Rapid generation of all-optical K 39 Bose-Einstein condensates using a low-field Feshbach resonance

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Herbst, A.; Albers, H.; Stolzenberg, K.; Bode, S.; Schlippert, D.: Rapid generation of all-optical K 39 Bose-Einstein condensates using a low-field Feshbach resonance. In: Physical review : A : covering atomic, molecular, and optical physics and quantum information 106 (2022), Nr. 4, 043320. DOI: https://doi.org/10.1103/physreva.106.043320

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/13640

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 79




Kleine Vorschau
Zusammenfassung: 
Ultracold potassium is an interesting candidate for quantum technology applications and fundamental research as it allows controlling intra-atomic interactions via low-field magnetic Feshbach resonances. However, the realization of high-flux sources of Bose-Einstein condensates remains challenging due to the necessity of optical trapping to use magnetic fields as free parameters. We investigate the production of all-optical K39 Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near 33 G. By tuning the scattering length in a range between 75a0 and 300a0 we demonstrate a tradeoff between evaporation speed and final atom number and decrease our evaporation time by a factor of 5 while approximately doubling the evaporation flux. To this end, we are able to produce fully condensed ensembles with 5.8×104 atoms within 850-ms evaporation time at a scattering length of 232a0 and 1.6×105 atoms within 3.9s at 158a0, respectively. We deploy a numerical model to analyze the flux and atom number scaling with respect to scattering length, identify current limitations, and simulate the optimal performance of our setup. Based on our findings we describe routes towards high-flux sources of ultracold potassium for inertial sensing.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2022
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 47 59,49%
2 image of flag of United States United States 14 17,72%
3 image of flag of China China 4 5,06%
4 image of flag of Netherlands Netherlands 3 3,80%
5 image of flag of Russian Federation Russian Federation 2 2,53%
6 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 2 2,53%
7 image of flag of Czech Republic Czech Republic 2 2,53%
8 image of flag of United Kingdom United Kingdom 1 1,27%
9 image of flag of France France 1 1,27%
10 image of flag of Australia Australia 1 1,27%
    andere 2 2,53%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.