Demistify: A large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Boutle, I.; Angevine, W.; Bao, J.-W.; Bergot, T.; Bhattacharya, R. et al.: Demistify: A large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog. In: Atmospheric chemistry and physics 22 (2022), Nr. 1, S. 319-333. DOI: https://doi.org/10.5194/acp-22-319-2022

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/12869

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 66




Kleine Vorschau
Zusammenfassung: 
An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the Local and Non-local Fog Experiment (LANFEX) field campaign. Seven of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst three are research-grade SCMs designed for fog simulation, and the LESs are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number concentration (CDNC) conditions. The main SCM bias appears to be toward the overdevelopment of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parameterisation, as it is to the underlying aerosol or CDNC. © 2022 Ian Boutle et al.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2022
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of United States United States 16 24,24%
2 image of flag of Germany Germany 15 22,73%
3 image of flag of China China 9 13,64%
4 image of flag of Korea, Republic of Korea, Republic of 5 7,58%
5 image of flag of France France 5 7,58%
6 image of flag of Switzerland Switzerland 5 7,58%
7 image of flag of Ireland Ireland 4 6,06%
8 image of flag of Japan Japan 1 1,52%
9 image of flag of Italy Italy 1 1,52%
10 image of flag of Austria Austria 1 1,52%
    andere 4 6,06%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.