Single-element dual-interferometer for precision inertial sensing

Download statistics - Document (COUNTER):

Yang, Y.; Yamamoto, K.; Huarcaya, V.; Vorndamme, C.; Penkert, D. et al.: Single-element dual-interferometer for precision inertial sensing. In: Sensors 20 (2020), Nr. 17, 4986. DOI: https://doi.org/10.3390/s20174986

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/10807

Selected time period:

year: 
month: 

Sum total of downloads: 115




Thumbnail
Abstract: 
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2020
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 52 45.22%
2 image of flag of China China 24 20.87%
3 image of flag of United States United States 23 20.00%
4 image of flag of No geo information available No geo information available 2 1.74%
5 image of flag of Japan Japan 2 1.74%
6 image of flag of Indonesia Indonesia 2 1.74%
7 image of flag of United Kingdom United Kingdom 2 1.74%
8 image of flag of France France 2 1.74%
9 image of flag of Canada Canada 2 1.74%
10 image of flag of Sweden Sweden 1 0.87%
    other countries 3 2.61%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse