Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Mahmudlu, H.; Johanning, R.; van Rees, A.; Khodadad Kashi, A.; Epping, J.P. et al.: Fully on-chip photonic turnkey quantum source for entangled qubit/qudit state generation. In: Nature Photonics 17 (2023), S. 518-524. DOI: https://doi.org/10.1038/s41566-023-01193-1

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/14159

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 58




Kleine Vorschau
Zusammenfassung: 
Integrated photonics has recently become a leading platform for the realization and processing of optical entangled quantum states in compact, robust and scalable chip formats, with applications in long-distance quantum-secured communication, quantum-accelerated information processing and nonclassical metrology. However, the quantum light sources developed so far have relied on external bulky excitation lasers, making them impractical prototype devices that are not reproducible, hindering their scalability and transfer out of the laboratory into real-world applications. Here we demonstrate a fully integrated quantum light source that overcomes these challenges through the integration of a laser cavity, a highly efficient tunable noise suppression filter (>55 dB) exploiting the Vernier effect, and a nonlinear microring for entangled photon-pair generation through spontaneous four-wave mixing. The hybrid quantum source employs an electrically pumped InP gain section and a Si3N4 low-loss microring filter system, and demonstrates high performance parameters, that is, pair emission over four resonant modes in the telecom band (bandwidth of ~1 THz) and a remarkable pair detection rate of ~620 Hz at a high coincidence-to-accidental ratio of ~80. The source directly creates high-dimensional frequency-bin entangled quantum states (qubits/qudits), as verified by quantum interference measurements with visibilities up to 96% (violating Bell’s inequality) and by density matrix reconstruction through state tomography, showing fidelities of up to 99%. Our approach, leveraging a hybrid photonic platform, enables scalable, commercially viable, low-cost, compact, lightweight and field-deployable entangled quantum sources, quintessential for practical, out-of-laboratory applications such as in quantum processors and quantum satellite communications systems.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2023
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik
Forschungszentren

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of United States United States 23 39,66%
2 image of flag of Germany Germany 12 20,69%
3 image of flag of United Kingdom United Kingdom 6 10,34%
4 image of flag of China China 5 8,62%
5 image of flag of France France 3 5,17%
6 image of flag of No geo information available No geo information available 2 3,45%
7 image of flag of Hong Kong Hong Kong 2 3,45%
8 image of flag of Russian Federation Russian Federation 1 1,72%
9 image of flag of New Zealand New Zealand 1 1,72%
10 image of flag of Indonesia Indonesia 1 1,72%
    andere 2 3,45%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.