Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics

Download statistics - Document (COUNTER):

Shehu, B.; Haberlandt, U.: Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics. In: Hydrology and earth system sciences : an interactive open-access journal of the European Geosciences Union 26 (2022), Nr. 6, S. 1631-1658. DOI: https://doi.org/10.5194/hess-26-1631-2022

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/12225

Selected time period:

year: 
month: 

Sum total of downloads: 49




Thumbnail
Abstract: 
The nowcast of rainfall storms at fine temporal and spatial resolutions is quite challenging due to the unpredictable nature of rainfall at such scales. Typically, rainfall storms are recognized by weather radar and extrapolated in the future by the Lagrangian persistence. However, storm evolution is much more dynamic and complex than the Lagrangian persistence, leading to short forecast horizons, especially for convective events. Thus, the aim of this paper is to investigate the improvement that past similar storms can introduce to the object-oriented radar-based nowcast. Here we propose a nearest-neighbour approach that measures first the similarity between the “to-be-nowcasted” storm and past observed storms and later uses the behaviour of the past most similar storms to issue either a single nowcast (by averaging the 4 most similar storm responses) or an ensemble nowcast (by considering the 30 most similar storm responses). Three questions are tackled here. (i) What features should be used to describe storms in order to check for similarity? (ii) How should similarity between past storms be measured? (iii) Is this similarity useful for object-oriented nowcast? For this purpose, individual storms from 110 events in the period 2000–2018 recognized within the Hanover Radar Range (R∼115 km2), Germany, are used as a basis for investigation. A “leave-one-event-out” cross-validation is employed to test the nearest-neighbour approach for the prediction of the area, mean intensity, the x and y velocity components, and the total lifetime of the to-be-nowcasted storm for lead times from + 5 min up to + 3 h. Prior to the application, two importance analysis methods (Pearson correlation and partial information correlation) are employed to identify the most important predictors. The results indicate that most of the storms behave similarly, and the knowledge obtained from such similar past storms helps to capture better the storm dissipation and improves the nowcast compared to the Lagrangian persistence, especially for convective events (storms shorter than 3 h) and longer lead times (from 1 to 3 h). The main advantage of the nearest-neighbour approach is seen when applied in a probabilistic way (with the 30 closest neighbours as ensembles) rather than in a deterministic way (averaging the response from the four closest neighbours). The probabilistic approach seems promising, especially for convective storms, and it can be further improved by either increasing the sample size, employing more suitable methods for the predictor identification, or selecting physical predictors.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 18 36.73%
2 image of flag of Germany Germany 18 36.73%
3 image of flag of China China 4 8.16%
4 image of flag of Indonesia Indonesia 2 4.08%
5 image of flag of Denmark Denmark 2 4.08%
6 image of flag of Taiwan Taiwan 1 2.04%
7 image of flag of Netherlands Netherlands 1 2.04%
8 image of flag of Malaysia Malaysia 1 2.04%
9 image of flag of Hong Kong Hong Kong 1 2.04%
10 image of flag of Belgium Belgium 1 2.04%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse