
Compact Semantic Representations
of Observational Data

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktorin der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation von

MSIT Farah Karim
geboren am 01.02.1983

in Mirpur AJK, Pakistan

2020

Referent: Prof. Dr. Sören Auer, Leibniz Universität Hannover
Korreferent: Prof. Vojtêch Svátek, University of Economics, Prague
Tag der Promotion: 18.03.2020

Printed and published with the support of the German Academic Exchange
Service.

“Surround yourself with the dreamers and the doers, the believers and the thinkers, but
most of all, surround yourself with those who see the greatness within you, even when
you don’t see it yourself.”

— Edmund Lee

For my sister late Khalida Kanwal, father-in-law late Ahmed Ud Din, and my parents.

IX

Acknowledgements

First and foremost, I would like to thank God, the almighty and omniscient, for
giving me the strength, knowledge, ability and opportunity to undertake this re-
search study and to persevere and complete it satisfactorily. Without his blessings
and support, this achievement would not have been possible.

The path toward this dissertation has been circuitous. Its completion is thanks
in large part to special people who challenged, supported, and stuck with me along
the way. I would like to thank Prof. Dr. Sören Auer not only for giving me a chance
to pursue the Ph.D. degree in Germany, but also for the continuous support of my
Ph.D. study and research, for his patience, motivation, and immense knowledge.
I appreciate all his contributions of time, ideas, and manifold conversations on an
intellectual and personal level, which I will keep in remembrance. I could not have
imagined having a better advisor and mentor for my doctoral studies. My sincere
thanks also go to Prof. Dr. Maria-Esther Vidal. The door of Prof. Vidal’s office
was always open whenever I ran into a trouble spot or had a question about my
research or writing. She consistently allowed this thesis to be my own work, but
whenever she thought her support was required, steered me into the right direction.
Without her precious support, it would not be possible to conduct this research.
Thank you Prof. Vidal for being a consistent source of inspiration for me with the
enthusiasm you have for research and endless patience. I thank Philipp Rohde for
being a nice colleague and helping me in addressing the details regarding any kind
of documentation required during my Ph.D. studies. I would like to thank Kemele
for all his academic support. Also, I thank Maria Isabel, Samaneh, Lucie-Aimée,
Ariam, Ahmad, Guillermo, Mohammad, and Akhilesh with whom I have had the
pleasure to work. I wish to extend my special thanks to Katja Bartel for helping
me enormously, especially with the mammoth administrative tasks.

A special thanks to my family. Words cannot express how grateful I am to my
father-in-law late Ahmed Ud Din Qureshi, mother-in law Alam Bibi, my mother
Irshad Begum, and father Abdul Karim Qureshi for all of the sacrifices that they’ve
made on my behalf. Their prayer for me was what sustained me thus far. I thank
my siblings and niblings for supporting me spiritually throughout writing this
thesis and my life in general. Last, but not least, I owe my deepest gratitude
towards my better half, my amazing husband Waheed Ahmed Qureshi, for his
eternal support and understanding of my goals and aspirations. His patience and
cheerfulness will remain my inspiration throughout my life. Moreover, I would like
to thank him for the care of our daughter Bismah Qureshi during the time of my
doctoral studies.

Farah Karim

XI

Abstract

The Internet of Things (IoT) concept has been widely adopted in several domains
to enable devices to interact with each other and perform certain tasks. IoT devices
encompass different concepts, e.g., sensors, programs, computers, and actuators.
IoT devices observe their surroundings to collect information and communicate
with each other in order to perform mutual tasks. These devices continuously
generate observational data streams, which become historical data when these ob-
servations are stored. Due to an increase in the number of IoT devices, a large
amount of streaming and historical observational data is being produced. More-
over, several ontologies, like the Semantic Sensor Network (SSN) Ontology, have
been proposed for semantic annotation of observational data-either streams or his-
torical. Resource Description Framework (RDF) is widely adopted data model
to semantically describe the datasets. Semantic annotation provides a shared un-
derstanding for processing and analysis of observational data. However, adding
semantics, further increases the data size especially when the observation val-
ues are redundantly sensed by several devices. For example, several sensors can
generate observations indicating the same value for relative humidity in a given
timestamp and city. This situation can be represented in an RDF graph using
four RDF triples where observations are represented as triples that describe the
observed phenomenon, the unit of measurement, the timestamp, and the coordi-
nates. The RDF triples of an observation are associated with the same subject.
Such observations share the same objects in a certain group of properties, i.e., they
match star patterns composed of these properties and objects. In case the number
of these subject entities or properties in these star patterns is large, the size of
the RDF graph and query processing are negatively impacted; we refer these star
patterns as frequent star patterns. This thesis addresses the problem of identifying
frequent star patterns in RDF graphs and develop computational methods to iden-
tify frequent star patterns and generate a factorized RDF graph where the number
of frequent star patterns is minimized. Furthermore, we apply these factorized
RDF representations over historical semantic sensor data described using the SSN
ontology and present tabular-based representations of factorized semantic sensor
data in order to exploit Big Data frameworks. In addition, this thesis devises a
knowledge-driven approach named DESERT that is able to on-Demand factorizE
and Semantically Enrich stReam daTa. We evaluate the performance of our pro-
posed techniques on several RDF graph benchmarks. The outcomes show that
our techniques are able to effectively and efficiently detect frequent star patterns
and RDF graph size can be reduced by up to 66.56% while data represented in
the original RDF graph is preserved. Moreover, the compact representations are

XII

able to reduce the number of RDF triples by at least 53.25% in historical obser-
vational data and upto 94.34% in observational data streams. Additionally, query
evaluation results over historical data reduce query execution time by up to three
orders of magnitude. In observational data streams the size of the data required to
answer the query is reduced by 92.53% reducing the memory space requirements
to answer the queries. These results provide evidence that IoT data can be effi-
ciently represented using the proposed compact representations, reducing thus, the
negative impact that semantic annotations may have on IoT data management.
Keywords Internet of Things, Stream Data, Semantic Web, Linked Data, RDF
Compaction, Semantic Enrichment

XIII

Zusammenfassung

Das Konzept des Internet der Dinge (IoT) ist in mehreren Bereichen weit ver-
breitet, damit Geräte miteinander interagieren und bestimmte Aufgaben erfüllen
können. IoT-Geräte umfassen verschiedene Konzepte, z.B. Sensoren, Programme,
Computer und Aktoren. IoT-Geräte beobachten ihre Umgebung, um Informatio-
nen zu sammeln und miteinander zu kommunizieren, um gemeinsame Aufgaben zu
erfüllen. Diese Vorrichtungen erzeugen kontinuierlich Beobachtungsdatenströme,
die zu historischen Daten werden, wenn diese Beobachtungen gespeichert wer-
den. Durch die Zunahme der Anzahl der IoT-Geräte wird eine große Menge an
Streaming- und historischen Beobachtungsdaten erzeugt. Darüber hinaus wurden
mehrere Ontologien, wie die Semantic Sensor Network (SSN) Ontologie, für die
semantische Annotation von Beobachtungsdaten vorgeschlagen - entweder Stream
oder historisch. Das Resource Description Framework (RDF) ist ein weit verbre-
itetes Datenmodell zur semantischen Beschreibung der Datensätze. Semantische
Annotation bietet ein gemeinsames Verständnis für die Verarbeitung und Analyse
von Beobachtungsdaten. Durch das Hinzufügen von Semantik wird die Datengröße
jedoch weiter erhöht, insbesondere wenn die Beobachtungswerte von mehreren
Geräten redundant erfasst werden. So können beispielsweise mehrere Sensoren
Beobachtungen erzeugen, die den gleichen Wert für die relative Luftfeuchtigkeit in
einem bestimmten Zeitstempel und einer bestimmten Stadt anzeigen. Diese Sit-
uation kann in einem RDF-Graph mit vier RDF-Tripel dargestellt werden, wobei
Beobachtungen als Tripel dargestellt werden, die das beobachtete Phänomen, die
Maßeinheit, den Zeitstempel und die Koordinaten beschreiben. Die RDF-Tripel
einer Beobachtung sind mit dem gleichen Thema verbunden. Solche Beobachtun-
gen teilen sich die gleichen Objekte in einer bestimmten Gruppe von Eigenschaften,
d.h. sie entsprechen einem Sternmuster, das sich aus diesen Eigenschaften und
Objekten zusammensetzt. Wenn die Anzahl dieser Subjektentitäten oder Eigen-
schaften in diesen Sternmustern groß ist, wird die Größe des RDF-Graphen und
der Abfrageverarbeitung negativ beeinflusst; wir bezeichnen diese Sternmuster
als häufige Sternmuster. Diese Arbeit befasst sich mit dem Problem der Iden-
tifizierung von häufigen Sternenmustern in RDF-Graphen und entwickelt Berech-
nungsmethoden, um häufige Sternmuster zu identifizieren und ein faktorisiertes
RDF-Graph zu erzeugen, bei dem die Anzahl der häufigen Sternmuster minimiert
wird. Darüber hinaus wenden wir diese faktorisierten RDF-Darstellungen über
historische semantische Sensordaten an, die mit der SSN-Ontologie beschrieben
werden, und präsentieren tabellarische Darstellungen von faktorisierten semantis-
chen Sensordaten, um Big Data-Frameworks auszunutzen. Darüber hinaus en-
twickelt diese Arbeit einen wissensbasierten Ansatz namens DESERT, der in der

XIV

Lage ist, bei Bedarf Streamdaten zu faktorisieren und semantisch anzureichern
(on-Demand factorizE and Semantically Enrich stReam daTa). Wir bewerten
die Leistung unserer vorgeschlagenen Techniken anhand mehrerer RDF-Graph-
Benchmarks. Die Ergebnisse zeigen, dass unsere Techniken in der Lage sind,
häufige Sternmuster effektiv und effizient zu erkennen, und die Größe der RDF-
Graphen kann um bis zu 66, 56% reduziert werden, während die im ursprünglichen
RDF-Graph dargestellten Daten erhalten bleiben. Darüber hinaus sind die kom-
pakten Darstellungen in der Lage, die Anzahl der RDF-Tripel um mindestens
53, 25% in historischen Beobachtungsdaten und bis zu 94, 34% in Beobachtungs-
datenströmen zu reduzieren. Darüber hinaus reduzieren die Ergebnisse der An-
frageauswertung über historische Daten die Ausführungszeit der Anfrage um bis
zu drei Größenordnungen. In Beobachtungsdatenströmen wird die Größe der zur
Beantwortung der Anfrage benötigten Daten um 92, 53% reduziert, wodurch der
Speicherplatzbedarf zur Beantwortung der Anfragen reduziert wird. Diese Ergeb-
nisse belegen, dass IoT-Daten mit den vorgeschlagenen kompakten Darstellungen
effizient dargestellt werden können, wodurch die negativen Auswirkungen seman-
tischer Annotationen auf das IoT-Datenmanagement reduziert werden.
Schlagwörter:Internet der Dinge, Streamdaten, Semantic Web, Verknüpfte Daten,
RDF-Verdichtung, Semantische Anreicherung

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Existing Approaches . 4
1.3 Problem Statement and Challenges 6
1.4 Research Questions . 9
1.5 Thesis Overview . 11

1.5.1 Contributions . 11
1.5.2 List of Publications . 14

1.6 Thesis Structure . 15
1.7 Summary . 16

2 Background 19
2.1 Data Integration System . 19

2.1.1 Local-as-View (LAV) . 20
2.1.2 Global-as-View (GAV) . 21
2.1.3 IoT Data Integration . 21

2.2 Semantic Web . 22
2.2.1 The Semantic Sensor Network (SSN) Ontology 23
2.2.2 The Resource Description Framework (RDF) 23
2.2.3 RDF Schema . 25
2.2.4 The SPARQL Query Language and SPARQL Protocol . . . 26
2.2.5 C-SPARQL - A Continuous SPARQL Query Language . . . 31
2.2.6 SPARQL Query Processing 35
2.2.7 C-SPARQL Query Processing 37

2.3 Summary . 38

3 Related Work 39
3.1 Frequent Pattern Mining Approaches 39
3.2 Historical Data Representations . 41

3.2.1 Data Compression Approaches 41
3.2.2 Data Compression based Query Optimization 44

XV

XVI CONTENTS

3.2.3 Big Data Tools and RDF . 45
3.3 Streaming Data Management . 47

3.3.1 Building Knowledge Graph On-Demand 47
3.3.2 Query Processing for Streaming Data 48

3.4 Summary . 49

4 Compact Representations 51
4.1 Motivating Example . 53
4.2 RDF Graph Factorization Approach 55

4.2.1 Problem Statement . 55
4.2.2 FSP Detection Approach . 60
4.2.3 A Factorization Approach 64

4.3 Experimental Study . 68
4.3.1 Efficiency of FSP Detection Approach 70
4.3.2 Effectiveness of FSP Detection Approach 71
4.3.3 Effectiveness of RDF Graph Factorization 74

4.4 Summary . 75

5 Integration of Historical Semantic Sensor Data 77
5.1 Motivating Example . 79
5.2 The Semantic Sensor Data Factorization Approach 81

5.2.1 Problem Statement . 81
5.2.2 A Factorization Approach 92
5.2.3 Queries over Factorized RDF Graphs 95

5.3 Tabular Representation of RDF Graphs 98
5.4 Experimental Study . 107

5.4.1 Efficiency and Effectiveness of Factorized RDF 109
5.4.2 Impact of Factorized RDF on Query Processing 110

5.5 Summary . 116

6 Integration of Streaming Observational Data 119
6.1 Motivating Example . 121
6.2 Problem Statement and Proposed Solution 123

6.2.1 Problem Statement . 126
6.2.2 Proposed Solution . 127
6.2.3 Knowledge Graph Description Model 128

6.3 The DESERT Architecture . 130
6.4 Experimental Evaluation . 133

6.4.1 Performance with Uniform Data Stream Speed and Window
Size . 134

CONTENTS XVII

6.4.2 Performance with Uniform Data Stream and Varying Win-
dow Size . 136

6.4.3 Performance with Varying Data Stream and Uniform Win-
dow Size . 138

6.4.4 Performance with Varying Data Stream and Window Size . 140
6.5 Summary . 142

7 Conclusion and Future Directions 143
7.1 Revising the Research Questions . 144
7.2 Limitations . 146
7.3 Future Directions . 147
7.4 Closing Remarks . 147

Bibliography 149

List of Figures

1.1 Representation and Processing of Observational Data 3
1.2 Thesis Challenges . 7
1.3 Thesis Contributions . 11

2.1 Semantic Sensor Network Ontology . 24
2.2 Examples of RDF Graphs . 26
2.3 An Execution Plan for Star-Shaped Groups 36
2.4 C-SPARQL Engine Architecture . 37

3.1 Categories of the state-of-the-art Approaches 40

4.1 Challenges and Contributions to the Problem of Knowledge Graph Rep-
resentations. 52

4.2 Motivating Example Illustrating Frequent Star Patterns 54
4.3 Graph Patterns Identified by gSpan . 55
4.4 The Frequent Star Patterns Detection Problem 57
4.5 The RDF Graph Factorization Problem 58
4.6 Frequent Star Patterns Detection using E.FSP and G.FSP 63
4.7 Transformations in RDF Graph . 66
4.8 RDF Graph Factorization Overhead . 67
4.9 Percentage of Repeated RDF Triples with Observation Values 69
4.10 Nodes and Labeled Edges . 72

5.1 Challenges and Contributions to the Problem of Efficient Representations
of Historical Semantic Sensor Data . 78

5.2 Motivating Example for Historical Semantic Sensor Data Representations 80
5.3 Example of a Simplified RDF . 82
5.4 RDF Molecule Templates (RDF-MTs) and RDF-MT Linking 83
5.5 Compact Observation and Measurement Molecules 86
5.6 Instance of the Semantic Sensor Data Factorization Problem 88
5.7 Instance of the Query Evaluation Problem 91
5.8 Factorization of the Running Example . 96
5.9 Example of Query Rewriting . 97
5.10 Factorized Tabular Representation of RDF Graphs 99

XIX

XX LIST OF FIGURES

5.11 Query Evaluation Over Universal and Factorized Tables 100
5.12 RDF-MT based Tabular Representation of RDF Graphs 102
5.13 Query Evaluation Over RDF-MT based Tables 104
5.14 Query Execution Time ET (ms Log-scale) over RDF3X on Cold Cache . . 111
5.15 Query Execution Time ET (ms Log-scale) over RDF3X on Warm Cache . 112
5.16 Query Execution Time ET (ms Log-scale) over Relations on Cold Cache . 113
5.17 Query Execution Time ET (ms Log-scale) over Relations on Warm Cache 114
5.18 Performance of Factorized RDF Graphs over SPARQL Endpoints 115

6.1 Challenges and Contributions to the Problem of Semantic Description of
Streaming Observational Data . 120

6.2 Motivating Example for Streaming Observational Data 122
6.3 Example of IoT Data Stream and Knowledge Graph 123
6.4 Instance of the On-demand Knowledge Graph Creation Problem 128
6.5 Example of Knowledge Graph Description 129
6.6 The DESERT Architecture . 130
6.7 Query Decomposition . 132
6.8 Performance with Uniform Data Stream Speed and Window Size 135
6.9 Performance with Uniform Data Stream Speed and Varying Window Size 137
6.10 Performance with Varying Data Stream Speed and Uniform Window Size 139
6.11 Performance with Varying Data Stream Speed and Window Size 141

List of Tables

4.1 Statistics of the Datasets with Observations 68
4.2 Observation and Measurement Classes . 69
4.3 Efficiency of Frequent Star Patterns Detection 71
4.4 Values Computed for Formula 1 . 73
4.5 Percentage Savings in Labeled Edges after Factorization 74

5.1 Query Rewriting Rules . 89
5.2 Description of the Semantically Described Sensor Datasets 105
5.3 Efficiency and Effectiveness of the Semantic Sensor Data Factorization . . 108

6.1 Data Stream Description for Uniform Data Stream Speed and Window
Size Dimensions . 134

6.2 Data Stream Description for Uniform Data Stream Speed and Varying
Window Size Dimensions . 136

6.3 Data stream Description for Varying Data Stream Speed and Uniform
Window Size Dimensions . 138

6.4 Data Stream Description for Varying Data Stream Speed and Window
Size Dimensions . 140

XXI

Chapter 1

Introduction

The Internet of Things (IoT) is of paramount importance in our increasingly
data-driven society and has received growing attention by the research commu-
nity. The IoT paradigm envisions physical and virtual devices (e.g., sensors, mo-
bile phones, vehicles, social media, and news feeds) to interconnect and share data
with each other. These IoT devices continuously generate observations in data
streams, when these observations are stored the data streams become historical
data. Each IoT device generates observational data by recording different real
world phenomena, and shares the observational data to communicate with other
IoT devices. Predictions suggest that the number of currently deployed five billion
IoT devices will increase to be 50 billion IoT devices in the year 2020 [24]. With
the proliferation of IoT, the amount of observational data produced by the IoT
devices will grow significantly in the near future. Additionally, IoT accelerates the
transition from a static Internet into a fully dynamic one, where a large number
of interconnected IoT devices and applications are continuously generating obser-
vational data streams at various velocities. Moreover, recent research indicates
that the semantic description of IoT observational data using Semantic technolo-
gies [18, 58, 91] allows IoT devices and applications to inter-operate and interact
comprehensively [59, 77, 79]. In order to be able to manage the rapidly growing
observational data generated by IoT devices, efficient ways for data integration and
semantic description to enhance and facilitate the development of IoT applications
have to be developed.

In real-world IoT applications, a large number of IoT sensors and devices gen-
erate observations with the same observed values over time. A modern wind park,
for example, comprises hundreds of wind turbines, each of which is equipped with
hundreds of sensors generating values in frequencies of 1-100 Hz. In such a sce-
nario, the number of observations generated by these sensors is much higher than
the uniqueness of observed values. Such observations and their meanings are repre-
sented using standards for knowledge description, e.g., in a knowledge graph using

1

Chapter 1. Introduction

the Resource Description Framework (RDF). These representations comprise pat-
terns containing facts that are shared by a large number of observations. In case
these patterns commonly appear, they negatively impact not only on the required
amount of memory but also on the processing of observational data. Thus, tech-
niques for efficiently representing observations containing frequent patterns are
still required, as well as the processing over the generated representations.

Knowledge graphs have gained momentum as flexible and expressive structures
for representing not only data and knowledge, but also actionable insights [103];
they provide the basis for effective and intelligent applications. Currently, knowl-
edge graphs are utilized in diverse domains, e.g., DBpedia [62], Google Knowledge
Graph [97], and KnowLife [35]. The Resource Description Framework (RDF) [61]
has been adopted as a formalism to represent knowledge graphs. In fact, in the
Linked Open Data cloud [19], there are 1,239 RDF knowledge graphs available1 in
march 2019. RDF models knowledge in the form of graphs where nodes represent
entities and connections between nodes correspond to RDF triples composed of
subject, property, and object. The subjects and objects are denoted by nodes,
and an edge denotes a property that relates a subject with an object. Diverse ap-
plications have been developed on top of knowledge graphs [11, 43, 103]. However,
the adoption of knowledge graphs as de facto data structure demands efficient and
scalable techniques for creating, managing, and answering queries over knowledge
graphs. Thus, efficient graph representations are still demanded to enhance and
facilitate the development of applications over knowledge graphs.

In real-world applications, a group of entities can share the same values in a set
of features. For example, several sensor observations can sense the same temper-
ature, in a given timestamp and city. This situation can be depicted in an RDF
graph with four triples per sensor observation obsi, i.e., (obsi temperature temp),
(obsi unit uom), (obsi timestamp ts), and (obsi gps_coordinates gc). All the re-
sources corresponding to these sensor observations match the variable ?obs in the
star pattern (SGP) composed by the conjunction of the following triple patterns
(?obs temperature temp) (?obs unit uom), (?obs timestamp ts), and (?obs gps_co
ordinates gc) [85]. In case the star patterns are instantiated with many entities,
a large number of RDF triples will have the same properties and objects and the
corresponding star pattern will be repeatedly instantiated; we name these star
patterns frequent star patterns. Although RDF triples that instantiate a frequent
star pattern correctly model the real world, the size of the knowledge graph as well
as the performance of the tasks of management and processing, can be negatively
affected whenever a large number of triples of frequent star patterns populate the
knowledge graph. Since frequent star patterns appear commonly in knowledge
graphs, techniques are required to enable both the efficient representation of the

1https://lod-cloud.net/

2

https://lod-cloud.net/

1.1. Motivation

Query Engines Analytics

Sensors Clinical
Devices

Semantic Description

Data Integration
and

Compact Representations

Web Services

Data Processing and Analytics

Streaming Observational Data Historical Semantic Sensor Data

Figure 1.1: Representation and Processing of Observational Data. Ob-
servational data produced by diverse IoT devices is consumed either directly from
data streams and processed in real time, or stored as historical data. Observational
data and the meaning encoded in the data are represented and integrated in order
to be accessed by higher level applications to perform data analytics and other
processing tasks. Higher level services access and process the integrated view of
the streaming and historical observational data to get actionable insights.

knowledge encoded in these star patterns, as well as the processing and traversal
of the represented knowledge.

This thesis provides criteria to recognize frequent star patterns in knowledge
graphs describing historical data. Furthermore, we exploit these frequent star
patterns to generate efficient representations of the knowledge graphs to facilitate
query processing and data analytics tasks over this data. The proposed represen-
tations empower the storage and processing of historical data while the knowledge
encoded in the data is preserved. In addition, this thesis proposes techniques to
efficiently describe the semantics of streaming data that is continuously and mas-
sively produced by IoT devices with varying data stream speeds. We devise a
knowledge-driven approach that exploits the semantics encoded in the data that
is extracted on-demand from data streams using a continuous query against the
data streams while the completeness of query answers is respected.

1.1 Motivation

Providing an integrated view and semantic description of data generated by

3

Chapter 1. Introduction

diverse IoT devices creates new capabilities and actionable insights. Several steps
of processing are required to be performed in order to provide an integrated view
for exploring and querying this data. Figure 1.1 shows different processing steps
in establishing an integrated view of data produced by various IoT sensors and
devices. The first step, Semantic Description, allows for the semantic description
of data coming from IoT devices. This data can be consumed and processed either
directly as it arrives in data streams, i.e., streaming data, or can be stored and
processed later, i.e., historical data. The second step, Data Integration and Com-
pact Representations, involves representing the data and the encoded knowledge.
IoT devices produce data continuously with varying data stream speeds. These
streaming sources are active on longer time scales on which a wide range of data
streams are continuously arriving from disparate sources. Hence, maintaining a
fresh and uniform integrated view for unlimited discovery and analysis of tremen-
dously growing data is quite strenuous task. The third step, Data Processing and
Analytics, allows higher level services to access and process the integrated data.
Exploration of trends and patterns and discovering relationships in such a massive
amount of dynamic data are highly challenging. Eventually, passing through all
the described steps, the data originated from diverse IoT devices become available
as integrated knowledge for further processing. However, providing an integrated
view and processing of continuously and massively produced data are quite chal-
lenging tasks. Therefore, largely generated streaming data demand efficient ways
for data integration and processing.

1.2 Existing Approaches

Database and Semantic Web communities have addressed the problem of rep-
resenting relational and graph data models. These research communities have
proposed a variety of representation methods and data structures that take into
account the main features of a relational or graph model with the aim of speeding
up relation and graph based analytics [2, 6, 8, 20, 37, 42, 51, 55, 63, 69, 71, 75,
83, 108]. Compression techniques [2, 108] over the column-oriented databases [21,
48, 67, 98], use the decomposition storage model [29] to maintain data, where each
attribute value and a surrogate key, from the conceptual schema, are stored in a
binary relation. A relation stored using the decomposition storage model cannot
easily exploit compression unless surrogate keys are repeated [29]. Further, the de-
composition model stores two copies of a binary relation, also the surrogate keys
are required to be stored repeatedly for each attribute causing an increase in the
storage space requirements. Lehmann et al. [63] exploit k2-tree [23] structures to
generate compact representations of graph data in order to efficiently perform two-
way regular-path queries. k2-tree structures resort to the sparseness and clustering

4

1.2. Existing Approaches

features of adjacency matrix associated with a graph to generate compact binary
representations, which require a customized engine to process queries over graphs.
Neo4j2 graph database efficiently stores graphs [42]. A node traversal using Neo4j
is costly as all the edges incident on a node in the graph are inspected and also
the cost of visiting the neighbours of a node in the graph depends on the node
degree [66]. Sparksee [69] splits huge graphs into small data structures to favor
the caching of the significant part of data in main memory to achieve efficient
storage and processing [70]. Nevertheless, Neo4j and Sparksee offer numerous ad-
vantages such as reliable storage, access control, and transactions outperforming
the traditional relational databases; however, they do not exhibit good perfor-
mance particularly when the size of intermediate results is huge [44].

In the context of RDF graph, the scientific community has also actively con-
tributed; approaches like [8, 20, 37, 75] generate compact binary representations
for RDF knowledge graphs. RDF binary compression techniques do not take into
account the semantics encoded in knowledge graphs; they require customized en-
gines to perform query processing. Moreover, there have been defined compression
approaches [51, 55, 71, 83] for RDF graphs able to exploit semantics encoded
in RDF triples. The approaches [71, 83] are application dependent and require
compression rules and constraints as input from a user. Alternatively, compres-
sion approaches tailored for ontology properties [55] have shown to be effective,
but they require prior knowledge of classes and properties involved in repeated
graph patterns to generate compact representations. Lastly, techniques proposed
by Joshi et al. [51] require decompression to access and process data involving
extra processing over data. Albeit effective in reducing the storage space, exist-
ing compression methods add overhead to the process of data management, and
particularly, query execution time can be negatively impacted. gSpan [105] and
GRAMI [33] are state-of-the-art algorithms that aim to identify frequent patterns;
however, only patterns with constants are considered and they are neither able
to identify star patterns nor decide frequentness. In this thesis, we implement
an exhaustive algorithm that resorts to gSpan enumeration of frequent patterns
to identify the frequent star patterns in an RDF knowledge graph; this approach
corresponds to the baseline of our empirical evaluation.

To scale-up to large RDF datasets, existing approaches [32, 57, 68, 74, 76, 87,
92, 93, 94] exploit distributed and parallel processing frameworks. RDF storage
layouts and partitioning techniques proposed in [32, 57, 68, 93, 94] utilize dis-
tributed and parallel processing frameworks for the efficient processing of RDF
data. Similarly, RDF data partitioning and indexes presented in [74, 76, 87, 92]
efficiently process queries over RDF data using Big Data frameworks. These ap-
proaches use HDFS and Hadoop MapReduce frameworks to store and process

2https://neo4j.com/

5

https://neo4j.com/

Chapter 1. Introduction

RDF data. In the context of query processing, efficient SQL query processing
techniques based on the factorization of the data are proposed in [13, 14]. Despite
these storage and processing techniques, the tremendously growing observational
data require efficient representations to facilitate the storage and processing of such
data. In this thesis, we propose factorization techniques for semantic sensor data
where RDF triples related to the redundant observation values are represented
only once. To scale up to large datasets, tabular representations based on the
factorized semantic sensor data are presented to facilitate storage and processing
of large semantic sensor data using Big Data frameworks.

The Semantic Web community has extensively studied methods for the se-
mantic description of IoT data [26, 82], and continuous query processing over
the semantically described streaming observational data [15, 81]. Albeit effective
for semantic description and processing of streaming observational data, such ap-
proaches are less feasible and do not scale for large streaming observational data
generated by a huge number of IoT devices. Moreover, redundantly observed val-
ues increase the size of the semantically described streaming observational data
generated using these approaches. In addition, the presence of redundantly ob-
served values in the streaming observational data demand techniques to reduce
these redundant values from a knowledge graph describing observational data,
while preserving the completeness of query answers. This thesis overcomes the
limitations of the existing linked data stream processing techniques, and tackles
the problem of on-demand knowledge graph creation. We provide techniques for
on-demand building of knowledge graph describing observational data required to
answer an input continuous SPARQL query.

1.3 Problem Statement and Challenges

For making IoT a reality, observations produced by sensors, smart phones,
watches, and other IoT devices need to be integrated; moreover, the meaning of
observations should be explicitly represented. This thesis aims at integrating and
semantically describing observational data produced by diverse IoT devices. The
following research problems are addressed; 1) identifying redundant observations
in RDF knowledge graphs; 2) efficient query processing over historical semantic
sensor data; and 3) on-demand knowledge graph creation. Since IoT devices con-
tinuously produce data, this data can be consumed in real time or collected and
stored, i.e., streaming or historical data. With the proliferation of IoT devices,
huge volumes of streaming and historical data are being generated. Furthermore,
processing streaming data in real time poses different challenges than processing
historical data. To address the above mentioned problems, this thesis identifies
several challenges in terms of streaming and historical data, as shown in Figure 1.2.

6

1.3. Problem Statement and Challenges

Query Engines Analytics

Sensors Clinical
Devices

Semantic Description

Data Integration
and

Compact Representations

Web Services

Data Processing and Analytics

Streaming Observational Data Historical Semantic Sensor Data

CH1: Frequent star patterns
detection

CH2: Efficient
representations

of historical semantic
sensor data

CH3: Semantic
Description of

Streaming
Observational Data
in an Efficient Way

Figure 1.2: Thesis Challenges. Three challenges are identified in this thesis, to
generate efficient representations of observational data. The first challenge CH1,
is to detect frequent star patterns in knowledge graphs representing observational
data. The second challenge CH2, is to generate efficient representations of his-
torical semantic sensor data without losing the encoded information. The third
challenge CH3 is the semantic description of streaming data in an efficient way.

Challenge 1: Frequent Star Patterns Detection

Data produced by diverse IoT devices comprise observations with related prop-
erties, e.g., feature of interest, timestamp, observed value, and unit of measure-
ment. A large number of these observations can share the same values for a cer-
tain set of properties. Representing such observations and their meaning in RDF
knowledge graphs generate sets of RDF triples encompassing similar properties
and relevant object values. These sets of RDF triples correspond to a star pattern
that is a conjunction of a set of RDF triples containing the properties and corre-
sponding objects that are shared among the sets of RDF triples. The subject of
the star pattern is a variable to which all the entities representing the observations
are mapped. In case the number of entities mapping to the star pattern is high,
the star pattern is referred to as a frequent star pattern. Existence of frequent
star patterns in a knowledge graph negatively impact on the size and management
tasks of the knowledge graph. At the Data Integration and Compact Represen-
tations step in Figure 1.2 involving historical data, the first challenge is to find
out the properties and corresponding objects that are repeatedly shared by several
entities causing unnecessary growth of knowledge graphs describing observations
and their meaning. Therefore, identifying the existence of such frequent star pat-

7

Chapter 1. Introduction

terns in knowledge graphs is crucial in order to represent them in an efficient way
without losing encoded information.

Challenge 2: Efficient Representations of Historical Semantic Sensor
Data

RDF representations of IoT data are being generated [40, 49, 82] in order to add
semantics to the data and to turn the data into meaningful actions for providing the
IoT applications with new capabilities, facilitate knowledge sharing and exchange,
and richer experiences. The Semantic Sensor Network (SSN) Ontology [28] is a
W3C standard to describe the data generated by sensors, refer as semantic sensor
data. The SSN Ontology consists of several classes and corresponding properties
to describe the meaning of sensor data in terms of sensor capabilities, observations,
and measured values in an RDF graph. However, RDF representations generate
an enormous amount of data, as a result, efficient representations of sensor data
are required. Furthermore, several sensor observations with the same measurement
values generate RDF data redundancy. These data redundancies negatively impact
on the size of the semantic sensor data, and hence the RDF storage and processing
over diverse implementations for RDF data. The second challenge is to have
efficient representations of semantic sensor data in order to store and process large
amounts of sensor data using different RDF implementations. This challenge spans
over the Data Integration and Compact Representations and Data Processing and
Analytics steps involving historical observational data as shown in Figure 1.2.

Challenge 3: Semantic Description of Streaming Observational Data in
an Efficient Way

IoT sensors and devices continuously generate observations in data streams,
and integration and semantic description of these observations require dealing
with the volume and velocity aspects of the produced data. Describing semantics
of streaming data brings more benefits to IoT applications. Nevertheless, semantic
description tremendously increases the size of integrated streaming data. More-
over, the presence of redundant observations further increases data size without
adding anything new in terms of data comprehension. Furthermore, query exe-
cution over continuously generated data consumes a lot of resources, e.g., time
and memory. In addition, not all the observations generated in data streams are
required to answer a query. Moreover, the existence of repeated measurement val-
ues, as well as varying data stream speeds makes the task even more challenging.
The third challenge is to develop techniques for on-demand building of knowledge
graphs and query processing against data streams. In addition, the presence of du-
plicated measurement values in streaming data demands techniques to reduce these

8

1.4. Research Questions

duplicated measurements from a knowledge graph on the fly while all the query
answers are produced. The third challenge, spans over the three steps; Semantic
Description, Data Integration and Compact Representations, and Data Processing
and Analytics, involving streaming observational data as shown in Figure 1.2.

1.4 Research Questions

RQ1: What are the criteria to identify frequent star patterns?

To answer this question, we investigate the state-of-the-art frequent patterns
detection techniques. We propose the concept of star patterns; a star pattern com-
prises a set of properties and corresponding objects to which one or more subject
entities can map, and compute their frequencies. The frequency of a star pattern
is the number of subject entities that map to the star pattern. A star pattern with
a high frequency is referred to as a frequent star pattern. Moreover, we exploit
these frequent star patterns to generate efficient representations of the knowledge
encoded in these patterns. We evaluate the efficiency of detecting frequent star
patterns in comparison to the state-of-the-art approaches. Furthermore, effec-
tiveness of the proposed frequent star patterns detection approach is assessed by
considering different sets of features involved in star patterns. In addition, we eval-
uate the effectiveness of the generated representations. The experimental results
show that the proposed techniques for frequent star patterns detection are able to
effectively and efficiently recognize frequent star patterns. Moreover, the proposed
representations effectively reduce the size of observational data while the encoded
knowledge is preserved.

RQ2: How can efficient representations be exploited to manage historical
semantic sensor data?

To answer this research question, we study the storage and processing of histor-
ical data using different data models. We propose techniques for efficient storage
and processing of historical semantic sensor data. We devise factorized represen-
tations of semantic sensor data where repeated RDF triples corresponding to the
same observed value are factorized and stored only once. We exploit these factor-
ized RDF representations of sensor data to generate tabular-based representations
to scale up to large datasets using Big Data tools. We represent semantic sensor
data using universal tabular representations such that all the attributes of sensor
data are stored in a single universal table. Furthermore, we present RDF molecule
template (RDF-MT) based tabular representations of semantic sensor data. RDF
molecule templates are abstract descriptions of data sources in terms of classes,

9

Chapter 1. Introduction

class attributes, and relationships among the classes [34]. We evaluate the per-
formance of the proposed representations and their impact on query processing
using the state-of-the-art RDF and Big Data engines. The results show that the
proposed representations enhance the performance of RDF and Big Data engines.

RQ3: How can on-demand knowledge graph building reduce the size of the
streaming observational data?

We analyse the state-of-the-art techniques for semantically describing stream-
ing data. We propose techniques for on-demand knowledge graph creation from
streaming observational data. A continuous SPARQL query is used to retrieve
data from data streams. The data extracted from the data streams encompass
the observations required to answer the input query. These observations are fac-
torized and semantified such that the observations corresponding to the same ob-
served value are described by the same set of RDF triples in the knowledge graph.
We evaluate the impact of proposed on-demand factorization and semantification
techniques on the size of streaming observational data in two dimensions, i.e., by
varying data stream windows size and data stream speeds. The experimental re-
sults suggest that the proposed techniques effectively reduce the size of generated
knowledge graphs while complete answers for input queries are returned.

RQ4: How can on-demand knowledge graph building speed up query pro-
cessing?

To answer this research question, we study the continuous SPARQL query pro-
cessing techniques over streaming RDF data. We propose a continuous SPARQL
query engine for streaming observational data. The proposed query engine receives
a continuous SPARQL query and executes the query against a knowledge graph
and a data stream, where the knowledge graph contains factorized RDF repre-
sentations of the streaming data. The query engine rewrites the input query into
a query against the knowledge graph describing the factorized data. Moreover,
we use description of the knowledge graph to keep track of the observations that
are already integrated in the knowledge graph. The knowledge graph description
is used to decompose the rewritten query into subqueries against the knowledge
graph and the data streams. The subqueries against the data streams are for-
warded to the customized wrappers which transform the subqueries into calls to
the corresponding IoT streaming data sources. The results from the subqueries are
used to produce the final query results. We evaluate the impact of the proposed
continuous SPARQL query engine on the streaming observational data by using
different combinations of the data stream windows size and data stream speeds.
The observed results suggest that the proposed techniques are able to effectively

10

1.5. Thesis Overview

Query Engines Analytics

Sensors Clinical
Devices

Semantic Description

Data Integration
and

Compact Representations

Web Services

Data Processing and Analytics

Streaming Observational Data Historical Semantic Sensor Data

Computational methods to
identify frequent star patterns

Large-scale storage and
processing of historical
semantic sensor data

On-demand semantic
description and

processing of streaming
observational data

Figure 1.3: Thesis Contributions. Three main contributions of this thesis
towards the efficient representations and processing of streaming and historical
data produced by diverse IoT devices: computational methods to detect fre-
quent star patterns in RDF knowledge graphs representing historical observational
data, large-scale storage and processing of historical semantic sensor data, and on-
demand semantic description and processing of streaming observational data.

and efficiently execute queries.

1.5 Thesis Overview

Intending to prepare the reader for the rest of the document, we present an
overview of the main contributions of this thesis and references to the scientific
publications covering this work. The thesis contributions are shown in Figure 1.3.

1.5.1 Contributions

• Contribution 1: In this thesis, we devise the concept of factorized RDF
graphs, which corresponds to a compact graph with a minimized number
of frequent star patterns. Furthermore, we develop computational methods
to detect frequent star patterns in RDF graphs and to generate a factorized
RDF graph. These methods are able to identify entities and properties in fre-
quent star patterns in RDF graphs, and generate factorized RDF graphs by
representing frequent star patterns with compact RDF molecules. A compact
RDF molecule of a frequent star pattern is an RDF subgraph that instanti-

11

Chapter 1. Introduction

ates the star pattern; a surrogate entity stands for the entities that satisfy
the corresponding frequent star pattern. The surrogate entity is linked to the
properties and the corresponding objects in the frequent star pattern. The
entities, initially matching the frequent star pattern, are also linked to the
surrogate entity of the compact RDF molecule. Compact RDF molecules
significantly reduce the size of the RDF graph by replacing labeled edges
and entities connected to the objects in the frequent star pattern, with edges
linking the entities to the surrogate entity of a compact RDF molecule. We
study the effectiveness of our factorization techniques over the LinkedSensor-
Data benchmark [77]; it describes more than 34,000,000 weather observations
collected by around 20,000 weather stations in the United States since 2002.
Experiments are conducted against three LinkedSensorData RDF graphs by
gradually increasing the graph size. The observed results evidence that fre-
quent star patterns characterize the best set of properties relating several
entities of a class to the same objects in an RDF graph. Moreover, our tech-
niques reduce RDF graphs size by up to 66.56% using properties and classes
recommended by the frequent star patterns detection approach. These re-
sults allow us to answer the research question RQ1.

• Contribution 2. This thesis proposes the Compacting Semantic Sensor
Data (CSSD) approach for efficient storage of historical semantic sensor
data that enhance the performance of query engines over the diverse im-
plementations for RDF data. The CSSD approach is based on factorizing
the data and storing only a compact or factorized representation of seman-
tic sensor data, where repeated values are represented only once. Besides,
tabular-based representations leveraging the columnar-oriented Parquet stor-
age format for HDFS are utilized to scale up to even larger RDF datasets
of factorized semantic sensor data. We represent RDF graphs using univer-
sal tables [100] where all the attributes describing sensor observations are
stored in a single giant "universal table". In addition, RDF molecule tem-
plate (RDF-MT) based tabular representations of RDF graphs are presented.
An RDF molecule template is an abstract description of entities belonging
to an RDF class. RDF molecule templates are proposed by Endris et al. [34]
to describe data sources in terms of abstract representations of classes, at-
tributes of classes, and their connections to other classes in the same datasets
(Intra-Linking) and to classes in other datasets (Inter-Linking). An RDF-
MT based tabular representation includes all attributes of a class in one
table, whereas a separate table for each intra- and inter-link of the class is
created. The effectiveness of the proposed factorization techniques are em-
pirically studied, as well as the impact of factorizing semantic sensor data
on query processing over several RDF storage implementations. The effects

12

1.5. Thesis Overview

of storing factorized RDF data over diverse RDF implementations using the
state-of-the-art RDF and Big Data engines are evaluated. In this thesis,
we study the effectiveness of the proposed compact representations over the
LinkedSensorData benchmark [77]. The LinkedSensorData contains almost
2 billion RDF triples to describe more than 34 million weather observations
collected from around 20,000 weather stations during blizzard and storm sea-
sons in the United States since 2002. The experiments are conducted over
gradually increasing three LinkedSensorData RDF graphs. The observed
results demonstrate that the proposed factorization techniques are able to
effectively reduce the size of semantic sensor data while the encoded informa-
tion is preserved. Furthermore, the results for query processing indicate that
the proposed factorization techniques are able to enhance the performance of
RDF and Big Data query engines and query execution time can be reduced
by up to two orders of magnitude, answering the research question RQ2.

• Contribution 3. In this thesis, we propose DESERT, a continuous SPARQL
query engine able to on-Demand factorizE and Semantically Enrich stReam
daTa. DESERT is implemented on top of the C-SPARQL engine [15], a
query engine for the continuous SPARQL queries processing over RDF data
[30]. DESERT receives continuous SPARQL queries and builds a knowledge
graph on-demand. The input queries are decomposed into subqueries, and
forwarded to the customized wrappers, which transform these subqueries
into calls to the IoT stream data sources and retrieve the query results.
DESERT semantically describes and integrates these results into the knowl-
edge graph. In addition, DESERT uses semantics encoded in IoT stream
data for semantification of data. DESERT extends the factorization tech-
niques for RDF data proposed by Karim et al. [55] for building IoT knowledge
graphs on-demand. The quality of DESERT on-demand factorization and
semantification techniques has been empirically evaluated in ten continuous
SPARQL queries from SRBench[107] against the IoT stream data generated
from weather observations in the United States during the year 2003. The
goal of the experiments is to analyze the performance of DESERT when con-
tinuous SPARQL queries are executed against IoT stream data in two dimen-
sions, i.e., window size and data stream speed. All queries are executed using
the RDF stream processing CSPARQL engine and the on-demand knowledge
graph techniques proposed in DESERT considering different combinations of
the uniform and varying streaming window size and data stream speed. Em-
pirical results clearly show up to 92.53% and 94.34% savings in the knowledge
graph size and number of produced triples, respectively, for on-demand fac-
torization and semantification techniques while the complete query answers
are generated. Moreover, DESERT exhibits more than 90% improvements

13

Chapter 1. Introduction

in throughput keeping the memory usage less than 25%. These results con-
firm that on-demand building of knowledge graphs can effectively augment
the savings in terms of knowledge graph size and memory while continuous
SPARQL queries are effectively and efficiently evaluated over data streams,
answering the research questions RQ3 and RQ4.

1.5.2 List of Publications

This thesis is based on the following publications.

Peer-Reviewed International Journals

• Farah Karim, Ioanna Lytra, Christian Mader, Sören Auer, Maria-Esther
Vidal. DESERT: a continuous SPARQL query engine for on-demand query
answering. In: International Journal of Semantic Computing 12.03 (2018),
pp. 373–397.

Papers in Proceedings of Peer-Reviewed Conferences

• Farah Karim, Ola Al Naameh, Ioanna Lytra, Christian Mader, Maria-
Esther Vidal, Sören Auer. Semantic enrichment of IoT stream data on-
demand. In: 2018 IEEE 12th International Conference on Semantic Com-
puting (ICSC), pp. 33–40. IEEE (2018)

• Farah Karim, Mohamed Nadjib Mami, Maria-Esther Vidal, Sören Auer.
Large-scale storage and query processing for semantic sensor data. In: Pro-
ceedings of the 7th International Conference on Web Intelligence, Mining
and Semantics, p. 8. ACM (2017)

• Farah Karim, Maria-Esther Vidal, Sören Auer. Efficient processing of se-
mantically represented sensor data. In: WEBIST, pp. 252–259 (2017)

• Farah Karim, Maria-Esther Vidal, Sören Auer. Factorization techniques
for longitudinal linked data. In: OTM Confederated International Confer-
ences" On the Move to Meaningful Internet Systems", pp. 690–698. Springer
(2016)

Peer-Reviewed Book Chapters

• Maria-Esther Vidal, Kemele M. Endris, Samaneh Jozashoori, Farah Karim,
Guillermo Palma. Semantic data integration of big biomedical data for sup-
porting personalised medicine. In: Current Trends in Semantic Web Tech-
nologies: Theory and Practice, pp. 25–56. Springer (2019)

14

1.6. Thesis Structure

1.6 Thesis Structure

The rest of the thesis is structured as follows: Chapter 2 introduces the ba-
sic concepts in the fields of data integration system, Semantic Web, knowledge
graphs that are necessary to understand the work presented in the thesis. Chap-
ter 3 discusses the state-of-the-art research work related to this thesis. The related
approaches are categorized under three topics. First, we discuss state-of-the-art
approaches for graph patterns mining. Then, we present the existing approaches
for efficient representations and processing of historical data. Furthermore, the
approaches exploiting Big Data tools to efficiently process large amount of RDF
data are explored. Finally, we present the existing techniques for integration and
processing of streaming data. Chapter 4 presents two algorithms for frequent
star patterns detection in RDF knowledge graphs. The first algorithm, E.FSP,
extracts frequent star patterns by exhaustively searching the space of frequent
graph patterns generated by the state-of-the-art frequent pattern mining algo-
rithms, like gSpan. The second algorithm, G.FSP, adopts a Greedy approach to
traverse the space of star patterns for detecting frequent star patterns. Further-
more, factorization techniques utilizing frequent star patterns to generate compact
representations of knowledge graphs are proposed. We present a detailed analysis
of the proposed techniques for frequent star patterns detection and factorization
techniques over the state-of-the-art benchmarks. The results show that G.FSP
identifies frequent star patterns faster than E.FSP. Moreover, factorizing frequent
star patterns reduces the size of RDF knowledge graphs while the knowledge en-
coded in the data is preserved. Chapter 5 presents the Compacting Semantic
Sensor Data (CSSD) approach for efficient storage of semantic sensor data. In
Chapter 5, we devise factorized RDF representations for semantic sensor data
and these factorized RDF representations are utilized to generate tabular-based
representations for the semantic sensor data. The empirical evaluation using ex-
isting benchmarks shows that the proposed representations are able to efficiently
store and process semantic sensor data using RDF and Big Data frameworks. In
Chapter 6, we present DESERT, a continuous SPARQL query engine able to on-
Demand factorizE and Semantically Enrich stReam daTa. DESERT integrates
streaming observational data into knowledge graphs by semantically describing
the observations in streaming data that are required to answer an input contin-
uous query against data streams. DESERT implements factorization techniques
to reduce the redundant measurements in knowledge graphs. Experimental eval-
uation shows that DESERT is able to speed up query processing over streaming
observational data while the generated knowledge graph contains no redundancies.
Finally, Chapter 7 concludes the work presented in this thesis and discusses the
limitations of the work. Moreover, Chapter 7 proposes some future work in related
areas of research.

15

Chapter 1. Introduction

1.7 Summary

Connecting the physical world to the Internet of Things (IoT) allows for the
development of a wide variety of applications. Things can be searched, managed,
analyzed, and even included in collaborative games. Industries, health care, and
cities are exploiting IoT data-driven frameworks to make their organizations more
efficient, thus, improving the lives of citizens. A large amount of observational
data is being produced by the diverse IoT devices. This data can be ingested in
real time as streaming data or can be stored as historical data. For making IoT a
reality, data produced by billions of IoT sensors and devices need to be integrated
and the meaning of IoT data should be explicitly described. Knowledge graphs
have been extensively used as expressive data structures for representing data,
the knowledge encoded in the data, and actionable insights. Resource Descrip-
tion Framework (RDF) has been widely adopted to represent knowledge graphs.
In real-world scenarios, IoT sensors and devices generate observational data that
contain observations sharing the same values for a set of features. Representations
of such observations in RDF graphs generate star patterns. A star pattern consti-
tutes RDF triples that contain the same object values for a set of properties, while
the observation entities mapping the subject of the star pattern are different. If
the number of entities mapping these star patterns is soaring these patterns are
referred as frequent star patterns. Frequent star patterns negatively impact on
the size and processing of large volumes of observational data. Furthermore, large
amount of streaming observational data is being produced by IoT devices, and se-
mantically describing this tremendous amount of streaming observational data and
their meaning increases the size of observational data manifolds. These challenges,
imposed by the big data and streaming nature of IoT observational data, need to
be addressed in order to provide scalable and efficient IoT data-driven infrastruc-
tures. In this thesis, we tackle the problems of detecting frequent star patterns,
query processing over historical semantic sensor data, and on-demand knowledge
graph creation from streaming observational data. This thesis presents techniques
for frequent star pattern detection and devices factorized representations of his-
torical observational data based on these frequent star patterns without losing
any knowledge encoded in the data. The empirical evaluation results show that
the proposed techniques are able to efficiently and effectively detect frequent star
patterns. Furthermore, these factorized representations are exploited to generate
tabular-based representations for semantic sensor data to process large datasets us-
ing Big Data frameworks. The experimental evaluation shows that the proposed
factorized representations improve the query processing performance over RDF
and Big Data engines. In addition, we devise DESERT, a continuous SPARQL
query engine able to on-demand factorize and semantically describe streaming ob-
servational data in a knowledge graph. Resulting knowledge graphs model the

16

1.7. Summary

semantics or meaning of merged data in terms of entities that satisfy the SPARQL
queries and relationships among those entities; thus, only data required for query
answering is included in the knowledge graph. We empirically evaluate the results
of DESERT on SRBench, a benchmark of Streaming RDF data. The experimen-
tal results suggest that DESERT allows for speeding up query execution while
the size of the knowledge graphs remains relatively low. The findings of this the-
sis indicate that the proposed compact representations are able improve IoT data
management by efficiently representing streaming and historical IoT data.

17

Chapter 2

Background

In this chapter, we present the basic concepts and theoretical foundations for
the research conducted in this thesis. In Section 2.1, the basic components of a
data integration system are described. Furthermore, we discuss the challenges for
IoT data integration. In section 2.2, we explain the vision and major concepts of
Semantic Web. We give an overview of the Semantic Sensor Network (SSN) On-
tology used to semantically describe observational data. Moreover, the Semantic
Web technologies, i.e., Resource Description Framework (RDF), RDF Schema, and
SPARQL query language are defined. Regarding SPARQL query processing, we
look into a state-of-the-art SPARQL query engine RDF-3X. In addition, we enu-
merate the essential features of a continuous SPARQL query language C-SPARQL
used to query RDF data streams. Moreover, this chapter describes the components
of the C-SPARQL engine architecture that is used to execute continuous SPARQL
queries against RDF data streams.

2.1 Data Integration System

Internet of Things (IoT) offers visibility and remote control over enterprise-
wide processes. IoT enables end-to-end integration of various business processes
and units, providing a better coordination between these entities in order to en-
hance business performance. Technology and business leaders are strongly em-
phasizing the fact that the real worth of IoT lies in the data generated by IoT
sensors and devices. To leverage IoT data for the desired practical purposes, it
is vital to collate IoT data produced by diverse IoT devices. For enterprises and
their decision makers, IoT data integration is crucial to have the comprehensive
integrated view of activities in their organisation and its environment. Data in-
tegration involves combining data from different sources to provide a unified view
of these data sources to the user [45, 47, 99]. Data integration systems are char-

19

Chapter 2. Background

acterized by an architecture based on a set of sources and a global schema. The
sources contain real data, whereas the global schema provides an integrated view
of these sources. A uniform access to the underlying data sources requires estab-
lishing the relationships between the sources and the global schema. Thus, a data
integration system comprises a global schema, sources, and mappings between the
global schema and the sources. A data integration system is formally defined as
follows [64]:

Definition 2.1.1 (Data Integration System [64]). A data integration system I is
defined in terms of a triple 〈G,S,M〉, where

• G is the global schema, expressed in a language LG over an alphabet AG.
The alphabet comprises a symbol for each element of G (i.e., relation if G is
relational, class if G is object-oriented, etc.).

• S is the source schema, expressed in a language LS over an alphabet AS .
The alphabet AS includes a symbol for each element of the sources.

• M is the mapping between G and S, constituted by a set of assertions of the
forms

qS qG,

qG qS

where qS and qG are two queries of the same arity over the source schema S,
and over the global schema G. Queries qS are expressed in a query language
LM,S over the alphabet AS , and queries qG are expressed in a query language
LM,G over the alphabet AG. Intuitively, an assertion qS qG specifies that
the concept represented by the query qS over the sources corresponds to the
concept in the global schema represented by the query qG (similarly for an
assertion of type qG qS).

Specification of the correspondence between the global schema and the source
data is one of the most important tasks in the design of a data integration system.
The correspondence between the data at the sources and the global schema is es-
tablished using mappings. The queries posed to the system are answered using this
correspondence. For establishing the mappings two approaches have been defined
in the literature, called global-as-view (GAV) [45], and local-as-view (LAV) [99].

2.1.1 Local-as-View (LAV)

Mappings established using the local-as-view (LAV) approach represents the
data sources as views over the global schema. The mappings inM associate each
element s in source schema S with a query qG defined over the global schema. The

20

2.1. Data Integration System

mappings established by LAV comprise a set of assertions, one for each element s
of source schema S, given as:

s qG

where s ∈ S and qG is a query defined over the global schema G A query over the
global schema. Since each data source is mapped to the global schema independent
of the other data sources, therefore, extending the system with a new data source is
straightforward and requires only the enrichment of mappings with new assertions.

2.1.2 Global-as-View (GAV)

Global-as-view (GAV) approach represents the concepts in the global schema
as a set of views over the data sources. The mappings inM associate each element
g in the global schema with a query qS over the data source. The mappings
established by GAV encompass a set of assertions, one for each element g of G,
given as:

g qS

where g ∈ G and qS is query defined over the sources in S. A query against
the global schema G needs to be rewritten with the views defined in the form
of assertions in M. The process of rewriting a query against a global schema
into a query over data sources is referred to as query unfolding. GAV mappings
compute tuples of global schema relations from tuples in the data sources, making
the query unfolding easier. The mappings defined by GAV involve the knowledge
about all the data sources to associate them with the global view. Therefore,
adding or removing a source is quite complicated process, and requires updating
all the mappings defined for various elements of the global schema.

2.1.3 IoT Data Integration

To potential benefits of IoT, driving insights from continuously produced IoT
data poses various challenges in data integration. Since, massive IoT devices are
deployed in IoT ecosystem, data can be generated from multiple sources with het-
erogeneous data formats. Lack of a common data model and semantic description
of data leads to several interoperability conflicts, e.g., representation, schematic,
entity matching, structuredness, and domain conflicts. These conflicts emerged
because IoT data sources have different data models, diverse schemes for represen-
tation of data, and complementary information [31]. Therefore, representations
and semantic descriptions of tremendously growing IoT data in efficient ways be-
comes fundamental to solve information retrieval and interoperability conflicts.

IoT sensors are distributed in dynamic environments at a large scale and pro-
duce ample amounts of IoT data with diverse characteristics, e.g., spatio-temporal.

21

Chapter 2. Background

Moreover, IoT sensors and devices repeatedly generate observations with same ob-
served values. Such observations increase the memory usage and processing costs
due to the repeated information about the observed data that add no new insights
to the data. IoT data integration demands efficient ways to gain insights from such
a massive amount of data with a lot of duplicated information, while minimizing
the memory requirement and processing costs imposed by big nature of IoT data.

Data retrieval under dynamic IoT environments where streaming data sources
are continuously generating observations, is extremely challenging. Integration of
IoT data that is massively and continuously generated from disparate and uncon-
trolled data sources demands maintaining an up to date consistent version of data.
Furthermore, scalable and efficient retrieval of valuable information and continuous
queries must be generated over the large sized streaming IoT data.

In this thesis, we focus on the heterogeneous, voluminous and streaming na-
ture of IoT data and address various data management challenges imposed by
these characteristics of IoT data. We resort to an on-demand semantification and
factorization approach to integrate streaming IoT data produced by heterogeneous
sources. Furthermore, we address the challenges introduced by huge volumes of
IoT data containing a lot of redundancies. We propose techniques to detect these
redundancies and devise RDF and tabular based representations. Moreover, we
exploit RDF and Big Data frameworks to store and process large amounts of data.

2.2 Semantic Web
The Semantic Web is an extension of the current web of documents in which

documents on the Web are made machine-readable by annotating them and mak-
ing their meanings explicit. According to the W3C, "The Semantic Web provides
a common framework that allows data to be shared and reused across application,
enterprise, and community boundaries"1. The Semantic Web exists as a vision to
extend principles of the existing Web of Documents to Web of Data. The Semantic
Web provides formalism for representing and accessing data. A set of standards
and technologies are used to create data store, vocabularies, and rules are writ-
ten for handling data. The core of the Semantic Web standards is the Resources
Description Framework (RDF) for semantic markup and data interchange on the
web, RDF schema language RDF Schema (RDFS), and the Web Ontology Lan-
guage (OWL). These standards adopt the principles of knowledge representation
languages in the context of Web, where several participants author knowledge in
a decentralized fashion [31]. Linked Data is a set of best practices for interlinking
and publishing machine-readable data on the Web [65]. Linked Data makes avail-
able the semi-structured data sources on the Web for both machines and human.

1https://www.w3.org/2001/sw/

22

https://www.w3.org/2001/sw/

2.2. Semantic Web

Datasets must be released under an open license which does not prevent their free
re-usage to ensure that Linked Data reaches its full potential. Linked Open Data
(LOD) is Linked Data released under and open license [65]. The LOD initiation
encouraged data providers to publish a large linked datasets from diverse domains
leading to to the creation of semantically linked global data-space referred to as
the Linked Open Data Cloud (LOD Cloud) [19]. DBpedia, Wikidata, YAGO, and
Bio2RDF are the prominent datasets in LOD Cloud. In 2007, there were only 12
datasets in the LOD Cloud, which has grown to the 1,239 datasets and 16,147
links among these datasets in March 20192.

2.2.1 The Semantic Sensor Network (SSN) Ontology

The Semantic Sensor Network (SSN) Ontology [28], developed by the W3C
Semantic Sensor Network Incubator Group3, is an OWL ontology that allows for
the description of sensor devices, their capabilities, observations, and other sensor-
related concepts. The SSN ontology is commonly employed to address observa-
tional data semantic enrichment and interoperability problems when integrating
heterogeneous data sources in IoT applications [5, 38, 46, 80]. The SSN ontology
comprises 50 RDF classes and 55 properties to describe sensor data in terms of
observations, features of interest, observed properties, and measurement values
and units. Figure 2.1 illustrates a portion of the SSN ontology composed of classes
and properties to describe sensors, observations, and measurement values. Sensors
generate observations by detecting certain properties of features of interest and
produce the observed values as sensor output. A feature of interest represents a
physical object whose property is being estimated or calculated in the course of
an observation by a sensor. Property is a relation that links an observation to the
property of a feature of interest being observed. Sensor output contains informa-
tion reported from a sensor about a property of a feature of interest during the
act of carrying out an observation.

2.2.2 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a semantic graph-based data
model to represent information about the real-world or abstract concepts on the
Web5. RDF is a W3C standard [88] that specifies syntax, architecture and seman-
tics to describe resources on the Web. The main building block of RDF is a triple,

2https://lod-cloud.net/
3https://www.w3.org/2005/Incubator/ssn/
4https://www.w3.org/TR/vocab-ssn/
5https://www.w3.org/TR/rdf11-concepts/

23

https://lod-cloud.net/
https://www.w3.org/2005/Incubator/ssn/
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/rdf11-concepts/

Chapter 2. Background

Data

ObservationValue

Skeleton

SensorOutput

SensorInput

Observation

Sensor

Property

FeatureOfInterest

Sensing
hasValue

isProducedBy

detects

observationResult
includesEvent

observedBy

isProxyFor

observedProperty

featureOfInterest

hasProperty
isPropertyOf

implements

observes

Figure 2.1: Semantic Sensor Network (SSN) Ontology. A portion of the SSN
ontology representing observations, measurements, sensors, and sensor outputs4.

which is a positive statement and is composed of a subject, a predicate, and an
object, where:

• A Subject represents a resource described using predicate and object, and is
a URI or a blank node;

• Predicate specifies a property or binary relation that relates the subject to
the object of a triple;

• Object denotes a value of the predicate.

Formally, an RDF triple is defined a follows [10]:

Definition 2.2.1 (RDF triple [10]). Let I, B, L be disjoint infinite sets of IRIs,
blank nodes, and literals, respectively. A tuple (s p o) ∈ (I ∪B)× I× (I ∪B ∪ L)
is an RDF triple, where s is the subject, p is the property, and o is the object.

Example 2.2.1. A set of RDF triples is called RDF dataset (or knowledge graph)
and can also be viewed as a graph. Thus, in Figure 2.2a, the edge (:obs1 rdf:type
:TempObs) represents an RDF triple, where entity :obs1 corresponds to subject,
rdf:type and :TempObs represent a property and an object, respectively; there are
twenty-seven more RDF triples.

Definition 2.2.2 (RDF Graph). An RDF graph G = (V,E, L) is a labeled directed
graph where nodes represent entities or objects, while labels stand for properties:

• An RDF triple (s p o) ∈ E, corresponds to an edge in E from node s to node
o; p is the label of the edge and denote the property that relates both nodes;

• s, o ∈ V , s corresponds to a subject and o corresponds to an object; and

• p ∈ L, is an edge label corresponding to a property.

24

2.2. Semantic Web

Example 2.2.2. Figure 2.2a presents an RDF graph that corresponds to a por-
tion of the RDF dataset from the storm season in year 2004. Nodes correspond
to resources representing observations, measurements, and timestamps. Further,
literals are also represented as nodes in the RDF graph and properties typically
stem from a variety of RDF vocabularies that include the Semantic Sensor Net-
work (SSN) Ontology. Edges in RDF graphs represent RDF triples and connect the
nodes in RDF graphs using properties from the SSN ontology. We ignore prefixes,
and replace long URLs by short identifiers for clarity.

The RDF graph that includes properties from the SSN ontology and the in-
stances correspond to the classes of the SSN ontology, we refer to such an RDF
graph in this thesis as an SSN RDF graph. RDF graphs are usually composed
of entity description sub-graphs, sometimes also referred to as Concise Bounded
Descriptions (CBD)6. These subgraphs are named RDF subject molecules defined
as follows:

Definition 2.2.3 (RDF Molecule [36]). An RDF molecule RM is a set of RDF
triples that share the same subject, i.e., RM= (s p1 o1),(s p2 o2),. . . ,(s pn on).

Example 2.2.3. Figure 2.2b presents an RDF graph with three RDF subject
molecules. Each RDF molecule consists of three RDF triples connected to the
same subject, which represents an instance of the sensor class. Each instance of
the sensor class is described by the RDF triples in terms of input, observed prop-
erty, and measurement capability. For simplicity, we omit the URIs in the figure,
and will refer to RDF subject molecules as molecules in the rest of the thesis.

2.2.3 RDF Schema

RDF Schema (RDFS) [89] is part of W3C Recommendation and provides a
data-modelling vocabulary for RDF data to define semantics of user-defined vo-
cabularies. RDFS is an extension of RDF with additional modeling constructs to
define classes (rdfs:Class), properties domain (rdfs:domain) and range (rdfs:range)
restrictions, associations (rdf:type) of entities in classes, and hierarchies of classes
(rdfs:subClassOf) and properties (rdfs:subPropertyOf). A class represents a set
of entities that express a real-world concept. An association of an entity to a
class is defined using property rdf:type. Class hierarchies are specified using the
rdfs:subClassOf construct. Entities of classes are associated with RDF triples
using properties defined by rdf:Property. The types of a subject and an ob-
ject in a triple, representing the association of classes using a property, are de-
fined with rdfs:domain and rdfs:range constructs. Property hierarchies are de-
fined using rdfs:subPropertyOf construct. In addition, RDFS presents annotation

6https://www.w3.org/Submission/CBD/

25

https://www.w3.org/Submission/CBD/

Chapter 2. Background

:obs1 :obs2 :obs3

:time1 :time2 :time3

:ts1 :ts2 :ts3

:m1 :m2 :m3

:TR197
:TempObs :AirTemp

96.0^^:floatº:MeasureDataM
ea
su
re
m
en

ts
O
bs
er
va
ti
on

s
T
im

eS
ta
m
ps

rdf:type
rd
f:t
yp
e

rdf:typ
e

:pr
op
ert
y

:property

:property

:pr
oce

dur
e

:procedure

:procedure

:r
es
ul
t

:r
es
ul
t

:r
es
ul
t

:value

:unitrdf:type rdf:type

rdf:typ
e

:unit
:unit

:un
it

:value

:value

:timestamp :timestamp :timestamp

:samplingTime :samplingTime :samplingTime

(a) RDF Graph G
Sensor

detects

detects

detects

hasMeasurementCapability

observes

observes

observes

Wind Speed

Wind Speed

SnowFall

hasMeasurementCapability

hasMeasurementCapability

High Speed Wind

Low Speed Wind

Light Snow

(b) RDF Molecule

Figure 2.2: Examples of RDF Graph. The RDF graphs are described using the
SSN ontology. (a) RDF graph G has measurements, :m1, :m2, and :m3 of rdf:type
:MeasureData, which are linked to corresponding objects using properties :unit and
:value. Observations, :obs1,:obs2 and :obs3 of rdf:type :TempObs are linked to re-
lated values using properties :property, :procedure, :result, and :samplingTime.(b)
An RDF graph with three subject molecules in the class Sensor; for simplicity
URIs are not presented, and each sensor is associated with only three RDF triples
describing sensor input, measurement capability, and observed property.

properties, rdfs:label and rdfs:comment, to enrich human-readability of a resource
or entity. RDFS provides foundations to build RDF graphs with typed hierar-
chies of concepts and relationships among concepts as specified by rdfs:subClassOf
and rdfs:subPropertyOf, as well as the restrictions defined by rdfs:domain and
rdfs:range. Besides, RDFS offers a set of entailment rules to infer implicit RDF
statements from explicit ones7.

2.2.4 The SPARQL Query Language and SPARQL Protocol

SPARQL8 query language is recommended by W3C [86] for querying RDF
data. SPARQL adopts a graph pattern matching approach to query RDF datasets
represented using RDF that is a directed graph data model. SPARQL queries
comprise three parts [10]; pattern matching, solution modifiers, and output type.

7https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
8SPARQL is a recursive acronym that stands for The SPARQL Protocol and RDF Query

Language

26

https://www.w3.org/TR/rdf11-mt/##rdfs-entailment

2.2. Semantic Web

The pattern matching part contains several features of graphs pattern matching,
i.e., optional, union, nesting, filtering values, and choosing data sources to be
matched by the graph pattern. The solution modifier allows the modification of
values, obtained by the pattern matching part, using projection, distinct, group,
order, and limit operators. The output type can be yes/no, values of the variables
matching the patterns, construction of new RDF data from matched values, and
descriptions of resources. A SPARQL contains a body and a head of form head←−
body. The body of the query is an RDF graph pattern expression that contains
triple patterns, i.e., RDF triples with variables, optional parts, constraints over
variables values, and conjunctions. The head of the query determines how to
construct query answers. SPARQL query evaluation involves two steps. In the
first step, the triple patterns in the body of the query are matched against the RDF
graph to retrieve the bindings for the variables in the body. In the second step,
the information in the head of the query are used and classical relational operators
are applied on the bindings to compute final query answers. The SPARQL query
language implements OPT, UNION, FILTER, and AND operators. To construct
graph pattern expressions. SPARQL uses AND operator via a point symbol (.).
The syntax of SPARQL graph pattern is defined as:

Definition 2.2.4 (SPARQL Graph Pattern Expression [10]). Let Y be an infinite
set of variables disjoint from I ∪ B ∪ L. A SPARQL graph pattern expression is
defined recursively as follows:

1. A triple pattern t ∈ (I ∪ B ∪ Y) × (I ∪ Y) × (I ∪ B ∪ L ∪ Y) is a graph
expression,

2. If Q1 and Q2 are graph patterns, then expressions (Q1 AND Q2), (Q1 OPT Q2),
and (Q1 UNION Q2) are graph patterns,

3. If Q is a graph pattern and R is a SPARQL built-in filter condition, then the
expression (Q FILTER R) is a graph pattern.

Example 2.2.4. The following is a SPARQL graph pattern composed of a set of
RDF triples patterns, FILTER, UNION, and AND (.) operators.

{ ? o b s e r v a t i o n om: procedure ? sensor .
? o b s e r v a t i o n r d f : t ype weather : V i s i b i l i t yO b s e r v a t i o n .
? o b s e r v a t i o n om: r e s u l t ? r e s u l t .
? r e s u l t om: va l u e ? v a l .
FILTER (? v a l < "11"^^xsd : f l o a t) # cen t ime t e r s

}
UNION
{ ? o b s e r v a t i o n om: procedure ? sensor .

? o b s e r v a t i o n r d f : t ype weather : Ra i n f a l lO b s e r v a t i o n .
? o b s e r v a t i o n om: r e s u l t ? r e s u l t .

27

Chapter 2. Background

? r e s u l t om: va l u e ? v a l .
FILTER (? v a l > "35"^^xsd : f l o a t) # cen t ime t e r s

}

The SPARQL query language provides four query forms: SELECT, ASK,
CONSTRUCT, and DESCRIBE. These SPARQL query forms use graph pat-
tern bindings to construct result sets or RDF graphs. In this thesis, we focus
on SPARQL SELECT query form that is formally defined as follows:

Definition 2.2.5 (SPARQL SELECT Query [95]). Let Q be a SPARQL expression
and let Z ⊂ Y a finite set of variables. A SPARQL select query is an expression
of the form SELECTZ(Q).

Example 2.2.5. The following query represents a SPARQL SELECT query com-
posed of a graph pattern expression, AND, FILTER, and UNION operators, and
solution modifier DISTINCT. The query retrieves the data about the observations
that measure low visibility values, i.e., < 11 centimeters, and low rainfall values,
i.e., < 35 centimeters. The SPARQL query projects unique values matching to the
variable ?sensor that correspond to the sensors observing these values.
PREFIX om:< h t t p :// kno e s i s . w r i gh t . edu/ ssw/ sensor−o b s e r v a t i o n . owl#>
PREFIX weather : <h t t p :// kno e s i s . w r i gh t . edu/ ssw/ ont /weather . owl#>
PREFIX xsd : <h t t p ://www.w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? sensor
WHERE {

{ ? o b s e r v a t i o n om: procedure ? sensor .
? o b s e r v a t i o n r d f : t ype weather : V i s i b i l i t yO b s e r v a t i o n .
? o b s e r v a t i o n om: r e s u l t ? r e s u l t .
? r e s u l t om: va l u e ? v a l .
FILTER (? v a l < "11"^^xsd : f l o a t) # cen t ime t e r s

}
UNION
{ ? o b s e r v a t i o n om: procedure ? sensor .

? o b s e r v a t i o n r d f : t ype weather : Ra i n f a l lO b s e r v a t i o n .
? o b s e r v a t i o n om: r e s u l t ? r e s u l t .
? r e s u l t om: va l u e ? v a l .
FILTER (? v a l > "35"^^xsd : f l o a t) # cen t ime t e r s

}
}

SPARQL SELECT queries are evaluated over RDF datasets to find mappings,
where each mapping contributes a possible answer to a query. A mapping, µ,
is a partial function µ : Y → (I ∪ B ∪ L) representing the bindings from a set
of variables in the query to RDF terms in the RDF data. The domain of µ,
dom(µ) is the subset of Y where mapping µ is defined. Two mappings µ1 and

28

2.2. Semantic Web

µ2 are compatible, represented as µ1 ∼ µ2, if µ1 ∪ µ2 is a mapping too, i.e., for
all ?x ∈ dom(µ1) ∪ dom(µ2), it is the case that µ1(?x) = µ2(?x). µ(t) represents
a triple obtained by replacing the variables in a triple t by the values according
to the mapping µ [95]. The semantics of SPARQL graph pattern expression are
defined as a function [[.]]D; it takes a pattern expression, translates the pattern
expression into algebraic operations, and returns a set of mappings. The semantics
of SPARQL graph pattern expressions are formally defined as:

Definition 2.2.6 (SPARQL Set Semantics [10, 95]). Let D be an RDF dataset, t a
triple pattern, Q, Q1, and Q2 SPARQL expressions, R a filter condition, and Z ⊂
Y a set of variables. Let [[.]]D be a function that translates SPARQL expressions
into SPARQL algebraic operations as follows:

[[t]]D = {µ|dom(µ) = vars(t) ∧ µ(t) ∈ D}

[[Q1 AND Q2]]D = [[Q1]]D ./ [[Q2]]D

[[Q1 OPT Q2]]D = [[Q1]]D ./ [[Q2]]D

[[Q1 UNION Q2]]D = [[Q1]]D ∪ [[Q2]]D

[[Q FILTER R]]D = σR([[Q]]D)

[[SELECTZ(Q)]]D = πZ([[Q]]D)

The semantics of SPARQL query evaluation are defined as follows:

Definition 2.2.7 (SPARQL Set Algebra [10, 95]). Let Ω, Ω1, and Ω2 be a set
of mappings, R denote a filter condition, and Z ⊂ Y be a finite set of variables.
SPARQL algebraic operations join (./), union (∪), minus (\), left outer join (./),
projection (π), and selection (σ) are defined as:

Ω1 ./ Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1, µ2 ∈ Ω2 : µ1 ∼ µ2}

Ω1 ∪ Ω2 = {µ|µ ∈ Ω1 or µ ∈ Ω2}

Ω1 \ Ω2 = {µ1 ∈ Ω1| for all µ2 ∈ Ω2 : µ1 6∼ µ2}

Ω1 ./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 \ Ω2)

πZ(Ω) = {µ1|∃µ2 : µ1 ∪ µ2 ∈ Ω ∧ dom(µ1) ⊆ Z ∧ dom(µ2) ∩ Z = ∅}

σR(Ω) = {µ ∈ Ω|µ |= R}

where µ |= R iff µ satisfies SPARQL built-in filter condition R.

A set of RDF triples and filters that are related through conjunction is called
a SPARQL basic graph pattern (BGP) formally defined as:

29

Chapter 2. Background

Definition 2.2.8 (BGP). Let I be the set of all IRIs, B be the set of blank nodes, L
be the set of literals and Y be the set of variables. A SPARQL basic graph pattern
(BGP) expression (an AND-only SPARQL expression) is defined recursively as
follows:

• A triple pattern t ∈ (I ∪B ∪ Y)× (I ∪ Y)× (I ∪B ∪ L ∪ Y) is a BGP;

• The expression (Q1 AND Q2) is a BGP, where Q1 and Q2 are BGPs;

• The expression (Q FILTER R) is a BGP, where Q is a BGP and R is a
filter expression that evaluates to Boolean value.

A SPARQL BGP contains at least one star-shaped subquery (SSQ). An SSQ
is a non-empty set of SPARQL triple patterns sharing the same subject vari-
able(constant).

Definition 2.2.9 (Star-shaped Subquery (SSQ) [102]). A star-shaped subquery
star(SQ, ?X) on a variable (constant) ?X is defined as:

• star(SQ, ?X) is a triple pattern t = (?X p o), where p and o are different to
?X.

• star(SQ, ?X) is the union of two stars, star(SQ1, ?X) and star(SQ2, ?X),
where triple patterns in SQ1 and SQ2 only share the variable (constant) ?X.

Example 2.2.6. The following SPARQL query is composed of a basic graph pat-
tern (BGP) containing five triple patterns, one filter expression, and two star-
shaped subqueries (SSQ). The star-shaped subqueries are over the variables ?result
and ?observation at the subject positions of the triple patterns in the query.

PREFIX om:< h t t p :// kno e s i s . w r i gh t . edu/ ssw/ sensor−o b s e r v a t i o n . owl#>
PREFIX weather : <h t t p :// kno e s i s . w r i gh t . edu/ ssw/ ont /weather . owl#>
PREFIX xsd : <h t t p ://www.w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? sensor
WHERE {

? o b s e r v a t i o n om: procedure ? sensor .
? o b s e r v a t i o n r d f : t ype weather : TemperatureObservat ion .
? o b s e r v a t i o n om: r e s u l t ? r e s u l t .
? r e s u l t om: va l u e ? v a l .
? r e s u l t om: un i t ?uom .
FILTER (? v a l < "20"^^xsd : f l o a t) # f a h r e n h e i t :

}

30

2.2. Semantic Web

Complexity of SPARQL

The evaluation of SPARQL graph patterns can be considered as a decision
problem and defined as [78]:

INPUT: An RDF dataset D, a graph pattern Q, and a mapping µ.
QUESTION: Is µ ∈ [[Q]]D?

The complexity of SPARQL query evaluation is influenced by the type opera-
tors, i.e., AND, FILTER, UNION, and OPTIONAL used in the graph pattern. A
SPARQL query is evaluated in PTIME, i.e., O(|Q|.|D|) time, if the graph pattern
expression Q contains triple patterns associated with AND (and optionally FIL-
TER) operator. Likewise, if a SPARQL graph pattern expression Q, is composed
of only UNION (and optionally FILTER) operator, the query evaluation problem
is in PTIME. However, if the graph pattern Q combines AND, UNION, and op-
tionally FILTER operators, the evaluation problem is NP-complete. The SPARQL
queries with OPTIONAL operator, in combination to any of the above operators,
becomes PSPACE-complete [95].

2.2.5 C-SPARQL - A Continuous SPARQL Query Language

C-SPARQL [16] is an extension of SPARQL to support continuous queries that are
continuously executed over RDF data streams. C-SPARQL extends SPARQL in
such a ways that a regular SPARQL query is also a C-SPARQL query. C-SPARQL
is presented with full specifications of the syntax and formal semantics along with
RDF streams as a data type.

RDF Stream data type

C-SPARQL provides RDF streams as new data types supported by SPARQL. An
RDF stream is an ordered sequence of pairs, where each pair is composed of an
RDF triple and its timestamp τ :

. . .

((si pi oi), τi)

((si+1 pi+1 oi+1), τi+1)

. . .

RDF triples are annotated with timestamps. These timestamps are monotonically
non-decreasing (τi ≤ τi+1) in the data stream. Timestamps should not be unique,

31

Chapter 2. Background

therefore, they are not strictly increasing. Any number of RDF triples in the
stream can occur at the same time, although their sequence can be different.

Windows

RDF streams carrying RDF data need to be able to identify the data sources and
also select criteria over them. To identify the data sources, each data stream is
associated with a unique IRI, that serves as a locator of the data stream source.
An IRI represents an IP address and a port to access streaming data. Since
data streams are infinite, the notion of windows over data streams is defined. C-
SPARQL uses FROM STREAM clause to express identification and windowing
over stream [16]:

FromStrClause → FROM [NAMED] STREAM StreamIRI [RANGE Window]
Window → LogicalWindow | PhysicalWindow
LogicalWindow → Number TimeUnit WindowOverlap
TimeUnit → ms | s | m | h | d
WindowOverlap → STEP Number TimeUnit | TUMBLING
PhysicalWindow → TRIPLES Number

A window retrieves the last data stream elements from a stream that are pro-
cessed by the query. The extraction of data elements can be physical or logical.
Physical extraction involves a given number of triples to be extracted, whereas
logical extraction retrieves a variable number of triple within a give time interval.
Logical windows are sliding [41] if they progressively advance by a given STEP that
is smaller than the window’s time interval. Logical windows are non-overlapping
or TUMBLING when they advance equal to their time interval. The optional
NAMED clause is equivalent to SPARQL FROM clause, and binds the stream IRI
to a variable that is used to access the stream through the GRAPH clause.

Query Registration

Continuous queries in C-SPARQL include at least one FROM STREAM clause,
and are registered to produce continuous outputs as variable bindings tables or
graphs. C-SPARQL queries are registered using the statement as follows [16]:

Reg i s t r a t i on → REGISTER QUERY QueryName
[COMPUTEDEVERY Number TimeUnit] AS Query

The COMPUTE EVERY clause defines the frequency to compute the query
over the stream, otherwise, the system determines the frequency automatically.
Moreover, streams are registered for CONSTRUCT and DESCRIBE queries to
generate RDF triples associated with timestamps. Stream are registered using the
following clause [16]:

32

2.2. Semantic Web

Reg i s t r a t i on → REGISTER STREAM QueryName
[COMPUTEDEVERY Number TimeUnit] AS Query

Example 2.2.7. The following C-SPARQL query is registered as query Q and is
composed of a basic graph pattern (BGP) containing five triple patterns and one
filter expression. The query retrieves temperature observations from the given data
stream within a tumbling winding of size one hour.
REGISTER QUERY Q AS
PREFIX om:< h t t p :// kno e s i s . w r i gh t . edu/ ssw/ sensor−o b s e r v a t i o n . owl#>
PREFIX weather : <h t t p :// kno e s i s . w r i gh t . edu/ ssw/ ont /weather . owl#>
PREFIX xsd : <h t t p ://www.w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? sensor ? v a l
FROMNAMEDSTREAM <h t t p ://www. cwi . n l /SRBench/ ob s e r va t i on s >

[RANGE 1h TUMBLING]
WHERE {

? o b s e r v a t i o n om: procedure ? sensor .
? o b s e r v a t i o n r d f : t ype weather : TemperatureObservat ion .
? o b s e r v a t i o n om: r e s u l t ? r e s u l t .
? r e s u l t om: va l u e ? v a l .
? r e s u l t om: un i t ?uom .
FILTER (? v a l < "20"^^xsd : f l o a t) # f a h r e n h e i t :

}

Aggregation and Timestamp function

C-SPARQL provides multiple independent aggregation functions within the same
query, and the syntax is as follows [16]:
AggregateClause →(AGGREGATE { (var , Function , Group) [Filter] })∗
Function → COUNT | SUM | AVG | MIN | MAX
Group → var | { var (, var)∗ }

An aggregation clause consists of three parts; a new variable (not occurring
in the WHERE or aggregation clauses), an aggregation function, and a set of one
or more variables to define grouping criteria. The timestamp function returns the
timestamp of the RDF stream element that produces the bindings. Timestamp
function takes two arguments, the first is the name of a variable in the WHERE
clause, and second is the stream IRI. Based on these constructs of C-SPARQL
query, given below is an example query:

Example 2.2.8. The following C-SPARQL query computes average wind speed
and temperature values observed by the sensors in variables ?averageWindSpeed
and ?averageTemperature, respectively. These values are computed within a slid-
ing window of size one hour and the sliding interval is ten minutes.

33

Chapter 2. Background

PREFIX om:< h t t p :// kno e s i s . w r i gh t . edu/ ssw/ sensor−o b s e r v a t i o n . owl#>
PREFIX weather : <h t t p :// kno e s i s . w r i gh t . edu/ ssw/ ont /weather . owl#>
PREFIX xsd : <h t t p ://www.w3 . org /2001/XMLSchema#>

SELECT ? sensor (AVG(? windSpeed) AS ?averageWindSpeed)
(AVG(? temperature) AS ? averageTemperature)

FROMNAMEDSTREAM <h t t p ://www. cwi . n l /SRBench/ ob s e r va t i on s >
[RANGE 1h STEP 10m]

WHERE {
? tempObservat ion om: procedure ? sensor .
? tempObservat ion r d f : t ype weather : TemperatureObservat ion .
? tempObservat ion om: r e s u l t ? t empera tu reResu l t .
? t empera tu reResu l t om: va l u e ? temperature .
? t empera tu reResu l t om: un i t ?uom .
FILTER(? temperature > "32"^^xsd : f l o a t &&

REGEX(STR(?uom) , " f a h r e n h e i t " , " i "))
? windSpeedObservat ion om: procedure ? sensor .
? windSpeedObservat ion r d f : t ype weather : WindSpeedObservation .
? windSpeedObservat ion om: r e s u l t ? w i n d r e s u l t .
? w i n d r e s u l t om: va l u e ?windSpeed .

}
GROUP BY ? sensor

The formal semantics of C-SPARQL are build by extending the semantics of
SPARQL [78]. C-SPARQL provides formal semantics of aggregate, windows, and
the timestamp function. C-SPARQL introduces a new binary operator AGG to
compute aggregates. An aggregate pattern is defined as A(y, f, b, J), where y is
new variable, f represents an aggregate function, b is parameter of f , and J is
a set of grouping variables. SPARQL set semantics given in Definition 2.2.6 are
extended to add semantics for aggregate evaluation as follows [16]:

[[Q AGG A]]D = [[Q]]D ./ [[A]]D, where A(ya, fa, ba, Ja) is an aggregate pattern.

The evaluation of aggregation pattern [[A]]D is computed from mappings µa :
Y → (I ∪ B ∪ L), where domain of µa is dom(µa) = ya ∪ Ja, and deg(µa) =
deg(Ja) + deg(ya) = deg(Ja) + 1, where deg(µa), deg(Ja), and deg(ya) represent
cardinalities of µa, Ja, and ya, respectively. An RDF stream is defined as [16]:

R = {((s p o), τ)|(s p o) ∈ (I ∪ B) × I × (I ∪ B ∪ L), τ ∈ T} where T is the
infinite set of timestamps. A logical window ωl over the RDF stream R is defined
as:

ωl(R, tsi, tsf) = {((s p o), τ) ∈ R|tsi < τ ≤ tsf}.
If c(R, tsi, tsf) = |{((s p o), τ) ∈ R|tsi < τ ≤ tsf}| is a function that counts the
items in R having timestamps in the range (tsi, tsf], then a physical window ωp is

34

2.2. Semantic Web

defined as [16]:

ωl(R, n) = {((s p o), τ) ∈ ωl(R, tsi, tsf)|c(R, tsi, tsf) = n}.

A sliding window ω can have range ρ and step σ. A logical window will have ρ
and σ as time intervals, whereas a physical window will have ρ and σ as integers
values. A variable y in C-SPARQL can have bindings from static and streaming
RDF data. The bindings of y from data stream contains a timestamp of the RDF
triple that matches to one of the triple patterns t ∈ Q such that y ∈ dom(t). The
set of timestamps associated with a variable y in a triple pattern t is represented
as TSset(y, t), and the set of timestamps related with the variable y in a graph
pattern Q as [16]:

TSset(y,Q) = {τ |t ∈ Q ∧ y ∈ dom(t) ∧ τ ∈ TSset(y, t)}.

Based on these values of timestamps for a variable, the timestamp function returns
the highest timestamp among all the bindings of y, and is defined as:

ts(y,Q) = max(TSset(y,Q)))

2.2.6 SPARQL Query Processing

To support the execution of complex SPARQL queries Lampo et al. [60] im-
plement optimized query execution techniques that enhance the performance of
the state-of-the-art RDF-3X [72] SPARQL query engine. The compressed indexed
structures, caching, optimization and execution techniques in RDF-3X are able to
efficiently process the real-world complex SPARQL queries. Furthermore, RDF-3X
provides techniques for efficient usage of previously loaded intermediate results in
cache. Lampo et al. [60] implement execution techniques to fully exploit the RDF-
3X caching features for small-sized star-shaped groups of SPARQL graph patterns,
when these star-shaped queries are run in both cold and warm caches, i.e., when
intermediate results are stored or not in cache. A star-shaped query joins multiple
basic graph patterns that share exactly one variable. Lampo et al. implement four
different operators to retrieve and combine intermediate RDF triples generated for
small-sized star shaped groups. 1) Index Nested-Loop Join (njoin) finds mappings
for the first triple pattern, and uses these mappings to instantiate the variables in
the second triple pattern. njoin operator uses data indices and the instantiations
of the second triple pattern to speed up execution task. This operator is useful
when the number of intermediate results is small. 2) Group Join (gjoin) evaluates
each of the two groups independently, and combines the results to find the compat-
ible mappings. Since, the intermediate results previously loaded in cache can be
reused without executing the operation to compute them, therefore, gjoin operator

35

Chapter 2. Background

t1

Star1

t2

t3

t4

Star2

t5 t6

Star3

t7

t8

t9

Star4

t10

?observation1 ?result1 ?observation2 ?result2

Figure 2.3: An Execution Plan for Star-Shaped Groups. An execution
plan for the SPARQL query in Listings 2.1. The stars Star1, Star2, Star3, and
Star4 represent star-shaped groups over the variables ?observation1, ?result1,
?observation2, and ?result2, respectively.

takes advantage of cache. To avoid page faults, the size of the intermediate results
should be small. 3) Star-Shaped Group Evaluation (sgroup) evaluates the first
pattern in the star-shaped group and identifies the instantiations of the shared
variable. The rest of the patterns in the group are bind using these instantiations.
If the first pattern is very selective, then this operator can be very efficient. 4) In-
dex Star-Shaped Group Evaluation (isgroup) builds indices for all the patterns in
a group. The instantiations of each pattern are obtained independently and are
merged to produce the answers. This operator benefits running in warm cache if
the number of instantiations are small that are used to compute join between two
basic graph patterns, and cached results can be reused to compute join with the
third graph pattern.

Listing 2.1: A SPARQL Query
PREFIX om:<http :// knoe s i s . wright . edu/ssw/ sensor−obse rvat i on . owl#>
PREFIX weather : <http :// knoe s i s . wright . edu/ssw/ont/weather . owl#>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? s enso r
WHERE {

? obse rvat ion1 om: procedure ? s enso r . #t1
? obse rvat ion1 rd f : type weather : V i s i b i l i t yOb s e r v a t i o n . #t2
? obse rvat ion1 om: r e s u l t ? r e s u l t 1 . #t3
? r e s u l t 1 om: value ? va l1 . #t4
? r e s u l t 1 om: un i t ?uom1 . #t5
? obse rvat ion2 om: procedure ? s enso r . #t6
? obse rvat ion2 rd f : type weather : Ra in fa l lObse rva t i on . #t7
? obse rvat ion2 om: r e s u l t ? r e s u l t 2 . #t8
? r e s u l t 2 om: value ? va l2 . #t9
? r e s u l t 2 om: un i t ?uom2 . #t10

}

36

2.2. Semantic Web

Figure 2.4: C-SPARQL Engine Architecture. The C-SPARQL engine ar-
chitecture9 relies on existing DSMS and SPARQL processing frameworks. The
C-SPARQL engine receives a continuous SPARQL query and translates the query
into a static and a continuous query. The static query is passed to the SPARQL
engine, whereas the continuous query is executed by DSMS over the data stream.

A SPARQL query composed of ten RDF triple patterns is presented in List-
ings 2.1. The query contains four star-shaped basic graph patterns over the
variables ?observation1, ?result1, ?observation2, and ?result2. Figure 2.3
presents an execution plan for the SPARQL query around the star-shaped groups.
Star1 encompasses the triple patterns in the star-shaped group around the vari-
able ?observation1. Similarly, Star2, Star3, and Star4 represent star-shaped
groups around the variables ?result1, ?observation2, and ?result2, respec-
tively. The stars Star1 and Star2 are joined on variable ?result1, and the stars
Star3 and Star4 are joined on variable ?result2. The final results of the query
are obtained by computing the join on variable ?sensor over the results of the
previously computed joins.

2.2.7 C-SPARQL Query Processing

The execution framework [15] for C-SPARQL queries integrates the existing
Data Stream Management Systems (DSMS) [39] and SPARQL systems to run
continuous queries over RDF data streams, as well as over historical RDF data
that contain static knowledge. The existing stream processing frameworks, such as
Aurora/Borealis [1], STREAM [9], and Stream Mill [12] which are highly optimized
for processing relational streams, are used to provide a plug-in architecture for C-
SPARQL processing. Figure 2.4 shows the C-SPARQL engine architecture that
relies on existing technologies. SPARQL engine evaluates the static part of the

9https://www.w3.org/community/rsp/wiki/File:C-sparql-engine.jpg

37

https://www.w3.org/community/rsp/wiki/File:C-sparql-engine.jpg

Chapter 2. Background

C-SPARQL query, and the stream management system (DSMS) evaluates streams
and aggregates. A query parser parses C-SPARQL query and forwards to the
orchestrator that translates the C-SPARQL query into a static and dynamic part.
The static query is executed over the RDF data using SPARQL reasoner, whereas
dynamic is passed to DSMS for continuous evaluation. The aggregate clause in C-
SPARQL query have different semantics than SQL aggregate semantics, therefore,
it is not directly translated into an SQL aggregate function. The aggregates are
computed in a separate view and then an outer join is performed with the retrieved
result to generate final answers.

2.3 Summary
Integration of IoT data, containing an enormous number of observations con-

tinuously generated from IoT devices, and the particular research challenges pre-
sented in Chapter 1 require comprehensive solutions from different angles. The
concepts and the existing technologies presented in this chapter establish a solid
foundation to address the posed challenges. Data integration system and the
related concepts presented in Section 2.1 define the foundations for integrating
large volumes of IoT data, containing plenty of repeatedly observed measure-
ments, from heterogeneous data sources. The Resource Description Framework
(RDF) described in Section 2.2 provides formalism for representing the knowl-
edge that is encoded in observations produced by diverse IoT devices. RDF is a
machine-readable language with explicit semantics and exploits a semi-structured
graph-based data model that is more flexible than the rigid relational data models.
We leverage these characteristics of RDF data model and provide techniques for
efficient representations of IoT observational data and the meaning encoded in the
data, for answering the RQ1. The observational data from diverse IoT devices
can be processed as streaming data in real time or can be collected and stored
as historical data and processed later. SPARQL and C-SPARQL are the query
languages to process and query historical and streaming RDF data, respectively.
RDF-3X is an RDF engine that exploits the query processing techniques to benefit
from caching the data during SPARQL query execution. We exploit the proposed
RDF representations to scale up to large RDF sensor datasets, these RDF repre-
sentations are processed using RDF-3X engine to address the RQ2. C-SPARQL is
an extension of SPARQL query language to process the streaming RDF data gen-
erated in the form of RDF data streams. The C-SPARQL query engine exploits the
existing Data Stream Management Systems (DSMS) and SPARQL query engines
to process continuous SPARQL queries over RDF data streams. We present on-
demand knowledge graph generation techniques that rely on C-SPARQL engines,
to answer the research questions RQ3 and RQ4.

38

Chapter 3

Related Work

In this chapter, we present a detailed analysis of the state-of-the-art approaches
related to the main research problems and research questions defined in Chapter 1.
We initially present the topics, shown in Figure 3.1, identified for the review of
existing approaches. These topics include state-of-the-art approaches proposed by
research communities to solve the issues related to the data representation during
data integration and semantic description. Section 3.1 presents state-of-the-art
approaches for frequent pattern mining. Although these approaches are able to
extract frequent isomorphic graph patterns from a graph, however, they are not
able to identify frequent star patterns shared among several entities. Section 3.2
presents the existing approaches for efficient representations of data using differ-
ent data models. Furthermore, query optimization techniques, exploiting efficient
representations of data, are discussed. In addition, existing approaches that utilize
Big Data frameworks for efficient processing of large-scale data are explored. In
section 3.3, the state-of-the-art techniques for semantic description and processing
of streaming data are elaborated.

3.1 Frequent Pattern Mining Approaches

The problem of frequent pattern mining involves finding subgraphs, from a
graph, that have frequency above a given threshold. gSpan [105] exploits the depth
first search (DFS) to mine frequent patterns. gSpan maps a graph to a DFS code
representing the edges sequence. Several DFS codes can be generated for a single
graph. These DFS codes are ordered lexicographically based on the edge labels
and the order of nodes being visited. From these ordered DFS codes the minimum
DFS codes are selected to build the DFS tree. DFS over a code tree discovers
all the minimum DFS codes of frequent patterns. GRAMI [33] performs frequent
pattern mining and finds only the minimal set of instances that satisfy the given

39

Chapter 3. Related Work

Data Integration
System

Frequent Pattern
Mining

Historical Data
Representations

Streaming Data
Management

Data
Compression

Query
Optimization Big Data Tools Knowledge Graph

Building
Streaming Query

Processing

Figure 3.1: Categories of the state-of-the-art Approaches. The related work
presented in this thesis is categorized under three topics; Frequent Pattern Min-
ing, Historical Data Representations, and Streaming Data Management. The fre-
quent pattern mining category covers the existing approaches that detect frequent
patterns in data. The historical data representation topic, encompasses existing
techniques related to data compression and query optimization, and utilizing Big
Data frameworks for efficiently processing large-scale historical data. The stream-
ing data management topic describes existing approaches related to the knowledge
graph building from streaming data, and query processing over streaming data.

frequency threshold. GRAMI stores the templates of frequent patterns instead of
storing their appearances. This avoids the creation and storage of all appearances
of patterns. For frequency evaluation, GRAMI maps the frequent patterns mining
problem to constraint satisfaction problem (CSP), which is represented by a tuple;
(a) an ordered set of variables representing nodes, (b) a set of domains of variables
in (a), and (c) a set of constrains between these variables. Two subgraphs patterns
are isomorphic if the variables in corresponding CSP tuple have different values
from the domains, however, nodes and edge labels are the same. Notwithstanding
these frequent pattern mining approaches are able to identify the frequent iso-
morphic graph patterns, extracting frequent star patterns, which involve different
subject nodes related with same objects nodes using same set of edge labels, re-
quires an exhaustive search over the identified frequent patterns. It is important
to highlight that although these approaches effectively mine subgraph patterns,
they are not able to identify graph patterns where a node shared among several
edges is a variable. In this thesis, we present an approach that searches for star
patterns and is able to detect the ones with highest instantiations.

40

3.2. Historical Data Representations

3.2 Historical Data Representations

3.2.1 Data Compression Approaches

Database and Semantic Web communities have proposed several efficient rep-
resentations to speed up processing over the large amounts of data represented
using relational and graph data models [2, 6, 8, 20, 37, 42, 51, 55, 63, 69, 71,
83, 108]. These compression approaches can be categorized into compression tech-
niques for relational, graph and RDF graph data models. Relational data model
approaches [2, 108] efficiently store huge datasets in column-oriented stores. For
efficient storage and processing of graph data, approaches such as Neo4j, Spark-
see [69], and technique by Lehmann et al. [63], are proposed. Approaches [7, 8,
20, 37, 51, 55, 71, 75, 83] target the efficient storage of RDF graph data.

Data Compression for Relational Data Models

Column-oriented databases [98, 108] store each attribute in a separate column
such that successive values of the attribute are accumulated consecutively on the
disk. This improves the query processing when the values of some of the columns
are required to process the query. The column oriented data storage opens a
number of opportunities to apply compression techniques more naturally over the
multiple values of the same type. Compression approach proposed by Abadi et
al. [2] compress each column in C-Store [98] using one of the methods like Null
Suppression, Dictionary Encoding, Run-length Encoding, Bit-Vector Encoding or
Lempel-Ziv [90, 104]. Zukowski et al. [108] focus on improving bad CPU/cache per-
formance caused by the compression techniques involving if-then-else statements
in the code, e.g., Null Suppression, Run-length Encoding, and does not take advan-
tage of the super-scalar properties, e.g., pipe-lining the processes, in the modern
CPUs. Zukowski et al. propose three compression methods, i.e., PFOR, PFOR-
DELTA, and PDICT. PFOR expresses values as positive offsets from a base value,
PFOR-DELTA represents values as differences from some frame of reference, and
PDICT creates a dictionary for the array position of values. These compression
solutions are exploited by column-oriented stores using the decomposition storage
model [29], where n-array relations are decomposed into n binary relations. Each
binary relation consists of one attribute values and the corresponding surrogate
keys. In this model, two copies of data are stored increasing the data storage
requirements. Further, for each attribute a copy of the corresponding duplicated
surrogate key is required resulting in an increase of the storage by a factor of two.
Moreover, various compression techniques for a large number of unique values, i.e.,
subject entities, are hard to implement. In this thesis, we present an approach that
generates a factorized graph where entities matching a frequent star pattern are

41

Chapter 3. Related Work

represented by a surrogate entity of the corresponding compact RDF molecule.
These compact graph representations replace repeated properties and correspond-
ing objects with the properties and objects in the compact RDF molecules, hence,
improve the storage space requirements for the decomposition storage model [29].

Data Compression for Graph Data Models

A compact representation of graph data to perform two-way regular-path
queries is presented by Lehmann et al. [63]. The approach exploit k2-tree [23]
structures to compress graph data. k2-tree is a tree shaped structure to repre-
sent a graph by utilizing the sparseness and clustering features of the adjacency
matrix associated with the graph. k2-tree divides the adjacency matrix into k2

submatrices of the same size. Each submatrix, which is child of the root, with
at least one 1, from the adjacency matrix, is recursively divided into submatrices
until the last level of the tree, having the element corresponding to actual value
of the matrix cell, is reached. Lehmann et al. simplify the mappings between
the graph nodes and the adjacency matrix by exploiting dictionary encoding to
map node ID and edge in the graph to integers. Thus, whole graph is repre-
sented in a compact way as an array of k2-tree. k2-tree structures resort to the
sparseness and clustering features of adjacency matrix associated with a graph to
generate compact binary representation of the graph. The binary representations
of graphs require a customized engine to process queries. In this thesis, we present
an approach that generates a factorized knowledge graph where number of con-
nections between nodes are reduced resulting in a faster graph navigation required
in two-way regular path queries. Moreover, the factorized knowledge graphs have
simplified structures where the number of node neighbours are reduced by replac-
ing edges between the entities and the objects by the edges connecting the the
entities to the surrogate entities in the compact RDF molecules, this ultimately
can help improve the retrieval of the neighbours of a node in k2-tree structures ex-
ploited by Lehmann et al. Neo4j has been used to efficiently store data graphs [42].
Neo4j stores nodes and edges in graphs as file records of fixed size represented with
unique IDs corresponding to the offset of the associated file position. Furthermore,
the edges are stored in doubly-linked lists, and a node record denotes the first edge
in the doubly-linked list. In order to retrieve other edges the doubly-linked lists
has to be traversed. Hence, visiting graph nodes in Neo4j is costly since it requires
all the edges to be traversed, also visiting the neighbour of a node in a graph is
expensive especially when the node degree is soaring [66]. This thesis presents
an approach that implements compact RDF molecules and reduces the edges in-
cident on a node involved in the frequent graph patterns in a graph, therefore,
can help in reducing the traversal time in Neo4j. Sparksee [69] represents graphs
using small structures to cache the significant part of data in minimum memory

42

3.2. Historical Data Representations

space to speed-up graph operations, efficient edge traversal, and query processing.
These data structures utilize multiple indexes for the edges of the nodes and use
key-value maps and bitmaps to reduce memory requirements. Although Sparksee
promises to efficiently process operations over graphs by utilizing small memory
and making the use of data caching techniques, the expected performance is not
achieved when the graphs are huge in size. Similarly, Neo4j do not exhibit good
performance over huge graphs due to the large volume of intermediate results [44].
The approach, proposed in this thesis, exploits compact RDF molecules to store
the frequent graph patterns in RDF graphs only once, which can help to reduce
the size of intermediate results and improve cache buffer.

Data Compression for the RDF Data Model

A user specific approach to minimize RDF graphs by defining Datalog rules to
remove the irrelevant RDF data is proposed by Meier [71]. The approach uses con-
straints to maintain data consistency before and after RDF graph minimization.
Instead of generating new RDF triples, Datalog rules defined by the user are used
to remove RDF data from RDF graphs that is not required for the application.
These rules are used to reconstruct the deleted data. Similarly, Pichler et al. [83]
study the redundancy elimination on RDF graphs in the presence of rules, con-
straints, and queries specified by users. These two approaches are user specific and
require human input for compressing the ever growing RDF graphs. A scalable
lossless RDF compression technique, proposed by Joshi et al. [51], automatically
generates decompression rules. The compression approach uses the rules to split
the RDF datasets into smaller disjoint datasets; an active and a dormant dataset.
A dormant dataset contains uncompressed RDF triples, whereas an active dataset
contains compressed triples. To decompress the compressed datasets, decompres-
sion rules are applied to active datasets for inferring new triples. This technique
requires the overhead of decompression over the compressed data to access the
information initially represented in datasets. A factorized representation of RDF
graphs is presented by Karim et al. [55], where repeated observation values are
represented only once. This approach reduces the number of RDF triples that
correspond to observational data described using the Semantic Sensor Network
(SSN) Ontology [28]. In this thesis, we propose frequent graph pattern detection
approach to automatically identify the frequent star patterns in RDF graphs de-
scribed using any ontology. Further, we devise factorized graphical representations
of RDF graphs which do not require data decompression to perform data manage-
ment tasks. Moreover, the RDF graph factorization techniques, proposed in this
thesis, are independent of the ontology describing the data and able to generate
factorized representations of RDF graphs describing datasets using any ontology.

A binary RDF representation format consisting of a Header, a Dictionary and

43

Chapter 3. Related Work

a Triple component is presented by Fernández et al. [37]. The header contains
metadata describing the RDF datasets, the dictionary provides a catalog of the
RDF terms (URIs, literals, blank nodes) in the RDF datasets and assigns a unique
short ID to each RDF term, and the triple component compactly encodes the RDF
triples by replacing long repeated RDF terms with the short IDs. Pan et al. [75]
propose RDF compression based on graph patterns, which reduces the number
of RDF triples and then generates compact binary representations of the reduced
triples. Graph pattern-based logical compression replaces the instances of the big-
ger graph patterns by the instances of the smaller graph patterns. For each graph
pattern, the Graph pattern-based serialization generates a sequence of bits con-
taining the graph pattern itself and a sequence of graph pattern instances, where
each instance is a list of resource IDs. The compression technique k2-triples pre-
sented by Álvarez-García et al. [8] exploits the two dimensional k2-trees structure,
proposed by Barisaboa et al. [23], to distribute the compact triples obtained by
Header-Dictionary-Triples partitioning [37]. A native RDF engine runs queries
over the k2-triples. Bok et al. [20] present RDF provenance compression technique
using PROV model based on graph patterns. The proposed approach reduces the
space by converting strings in provenance data into numeric data using dictionary
encoding. The numeric version of RDF triples are used to extract the frequently
repeated subgraphs based on the activities in the model. These frequent sub-
graphs are referred as compressed subgraphs and are stored as a reference pattern.
These approaches are able to effectively reduce redundancies in RDF graphs, and
provide effective techniques for RDF graph compression. However, customized en-
gines are required to perform query processing over the compressed RDF graphs,
and decompression techniques are needed during data management. In this the-
sis, we devise factorization techniques that utilize the semantics encoded in the
RDF data. The proposed techniques are able to compactly represent RDF triples,
reduce redundancy, and facilitate data management tasks without requiring any
decompression and a need for a customized engine.

3.2.2 Data Compression based Query Optimization

Factorization techniques have been utilized for optimization of relational data
and SQL query processing [14, 13]. Existing approaches proposed compact rep-
resentations of relational data, obtained by applying logical axioms of relational
algebra, e.g., distributivity of product over union, and commutativity of product
and union. Bakibayev et al. [13] present an in-memory query engine to run select-
project-join queries over factorized data. The query results are expressed using
factorized representations in terms of singleton relations, product, and union. The
compact representations are obtained by algebraic factorization using distributiv-
ity of product over union and the commutativity of product and union. These

44

3.2. Historical Data Representations

factorized representations form a nested structure containing attributes from the
schema, and are referred as factorization tree. A set of operators for selection
and projection are proposed that map the factorized representations and generate
efficient query plans. Similarly, Bakibayev et al. [14] improve the performance of
relational processing for aggregate and ordering queries using the distributivity
of product over union to factorize relations as in the factorization of logic func-
tions [22]. Factorized representations reduce the number of computations required
for the evaluation of aggregation functions, i.e., sum, count, avg, min, max, likewise
evaluation of aggregation functions as sequences of partial aggregations over the
factorized representation speedup the processing. To evaluate order-by-queries,
factorized tables are restructured with a constant delay enumeration. Therefore,
queries can be executed in factorized relational data, and efficient execution plans
can be found to speed up execution time. In this thesis, we build on these ex-
perimental results and proposed factorization technique tailored for semantically
described sensor data. The CSSD approach exploits the semantics encoded in
RDF and sensor data, such that, is able to compactly represent RDF triples, re-
duce redundancy, and facilitate query execution.

3.2.3 Big Data Tools and RDF

With the tremendous growth of semantic data, the problem of storing and
processing large-scale semantic data has become of paramount importance. The
Semantic Web researchers are exploiting Big Data frameworks to efficiently store
and process the continuously growing RDF data [32, 57, 68, 74, 76, 87, 92, 93,
94]. These approaches offer RDF storage and indexing schemes for efficient RDF
data processing over parallel processing frameworks. Mami et al. [68] presents
relational representation of RDF data over Big Data storage technologies, i.e.,
Parquet and MongoDB. Mami et al. [68] create a table for each class in RDF data,
where all class properties are represented as attributes in the table, additionally,
one more table for each class is created and a type column containing type of
each attribute is added. Du et al.[32] combine distributed file storage framework
Hadoop and RDF triple store Sesame to achieve scalable data analysis for RDF.
The Sesame triple store is installed on each Hadoop node and RDF datasets are
partitioned in such a way that all the triples with the same predicate are allocated
to the same partition. Jena-HBase [57] provides a variety of RDF data storage
layouts for HBase and all operations over RDF graph are converted into underlying
layout operations. The RDF storage layouts include the simple (three tables each
with an index over subject, predicate, and object), vertical partitioned, indexed,
vertical partitioned and indexed, hybrid, and hash layouts. Schätzle et al. [94]
utilize Parquet columnar storage format for RDF data storage over Hadoop, and
SPARQL queries are compiled as SQL queries to be executed using Impala. A

45

Chapter 3. Related Work

single table containing all RDF properties as the attributes of the table is used
to store RDF data. Schätzle et al. [93] present PigSPARQL, a SPARQL query
processing framework using Hadoop MapReduce over large RDF graphs. The
proposed data model stores an RDF graph as a collection of RDF triples, where
each triple is represented as a tuple, i.e., subject, predicate, and object, with
schema (s, p, o). RDF triples are converted into the proposed data model on the
fly, and the framework is particularly suited for the ad-hoc query processing.

A scalable RDF data management system that utilizes Accumulo, a Google
Bigtable variant is developed by Punnoose et al. [87]. Punnoose et al. present
storage methods, indexing, and query processing techniques while providing fast
access to the data using conventional query languages, i.e., SPARQL. A pair of a
key and a corresponding value are used to store RDF data. The key consists of
RowID, column and Timestamp. To store RDF data, RDF triples are indexed in
three tables using the permutations, SPO, POS, and OSP, of the triple pattern.
The triples are stored in these three tables in RowID. The storage is compact be-
cause RDF triples are stored only on RowID without storing the data in column,
timestamp, and value fields. Papailiou et al. [76] present an RDF store to effi-
ciently perform distributed Merge and Sort-Merge joins using multiple indexing
over HBase. Indexes are created for all possible combinations of the triple patterns
and are maintained in the key part of the HBase table. Furthermore, indexes are
compressed by using dictionary encoding to map long URIs with the short strings.
Nie et al. [74] study the efficient RDF partitioning and indexing schemes to process
RDF data in distributed way using MapReduce. Horizontal partitioning partitions
RDF data in such a way that all the triples with the common hash value of subject
are contained in the same file. Vertical partitioning combines all the triples with
the same predicate in the same file. Clustered property partitioning organizes
RDF triples with the same subjects and then partitions RDF triples into clusters
using the same property sets. Schätzle et al. [92] present RDF storage schema for
HBase to efficiently process joins using MapReduce. Two tables are used to store
RDF data; one with subject as row key and the other with object as the row key.
HBase filter API filters the data on server side to avoid unnecessary data transfer.

In this thesis, we propose factorization techniques for the RDF sensor data
where the RDF triples related to the redundant values are factorized. The proposed
tabular representations of factorized RDF graphs, i.e., factorized tables and RDF-
MT based tables, scale up to large datasets by leveraging the column-oriented
Parquet storage format for HDFS. The tabular representation of the factorized
RDF graphs remove the data redundancies in the tabular representations and
help in improving the storage and query processing using Big data tools.

46

3.3. Streaming Data Management

3.3 Streaming Data Management

3.3.1 Building Knowledge Graph On-Demand

Rapidly growing amount of data being produced by heterogeneous data sources,
has gained the attention of Semantic Web researchers who focus on adding seman-
tics and providing an integrated view of this gigantic and diverse data. Approaches
such as GoT [82] and FuhSen [26] provide an integrated view of heterogeneous data
sources; they exploit semantics within the data to create an integrated knowledge
graph using Semantic Web technologies. Graph of Things (GoT) [82] addresses
various challenges in data integration posed by dynamic raw IoT data in order
to provide a deeper understanding of data generated by IoT streaming sources.
GoT proposes an architecture to provide an integrated view of heterogeneous data
from multiple disparate data sources, and allows for querying and exploration of
dynamic IoT data sources along with static data. Integrated knowledge graph
includes semantic descriptions of sensor data and data from social media using the
Semantic Sensor Network (SSN) ontology [28] and an extended version of SSN, re-
spectively. GoT utilizes NLP tools to recognize different data entities and extract
metadata about them to provide their contextual information within the unified
knowledge graph. GoT exploits Big Data distributed technologies to handle large
amounts of IoT stream data. A large number of sensors and other IoT devices con-
tinuously produce huge volume of IoT stream data that is many folds larger than
the textual and spatial data. Further, duplicated measurements of sensor data
make IoT stream data more cumbersome when integrated within a knowledge
graph. GoT needs more hardware to store and process these duplicated and con-
tinuously growing streaming data, relevant spatial, and textual data. DESERT,
a framework presented in this thesis, also provides an integrated view of hetero-
geneous data from disparate streaming IoT sources. However, to tackle rapidly
growing IoT stream data DESERT proposes several techniques. Firstly, answer-
ing a user input query might not need all the data produced by the IoT devices,
therefore, DESERT only retrieves and semantifies the data required to answer
user input queries. Secondly, IoT stream data produced by the variety of IoT
devices over time contain duplicated values, e.g., sensors have same measurements
observed over several time stamps. Semantic description of IoT stream data with
duplicated values increases the size of the integrated knowledge graph. DESERT
proposes a factorization approach based on RDF molecules—set of RDF triples
that share the same subject[27]—to reduce the number of duplicated RDF data in
an integrated knowledge graph.

An approach for on-demand knowledge graph generation from heterogeneous
data sources, in response to keyword-based queries, is presented by FuhSen [26].
FuhSen exploits REST APIs provided by the data sources to retrieve entity in-

47

Chapter 3. Related Work

formation corresponding to the input search query. Wrappers over several data
sources run the search query over the data source and retrieve the information
about the entity in form of RDF molecules, where an RDF molecule is a set of
RDF triples describing the entity. FuhSen interlinks RDF molecules using RDF
molecules based clustering approach to create a fused and universal representation
of the entities whose information is retrieved from more than one data sources. A
weighted bipartite graph of RDF molecules is created, where weights correspond
to the semantic similarity between the RDF molecules. Based on the sum of the
values of edges weights the maximum value is taken to identify the matched RDF
molecules. Once the similar RDF molecules are identified, they are integrated
into a knowledge graph. FuhSen generates an on-demand knowledge graph and
resorts to RDF molecules based semantic similarity measures for semantic data
integration. However, a large number of data sources might have duplicated in-
formation among RDF molecules, impacting thus the size of the knowledge graph.
Similarly, DESERT creates on-demand knowledge graph from heterogeneous data
(IoT) sources; nevertheless, DESERT exploits factorization techniques to reduce
duplicated data in the knowledge graph. DESERT relies on transformation rules
to generate factorized data from IoT stream data, producing all query answers.

3.3.2 Query Processing for Streaming Data

Large number of ubiquitous IoT devices, e.g., sensors, mobile phones, and
location tracking devices, are generating stream data continuously. Processing
of this rapidly and continuously arriving IoT stream data is crucial in order to
extract useful information generated by these devices. Several RDF stream pro-
cessing engines, C-SPARQL [15] and CQELS [81], have been developed to pro-
vide query execution over Linked Stream Data. C-SPARQL executes C-SPARQL
queries [17] over streams of RDF data; it utilizes already existing Data Stream
Management Systems (DSMS) [39] and a SPARQL-based reasoner. To effectively
integrate DSMS and SPARQL technologies, C-SPARQL decomposes and trans-
forms C-SPARQL queries into inputs corresponding to each of these technologies.
C-SPARQL registers an RDF stream and C-SPARQL query to start stream data
processing. The input C-SPARQL query is decomposed and translated into a
dynamic and a static query, against a DSMS and SPARQL query engine, respec-
tively. The static query retrieves the data from the SPARQL reasoner, while the
dynamic query is registered and executed in the DSMS. The knowledge extracted
from both systems is joined continuously within the streaming window to generate
the results. CQELS provides a query execution framework for continuous RDF
streaming data. CQELS utilizes data encoding techniques, where RDF elements
are mapped to integers, to store more data in-memory. However, RDF stream data
arriving at high rate might cause problems while encoding. Although C-SPARQL

48

3.4. Summary

and CQELS engines provide RDF stream data processing, the rapidly growing
amount of IoT stream data demands novel optimization techniques to process
large amount of data within the streaming window. In this thesis we implement
a continuous SPARQL query engine, DESERT, that implements on-demand se-
mantification techniques, which reduce the amount of stream data being fed to
the continuous query engine. The semantics of the data required to answer the
input continuous query are described in the knowledge graph. More importantly,
DESERT resorts to factorization techniques to minimize a knowledge graph size
within the streaming window, by reducing the number of duplicated values in IoT
stream data. Therefore, the continuous streaming engine receives relatively smaller
knowledge graph size to execute an input continuous query.

3.4 Summary
Subject to the above-mentioned analysis of the existing approaches, this thesis

focuses on techniques for the detection of frequent star patterns that are shared
among several entities in knowledge graphs. These techniques should be able to
efficiently identify frequent star patterns with highest instantiations. Furthermore,
we want to exploit the frequent star patterns to generate efficient representations
of knowledge graphs while the semantics encoded in the data are preserved. The
representations of observational data and their meaning should be able to improve
the data storage and processing over different data models and Big Data tools.
More importantly, efficient semantic description techniques for the rapidly gener-
ated streaming observational data are required. These techniques should be able
to answer continuous queries over data streams in an effective and efficient way.

49

Chapter 4

Compact Representations

Nowadays, there is a rapid increase in the number of observational data pro-
duced by a wide variety of IoT sensors and devices. Observational data contain
observations that are characterized by certain properties and corresponding val-
ues. In real-world applications, several observations are redundant, i.e., they share
the same values for a certain set of properties. Representations of such observa-
tions and their meaning provide actionable insights; however, these representations
tremendously increase the size of data. Knowledge graphs have become a popular
formalism for representing entities and their properties using a graph data model,
e.g., the Resource Description Framework (RDF). An RDF graph comprises en-
tities of the same type connected to objects or other entities using labeled edges
annotated with properties. RDF graphs usually contain entities that share the
same objects in a certain group of properties, i.e., they match star patterns com-
posed of these properties and objects. In case the number of these entities or
properties in these star patterns is large, the size of the RDF graph and query
processing are negatively impacted; we refer these star patterns as frequent star
patterns. In this chapter, we address the problem of identifying redundant obser-
vations by detecting frequent star patterns in RDF knowledge graphs describing
historical data. Figure 4.1 shows the challenge we tackle in this chapter and the
contribution to address the challenge. The content of this chapter is based on the
publication [53] and the research work that is under review. The results of this
chapter provide an answer to the following research question:

RQ1: What are the criteria to identify frequent star patterns?

To answer this research question, we devise the concept of factorized RDF
graphs, which denote compact representations of RDF graphs where the number
of frequent star patterns is minimized. We also develop computational methods to
identify frequent star patterns and generate a factorized RDF graph, where compact

51

Chapter 4. Compact Representations

Query Engines Analytics

Sensors Clinical
Devices

Semantic Description

Data Integration
and

Compact Representations

Web Services

Data Processing and Analytics

Streaming Observational Data Historical Semantic Sensor Data

Computational methods to
identify frequent star patterns

CH1: Frequent star patterns
detection

Figure 4.1: Challenges and Contributions. This chapter addresses the problem
of frequent star patterns detection in RDF knowledge graphs representing historical
data, and provides computational methods to identify frequent star patterns.

RDF molecules replace frequent star patterns. A compact RDF molecule of a
frequent star pattern denotes an RDF subgraph that instantiates the corresponding
star pattern. Instead of having all the entities matching the original frequent star
pattern, a surrogate entity is added and related to the properties of the frequent
star pattern; it is linked to the entities that originally match the frequent star
pattern. Since the edges between the entities and the objects in the frequent star
pattern are replaced by edges between these entities and the surrogate entity of
the compact RDF molecule, the size of the RDF graph is reduced. We devise
computational methods for factorizing RDF graphs. The specific contributions of
this chapter are as follows:

• Criteria for detecting frequent star patterns;

• Factorization techniques compacting frequent star patterns in RDF graphs.
We have presented two algorithms: An exhaustive approach (named E.FSP)
searches the space of frequent patterns produced by an algorithm like gSpan,
to identify frequent star patterns. Further, G.FSP implements a Greedy
meta-heuristics that is able to traverse the space of star patterns and identify
the ones that are frequent. Star patterns are traversed in iterations, starting
with the star patterns with the largest number of properties. The criteria of
frequent star patterns correspond the stop criteria of the algorithm.

• An empirical study of both the frequent star patterns detection and factoriza-

52

4.1. Motivating Example

tion techniques using existing benchmarks. Experimental results show that
both E.FSP and G.FSP identify frequent star patterns. Moreover, G.FSP
overcomes E.FSP by reducing execution time in at least three orders of mag-
nitude. More importantly, the experiments indicate that factorizing frequent
star patterns by using surrogate keys enable for the creation of compact RDF
graphs that reduce size while preserving the information in RDF graphs.

This chapter is structured as follows: We motivate our research in Section 4.1
by illustrating an RDF knowledge graph where entities of a class are associated
with objects using certain properties of the class. Some of these properties and the
relevant objects are redundantly shared by these entities, generating redundancies
in the RDF graph. In Section 4.2 we present RDF graph factorization approach.
To address the research questionRQ1, we develop computational methods to iden-
tify frequent star patterns. Furthermore, we devise the concept of factorized RDF
graphs which are compact representations of RDF graphs with a minimized num-
ber of frequent star patterns. Section 4.3 reports on the results of the experimental
study. We use existing benchmarks to evaluate the efficiency and effectiveness of
the proposed techniques. The results suggest that the proposed techniques for de-
tecting frequent star patterns are able to effectively and efficiently identify frequent
star patterns in RDF graphs. Moreover, the proposed factorization techniques are
able to considerably reduce the size of an RDF graph while preserving all the in-
formation initially represented in the RDF graph. Finally, we present the closing
remarks of this chapter in Section 4.4.

4.1 Motivating Example

We motivate the problem addressed in this chapter with an RDF graph where
entities of the same type – or resources – match the same star pattern. In an RDF
graph, matching the same star pattern means that the properties and objects
are the same, whereas the entities are different. When the number of entities
matching a star pattern is soaring, the size of the RDF graph increases and the
query processing over the RDF graph is affected negatively. A star pattern with a
high number of matching entities is a frequent star pattern. Figure 4.2a depicts an
RDF graph composed by a class C, the entities c1, c2, c3, c4, e1, e2, e3, e4, e5, and
e6, and the properties p1, p2, p3, and p4. A directed edge (s p o) in the RDF graph
stands for an RDF triple where p is a label that represents an RDF predicate,
while s and o are subject and object nodes, respectively. Edges labeled with the
predicate type1, indicate that c1, c2, c3 and c4 are of the same type, i.e., the class C.

1property type refers to rdf:type

53

Chapter 4. Compact Representations

c1 e1

c2

c3

c4

e2

e3

C

e5

e4

e6

p1

p2

p3

p1

p2

p3

p1

p2

p3p3

p2

p1

p4

p4
p4

p4

type

typetype

type

(a) An RDF Graph G

c1

e1
c2

c3

c4 e2
e3

p1
p2

p3

p1

p2

p3

p2p2

p3

p3

p1

p1e1
e2
e3

e1
e2
e3

e1
e2
e3

(b) Entities in the Graph Pattern

p1

p3

p2?x

e1

e2

e3
(c) A Star Pattern

Figure 4.2: Motivating Example. Frequent star pattern. (a) RDF graph with
classes, entities, and properties; (b) Entities c1, c2, c3, and c4 are related to e1, e2,
and e3 with properties p1, p2, and p3, respectively; (c) A star pattern with subject
variable ?x, respectively, relates e1, e2, and e3 with properties p1, p2, and p3.

The directed edge (c1 p1 e1) expresses that the entity c1 is related to object e1 with
the property p1. Similarly, entities c2, c3, and c4 are related to object e1 with the
property p1, i.e., the indegree of e1 is four. Similarly, entities c1, c2, c3 and c4 are
related to e2 and e3 with the properties p2 and p3, respectively. Note that entities
c1, c2, c3, and c4 are associated with the same objects, i.e., e1, e2 and e3 through the
edges annotated with same properties p1, p2, and p3. Albeit sound, these redundant
labeled edges generate frequent star patterns because entities of the same type are
described using the same properties and objects. Figure 4.2b illustrates the RDF
subgraphs that map to the same star pattern, shown in Figure 4.2c, extracted
from the RDF graph in Figure 4.2a; note that ?x is a variable whose instantiations
correspond to constants in the RDF graph. In these RDF subgraphs, the properties
p1, p2, and p3, and the corresponding objects e1, e2, and e3, respectively, are the
same, whereas the entities c1, c2, c3, and c4 are different. This indicates that
the star pattern is a frequent star pattern, i.e., several entities c1, c2, c3, and c4
instantiate the star pattern. Thus, several entities are related to the same objects,
even not all the properties of the class are involved in frequent star patterns.
A frequent star pattern comprising the entities c1, c2, c3, and c4 is illustrated
in Figure 4.2c, where the node ?x represents the entities c1, c2, c3, and c4 of
class C in the RDF graph in Figure 4.2a. gSpan [105] solves the problem of
identifying the frequent subgraphs that involve same subject entities related to
the same object values using a set of properties. However, the approach proposed
in this chapter requires the identification of frequent star patterns, where each
star pattern– with a subject variable–involves different subject entities related to
the same object values using a set of properties. Figures 4.3a ,4.3b, and 4.3c
show some of the subgraphs extracted by gSpan involving entities c1 and c4 ,
and the sets of properties containing four, three, and two properties, respectively,

54

4.2. RDF Graph Factorization Approach

c1

e1

e2

e3

e4

p1
p2
p3

p4

c4

e1

e2

e3

e6

p1
p2
p3

p4

(a) Subgraphs per 4 Properties

c1

e1
e2

e3

p1 p2

p3

c1

e1
e3

e4

p1 p3

p4

c4

e1
e2

e3

p1 p2

p3

c4

e1
e3

e6

p1 p3

p4

(b) Subgraphs involving
three Properties

c1
e1

e2

p1

p2

c1
e1

e4

p1

p4

c1
e2

e4

p2

p4

c4
e1

e2

p1

p2

c4
e1

e4

p1

p4

c4
e2

e4

p2

p4

(c) Subgraphs involv-
ing two Properties

Figure 4.3: Graph Patterns Identified by gSpan. Subgraphs, involving en-
tities c1 and c4, extracted by gSpan from the RDF graph in Figure 4.2a.(a) Sub-
graphs per set {p1, p2, p3, p4} of properties; (b) Subgraphs over three properties
from p1, p2, p3, and p4; (c) Subgraphs over two properties from p1, p2, p3, and p4.

from the RDF graphs in Figure 4.2a. gSpan exhaustively enumerates the frequent
subgraphs; thus, finding frequent star patterns requires an exhaustive search over
the generated frequent subgraphs. In this chapter, we exploit the RDF model and
propose a technique that allows for transforming an RDF graph G into another
RDF graph G′ where the number of frequent star patterns is minimized. The
graph G′ includes all the nodes from G but additionally, G′ comprises nodes that
represent factorized entities– like the one in Figure 4.5c.

4.2 RDF Graph Factorization Approach

4.2.1 Problem Statement

Star patterns denote graph patterns covering RDF molecules:

Definition 4.2.1 (Star Pattern). Given is an RDF graph G = (V,E, L), a class
C in V and a set of properties SP = {p1, p2, . . . , pn} such that C is the domain of
all the properties in SP . Let entities o1, o2, . . . , on be the objects of the properties
p1, p2, . . . , pn, respectively. Let ?s be a variable. A star pattern of C over the
properties p1, p2, . . . , pn and objects o1, o2, . . . , on corresponds to a graph pattern
composed of the conjunction of triple patterns: (?s p1 o1),(?s p2 o2), . . . , (?s pn on).

Example 4.2.1. Figure 4.2c shows a star pattern composed of three triple patterns
containing properties p1, p2, and p3 and the corresponding objects e1, e2, and
e3, respectively. The entities c1, c2, c3, and c4 of class C in the RDF graph in
Figure 4.2a match the star pattern. The variable ?x is the subject of the triple
patterns referring to the entities matching the star pattern.

55

Chapter 4. Compact Representations

Definition 4.2.2 (Class Multiplicity). Given an RDF graph G = (V,E, L), a class
C in E and a set of properties SP = {p1, p2, . . . , pn} such that C is the domain
of all the properties in set SP of properties. Let entities o1, o2, . . . , on be objects of
the properties p1, p2, . . . , pn, respectively. The multiplicity of o1, o2,. . . , on in G,
M(o1, o2, . . . , on|G) is defined as the number of different entities in C that match
a star pattern having the same objects o1, o2, . . . , on in the properties p1, p2, . . . , pn.
Entities s correspond to instantiations of the subject variable in the star pattern.

M(o1, o2, . . . , on|G) = |{s| (s :type C) ∈ G, (s p1 o1) ∈ G, (s p2 o2) ∈ G, . . . ,
(s pn on) ∈ G}|

Example 4.2.2. In the RDF graph in Figure 4.2a, the multiplicity of the objects
e1, e2 and e3, given the set {p1, p2, p3} of properties, is 4, because there are four
instantiations of the subject variable. Similarly, the multiplicity of objects e4, e5
and e6, in the set {p4} of properties is 1 and 2.

Definition 4.2.3 (Class Multiplicity Inverse). Given class C, a set SP = {p1, p2, . . . ,
pn} of properties and corresponding objects o1, o2,. . . , on, the multiplicity inverse
of o1, o2,. . . , on in G, denoted MI(o1, o2, . . . , on|G), is:

MI(o1, o2, . . . , on|G) = 1/M(o1, o2, . . . , on|G)

Example 4.2.3. In the RDF graph in Figure 4.2a, the class multiplicity inverse
of the objects e1, e2, and e3, given the set {p1, p2, p3} of properties, is 1

4
. The

multiplicity inverse of objects e4, e5, and e6 in the set {p4} is 1
1
and 1

2
.

Definition 4.2.4 (Multiplicity of Star Patterns). Given a class C in an RDF
graph G with properties SP = {p1, p2 . . . , pn}. The multiplicity of the star patterns
in C over SP , AMIG(p1, p2, . . . , pn|C), is defined as follows:

AMIG(p1, p2, . . . , pn|C) = df ′∀s∈C({MI(o1, o2, . . . , on|G)|(s type C) ∈ G,
(s p1 o1) ∈ G, (s p2 o2) ∈ G, . . . , (s pn on) ∈ G})e

where f ′(.) is an aggregation (e.g., summation) function.

Example 4.2.4. In the RDF graph in Figure 4.2a, the multiplicity of the star
patterns of C over the set {p1, p2, p3} of properties is 1

4
+ 1

4
+ 1

4
+ 1

4
= 1, which

is obtained by summing up the class multiplicity inverse of the objects e1, e2, and
e3 given the set {p1, p2, p3} of properties, for each entity c1, c2, c3, and c4 of class
C matching the star pattern. Similarly, the multiplicity of the star patterns of
class C over the set {p4} is 1

2
+ 1

2
+ 1

1
+ 1

1
= 3 in the RDF graph, and is obtained

by summing up the individual class multiplicity inverse of objects e4, e5, and e6
given the set {p4}, for each of the entities c1, c2, c3, and c4 of class C that map
the corresponding star patterns. The multiplicity of the star patterns over a set
of properties corresponds to the number of star patterns composed of the set of
properties and the corresponding objects.

56

4.2. RDF Graph Factorization Approach

c1

e1

c2

e2
e3

C

e4

type
type

p1
p1p2
p2p3

p3p4
p4

c3

e1
e2
e3
e5

p1

p2

p3

p4

type
type

c4

e1
e2
e3
e6

p1

p2

p3

p4

A
M
I G
(S
S
|C
)=
3

S={p1,p2,p3,p4}
SS=S
#Edges(SS,C,G)=15

(a) #Edges(SP,C,G)
over p1,p2,p3, and p4

A
M

I G
(S

S
’|C

)=
1

 S={p1,p2,p3,p4}
SS’={p1,p2,p3}
#Edges(SS’,C,G)=8

c1 e1

c2

c3

c4

e2

e3

C

e5

e4

e6

p1

p2

p3

p1

p2

p3

p1

p2

p3p3

p2

p1

p4

p4
p4

p4

type

typetype

type

p1

p3

p2?s

e1

e2

e3
Frequent Star Pattern

(b) #Edges(SP,C,G) over
properties p1,p2, and p3

c1

c2

c3

c4

p1

p3

p2

C

ty
pe

cM

e1

e2

e3
e6

e4

e5

p4

p4

p4

p4

instanceO
f

instanceOf
instanceOf

in
st
an
ce
O
f

Compact RDF
Molecule

(c) Factorized Graph G′ from G

Figure 4.4: The Frequent Star Patterns Detection Problem. Properties in-
volved in frequent star patterns. (a) Star patterns over the set SS = {p1, p2, p3, p4}
of properties in class C require three surrogate entities and #Edges(SS,C,G) are
15; (b) Star patterns over the set SS ′ = {p1, p2, p3} of properties in class C re-
quire one surrogate entitiy and #Edges(SS ′, C,G) are eight; (c) A factorized RDF
graph G′ of G composed of compact RDF molecule with a surrogate entity cM .

The problem of frequent star patterns detection is defined next, the solutions
correspond to frequent star patterns. We define the frequent star patterns detec-
tion problem as the minimization of connections between a class instances and
values linked through the properties. To find the minimum number of edges over
the properties in a class, the sum of the number of edges in the star patterns over
a set of properties and the number of edges between the class entities and the
properties that are not involved in the star patterns is computed.

Definition 4.2.5 (FSP Detection Problem). Given an RDF graph G = (V,E, L)
and a class C in G with set of properties S and number of instances AMG(C). The
problem of Frequent Star Patterns Detection (FSP Detection) is to find a subset
SP of S such that the star patterns SGP of C over SP corresponds to frequent
star patterns, i.e., #Edges(SP,C,G) is minimized:

arg min
SP⊆S

{AMIG(SP |C) ∗ (|SP |+ 1) + AMG(C) ∗ (|S − SP |)︸ ︷︷ ︸
#Edges(SP,C,G)

} (1)

Example 4.2.5. Figure 4.4 depicts the problem of detecting frequent star pat-
terns from the RDF graph in Figure 4.2a. Figure 4.4a presents three star patterns
AMIG(SS|C) over p1, p2, p3, and p4, and 15 edges in #Edges(SS,C,G). How-
ever, only one star pattern AMIG(SS ′|C) over the properties p1, p2, and p3 exists

57

Chapter 4. Compact Representations

c1

c2

c3

c4

cM

µNµN
µN
µN

(a) µN from G into G′

c1

c2

c3

c4

C

C

C

C type

type

type

type cM

cM

cM

cM

c1

c2

c3

c4

instanceOf

instanceOf

instanceOf

instanceOf

(b) type G into instanceOf G′

p1

p3

p2

C

ty
pe

cM

e1

e2

e3
(c) A Compact RDF
Molecule

Figure 4.5: The RDF Graph Factorization Problem. Factorization of RDF
graph G into G′. (a) Entity mappings µN from the RDF graph G in 4.2a to the
surrogate entity cM in G′; (b) Transformation of property type from G to G′; (c)
A compact RDF molecule for the frequent star pattern over p1, p2, and p3.

in Figure 4.4b. A small value of #Edges(SS ′, C,G) i.e., eight, shows a subgraph
over SS ′ that is represented by only one star pattern with more instantiations than
the star patterns for SS, i.e., it is a frequent star pattern. Thus, the set SP of
properties where #Edges(SP,C,G) is minimal, encloses a subgraph with the min-
imal number of star patterns which have the maximal number of instantiations;
additionally, these star patterns are the ones with the greater number of proper-
ties. Figure 4.4c shows the factorized RDF graph where this frequent star pattern
has been replaced with a compact RDF molecule on a surrogate entity cM ; this
factorization reduces the size of the original RDF graph.

Theorem 4.2.1. Given an RDF graph G, a class C in G, and non-empty sets of
properties S, SP , and SP ′ of C such that SP ′ ⊂ SP ⊂ S. If #Edges(SP ′, C,G) >
#Edges(SP,C,G), then ∀SP ′′ ⊂ SP ′, #Edges(SP ′′, C,G) ≥ #Edges(SP,C,G).

Proof. By contradiction. Suppose #Edges(SP ′′, C,G) < #Edges(SP,C,G). From
#Edges(SP ′, C,G) > #Edges(SP,C,G) and SP ′ ⊂ SP ⊂ S, it can be inferred
that AMIG(SP |C) < AMG(C), AMIG(SP ′|C) < AMG(C), |SP ′′| < |SP ′| <
|SP | < |S|, |SP − SP ′′| ≥ 2, and AMIG(SP ′′|C) < AMG(C). Considering these
inequalities in #Edges(SP ′′, C,G) and #Edges(SP,C,G), we can demonstrate
that #Edges(SP ′′, C,G) is at least greater than #Edges(SP,C,G) in 2∗AMG(C),
contradicting, thus, #Edges(SP ′′, C,G) < #Edges(SP,C,G).

Definition 4.2.6 (A Compact RDF Molecule). Given a star pattern SGP of a
class C over the properties p1, p2, . . . , pn and objects o1, o2, . . . , on. Given a surro-
gate entity sg of type C. A compact RDF molecule for SGP is an RDF molecule
composed of RDF triples (sg p1 o1),(sg p2 o2),. . . ,(sg pn on).

58

4.2. RDF Graph Factorization Approach

Example 4.2.6. Figure 4.5c shows a compact RDF molecule that instantiates the
star pattern presented in Figure 4.2c, which is composed of the properties p1, p2,
and p3 and the corresponding objects e1, e2, and e3, respectively. The surrogate
entity cM in the compact RDF molecule, represents the entities c1, c2, c3, and c4
of type C matching the star pattern, as shown in Figure 4.2b.

Definition 4.2.7 (The RDF-F Problem). Given an RDF graph G = (V,E, L) and
a set of properties SP , the problem of RDF factorization (RDF-F) corresponds to
finding a factorized RDF graph of G, G′ = (V ′, E ′, L′), where the following hold:

• Entities in G are preserved in G′, i.e., V ⊆ V ′.

• For each entity si in V that corresponds to an instantiation of the variable
of a frequent star pattern SGP of a class C over the set SP in G, there is
an entity sSGP in V ′ that corresponds to the surrogate entity of the compact
RDF molecule of SGP . Formally, there is a partial mapping µN : V → V ′:

– Instances of the frequent star pattern SGP are mapped to the surrogate
entity of the star pattern, i.e., µN(si)=sSGP .

– The mapping µN is not defined for the rest of the entities that do not
instantiate a frequent star pattern in G.

• For each RDF triple t in (s p o) in E:

– If µN(s) is defined and Cs is the type of s, and p is type, then the triples
(s instanceOf µN(s)), (µN(s) type Cs) belong to E ′.

– If µN(s) is defined and Cs is the type of s, and p ∈ SP , then the triples
(µN(s) p o) belong to E ′.

– Otherwise, the RDF triple t is preserved in E ′.

Example 4.2.7. Consider RDF graphs G and G′ shown in Figures 4.2a and 4.4c,
respectively. Figure 4.5a depicts a map µN that assigns entities c1, c2, c3, and
c4 of class C in G to the surrogate entity cM in G′. Further, entities c1, c2, c3,
c4, C, e1, e2, e3, e4, e5, and e6 are preserved in G′. Moreover, the edge labeled
with property p1 in G, i.e., (c1 p1 e1) is presented with edges (c1 instanceOf cM),
(cM p1 e1) and (cM type C) in G′; similarly, edges labeled with properties p2
and p3 in G are represented in G′. Figure 4.5b shows the transformations of the
connections between entities c1, c2, c3, and c4 and the class C using labeled edges
annotated with property type, with the connections relating the entities c1, c2, c3,
and c4 to the corresponding surrogate entity cM using the property instanceOf .

Definition 4.2.8 (Axioms for InstanceOf). The property instanceOf is a func-
tional property defined as follows:

59

Chapter 4. Compact Representations

• If (si instanceOf sg) and (sg type C) then (si type C).

• If (si instanceOf sg) and (sg pj ok) then (si pj ok).

These two axioms enable to represent implicitly, all the knowledge encoded in
the edges from an original RDF graph that are removed during the factorization
process. They are utilized during query processing to rewrite queries over the
original RDF graph into queries against the factorized RDF graph.

4.2.2 FSP Detection Approach

Algorithm 1 E.FSP Algorithm

Input: A dictionary subgraphsDict of subgraphs over the subsets of properties in
S, A set S of properties of class C.

Output: Frequent star patterns fsp, A set SP of properties
1: fsp← [], SP ← ∅, minEdges← 0, subsetCard← |S|
2: while subsetCard ≥ 2 do
3: propSets← getSubsetsOf(S, subsetCard)
4: for SP ∈ propSets do
5: subgraphs← subgraphsDict[SP]
6: totalEdges← countEdges(subgraphs)
7: if minEdges == 0 then
8: minEdges← totalEdges
9: fsp← subgraphs
10: bestSP← SP
11: else if totalEdges < minEdges then
12: minEdges← totalEdges
13: fsp← subgraphs
14: bestSP← SP
15: end if
16: end for
17: subsetCard← subsetCard− 1
18: end while
19: SP ← bestSP
20: return fsp, SP

To solve the FSP detection problem, we propose two algorithms that perform
iterations over frequent patterns involving different sets of properties sets of a class
C in an RDF graph G, and the class entities. E.FSP, presented in Algorithm 1,

60

4.2. RDF Graph Factorization Approach

resorts to a frequent pattern mining algorithm like gSpan. E.FSP exploits breadth
first search technique to exhaustively traverse the search space of frequent patterns
generated by the frequent pattern mining algorithm, and always finds the best fre-
quent star patterns. Figure 4.6a illustrates the iterations performed by E.FSP to
find the frequent star patterns in the RDF graph in Figure 4.2a. E.FSP receives a
dictionary subgraphsDict of all the subgraphs over the subsets of the set S of prop-
erties in the class C in an RDF graph G. The keys of the dictionary subgraphsDict
are the combination of properties in the subsets of S, and the dictionary values
are the subgraphs involving the properties from the corresponding keys. E.FSP
generates frequent star patterns and a set of properties involved in the frequent
star patterns. E.FSP initializes the variables fsp, SP , minEdges, and subsetCard
in line 1. The variables minEdges and subsetCard are initialized with values 0
and cardinality of S, respectively. From lines 2-18, E.FSP iterates over all the
subgraphs involving two or more properties to find the frequent star patterns. In
Figure 4.6a, E.FSP starts iterations with the set of properties SP = {p1, p2, p3, p4},
and the subgraphs involving the properties in subsets of SP , where the cardinal-
ity of subsets is equal to the cardinality of S, i.e., four (line 3). The generated
subset contains all the properties in SP , i.e., {p1, p2, p3, p4}, and the total number
of edges totalEdges in SP is computed, i.e., 16 (line 5-6). Since minEdges are
0, therefore, the value 16 of totalEdges is assigned to minEdges, subgraphs over
SP = {p1, p2, p3, p4} and SP are assigned to fsp and bestSP , respectively (line
7-10). At line 17, the subset size subsetSize is reduced by one in order to gen-
erate the subsets of properties of S with the cardinality one less the cardinality
of S, i.e., three. The subsets {p1, p2, p4}, {p1, p3, p4}, and {p2, p3, p4}, of cardi-
nality three, generate more number of edges, i.e., value of totalEdges is 17, than
the minimum number of edges minEdges, i.e., 16, and are not selected as the best
sets of properties. However, the subgraphs over the subset {p1, p2, p3} contain 11
number of triples, which is less than 16 the value of minEdges. Therefore, E.FSP
selects {p1, p2, p3} as the best set of properties and the corresponding subgraphs
as the frequent star patterns (line 11-15). Once all the subsets SP of S with car-
dinality three, are evaluated, the value of subsetCard is reduced by one, i.e., two,
and the subsets of cardinality two are evaluated in the next iteration. Figure 4.6a
presents that all the subsets of cardinality two generate larger values, i.e., 14 and
18, for totalEdges than the value 11 for minEdges. Therefore, none of the sub-
sets of properties of cardinality two contains the frequent star patterns. Further,
all the subsets of cardinality greater or equal to two have been evaluated, E.FSP
stops and returns {p1, p2, p3} as the best set of properties and the corresponding
subgraphs as the frequent star patterns (line 19-20).

61

Chapter 4. Compact Representations

Algorithm 2 G.FSP Algorithm

Input: A set S of properties of class C in G, and a list starList of star patterns
over properties in S.

Output: Frequent star patterns fsp, A set SP of properties.
1: fsp← [], starList′ ← [], SP ← S, SP ′ ← ∅, fValue← fValue′ ← 0
2: repeat
3: if |SP | ≥ 2 then
4: if AMIG(SP |C) == 1 then
5: fsp← starList
6: return fsp, SP
7: else
8: fValue← #Edges(SP,C,G)
9: for p ∈ SP do
10: SP ′ ← SP − {p}
11: if |SP ′| ≥ 2 then
12: Create starList′ over SP ′ using starList
13: value← #Edges(SP ′, C,G)
14: if AMIG(SP ′|C) == 1 then
15: fValue′ ← value
16: bestSP← SP ′

17: bestSList← starList′

18: break
19: else if value < fValue′ then
20: fValue′ ← value
21: bestSP← SP ′

22: bestSList← starList′

23: end if
24: end if
25: end for
26: end if
27: end if
28: starList← bestSList, SP ← bestSP
29: until fValue′ > fValue
30: fsp← starList
31: return fsp, SP

G.FSP, presented in Algorithm 2, adopts a greedy approach to traverse the
search space without generating all the frequent patterns. G.FSP starts iterations
using a set SP of properties containing all the properties in S of a class C in

62

4.2. RDF Graph Factorization Approach

p1,p2,p3,p4
e1,e2,e3,e42
e1,e2,e3,e51
e1,e2,e3,e61

p1,p2,p3
e1,e2,e34

p1,p2,p4
e1,e2,e42
e1,e2,e51
e1,e2,e61

p1,p3,p4
e1,e3,e42
e1,e3,e51
e1,e3,e61

p2,p3,p4
e2,e3,e42
e2,e3,e51
e2,e3,e61

totalEdges=16

p1,p2
e1,e24

p1,p3
e1,e34

p2,p3
e2,e34

p1,p4
e1,e42

p3,p4
e3,e42

p2,p4

e1,e51
e1,e62

e3,e51
e3,e61

e2,e42
e2,e51
e2,e61

totalEdges=11

totalEdges=17 totalEdges=17 totalEdges=17

totalEdges=14totalEdges=14totalEdges=14

totalEdges=18 totalEdges=18 totalEdges=18

(a) Exhaustive FSP Approach (E.FSP)

p1,p2,p3,p4

e1,e2,e3,e42
e1,e2,e3,e51
e1,e2,e3,e61

p1,p2,p3

e1,e2,e34

p1,p2,p4

e1,e2,e42
e1,e2,e51
e1,e2,e61

p1,p3,p4

e1,e3,e42
e1,e3,e51
e1,e3,e61

p2,p3,p4

e2,e3,e42
e2,e3,e51
e2,e3,e61

#Edges(SP,C,G)= 15

#Edges(SP,C,G)= 08

#Edges(SP,C,G)= 16 #Edges(SP,C,G)= 16 #Edges(SP,C,G)= 16

(b) Greedy FSP Approach (G.FSP)

Figure 4.6: Frequent Star Patterns Detection. E.FSP and G.FSP iterate over
the star patterns in the RDF graph in Figure 4.2a to detect the frequent star pat-
terns. (a) E.FSP exhaustively iterates the whole search space of frequent patterns;
(c) G.FSP iterates the search space without generating all the star patterns.

an RDF graph G. G.FSP computes the Formula 1 value for SP and iterates
over the subsets SP ′ of cardinality one less the cardinality of SP and computes
Formula 1 for each of subsets SP ′. A set SP ′ with a smaller formula value than
the formula value of SP , is selected as the best set of properties in that iteration,
and is used in the next iteration to check the subsets of cardinality one less the
cardinality of the selected set. The iterations are performed until the cardinality of
the selected subset of properties is less than two. Based on the property presented
in Theorem 4.2.1, G.FSP stops, if none of the subsets SP ′ generates less value
for formula than the formula value of SP . In addition, G.FSP stops whenever
the cardinality of the set of properties is less than two, or the multiplicity of star
patterns AMIG(SP |C) is one. G.FSP receives a set S of properties in class C in
an RDF graph G, and a list starList of star patterns involving properties in S.
G.FSP returns frequent star patterns fsp and a set of properties SP involved in
the frequent star patterns. Figure 4.6b shows the iterations performed by G.FSP
to detect the frequent star patterns in the RDF graph in Figure 4.2a. G.FSP
initializes all the variables at line 1, where SP is assigned the set S of properties
for the first iteration, i.e., SP = {p1, p2, p3, p4}. In lines 2-29, G.FSP iterates
over the subsets of SP to find the frequent star patterns based on the criteria
in Formula 1. The cardinality value four of SP is greater than two (line 3), and
AMIG(SP |C) is not equal to one (line 4-7), therefore, G.FSP computes the value
of #Edges(SP,C,G) of SP , i.e., 15 (line 8). In lines 9-25, G.FSP iterates over
the subsets of SP of cardinality one less the cardinality of SP to find the best
set of properties for the next iteration. At line 10, a property p is removed from

63

Chapter 4. Compact Representations

SP to generate a subset SP ′, e.g., by removing p1 a subset SP ′ = {p2, p3, p4} is
generated. Since the cardinality of SP ′ is more than two, therefore, a star list
starList′, representing the star patterns over SP ′, is created using starList (line
12-13). The value of #Edges(SP ′, C,G) for SP ′ is computed, i.e., 16 (line 13).
For SP ′, AMIG(SP ′|C) is not one, and the value 16 of #Edges(SP ′, C,G) for
SP ′ is not less than the value 15 of #Edges(SP,C,G) for SP , therefore, the star
patterns over SP ′ = {p2, p3, p4} do not involve frequent star patterns and SP ′ is
not a best candidate for the next iteration. Similarly, the subsets {p1, p3, p4} and
{p1, p2, p4}, of SP by removing p2 and p3, respectively, give a higher value 16 for
#Edges(SP ′, C,G) and the star patterns over these set of properties are not better
than the star patterns over SP . However, SP ′ = {p1, p2, p3}, generated from SP by
removing p4, gives one star pattern, therefore, the star pattern involving properties
in SP ′ is returned as the frequent star pattern without performing more iteration
(line 14-18). In case, the set SP ′ is involved in more than star patterns and the
formula value of SP ′ smaller than the value of SP , then SP ′ is selected for the
next iteration (line 19-23). G.FSP stops and no further iterations are performed
if none of the subsets SP ′ of SP generates a smaller value for #Edges(SP ′, C,G)
than #Edges(SP,C,G). G.FSP returns the star patterns involving SP , with a
minimum value for #Edges(SP,C,G), as the frequent star patterns, and SP as the
best set of properties. E.FSP and G.FSP work under the following assumptions:
(a) all RDF molecules are complete, i.e., all class entities have values for all the
properties, (b) all the properties are functional. In addition to these assumptions,
G.FSP has one more assumption: (c) if there are ties while deciding between the
sets of properties, only one will be selected. Complexity of E.FSP is exponential,
i.e., 2n. G.FSP adopts a Greedy approach and prunes the search space by selecting
only the best set of properties during each iteration until the stop condition is met,
i.e., no better set of properties with a minimum formula value can be found. In
the worst case, the computational complexity of G.FSP is

∑n
i=0(n − i)=n(n+1)

2
,

where n is the cardinality of the input set of properties. The complexity of G.FSP
grows linearly with the increase in the size of the input set of properties.

4.2.3 A Factorization Approach

Algorithm 3 The Factorization Algorithm

Input: An RDF graph G(V,E, L), A class C, A set SP of properties from E.FSP
Algorithm 1 or G.FSP Algorithm 2

Output: Factorized RDF Graph G′(V ′, E ′, L′) and entity mappings µN

1: µN ←− ∅, V ′ ←− ∅, E ′ ←− ∅, L′ ←− ∅
2: for all o1, o2, . . . , on ∈ V such that SS = {s|p1, p2, . . . , pn ∈ SPAND

(s type C) ∈ G, (s p1 o1) ∈ G, (s p2 o2) ∈ G . . . , (s pn on) ∈ G} do

64

4.2. RDF Graph Factorization Approach

3: sg ← SurrogateEntity()
4: for ss ∈ SS do
5: µN ← µN ∪ {(ss, sg)}
6: end for
7: end for
8: for (s p o) ∈ E ∧ s, o ∈ V do
9: if µN(s) 6= ∅ then
10: {Create compact RDF molecule}
11: if p == type then
12: E ′ ← E ′ ∪ {(s instanceOf µN(s)), (µN(s) p o)}
13: V ′ ← V ′ ∪ {s, µN(s), o}
14: L′ ← L′ ∪ {p, instanceOf}
15: else if p ∈ SP then
16: E ′ ← E ′ ∪ {(µN(s) p o)}
17: V ′ ← V ′ ∪ {µN(s), o}
18: L′ ← L′ ∪ {p}
19: else
20: E ′ ← E ′ ∪ {(s p o)}
21: V ′ ← V ′ ∪ {s, o}
22: L′ ← L′ ∪ {p}
23: end if
24: else
25: E ′ ← E ′ ∪ {(s p o)}
26: V ′ ← V ′ ∪ {s, o}
27: L′ ← L′ ∪ {p}
28: end if
29: end for
30: return G′(V ′, E ′, L′), µN

We present a solution to the problem of factorizing RDF graphs describing data
using ontologies. A sketch of the proposed method is presented in Algorithm 3.
The algorithm receives an RDF graph G = (V,E, L), a class C, and a set SP ′
of properties from E.FSP or G.FSP, and generates a factorized RDF graph G′ =
(V ′, E ′, L′), and the entity mappings µN from the entities of class C in V in RDF
graph G to the surrogate entities in V ′ in RDF graph G′. The algorithm initializes
the set of mappings µN , the set of nodes V ′, the set of labeled edges E ′ and the
set of edge labels (properties) L′ of the factorized RDF graph G′ (line 1). For all
the entities of C related to the same objects o1, o2, . . . , on using edges annotated
with properties p1, p2, . . . , pn in SP ′, the algorithm creates a surrogate entity sg

65

Chapter 4. Compact Representations

?s type C.
?s p1 ?o1.

Rule 1: Property p1

?s type C.
?s p2 ?o2.

Rule 2: Property p2

.

.

.

?s type C.
?s pn ?on.

Rule n: Property pn

Original RDF Graph
Tr

an
sf

or
m

at
io

ns
 o

f E
nt

iti
es

 o
f C

la
ss

 C

w
.r.

t.
P

ro
pe

rty
 S

et
 {p

1,p
2,.

..,
p n}

?sg type C.
?sg p1 ?o1.
?s instanceOf ?sg.

.

.

.

Factorized RDF Graph

?sg type C.
?sg p2 ?o2.
?s instanceOf ?sg.

?sg type C.
?sg pn ?on.
?s instanceOf ?sg.

(a) Transformation Rules for Class C

c1

e1

e2

e3

p1

C
type

e4

p4

p2

p3

cM

e1

e2

e3

p1

C
type

e4

p4

p2

p3

c1 in
sta

nce
Of

 p1,p2,p3 are functional properties

c1
 instanceOf is functional property

cMc1
 p1,p2,p3 are functional properties

Original RDF Graph Factorized RDF Graph

Assumptions: Assumptions:

(b) Original and Factorized RDF Graphs

Figure 4.7: Transformations in RDF Graph. Transformation rules preserved
between original and factorized graphs. (a) Transformation rules over the prop-
erties p1, p2, . . . , pn; (b) Portions of RDF graphs (original and factorized). Nodes
and edges added to create the factorized RDF graph, are highlighted in bold.

for the corresponding compact RDF molecule in G′ (lines 2-3). In lines 4-6, the
algorithm maps all the entities, that are related to o1, o2, . . . , on using properties
p1, p2, . . . , pn in G, to the surrogate entity in µN . Once all the mappings of the
entities of C in G to the corresponding surrogate entities in G′ are in µN , the
factorized RDF graph G′ is created using µN (lines 8-29). For each RDF triple
(s p o) in E, if entity mapping µN(s) is defined, then a compact RDF molecule
is created. If p is type, then the new edges (s instance µN(s)), and (µN(s) p o)
are added to G′ along with entities s, o and the mapped surrogate entity of s,
and the edge labels p and instanceOf (lines 11-14). If p is in SP , the new edge
(µN(s) p o), and entities s, o and the edge label p are added to G′ (lines 15-18). If
entity mapping µN(s) are defined, however, p is not in SP , or p is not type, then
the edge (s p o) is added to G′ along with the corresponding nodes and the edge
label (lines 19-23). If entity mapping µN(s) is not defined, then the edge (s p o)
and the nodes s and o, and edge label p are added to G′ (lines 24-28).

Figure 4.7 depicts the transformations for the set {p1, p2, . . . , pn} of properties
performed in an RDF graph whenever a corresponding factorized RDF graph is
created. Figure 4.7a presents transformation rules; one rule for each property in
{p1, p2, . . . , pn} of class C. Each rule states how the labeled edges associated with
a C in an original RDF graph are transformed into the edges in the factorized
graph. Rule 1 asserts that the relation between an entity s of C with an object
o1 is not explicitly represented by one property in the factorized RDF graph. In
order to retrieve o1, a path across the labeled edges between entities s and the
corresponding surrogate entity sg have to be traversed. Similarly, the rest of the
transformation rules establish how explicit associations between entities of C and

66

4.2. RDF Graph Factorization Approach

c1 e1

c2

c3

c4

e2

e3

C

e5

e4

e6

p1

p2

p3

p1

p2

p3

p1

p2

p3p3

p2

p1

p4

p4

p4

p4

type

typetype

type

c1

c2

c3

c4

p1

p3

p2

C

ty
pe

cM

e1

e2

e3
e6

e4

e5

p4

p4

p4

p4

instanceO
f

instanceOf

instanceOf

in
st

an
ce

O
f

Number of Labeled Edges = 20.0 Number of Labeled Edges = 12.0
 Percentage Savings = 40.0%

Original RDF Graph Factorized RDF Graph

(a) %age Decrease in Edges after Factorization

c1e9

c3c5

c7
e2

C

e8

e7

Number of Labeled Edges = 18.0 Number of Labeled Edges = 22.0
 Percentage Savings = -22.0%

e3

e4

e10

c2

e1

c6

ty
pe

type

type

ty
pe

type

type

p1 p1

p2

p2

p1
p1

p1

p2

p2

p1

p2
p2

c1

e9

c3

c5

c7

e2Ce8

e7
e3

e4

e10 c2 e1

c6

type

type

ty
pe

type

p1

p2

p1

p1

p2

p1

p2

p2cM1

cM2

cM4

cM5

c4

e5e6

type

p2
p1 c4 e6 e5

type

p2

p1

cM3

instanceOf
instanceOf instanceOf

instanceOf

insta
nceOf

instanceOf

in
st

an
ce

Of

Original RDF Graph Factorized RDF Graph

(b) %age Increase in Edges after Factorization

Figure 4.8: RDF Graph Factorization Overhead. Factorization of RDF
graphs is not worthy in all cases. (a) Entities of class C in the original RDF
graph match the frequent star pattern over the properties p1, p2, and p3; (b) few
entities match each star pattern over p1 and p2 causing factorization overhead.

the objects using properties p2, . . . , pn in the original RDF graphs are represented
by the path of labeled edges annotated with properties in the factorized RDF
graphs. Algorithm 3 adds the corresponding labeled edges of these paths in lines
7-16. Furthermore, Figure 4.7b presents a portion of the RDF graph in Figure 4.2a
and corresponding transformation in the factorized RDF graph in Figure 4.4c. The
surrogate entity and the new labeled edges are highlighted in bold in the factorized
RDF graph. The Algorithm 3 creates the surrogate entity in line 4; new edges are
created in line 10. Additionally, assumptions about the characteristics of the entity
associations in the graph are presented. Some edges existing between the entities
in RDF graph in Figure 4.2a are not present in the factorized RDF graph in
Figure 4.4c, these entity associations can be obtained by traversing the factorized
RDF graph as indicated by the corresponding transformation rules in Figure 4.7a.

Figure 4.8 illustrates an example of factorization overhead, i.e., a case when it
is not worthy to factorize a class given a set of properties in an RDF graph. Fig-
ure 4.8a presents an example where savings are observed in the number of edges
after factorization. The factorization of RDF graph in Figure 4.8a for the class C
using the properties p1, p2, and p3, reduces the number of edges from 20.0 to 12.0
and the positive value 40.0% for percentage savings indicates a percentage decrease
in the number of edges. Furthermore, the edge savings gained after factorization
are high enough to compensate the addition of the surrogate entity cM in the fac-
torized RDF graph. In contrast, factorization of the RDF graph over the class C
using the properties p1 and p2 introduces an overhead, as shown in Figure 4.8b, by
increasing the number of nodes and edges in the factorized RDF graph. The num-
ber of edges is increased from 18.0 to 22.0, shown in Figure 4.8b, after factorization
and a negative value −22.0% for the percentage savings indicates an increase in
the number of edges. The star patterns, detected in the original RDF graph, in
Figure 4.8b, are replaced by the corresponding compact RDF molecules with the

67

Chapter 4. Compact Representations

corresponding surrogate entity and new labeled edges (presented in Algorithm 3).
Due to the high number of star patterns, the addition of the surrogate entities and
new labeled edges increases the size of the factorized RDF graph.

4.3 Experimental Study

We study the effectiveness and efficiency of the proposed techniques for de-
tecting frequent star patterns. Moreover, given a class, we evaluate the impact
of the factorization techniques on the RDF graphs size by selecting several com-
binations of the properties in the class. We empirically assessed the following
research questions: ResearchQ1) Are the proposed frequent star patterns detec-
tion techniques able to efficiently detect the frequent star patterns in RDF graphs?
ResearchQ2) Are the proposed frequent star patterns detection techniques able
to detect the frequent star patterns in RDF graphs? ResearchQ3) What is the
impact of different combinations of properties of a class on the size of factorized
RDF graphs? ResearchQ4) Are the proposed factorization techniques able to
reduce the number of labeled edges in RDF graphs? Our experimental configura-
tion is as follows:
Datasets. Evaluation is conducted on three LinkedSensorData datasets [77] se-
mantically described using the Semantic Sensor Network (SSN) Ontology. These

Table 4.1: Datasets. (a) Statistics of the datasets with observations about several
weather phenomena, collected from around 20,000 weather stations in the United
States; (b) The number of labeled edges NLE(G), in the datasets obtained after
gradually integrating the RDF datasets D1, D2, and D3 describing observations.

(a) Statistics of datasets collected from around 20,000 weather stations in the US.

Dataset Climate Date #RDF # Obs
ID Event Triples
D1 Blizzard April, 2003 38,054,493 4,092,492
D2 Hurricane Charley August, 2004 108,644,568 11,648,607
D3 Hurricane Katrina August, 2005 179,128,407 19,233,458

(b) Number of Labeled Edges NLE(G) in datasets.

Dataset Observation Measurement
ID NLE(G) NLE(G)

D1 24,142,314 12,071,157
D1D2 93,286,824 46,643,412
D1D2D3 207,630,306 103,815,153

68

4.3. Experimental Study

Wind Speed Values
0

10

20

30

40

0 250 500 750

Percentage of Repeated RDF Triples with Wind Speed Values

(a) %age of Windspeed Re-
peated Triples in D1D2D3

Temperature Values
0

0.5

1

1.5

2

0 100 200 300

Percentage of Repeated RDF Triples with Temperature Values

(b) %age of Temperature Re-
peated Triples in D1D2D3

Relative Humidity Values
0

2

4

6

8

10

0 200 400 600

Percentage of Repeated RDF Triples with Relative Humidity Values

(c) %age of Relative Humidity
Repeated Triples in D1D2D3

Figure 4.9: Percentage of Repeated RDF Triples with Observation Val-
ues. Few of the large number of values are highly repeated. (a) Percentage of
repeated RDF triples with windspeed values; (b) Percentage of repeated triples
with temperature values; (c) Percentage of repeated triples with humidity values.

RDF datasets comprise observations and measurements of several climate phe-
nomena, e.g., temperature, visibility, precipitation, rainfall, and humidity, col-
lected during the hurricane and blizzard seasons in the United States in the years
2003, 2004, and 20052. Table 4.1a describes the main characteristics of these RDF
datasets. Moreover, Figure 4.9 shows percentage of repeated RDF triples with
wind speed, temperature, and relative humidity values in dataset D1D2D3. The
unit of measurement is same for each type of observation. These plots show that
some of the large number of observed values are highly repeated in the datasets.
Further, values are not discretized to produce the same query answers.

Table 4.2: Observation and Measurement Classes. Sets of properties con-
taining properties of the Observation and Measurement (Meas.) classes in the SSN
ontology, each set of properties is assigned a unique ID, e.g., A1 and A8.

Class Set of Properties SID

O
bs
er
va
ti
on

{property} A1
{samplingTime} A2
{procedure, generatedBy} A3
{property, procedure, generatedBy, samplingTime} A4
{property, procedure, generatedBy} A5
{property, samplingTime} A6
{procedure, samplingTime, generatedBy} A7

M
ea
s. {value, unit} A8

{value} A9
{unit} A10

2Available at: http://wiki.knoesis.org/index.php/LinkedSensorData

69

http://wiki.knoesis.org/index.php/LinkedSensorData

Chapter 4. Compact Representations

Metrics. We measure the results of our empirical evaluation in terms of number
of nodes and edges in an RDF graph. The size of an RDF graph is presented as the
sum of nodes and edges in the graph, where the nodes correspond to the entities
and objects, whereas the edges are labeled edges annotated with the properties
of a class in an RDF graph. In our empirical evaluation, we report on the fol-
lowing metrics: a) Execution Time (Exec.Time(ms)) is the time required to
find the frequent star patterns in RDF graphs. b) Number of Nodes (NN) is
the number of Observation and Measurement entities and objects in RDF graphs.
c) Number of Labeled Edges (NLE) represents the number of labeled edges
annotated with the properties in Observation and Measurement classes in RDF
graphs. d) Percentage Savings in the Number of Labeled Edges (%Sav-
ings) stands for the percentage increase or decrease in the number of labeled edges
using a positive or a negative value, respectively. The interpretation of the metric
%Savings is, higher is better.
Implementation. The experiments were performed on a Linux Debian 8 ma-
chine with a CPU Intel Xeon(R) Platinum 8160 2.10GHz and 754GB RAM. The
datasets are factorized for Observation and Measurement classes using all possible
combinations of the properties in each class. Table 4.2 shows the set of properties
for Observation andMeasurement (Meas.), respectively, in the SSN ontology. Each
set of properties is assigned a set identification string SID, and are referred with
the corresponding identification string in the paper. Observation contains prop-
erty, procedure, generatedBy, and samplingTime property. procedure and generat-
edBy are inverse of each other and are considered together in the sets. Similarly, in
Measurement, sets of properties contain the properties value and unit. Further, for
experiments, datasets are gradually merged to increase datasets size. The source
code is available at https://github.com/SDM-TIB/Graph-Factorization.

4.3.1 Efficiency of FSP Detection Approach

For evaluating the efficiency of the proposed frequent star patterns techniques
and to answer the research question ResearchQ1, we execute E.FSP and G.FSP
over five percent of RDF triples from dataset D1. The dataset of the selected
RDF triples describe the Measurement and Observation classes, where several dif-
ferent types of observations from the Observation class are included in the dataset.
gSpan [105] is used to generate the frequent patterns space for E.FSP, which it-
erates over all the generated frequent patterns. To evaluate the efficiency of two
approaches, we selected five percent of RDF triples from the dataset D1; this
number was chosen as a timeout because gSpan was able to generate the frequent
patterns within thirty minutes. Efficiency comparison in terms of execution time
of E.FSP and G.FSP is reported in Table 4.3. G.FSP finds the frequent star
patterns without generating all the star patterns involving all the possible subsets

70

https://github.com/SDM-TIB/Graph-Factorization

4.3. Experimental Study

of properties. Table 4.3 shows for E.FSP and G.FSP, the number of iterations
over sets of properties PSIterations, the number of frequent star patterns detected
#FSP, and the execution time in milliseconds Exec.Time(ms) required to detect
the frequent star patterns. The results indicate that E.FSP and G.FSP detect the
same frequent star patterns. The frequent star patterns, detected by E.FSP and
G.FSP, are over the set of properties A5 and A8 for all the different observations
in the Observation class, and the Measurement class, respectively. Execution time
of G.FSP to detect frequent star patterns is less by at least three orders of magni-
tude than the execution time of E.FSP, e.g., G.FSP detects frequent star patterns
in measurement class in 1.9× 102 milliseconds, whereas 5.3× 105 milliseconds are
required using E.FSP.

4.3.2 Effectiveness of FSP Detection Approach

To answer the research questions ResearchQ2 and ResearchQ3, we com-
pute the values of Formula 1 for all the sets of properties given in Table 4.2 for the
Observation and Measurement classes, respectively, in the three RDF datasets.
The computed formula values for the Observation and Measurement classes are
shown in Table 4.4. Moreover, we compute the size of the original and factorized
RDF graphs, in terms of nodes and edges in the RDF graphs. The formula values

Table 4.3: Efficiency of Frequent Star Patterns Detection. E.FSP and
G.FSP are used to detect the frequent star patterns for the Observation and
Measurement classes in the five percent of RDF triples from the datasetD1. E.FSP
and G.FSP detect the same frequent star patterns involving the sets A5 and A8
of properties from the Observation and Measurement classes, respectively. G.FSP
takes less time to identify the same frequent star patterns than E.FSP.

PSIterations #FSP Exec.Time(ms)
Class E.FSP G.FSP E.FSP G.FSP E.FSP G.FSP

O
bs
er
va
ti
on

Precipitation 8 4 23 23 2.1× 104 1.5× 101

Pressure 5 4 183 183 1.3× 106 7.1× 102

Rainfall 5 4 533 533 1.3× 106 8.0× 102

RelativeHumidity 5 4 341 341 1.3× 106 7.5× 102

Snowfall 8 4 382 382 9.2× 105 3.1× 102

Temperature 5 4 395 395 1.3× 106 7.8× 102

Visibility 5 4 395 395 1.3× 106 7.3× 102

WindDirection 5 4 350 350 1.3× 106 7.5× 102

WindSpeed 5 4 410 410 1.3× 106 7.6× 102

Measurement 1 1 1,907 1,907 5.3× 105 1.9× 102

71

Chapter 4. Compact Representations

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000
NLE NN

O
ri
gi
na
l

A
1
A
2 A
4

A
3

A
5 A
6 A
7

O
ri
gi
na
l

A
1
A
2

A
3

A
5 A
6
A
7

O
ri
gi
na
l

A
1
A
2

A
4

A
3

A
5
A
6

A
7

A
4

D1D2D3D1D2D1

(a) # of Observation Nodes NN and Edges
NLE

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

200000000
NLE NN

D1D2D3D1D2D1

O
ri
gi
na
l

A
8 A
9 A
10

O
ri
gi
na
l

A
8

A
9

A
10

Original

A
8

A
9

A
10

(b) # of Measurement nodes NN and edges
NLE

Figure 4.10: Nodes and Labeled Edges. The number of nodes NN and labeled
edges NLE before and after factorization of the RDF datasets. (a) The number of
nodes NN and labeled edges NLE representing observations in the RDF datasets;
(b) The number of nodes NN and labeled edges NLE representing measurements.

are computed for the sets of properties that contain only one property in the set,
as well as the factorization is performed using these sets of properties to illustrate
the association between the formula values and the savings obtained in the fac-
torized graphs. Table 4.4 shows that the set A5 of properties in the Observation
class generates the smaller values D1 = 4, 142, 727, D1D2 = 15, 756, 888, and
D1D2D3 = 334, 898, 603 for the Formula 1, than all the other sets A1, A2, A3,
A4, A6, and A7. A smaller formula value for A5 indicates that the RDF graphs
encapsulate a minimum number of star patterns, over the properties in the set A5
such that a large number of entities of the Observation class match these star pat-
terns. Therefore, replacing these star patterns with the compact RDF molecules
during the factorization reduces the size of the RDF graphs. Figure 4.10a presents
the number of Observation nodes NN and the labeled edges NLE in the original
and factorized RDF datasets D1, D1D2, and D1D2D3. The results show that
factorization of the Observation class over the set A5 of properties reduces the
sum of the number of observation nodes and the labeled edges in the factorized
RDF graphs by up to 37%. On contrary, a large formula value for A4 in datasets
D1 = 4, 142, 727, D1D2 = 15, 756, 888, and D1D2D3 = 334, 898, 603, than the
other sets A1, A2, A3, A5, A6, and A7 indicates that a large number of star
patterns over the properties in A4 exist in the RDF graphs and a small number
of entities of the Observation class match these star patterns. Figure 4.10a de-
picts an increase in the number of Observation nodes NN and the labeled edges
NLE in the factorized RDF datasets D1, D1D2, and D1D2D3 after factorizing
over the properties in A4. Similarly, the results for A1, A2, A3, A6, and A7 in
Table 4.4 and Figure 4.10a clearly show that the higher the formula value for a

72

4.3. Experimental Study

set of properties increases the number of nodes and edges in the factorized RDF
graphs by factorizing using the properties in the corresponding set. In case of
the Measurement class Table 4.4 shows smaller formula values for the set A8 of
properties, i.e., D1 = 28, 491, D1D2 = 34, 554, and D1D2D3 = 40, 302, than the
other sets A9 and A10. Figure 4.10b reports the sum of the nodes and the labeled
edges representing measurements in the original and factorized RDF datasets D1,
D1D2, and D1D2D3. The sum of the nodes and the labled edges of the mea-
surements are reduced up to 60% in all the factorized RDF graphs by factorizing
over the properties in A8. Furthermore, the higher formula values for the sets
A9 and A10 indicate less savings after factorization compared to the set A8. The
number of nodes and edges in the factorized RDF graphs by factorizing over the
properties in sets A9 and A10 in Figure 4.10b are higher than A8. These results
show that the different combinations of class properties impact on the factorization
of RDF graphs and the proposed frequent star patterns detection techniques are
able to detect the set of properties involved in the generation of frequent star pat-
terns. Moreover, our techniques are able to anticipate the best set of properties,
answering thus, research questions ResearchQ2 and ResearchQ3.

Table 4.4: Values Computed for Formula 1. The sets of Observation and
Measurement (Meas.) properties in Table 4.2 are used to compute the Formula 1
values over the RDF datasets D1, D1D2, and D1D2D3. The minimum formula
values for the Observation and Measurement classes and the corresponding sets
A5 and A8, respectively, of properties are highlighted in bold. The smaller formula
values for A5 and A8 in the Observation and Measurement classes, respectively,
indicate the maximum savings after factorizing the RDF graphs over the properties
in A5 and A8, as shown in Figure 4.10 and Table 4.5.

#Edges(SP,C,G)
SID D1 D1D2 D1D2D3

O
b
se
rv
at
io
n

A1 12,071,185 46,643,440 103,815,183
A2 12,090,195 46,687,690 103,891,717
A3 8,111,623 31,205,888 69,358,875
A4 20,118,595 78,698,580 174,865,870
A5 4,142,727 15,756,888 34,898,603
A6 8,097,964 31,245,605 69,474,786
A7 15,784,707 61,406,644 135,902,747

M
ea
s. A8 28,491 34,554 40,302

A9 4,037,067 15,563,838 34,623,579
A10 4,023,731 15,547,816 34,605,063

73

Chapter 4. Compact Representations

4.3.3 Effectiveness of RDF Graph Factorization

We factorize the gradually increasing RDF datasets D1, D1D2, and D1D2D3
over the Observation and Measurement classes using the properties in the sets of
properties given in Table 4.2. The percentage savings are computed in terms of
labeled edges for the observations and measurements in the RDF datasets after
factorization. Table 4.1b presents the number of edges NLE(G) in the Obser-
vation and Measurement classes in the original RDF datasets D1, D1D2, and
D1D2D3. Table 4.5 presents the number of labeled edges NLE(G′) and the per-
centage savings %savings after factorization of the Observation and Measurement
classes. The highest savings 49.14%, 49.43%, and 49.53% in NLE(G′) for ob-
servations after factorizing D1, D1D2, and D1D2D3 over the properties in A5,
shows that the number of frequent star patterns over the properties in A5 are re-
duce by replacing them with the corresponding compact RDF molecules. On the
other hand, the set A4 of properties gives negative values of percentage savings
%Savings, −16.68%, for the RDF datasetD1, and −16.67%, for the RDF datasets
D1D2 and D1D2D3, indicating an increase in the number of labeled edges after
the factorization of the RDF datasets. Similarly, for measurements, the positive
values 66.37% of percentage savings after factorizing D1, and 66.56% for D1D2
and D1D2D3 over A8 indicate a decrease in the number of labeled edges after
factorization. Furthermore, the percentage savings in the set A8 of properties are
higher than in A9 and A10. These results allow us to positively answer research
question ResearchQ4.

Table 4.5: Percentage Savings in Labeled Edges after Factorization. Sav-
ings %Savings in the number of Labeled Edges NLE(G′) after factorization of the
RDF datasets using the sets of properties in Observation and Measurement classes.

D1 D1D2 D1D2D3

O
b
se
rv
at
io
n

SID NLE(G′) %Savings NLE(G′) %Savings NLE(G′) %Savings
A1 20,125,493 16.64 77,745,918 16.66 173,032,155 16.66
A2 20,144,503 16.56 77,790,168 16.61 173,108,689 16.63
A3 16,226,021 32.79 62,546,938 32.95 139,064,503 33.02
A4 28,170,155 -16.68 108,838,750 -16.67 242,239,479 -16.67
A5 12,277,576 49.14 47,175,356 49.43 104,786,128 49.53
A6 16,150,898 33.10 62,317,489 33.20 138,639,234 33.23
A7 23,837,352 1.26 92,088,523 1.28 204,304,156 1.60

M
ea
s. A8 4,059,738 66.37 15,599,469 66.56 34,716,176 66.56

A9 8,069,688 33.15 31,130,127 33.26 69,300,827 33.25
A10 8,056,352 33.26 31,114,105 33.29 69,282,311 33.26

74

4.4. Summary

4.4 Summary
Representing observational data directly in RDF knowledge graphs results in a

substantial inflation of the data volume due to redundancies. We devise techniques
to detect redundancies in historical data and propose factorized representations
of RDF knowledge graphs where these redundancies are reduced. The proposed
techniques are analysed using existing benchmarks. The results suggest that the
proposed techniques are able to identify data redundancies in RDF knowledge
graphs, and the factorized representations are able to reduce size of RDF knowledge
graphs while the information initially encoded in the data is preserved.

75

Chapter 5

Integration of Historical Semantic
Sensor Data

Sensors are frequently used in a large spectrum of demanding application do-
mains, including, eHealth, precision agriculture, as well as smart environments,
etc. An enormous amount of sensor data is produced by these sensors. Data se-
mantics facilitate information exchange, adaptability, and interoperability among
several devices and sensors. As a result, there have been proposed a large number
of diverse RDF implementations to store and process RDF data. Collections of
sensor data can be semantically described using ontologies, e.g., the Semantic Sen-
sor Network (SSN) Ontology. Albeit semantically enriched, the volume of semantic
sensor data is considerably larger than raw sensor data, hence negatively impact on
the storage and processing of semantic sensor data. Moreover, some measurement
values can be observed several times, and a large number of repeated facts can
be generated. Chapter 4 presents computational methods to detect redundancies
in RDF knowledge graphs and identifies properties of a class that are involved in
generating these redundancies. Moreover, a general factorization algorithm for fac-
torizing RDF knowledge graph is proposed. The factorization algorithm receives a
class and a set of properties in the class to generate factorized RDF representations
of a knowledge graph. In this chapter, we exploit the properties identified by the
approach proposed in Chapter 4 and the domain knowledge of the SSN ontology
to factorize the RDF knowledge graph describing sensor data. Furthermore, based
on the factorized semantic sensor data, we present tabular-based representations
of sensor data in order to scale up to large datasets. In addition, we analyze the
impact of the proposed factorized representations on query execution. In this chap-
ter, we address the problem of efficient query processing over historical semantic
sensor data. Figure 5.1 presents the challenge we tackle to solve the problem and
the contribution to address the challenge. The research work presented in this
chapter is based on the publications [52, 55]. The following research question is

77

Chapter 5. Integration of Historical Semantic Sensor Data

Query Engines Analytics

Sensors Clinical
Devices

Semantic Description

Data Integration
and

Compact Representations

Web Services

Data Processing and Analytics

Streaming Observational Data Historical Semantic Sensor Data

Large-scale storage and
processing of historical
semantic sensor data

CH2: Efficient
representations

of historical semantic
sensor data

Figure 5.1: Challenges and Contributions. This chapter focuses on the prob-
lem of efficient representations of historical semantic sensor data, and implements
query processing techniques to scale up to large historical semantic sensor datasets.

addressed in this chapter:

RQ2: How can efficient representations be exploited to manage historical
semantic sensor data?

To answer this research question, we propose Compacting Semantic Sensor
Data (CSSD) approach that generates a compact or factorized representations
of historical semantic sensor data, where repeated values are represented only
once. Furthermore, these compact representations are able to enhance the storage
and processing of historical semantic sensor data. To scale up to large datasets,
tabular representations are utilized to store and manage factorized semantic sensor
data using Big Data technologies. In essence, this chapter makes the following
contributions to the problem of processing historical semantic sensor data:

• The CSSD approach using factorization techniques for a compact represen-
tation of semantic sensor data described using the SSN ontology;

• Tabular representations of semantic sensor data to scale-up to large datasets;

• SPARQL query rewriting techniques against factorized semantic sensor data;
and

• An empirical evaluation of the proposed compact representations along sev-
eral dimensions demonstrating the effectiveness and efficiency of the CSSD

78

5.1. Motivating Example

approach over the diverse RDF implementations.

The chapter is structured as follows: We motivate the research problem in Sec-
tion 5.1. We present an RDF graph describing more than five thousand weather
observations collected from sensors. The RDF graph visualizations and statistics
show that the graph is composed of a large number of RDF triples, where several
RDF triples are shared among different observations. Furthermore, we illustrate
that a high number of RDF triples are related to a unique observation value. A
formal description of the proposed approach is discussed in Section 5.2, where
we introduce the factorization techniques for semantic sensor data to scale-up to
large datasets. We devise tabular-based representations in Section 5.3 for efficient
storage and processing of semantic sensor data using Big Data frameworks. We
present evaluation results of an experimental study in Section 5.4. We empiri-
cally study the effectiveness of the proposed compact representations of semantic
sensor data, and the impact of these compact representations on query process-
ing. Additionally, we evaluate the effects of storing the proposed representations
of semantic sensor data on several RDF implementations. Results suggest that
the proposed compact representations of semantic sensor data empower the stor-
age and query processing of sensor data over diverse RDF implementations. We
provide a summary of the achieved results in Section 5.5.

5.1 Motivating Example

The MesoWest LinkedObservation2 datasets comprise sensor data describing
hurricane and blizzard observations in the United States. Observations include
measurements of several weather phenomena, e.g., snowfall, rainfall, wind direc-
tion, wind speed, humidity, temperature, and precipitation. These sensor observa-
tions are semantically described using the Semantic Sensor Network (SSN) ontol-
ogy. Together, these LinkedObservations contain almost two billion RDF triples
describing major active storms in the United States since 2002. The RDF observa-
tional data on the storm season in the year 2004 contain 108,644,568 RDF triples
about different weather phenomena, and 11,648,607 observations about rainfall,
precipitation, wind direction, relative humidity, and temperature. Figure 5.2a
depicts the graph of semantic sensor observations about pressure, rainfall, wind
direction, temperature, and visibility, as well as observation timestamps from year
2004 MesoWest dataset. The RDF graph illustrates 46,341 RDF triples describing
5,149 linked observations. The same color nodes and edges in the graph represent

1http://www.cytoscape.org/
2http://wiki.knoesis.org/index.php/LinkedSensorData

79

http://www.cytoscape.org/
http://wiki.knoesis.org/index.php/LinkedSensorData

Chapter 5. Integration of Historical Semantic Sensor Data

(a) Original RDF Graph

S# Parameter Value
1 Connected Components 1.000
2 Network Centralization 0.328
3 Avg. # of Neighbors 6.361
4 Network Density 0.000
5 Multi-edge Node Pairs 5,149.000
6 Network Heterogeneity 11.106

(b) Statistics of Original RDF Graph

0

10000

20000

30000

40000

50000

6.55cm 113° 20'' 84°F 10cm Timestamp

Total NT NT per Value

(c) NT per Value vs Total Triples

Figure 5.2: Motivating Example. Several RDF triples are related to same values
in an RDF graph. (a) An RDF Graph consists of 46, 341 RDF triples and describes
5, 149 weather observations about pressure, rainfall, wind direction, temperature,
and visibility collected by the sensors deployed in ∼ 20, 000 weather stations in
the United States in year 2004. The same color of nodes and edges in the RDF
graph represents the RDF triples associated with same values; (b) Statistics of
the RDF graph reveals the existence of several links between the nodes. The high
value 6.361 of avg. # of neighbours indicates that on average a node is connected
to more than six other nodes in the RDF graph. Similarly, a high value 5, 149 of
multi-edge node pairs shows the existence of several node pairs, where nodes in
each node pair are connected using multiple edges in the RDF graph; (c) Number
of RDF triples, associated with the same value, with respect to total RDF triples
in the RDF graph in Figure 5.2a. The RDF graph and statistics in Figures 5.2a
and 5.2b, respectively, are generated by Cytoscape tool1.

80

5.2. The Semantic Sensor Data Factorization Approach

the RDF triples associated with the same measurement value. The RDF triples
describing timestamps are also represented with the same color nodes and edges.
Statistics of the RDF graph, shown in Figure 5.2b, reflect the existence of highly
redundant inter-connectivity among the RDF nodes. The RDF graph and the
statistics reveal that the RDF triples are duplicated with the repetition of mea-
surement values. Also, each sensor observation is associated with seven neighbors
in average, i.e., observations are described in seven RDF triples in average. Fig-
ure 5.2c illustrates the number of RDF triples per distinct value within the dataset.
Rainfall measurement value, 6.55 cm, is the most repeated and is associated with
15,552 RDF triples, and 113◦ wind direction is the second most repeated mea-
surement value and is associated with 13,941 RDF triples. Similarly, the number
of RDF triples associated with distinct measurement values can be observed for
other climate phenomena, e.g., pressure, temperature, and visibility, and substan-
tiate the natural intuition that the number of distinct values is much smaller than
the number of observations. We exploit this natural intuition of semantic sensor
data, and propose a compact representation. In these compact representations,
RDF triples of repeated measurements are factorized and added to the dataset
only once. Unlike other RDF compression techniques, semantics of observational
data are utilized to factorize the semantic sensor data, where the factorized repre-
sentations provide efficient storage over diverse RDF implementations, and queries
can be directly executed against factorized datasets. To scale up to large datasets,
factorization based tabular representation can be devised to store and manage
large amount of semantic sensor data using Big Data technologies.

5.2 The Semantic Sensor Data Factorization Ap-
proach

5.2.1 Problem Statement

The concept of RDF molecule (presented in chapter 2) is utilized to devise
observation and measurement molecules based on the Semantic Sensor Network
Ontology. Moreover, we present the concepts of measurement and observation
multiplicity as the number of times measurements and observations are repeated
in an RDF graph. Building on these definitions the problem tackled in this chapter
is defined.

Definition 5.2.1 (Observation Molecule). An observation molecule OM is a set
of RDF triples that share the same subject of type observation class, i.e.,
OM= (obs rdf:type :Observation), (obs :procedure proc), (obs :property pp).

81

Chapter 5. Integration of Historical Semantic Sensor Data

cm

:obs1

ts1

:Rainfall
Obs

:Precipit
ation

:Measure
Data20.0^^:float

M
ea
su
re
m
en

ts
O
bs
er
va
ti
on

s
T
im

eS
ta
m
ps

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

(a) RDF Graph G

:property

:pro
ced

ure

rdf:type:obs1

:LGVI1

:RainfallObs

:Precipitation

:property

:pro
ced

ure

rdf:type
:obs2

:LGVI1

:RainfallObs

:Precipitation

:property

:pro
ced

ure

rdf:type
:obs3

:LGVI1

:RainfallObs

:Precipitation

(b) Observation
Molecules

:unit

rdf:
type

cm

:Measure
Data

20.0^^:float
:value

:unit

rdf:
type

cm

:Measure
Data

20.0^^:float
:value

:unit

rdf:
typ

e

cm

:Measure
Data

20.0^^:float:value

:m1

:m2

:m3

(c) Measurement
Molecules

Figure 5.3: Example of a Simplified RDF. Several RDF triples are related
to the same measurement values for simplicity URIs are not presented. (a) RDF
graph G has rainfall measurements, :m1, :m2, and :m3 and observations, :obs1,:obs2,
and :obs3, which are related to the value 20.0 for precipitation, and are duplicated.
Measurement and Observation multiplicities are 3, i.e., Mm(val, uom|G) = 3 and
Mo(obs, proc, pp, val, uom|G) = 3. Similarly, temperature measurements, :m4, :m5,
and :m6 and observations, :obs4,:obs5, and :obs6 are related to the value 24.8 for
air temperature, and are duplicated with Measurement and Observation multi-
plicities 3, i.e., Mm(val, uom|G) = 3 and Mo(obs, proc, pp, val, uom|G) = 3. (b)
An RDF graph with three observation molecules; each observation is associated
with only three RDF triples describing observation type, observed property, and
sensor procedure; (c) An RDF graph with three measurement molecules in class
:MeasureData; each measurement is described using three RDF triples to express
the measurement type, measured value and the unit of measurement.

Example 5.2.1. Figure 5.3b presents three observation molecules. Each observa-
tion molecule consists of three RDF triples describing the same observation subject,
i.e., obs1, obs2, and obs3. Each observation subject is described in terms of obser-
vation type, observed property and the observation procedure.

Definition 5.2.2 (Measurement Molecule). A measurement moleculeMM is a set
of RDF triples that share the same measurement subject, i.e., MM= (m rdf:type
:MeasureData), (m :value val), (m :unit uom).

Example 5.2.2. Figure 5.3c presents three measurement molecules. Each mea-
surement molecule consists of three RDF triples having the same measurement
subject, i.e., :m1, :m2, and :m3. Each measurement is described in terms of mea-
sured value and unit using properties :value and :unit, respectively.

82

5.2. The Semantic Sensor Data Factorization Approach

:TempObs

:RainfallObs:Measure
Data

:Instant

:property :procedure :timestamp

:value:unit
:pro

per
ty :procedure

(a) RDF Molecule Templates (RDF-MTs)

:TempObs

:RainfallObs:Measure
Data

:Instant

:property :procedure :timestamp

:result

:sampling
Time

:samplingTime

:result

:value:unit
:pro

per
ty :procedure

Intra-Link

Inter-Link

(b) RDF-MT Intra- and Inter-dataset Linking

Figure 5.4: RDF Molecule Templates (RDF-MTs) and RDF-MT Link-
ing. (a) Four RDF Molecule Templates are extracted from the RDF graph in
Figure 5.3a around the classes :TempObs, :RainfallObs, :MeasureData, and
:Instant. The classes :TempObs and :MeasureData belong to the same dataset,
and :RainfallObs and :Instant belong to two other datasets. (b) RDF-MT
around :TempObs is linked to :MeasureData RDF-MT in the same dataset by
:result. :TempObs RDF-MT is linked to :Instant RDF-MT in a different
dataset using property :samplingTime, and :RainfallObs RDF-MT is linked
to :MeasureData RDF-MT in the other dataset using property :result.

RDF molecule templates are the abstract descriptions of the triples in RDF
graphs and are defined as follows:

Definition 5.2.3 (RDF Molecule Template (RDF-MT) [34]). An RDF Molecule
Template (RDF-MT) is a 5− tuple =< WebI, C,DTP, IntraL, InterL >, where:

• WebI is a Web service API that provides access to an RDF dataset G via
SPARQL protocol;

• C is an RDF class such that the triple pattern (?s rdf:type C) is true3 in
G;

• DTP is a set of pairs (p, T) such that p is a property with domain C
and range T , and the triple patterns (?s p ?o) and (?o rdf:type T) and
(?s rdf:type C) are true in G;

• IntraL is a set of pairs (p, Cj) such that p is an object property with domain
C and range Cj , and the triple patterns (?s p ?o) and (?o rdf:type Cj) and
(?s rdf:type C) are true in G;

3Evaluating the triple pattern into true corresponds to the ASK query.

83

Chapter 5. Integration of Historical Semantic Sensor Data

• InterL is a set of triples (p, Ck, SW) such that p is an object property with
domain C and range Ck ; SW is a Web service API that provides access to
an RDF dataset K, and the triple patterns (?s p ?o) and (?s rdf:type C)
are true in G, and the triple pattern (?o rdf:type Ck) is true in K.

Example 5.2.3. Figure 5.4 shows an example of RDF molecule templates ex-
tracted from Figure 5.3a and connections between these RDF-MTs. Four RDF-
MTs are extracted around the classes :TempObs, :RainfallObs, :MeasureData,
and :Instant. Each RDF-MT around a class contains the properties describ-
ing the class. Moreover, Figure 5.4b shows intra-linking between :TempObs and
:MeasureData RDF-MTs in the same dataset using property :result. :TempObs
and :Instant RDF-MTs are interlinked using property :samplingTime. Simi-
larly, :RainfallObs RDF-MT is interlinked to :Instant using :samplingTime.

Definition 5.2.4 (Measurement Multiplicity). Given an RDF graph G of sensor
data using the SSN ontology. Given a resource uom corresponding to a measurement
unit, and a literal value val, the measurement multiplicity of uom and val in G,
Mm(val, uom|G), is defined as the number of measurements have same value val
and measurement unit uom in G.

Mm(val, uom|G) = |{m| (m rdf:type :MeasureData) ∈ G,
(m :unit uom) ∈ G,
(m :value val) ∈ G}|

Example 5.2.4. In the RDF graph shown in Figure 5.3a, there are three measure-
ments of type :MeasureData, represented by :m1, :m2, and :m3 that are associated
with the measurement unit cm and the value 20.0. Therefore, the measurement
multiplicity of measurement unit cm and the value 20.0 is 3. Similarly, three
measurements :m4, :m5, and :m6 of type :MeasureData are associated with the
measurement unit ◦F and the value 24.8 of multiplicity 3.

Definition 5.2.5 (Observation Multiplicity). Given an RDF graph G of sensor
data described using the SSN ontology. Given resources proc, ph, pp, and uom
corresponding to a procedure, an observed phenomenon, observed property, and
measurement unit, and a literal value val, the multiplicity of an observation obs
for uom and val in G, Mo(proc, ph, pp, val, uom|G), is defined as the number of
observations about the property pp of the observed phenomenon ph, sensed by proc,

84

5.2. The Semantic Sensor Data Factorization Approach

that have the same value val and unit of measurement uom in G.

Mo(proc, ph, pp, val, uom|G) = |{obs| (obs rdf:type ph) ∈ G,
(obs :procedure proc) ∈ G,
(obs :property pp) ∈ G,
(obs :result m) ∈ G,
(m rdf:type :MeasureData) ∈ G,
(m :unit uom) ∈ G,
(m :value val) ∈ G}|

Example 5.2.5. In Figure 5.3a, the observation multiplicity for the procedure
:LGVI1, the observed phenomenon :RainfallObs, :Precipitation as observed
property, measurement unit cm, and value 20 is 3, i.e., there are three different
observations, :obs1, :obs2, and :obs3, associated with the same properties, and
value and unit. Similarly, the observation multiplicity for the procedure :LGVI1,
the observed phenomenon :TempObs, the observed property :AirTemp, the mea-
surement unit ◦F, and the value 24 is 3, i.e., there are three different observations,
:obs4, :obs5, and :obs6 associated with the same properties, and value and unit.

Definition 5.2.6 (Compact Observation Molecule). Given a surrogate observation
oM , a compact observation molecule COM is a set of RDF triples that share the
same surrogate observation oM , i.e., COM= (oM rdf:type :Observation),(oM
:procedure proc),(oM :property pp), such that the multiplicity of the surrogate
observation oM is one.

Example 5.2.6. Figure 5.5a presents a compact observation molecule, with a
surrogate observation :obsM1, for the observation molecules in Figure 5.3b. The
compact observation molecule represents all the properties and corresponding ob-
jects as in the observation molecules in Figure 5.3b. However, the redundant edges,
repeatedly connecting the similar type of observations :obs1, :obs2, and :obs3 to
a set of objects using the same properties, are transformed into the edges connecting
these properties and corresponding objects to the surrogate observation :obsM1.

Definition 5.2.7 (Compact Measurement Molecule). Given a surrogate measure-
ment mM , a compact measurement molecule CMM is a set of RDF triples that
share the same surrogate measurementmM , i.e., CMM= (mM rdf:type :Measu-
reData),(mM :value val),(mM :unit uom), such that the multiplicity of the sur-
rogate measurement mM over val and uom is one.

Example 5.2.7. A compact measurement molecule for the measurement molecules
in Figure 5.3c is presented in Figure 5.5b with a surrogate measurement :mM1. The
surrogate measurement :mM1 corresponds to the measurements :m1, :m2, and :m3
in Figure 5.3c and has multiplicity one.

85

Chapter 5. Integration of Historical Semantic Sensor Data

:property

:pro
cedu

re

rdf:type

:LGVI1

:RainfallObs

:Precipitation

:ObsM1

(a) Compact Observation Molecule

:unit

rdf:
type

cm

:Measure
Data

20.0^^:float:value:mM1

(b) Compact Measurement Molecule

Figure 5.5: Compact Observation and Measurement Molecules. Compact
molecules for the observations and measurements in Figures 5.3b and 5.3c, respec-
tively. (a) A compact observation molecule, for the observations in Figure 5.3b,
with a surrogate observation :obsM1 and multiplicity one, corresponds to the ob-
servations :obs1, :obs2, and :obs3. (b) A compact measurement molecule, with
surrogate measurement :mM1 of multiplicity one, corresponds to the measurements
:m1, :m2, and :m3 in Figure 5.3c.

Definition 5.2.8 (A Factorized RDF Graph). Given an RDF graph G = (VG, EG,
LG) representing sensor data described using the SSN ontology, a factorized RDF
graph G′ = (VG′ , EG′ , LG′) with respect to G is an RDF graph where the following
conditions hold:

• Entities in G are preserved in G′, i.e., VG ⊆ VG′.

• For each entity obs in VG that corresponds to an entity of class :Observation
over the properties :procedure and :property and objects proc and pp, re-
spectively, in G, there is an entity oM in VG′ that corresponds to the sur-
rogate observation of the compact observation molecule over the properties
:procedure and :property and objects proc and pp, respectively, in G′.

• For each entity m in VG that corresponds to an entity of class :MeasureData
over the properties :value and :unit and objects val and uom, respectively,
in G, there is an entity mM in VG′ that corresponds to the surrogate mea-
surement of the compact measurement molecule over the properties :value
and :unit and objects val and uom, respectively, in G′.

• There is a partial mapping µN : VG → VG′:

– Subject entities of observation molecules in G are mapped to the sur-
rogate observations of the compact observation molecules in G′, i.e.,
µN(obs)=oM .

86

5.2. The Semantic Sensor Data Factorization Approach

– Subject entities of measurement molecules in G are mapped to the sur-
rogate measurements of the compact measurement molecules in G′, i.e.,
µN(m)=mM .

– The mapping µN is not defined for the rest of the entities that are not
instances of the :Observation or :MeasureData class in G.

• For each RDF triple t in (s p o) in EG:

– If µN(s) is defined and :Observation is the type of s, then the RDF
triples
(s :instanceOf µN(s)) and (µN(s) rdf:type :Observation) belong to
EG′.

– If µN(s) is defined and :MeasureData is the type of s, then the RDF
triple
(µN(s) rdf:type :MeasureData) belong to EG′.

– If µN(s) is defined and :Observation is the type of s, and p is not
:result and :samplingTime, then (µN(s) p o) is in EG′.

– If p is :samplingTime, then (s p o) is in EG′.

– If µN(s) and µN(o) are defined and p is :result, then (µN(s) p µN(o))
and (s p o) are in EG′.

– If µN(s) is defined and :MeasureData is the type of s, then (µN(s) p o)
is in EG′.

– Otherwise, the RDF triple t is preserved in EG′.

• Multiplicity of measurements is reduced, i.e., for all val, uom such that
Mm(val, uom|G) ≥ 1, then Mm(val, uom|G′)=1, and

• Multiplicity of observations is reduced, i.e., for all proc, ph, pp, val, uom,
such that, Mo(proc, ph, pp, val, uom|G) ≥ 1, then
Mo(proc, ph, pp, val, uom|G′)=1.

Definition 5.2.9 (The SSDF Problem). Given an RDF graph G = (VG, EG, LG)
representing sensor data with the SSN ontology, the problem of semantic sensor
data factorization (SSDF) in G, corresponds to finding a factorized RDF graph
G′ = (VG′ , EG′ , LG′) of G.

Example 5.2.8. Consider RDF graphs G and G′ in Figures 5.3a and 5.6b, respec-
tively. Furthermore, Figure 5.6a presents mappings µN that assign measurement
nodes :m1, :m2, and :m3 in G to the surrogate measurement :mM1 in G′, and :m4,

87

Chapter 5. Integration of Historical Semantic Sensor Data

µN
µN µN µNµN µN

µN
µN µN µNµN µN

:obs1 :obs2 :obs3 :obs4 :obs5 :obs6

:ObsM1 :ObsM2

:mM1 :mM2

:m1 :m2 :m3 :m4 :m5 :m6

(a) Entity mappings µN from G into G′
cm

:obs1

ts1

:Rainfall
Obs

:Precipit
ation

:Measure
Data20.0^^:float

M
ea
su
re
m
en

ts
O
bs
er
va
ti
on

s
T
im

eS
ta
m
ps

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

:ObsM1

:mM1

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:ObsM2

:mM2:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

(b) Factorized RDF graph G′

Figure 5.6: Instance of the Semantic Sensor Data Factorization Problem.
A Factorized RDF graph G′ computed from the RDF graph G in Figure 5.3a.
(a) Entity mappings µN from G in Figure 5.3a, maps measurements :m1, :m2,
and :m3 into the surrogate measurement :mM1, and :m4, :m5, and :m6 into the
surrogate measurement :mM2, and observations :obs1, :obs2, and :obs3 into the
surrogate observation :oM1, and :obs4, :obs5, and :obs6 into :oM2; (b) Factorized
RDF Graph G′ with no duplicated nodes of measurements and observations, i.e.,
multiplicity of measurements and observations is one in G′. Mappings between
the observations and the surrogate observation are explicitly stated, while the
mappings between measurements and the surrogate measurements are represented
through a path in the RDF graph.

:m5, and :m6 in G to the surrogate measurement :mM2 in G′. Similarly, observa-
tion nodes :obs1, :obs2, and :obs3 in G are mapped to the surrogate observation
:obsM1 in G′, and :obs4, :obs5, and :obs6 in G are mapped to the surrogate
observation :obsM2 in G′; µN is the identity for the rest of the nodes. Moreover,
surrogate measurement and observation multiplicities are 1 for corresponding nodes
in G′. Thus, G′ is the factorized graph of G where duplicated nodes of measure-
ments and observations in G are represented with the relevant surrogate nodes in
G′, e.g., :mM1 instead of :m1, :m2, and :m3.

Once RDF graphs are factorized, query processing is performed against the
factorized graphs. SPARQL queries over the original RDF graphs need to be re-
written against the corresponding factorized RDF graphs in the way that equiva-
lent answers are computed. We have defined seven query rewriting rules, given in
Table 5.1. Each rule is given a name, i.e., fssn1, fssn2, fssn3, fssn4, fssn5, fssn6,
and fssn7 and has a head and a body. The head of a rule corresponds to the triple
pattern in the query against original RDF graph, whereas the body of the rule rep-

88

5.2. The Semantic Sensor Data Factorization Approach

resents the corresponding triple patterns against the factorized RDF graph. The
head of the rule fssn1 contains a triple pattern that matches to all the observation
entities in original RDF graphs. On the other hand, the body of the rule fssn1
comprises the triple patterns that match the corresponding surrogate observations
and associates the original observations to the surrogate observations using the
property :instanceOf in factorized RDF graphs, as well as maintains the variable
substitutions, i.e., ?obs is replaceable by ?Xobs. These variable substitutions are
maintained for the query clauses such as SELECT, FILTER, GROUP BY, OR-
DER BY etc. The head of rule fssn2, matches the procedure of the observations
in the original RDF graph, while the body of the rule extracts the procedure of
the surrogate observations in factorized RDF graphs as well as the associations
between original and surrogate observations, and keeps the observation variable

Table 5.1: Query Rewriting Rules. The rewriting rules for observations and
measurements with respect to the relevant properties are expressed in terms of
triple patterns. The variables corresponding to observations and measurements
are replaced in SPARQL query clauses, i.e., SELECT, ORDER BY, GROUP BY,
and FILTER.

Rule Name Head Body
fssn1 ?obs rdf:type :Observation ?obs rdf:type :Observation

?Xobs :instanceOf ?obs
Replace ?obs by ?Xobs in query clauses

fssn2 ?obs :procedure ?sensor ?obs :procedure ?sensor
?Xobs :instanceOf ?obs
Replace ?obs by ?Xobs in query clauses

fssn3 ?obs :property ?property ?obs :property ?property
?Xobs :instanceOf ?obs
Replace ?obs by ?Xobs in query clauses

fssn4 ?m rdf:type :MeasureData ?m rdf:type :MeasureData
?Xobs :instanceOf ?obs
?Xobs :result ?Xm
Replace ?m by ?Xm in query clauses

fssn5 ?m :value ?val ?m :value ?val
?Xobs :instanceOf ?obs
?Xobs :result ?Xm
Replace ?m by ?Xm in query clauses

fssn6 ?m :unit ?uom ?m :unit ?uom
?Xobs :instanceOf ?obs
?Xobs :result ?Xm
Replace ?m by ?Xm in query clauses

fssn7 ?obs :result ?m ?obs :result ?m
?Xobs :instanceOf ?obs
?Xobs :result ?Xm
Replace ?obs by ?Xobs and ?m by ?Xm in query clauses

89

Chapter 5. Integration of Historical Semantic Sensor Data

substitutions. Similarly, the head of the rule fssn3 consists of a triple pattern that
matches the observed property of the observations in the original RDF graph, and
the body of the rule contains the triple patterns against factorized RDF graphs
that match the observed property of the surrogate observations and associate the
surrogate and the original observations. Also, the variable substitution for the
observation variables are maintained in the body of the rule fssn3.

The rules fssn4, fssn5, and fssn6 are used to rewrite the triple patterns involv-
ing the measurement properties. The head of the rule fssn4 contains a triple pat-
tern to all the entities of measurements in original RDF graphs are matched. The
body of the rule fssn4 contains three triple patterns that match to the surrogate
measurements, as well as, associate the original observations with the surrogate ob-
servations, using property :instanceOf, and relate the original observations to the
corresponding original measurements using property :result. Moreover, the body
of the rule maintains the measurement variable substitutions, i.e., ?m is replaced
by ?Xm in the query clauses SELECT, FILTER, ORDER BY etc. The head of
the rule fssn5 find matches of the values of measurements in original RDF graphs,
whereas the body of the rule find values of the surrogate measurements in factor-
ized RDF graphs. Further, the triple patterns extract associations between the
original and surrogate observations, as well as between the original observations
and corresponding original measurements, and maintain the measurement variable
substitutions. The head of rule fssn6 contains the triple pattern matching the mea-
surement units in original RDF graph, whereas the body matches the unit of the
surrogate measurements. Also, body maintains associations between original and
surrogate observations and original observations and corresponding measurements
along with measurement variable substitutions. Finally, the head of the rule fssn7
maps the original observations and the measurements in original RDF graphs us-
ing property fssn7. The body of the rule fssn7 find associations between surrogate
observations and surrogate measurements in factorized RDF graphs using property
:result. Likewise associations between the original and surrogate observations and
the original observations and original measurements are maintained. Additionally,
the variable substitutions for the observations and measurements are maintained.

Definition 5.2.10 (The Query Evaluation Problem). Let G and G′ be RDF graphs
such that G′ is a factorized graph of G. Consider a SPARQL query Q over G. The
problem of evaluating SPARQL queries against a factorized RDF graph corresponds
to the problem of transforming Q into a SPARQL query Q′ over G′ such that the
results of evaluating Q over G and the results of Q′ over G′ are the same, i.e., the
following condition is satisfied:

[[Q]]G = [[Q′]]G′

Example 5.2.9. Figure 5.7 shows an instance of the problem of evaluating queries

90

5.2. The Semantic Sensor Data Factorization Approach

Which are the measurement values and unit of
the observations recorded by sensor :LGVI1?

SELECT ?val ?uom WHERE {
 ?obs :procedure :LGVI1.
 ?obs :result ?m .
 ?m :value ?val.
 ?m :unit ?uom }

Answer:

(?val, 20.0^^:float),(?uom, :cm)
(?val, 24.8^^:float),(?uom, :°F) cm

:obs1

ts1

:Rainfall
Obs

:Precipit
ation

:Measure
Data20.0^^:float

M
ea
su
re
m
en

ts
O
bs
er
va
ti
on

s
T
im

eS
ta
m
ps

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

(a) SPARQL Query over Original RDF Graph

Which are the measurement values and unit of
the observations recorded by sensor :LGVI1?

SELECT ?val ?uom WHERE {
 ?obs :procedure :LGVI1.
 ?Xobs :instanceOf ?obs.
 ?obs :result ?m.
 ?m :value ?val.
 ?m :unit ?uom.
 ?Xobs :result ?Xm }

Answer:

(?val, 20.0^^:float),(?uom, :cm)
(?val, 24.8^^:float),(?uom, :°F) cm

:obs1

ts1

:Rainfall
Obs

:Precipit
ation

:Measure
Data20.0^^:float

:LGVI1

:m1

:time1

:Instant

°F 24.8^^:float

:TempObs :AirTemp

:ObsM1

:mM1

ts2

:time2

ts3

:time3

ts4

:time4

ts5

:time5

ts6

:time6

:ObsM2

:mM2:m2 :m3 :m4 :m5 :m6

:obs2 :obs3

:obs4 :obs5 :obs6

M
ea

su
re

m
en

ts
O

bs
er

va
ti

on
s

T
im

eS
ta

m
ps

(b) SPARQLQuery over Factorized RDF Graph

Figure 5.7: Instance of the Query Evaluation Problem. Evaluation of
SPARQL queries over the original and factorized RDF graphs respects set se-
mantics, i.e., answers are duplicated-free. (a) SPARQL query over the RDF
graph in Figure 5.3a selects the measurement values and units, i.e., (24.8, ◦F)
and (20.0, : cm) of the temperature and rainfall observations, respectively, col-
lected by the sensor :LGVI1 ; (b) SPARQL query over factorized graph, shown in
Figure 5.6b, of the RDF graph in Figure 5.3a where multiplicity of observations
and measurement nodes is one; original query is rewritten to produce equivalent
results over the factorized graph.

on factorized RDF graphs. A SPARQL query Q over the RDF graph G in Fig-
ure 5.3a is presented in Figure 5.7a. The SPARQL query Q′ in Figure 5.7b, cor-
responds to a rewriting of Q, against G′ which represents factorization of G. The
evaluations of Q and Q′ produce the same answers. In this chapter, we present
SPARQL query rewriting rules that allow for rewriting a query Q over an original
RDF graph into a query Q′ over a corresponding factorized RDF graph.

91

Chapter 5. Integration of Historical Semantic Sensor Data

5.2.2 A Factorization Approach

We present a solution to the problem of factorizing RDF graphs describing
semantic sensor data. A sketch of the proposed factorization approach is presented
in Algorithm 4. The algorithm receives an RDF graph G(VG, EG, LG) and gener-
ates a factorized RDF graph G′(VG′ , EG′ , LG′), and the entity mappings µN from
the observations and measurements in G(VG, EG, LG) to the surrogate observations
and measurements in G′(VG′ , EG′ , LG′), respectively. The algorithm initializes the
sets of the entity mappings µN , the set of nodes VG′ and the set of edges EG′ of the
factorized graph G′(VG′ , EG′ , LG′) (line 1). For all the measurements with value
val and the corresponding unit of measurement uom in G(VG, EG, LG), the algo-
rithm (lines 2-3) creates a surrogate measurement for the corresponding compact
measurement molecule in G′(VG′ , EG′ , LG′), i.e., the subject of a compact measure-
ment molecule is created. In lines 4-5, the algorithm maps all the measurements,
related to val and uom in G(VG, EG, LG), to the surrogate measurements in µN

. For all the observations with observed phenomenon ph, sensor procedure proc,
observed property pp, measurement value val and unit of measurement uom in
G(VG, EG, LG), the algorithm creates a surrogate observation representing a corre-
sponding compact observation molecule in G′(VG′ , EG′ , LG′) (lines 6-7), and adds in
µN the mappings of all the observations in G(VG, EG, LG) with the surrogate obser-
vations inG′(VG′ , EG′ , LG′) in lines 8-9. Once all the mappings of the measurements
and observations in G(VG, EG, LG) to the corresponding surrogate measurements
and observations, respectively, in G′(VG′ , EG′ , LG′) are in µN , the factorized graph
G′(VG′ , EG′ , LG′) is created using µN (lines 10-22). All nodes s and o related with
the property :result in G(VG, EG, LG) are added to G′(VG′ , EG′ , LG′) along with
their associations. Moreover, a new edge relating s and µN(s) using the property
:instanceOf is added to G′(VG′ , EG′ , LG′) (lines 11-13). If s and o are linked using
a property rdf:type and o is either :Observation or :MeasureData, then an new
edge (µN(s) p o) is added to G′(VG′ , EG′ , LG′) along with µN(s) and o (lines 14-16).
If s and o are associated through a predicate p in {:procedure, :property, :value,
:unit}, then a new edge (µN(s) p o) is added to G′(VG′ , EG′ , LG′) in lines 17-19.
Otherwise, the edge (s p o) is added to the G′(VG′ , EG′ , LG′) in lines 20-22.

Algorithm 4 The Factorization Algorithm

Input: An RDF graph G(VG, EG, LG)
Output: Factorized RDF Graph G′(VG′ , EG′ , LG′), and entity mappings µN

1: µN ←− ∅, VG′ ←− ∅, EG′ ←− ∅, LG′ ←− ∅
2: for val, uom ∈ VG such that SM = {m|(m rdf:type :MeasureData) ∈
G, (m :unit uom) ∈ G, (m :value val) ∈ G} do

3: mM ← SurrogateMeasurement()

92

5.2. The Semantic Sensor Data Factorization Approach

4: end for
5: for m ∈ SM do
6: µN ← µN ∪ {(m,mM)}
7: for proc, ph, pp, val, uom ∈ VG such that SO = {obs|(obs rdf:type ph) ∈ G,

(obs :procedure proc) ∈ G, (obs :property pp) ∈ G,
(obs :result m) ∈ G, (m rdf:type :MeasureData) ∈ G,
(m :unit uom) ∈ G, (m :value val) ∈ G} do

8: oM ← SurrogateObservation()
9: for obs ∈ SO do
10: µN ← µN ∪ {(obs, oM)}
11: end for
12: end for
13: end for
14: for (s p o) ∈ EG ∧ s, o ∈ VG ∧ p ∈ LG do
15: if p == :result then
16: EG′ ← EH ∪ {(s p o), (µN(s) p µN(o)), (s :instanceOf µN(s))}
17: VG′ ← VG′ ∪ {s, o, µN(s), µN(o)}
18: LG′ ← LG′ ∪ {p, :instanceOf}
19: else if p == rdf:type && (o == :Observation||o == :MeasureData)

then
20: EG′ ← EG′ ∪ {(µN(s) p o)}
21: VG′ ← VG′ ∪ {µN(s), o}
22: LG′ ← LG′ ∪ {p}
23: else if p == :procedure||p == :property||p == :value||p == :unit

then
24: EG′ ← EG′ ∪ {(µN(s) p o)}
25: VG′ ← VG′ ∪ {µN(s), o}
26: LG′ ← LG′ ∪ {p}
27: else
28: EG′ ← EG′ ∪ {(s p o)}, VG′ ← VG′ ∪ {s, o}, LG′ ← LG′ ∪ {p}
29: end if
30: end for
31: return G′(VG′ , EG′ , LG′), µN

Figure 5.9b depicts a portion of the RDF in Figure 5.3a and the correspond-
ing transformation in the factorized RDF graph in Figure 5.6b. The surrogate
measurements and observations, and the new edges are highlighted in bold. The
Algorithm 4 creates the surrogate measurements and observations in line 3 and
in line 7; new edges are created in line 12, 15 and 18. Additionally, assumptions

93

Chapter 5. Integration of Historical Semantic Sensor Data

about the characteristics of the associations between the nodes in the graph are
presented. While some edges existing in the RDF graph in Figure 5.3a are not
present in the factorized RDF graph, these associations can be obtained by travers-
ing the graph through the surrogate observations and measurements. The implicit
satisfaction of all the associations in the original RDF graph that are not included
in the factorized graph is restricted under the following assumptions:

For all resources :obs and :m corresponding to an observation and a measure-
ment, respectively, in G(VG, EG, LG), i.e., :obs is of type :Observation and :m is
of type :MeasureData, the following properties hold.

• Measurement: :m is only associated with one value and with one unit of
measurement, i.e., the properties :value and :unit that relate a measure-
ment with a value and a measurement unit are both functional properties for
any measurement :m. Furthermore, :m is related with only one observation,
i.e., the property :result that associates an observation with a measurement
has a functional inverse.

• Observation: :obs is only associated with one procedure, i.e., the property
:procedure that associates an observation and a procedure is a functional
property for any observation :obs.

For all resources :obsM, :mM, :obs, and :m corresponding to a surrogate obser-
vation, a surrogate measurement, an observation, and a measurement, respectively,
in G′(VG′ , EG′ , LG′), the following properties hold.

• Surrogate Observation: :obsM is only associated with one procedure and
one observed property, i.e., the properties :procedure and :property that
associate a surrogate observation with a procedure and a property, respec-
tively, are functional properties for any surrogate observation :obsM.

• Surrogate Measurement: :mM is only associated with one value and with
one unit of measurement, i.e., the properties :value and :unit that relate
a surrogate measurement with a value and a measurement unit are both
functional properties for any surrogate measurement :mM. Furthermore, :mM
is related with only one surrogate observation, i.e., :result that associates a
surrogate observation with a surrogate measurement has a functional inverse.

• Observation: :obs is only associated with one surrogate observation, i.e.,
:instanceOf property that associates an observation with a surrogate ob-
servation is a functional property.

• Measurement: :m is related with only one observation, i.e., :result asso-
ciates an observation with a measurement, and has a functional inverse.

94

5.2. The Semantic Sensor Data Factorization Approach

We are assuming that SPARQL queries against the original and factorized RDF
graphs are evaluated under the set semantics, i.e., no duplicates are in the answers.
Coming back to the motivating example, Figure 5.8 illustrates the factorized RDF
graph of the graph in Figure 5.2. The factorized RDF graph in Figure 5.8a is
sparse and the average number of neighbors has been reduced from 6.361 to 2.568.
These statistics of the factorized RDF graph indicate that the number of RDF
triples describing an observation is reduced after factorization. Figure 5.8c shows
the number of RDF triples per measurement value in the factorized RDF graph
with respect to the original RDF graph. For each measurement value the number
of associated RDF triples in the factorized RDF graph is reduced by 74%.

5.2.3 Queries over Factorized RDF Graphs

In this section, we define the algorithm that solves the problem of query
evaluation on a factorized RDF graph. Table 5.1 presents the rules to rewrite a
SPARQL query against an original SSN RDF graph into a query against the corre-
sponding factorized RDF graph. The query rewriting rules are defined in terms of
SPARQL triple patterns. For each property of the observation and measurement
classes in the SSN ontology, a rewriting rule is defined. Furthermore, substitu-
tions for the variables corresponding to the observations and measurements are
presented. These variable substitutions are used during the query rewriting in the
query clauses, i.e., SELECT, ORDER BY, GROUP BY, and FILTERS etc. Given
a SPARQL query and a set R of query rewriting rules, Algorithm 5 describes the
steps performed to each set of triple patterns that composes a Basic Graph Pattern
(BGP). If the input query consists of several BGPs, the structure of the original
query remains the same, and the algorithm is applied to each BGP using the query
rewriting rules in Table 5.1.

Algorithm 5 The Query Rewriting Algorithm

Input: Set ST of triple patterns in a BGP of Q and set SR of query rewriting
rules

Output: STnew the rewriting of ST under SR
1: STnew ←− ∅
2: for t ∈ ST do
3: Select r ∈ SR such that t matches the head of r and instantiate the body

of r
4: Let SQt be the matched body of r and variableSubstitutions be the

set of mappings between variables in t into variables in SQt, add
(t, SQt, variableSubstitutions) to STnew

4http://www.cytoscape.org/

95

http://www.cytoscape.org/

Chapter 5. Integration of Historical Semantic Sensor Data

(a) Factorized RDF Graph

S# Parameter Value
1 Connected Components 1.000
2 Network Centralization 0.143
3 Avg. # of Neighbors 2.568
4 Network Density 0.000
5 Multi-edge Node Pairs 5.000
6 Network Heterogeneity 9.186

(b) Statistics of Factorized RDF Graph

0

5000

10000

15000

6.55cm 113° 20'' 84°F 10cm Timestamp

NT Original NT Factorized

(c) NT Factorized vs Original

Figure 5.8: Factorization of the Running Example. The number of RDF
triples related to the same value is reduced in an RDF graph after factorization
of the RDF graph. (a) The factorized RDF Graph representing the sensor obser-
vations from Figure 5.2a contains a smaller number of edges; (b) Statistics of the
factorized RDF graph show that the average number of neighbours of a node are
reduced, as well as the multi-edge node pairs while keeping the sensor observations
connected in the RDF graph; (c) The number of RDF triples associated with each
distinct value is considerable reduced in the factorized RDF graph. Timestamps
are not factorized, therefore, the number of RDF triples describing Timestamp re-
mains the same in both, original and factorized, RDF graphs. The RDF graph in
Figure 5.8a and statistics in Table 5.8b are generated by the Cytoscape tool4.

