A high-performance magnesium lattice clock: stability and accuracy analysis

Download statistics - Document (COUNTER):

Jha, Nandan: A high-performance magnesium lattice clock: stability and accuracy analysis. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2022, iii, 131 S. DOI: https://doi.org/10.15488/11947

Selected time period:

year: 
month: 

Sum total of downloads: 378




Thumbnail
Abstract: 
Optical lattice clocks have reached uncertainties in 10^{-18} regime, well surpassing the primary microwave frequency standard. Such performance levels have allowed for applications from geodesy to fundamental physics. The performance of state of the art optical lattice clocks are strongly influenced by black body radiation (BBR) induced frequency shifts. Magnesium is one of the optical lattice clock candidate elements with very low sensitivity to BBR, which makes it an interesting candidate as an optical frequency reference.Optical lattice clocks rely on high-Q optical transitions, where Doppler and recoil shifts are suppressed by trapping the atoms in Lamb-Dicke regime. For Magnesium, due to its low atomic mass, the tunneling induced line-broadening is significantly large. This has been a bottleneck in reducing the instability of Magnesium lattice clock. However the large tunneling rate for Magnesium atoms in the optical lattice also allows us to study these lattice effects using optical spectroscopy.Lattice AC Stark shift is one of the important contributions to the uncertainty budget for an optical lattice clock. To achieve clock uncertainties in 10^{-18} regime, even the contributions from multipolar polarizabilities and hyperpolarizability becomes significant. Therefore, operational magic frequencies have been identified in Strontium and Ytterbium lattice clocks, where the light shift dependence on intensity is zero to the lowest order.In this thesis, an extensive model has been developed to understand the influence of tunneling in a one dimensional optical lattice on the clock transition lineshape. This model is used to simulate the spectroscopy results previously observed in our experiment, which show strong lineshape asymmetry as lattice wavelength is detuned from the magic condition. The strong influence of transverse states in generating these asymmetries was highlighted by numerical simulations.To improve the performance of our Magnesium lattice clock from the last frequency measurements, lattice system upgrades were carried out within the scope of this thesis. This allowed to suppress the tunneling induced line-broadening to sub-Hz regime for the first time for magnesium, and to resolve the 1S0-3P0 clock transition with a linewidth of 7(3) Hz. The high line-Q thus obtained of 9(3) x 10^{13} helped reduce the clock instability in self-comparison measurement to 7.2^{+7.7}_{-1.8} x 10^{-17} in 3000 seconds of averaging time.The improved clock instability also helped estimate various systematic shifts with much improved uncertainties. The probe AC Stark shift and Zeeman shift uncertainties were reduced to the mid-10^{-17} regime, while cold collision shift was characterized with uncertainty of 1.4 x 10^{-16}. With an aim to similarly reduce lattice AC Stark shift uncertainty, influence of higher order shifts was characterized for Magnesium for the first time. The hyperpolarizability coefficient was estimated to be 197(53) micro Hz/(kWcm^{-2})^2. These measurements show that the lattice shift can be characterized with an uncertainty of 6.5 x 10^{-16}, paving way for a future frequency measurement with more than an order of magnitude lower uncertainty.
License of this version: CC BY 3.0 DE
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Fakultät für Mathematik und Physik
Dissertationen

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 107 28.31%
2 image of flag of United States United States 73 19.31%
3 image of flag of China China 66 17.46%
4 image of flag of United Kingdom United Kingdom 13 3.44%
5 image of flag of France France 13 3.44%
6 image of flag of Russian Federation Russian Federation 11 2.91%
7 image of flag of Portugal Portugal 11 2.91%
8 image of flag of India India 10 2.65%
9 image of flag of Singapore Singapore 9 2.38%
10 image of flag of Netherlands Netherlands 9 2.38%
    other countries 56 14.81%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse