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Abstract

Quantum systems cannot always be treated as isolated from their sur-
roundings since this is an idealization which is not always true. Though the-
oretical analysis of open quantum systems poses great challenges as one needs
to treat many-particle quantum systems as a whole, the system-environment
interactions often lead to many interesting effects that are not observed in
closed systems. The dissipation of a quantum system is not always a disad-
vantage and, in fact, if exploited properly in combination of coherent driving,
one can steer the system into a desired state. This dissipation driven quan-
tum state engineering technique finds its applications in novel technologies
such as quantum computing, quantum simulation, and quantum metrology.
In this thesis, we focus on the latter two, and show that using dissipative
channels allows us to build quantum devices that have considerable advan-
tages over their entirely coherent analogues.

Simulation of many-body problems on a quantum simulator will unlock
the potential to provide great insights into a large number of systems espe-
cially those that are computationally intractable or experimentally challeng-
ing. The two crucial steps towards the successful functioning of quantum
simulation are the initialization of the quantum simulators i.e, preparing the
system in a known initial state, and the Hamiltonian engineering. While
there have been many experiments demonstrating the implementation of the
Hamiltonian dynamics on the quantum simulator, work still needs to be done
on the problem of preparing the simulator in a suitable quantum state. This
is exactly our aim here and we propose a protocol to cool a given system into
the ground state of a black-box spin Hamiltonian. The central idea is to use
a dissipatively driven auxiliary spin to pull out the excitations in the system,
eventually cooling it to its ground state. We show that already a single aux-
iliary spin is efficient in cooling the quantum simulator to a low-energy state
of largely arbitrary Hamiltonians as the resources scale only polynomially
with the system size. We also show that our scheme of sympathetic cooling
is robust against additional sources of decoherence.

The second part of the thesis deals with nanoscale quantum sensing using
dissipative first order transition in the magnetization of a system of nitrogen-
vacancy point defect centers in diamond. The sensitivity of a generic quan-
tum sensor with non-interacting particles scales as the square root of the
number of particles. Therefore, a sensor with large number of particles dis-
plays a better sensitivity. However, in the interest of nanoscale sensing,



Abstract

having a large number of particles implies that they are closely packed next
to each other. At such high densities, the particles interact strongly with
each other posing great challenges to the sensing process. Here, we show
that these interactions can in fact be used to trigger a first order phase tran-
sition when coupled with controlled dissipation in the system. We study the
properties of the phase transition using two- and three-dimensional setups
to build a nanoscale quantum sensor that is especially robust against typical
disorder imperfections or additional decoherence processes, with the sensitiv-
ity not being severely limited by the T2 decoherence time. Since our sensing
protocol does not assume too many microscopic details of the process, one
can easily apply this to other areas of quantum sensing and metrology.

These results especially highlight the fact that dissipation in quantum
systems, that is normally considered unwanted, can in fact be a powerful
tool that allows us to enable a large list of quantum technologies in the
future.
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Preliminary remarks

Open quantum systems play an important role in quantum mechanics be-
cause a complete isolation of a system is impossible in real life and couplings
to external environment often influence a system, greatly changing its prop-
erties [1]. Dissipation in a system is often considered a nuisance as one needs
to handle the system and the environment as a whole and treating quan-
tum systems with large (let alone infinite) degrees of freedom is extremely
challenging. Though in some situations environment-induced dissipation can
indeed lead to undesired decoherence [2, 3] that destroy subtle quantum
mechanical correlations, in many other cases the interplay between coherent
and dissipative dynamics could lead to rich physics via many interesting novel
phenomena [4]. The dynamics of such driven-dissipative systems resulting
in a non-equilibrium stationary state often offer a rich variety of phenomena
such as steady state phase transitions [5, 6], dissipative binding mechanisms
[7, 8], interaction-mediated cooling [9, 10], quantum heat switch [11], as well
as non-trivial quantum effects in biological systems [12].

From a fundamental point of view and from a technological point of view,
driven-dissipative quantum many-body systems have generated a tremendous
amount of interest over the past decade. Ever since the initial proposal of
using controlled dissipation as a tool for quantum information and quantum
many-body physics [13, 14], this idea has been constantly gaining more and
more momentum particularly in the area of state preparation techniques
[15, 16, 17, 18, 19, 20]. These techniques have especially helped us get closer
to achieving the fast emergent technology of quantum simulation.

On the other hand, driven-dissipative systems have also been employed
in the area of quantum sensing and metrology. Coherent methods of quan-
tum sensing majorly bank on minimal interaction between the sensor and the
environment and therefore on dynamical decoupling protocols [21] which re-
strict the detection of certain kinds of fields [22]. To combat these problems,
dissipative protocols have been devised and indeed such schemes employing
controlled dissipation have been shown to have features that make them sig-
nificantly more advantageous than their purely coherent counterparts [23, 24].

This thesis covers both the above mentioned quantum technologies en-
abled by controlled dissipation namely, initialization of a quantum simulator,
and, high-density quantum sensing, and is therefore divided into these two
main parts. They directly follow the first part which serves as an introduction
to the fundamental concepts behind this thesis.



Preliminary remarks

Controlled dissipation being the main topic of focus of this thesis, it would
be remiss to not begin with a chapter on the theory of open quantum systems.
Chapter 1 gives an introduction to open quantum systems focusing on the
basic concepts and tools involved in solving them. Chapter 2 introduces the
theory of phase transitions recapitulating the central ideas involved in its
description using the examples of typical spin-1/2 systems.

In part II, a novel scheme for the initialization of a quantum simulator is
presented. Having introduced the basic concepts behind quantum simulation
in general in chapter 3, this novel cooling protocol is presented in chapter
4. The basic principle is to use a single dissipatively driven auxiliary spin
to sympathetically cool a system into the ground state of a black-box spin
Hamiltonian. This approach to dissipative state preparation allows to go
beyond stabilizer and frustration-free systems and gives a generalized pro-
tocol for largely arbitrary Hamiltonians. The results show the scalability of
the protocol and its robustness against additional decoherence processes for
paradigmatic models of transverse field Ising and Ising-like chains and the
antiferromagnetic Heisenberg chain. In chapter 5, we present the first steps
to extend the cooling protocol to molecular ions.

Part III of the thesis proposes a second protocol that allows quantum
sensing at the scale of nanometers using an interacting ensemble of nitrogen
vacancy (NV) centers in diamond. The protocol relies on the existence of a
first order phase transition in the NV magnetization at a critical value of the
driving field. Following the introduction to NV centers and magnetometry
using them in chapter 6, the protocol is introduced in chapter 7 and its main
features are discussed for a two-dimensional lattice system. Chapter 8 is an
extension of the protocol to three-dimensional systems.

Finally, chapter 9 summarizes the results presented here in this thesis and
presents possible directions for future research.
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Chapter 1

Theory of Open Quantum
Systems

An open quantum system is one that interacts with its external surroundings.
The dynamics of such a system is no longer coherent and cannot be described
by the usual Schrödinger equation,

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (1.1)

Moreover, these systems are in general not in pure states |ψ(t)〉 calling for
the need to describe them in terms of density operators or density matrices,

ρ =
∑
i

pi|ψi〉〈ψi|, (1.2)

where, pi is the probability of finding the system in a pure state |ψi〉. The
density matrix is a general alternative formalism to describing a quantum
system by a state vector, and can be used to directly extract useful quantities
such as the expectation value of an operator, purity of the state etc.

In the following, we learn how one describes an open quantum system by
first treating it as part of a larger closed system and then using the concepts
of composite systems and partial trace in order to study the properties of the
system we are actually interested in.

1.1 Closed systems and coherent dynamics

In the interest of mixed states, it is useful for us to write the Schrödinger
equation in terms of the density matrix. This equation is now called the

15



Chapter 1. Theory of Open Quantum Systems

Liouville-von Neumann equation and reads as,

d

dt
ρ(t) = − i

~
[H, ρ(t)], (1.3)

where, the notation [A,B] = AB − BA represents the commutator of the
operators A and B.

If the Hamiltonian of interest H is independent in time t, we can integrate
the Liouville-von Neumann equation to obtain

ρ(t) = exp(Lt)ρ(0)

≡ V(t)ρ(0) (1.4)

where Lρ = −i/~[H, ρ] is called the Liouville superoperator and it maps the
density operator ρ(t) to its time derivative. V is another superoperator also
called the dynamical map since it maps the density matrix at initial time
t = 0 to its form at time t.

One can relate this dynamical map V to the unitary time evolution op-
erator U(t) = exp(−iHt/~) via,

V(t)ρ(0) = U(t)ρ(0)U †(t) (1.5)

1.2 Combined evolution of system and bath

We first start by considering an open quantum system as part of a larger
closed system that undergoes the normal unitary evolution. The Hilbert
space of such a composite system is given by the tensor product of the Hilbert
spaces of the individual subsystems H = HS ⊗HB, where the subscripts S
and B denote system and bath, respectively.

Now, the total dynamics of the (S+B) combination is fully coherent and
given by,

ρ(t) = USBρ(0)U †SB (1.6)

where USB is the unitary time-evolution operator of the total system with
USB = exp(−iHtot/~). Here, Htot is the Hamiltonian of the total system give
by,

Htot = HS +HB +Hint, (1.7)

where HS and HB are the Hamiltonians of the system and the bath respec-
tively, and, Hint captures the interaction between S and B. See figure 1.1
for a diagrammatic representation. Since we are interested in the dynamics
of only the system, we need to perform a partial trace over the bath B .
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1.2 Combined evolution of system and bath

Figure 1.1: Diagrammatic representation of an open quantum system.

Partial trace:
Given a composite system (A + B), the Hilbert space of which contains the
individual Hilbert spaces of the subsystems HA and HB, the partial trace
over one of the subsystems (say B) is a linear map TrB : G(H) → G(HA)
where G(H) is the space of all operators acting on the Hilbert space H. It is
defined by,

TrB{A⊗B} = ATr{B} (1.8)

where, A and B are operators on Hilbert spaces HA and HB respectively [2].

When applied to a density matrix ρAB we get

TrB{ρAB} = TrB

{∑
ijkl

cijkl|ai〉〈aj| ⊗ |bk〉〈bl|
}

=
∑
ijkl

cijkl|ai〉〈aj|〈bl|bk〉

=
∑
ijk

cijkk|ai〉〈aj| (1.9)

where {|ai〉} and {|bi〉} form sets of complete orthonormal basis of HA and
HB, respectively, with cijkl = 〈aibk|ρAB|ajbl〉.

17



Chapter 1. Theory of Open Quantum Systems

1.3 The quantum master equation

In this section, we follow a series of assumptions, that in most of the typical
situations are true, in order to derive the quantum master equation in its
Lindblad form. Note that the discussion here largely follows the reference
[1].

1.3.1 Quantum dynamical semigroups

We have already started in the previous section by considering the open
system as part of a larger closed system. Since we are only interested in just
the open system, we can now apply the partial trace operation 1.9 to Eq.
1.6,

ρS(t) = TrB{ρ(t)}
= TrB{USBρ(0)U †SB}
= TrB{USB (ρS(0)⊗ ρB(0))U †SB} (1.10)

The last step here is obtained by our first assumption of separability, meaning
that we can prepare the initial state of the system (S+B) in an uncorrelated
product state of the form ρ(0) = ρS(0)⊗ρB(0) where ρS is the initial state of
the system of interest S and ρB is some reference state of the environment.
For the next step, we do the following:
i) we may think of the right hand side of Eq. 1.10, as the superoperator
V(t) representing a dynamical map from the space S(HS) onto itself that
describes the state change of only the open system S over time t.
ii) we use the spectral decomposition of the density matrix of the environment
ρB,

ρB(0) =
∑
α

λα|φα〉〈φα|, (1.11)

where {|φα〉} form an orthonormal basis in HB with λα ≥ 0 satisfying the
condition

∑
α λα = 1.

Plugging these two in Eq. 1.10, we get

V(t)ρS(0) =
∑
αβ

Wαβ(t)ρS(0)W †
αβ(t), (1.12)

where Wαβ(t) =
√
λβ〈φα|USB(t)|φβ〉 are operators acting in HS.

Since these operators satisfy the condition
∑

αβWαβ(t)W †
αβ(t) = IS, we

get the relation Tr{V(t)ρS(0)} = Tr{ρS} = 1. This means that the dynamical
map V is trace preserving.

18



1.3 The quantum master equation

Next, we consider the family of all the dynamical maps {V(t)|t ≥ 0}
with V(0) as its identity. This family now describes the entire time evolution
of the open system. However, since this could be very involved we turn to
an approximation, called the Markov approximation. The main idea here is
that, if the typical correlation time of the fluctuations is much smaller than
the shortest time scale of the system dynamics (τS � τB), we can neglect
the memory of the reservoir, and treat the system as Markovian. This is
indeed the case in most of the systems we deal with experimentally. As a
consequence of this, the dynamical map now satisfies the semigroup property,

V(t1 + t2) = V(t1)V(t2) t1, t2 ≥ 0. (1.13)

and therefore represents a quantum dynamical semigroup. It is a semigroup
because of the constraint on the times being positive, allowing us to prop-
agate only forward in time, meaning that the inverse of the map does not
normally exist. This is in contrast to the case of coherent evolution where
the dynamical map always also contains inverse operations corresponding to
negative times and therefore forming a group.

1.3.2 Markovian quantum master equation

Given a dynamical semigroup, we can write down its generator L which is a
linear map that allows us to represent it in an exponential form,

V(t) = exp(L(t)). (1.14)

Expanding this map for short times τ , which in the limit τ → 0, leads us to
a first-order differential equation for the density matrix of the system S,

d

dt
ρS(t) = LρS(t). (1.15)

This equation is called the Markovian quantum master equation and the
generator L of the semigroup may be understood as the generalization of
the Liouville superoperator introduced in section 1.1 but now also including
additional incoherent terms.

1.3.3 Lindblad formalism

In the following, we derive an expression for the generator L to arrive at the
most general form of the Markovian quantum master equation.

We consider a finite-dimensional Hilbert spaceHS with dimensionality N .
The corresponding Liouville space, the complex vector space of operators, has
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Chapter 1. Theory of Open Quantum Systems

a dimension of N2, and in this space, we can write down the complete basis
of orthonormal operators Fi, where i = 1, 2, ..., N2 with their inner product
defined such that

〈Fi, Fj〉 = TrS{F †i Fj} = δij. (1.16)

We choose the operator FN2 = IS/
√
N to be proportional to the identity for

convenience, so that the other operators are traceless. We can now write the
dynamical map in the basis of these operators as,

V(t)ρS =
N2∑
i=1

cij(t)FiρSF
†
j , (1.17)

where the coefficients cij are given by,

cij(t) ≡
∑
αβ

〈Fi,Wαβ(t)〉〈Fj,Wαβ(t)〉∗. (1.18)

Note that the coefficient matrix c = [cij] is Hermitian and positive. If we
now insert Eq. 1.17 into Eq. 1.15 we get,

LρS = lim
ε→0

1

ε
{V(ε)ρS − ρS} (1.19)

Next, we define the coefficients as aij = limε→0
cij
ε
, and introduce the quan-

tities,

F =
1√
N

N2−1∑
i=1

Fi (1.20)

G =
1

2N
aN2N2IS +

1

2
(F † + F ) (1.21)

H =
1

2i
(F † − F ). (1.22)

Inserting these definitions in Eq. 1.17, we now get the first standard form
for the generator,

LρS = −i [H, ρS] +
N2−1∑
i,j=1

aij

(
FiρSF

†
j −

1

2

{
F †j Fi, ρS

})
(1.23)

Since the coefficient matrix a = [aij] is positive, it can be diagonalized with
an appropriate unitary transformation uau† in order to get the diagonal form
of the generator as,

LρS = −i [H, ρS] +
N2−1∑
k=1

γk

(
AkρSA

†
k −

1

2

{
A†kAk, ρS

})
(1.24)
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1.4 Wave function Quantum Monte Carlo simulation

Here, the operators Ak, are called Lindblad operators (or jump operators in
Lindblad form) and are appropriate linear combinations of the basis operators
Fi. The corresponding density matrix equation 1.15 is called the Lindblad
equation. Moreover, the corresponding γk are non-negative eigenvalues of the
coefficient matrix [aij], and play the role of relaxation rates for the different
decay processes of the open quantum system.

1.4 Wave function Quantum Monte Carlo
simulation

To calculate the time evolution of a quantum many-body system, one typi-
cally needs to solve as many equations as the dimensions of the Hilbert space,
which grows exponentially with the system size, making it extremely diffi-
cult, if not impossible, to solve systems with large number of particles. In
order to tackle this problem, several sophisticated methods were developed.
Reference [25] offers a review of most of these techniques that can be broadly
classified into stochastic, tensor network simulations or variational approach.

Here, we will focus on the Monte Carlo wave-function (MCWF) method
[26, 27] that is stochastic in its nature. With this technique, we can avoid the
direct propagation of the full density matrix in time. Instead, the strategy
is to propagate individual pure states ψi in time, and then take a stochastic
average in order to calculate an observable O as,

〈O〉 =
∑
i

pi〈ψi|O|ψi〉. (1.25)

We are able to do this because we can write the density matrix at an initial
time as a statistical ensemble of pure states using Eq. 1.2. Each of these
individual states ψi, also called the trajectories, are independent of each
other. Therefore, the statistical error associated with the observable scales
as ∆O ∼ 1/

√
Ntraj.

Let us study, in detail, how to propagate the individual pure states ψi.
The idea is to evolve the wave function with a modified Hamiltonian and a se-
ries of randomly decided so-called quantum jumps, sudden changes that occur
at certain times. Therefore, this method can also be called the quantum-jump
approach [28].

In general, the wave function of the total system ψ(t) evolves according
to the Schrödinger Eq. 1.1 with an effective non-Hermitian Hamiltonian,

Heff = HS −
i~
2

∑
n

c†ncn, (1.26)
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Chapter 1. Theory of Open Quantum Systems

where cn are the jump operators, or also called the collapse operators, for
each of the irreversible processes that occur with rates γn respectively.

Since the non-Hermitian part of the effective Hamiltonian is strictly neg-
ative, this results in the reduction of the norm of the wave function, which
to first-order in small time δt is given by

〈ψ(t+ δt)|ψ(t+ δt)〉 = 1− δp (1.27)

where δp is the probability of the occurrence of a quantum jump and is given
by,

δp = δt
∑
n

〈
ψ(t)|c†ncn|ψ(t)

〉
. (1.28)

In case a quantum-jump does occur at time t, then the wave function of the
system undergoes a jump to a state ψ(t + δt) that is defined by projecting
|ψ(t)〉 using the collapse operator corresponding to the quantum jump by,

|ψ(t+ δt)〉 =
1

〈ψ(t)|c†ncn|ψ(t)〉1/2
cn|ψ(t)〉 (1.29)

This treatment is equivalent to the master-equation treatment [27], but the
advantage here is that the number of variables involved scale rather linearly
with the Hilbert space compared to the quadratic scaling for full density
matrix calculations.

For the simulations shown in this thesis, we use the above discussed
MCWF implemented in QuTiP [29], which is an open-source framework,
designed to simulate mostly open quantum dynamics, written in the Python
programming language. In certain cases, where required, we also extend this
to a heavily parallelized version for better performance.

The algorithm used here for the implementation is slightly different than
the one described above. Instead of evaluating the evolution to first-order in
time, the steps are as follows:
Starting from a pure state ψ(0),
i) We choose a random number r between 0 and 1, that represents the prob-
ability for a quantum jump to occur.
ii) Evolve the state in time using the effective Hamiltonian Eq. 1.26 until a
time τ satisfying 〈ψ(τ)|ψ(τ)〉 = r, at which point a quantum jump occurs.
iii) The system is then projected into one of the states given by the cor-
responding collapse operator cn that is chosen such that n is the smallest

integer satisfying the relation
N∑
i=1

≥ r.

iv) We now use the new state obtained as the initial state, draw a new random
number r and repeat the steps until the final simulation time is reached.
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1.5 Examples of dissipative processes

Local Collective

Emission ci = σi− c =
∑

i σ
i
−

Pumping ci = σi+ c =
∑

i σ
i
+

Dephasing ci = σiz c =
∑

i σ
i
z

Table 1.1: A summary of the various dissipative processes that can occur
in an open quantum system and the corresponding jump operators that are
used to describe them for two-level systems.

1.5 Examples of dissipative processes

Controlled dissipation being the main tool used in the work in this thesis, it is
useful to have a list of all the dissipative processes that can occur in an open
system. These processes can be broadly classified using two classification
schemes:
(i) depending on which part of the system the dissipative processes act they
can be either local or global, and,
(ii) depending on the kind of the processes, they are called emission, pumping
or dephasing.

Local emission processes usually describe radiative or non-radiative losses
from the system, and the collective counterpart typically describes superra-
diant decay [30]. Dissipative pumping processes on the other hand describe
incoherently raise (or pump) the system to an excited state and dephasing
describes the decay of coherence in the system over passing time.

Table 1.1 summarizes these processes and the corresponding Lindblad
operators used to describe them for two-level systems that are relevant to
this thesis.

Additionally, there are several other kinds of dissipative processes. E.g.
in field of quantum information, one describes channels via which a qubit
undergoes a decoherence process resulting in an error [31]. The error can
result in a bit flip (|0〉 → |1〉, |1〉 → |0〉), phase flip (|0〉 → |0〉, |1〉 → −|1〉), or
both (|0〉 → i|1〉, |1〉 → −i|0〉). The processes can be modeled by the Pauli
matrices σx, σz, and σy, respectively.
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Chapter 2

Theory of phase transitions

The basic concept of phase transition is familiar to us from our daily life
experiences, such as water boiling into vapor on the gas stove and freezing
into ice inside the freezer, or the melting of an ice candy on a hot day,
or the formation of dew drops on a cold morning. We understand that
these events, where matter changes from one state to another, occur as the
result of a change in certain external quantities, such as the temperature,
or the pressure. We also know that the different states of matter have their
characteristic properties, e.g., solids are rigid, liquids can flow, whereas gases
occupy the entire space available to them. When a system goes from one
phase to another, we say that the system has undergone a phase transition.

The theory of phase transitions, however, is much richer than the simple
solid-liquid-gas transitions, and the difference in properties of the different
states of matter, or in general, the thermodynamic phases of a system is very
subtle. It is often the case that one of the phases is more ordered than the
others, e.g., all the atoms in a crystal are arranged in a regular fashion but
one cannot say such a thing for the liquid phase. This allows us to describe
the properties of the different phases of the system using a quantity called
the order parameter. This parameter basically quantifies the amount of order
present in the state of the system [32]. A closely related concept to describe
phase transitions is based on the idea of symmetry breaking, especially the
process of spontaneous symmetry breaking. This process typically describes
systems where the ground state does not respect the symmetry of the Hamil-
tonian of the system. Usually, the disordered phase of the system is invariant
under certain symmetry transformations, whereas the ordered phase does not
respect this symmetry. Therefore, as the system undergoes a phase transition
from the disordered phase to the ordered phase, it is accompanied by such a
symmetry breaking process.
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From a fundamental point of view, phase transitions are very interesting
as they provide a perfect example of how rather simple dynamics at the
microscopic level can result in a highly complex behavior at the macroscopic
scale. Furthermore, the tools and methods developed to study them have
found applications not just in physics but also other fields such as chemistry,
biology and even economics.

On the other hand, phase transitions play an important role in many
technological applications, because certain phases of matter have crucial
properties that make them promising candidates for these innovations. For
example, liquid crystals that are used in display devices change their trans-
parency when subjected to an external voltage or a change in temperature.
Bose-Einstein condensates can be used as high precision accelerometers in
geological pursuits to locate deep reservoirs of gas, oil and minerals. Fur-
thermore, we show in part III, that phase transitions can also be used to
sense extremely weak magnetic fields.

Building upon the strong foundation laid by Gibbs [33] for the theory of
thermodynamics, there have been an enormous amount of studies that have
helped us better understand these transitions, be it classical or quantum. In
the following, we will briefly distinguish between the two.

2.1 Classical and quantum phase transitions

In classical systems, the interplay of the three thermodynamic variables,
energy, entropy S, and temperature T is crucial to the understanding of
phase transitions. There is a constant competition between the minimization
of the internal energy of the system, and the maximization of its entropy. In
thermal equilibrium, the final microstate of the system has an internal energy
U and entropy, such that the free energy F of the system is minimal. These
quantities are related to one another by the relation,

F = U − TS. (2.1)

By controlling the temperature, one can drive the system to behave differ-
ently in different regimes. For example, a lower temperature would lower
the contribution of the entropy to the free energy of the system, resulting in
the system being in an ordered phase. However, if the thermal fluctuations
are large enough to overcome the energy lost in breaking the order in the
ordered phase, the system undergoes a phase transition into the disordered
phase. Therefore, phase transitions occurring at a finite temperature are
mostly classical in nature, typically driven by thermal fluctuations.
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2.1 Classical and quantum phase transitions

(a) (b)

Figure 2.1: Behavior of the ground state energy of a Hamiltonian of the
form H0 + lH1 as a function of dimensionless coupling l resulting in (a) level-
crossing in the case where [H0, H1] = 0 and (b) avoided level-crossing where
[H0, H1] 6= 0.

In quantum systems, on the other hand, at the absolute zero temperature,
there are no thermal fluctuations. Phase transitions here are rather driven by
the so-called quantum fluctuations that arise from the uncertainty principle
[34]. We say that a phase transition has occurred in a system when its
ground state of behaves in a nonanalytic manner due to a small change in
the coupling constants of the Hamiltonian, resulting in a macroscopic change
of the properties of the ground state.

To probe further into this, let us consider the following Hamiltonian,

H = H0 + lH1. (2.2)

We are interested in the ground state energy for varying values of the dimen-
sionless constant l. In the case where H0 and H1 commute with one another,
at some critical value of l, say at l = lc, there may be a level-crossing where
an excited state becomes the ground state as shown in figure 2.1 (a). Thus
the ground state energy has a nonanalytic behavior at lc.

However, if the two parts of the Hamiltonian do not commute such that
[H0, H1] 6= 0, which is often the case, the level-crossing may be avoided, as is
shown in figure 2.1 (b). In such cases, when the size of the system increases,
the avoided crossing becomes increasingly sharper and at infinite size limit,
the energy gap closes leading again to nonanalytic behavior of the ground
state. In both these cases, we have a quantum phase transition.

Some systems also exhibit both quantum and classical phase transitions
in the same phase diagram (see figure 2.2). At T = 0, the system undergoes
a quantum phase transition at the critical point lc, whereas on the other
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Chapter 2. Theory of phase transitions

Figure 2.2: Classical and quantum phase transitions in the same phase dia-
gram. At T = 0, the system undergoes a quantum phase transition at the
quantum critical point lc. At T > 0 there is a line of transition that termi-
nates at lc around which classical theory of phase transitions can be applied
(shaded area).

hand, at T > 0 there is a line around which the classical theory of phase
transitions can be applied where the system is driven by thermal fluctuations.
An example for such a case is that of the Bose-Hubbard model [35] which
at T = 0 exhibits a quantum phase transition from the superfluid phase at
weak interaction regime to a Mott insulator phase at the strong interaction
regime, and at T > 0 it exhibits a superfluid to normal liquid transition.

2.2 Classification of phase transitions

Originally, Paul Ehrenfest classified phase transitions depending upon how
the thermodynamic free energy of the system behaved as a function of the
various relevant thermodynamic variables {Ki}. The idea was to label them
by the lowest derivative of the free energy that is discontinuous at the transi-
tion point [36]. Therefore, transitions where the first order derivative of the
free energy with respect to a thermodynamic variable exhibits a discontinu-
ous behavior, are called first-order transitions. All solid-liquid-gas transitions
fall into this category as they are accompanied by a discontinuous change in
density, which is the inverse of the first order derivative of the free energy
with respect to the pressure. In second order transitions, quantities like
compressibility and specific heat, that are second order derivatives of the
free energy show a jump across the transition. An example for this category
is the phase transition in materials such as iron where the magnetic suscepti-
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bility, a second order derivative of the free energy with respect to the applied
magnetic field, displays a discontinuous behavior. The magnetization, on the
other hand, which is the first order derivative of the free energy, is a smooth
function across the phase transition.

However, this scheme of classification does not take those cases into ac-
count where a derivative of the free energy diverges, and is therefore incom-
plete. The modern classification, which is very similar to the original scheme,
classifies phase transitions into the following two categories [37].

First order phase transition: a phase transition is said to be first-order in
nature if one or more of the first order derivatives of the free energy ∂F/∂Ki

is discontinuous across the phase boundary. In part III of this thesis, we will
only deal with first order phase transition.

Continuous phase transition: in this kind of phase transitions, all the
first order derivatives ∂F/∂Ki are continuous across the phase boundary.
However, it is most often (not necessarily always) the case that one or more of
the second order derivatives ∂2F/∂K2

i is discontinuous across the transition.
These transitions are also sometimes called second order phase transitions.

An interesting case worth mentioning, is when the free energy is non-
analytic but all its derivatives are continuous. The famous example for such
a transition is the Berezinsky-Kosterlitz-Thouless [38, 39] (BKT) transition
in two-dimensional systems. In such transitions, the correlation functions
decay exponentially in one phase and algebraically in the other. Here, the
free energy of the system is non-analytic but all its derivatives are continuous,
therefore, these transitions are said to be infinite-order transitions.

Close to the critical point of a continuous phase transition, the system
becomes scale invariant, meaning that the microscopic details are no longer
relevant and the macroscopic behavior of the system has universal proper-
ties that are rather determined by long-range physics. This gives rise to
the concept of universality where two completely different systems in terms
of microscopic properties have the same so-called critical exponent that de-
scribes their behavior at the macroscopic level. A prominent example of this
is that the scaling of the temperature in the case of change in density for the
liquid-gas transition and in the case of magnetization of an Ising ferromagnet
is non-trivially the same [32]. This feature is particularly powerful as once
we establish a universality class for a given system, we immediately know
its thermodynamic properties even without knowing all of the microscopic
details.

So far, we have only mentioned scenarios where the properties of the
ground state of the system undergoing a phase transition are considered. Al-
ternatively, one could also consider the properties of a steady state of the
system. This is especially important in driven-dissipative quantum systems
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that evolve into non-equilibrium steady states, also shortly called NESS. Crit-
icalities in these systems are defined via non-analyticities in the behavior of
the steady state ρss of the system while varying the relevant control parame-
ters. Although these systems are out of equilibrium, the classification scheme
mentioned above can still be applied to them since one can find the relevant
free-energy functional that has a discontinuous jump across the phase tran-
sition [40]. Steady state phase transition is particularly relevant to part III
of this thesis where we study first order transition in the magnetization of
our system.

2.3 Spin models

Spin models serve as great paradigmatic models for the theoretical under-
standing of phase transitions. Since here, in this thesis, we mostly deal with
spin-1/2 models it is useful to study some of these models in the following
section and describe their properties.

2.3.1 Ising model

The Ising model is one of the spin models with fascinating properties that
has significantly improved our understanding in the field of statistical physics,
especially the concept of phase transitions.

The one-dimensional spin-1/2 quantum Ising model is defined by the
Hamiltonian,

H = −g
∑
i

σ(i)
x − J

∑
i

σ(i)
z ⊗ σ(i+1)

z , (2.3)

where, g is the strength of the transverse field, and, J is the strength of
the interaction between the two nearest neighbour spins. The Pauli matrices
σx,y,z at each site i represent the quantum degrees of freedom and take the
well known form

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
(2.4)

Depending on the boundary condition, the ends of the chain may be treated
as:
(i) free ends, where 1 ≤ i ≤ N for the transverse field term and 1 ≤ i ≤ N−1
for the interaction term, or,
(ii) a cyclic chain, where 1 ≤ i ≤ N and σ(N+1)

z = σ
(1)
z .

We will denote the eigenstates of the σz Pauli matrix as | ↑〉 and | ↓〉 that
have eigenvalues ±1 and either be oriented up or down. Consequently, these
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2.3 Spin models

Figure 2.3: One dimensional quantum Ising model in a transverse field under-
goes a phase transition from a ferromagnet (g = 0) to a paramagnet (g � J)
via the critical point at g = J .

are related to the eigenstates of the σx Pauli matrix by

| →〉 = (| ↑〉+ | ↓〉)/
√

2

| ←〉 = (| ↑〉 − | ↓〉)/
√

2 (2.5)

Since the symmetry properties of the Hamiltonian will play a crucial role in
determining the different phases under the transition, let us study them. We
see that the Ising Hamiltonian (Eq. 2.3) is invariant under the global Z2

transformation
σiz → −σiz; σix → σix (2.6)

Let us now consider the scenario where the transverse field is much
stronger than the Ising interaction (g � J). In this case all the spins would
align themselves along the x-axis and the ground state is a quantum param-
agnet given by

|0〉 =
∏
i

| →〉i (2.7)

On the other side of the limit where g � J , at g = 0, the spins would all
point either up or down with the ground state being a ferromagnet given by

|0〉 =
∏
i

| ↑〉i or |0〉 =
∏
i

| ↓〉i (2.8)

Crucially, we see that these two ground states are not invariant under the Z2

transformation, but rather map to each other. At the critical point of g = J ,
there exists a quantum phase transition (see figure 2.3) from the ordered
phase (quantum ferromagnet) to the disordered phase (paramagnet).
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The exact solution:
Let us now study the exact spectrum of this model. For this, we will use the
Jordan-Wigner transformation which is a map between the Hilbert space of
a system of spin-1/2 particles and that of spinless fermions which hop be-
tween sites with single orbitals. The spin-up state of the spin system may be
associated with an empty orbital of the fermionic system and the spin-down
state with an occupied orbital which immediately leads to

σ(i)
z = 1− 2c†ici, (2.9)

where the canonical fermion operators ci and c†i annihilate and create a
fermion at site i respectively.

This transformation is named after Jordan and Wigner who modified
the single site operator to a string of operators in order to incorporate the
anticommutation property of the fermions,

σ
(i)
+ =

∏
j<i

(1− 2c†jcj)cj

σ
(i)
− =

∏
j<i

(1− 2c†jcj)c
†
j. (2.10)

The inverse mapping is then given by,

ci =

(∏
j<i

σ(i)
z

)
σ
(i)
+

c†i =

(∏
j<i

σ(i)
z

)
σ
(i)
− . (2.11)

For our analysis of the Ising model, it is convenient to rotate the spin axes
about the y axis by 90 degrees such that

σz → σx, σx → −σz. (2.12)

Under this convention, the mapping becomes,

σx = 1− 2c†ici

σz = −
∏
i<j

(1− 2c†jcj)(ci + c†i ). (2.13)

We can now write the Hamiltonian using the fermionic operators, for the
case of open boundaries as,

H =
N∑
i

(
2gc†ici + g

)
−
N−1∑
i

(
Jc†ici+1 + Jc†i+1ci + Jc†ic

†
i+1 + Jci+1ci

)
. (2.14)
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For the cyclic chain, we also have additional terms and the Hamiltonian
reads,

H =
N∑
i

(
2gc†ici + g

)
−

N∑
i

(
Jc†ici+1 + Jc†i+1ci + Jc†ic

†
i+1 + Jci+1ci

)
+
(
Jc†Nc1 + Jc†1cN + Jc†1c

†
1 + JcNc1

)
(exp(iπL) + 1)(2.15)

where, L =
N∑
j=1

c†jcj. We will neglect the last correction term as in refer-

ences [41, 42] to turn this so-called a-cyclic problem into the simpler c-cyclic
problem.

Next, we diagonalize the Hamiltonian for which we first use the momen-
tum eigenstates given by,

ck =
1√
N

∑
j

cje
−ikrj , (2.16)

with k = 2πm/N , where,

m =

{
−N

2
, ..., 0, ...N

2
− 1 for N even

−N−1
2
, ..., 0, ...N−1

2
for N odd.

Then, we use the Bogoliubov transformation to map to new Fermionic oper-
ators ak, a†k that are related to ck, c†k by,

ak = ukck − ivkc†−k, (2.17)

where, uk and vk are real numbers such that u2k + v2k = 1, u−k = −uk, and
v−k = −vk. The diagonalized Hamiltonian finally reads,

H =
∑
k

εk(a
†
kak − 1/2). (2.18)

Here, εk is the single particle energy given by,

εk = 2J
√

1 + l2 − 2l cos k (2.19)

where we have defined the ratio l = g/J . The ground state of the Hamiltonian
|0〉 has no a fermions and satisfies ak|0〉 = 0 for all k, whereas, the n-particle
excited states can be created by a†k1a

†
k2
....a†kn|0〉. The many-body gap of

this model, i.e., the energy difference between the first excited state and the
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ground state is at k = 0 and is equal to 2J |1 − l|. Therefore, at l = 1, i.e.,
at the critical point, the gap vanishes.

If we now consider the ground state of our original Hamiltonian, its energy
should correspond to E0 =

∑
k εk(0− 1/2) since we have, a†kak = 0 for all k.

This is indeed the case as can be seen from figure 2.4 which shows the energy
levels for a system of 10 spins with periodic boundary condition for various
values of the ratio l. For l � 1, there are two degenerate ground states,
whereas, on the l� 1 side there is only one ground state. The excited state,
on the other hand, corresponds to having one fermion in the k = 0 mode,
such that, E1 =

∑
k 6=0

εk(0− 1/2) + ε0(1− 1/2) for l� 1. Note, however, that

since we have neglected the last term in Eq. 2.15, we have considered only
the odd parities and the fermionic ground state has no degeneracy in the
ferromagnetic phase. In order to completely characterize the original spin
model, one also needs to consider the a-cyclic terms.

2.3.2 Heisenberg model

In addition to the σxσx interaction term of the Ising model, the Heisenberg
model has spin interactions along the other two axes as well. The Hamilto-
nian of the Heisenberg model (without any external transverse field) reads,

H =
N−1∑
j=1

∑
i=x,y,z

Jiσ
(j)
i ⊗ σ(j+1)

i . (2.20)

Depending on the interaction strengths Ji, it is common to name the model
e.g., as XXZ model if Jx = Jy 6= Jz, or as XY Z model if Jx 6= Jy 6= Jz, and
so on.

Let us consider the one-dimensional XXZ Heisenberg model with Jx =
Jy = J , and study the different regimes of Jz.

When Jz < −J this model is in the ferromagnetic Ising phase with all
spins aligned along or opposite to the z-axis. Here, the ground state does not
respect the discrete symmetry of the Hamiltonian which remains invariant
under spin reflection σz → −σz, therefore, this is the phase with a broken
symmetry. The low-lying excited states in the ferromagnetic phase are called
magnons and they obey the dispersion law for general spin S [43],

ε(k) = 2JS(1− cos k − (Jz + 1)). (2.21)

The excitation spectrum has a gap at k = 0, whereas, at Jz = −J , i.e., at the
isotropic ferromagnetic point it becomes gapless. Additionally, at this point,
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Figure 2.4: Ground state and the first excited state of the Ising model with
N = 10 spins for various values of l = g/J and the corresponding energies in
the fermionic picture (plus markers). The ground state corresponds to zero
fermions and the first excited state for l > 1 corresponds to one fermion at
the k = 0 mode.
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the discrete spin reflection symmetry generalizes to the continuous rotational
symmetry.

When −J < Jz < J , the system is in the so-called XY phase which is
characterized by uniaxial symmetry and a gapless excitation spectrum [43].

When Jz > +J , the model is in the antiferromagnetic phase or the Néel
phase. When a spin system is antiferromagnetic, its ground state comprises of
spins alternately pointing in opposite directions. Therefore, to describe such
a system, one divides the lattice into two sublattices: A, which comprises
of all the spins pointing, say, upwards, and B which comprises of the ones
pointing downwards. Although these two sublattices are coupled to each
other via the J term, spin-wave theory predicts that this coupling preserves
the parity of the number of spin wave excitations. To see this, we will use the
theory presented by Kubo [44]. First, we express the spin operators using
the Holstein-Primakoff transformation [45],

σ(j)
x + iσ(j)

y = [1− a†jaj]
1
2aj

σ(j)
x − iσ(j)

y = a†j[1− a†jaj]
1
2

σ(j)
z =

1

2
− a†jaj (2.22)

for a spin at site j of the sublattice A, and,

σ(k)
x + iσ(k)

y = b†k[1− b†kbk]
1
2

σ(k)
x − iσ(k)

y = [1− b†kbk]
1
2 bk

σ(k)
z = b†kbk −

1

2
(2.23)

for a spin at site k of the sublattice B. The bosonic creation and and an-
nihilation operators a, a†, b, b† are matrices with infinite dimensions so as to
satisfy the commutation rules,

aja
†
j − a†jaj = 1, bkb

†
k − b†kbk = 1. (2.24)

Additionally, the operators also satisfy

aja
†
j = nj, bkb

†
k = nk (2.25)

where nj(k) is the so-called spin deviation.
Introducing fs(n) = [1− n]

1
2 and inserting these in Eq. 2.20 we get,

H = − NJz
4

+ Jz

(∑
j

nj +
∑
k

nk

)
− Jz

∑
j,k

njnk

+
J

2

∑
j,k

[
fs(nj)ajfs(nk)bk + a†jfs(nj)b

†
kfs(bk)

]
(2.26)
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Figure 2.5: Phase diagram of the XXZ Heisenberg spin-1/2 model in a
transverse field g.

To simply this even further, we approximate fs(n) using binomial expansion
and neglect higher order terms in n as explained in the reference [44]. We
then obtain the Hamiltonian of the spin waves,

H = −NJz
4

+ Jz

(∑
j

nj +
∑
k

nk

)
+
J

2

∑
j,k

(
ajbk + a†jb

†
k

)
(2.27)

As we see, there are no terms of the form a†jbk or ajb†k, in the Hamiltonian.
This implies that only those interactions between the two sublattices that
preserve the parity of the number of spin wave-excitations are allowed.

The most interesting regime of this model, however, is at Jz ∼ J . When
crossing this point of Jz = J , the system goes from a gapless XY phase to the
gapped antiferromagnetic Ising phase undergoing a Kosterlitz-Thouless type
of phase transition [39]. Figure 2.5 shows the phase diagram of the model in
a transverse field g.
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Part II

Initialization of quantum
simulators by sympathetic cooling
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Chapter 3

Quantum simulation

Quantum simulation is one of the most promising emergent technologies that
has gained popularity in the past decades and has ever since been growing
fast and expanding. It holds great potential in solving many open problems
in multiple areas of physics such as atomic physics, condensed matter physics
and high-energy physics [46].

The idea of quantum simulation stems from the early 1980s when Richard
Feynman realized the problem of exponential explosion that one faces while
dealing with large physical systems. This problem arises due to the fact
that the state of a large system described by a number of parameters grows
exponentially with the system size. Furthermore, the number of operations
to be done during the time evolution of the system also grows exponentially.
Although there are quite a few powerful approximation methods (for e.g. the
Monte Carlo method as described in section 1.4, density functional theory
[47], density matrix renormalization group [48] etc.), there are still a large
class of problems that cannot be solved using these methods.

The solution to this problem was proposed by Feynman himself which, in
his exact words, was "Let the computer itself be built of quantum mechanical
elements which obey quantum mechanical laws." [49], and so the idea of
quantum computers was born. The advantage of this over classical devices is
that since they are quantum systems themselves, they can store big amounts
of information and in a small amount of physical space. A system of N qubits
can store exponentially more information than N classical bits.

However, to build a generic quantum computer, one needs full control
over quantum many-body systems which can be a very challenging task.
Firstly, there is the technical problem of preventing unwanted interactions
with the surroundings during the time when calculations are made, that
destroy the pure quantum state of the computer [50]. The second problem
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Quantum System

Quantum Simulator

Initialization Measurement

Figure 3.1: The schematic for the working of a quantum simulator as it
simulates a given quantum system. The simulator is constructed such that
there exists a mapping between the simulator and the system to be simulated
φ↔ ψ and U ↔ U ′.

is that the errors arising from inaccuracies in each transformations involved
get accumulated requiring error correcting codes [51, 52].

A quantum simulator on the other hand, although not universal in the
true sense, lets us avoid these problems as it does not require individual
addressing of all the involved components. The basic principle behind the
working of a quantum simulator can be seen in figure 3.1. The first step
is to find a mapping between the quantum system to be simulated and the
quantum simulator. Next, we prepare the simulator in a known initial state,
let the system evolve, and then measure the system at some time t. All
that is remaining now is to map it back to the original quantum system and
extract the relevant information.

However, it can be challenging to find algorithms or protocols for the
implementation of the quantum simulator that are efficient, meaning, that
the required resources scale only polynomial with the system size and not
exponential.

3.1 The working of a quantum simulator

The steps involved in the successful realization of a quantum simulator are
as follows (note that this discussion closely follows the review paper [46]):
i) Initial-state preparation - The first step towards the implementation of a
quantum simulator is to prepare it in a known initial state. This is often
difficult as one needs to find an efficient protocol. In this thesis, we will focus
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on this crucial first step.
ii) Hamiltonian engineering - This step mainly deals with finding the unitary
transformation U = e−iHsyst/~ in order to obtain the solution |ψ(t)〉 = U |ψ(0)〉
of the Schrödinger equation for the Hamiltonian Hsys =

∑
Hi which can be

written as a sum of many local interactions. This is mostly done by using
some approximations (for eg. first-order Trotter formula [2]) in order to de-
compose the Hamiltonian into local quantum gates. This is in general the
scheme for digital quantum simulation (DQS) and considerable amount of
work has been done in this direction [15, 53, 54]. Analog quantum simula-
tion (AQS), on the other hand, directly maps the Hamiltonian of the system
to be simulated onto that of the simulator [55, 56, 57].
iii) Measurement - The last step in quantum simulation is to perform the
measurement at the final time and then extract relevant information from
the state. One way to characterize a state is to perform quantum state to-
mography [58, 59] but this method is not very efficient for large system sizes.
Alternatively, one could directly estimate certain physical quantities such as
the correlation functions in order to describe the final state. [60, 61].

In the following sections, after a brief overview of the different available
methods for the task of preparing the quantum simulator in a known initial
state, we describe our novel scheme of preparing the simulator in its ground
state.

3.2 The task of initialization

As already mentioned earlier, for the successful implementation of a quan-
tum simulator, one needs to first prepare the simulator in a known initial
state |ψ(0)〉. Doing so is not always trivial as one needs to find an efficient
protocol that does not grow exponentially with system size with regard to
the resources it needs.

The preparation of a general pure state with N qubits has been studied
and proposed by several groups in the past decades. For example, reference
[62] proposes a method to prepare the antisymmetrized state of a system of
N fermions starting from an unsymmetrized state using a combination of
quantum gates and sorting algorithms, whereas references [60, 61] describe
methods to prepare the same system in any arbitrary state starting from
the vacuum state using single-qubit and two-qubit gate operations. Other
systems of interest have been N -particle quantum states on lattices [63],
states of chemical interest [64], or molecular systems [65].

Alternatively, one could also map the initial state to another state of

43



Chapter 3. Quantum simulation

the system which behaves similarly with regards to the expectation values
with the difference of just a scalar factor. Such so-called pseudo-pure states,
however, require a high signal-to-noise measurement techniques which can
limit the efficiency of the protocols [66].

Typically, however, one is rather interested in the evolution of a certain
class of states, mostly the ones with low energies, and not just any arbitrary
initial state. Methods to prepare a system in the ground state of the simu-
lated Hamiltonian in the past have mostly involved preparing the system in
an experimentally accessible state and then using coherent methods that use
quantum logic gates or adiabatic means to prepare them in the ground state
[67, 68]. However, it is impossible to realize a perfectly isolated quantum sys-
tem, making these schemes extremely difficult, since inevitable decoherence
processes destroy the nonclassical states.

