Metamodel-based uncertainty quantification for the mechanical behavior of braided composites

Download statistics - Document (COUNTER):

Balokas, Georgios: Metamodel-based uncertainty quantification for the mechanical behavior of braided composites. Hannover : Institut für Statik und Dynamik, 2022.(Mitteilungen des Instituts für Statik und Dynamik der Leibniz Universität Hannover ; 46), xiii, 114 S.

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/11981

Selected time period:

year: 
month: 

Sum total of downloads: 353




Thumbnail
Abstract: 
The main design requirement for any high-performance structure is minimal dead weight. Producing lighter structures for aerospace and automotive industry directly leads to fuel efficiency and, hence, cost reduction. For wind energy, lighter wings allow larger rotor blades and, consequently, better performance. Prosthetic implants for missing body parts and athletic equipment such as rackets and sticks should also be lightweight for augmented functionality. Additional demands depending on the application, can very often be improved fatigue strength and damage tolerance, crashworthiness, temperature and corrosion resistance etc. Fiber-reinforced composite materials lie within the intersection of all the above requirements since they offer competing stiffness and ultimate strength levels at much lower weight than metals, and also high optimization and design potential due to their versatility. Braided composites are a special category with continuous fiber bundles interlaced around a preform. The automated braiding manufacturing process allows simultaneous material-structure assembly, and therefore, high-rate production with minimal material waste. The multi-step material processes and the intrinsic heterogeneity are the basic origins of the observed variability during mechanical characterization and operation of composite end-products. Conservative safety factors are applied during the design process accounting for uncertainties, even though stochastic modeling approaches lead to more rational estimations of structural safety and reliability. Such approaches require statistical modeling of the uncertain parameters which is quite expensive to be performed experimentally. A robust virtual uncertainty quantification framework is presented, able to integrate material and geometric uncertainties of different nature and statistically assess the response variability of braided composites in terms of effective properties. Information-passing multiscale algorithms are employed for high-fidelity predictions of stiffness and strength. In order to bypass the numerical cost of the repeated multiscale model evaluations required for the probabilistic approach, smart and efficient solutions should be applied. Surrogate models are, thus, trained to map manifolds at different scales and eventually substitute the finite element models. The use of machine learning is viable for uncertainty quantification, optimization and reliability applications of textile materials, but not straightforward for failure responses with complex response surfaces. Novel techniques based on variable-fidelity data and hybrid surrogate models are also integrated. Uncertain parameters are classified according to their significance to the corresponding response via variance-based global sensitivity analysis procedures. Quantification of the random properties in terms of mean and variance can be achieved by inverse approaches based on Bayesian inference. All stochastic and machine learning methods included in the framework are non-intrusive and data-driven, to ensure direct extensions towards more load cases and different materials. Moreover, experimental validation of the adopted multiscale models is presented and an application of stochastic recreation of random textile yarn distortions based on computed tomography data is demonstrated.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie
Dissertationen

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 170 48.16%
2 image of flag of United States United States 37 10.48%
3 image of flag of United Kingdom United Kingdom 36 10.20%
4 image of flag of China China 26 7.37%
5 image of flag of Vietnam Vietnam 9 2.55%
6 image of flag of Greece Greece 7 1.98%
7 image of flag of France France 7 1.98%
8 image of flag of Austria Austria 7 1.98%
9 image of flag of No geo information available No geo information available 6 1.70%
10 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 5 1.42%
    other countries 43 12.18%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse