, J.-A.; Nguyen, G.N.; Berk, V.; Bahnemann, J.: Miniaturized free-flow electrophoresis: production, optimization, and application using 3D printing technology. In: Electrophoresis 42 (2021), Nr. 3, S. 305-314. DOI: https://doi.org/10.1002/elps.202000149

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/14260

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 36




Kleine Vorschau
Zusammenfassung: 
The increasing resolution of three-dimensional (3D) printing offers simplified access to, and development of, microfluidic devices with complex 3D structures. Therefore, this technology is increasingly used for rapid prototyping in laboratories and industry. Microfluidic free flow electrophoresis (μFFE) is a versatile tool to separate and concentrate different samples (such as DNA, proteins, and cells) to different outlets in a time range measured in mere tens of seconds and offers great potential for use in downstream processing, for example. However, the production of μFFE devices is usually rather elaborate. Many designs are based on chemical pretreatment or manual alignment for the setup. Especially for the separation chamber of a μFFE device, this is a crucial step which should be automatized. We have developed a smart 3D design of a μFFE to pave the way for a simpler production. This study presents (1) a robust and reproducible way to build up critical parts of a μFFE device based on high-resolution MultiJet 3D printing; (2) a simplified insertion of commercial polycarbonate membranes to segregate separation and electrode chambers; and (3) integrated, 3D-printed wells that enable a defined sample fractionation (chip-to-world interface). In proof of concept experiments both a mixture of fluorescence dyes and a mixture of amino acids were successfully separated in our 3D-printed μFFE device.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2021
Die Publikation erscheint in Sammlung(en):Naturwissenschaftliche Fakultät

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 15 41,67%
2 image of flag of United States United States 6 16,67%
3 image of flag of Russian Federation Russian Federation 6 16,67%
4 image of flag of United Kingdom United Kingdom 5 13,89%
5 image of flag of Indonesia Indonesia 3 8,33%
6 image of flag of Czech Republic Czech Republic 1 2,78%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.