In 2008, the idea of harnessing open system dynamics was proposed in
the references [13, 14] where an interaction with a dissipative environment
is appropriately engineered so that the resulting dynamics drives the system
into a given pure state. The main principle behind these methods is to
design this reservoir such that the steady state of the corresponding master
equation is a unique dark state of the dynamics. This proposal ignited a
series of dissipative state engineering techniques to cool the system into the
ground state of the Hamiltonian of interest [15, 17, 69, 70]. These techniques,
being themselves dissipative in nature, are typically robust against unwanted
decoherence processes.

However, these methods have mostly been developed for the ground state
preparation of stabilizer Hamiltonians or frustration-free models [14, 15, 71,
72, 73], i.e., Hamiltonians whose ground states can be found by performing
local optimizations alone. In this thesis, we go beyond such models and give
a protocol for the cooling of an arbitrary Hamiltonian. Our goal is to prepare
a system in the ground state of a black-box Hamiltonian.

3.3 The initialization protocol

Having motivated the reason for the need of a novel technique for the initial-
ization of a quantum simulator, in the following, we will present our protocol
providing a motivation as to why such a dissipative protocol could actually
be successful. We will then discuss some of the most prominent features of
the protocol in the following chapter 4.
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3.3 The initialization protocol

3.3.1 Sympathetic cooling using controlled dissipation

The schematic for the setup of the initialization protocol is shown in figure
3.3.1 which consists of a system of N spins and a single extra auxiliary spin
which we also call the "bath spin" denoted by b. The system Hamiltonian
Hsys could in general be any spin Hamiltonian. One boundary spin of the
chain is then coupled to this bath spin via an interaction of the form

Hint = gsb
∑
x,y,z

fiσ
(N)
i σ

(b)
i (3.1)

where gsb is the strength of the interaction and the quantities fi are dimen-
sionless parameters that are chosen in a way that would break any symmetries
in the system which could otherwise prevent the cooling of some degrees of
freedom. In general, it is beneficial to assign different values to them.

The next step is to add a dissipation channel to the bath spin b that
would basically flips the state of the spin from up to down at a rate γ. Such
a mechanism can be captured in the quantum master equation using the
jump operator σ(b)

− that acts on the bath spin. Additionally, the bath spin is
also driven resulting in a splitting ∆. We can now write the Hamiltonian of
the bath spin as,

Hb =
∆

2
σ(b)
z (3.2)

The central idea here is that this driven dissipative channel acting on the
bath spin would help remove the excitations in the system as shown in the
schematic in figure 3.3 (a). An excitation in the system is first transferred
resonantly to the bath spin via Hint. The excitation energy of the bath spin is
emitted into its environment during the event of firing of the jump operator
σ−. This results in the relaxation of the bath spin back to its lower state
(spin down state). After many such processes, eventually, the system is then
cooled down to a low-energy state that is very close to the ground state of
the Hamiltonian.

Although we use a one dimensional spin-1/2 system for our demonstra-
tions here, note that this setup can be easily generalized to higher dimen-
sions or even to other many-body systems, for example fermionic systems or
bosonic systems having larger local Hilbert spaces. Besides, the setup can
be implemented easily on both digital as well as analog simulators.

The problem now boils down to two questions, first, how to choose the
bath spin splitting ∆, and the second, how much control can we have over
the cooling dynamics by tuning the system-bath coupling strength gsb and
the dissipation rate γ.
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System Bath spin

Figure 3.2: Schematic for the setup of the cooling protocol where a system of
N spins is sympathetically cooled by interacting with an auxiliary spin (here
termed the "bath" spin) which is driven dissipatively.

(a)

System Bath spin

(b)

Bath spin

Figure 3.3: (a) Schematic for understanding the mechanism behind the cool-
ing protocol using energy level diagrams. An excitation in the system is
resonantly transferred to the auxiliary spin after which it is dissipatively
pumped into its ground state. (b) Broadening of the auxiliary spin splitting
∆ due to (and of the order of) the dissipation rate γ.

Let us start with the first question. The choice of this bath spin split-
ting ∆ indeed plays an important role in the extent to which we can cool
our system as this is so to say the door through which we can remove the
energies from the system. As can be seen from the schematic in figure 3.3
(a), any excitation that is very high in the spectrum will always find a lower
energy level that is resonant with the bath spin splitting ∆. This is because
the density of states increases exponentially with the energy. This would
mean that the bottleneck for the transfer of energy is rather lower down the
spectrum. Therefore, for the most efficient transfer of energy from the sys-
tem to the bath spin, one needs to hit the resonance condition that the bath
spin splitting is equal to the many-body gap, i.e., ∆ = ∆E, the difference in
energy between the first excited state E1 and the ground state E0.

Besides, although the bath spin splitting ∆ is resonant to only a single
energy, the uncertainty in the dissipation rate γ broadens this splitting which
can be described by a Lorenztian function. However, for a qualitative under-
standing it suffices to assume that this broadening is of the order of γ (see
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figure 3.3 (b)). This means that in reality, any energy that falls in the range
∆+γ to ∆−γ can be transferred from the system to the bath spin. Addition-
ally, this even increases the number of possible pathways which an excitation
could take in order to be cooled all the way down to the ground state of
the system, making this protocol promisingly efficient. Figure 3.4 shows all
such possible paths for a system of N = 5 spins having (a) Ising interaction
and (b) antiferromagnetic Heisenberg interaction. The solid black lines cor-
respond to each of the possible transitions that have an energy ranging from
∆±γ. As can be seen from the drawing, there are multiple pathways to cool
the system to its ground state.

With this motivation, we can now move on to performing numerical sim-
ulations that would tell us if this protocol really works. For this, we turn
to the wave-function quantum Monte Carlo method as described in section
1.4. All the results shown here have been obtained by averaging over 1000
trajectories.

3.3.2 A measure of cooling

Before getting to performing the numerical simulations, we still need to de-
fine some quantities that would give us an indication of the amount of cooling
that has been achieved via our protocol. In the following, we define two such
useful model-independent quantities that would quantitatively suggest how
close the finally prepared state is to the ground state of the system:

Ground state fidelity (f):
The simplest quantity that can tell us how close the state of a system is to its
ground state, is its fidelity with respect to the ground state manifold. Such
a fidelity can be calculated using,

f = 〈Πg〉 = Tr{ρ(t)Πg}, (3.3)

where, Πg represents the sum of the projectors onto the ground states given
by Πg =

∑
i

|ψi0〉〈ψi0|.

Dimensionless excitation energy (ε):
A second quantity that is also useful in indicating the extent to which a sys-
tem has been cooled is the number of excitations remaining in the system. By
measuring in units of the many-body gap ∆, we can define this dimensionless
quantity called the excitation energy ε using the following equation,

ε =
〈Hsys〉 − E0

∆E
. (3.4)
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(a)

(b)

Figure 3.4: An excitation in the system can take multiple pathways in order
to be cooled all the way down to the ground state. Solid black lines show
all possible transitions between levels that have energy differences in the
range ∆ ± γ. The energy levels are shown here for (a) an Ising chain with
N = 5, J/g = 5, γ/g = 3.5 and (b) an antiferromagnetic Heisenberg chain
with N = 5, γ/J = 1.26.
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where, E0 is the energy of the ground state of the system.
In the limit of low-energies, i.e., ε� 1, and assuming that the excitation

energy is mostly concentrated in low-energy excitations, we can relate ε to
the ground state fidelity f according to ε = 1− f .

3.3.3 Control parameters of the cooling dynamics

To get an insight about the cooling protocol, we now analyze exactly how the
system dynamics is affected by the two main parameters of control available
at our disposal, i.e., the system-bath interaction strength gsb and the rate of
dissipation γ.

To be explicit, we consider the transverse field Ising model (Eq. 2.3) with
N spins, as our system. However, we will consider the transverse field along
the z-axis so that the Hamiltonian reads,

H = g
N∑
i=1

σ(i)
z − J

N−1∑
i=1

σ(i)
x ⊗ σ(i+1)

x (3.5)

Let us start with the simplest case of 2 spins in the system Hamiltonian
and the auxiliary bath spin. Using the effective operator formalism [74], we
reduce the evolution to just the dynamics of the ground state of the bath
spin. The idea is to employ perturbation theory to adiabatically eliminate
the excited states of the open quantum system and derive a single effective
Hamiltonian and an effective Lindblad operator for each decay process. These
operators can then be immediately applied to the ground states. Applying
this formalism to our system, we find that the effective rate of decay from the
excited states to the ground state manifold is approximately proportional to
g2sbγ in the limit of gsb, γ → 0. See appendix A for details.

With these first insights let us now numerically simulate a system with
N spins. We check the time evolution of the expectation value of the energy
of the system 〈Hsys〉 for different values of gsb at constant γ and vice versa,
first in the ferromagnetic regime. Additionally, we calculate the ground state
fidelity f of the final state prepared.

Figure 3.5 shows the cooling dynamics for an Ising chain with 5 spins in
the ferromagnetic phase (J/g = 5) with the experimentally accessible state
of all spins pointing up being the initial state of the system. We see that the
dynamics depends largely on (a) the strength of the system-bath interaction
gsb and (b) the dissipation rate γ. From the insets of both the plots, we can
see that, for a given preparation time tp, there exists an optimal regime in
the values of gsb and γ that results in maximum fidelity of the prepared state
of the system to its ground state.
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Figure 3.5: The dynamics of sympathetic cooling of the transverse field Ising
chain with N = 5 spins in the ferromagnetic phase (J/g = 5). The final
energy of the system, as well as, the speed of cooling depend largely on the
parameters (a) gsb (at fixed γ/g = 1.9), and, (b) γ (at fixed gsb/g = 1.15).
Dashed line indicates the ground state energy of the system. For a given
preparation time tp, there exist optimal values of gsb and γ that result in
maximum fidelity f of the prepared state to the ground state of the system
(inset).
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Figure 3.6: Cooling dynamics in the paramagnetic regime (J/g = 0.2) be-
haves qualitatively similar to the case of ferromagnetic phase having an op-
timal value for the parameters (a) gsb at fixed γ/g = 2.74, and, (b) γ at fixed
gsb/g = 0.35.
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Figure 3.7: Cooling dynamics in the paramagnetic regime (J/g = 1.4) be-
haves qualitatively similar to the case of ferromagnetic phase having an op-
timal value for the parameters (a) gsb at fixed γ/g = 0.39, and, (b) γ at fixed
gsb/g = 0.39.
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These results can be explained in the following. For small values of gsb
and γ, it takes a very long time for the system to cool to the ground state as
the cooling dynamics is very slow. Therefore, for a given time tp, the system
is not cooled down to a large extent. On the other hand, if the system-bath
interaction gsb is very large, the bath spin would get strongly entangled with
the system. Whereas, if the dissipation rate γ is too large, it leads to the
quantum Zeno suppression of the energy transfer from the system to the bath
spin. In both these cases, the system is not cooled efficiently. Therefore, our
parameters gsb and γ need to be optimized such that it leads to maximum
cooling of the system.

Next, we check if this behavior is also true in the paramagnetic regime and
the critical regime. These simulation results are shown in figure 3.6 for the
paramagnetic case (J/g = 0.2) and in figure 3.7 for the critical regime. We
observe that the dependence of the cooling dynamics is qualitatively the same
as in the case of ferromagnetic regime. Note, however, that the critical point
for a system of N = 5 spins in not at J = g but rather at J/g = 1.4 which
can be determined by calculating the peak of the magnetic susceptibility as
a function of J/g (see appendix B). These findings are encouraging as it
shows that the cooling procedure works independently of the choice of J/g,
especially, in the critical regime where the many-body gap closes making for
a particularly difficult case.

We have so far calculated the dynamics for the case where the system
is initially at the state of all spins pointing up. An important question, of
course, is what happens if we start in a different initial state. Therefore next,
we investigate the dependence of the cooling performance on the initial state
of the system. In figure 3.8 we see that although the initial energies of the
system differ greatly, the overall cooling dynamics remains the same. This
result is in accordance with the fact that the timescale of the dynamics is a
property of the system-bath Liouvillian and does not depend on the state of
the system.

3.3.4 Optimization of the control parameters

As we have seen in section 3.3.3, for a given time t, there exists a sweet spot
with respect to the two control parameters gsb and γ, that offers maximum
cooling. Of course, if we choose these parameters to be very small, in the
limit of infinite time, we can cool the system perfectly to the ground state.
However, in real life scenarios one cannot wait infinitely long, as time is an
important resource. Therefore, there is a trade-off between the amount of
cooling achieved and the preparation time.

For a given preparation time tp, we can find the optimal values of the
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Figure 3.8: Dependence of the cooling performance on the initial state of
the system. The different curves correspond to various different random
initial states, chosen from a uniform distribution, for a system of 5 spins in
the (a) ferromagnetic regime (J/g = 5) of the transverse field Ising model
with gsb/g = 1.15, γ/g = 1.9, fxyz = {1, 1.1, 0.9}, and, (b) antiferromagnetic
Heisenberg chain with gsb/g = 1.15, γ/g = 1.9, fxyz = {0.4, 2.3, 0.3}. The
dashed line corresponds to the case of all spins initially pointing up.
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two control parameters gsb and γ with the help of the quantities we already
defined in section 3.3.2. We minimize the dimensionless excitation energy ε
(or maximize the ground state fidelity f) simultaneously with respect to gsb
and γ. For this we use a Nelder-Mead algorithm [75], which is a standard non-
linear optimization scheme based on a direct search method. We find that
the optimization algorithm typically converges after about 50 simulation runs
which does not significantly depend on the size of the system. However, we
note that the optimization algorithm can lead to finding a local minima of the
problem. In such cases, we use a global optimization algorithm implemented
in Python programming language in the library NLopt [76].

On the other hand, we can target a certain amount of cooling (say, ε = 0.2,
or f = 0.8) that we want to achieve and calculate the time required to do
so. For this, we perform the optimization scheme for increasing times t and
stop when the target cooling is achieved. Alternatively, we can use Brent’s
method [77] which is an algorithm that combines the bisection and the secant
methods to find the zero of a function between two given arguments.

For our simulations here, we use these algorithms as implemented in the
Python-based ecosystem SciPy [78]. In an actual quantum simulator, how-
ever, we propose to use a hybrid algorithm where the energies measured on
the quantum device are fed back into the classical optimization algorithm
[79].
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Chapter 4

Features of the dissipative
protocol

In this chapter, we explore the different features of our protocol such as its
scaling with respect to system size, its ability to prepare the system in an
entangled state, its performance under decoherence etc.

4.1 Efficiency of the cooling protocol

The true success of any state preparation protocol as the one discussed here
lies in its scaling with respect to the system size. We have already elabo-
rated on the problem of exponential explosion and the need to find efficient
techniques for the successful working of a quantum simulator in chapter 3.
A protocol is said to be efficient if the resources required scales at most poly-
nomially with the system size. In our protocol, the time required to cool
the system is the important resource. Therefore, its crucial to check how
this preparation time tp scales with increasing sizes of the system. We have
already studied in section 3.3.4 how to determine the optimized time in order
to prepare the system in a state with a given dimensionless excitation energy
ε (or ground state fidelity f). Here, we are interested in finding out how
this optimized preparation time tp for preparing the system in a state with
ε = 0.2, scales with the system size N .

Figure 4.1 shows exactly this. We see here that, on a double logarithmic
plot, the preparation time tp follows a straight line with respect to the sys-
tem N and has a slope of α = 3.1± 0.1. This means that the time required
to prepare a state with the desired amount of cooling grows only polynomi-
ally with increasing system sizes and not exponentially, confirming that our
protocol is efficient.
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Figure 4.1: Scaling of the cooling protocol for the transverse field Ising model.
The time tp required to prepare the system in a state with dimensionless
excitation energy ε = 0.2 grows polynomially with the system size. The solid
line is a fit to the data according to tp ∼ Nα where the exponent α = 3.1±0.1.
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Although the transverse field Ising model is a simple model, it already
lies outside of the class of frustration-free Hamiltonians, since it is impossible
for us to minimize the interaction term and the transverse field term at the
same time. By showing the polynomial scaling of the cooling protocol for
this model, we confirm that our protocol goes beyond the general class of
frustration-free models.

However, we would still like to test our protocol on a critical model such
as the antiferromagnetic Heisenberg model. Additional to being a critical
point for the Kosterlitz-Thouless type of phase transition, the ground state
of this model is highly entangled [80] making for a challenging candidate for
our protocol to be tested on.

We have learnt in section 2.3.2 that there exists a symmetry in this model
that conserves certain spin wave-excitations. Such a symmetry of course adds
a minor complication concerning the ground state preparation in the sense
that it restricts the protocol to be very efficient. This is due to the fact that
the bath spin "talks" rather only to one of the two sublattices resulting in
the possibility that a single excitation might get stuck in the system limiting
the ground state fidelity of the final state prepared. In order to solve this
issue, we extend the system-bath interaction to also the second last spin of
the chain with the strength gsb/2. The system-bath interaction Hamiltonian
is now given by,

Hint = gsb
∑
x,y,z

fi

(
σ
(N)
i σ

(b)
i +

1

2
σ
(N−1)
i σ

(b)
i

)
(4.1)

Having written down all that is necessary, we can now apply the same
strategy as we did for the Ising model in order to check the scaling of
the preparation time tp with respect to the system size N for the anti-
ferromagnetic Heisenberg chain by following the same procedure as described
in section 3.3.4. Figure 4.2 shows that the optimized preparation time tp also
scales polynomially with the system size. We also notice that the systems
with odd number of spins require a smaller preparation time tp compared
to those for even system sizes. This can be explained by the fact that an
anti-ferromagnetic Heisenberg chain with odd number of spins has a doubly
degenerate ground state which provides for more pathways for faster cooling
of the system. Finding the same exponent for the two data sets is not too
surprising, because it can be expected to be linked to a universal exponent of
the underlying phase transition. The prefactor, however, is a non-universal
quantity, and can therefore have different values for the odd and even system
sizes.
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Figure 4.2: The optimized preparation time tp to reach a final state with
dimensionless energy of ε = 0.2 for the anti-ferromagnetic Heisenberg model
also grows only polynomially with respect to the system size N . The green
line is a fit to the data for systems with even number of spins N and the
red line corresponds to odd number of system sizes, and, both fit the data
according to a common exponent α = 3.11± 0.01.
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Figure 4.3: Negativity as an entanglement measure of the prepared states of
a system of N = 6 spins. The blue line corresponds to the transverse field
Ising model (J/g = 5) that has a low negativity in the long time limit. On the
other hand, the orange line corresponds to the anti-ferromagnetic Heisenberg
model that has a highly entangled final state. Both the curves shown are for
the optimized parameters resulting in a final state with ε = 0.2.

4.2 Preparing highly entangled states

We have seen in section 4.1 that the cooling protocol works also for the com-
plicated case of antiferromagnetic Heisenberg model. Since this model has a
highly entangled ground state, it tells us that our scheme is also successful in
preparing a system in entangled states. Here, we explicitly test this ability
of our protocol to prepare a system in an entangled state. To do this, we
turn towards the quantity called the negativity that gives us a measure of
the entanglement of a state. Given a subsystem A, the negativity is defined
as

N (ρ) =

∥∥ρTA∥∥
1
− 1

2
, (4.2)

where ‖.‖1 denotes the trace norm, and, ρTA is the partial transpose of ρ with
respect to the subsystem A [81].
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Figure 4.3 shows the negativity of the prepared state (calculated by treat-
ing half of the system as the subsystem A) for both the cases of the Ising
model and the Heisenberg model as a function of progressing time t normal-
ized with respect to the final preparation time tp required to prepare the
state with ε = 0.2. We can see that the final state of the system is highly
entangled for the case of the Heisenberg model, whereas, the Ising model on
the other hand is hardly entangled.

A second observation that can be made is that there is an initial increase
in the negativity. This is because typical high-energy states follow a volume
law for entanglement measures whereas, the ground states exhibit a weaker
area law [82]. Note, however, that for quantum information processing tasks,
this initial entanglement is not really useful [83].

4.3 Measuring the many-body gap

In section 3.3, we have motivated that the choice of the bath spin splitting
∆ plays an important role in the efficiency of the cooling and for the most
efficient energy transfer from the system to the bath spin, this splitting should
be set resonant to the many-body gap. Here, we numerically simulate the
dynamics for various choices of ∆ in order to confirm this. From figure 4.4
we can see that this is indeed true. Part (a) is a density map showing the
dynamics of cooling of the anti-ferromagnetic Heisenberg chain with N = 4
spins for various choices of the bath spin splitting ∆. The blue curve in part
(b) shows the cross-section of the density map at the final time t = 250~/J .
Here, we can see that the system is cooled most efficiently around a certain
choice of the bath spin splitting and this is exactly equal to the many-body
gap. The same minimum is also seen by the orange curve which on the other
hand is obtained by calculating the energy dissipated out by the bath spin.

These results motivate us to devise a scheme that allows us to measure
the many-body gap of the system by using information just from the energy
dissipated out of the dynamics Edis. Thus, this dissipative protocol not only
initializes the quantum simulator in its ground state but also helps extracting
crucial information about the many-body system of interest. This is partic-
ularly important because in many of the setups of quantum simulation, it is
extremely difficult to measure the energy of the system Hsys. This is because,
one needs to typically perform quantum tomography on all the operators in
the Hamiltonian. Moreover, in many architectures not all the coupling con-
stants in the Hamiltonian can be perfectly controlled; leading to additional
uncertainties in the estimated many-body gap of the system.

Figure 4.4 (b) therefore shows a promising way to estimate the many-body
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Figure 4.4: (a) Colour map showing the cooling dynamics as a function of
the bath spin splitting ∆ for the antiferromagnetic Heisenberg model with
N = 4, gsb/J = 0.2, γ/J = 0.6, fx,y,z = {0.4, 2.3, 0.3}. (b) The most efficient
cooling is observed for the case when the bath spin splitting is equal to the
many-body gap (indicated by the vertical dashed line) i.e., ∆ = ∆E. The
horizontal dashed line indicates the energy of the ground state of the system.
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gap of the system by only measuring the energy dissipated out by the bath
spin during the cooling dynamics. Since each quantum jump that occurs in
the dynamics lowers the energy of the system by an amount ∆, we can relate
the dissipated energy Edis to the number of quantum jumps Njump by the
relation Edis = Njump∆. Therefore, by calculating the number of quantum
jumps, we can measure the energy dissipated out by the system.

There are two ways by which one can measure the number of quantum
jumps Njump experimentally. The first way is to directly count the number
of quantum jumps, for e.g., by counting the number of photons emitted if
the dissipation on the bath spin is implemented by an event of spontaneous
emission. However, this is not always possible as it can be extremely chal-
lenging to count every single photon emitted with a high probability. This
brings us, therefore, to the second way to measure the number of quantum
jumps by calculating the integrated probability of finding the bath spin in
the spin-up state using the equation,

Njump = γ

tp∫
0

Tr{σ(b)
+ σ

(b)
− ρ(t)} dt (4.3)

Here, the probability is integrated over the total preparation time tp.
Although the main observation from figure 4.4 (b) is the identical minima

in Hsys and Edis for the optimal choice of ∆, we also observe the following:
a slightly larger magnitude of the dissipated energy Edis than the system
energy Esys. This can be explained by the fact that there is still a finite
probability for quantum jumps to occur even at a large time limit. This is
a consequence of the ground state of the system not being a perfect dark
state of the quantum master equation due to a finite system bath coupling
gsb. These additional quantum jumps may occur also for non-optimal values
of the bath splitting ∆, which brings us to the second observation, i.e., the
broadening of the dissipated energy Edis compared to the system energyHsys.

4.4 Performance under decoherence

So far, we have only looked at idealized setups. However, in all of the quan-
tum simulation architectures today, there are several sources of unwanted
decoherence processes that cannot be eliminated. Therefore, it is essential
to check the performance of the protocol under such processes.

For this, let us consider the worst case scenario of all local decohorence
processes: σz spin flips on all the N spins of the transverse field Ising model
acting at a rate of κ. We consider this the worst case scenario because, in
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the ferromagnetic phase, one such spin flip will result in the creation of two
domain-wall excitations. Meaning, that if a system is in its ground state,
and one of the spins undergo a σz flip, the dimensionless excitation energy
will increase approximately to ε ≈ 2.

To implement this process in our numerical simulations, we consider ad-
ditional jump operators of the form ci =

√
1/κσ

(i)
z on each of the spins of the

system. Let us now consider the quantity κtp, which basically tells us the
probability of any spin to undergo a spin flip within the time tp. The next
step for us now is to analyze the behaviour of the number of excitations ε for
different values of κtp. Figure 4.5 shows exactly this for a system of N = 4
spins, and from the inset we see that for κtp ≈ 2, the value of ε ≈ 1. This
means that the system picks up only 1 excitation when all the spins of the
system have undergone a decoherence process. Therefore, the characteristic
scale observed here is κ, which is in strong contrast to the typical scale of
Nκ that is observed in protocols involving adiabatic state preparation meth-
ods [84]. This improved performance under decoherence processes can be
explained by the fact that the cooling protocol is itself based on a dissipative
approach and therefore can correct additional decoherence events on its own.

4.5 Experimental realization of the protocol

In this section, we propose an implementation of the initialization protocol
for a trapped-ion simulator. Note, however, that the protocol is, in fact,
largely independent of the physical realization and we choose the trapped-
ion environment just as an example.

We propose to confine a one-dimensional (1D) string of N 40Ca+ ions in a
linear Paul trap using the setup similar to the one described in the reference
[85]. The energy level diagram for one such 40Ca+ ion is shown in figure 4.6,
where | ↑〉 = |2D5/2,m = +5/2〉 and | ↓〉 = |2S1/2,m = +1/2〉 denote the two
levels of each of the spins in the spin-1/2 system. The energy splitting of ~ω0

between these two levels is coherently manipulated by radial laser beams.
The bath ion can be isolated from the system by shelving the population
to an auxiliary state | ↑〉 = |2D5/2,m = −5/2〉 using a separate laser beam
addressing only the bath ion. Note, that this would work only if there is
sufficient distance between the bath ion and the nearest ion of the system
chain.

The next step is the realization of the system and the system-bath Hamil-
tonians. Focusing first on the system Hamiltonian Hsys, the transverse field
Ising like model has been implemented in trapped ion systems with up to 53
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Figure 4.5: Performance of the cooling protocol in the presence of additional
decoherence processes of different strengths κ in the transverse field Ising
model (with N = 4, J/g = 5). The dashed red line is for the ideal case
of no decoherence processes and corresponds to the state preparation with
ground state fidelity f = 0.9. The inset shows the dimensionless energy ε for
different values of κtp, where tp is the preparation time corresponding to the
dashed red line.

66



4.5 Experimental realization of the protocol

Figure 4.6: Energy level diagram of a 40Ca+ ion and the scheme for the
implementation of the cooling protocol in a trapped-ion architecture.

qubits [86]. A global bichromatic laser beam with a frequency of ω0 ± δ can
be used to implement a gate operation by coupling to all the radial modes.
This results in the coupling between two spins i and j with a strength Jij
which follows a power law scaling according to Jij ∝ 1/|i − j|α [55, 87],
where the exponent α can be varied between 0 and 3 by changing the trap
frequencies. The system-bath Hamiltonian Hsb, on the other hand, can be
implemented using a separate laser that addresses only the bath spin and the
neighboring system spin. The σxσx type interaction between the spins can
then be provided by a Mølmer-Sørensen gate [88, 89] on the radial motional
modes.

To be specific, let us consider a system of 5 40Ca+ ions in a linear chain
with single ion radial and axial trapping frequencies of ωr = 2π × 0.5 MHz,
and, ωz = 2π × 0.15 MHz respectively [85]. For a Rabi frequency of 2π ×
125 kHz for all the ions, and a detuning of δ − ωr ≈ 2π × 10.5 kHz, the
long-range interaction Ji,j between two ions at sites i and j, ranges between
2π × 2.7 kHz and 2π × 1.2 kHz, and the largest Lamb-Dicke parameter is
given by ηmax = 0.128. Note that these values are only valid in the Lamb-
Dicke regime, which we verify in appendix C. Given these parameters, the
bath spin is separated from the nearest system spin by a distance of around
14 µm, which is large enough to provide a sufficient 10−7 factor suppression
of the scattering rate in order for the electron shelving detection on the
neighbouring ion when a beam is focused to 2.6 µm on the bath ion.

In such setups, the fluctuations of the global magnetic field contribute
towards the most dominant decoherence events. These processes can be
captured by an additional jump operator of the form c =

√
κc
∑

i σ
(i)
z , where

κc is the collective decoherence rate which can be as low as κc = 3.3 Hz [90].
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Figure 4.7: Cooling dynamics for an Ising-like chain with full long-range
interactions in a system withN = 5 spins for a preparation time tp = 80~/g ≡
24 ms. The blue line corresponds to the case of no additional decoherence
processes resulting in the ground state fidelity f = 0.92, and the orange line
shows the dynamics in the presence of a collective decoherence of strength
κc = 3.3 Hz, resulting in a fidelity of f = 0.89. The ground state energy of
the system is indicated by the the dashed line.

Figure 4.7 shows the cooling dynamics for such a system to an optimized
ground state fidelity of f = 0.92 in the absence of any decoherence processes
(blue curve). In the presence of a collective decoherence as described above,
the system is prepared in a state with ground state fidelity of f = 0.89
(orange curve), resulting in a decrease of only about 3% in the fidelity.
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Cooling of molecular ions

Controlling and manipulating the quantum mechanical states of cold and
ultra-cold atomic and molecular ions is particularly important and has been
the goal in multiple fields of physics and chemistry. This has led to great ad-
vances in mass spectroscopy [91], high precision spectroscopy [92, 93, 94], re-
action measurements [95, 96] etc. Trapping and cooling of atoms and atomic
ions has enabled us to observe exotic phases of matter [97], to develop state-
of-the-art technologies such as atomic clocks [98], quantum simulation [99],
quantum computation [100, 101], and so on. Achieving the same level of
control over molecules and molecular ions is promising as it could lead to
novel insights into fundamental physics and chemistry [102, 103].

However, when compared with atoms, molecules have a rich internal en-
ergy level structure with vibrational and rotational states, as can be seen in
the schematic shown in figure 5.1. These additional degrees of freedom pose
great challenges to extend cooling strategies from the atomic species to the
molecular counterparts.

In this chapter, we discuss the first steps to extend our cooling protocol
presented in section 3.3.1 to cool molecular ions. Before that, let us first
study the energy spectra of a diatomic molecule using mechanical models,
focusing on the vibrational and the rotational degrees of freedom.

5.1 Vibrational energy levels

Molecular vibrations can be approximated as simple harmonic oscillators that
are associated with an energy,

Ev =

(
v +

1

2

)
hν (5.1)
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Figure 5.1: Schematic showing the energy levels of a molecule. The vibra-
tional motions of the molecule give rise to the various vibrational levels vn
for each of the electronic levels, and the rotational motions of the molecule
further give rise to different rotational levels giving rise to the spectrum.
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5.2 Rotational energy levels

where, v is the vibrational quantum number, and ν is the vibrational fre-
quency. Typically, however, one replaces hν by the vibrational wave number
ωe and the energy is given in units of cm−1.

Although this approximation holds fairly well for the bottom of the po-
tential well, a real molecule, however, has anharmonic potentials, and one
needs to consider higher order correction terms while going up the potential
well. Often, only the first correction term is used, and the energy then reads,

Ev = ωe

(
v +

1

2

)
− ωeχe

(
v +

1

2

)2

, (5.2)

where, χe is the anharmonicity constant.

5.2 Rotational energy levels

To study rotating systems, we use a mechanical model called the rigid rotor.
The quantum mechanical linear rigid rotor model is often used to predict
the rotational spectrum of a diatomic molecule. For this, we assume that
the distance R between the two atoms comprising the molecule is fixed, and
they rotate around each other about their center of mass. The Hamiltonian
of this model in polar coordinates takes the form,

H = − ~2

2Iv

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
, (5.3)

where, Iv = µR2 is the moment of inertia in the center of mass frame with
µ being the reduced mass of the system. Notice that the moment of inertia
depends on the vibrational quantum number v.

We can now solve the Schrödinger equation Eq. 1.1 and obtain the ex-
pression for the energy of the different rotational levels as,

EJ =
~2

2I
J(J + 1), (5.4)

where, J is the rotational quantum number, and each of the J levels are
(2J + 1)-fold degenerate.

5.3 Selection rules for the ro-vibrational
transitions

Depending on the kind of the transition in question, transitions between
levels with certain vibrational and rotational quantum numbers are allowed
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and those between certain levels are forbidden [104]. These rules are called
the selection rules and are derived by calculating the transition moment
integral which depends on the two involved states and the transition moment
operator.

For electric dipole allowed ro-vibrational transitions, the selection rules
are ∆v = 0,±1,±2, ..., and ∆J = ±1. The transition having ∆v = ±1 is
called the fundamental transition, and the ones with larger ∆v are called
the overtones. For magnetic dipole allowed transitions, the selection rule is
∆J = ±1. Therefore, each rotational level has two allowed transitions. On
the other hand, the allowed change in the rotational quantum number for a
Raman transition is ∆J = 0,±2.

The lack of selection rules for the vibrational transitions makes laser cool-
ing of molecules extremely difficult, if not impossible. This is because a
generic molecule in an electronically excited state may decay into any of
the possible lower states making it impossible to scatter a large number of
photons which is crucial to the concept of laser cooling.

5.4 Cooling to the rotational ground state

Here, we study the cooling of a molecular ion from an excited rotational
state to the ground state using controlled dissipation. Since ∆J = ±1 is
forbidden for Raman transitions, let us consider the cooling from the J = 2
manifold to the J = 0 level. The J = 2 manifold has 5 degenerate states
whose degeneracy can be lifted due to Zeeman splitting, whereas, the J = 0
level is non-degenerate. The driving between the different states i and j
in the J = 2 manifold can be achieved with a time-dependent magnetic
field Ωij sinωBt. Here, the frequencies Ωij = Ω0fij are determined from
the Clebsch-Gordan coefficient matrix fij for the Zeeman transitions. The
schematic for the dissipative cooling protocol is shown in figure 5.2 (a). The
dissipation channel acts on the motional mode |0′〉 at a rate γ.

Figure 5.2 (b) shows the fidelity of the state of the system to the ground
state |0〉 for different strengths of the dissipation rate γ. As can be seen from
the figure, the system can be prepared in its ground state with high fidelities
of f > 0.95.

These results, although preliminary, seem promising and in the future, it
would be of interest to generalize the scheme to include all rotational levels.
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Figure 5.2: (a) Schematic for the dissipative cooling of the J = 2 manifold
to the J = 0 rotational ground state. (b) Dissipative many-body dynam-
cis resulting in the preparation of the system in its ground state with high
fidelites of f > 0.95.
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Chapter 6

Nitrogen-Vacancy centers in
diamond

Diamonds, known for their striking beauty, have been adored and treasured
as gemstones since ancient times. Although a chemically pure and struc-
turally perfect diamond has no colour, natural diamonds often have a numer-
ous amount of imperfections due to lattice irregularities such as inclusions
(impurity atoms present in the crystal), vacancies (atoms missing in the crys-
tal) etc. These crystallographic imperfections are responsible for dramatic
changes in the properties of the diamond, especially the color. This is because
stable impurities introduce narrow levels within the band gap of the crystal,
perturbing the original energy level structure. This results in the coloration
of an otherwise transparent crystal (see figure 6.1). Therefore, these defects
are also called color centers and they emit across the spectrum, from the ul-
traviolet (UV) to the infrared (IR) [105]. Not only have they been the center
of interest among gemologists for decades, but because of their stability and
fascinating optical properties, they have also found applications in a large
variety of fields ranging from quantum physics to biology [106, 107].

Of all the hundreds of luminescent defects in diamond, the nitrogen-
vacancy (NV) center is the most studied. An NV center is a point defect
in the lattice where a carbon atom is substituted by a nitrogen atom and an
adjacent carbon atom is absent resulting in a vacancy (see figure 6.2 (a)).
Although these centers are found in three different charge states (NV+, NV0,
and, NV−) [107, 108], due to its prominent features such as the electron
paramagnetic resonance (EPR), the negatively charged NV center (NV−), is
usually employed in scientific research [109]. From now on, we will refer to
the negatively charged NV− simply as NV.

The most fascinating research using NV center has been the demonstra-
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Figure 6.1: Fluorescence of natural diamond particles (each having a diame-
ter of about 10 µm), under the exposure of UV light, due to the presence of
various types of defects. Image adapted from [106].

tion of room-temperature quantum physics in the fields of information pro-
cessing [110, 111], nanoscale magnetometry [112, 113, 114, 115], nanoscale
electrometry [116] and nanoscale thermometry [117, 118].

In the upcoming sections, we will learn some basic properties of the NV
center and in the following chapters we will employ them to study high-
density sensing using dissipative first order transitions.

6.1 Electronic level structure

The negatively charged NV center has six electrons, of which two are pro-
vided by the nitrogen atom, another three come from the three carbon atoms
surrounding the vacancy, and the sixth electron is trapped in the lattice at
the site. Thus, having an even number of electrons, and possessing a C3v sym-
metry i.e., invariance under a 2π/3 rotation around the symmetry axis [119],
group theory dictates that the electronic states of the NV center comprises of
spin triplet states (3A2 and 3E) and the spin singlet states (1A and 1E). Fig-
ure 6.2 (b) shows the electronic structure of the NV center. The eigenstates
of the triplets are typically given by the S = 1 description with ms = 0,±1
(denoted as |0,±1〉). Their degeneracy is lifted by a zero field splitting of
D = 1.27 GHz for the excited state and D = 2.87 GHz for the ground state.
NV centers show a strong absorption at the wavelength of 532 nm [120, 121],
at which they are excited from the ground state to the electronically and
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(a) (b)

Figure 6.2: (a) Schematic of the NV center depicting the nitrogen atom
(brown) and an adjacent vacancy (white) in a lattice of carbon atoms (blue).
(b) Electronic structure of the NV center showing the triplet ground state
3A2 and the excited state 3E. Dashed yellow lines indicate non-radiative
transitions.

vibronically excited states which then decay back to the ground state via flu-
orescence with the zero phonon line (ZPL) between the ground state and the
excited state at 637 nm (or 1.945 eV). These optical transitions between the
ground and the excited states are primarily spin preserving [121]. However,
since the metastable singlet is close to the excited state, the spin-orbit inter-
action induces inter-state crossing (ISC) [122, 123, 124] between the 3E and
1A states, allowing for the decay of the excited state into the ground state
also via this route. The excited NV centers undergoing ISC decay into the
singlet level with ZPL at 1042 nm, after which they cross over predominantly
to the ms = 0 state of the 3A2 ground state. These processes are indicated
by the yellow dashed lines in figure 6.2 (b). This cycle is spin non-conserving,
and helps in the accumulation of more than 80% [125] of the population in
the ms = 0 state resulting in the spin-polarization of the NV center. Ad-
ditionally, the ISC mechanism is mostly non-radiative in nature [121, 122],
resulting in a higher probability per cycle of the ms = 0 state for fluorescence
than those in ms = ±1 states with a contrast that can be as high as 30%
[121, 113, 124]. This feature of spin-selective fluorescence is what is basically
used for the optical readout in the most schemes of magnetometry using NV
centers [113, 114, 126, 127, 128]
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6.2 Magnetometry using NV centers

The use of NV centers as nanoscale sensors was first suggested in the refer-
ences [129, 112] and experimentally demonstrated using single NV centers in
references [113, 114] and in ensembles of NV centers in the reference [130] ig-
niting much of the excitement in the following decade. Since then there have
been multiple demonstrations of magnetometry using both single and ensem-
bles of NV centers [109, 131] which have found applications covering a wide
area ranging from condensed matter physics [132, 133] to nuclear magnetic
resonance (NMR) technologies [134] to living systems biology [107, 134].

Although technologies involving alternative candidates such as the alkali
vapour cells [135, 136] or the superconducting quantum interference devices
(or simply SQUIDs) [137, 136] offer exceptional sensitivities in measuring
magnetic fields, their applications at the nano-scale level are limited due to
technical complications or low spatial resolution of the sensors. Employing
NV centers solves these issues making them promising candidates in nano-
scale sensing and magnetometry. This can be owed to the fact that the NV
centers can be easily initialized and read-out using just a single 532 nm solid
state laser. Apart from the fact that these sensors can work at friendly con-
ditions of temperature, pressure etc., diamonds are also chemically inactive,
making them suitable to be placed in close proximity to the source of the
magnetic field [138] enabling a spatial resolution of the order of nanometers
[139, 140].

As Rondin et al. suggest in the reference [131], that the ultimate test
for NV based sensing and magnetometry applications would be to provide
novel insights e.g., into processes at the level of a single protein, or exotic
new states of matter etc., that could not be possible using current alternative
experimental techniques. Banking on the examples [141, 142, 143, 144], they
also believe that such a breakthrough could be demonstrated in the near
future.

6.2.1 Sensitivity of the sensor

The sensitivity of a spin-based quantum sensor is mostly limited by the quan-
tum noise that is linked with spin projection. For sensors based on NV cen-
ters, this is mostly governed by the photon shot noise [114, 112] and the
precision scales as 1/

√
Nphoton where Nphoton is the number of photons col-

lected. For quantum metrology schemes, the precision also depends on the
accumulation of the phase during the measurement time τ . Since the phase
scales linearly with time τ , but the measurement repetition rate scales as
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1/
√
τ , the optimal sensitivity also scales as 1/

√
τ [145].

For a density of n non-interacting S = 1/2 spins in a volume V of the
sample, this is given by the following [135, 112, 124, 108].

δB ' 1

gµB

1√
nV τ

(6.1)

where δB is the smallest detectable magnetic field, γ = gµB is the NV gy-
romagnetic ratio (γ = 1.761 × 1011s−1T−1) with g being the ground state
Landé factor and µB being the Bohr magneton. The free precession time τ
per measurement is chosen for optimal sensitivity and depends on the char-
acteristic decay time of the spin relaxation. In the case of DC magnetometry,
this is the ensemble inhomogeneous dephasing time T ∗2 which is typically of
the order of 1µs in most implementations currently [108]. For AC sensing
protocols the relevant time is the T2 coherence time which is normally longer
than the T ∗2 dephasing time by an order of magnitude of one or two [146, 108].

6.2.2 Sensing at high densities

Performing magnetometry using an ensemble of NV centers has advantages
over using just a single center because the projection noise per unit volume
scales as inverse square root of the density n of the sensing spins as seen in the
previous section 6.2.1. This results in an improved sensitivity of the sensor.
Besides, the NV centers in an ensemble are typically distributed along all
four crystallographic orientations, each of which are sensitive to a different
component of the magnetic field. This feature enables the measurement of
not just the magnitude but also the direction of the magnetic field making
the NV-ensemble diamond sensor a vector magnetic sensor.

However, at the small scale of a nano-sensor, the NV centers lie at close
proximities to each other resulting in strong dipolar interactions between
them. These interactions pose great challenges as they contribute towards
dephasing of the NV spins resulting in shorter T ∗2 , T2, and T1 relaxation times
[131, 147] and therefore limiting the sensitivity of the sensor.

In order to overcome this problem a few protocols have been proposed
that mostly target to extend the relevant spin relaxation times T ∗2 for DC
field sensing [148] and T2 for AC field sensing [149]. However, since these
schemes involve partially decoupling the spins from the magnetic fields to
be sensed, the gain in sensitivity due to extended relaxation times may be
counterbalanced by the partial decoupling.

A second class of proposals to tackle this issue is to use highly entangled
states that can beat the standard quantum limit of 1/

√
N for spin projection

noise and may approach the Heisenberg limit of 1/N [150]. However, this

81



Chapter 6. Nitrogen-Vacancy centers in diamond

approach enforces constraints that are challenging to realize experimentally
and moreover only applicable to a small range of magnetometry applications
[108].

The problems discussed here urge us to develop more methods and ideas
in order to enable nanoscale quantum sensing. Here, we propose a novel
approach to solve this problem using controlled dissipation. The key idea
is to exploit dissipative first order transitions to perform sensing. The prin-
ciple here is that the signal to be detected triggers a phase transition in
the sensor at its critical point resulting in a large change in the value of a
physical observable. This is true even for very small change in the signal
thereby allowing us to detect even a weak signal with high sensitivity. This
is in contrast, however, to quantum phase transitions in systems that are of
second-order in nature where a weak signal cannot cause a big change in the
observable [151].

In the next chapter, we describe our protocol and highlight its features
as applied to two-dimensional lattice geometry and in the following chapter
we extend this to three-dimensional systems.
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Dissipative first order transition

Having motivated the reason to study NV based quantum devices for magne-
tometry, and the need to devise schemes to perform quantum sensing using
ensembles of NV centers, in the following, we present our sensing protocol
that uses dissipative first order transitions and present results for a two-
dimensional setup with a lattice geometry.

7.1 The sensing protocol

The setup (see figure 7.1 (a)) consists of an ensemble of N interacting NV
centers in a diamond undergoing microwave driving with a Rabi frequency
Ω. Additionally, we assume that the NV centers are aligned parallel to the
external magnetic field [152]. We also assume a sufficiently strong bias field
such that only transitions with ms = 1 state are near resonance as this
allows us to describe each of the NV centers using an effective two-level i.e.,
a spin-1/2 description.

The Hamiltonian of such a system can then be written in the rotating
frame of the driving as,

H =
~∆

2

N∑
i

σ(i)
z +

~Ω

2

N∑
i

σ(i)
x +

N∑
i<j

Vij. (7.1)

Here, ∆ is the detuning from the electron spin resonance, and, Vij is the
magnetic dipole-dipole interaction which takes the following form,

Vij =
(
1− 3 cos2 ϑij

) µ2

|ri − rj|3
{

1

4

[
1 + σ(i)

z

] [
1 + σ(j)

z

]
− σ(i)

+ σ
(j)
− − σ(i)

− σ
(j)
+

}
,

(7.2)
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where µ is the magnetic dipole moment, and ϑij is the angle between the
NV axis and the vector connecting sites ri and rj. The exact form of the
Hamiltonian 7.1 is derived in appendix D.

The dissipation on each site is implemented by the optical pumping of the
NV centers towards the ms = 0 state with a rate γ, that can be controlled by
the strength of the green laser pump (see figure 7.1 (a)). For the calculations
here, we assume that the distance between the nearest neighbours is r = 5 nm
and set the optical pumping rate to be γ = 1 MHz.

We can now write down the quantum master equation in its Lindblad
form as,

d

dt
ρ = − i

~
[H, ρ] +

N∑
i

γ

(
σ
(i)
− ρσ

(i)
+ −

1

2

{
σ
(i)
+ σ

(i)
− , ρ

})
. (7.3)

The last step of the sensing protocol as shown in figure 7.1 (b) is the opti-
cal readout which gives us the information of the NV spin state. Here, we
are interested in the total magnetization of the NV system m =

∑
i(1 +

〈σ(i)
z 〉)/(2N), especially its response to changes in the driving field Ω as we

expect a behavior as shown in figure 7.1 (c). This is because our system
is very similar to driven-dissipative Rydberg systems that are known to un-
dergo a first order phase transition [153, 154, 155]. In order to confirm the
existence of a first order phase transition in our system, we will analyze the
behavior of the magnetic susceptibility χ, which is the first derivative of the
magnetization, for increasing system sizes.

In the following, we first study two-dimensional systems in lattice geome-
tries and then move onto systems with imperfections related to disorders and
decoherence processes. For all our calculations below, we assume a periodic
boundary condition. We perform numerical simulations of the full quantum
master equation 7.3 based on the wave-function Monte Carlo approach im-
plemented in QuTiP [29], as discussed in section 1.4, which we extend here to
a heavily parallelized version. This allows us to go to a system size of as high
as N = 20 spins, which, within our knowledge, is so far the largest number of
spins treated in open quantum many-body systems while retaining the entire
Hilbert space.

7.2 Two-dimensional lattice geometry

Starting with the simplest case of only nearest-neighbour interactions, let us
consider lattice geometries with equal number of NV centers on both x and y
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(a)

(b)

(c)

Figure 7.1: Setup for the sensing protocol. (a) The NV centers are arranged
in a two-dimensional lattice geometry with each of the centers described using
an effective two-level description. Inset shows the energy level diagram for a
single NV center. (b) The sensing protocol where the system of NV centers is
first initialized, followed by the dissipative many body dynamics and finally
the readout of the NV spin state. (c) Sketch of the strong response the NV
magnetization across the phase transition for increasing system sizes which
can be used to perform sensing. 85



Chapter 7. Dissipative first order transition

axes i.e., isotropic geometries with Nx = Ny. As the first step, we investigate
the NV magnetization m at different strengths of the driving field Ω.

Figure 7.2 shows the results for a system of N = 16 NV centers in a 4×4
geometry for driving frequencies Ω of 1 MHz (blue curve), 5 MHz (orange
curve), and, 8 MHz (green curve). The shaded regions show the variance of
the NV magnetization as calculated using the statistics from 1000 different
Monte Carlo trajectories by

(∆m)2 =
n∑
j=1

(mj − m̄)2

n− 1
(7.4)

where m̄ is the mean magnetization at a time t and n denotes the number of
trajectories. An obvious observation is that the orange curve corresponding
to Ω = 5 MHz shows a large variance in the magnetization as compared
to the other two cases. Such a behavior can be explained using the fact
that at any phase transition, there are two solutions which the numerics can
basically choose from. Therefore, this already indicates the presence of a
phase transition in the NV magnetization.

This by itself, however, is not enough to prove the existence of any phase
transition. Therefore, in order to further probe into this, we study the be-
havior of the derivative of the magnetization with respect to the driving field
strength χ = ∂m/∂Ω. This derivative χ is called the magnetic susceptibility
and is a very good response function that gives us a measure of the change
in magnetization m due to the change in an external parameter, here, the
driving field Ω.

Figure 7.3 shows the response of this magnetic susceptibility χ to varying
field strengths Ω for isotropic geometries of 3 × 3 (blue curve) and 4 × 4
(orange curve). The solid lines are fits to the data set that closely fit the
Weibull distribution given by,

χ(ω) ∼ Ωk−1 exp

[
−
(

Ω

λ

)k]
. (7.5)

Interestingly, the Weibull distribution has been previously studied with re-
spect to the relaxation from metastable states where the parameter k controls
the decay rates of these states [156, 157].

A crucial feature relevant to our study here, is that for a certain value of
the driving field Ω, the magnetic susceptibility χ assumes the highest value
i.e., there is a peak in χ. Secondly, we also notice that this peak is larger
for a system of 16 (4 × 4) NV centers than for a system of 9 (3 × 3) NV
centers. The question now is, how does this peak in susceptibility scale with
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Figure 7.2: Magnetization of a system of 16 NV centers in a 4×4 geometry for
various strengths of the driving field Ω. The shaded region shows the variance
of the magnetization at each point in time. Large variance in magnetization
at Ω = 5 MHz compared to the other two regimes hints at the existence
of a phase transition as the numerics chooses between the two steady state
solutions present at the transition.
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Figure 7.3: Magnetic susceptibility χ for varying driving strengths Ω for 3×3
and 4× 4 lattice geometries. Results shown are obtained by averaging 1000
wave-function Monte Carlo trajectories. The solid lines are fits to the data
that follows a Weibull distribution.
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Figure 7.4: The peak of the magnetic susceptibility diverges on a double
logarithmic plot with increasing system size indicating the existence of a
first order phase transition in magnetization.

increasing system sizes? To analyze this, we also need to include anisotropic
geometries where Nx 6= Ny (3× 4, 3× 5 and 4× 5).

We calculate the peak in susceptibility numerically for each sytem size N ,
by fitting a quadratic function around the maximum. When we plot these
data points on a double logarithmic scale, we see from figure 7.4, that the
peak χ increases with N .

However, it is also noticeable that the data points do not exactly fall on
the solid line which is the fit, but are rather scattered around this line. This
is explained by the fact that at small system sizes, the effects of anisotropy
are easily manifested. Therefore, in order to account for this, one needs
to perform a modified finite size scaling [158]. Our ansatz for the scaling
function is given by

χ = cNαχ̃(λ), (7.6)

where λ = Nx/Ny is the ratio of the number of spins on the x and y directions
respectively, and gives a measure of the anisotropy in the geometry. The
parameters c and α are numerical constants that can be determined by fitting
our simulation data. Crucially, a positive value for the exponent α indicates
the existence of a first order phase transition. Since we want to eliminate the
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Figure 7.5: Modified finite size scaling results in the collapse of the data
onto a single line. The reduced susceptibility χ/χ̃ scales with system size N
according to χ/χ̃ ∼ Nα with the exponent α = 0.527± 0.006.

effects of the anisotropy, we need to choose the scaling function χ̃(λ) such
that it satisfies the following two conditions:

χ̃(λ) = χ̃(1/λ) (7.7)
χ̃(1) = 1. (7.8)

As a consequence, this leaves us with only the even powers of log[λ] when we
perform a series expansion. For anisotropies that are not too large, we can
truncate the expansion at the second order and the scaling function is then
given by

χ̃(λ) = 1 + d[log λ]2 +O([log λ]4) (7.9)

Here, d is another numerical constant that can again be found by data fitting.
Eq. 7.6 finally takes the following form.

χ = cNα(1 + d[log λ]2) (7.10)

When we now plot the reduced susceptibility χ/χ̃, as a function of the system
size N , it should now take the form of a simple algebraic expression given by
our ansatz Eq. 7.6. Figure 7.5 shows that this is indeed the case, reassuring
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the validity of our ansatz. Furthermore, we find the exponent to be positive
confirming the presence of the first order phase transition. Interestingly, the
value of the exponent determined is α = 0.5, which is basically the same
scaling with respect to the sensitivity that is exhibited by a non-interacting
ensemble. This means that the sensitivity of our dissipative protocol is about
the same as that for a non-interacting ensemble. We will give an estimate
for the sensitivity in section 7.6.

7.3 Effects of long-range interactions and
vacancy disorder

So far, we have only studied the simplest case of nearest neighbour interaction
which is clearly an idealized setup. Therefore, let us study the effects of
long-range interactions in the system. Besides, in a real sample of diamond,
there are various imperfections that are related to disorder in the lattice, or,
various sources of additional decoherence processes. Here, we focus on the
effects of the full long-range interactions and disorder in our system and in
the following section 7.4 we will study the performance of our sensor under
decoherence processes.

We are interested in the investigation of the following:
i) full long-range dipolar interactions,
ii) disorder caused by a vacancy in the lattice with only nearest-neighbor
interaction,
iii) disorder caused by a vacancy in the lattice with full long-range dipolar
interactions.
In order to compare these three cases with the previously presented case of
only nearest neighbour interactions, we need to normalize the interaction
strength Vij such that the energies in all the four cases are the same. We
now run the wave-function Monte Carlo simulations of the quantum master
master equation as earlier and plot the results. As can be seen in figure
7.6, the results change only quantitatively. Qualitatively they are the same,
showing that the protocol also works in this realistic scenario.

These results are consistent with the following picture that the disorder
relating to NV interaction energies or missing sites due to off-axis NV centers
only affect the strengths of the coupling constants but cannot reverse their
signs. Therefore, they do not play an important role. The analysis of random-
bond Ising models [159] shows that the underlying phase transition survives
such types of disorder.
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Figure 7.6: Steady state magnetic susceptibility χ for various different cases
for 3 × 3 geometry obtained by averaging results from 1000 Monte Carlo
trajectories. The orange and yellow curves correspond to the case of the spins
having only nearest neighbour (N.N.) interaction, whereas, the blue and the
green lines are for systems that also include the full long-range dipole-dipole
interactions (DDI). Additionally, the yellow and the green lines also include
a vacancy (vac) disorder present in the lattice.
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7.4 Performance under decoherence processes

The next step in our study is to analyze the performance of the dissipative
sensor under decoherence processes. In a typical system of NV centers, a
dominant challenge is posed by decoherence processes caused by residual
nitrogen impurities and by 13C nuclear spins. Hence, we study these processes
here and investigate how limited the sensor is by the T2 decoherence time. To
do this, we add additional jump operators to the quantum master equation
ci =

√
1/T2σ

(i)
z on each of the sites.

Since we are interested in the extent to which our protocol is limited by
the T2 decoherence times, we need to perform the analysis at the thermody-
namic limit for which we turn to the variational principle for open quantum
systems [160]. These simulations, shown in figure 7.7, are performed by Hen-
drik Weimer. Here, we see that the phase transition is quite robust against
decoherence processes. It not only survives in a regime where the decoher-
ence is perturbatively small but also in the regime where the decoherence
rates are several times higher than the coherent interaction strengths. Here,
the dipole-dipole interaction strength is V = 2π × 400 kHz at a separation
of r = 5 nm between the NV centers. This is about an order of three mag-
nitudes smaller than the decoherence rate of about 50 ns at which the phase
transition vanishes. This strong robustness can be accredited to the steady
state being an effective non-classical thermal state [161]. Such a state is less
vulnerable to decoherence processes as it is diagonal in an appropriate energy
eigenbasis. Notice, however, that these additional decoherence processes re-
sult in a shift in the point of transition. Therefore, before using the device
for quantum sensing, one needs to characterize its coherence properties.

7.5 Sensing DC fields

Here, we investigate the magnetic susceptibility with regard to changes in
the magnetic field. A change in the magnetic field will result in a shift of the
resonance condition of the microwave driving of the NV centers. Therefore,
we can model the effect of a variation in the magnetic field with respect to the
external bias field B0, by varying the finite detuning ∆ in the Hamiltonian
7.1 but for a fixed microwave driving Ω.

The magnetic susceptibility is now the first derivative of the magnetiza-
tion with respect to the detuning given by χ = ∂m/∂∆ and is shown in figure
7.8. We again notice similar behavior of the DC susceptibility as compared
to the previous cases. Since the peak of the susceptibility here for the DC
field is only slightly bigger than the case of the AC field, we suggest that
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Figure 7.7: Performance of the sensor under decoherence processes with var-
ious T2 times. The phase transition survives even in the regime where the
decoherence rates are several times stronger than the coherent interaction
strengths. The phase transition vanishes only at a very small T2 time. Fig-
ure taken from reference [162].
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the sensitivities for both these cases will be comparable. These results are in
contrast with NV magnetometry using non-interacting ensembles where the
DC sensitivity is limited by the T ∗2 times which is, in general, worse than the
T2 times in the case of AC sensing. Thus, our protocol is especially useful
for DC sensing.
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Figure 7.8: Magnetic susceptibility with respect to changes in the magnetic
field, here shifts in the detuning ∆, for a system of NV centers in a 3 × 3
geometry. The behaviour of the peak of the susceptibility similar to that for
the previously shown case of AC field.

7.6 Sensitivity estimation

We have previously mentioned that the sensitivity of the dissipative sensor
would be similar to that of a non-interacting ensemble owing to the same
scaling exponent of α = 0.5. However, as opposed to the case of a system of
non-interacting NV centers where the measurement is limited by the photon
shot noise [131], in our case it is rather limited by the bimodal distribu-
tion of the system close to the first order transition. Particularly, the signal
for the total NV magnetization behaves as N(m0 + χDCB), where B is the
external field that is to be measured. From statistics of bimodal distribu-
tions, we know that the noise is given in terms of its standard deviation by
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N/2δm where δm is the jump in the magnetization at the phase transition
in the thermodynamic limit. Since we know from section 7.2 that the mag-
netic susceptibility scales as

√
N close to the transition, we can estimate the

sensitivity using

ηDC =
δm

2χDC
√
ν
, (7.11)

where ν is the rate of measurement.
With this, we estimate that the sensitivity of our protocol for a system

of 103 NV centers, with δm = 0.3 and ν = 1 MHz, would be about η ≈ 3 nT
Hz−1/2. If we increase the system size to 1011 centers, we reach η ≈ 300 fT
Hz−1/2. This is approximately a factor of 3 improvement over the recently
demonstrated subpicotesla diamond magnetometry using a large ensemble
noninteracting NV centers [163].
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Three-dimensional systems

In this chapter, we study the functioning of the sensing protocol with three-
dimensional systems of NV centers. Moving onto the third dimension is
particularly important because it is especially challenging to control the im-
plantation depth of the NV centers in a diamond sample [131].

We will first study the cubic lattice geometry and motivate the reason to
extend to geometries with random disorder in the system.

8.1 Cubic lattice geometry

As the first step, let us analyze the dipolar interaction Vij (Eq. 7.2) between
the NV centers in a cubic lattice geometry. Figure 8.1 shows the dipolar
interaction between a spin (sitting at the centre of the axes) and all its nearest
neighbours. When integrated over the full solid angle, the ferromagnetic
and the anti-ferromagnetic contributions are exactly equal but opposite in
sign. Hence, the two contributions cancel each other out and the net dipolar
interaction is zero. Without a net dipolar interaction, the first order phase
transition no longer exists.

In order to restore this transition, one needs to ensure that the net dipolar
interaction between the NV centers is non-zero. We can do this by breaking
the symmetry of the dipolar interaction which can be achieved in many ways.
In reference [162], it has been shown that one way to do so would be to apply
magnetic field gradient along the NV axis where even a small gradient of
δB = 103 T/m restores the first order transition.

Here, we present another way to achieve this, by using random disorder,
In the following, we study how a random disorder in the system can restore
this phase transition and learn about some of its interesting properties.
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Figure 8.1: The net dipole-dipole interaction in a system of NV centers in
a cubic lattice is zero when integrated over the full solid angle in 3D lattice
geometry. As a result of this, the first order phase transition no longer exists.

8.2 Random disorder in the system

Going from a system in cubic lattice geometry to one that has random dis-
order helps us twofold. Firstly, it breaks the symmetry in dipolar interaction
that is crucial in restoring the phase transition. Secondly, it relaxes the
challenging task to implant NV centers in a perfect lattice geometry.

Figure 8.2 (a) shows the setup of a system of NV centers placed ran-
domly inside a cubic box. To capture the effects of random disorder, we
perform simulations for various such random realizations of the system each
representing a single Monte Carlo trajectory and then average the obtained
results. We take care that the average distance between two centers remains
the same for all these realizations.

With such a setup we now investigate the behavior of the total NV mag-
netization m and the magnetic susceptibility χ similar to the investigations
for the two-dimensional lattice systems in chapter 7.

As before, we investigate the peak of the magnetic susceptibility and check
its scaling. Figure 8.2 (b) shows such the scaling of the peak of magnetic
susceptibility χ with increasing system sizes N . We see that the peak of
the magnetic susceptibility diverges, confirming the restoration of the first
order phase transition. However, we note that the scaling exponent α = 0.43
is slightly smaller than the observed value of α = 0.2 in the case of two-
dimensional lattice. This may be because we have maintained the average
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Figure 8.2: (a) Setup of the three-dimensional system of NV centers arranged
randomly inside a box. The average distance between two centers for differ-
ent such realizations is maintained constant. The inset shows the triplet
ground state of each spin that can be described using an effective two-level
description. (b) Scaling of the peak of magnetic susceptibility χmax with
increasing system size N . The diverging peak confirms the restoration of the
first order phase transition. The solid line is a fit to the data according to
χmax ∼ Nα with the exponent α = 0.43± 0.02.
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Figure 8.3: Relaxation of the NV magnetization m with time t for various
system sizes at the transition point Ω = 1 MHz. The large variance (shaded)
in the magnetization is due to the existence of two solutions at the transition.

distance between two NV centers constant, i.e. 〈r〉 = constant and not the
energy per NV center, i.e. 〈 1

r3
〉 = constant.

Next, let us check the behavior of the NV magnetization at the transition
point. The relaxation of the NV magnetization m for progressing times t
is shown in figure 8.3 for various system sizes. Similar to the case of two-
dimensional lattice geometry in section 7.2, we observe a large variance in
m at the transition point as the numerics chooses between the two solutions
that exist at the transition. Interestingly, we also observe that the relaxation
time does not depend on the size of the system, making the sensing protocol
furthermore promising.

In the following we study a few properties of the system in the different
regimes of the phase transition.
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8.3 Temporal coherence of the NV signal

The second order correlation function g(2)(τ) is one of the most important
tools to learn about the characteristic properties of a photon signal. Here,
we calculate this correlation function for the NV readout signal in the three
regimes of the phase transitions, i.e., on either side of the phase transition,
and, at the phase transition, in order to study its properties.

The second order correlation function is defined as,

g(2)(r1, r2, τ) =
〈I(r1, t)I(r2, t+ τ)〉
〈I(r1, t)〉〈I(r2, t)〉

(8.1)

Since we are interested in the temporal correlation we have r1 = r2 = r and
the g(2) function only depends on the time difference τ . The g(2) temporal
correlation function has the following property that is useful in detecting the
coherence of the light signal:

g(2)(τ) < g(2)(0) =⇒ bunched light
g(2)(τ) > g(2)(0) =⇒ antibunched light. (8.2)

Let us now calculate the g(2) function for our system. Here, for our purposes,
we modify this definition Eq. 8.1 of the correlation function using Bayes’
theorem in the following manner,

g(2)(τ) =

〈
N
[
n(t+ τ) > 0

∣∣ n(t) > 0
]

〈n(t)〉 ×N [n(t) > 0]

〉
avg

, (8.3)

where the average is taken over all the different trajectories of the Monte
Carlo simulations. The notations used here reads as follows; n(t) denotes the
number of photons emitted at time t, N [A] denotes the number of instances
where the event A is true, and, B|A is the usual notation used in conditional
probabilities which denotes the case where the event B is true given that the
event A is true. We can therefore understand the numerator in Eq. 8.3 as
the number of instances where one detects a photon at time (t + τ) given
that a photon was detected at time t. In our numerical simulations, these
correspond to the times when a quantum jump has occurred.

Figure 8.4 shows the g(2) correlation function calculated for a system of
16 NV centers at (a) Ω = 0.2 MHz corresponding to the paramagnetic side
of the phase transition, (b) Ω = 1 MHz which is at the phase transition, and,
(c) Ω = 4 MHz corresponding to the magnetically ordered regime. Using
conditions 8.2 of the correlation function, we can see from plots (a)-(c) that
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the NV signal changes from antibunching to uncorrelated through the phase
transition. Here, we have considered only the spin state readout from the
ms = 0 state, but in the future, it would be useful to also consider both
optical and infrared signals from ms = 1 state [164, 165].

8.4 Error analysis

It is useful to analyze the error induced by the random disorder. We do this by
studying the scaling of the standard deviation σ of the peak of the magnetic
susceptibility χ with respect to the number of Monte Carlo trajectories Ntraj

and compare this in the following two scenarios:
i) all the trajectories correspond to a single realization of the system.
ii) different trajectories correspond to different configurations of the system.

From figure 8.5, it can be seen that the standard deviation scales basically
the same as the expected square root scaling ∆O ∼ 1/

√
Ntraj for Monte

Carlo simulations as mentioned in section 1.4. However, it is worth noticing
that one needs more number of trajectories in order to have quantitatively
comparable errors.
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Figure 8.4: Second order auto-correlation function g(2)(τ) for a system of 16
NV centers at (a) Ω = 0.2 MHz, (b) Ω = 1 MHz, (c) Ω = 3.5 MHz. Results
averaged over Monte Carlo simulations of 1000 different realizations.
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Figure 8.5: Comparison of the scaling of the standard deviation σ of the
peak of the magnetic susceptibility with respect to the number of Monte
Carlo trajectories Ntraj, for the case where all the trajectories correspond to
a single configuration of the system (blue) and for the case where each of the
trajectories correspond to a different configuration (orange). The results are
shown on a double logarithmic plot and the solid lines are fits to the data
according to σ = β/Nα

traj where α = 0.489, β = 0.26 for the blue curve, and,
α = 0.492, β = 0.45 for the orange curve.
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Chapter 9

Summary and outlook

In this thesis, we presented two examples of quantum technologies that can
be enabled by using controlled dissipation. We showed that the system-
environment interactions often lead to many interesting features that one
can harness in order to build quantum devices that find applications in novel
technologies such as quantum simulation and quantum sensing.

In part II, we proposed a novel scheme for the initialization of a quantum
simulator where we used a single dissipatively driven auxiliary particle to cool
the system to a low-energy state very close to the ground state of the quantum
simulator. As a first step we noted down the three parameters that control the
cooling dynamics - the strength of the interaction between the system and the
auxiliary spin, the rate of the dissipation process at the auxiliary spin, and
the energy splitting of the auxiliary spin. Having studied the dependence
of the dynamics the system on these parameters of control, we were able
to optimize these parameters allowing for maximum cooling achievable in
the system. By using the paradigmatic models of the transverse field Ising
chain and the antiferromagnetic Heisenberg chain (where the ground state is
highly entangled) we showed that this scheme lets us to go beyond the class
of stabilizer and frustration-free Hamiltonians. The results showed that this
scheme is efficient in the sense that the resources required to perform the task
scale only polynomially and not exponentially with the system size. We also
showed that the protocol is robust against additional decoherence processes
where the characteristic scale is κ (rate of the decoherence process at each of
the N sites), which is in contrast to the Nκ scale observed in typical adiabatic
state preparation methods. As an experimental realization of the scheme, we
proposed a trapped ion implementation and showed the numerical results
for an Ising like system with long-range interactions. Finally, we proposed a
method to measure the many-body gap of the system using just the energy
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dissipated out of the system.
Future directions of research include the investigation of the scaling be-

havior upon varying the control parameters in time. The variation of the
splitting of the auxiliary spin can be especially useful as it maybe help in-
creasing the number of paths via which an excitement in the system could
be cooled down. A second idea for improving the efficiency of the protocol
would be to add multiple auxiliary spins. In particular, choosing different
values of their splittings would allow the engineering of tailored bath spectral
functions for the quantum simulator.

As an extension of the cooling protocol, we also presented the first steps
to cool rotational degrees of freedom of a molecule, where we showed the
dissipative cooling of the J = 2 rotational manifold into the J = 0 ground
state with a very high fidelity. In the future, it would be useful to generalize
the protocol in order to incorporate other rotational degrees of freedom, radio
frequency couplings etc.

In part III, we investigated the existence of a dissipative first order phase
transition in the magnetization of a system of nitrogen vacancy centers at
the critical value of the strength of the driving field. We proposed that using
this phase transition that is triggered by the interplay of dissipation and the
strong interactions between the centers at high densities, one can perform
nanoscale quantum sensing. First, we analyzed a two-dimensional system
with a lattice geometry and calculated the magnetic susceptibility at the
steady state of the system. Upon a modified finite size scaling that allowed
us to also include anisotropic geometries, we found that the reduced magnetic
susceptibility, which is the derivative of the magnetization, diverges with the
system size proving the existence of a phase transition. We also found the
exponent to be the same as that for a system of non-interacting particles
indicating that the sensitivity is also of the same order. Upon estimating the
sensitivity of the nanoscale dissipative sensor, by extracting information from
the finite size scaling behavior, we inferred that the protocol offers a factor
of three improvement over the recent demonstration using large ensembles
of non-interacting centers. As the next step we extended our protocol to
three-dimensional systems. Since there is no phase transition due to net zero
dipole-dipole interaction in a three dimensional lattice geometry, we proposed
to use random disorder in the system in order to restore the phase transition.
By averaging over many random realizations of the system, we again found
the diverging behavior of the magnetic susceptibility with increasing system
sizes. Finally, we investigated some properties of the phase transition by
calculating the second order correlation function for the photon collection (or
the jump operator firings) and found that the system changes its behavior
from bunching to uncorrelated across the phase transition.
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Future directions of research include considering different energies for
different NV centers. All calculations shown in this thesis assume that all
the NV centers have the same energies. However, this is realistically not the
case, because during the implantation of the NV centers in a real diamond
sample, there are additional electronic fields that are generated by strains
in the sample. This causes different NV centers to have different zero field
splittings. This generally results in a decreased T2 decoherence times, against
which the dissipative sensing protocol is typically robust, as already shown.
Nevertheless, it would be useful to quantitatively study the effects due to
different energies per NV center.
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Appendix A

Effective operator formalism

Here, we apply the effective operator formalism to an Ising system with 2+1
spins. We first separate the ground states |λ12, 0〉 and the excited states
|λ12, 1〉 of the total system as shown in figure A.1, and the various couplings
between these levels are shown in table A.

The ground state Hamiltonian Hg is constructed by considering all the
couplings between the |λ12, 0〉 states, whereas, the excited state Hamiltonian
He involves all the couplings between the |λ12, 1〉 states.

The effective Lindblad operators are given by

Lk =
√
γ|λk, 0〉〈λk, 1|, (A.1)

where, λk = 00, 01, 10, 11, are the different states of the system excluding the
bath spin. We can now write the non-Hermitian Hamiltonian for the excited
states as

HNH = He −
i

2

∑
k

L†kLk. (A.2)

Finally, the effective Hamiltonian Heff and the effective Lindblad operator
Leff for the ground states read,

Heff = −1

2
V−

[
H−1NH +

(
H−1NH

)†]
V+ +Hg

Leff =
∑
k

LkH
−1
NHV+ (A.3)

where, V± are the perturbative (de-)excitations from the excited states to
the ground states,

V+ = 2gsb [|001〉〈010|+ |101〉〈110|]
V− = 2gsb [|010〉〈001|+ |110〉〈101|] . (A.4)
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A. Effective operator formalism

Figure A.1: Effective operator formalism: the ground states and excited
states with respect to the auxiliary bath spin are separated into two different
manifolds.

The effective rates of decay from a state a to a state b in the ground state
manifold is given by,

Γa→b = |〈b|Leff|a〉|2 (A.5)

Applying this to our system, and using approximations from series ex-
pansions, we find that the ground state is prepared with an effective rate
that is proportional to g2sbγ in the limit of gsb, γ → 0.
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|000〉 |010〉 |100〉 |110〉 |001〉 |011〉 |101〉 |111〉
|000〉 J g g

+gsb γ
−∆

|010〉 g −J g 2gsb
−gsb γ
−∆

|100〉 g −J g
gsb γ
−∆

|110〉 g g J 2gsb
−gsb γ
−∆

|001〉 2gsb J g g
−gsb
+∆

|011〉 g −J g
+gsb
+∆

|101〉 2gsb g −J g
−gsb
+∆

|111〉 g g J
gsb
+∆

Table A.1: Coupling between various states of the system with 2 + 1 spins
in order to obtain effective Hamiltonian and Lindblad operators.
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Appendix B

Critical point of the finite size
Ising model

At the thermodynamic limit, the critical point of the transverse field Ising
model Eq. 2.3 is at J = g. However, for small system sizes this point is
slightly shifted because of the finite size effects.

Here, we calculate the critical point for the transverse field Ising model
with N = 5 spins. To do so, we calculate the magnetization m of the system
as a function of the parameter l = g/J and then the magnetic susceptibility
χ = ∂m/∂l. The point corresponding to the peak in susceptibility is then
the critical point.

Figure B.1 shows the magnetic susceptibility χ for various values of the
ratio l and we see that the susceptibility has a peak at l = 0.7, which we
take as the critical point. Since in the main text we give all our parameter
values in units of g, this corresponds to J/g = 1.4,
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B. Critical point of the finite size Ising model
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Figure B.1: Magnetic susceptibility χ for different values of the ratio l =
g/J for a transverse field Ising model with N = 5 spins. The peak of the
susceptibility and therefore the critical point corresponds to lc = 0.7.
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Appendix C

Lamb-Dicke regime for long-range
Ising Hamiltoninan

The power-law scaling of the interaction term Jij in the long-range Ising-like
Hamiltoninan which we consider in section 4.5 is only valid in the Lamb-
Dicke regime [87]. Here, we verify that our system of trapped ions is in the
Lamb-Dicke regime for the parameters mentioned in section 4.5.

The Lamb-Dicke regime is basically the regime in trapped-ion experi-
ments where the detuning δ is far from each of the normal modes of the ion
as compared to the Rabi frequency i.e.,

|δ − ωm| � ηi,mΩi. (C.1)

Here, the Lamb-Dicke parameter for each normal mode is given by,

ηi,m = bi,mδk

√
~

2Mωm
, (C.2)

where, bi,m refers to the mth normal mode of the ith ion, δk corresponds to
the 729nm transition between the spin-up and the spin-down states of each
ion, M is the mass of the ion and ωm is the frequency of the mth normal
mode.

The calculations to obtain the eigenfrequencies of the different modes for
each of the ions have been performed by Fabian Wolf and Piet O. Schmidt.
We plug in these values and construct table C.1, which confirms that the
ions are in the Lamb-Dicke regime.
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C. Lamb-Dicke regime for long-range Ising Hamiltoninan

Ion |δ − ωm| (kHz) ηi,mΩi(kHz)
1 2π × 103.63 2π × 17.0833
2 2π × 1331.47 2π × 17.4928
3 2π × 673.434 2π × 18.1668
4 2π × 1142.71 2π × 19.2328
5 2π × 1782.42 2π × 21.0434

Bath ion 2π × 2720.37 2π × 24.9573

Table C.1: Table confirming that the trapped ions are in the Lamb-Dicke
regime since |δ − ωm| � ηi,mΩi for each of the ions in the Ising-like chain.
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Appendix D

NV spin Hamiltonian

Since we describe the NV centers with an effective two-level description as
mentioned in section 7.1, we will use the Pauli spin-1/2 matrices σ to repre-
sent the NV electron and construct the Hamiltonian. The spin Hamiltonian
of one NV enter is then given by

HNV = Dσ2
z + γe ~B · ~σ (D.1)

where ~B is the magnetic field vector, D the zero field splitting, and, γe the
electron gyromagnetic ratio. The full dipole-dipole interaction between two
NV centers at sites i and j can be written as

Vij =
C3

|~ri − ~rj|3
[
P †i P

†
j −

(
σi+σ

j
− + σi−σ

j
+

)]
(D.2)

where C3 is the coefficient corresponding to the dipolar term, and the projec-
tor P †i = | ↑〉〈↑ | = (1 + σiz)/2 in the first part projects to the excited states
[84] and the second part captures the flip-flop interaction.

Next, we transform the Hamiltonian into the rotating frame of the driving
field ωRF using the transformation,

HR = R†(t)HR(t)− iR†(t) d
dt
R(t) (D.3)

where in our case the unitary transformation R(t) is

R(t) = eiωRF tσz (D.4)

Before applying this transformation to the Hamiltonian, we compute the
following,

R†(t)σzR(t) = e−iωRF tσzσze
iωRF tσz = σz

R†(t)σxR(t) = cosωRF tσx + sinωRF tσy

R†(t)σyR(t) = cosωRF tσx − sinωRF tσy (D.5)
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D. NV spin Hamiltonian

We also recall that σ± = σx ± iσy which gives us

σ+σ− + σ−σ+ = 2(σxσx + σyσy) (D.6)

Combining and applying these, we obtain the Hamiltonian in the rotating
frame as

HR = Dσ2
z +(γeB0 +ωRF )σz +B1γeσx−B1 cos 2ωRF tγeσx+B1 sin 2ωRF tγeσy

(D.7)
As the next step we use the rotating wave approximation and neglect rapidly
oscillating terms. Here, these correspond to the terms involving 2ωRF . The
final Hamiltonian then reads,

H = ∆σz + Ωσx + Vij (D.8)

with ∆ = D + γeB0 + ωRF and Ω = γeB1.
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