5: end for
6: return STnew

Figure 5.7 presents two SPARQL queries: Figures 5.7a and 5.7b present an

96

5.2. The Semantic Sensor Data Factorization Approach

?obs :procedure :LGVI1.
?obs :procedure :LGVI1.
?Xobs :instanceOf ?obs.
Replace ?obs -> ?Xobs

Rule fssn2

Original RDF Graph Factorized RDF Graph

?obs :result ?m.
Rule fssn7

?m :value ?val.
Rule fssn5

?m :unit ?uom.
?m :unit ?uom.
?Xobs :instanceOf ?obs.
?Xobs :result ?Xm.
Replace ?obs -> ?Xobs, ?m ->?Xm

Rule fssn6

?obs :result ?m.
?Xobs :instanceOf ?obs.
?Xobs :result ?Xm.
Replace ?obs -> ?Xobs, ?m ->?Xm

?m :value ?val.
?Xobs :instanceOf ?obs.
?Xobs :result ?Xm.
Replace ?obs -> ?Xobs, ?m ->?Xm

(a) Query Rewriting

:result

:instanceOf

Original RDF Graph Factorized RDF Graph

:value, :unit are functional properties,
:result has inverse and is functional

:procedure and :property
are functional properties

Assumptions:
:result has inverse
 and is functional

:instanceOf is
a functional property

Assumptions:

:procedure and :property
are functional properties

:value, :unit are functional properties,
:result has inverse and is functional

:property

:procedure

rdf:type
:obs1

:LGVI1

:RainfallObs

:Precipitation

ts1

:time1

:unit

rdf:type

:m1

cm

:Measure
Data

20.0^^:float
:value

:result

:obs1

ts1

:time1

:m1

:property

:procedure

rdf:type

:LGVI1

:RainfallObs

:Precipitation

:ObsM1

:unit

rdf:type

cm

:Measure
Data

20.0^^:float
:value

:mM1

:m1

:obs1

:m1

:obs1 :ObsM1

:mM1

:result

(b) Original and Factorized RDF Graphs

Figure 5.9: Example of Query Rewriting. Rewriting rules for a query over
the original RDF graphs are presented. (a) Query rewriting rules fssn2, fssn5,
fssn6, and fssn7 from Table 5.1 are used to rewrite the SPARQL query in Fig-
ure 5.7a into the SPARQL query in Figure 5.7b. The variables ?obs and ?m in the
rewritten query correspond to the variables representing surrogate observation and
measurement, respectively, in the factorized RDF graph. In order to retrieve the
original observations and measurements, the variables ?obs and ?m are replaced
with ?Xobs and ?Xm in the query clauses of the the rewritten SPARQL query.
Associations explicitly represented in the original RDF graph are modeled with
triple pattern paths in the factorized graph. (b) Portions of the RDF graphs (orig-
inal and factorized). Nodes and edges highlighted in bold are added during the
creation of the factorized graph. Assumptions enforce that the factorized graph
represents all relations represented in the original graph.

97

Chapter 5. Integration of Historical Semantic Sensor Data

original query Q and rewriting of Q produced by Algorithm 5. Figure 5.9a presents
the rewriting of SPARQL query in Figure 5.7a. Rules fssn2, fssn5, fssn6, and fssn7
from Table 5.1 are used to rewrite the query. The algorithm replaces each triple
pattern in a BGP that instantiates the head of a rule in SR by the body of the
rule, e.g., the triple pattern (?obs :procedure :LGVI1) instantiates the head of rule
fssn2, thus, the triple pattern in the BGP is replaced with the body of fssn2, as
shown in Figure 5.9a. Moreover, the variables corresponding to the observations
and measurements in the original query represent the surrogate observations and
measurements in the rewritten query, consequently, these variables are replaced by
the new variables in the query clauses to refer the original observations and mea-
surements. The variable substitution for observation ?obs by ?Xobs is maintained
during the rewriting process using rule fssn2 in order to retrieve the original ob-
servations, if required. Similarly, other triple patterns in the BGP each matching
the head of a rule, i.e., fssn5, fssn6, and fssn7, are replaced by the body of the
rule, and the variable substitutions of ?obs and ?m by ?Xobs and ?Xm, respec-
tively, are maintained for the query clauses. The evaluation of both, original and
rewritten, queries produce the same results. Another important property is that
the time complexity of the original and rewritten queries is also the same.

Theorem 5.2.1. Given G and G′ such that G′ is a factorized RDF graph of G.
Let Q and Q′ be SPARQL queries where Q′ is a rewritten query of Q over G′
generated by Algorithm 5. The problem of evaluating Q′ against G′ is in: (1)
PTIME if query Q has only AND and FILTER operators; (2) NP-complete if
query Q has expressions with AND, FILTER, and UNION operators; and (3)
PSPACE-complete for OPTIONAL graph pattern expressions.

Proof. We proceed with a proof by contradiction. Assume that complexity of Q′
is higher than Q. Then, UNION or OPTIONAL operators not included in Q
are added to Q′. However, Algorithm 5 only changes triple patterns over G by
triple patterns against G′. Additionally, Algorithm 5 includes new JOINs (AND
operator). However, adding AND or FILTER operators does not affect the com-
plexity of the problem of evaluating Q′ over G′, and contradicting the fact that
the complexity of Q′ is higher than Q.

5.3 Tabular Representation of RDF Graphs

Sensor data tend to stack up quickly, scaling up to large amounts of data. In
order to capture that growth, we opt for representing factorized data in tabular
format, so that Big Data processing technologies can be used. For that purpose, we

98

5.3. Tabular Representation of RDF Graphs

ObsID Type Procedure Property Sampling
Time

Time
stamp MID Value Unit

:obs1 :Rainfall :LGVI1 :Precipitation :time1 ts1 :m1 20.0 cm

:obs2 :Rainfall :LGVI1 :Precipitation :time2 ts2 :m2 20.0 cm

:obs3 :Rainfall :LGVI1 :Precipitation :time3 ts3 :m3 20.0 cm

:obs4 :Temp :LGVI1 :AirTemp :time4 ts4 :m4 24.8 °F

:obs5 :Temp :LGVI1 :AirTemp :time5 ts5 :m5 24.8 °F

:obs6 :Temp :LGVI1 :AirTemp :time6 ts6 :m6 24.8 °F

Observation Universal

(a) Universal Parquet Table for Observations

ObsMID Type Procedure Property MMID

:obsM1 :Rainfall :LGVI1 :Precipitation :mM1
:obsM2 :Temp :LGVI1 :AirTemp :mM2

Compact Observation Molecule

MMID Value Unit
:mM1 20.0 cm
:mM2 24.8 °F

Compact Measurement Molecule

ObsID Sampling
Time

Time
stamp MID ObsMID

:obs1 :time1 ts1 :m1 :obsM1

:obs2 :time2 ts2 :m2 :obsM1

:obs3 :time3 ts3 :m3 :obsM1

:obs4 :time4 ts4 :m4 :obsM2

:obs5 :time5 ts5 :m5 :obsM2

:obs6 :time6 ts6 :m6 :obsM2

Observation

(b) Factorized Data Parquet Tables

Figure 5.10: Factorized Tabular Representation of RDF Graphs. Parquet
tables are used to represent RDF graphs in Spark (RDF Graphs in Figures 5.3a
and 5.6b). (a) A universal table stores all the data of the original graph; parquet
table columnar storage efficiently stores duplicated data.(b) Three parquet tables
are used to store factorized data comprising compact observation and measurement
molecules. Primary keys are denoted by underlined attribute names. A foreign
key is represented by repeating the name of a primary key in another table.

choose to store the data in the modern, columnar-oriented Parquet5 storage for-
mat. We propose tabular representations of both the original and factorized RDF
graphs (in Figure 5.3a and Figure 5.6b, respectively), shown in Figure 5.10 and Fig-
ure 5.12. Parquet uses Run-Length Encoding (RL), whereby repeated numerical
values are encoded into pairs of the value and its occurrences number which allows
an efficient representation of large datasets of semantic sensor data. Moreover,
columnar nature of Parquet makes it best suited for scenarios where queries access
only a few number of columns from a wide table of many columns. Parquet pulls
only the requested columns, contrary to row-oriented storage, where the whole
row is read even if only few columns are requested. We rely on these properties of
Parquet tables, and represent RDF graphs using a universal table. The universal

5https://parquet.apache.org/

99

https://parquet.apache.org/

Chapter 5. Integration of Historical Semantic Sensor Data

SELECT ?val ?uom
WHERE {
 ?obs :procedure :LGVI1.
 ?obs :result ?m .
 ?m :value ?val.
 ?m :unit ?uom }

SPARQL Query SQL Query

SELECT DISTINCT Value, Unit
FROM Observation
WHERE
 Procedure = :LGVI1

(a) Query Universal Table

SELECT ?val ?uom
WHERE {
 ?obs :instanceOf ?oM.
 ?oM :procedure :LGVI1.
 ?oM :result ?mM.
 ?mM :value ?val.
 ?mM :unit ?uom }

SELECT DISTINCT CMM.Value, CMM.Unit
FROM Compact Observation Molecule as COM,
 Compact Measurement Molecule as CMM
WHERE
 COM.MMID=CMM.MMID AND
 COM.Procedure=:LGVI1

SPARQL Query SQL Query

(b) Query Factorized Data Tables

Figure 5.11: Query Evaluation Over Universal and Factorized Tables.
SPARQL queries over original and factorized RDF graphs and their corresponding
SQL queries against the universal and factorized tables are presented. (a) SQL
query over the universal parquet table; only a selection and the distinct modifier
are required to collect values and unit of measurement. (b) SQL query against
the parquet tables representing the factorized RDF graph; one join, one filter, one
selection, and the distinct modifier are needed to express the SPARQL query.

tabular representation, Observation Universal in Figure 5.10a, of original RDF
graph in Figure 5.3a, contains the properties that directly or indirectly describe an
observation. For example, in Figure 5.3a, an observation is directly described by
the properties rdf:type, :procedure, :property, :result, and :samplingTime;
while :value, :unit, and :timestamp indirectly describe an observation. In the
universal table these predicates are modeled with the attributes: Type, Procedure,
property, MID, SamplingTime, Value, Unit, and Timestamp, respectively.

The tabular representation of the factorized RDF graph in Figure 5.6b is
shown in Figure 5.10b. The Compact Observation Molecule table contains the
properties that describe a surrogate observation in the factorized RDF graph.
For example, in Figure 5.6b, the properties rdf:type, :procedure, :property,
and :result describe a surrogate observation and are modeled in the Compact
Observation Molecule table with the attributes Type, Procedure, Property,
and MMID, respectively. The Compact Measurement Molecule table contains the
properties describing a surrogate measurement using value and unit in the fac-
torized RDF graph. Thus, in Figure 5.10b, the Compact Measurement Molecule

100

5.3. Tabular Representation of RDF Graphs

table is populated with the values of the properties :value and :unit of the sur-
rogate measurements in the factorized RDF graph in Figure 5.6b. Note that the
type :MeasureData is not included as an attribute in the table, because this is im-
plicitly represented in the table name. The Observation factorized table contains
the observation predicates that are not represented in the Compact Observation
Molecule and Compact Measurement Molecule tables, as well as a reference to
the corresponding surrogate observations, as a foreign key. For example, the pred-
icates :result, :samplingTime, and :timestamp are not included in Compact
Observation Molecule and Compact Measurement Molecule tables, but they
are represented in the Observation table by the attributes MID, SamplingTime,
and Timestamp, respectively. Moreover, an association between an observation and
corresponding surrogate observation, described using the property :instanceOf
in the factorized RDF graph, is represented by the foreign key ObsMID. Moreover,
SPARQL queries against original and factorized graphs are translated into SQL
queries over the universal and factorized tables, respectively. Figure 5.11 illus-
trates the SQL representations of SPARQL queries in Figure 5.7. In all cases, the
results of the original and factorized SQL queries are the same as the SPARQL
queries over the original and factorized RDF graphs.

Instead of using the universal tabular representations, RDF graphs can be rep-
resented using RDF molecule template (RDF-MT) based tabular representations.
RDF-MTs describe RDF data sources using abstract representations of the classes
in RDF graphs and their properties. Furthermore, RDF-MTs provide links be-
tween the classes belonging to the same RDF graphs or to different RDF graphs
using intra- and inter-linking, respectively. For each RDF-MT around a class one
table is created containing the attributes of the class as columns. Similarly, for
each intra- or inter-link between the classes a binary table is created containing
the identifiers from the corresponding classes as attributes. The web service APIs,
i.e., SPARQL endpoints, collect RDF data around each RDF molecule template.

Figure 5.12a illustrates the RDF molecule template (RDF-MT) based tab-
ular representations of the RDF graph in Figure 5.3a. The RDF graph con-
tains four RDF molecule templates, i.e., :RainfallObs, :TempObs, :Instant, and
:MeasureData. The rainfall and temperature observations are directly described
using the properties :procedure and :property, and are modeled with the at-
tributes Procedure and Property, respectively, in the RDF-MT based tabular rep-
resentations Rainfall RDF-MT and Temperature RDF-MT, respectively. Similarly,
RDF molecule template around :MeasureData is described using the properties
:value and :unit, and are modeled with the attributes Value and Unit, respec-
tively, in the tabular representation Measurement RDF-MT. The RDF molecule
template of :Instant is described using the property :timestamp and is rep-
resented using the attribute Timestamp in the RDF-MT based table Instant

101

Chapter 5. Integration of Historical Semantic Sensor Data

ObsID Procedure Property

:obs1 :LGVI1 :Precipitation

:obs2 :LGVI1 :Precipitation

:obs3 :LGVI1 :Precipitation

Rainfall RDF-MT

ObsID Procedure Property

:obs4 :LGVI1 :AirTemp

:obs5 :LGVI1 :AirTemp

:obs6 :LGVI1 :AirTemp

Temperature RDF-MT

MID Value Unit

:m1 20.0 cm

:m2 20.0 cm

:m3 20.0 cm

:m4 24.8 °F

:m5 24.8 °F

:m6 24.8 °F

Measurement
RDF-MT

Sampling
Time Timestamp

:time1 ts1

:time2 ts2

:time3 ts3

:time4 ts4

:time5 ts5

:time6 ts6

Instant RDF-MT

ObsID MID

:obs1 :m1

:obs2 :m2

:obs3 :m3

ObsID Sampling
Time

:obs1 :time1
:obs2 :time2
:obs3 :time3

Rainfall
Measurement

Rainfall
Instant

ObsID MID

:obs4 :m4

:obs5 :m5

:obs6 :m6

ObsID Sampling
Time

:obs4 :time4
:obs5 :time5
:obs6 :time6

Temperature
Measurement

Temperature
Instant

(a) RDF-MT based Table for Observations

Rainfall
Observation

Temperature
Observation

Sampling
Time Timestamp

:time1 ts1

:time2 ts2

:time3 ts3

:time4 ts4

:time5 ts5

:time6 ts6

Instant RDF-MT

MMID Value Unit

:mM1 20.0 cm

:mM2 24.8 °F

F-Measurement
RDF-MT

ObsID ObsMID

:obs1 :obsM1

:obs2 :obsM1

:obs3 :obsM1

ObsID ObsMID

:obs4 :obsM2

:obs5 :obsM2

:obs6 :obsM2

ObsMID MMID

:obsM1 :mM1

Factorized
Rainfall
Measurement

ObsMID MMID

:obsM2 :mM2

Factorized
Temperature
Measurement

ObsID MID

:obs1 :m1

:obs2 :m2

:obs3 :m3

ObsID Sampling
Time

:obs1 :time1

:obs2 :time2

:obs3 :time3

Rainfall
Measurement

Rainfall Instant

ObsID MID

:obs4 :m4

:obs5 :m5

:obs6 :m6

ObsID Sampling
Time

:obs4 :time4

:obs5 :time5

:obs6 :time6

Temperature
Measurement

Temperature
Instant

F-Rainfall RDF-MT

F-Temperature RDF-MT

ObsMID Procedure Property

:obsM1 :LGVI1 :Precipitation

ObsMID Procedure Property

:obsM2 :LGVI1 :AirTemp

(b) Factorized RDF-MT based Tables

Figure 5.12: RDF-MT based Tabular Representation of RDF Graphs.
Parquet tables are utilized to represent RDF graphs in Spark (RDF Graphs in
Figures 5.3a and 5.6b). (a) Each RDF-MT based table stores an RDF molecule
template in the original RDF graph; parquet table columnar storage efficiently
stores duplicated data.(b) Factorized RDF graph is represented in compact RDF-
MT based tables. Primary keys are denoted by underlined attribute names. A
foreign key is represented by repeating the name of a primary key in another table.

RDF-MT. The associations of the :RainfallObs and :TempObs RDF molecule tem-
plates with the :MeasureData and :Instant RDF molecule templates are shown
in Figure 5.3a. In Figure 5.12a, Rainfall Measurement models the association
between the :RainfallObs and :MeasureData RDF molecule templates using
the primary keys, ObsID and MID, from the RDF-MT based tabular represen-
tations Rainfall RDF-MT and Measurement RDF-MT, respectively. Also, the asso-
ciation between the :RainfallObs and :Instant RDF molecule templates is mod-
eled with the tabular representation Rainfall Instant using the primary keys,
ObsID and SamplingTime, from the tabular representations Rainfall RDF-MT and

102

5.3. Tabular Representation of RDF Graphs

Instant RDF-MT, respectively. Similarly, the association between the :TempObs
and :MeasureData RDF molecule templates is modeled in the tabular representa-
tion Temperature Measurement using the primary keys, ObsID and MID, from the
tables Temperature RDF-MT and Measurement RDF-MT, respectively. Likewise, the
link between the :TempObs and :Instant RDF molecule templates is represented
in Temperature Instant using the primary keys, ObsID and SamplingTime, from
the tabular representations Temperature RDF-MT and Instant RDF-MT, respec-
tively, describing temperature and timestamps RDF molecule templates.

Factorization of RDF graphs also generates the factorized RDF-MT based tab-
ular representations. The RDF-MT based tabular representations of the factor-
ized RDF graph in Figure 5.6b are shown in Figure 5.12b. The tabular repre-
sentation F-Rainfall RDF-MT models the properties :procedure and :property,
describing the RDF molecule templates around the surrogate rainfall observa-
tions in the factorized RDF graph, with the attributes Procedure and Property,
respectively. Similarly, the RDF molecule templates of the surrogate temper-
ature observations are modeled in the RDF-MT based tabular representations
F-Temperature RDF-MT with attributes Procedure and Property corresponding
to the temperature properties :procedure and :property, respectively. The
:value and :unit properties, describing the surrogate measurements, are modeled
in the F-Measurement RDF-MT tabular representation using the attributes Value
and Unit, respectively. RDF-MT based tabular representations Instant RDF-MT
contains :timestamp property, describing the timestamps, and is modeled with
Timestamp attribute.

The associations between the RDF molecule templates of the surrogate observa-
tions and measurements are represented in Factorized Rainfall Measurement
and Factorized Temperature Measurement for the rainfall and temperature ob-
servations, respectively, with the primary keys from the corresponding RDF-MT
based tabular representations. Moreover, the explicit mappings between the orig-
inal rainfall observations and the surrogate rainfall observations described using
the property :instanceOf are represented in the table Rainfall Observation
with attributes ObsID and ObsMID corresponding to the original and surrogate
observations, respectively. Similarly, the mappings between the original and sur-
rogate temperature observations are modeled in Temperature Observation. In
addition, the links between the original rainfall observations and measurements are
modeled in tabular representations Rainfall Measurement using the attributes
ObsID and MID corresponding the original observations and measurements, re-
spectively. Similarly, the associations between original temperature observations
and measurements are presented in Temperature Measurement. Furthermore, the
links between the original rainfall observations and the timestamps are represented
in the table Rainfall Instant using the attributes ObsID and SamplingTime

103

Chapter 5. Integration of Historical Semantic Sensor Data

SELECT ?val ?uom
WHERE {
 ?obs :procedure :LGVI1.
 ?obs :result ?m .
 ?m :value ?val.
 ?m :unit ?uom }

SPARQL Query SQL Query
SELECT DISTINCT MRDFMT.Value, MRDFMT.Unit
FROM Rainfall RDF-MT as RRDFMT,
 Temperature RDF-MT as TRDFMT,
 Measurement RDF-MT MRDFMT,
 Rainfall Measurement as RM,
 Temperature Measurement as TM
WHERE (RRDFMT.Procedure=:LGVI1 AND
 RRDFMT.ObsID=RM.ObsID AND
 RM.MID=MRDFMT.MID) OR
 (TRDFMT.Procedure=:LGVI1 AND
 TRDFMT.ObsID=TM.ObsID AND
 TM.MID=MRDFMT.MID)

(a) Query RDF-MT based Tables

SELECT ?val ?uom
WHERE {
 ?obs :instanceOf ?oM.
 ?oM :procedure :LGVI1.
 ?oM :result ?mM.
 ?mM :value ?val.
 ?mM :unit ?uom }

SELECT DISTINCT FMRDFMT.Value, FMRDFMT.Unit
FROM F-Rainfall RDF-MT as FRRDFMT,
 F-Temperature RDF-MT as FTRDFMT,
 F-Measurement RDF-MT as FMRDFMT,
 Factorized Rainfall Measurement as FRM,
 Factorized Temperature Measurement as FTM
WHERE (FRRDFMT.Procedure=:LGVI1 AND
 FRRDFMT.ObsMID=FRM.ObsMID AND
 FRM.MMID=FMRDFMT.MMID) OR
 (FTRDFMT.Procedure=:LGVI1 AND
 FTRDFMT.ObsMID=FTM.ObsMID AND
 FTM.MMID=FMRDFMT.MMID)

SPARQL Query SQL Query

(b) Query Factorized RDF-MT based Tables

Figure 5.13: Query Evaluation Over RDF-MT based Tables. SPARQL
queries over original and factorized RDF graphs and corresponding SQL queries
against RDF-MT based tables are presented. (a) An SQL query over RDF-MT
based parquet tables of an original RDF graph; four joins, two filters, and a se-
lection and a distinct modifier are required to collect values and units of measure-
ment. (b) An SQL query against RDF-MT based parquet tables of a factorized
RDF graph; four joins, two filters and a selection and a distinct modifier are needed
to express the rewritten SPARQL query.

corresponding to the original rainfall observations and the primary key from the
tabular representations Instant RDF-MT, respectively. Similarly, the associations
between original temperature observations and the timestamps are modeled in
tabular representations Temperature Instant. To run the queries over the RDF-
MT based tabular representations, SPARQL queries against original and factorized
RDF graphs are translated into SQL queries against the relevant RDF-MT based
tabular representations. Figure 5.13 illustrates the corresponding RDF-MT based
SQL representations of the SPARQL queries in Figure 5.7. The results of the
SQL queries against RDF-MT based tabular representations of the original and
factorized RDF graphs are the same as the SPARQL queries over the original and
factorized RDF graphs.

104

5.3. Tabular Representation of RDF Graphs

Theorem 5.3.1. The decomposition of the Observation universal table into fac-
torized tables: Observation, Compact Observation Molecule, and Compact
Measurement Molecule, is loss-less join.

Proof. Considering that the following functional dependencies hold in both the
universal, and factorized tables:

• ObsMID → Type, Procedure, Property, MMID

• MMID → Value, Unit

• ObsID → SamplingTime, Timestamp, MID, ObsMID

We can prove using the algorithm[50] that the factorized tables are a loss-less
join decomposition of universal table T that includes all the attributes in the
Observation universal plus ObsMID and MMID. The attributes of the Observation
universal can be projected from G′, thus, satisfying the loss-less join condition.

Theorem 5.3.2. If G is an SSN RDF graph and G′ is a factorized RDF graph of
G, and T1 is the factorized tabular representation of G′, then T1 is in third normal
form with respect to the universal representation of G.

Proof. Recall [25], a table is in third normal form if for every X → Y

• X is a super key, or

• Y −X is a prime attribute

Considering that the following functional dependencies hold in both the uni-
versal, and factorized tables:

• ObsMID → Type, Procedure, Property, MMID

• MMID → Value, Unit

Table 5.2: Datasets: Description of the semantically described sensor datasets;
weather observations are collected since 2003 from around 20,000 weather stations
during the hurricane and blizzard seasons in the United States.

Dataset Climate Date #RDF # Obs
ID Event Triples
D1 Blizzard April, 2003 38,054,493 4,092,492
D2 Hurricane Charley August, 2004 108,644,568 11,648,607
D3 Hurricane Katrina August, 2005 179,128,407 19,233,458

105

Chapter 5. Integration of Historical Semantic Sensor Data

• ObsID → SamplingTime, Timestamp, MID, ObsMID

It can be demonstrated that all the tables created after factorization are in third
normal form.

Theorem 5.3.3. The decomposition of the RDF-MT based tables representing sensor
data into the factorized RDF-MT based tables is loss-less join.

Proof. Considering that the following functional dependencies hold in both the
RDF-MT, and factorized RDF-MT based tables:

• ObsMID → Procedure, Property

• MMID → Value, Unit

• ObsMID, MMID → ObsMID, MMID

• ObsID, ObsMID → ObsID, ObsMID

• ObsID, MID → ObsID, MID

• ObsID, SamplingTime → ObsID, SamplingTime

• SamplingTime → Timestamp

We can prove using the algorithm[50] that the factorized RDF-MT based tables
are a loss-less join decomposition of the RDF-MT based tables that includes all the
attributes in the RDF-MT tables plus ObsMID and MMID. The attributes of the RDF-MT
tables can be projected from G′, thus, satisfying the loss-less join condition.

Theorem 5.3.4. If G is an SSN RDF graph and G′ is a factorized RDF graph
of G, and T2 is the RDF-MT based tabular representation of G′, then T2 is in third
normal form with respect to the RDF-MT based tabular representation of G.

Proof. Recall [25], a table is in third normal form if for every X → Y

• X is a super key, or

• Y −X is a prime attribute

Considering that the following functional dependencies hold in RDF-MT based
tables:

• ObsMID → Procedure, Property

• MMID → Value, Unit

106

5.4. Experimental Study

• ObsMID, MMID → ObsMID, MMID

• ObsID, ObsMID → ObsID, ObsMID

• ObsID, MID → ObsID, MID

• ObsID, SamplingTime → ObsID, SamplingTime

• SamplingTime → Timestamp

It can be demonstrated that all the tables created after factorization are in third
normal form.

5.4 Experimental Study
We empirically study the impact of the proposed factorization techniques on

several implementations of RDF data accessible through different query engines.
We evaluate the impact on the size of the factorized RDF graphs as well as on
query execution time in different query engines. RDF-3X [73] is utilized to evalu-
ate the impact on the RDF stores. Spark [106] is utilized to evaluate the tabular
representation of RDF graphs. Federated query engines, like MULDER[34] and
ANAPSID[4], allow access the RDF data available through the endpoints and
produce results incrementally. MULDER and ANAPSID are used to assess the
impact of the factorization approach on the engines utilizing RDF implementations
available through the endpoints. In this chapter, we investigated the following re-
search questions: ResearchQ1) Are the proposed factorization techniques able
to reduce the size of the semantic sensor data? ResearchQ2) How is the fac-
torization time affected by the size of the RDF graphs? ResearchQ3) What is
the impact of the queries against factorized RDF graphs on the query execution
time? ResearchQ4) Is the performance of queries against factorized RDF graphs
affected by the size of the factorized RDF graphs or RDF implementations? The
experimental configuration to evaluate these research questions is as follows:
Datasets: Evaluation is conducted over three sensor datasets [77] described using
the SSN Ontology. These RDF datasets are collected from around 20,000 weather
stations in the United States and comprised of observations of different climate
phenomena, e.g., visibility, temperature, precipitation, wind speed, and humidity,
during the hurricane and blizzard seasons in the years 2003, 2004, and 20056. Ta-
ble 5.2 describes the main characteristics of these RDF datasets.
Queries: The SRBench-Version 0.9 queries7 are used as baseline in our experi-
mental testbed. Because RDF-3X does not evaluate queries with the OPTIONAL

6Available at: http://wiki.knoesis.org/index.php/LinkedSensorData
7https://www.w3.org/wiki/SRBench

107

http://wiki.knoesis.org/index.php/LinkedSensorData
https://www.w3.org/wiki/SRBench

Chapter 5. Integration of Historical Semantic Sensor Data

operator, query 2 is modified to include only one BGP. Also, the STREAM clause,
ASK queries, aggregate modifiers like AVG, GROUP BY, and HAVING clauses are
not supported. So, only SELECT queries without aggregate modifiers are part of
our testbed. Queries range from simple queries with one triple pattern to complex
queries having up to fourteen triple patterns with UNION and FILTER clauses 8.
Metrics: We report on the following metrics: a) Number of Triples (NT) in
the semantic sensor data collection. b) Percentage Savings (%age NT Sav-
ings) in the number of RDF triples after factorization. c) Factorization Time
(FT) is the elapsed time between the request of factorization and the generation of
the factorized RDF graph. d) RDF3X Loading Time (LT) is the time required
to load RDF data to RDF3X store. FT and LT are computed as the real time of
the time command of the Linux operating system. e) Query Execution Time
(ET) is the elapsed time between the submission of the query to the engine and
the complete output of the answer. In RDF and relational implementations ET is
measured as the real time produced by the time command of the Linux operation
system, whereas, in RDF implementations accessible through endpoints, ET, for
SPARQL endpoints, is measured as the absolute wall-clock system time produced
by the Python time.time() function. f) dief@t measures the continuous behaviour
of a query engine that produces results incrementally. It computes the diefficiency
of an engine in the first t time units of the query execution [3]. g) Time For the
First Tuple (TFFT) is the elapsed time spent by the approach to produce the
first query answer. TFFT is measured as the absolute wall-clock system time as
reported by the Python time.time() function. h) Completeness (Comp) is the
percentage of the number of answers produced by the approach after executing a
query. i) Throughput (T) is the number of answers per second and is computed
by dividing the total number of answers produced by the total execution time. For

Table 5.3: Efficiency and Effectiveness of the Semantic Sensor Data Fac-
torization. Number of triples (NT) and savings (%age NT Savings) after fac-
torization and the factorization time. Percentage savings in the number of triples
(%age NT Savings) increases with the size of the dataset, while average number
of triples per observation Avg. NT per Obs. decreases. Time that elapses dur-
ing factorization (FT) as well as the RDF3X Loading Time (LT) for the factorized
datasets are less than the RDF3X Loading Time (LT) for the original datasets.

Dataset Number of Triples(NT) %age NT Avg. NT per Obs. Factorization RDF3X LT(s)
ID Original Factorized Savings Original Factorized Time FT(s) Original Factorized

D1 38,054,493 17,800,156 53.22 9.29 4.34 417.229 460.511 252.976
D1D2 146,699,061 63,993,774 56.38 9.32 4.06 1,260.495 1,887.626 970.150
D1D2D3 325,827,468 136,979,696 57.96 9.31 3.92 2,147.239 3,822.723 1,982.697

8Details can be found at https://sites.google.com/site/fssdexperimets/

108

https://sites.google.com/site/fssdexperimets/

5.4. Experimental Study

the RDF implementations available through endpoints, inverse of TFFT and ET
are reported to have the same metric interpretation, i.e., higher is better.
Implementation: Three series of experiments were conducted over the grad-
ually integrating sensor datasets in Table 5.2, i.e., D1, D1D2, and D1D2D3.
i) SPARQL queries are executed using RDF3X engine over original and factor-
ized RDF datasets. RDF3X engine executes queries over RDF data stored locally.
The experiments are executed on a Linux Debian 8 machine with a CPU Intel I7
980X 3.3GHz and 32GB RAM 1333MHz DDR3. Queries are run on both cold
and warm cache.9 to access the query performance when data is cached. To run
on warm cache, we executed the same query five times by dropping the cache
just before running the first iteration of the query; thus, data temporally stored
in cache during the execution of iteration i can be used in iteration i + 1. ii) In
the second series of experiments, SQL queries were run using Apache Spark 10 over
the universal, factorized, RDF-MT based tables and factorized representations of
RDF-MT based tables. These tabular representations are stored using Parquet
format in HDFS 11.

The experiments were conducted on a spark cluster consisting of one master
node and three worker nodes created using Docker 12 containers, and the datasets
are stored on a hadoop cluster containing one namenode and three datanodes
created using docker containers. The experiments are performed on a machine
with Intel(R) Xeon(R) Platinum 8160 CPU 2.10GHz and 23 RAM slots, where
each RAM slot is DDR4 type, 32GB RAM size, and 2666MHz speed. Further,
queries are run on cold and warm cache. iii) In the third series of experiments
MULDER and ANAPSID engines are used to access the RDF datasets available
as a SPARQL endpoint using Virtuoso 7.2.2, where each original and factorized
dataset resides in a dedicated Virtuoso docker container. All queries are executed
using MULDER and ANAPSID over the original and the factorized datasets. The
experiments are conducted on a machine with Intel(R) Xeon(R) Platinum 8160
CPU 2.10GHz and 23 RAM slots, where each RAM slot is DDR4 type, 32GB
RAM size, and 2666MHz speed.

5.4.1 Efficiency and Effectiveness of Factorized RDF

For evaluating the efficiency and effectiveness of the proposed factorization
techniques and to answer the research questions ResearchQ1 and ResearchQ2,

9To run cold cache, we clear the cache before running each query by performing the command
sh -c "sync ; echo 3 > /proc/sys/vm/drop_caches"

10http://spark.apache.org/
11https://hadoop.apache.org/
12https://www.docker.com/

109

http://spark.apache.org/
https://hadoop.apache.org/
https://www.docker.com/

Chapter 5. Integration of Historical Semantic Sensor Data

we execute Algorithm 4 by gradually integrating the datasets in Table 5.2, i.e.,
D1, D1D2, and D1D2D3. Effectiveness is reported based on the reduction of
RDF triples (NT), while efficiency is measured in terms of factorization time (FT)
and RDF3X loading time (LT). Table 5.3 reports on the number of RDF triples
(NT) in datasets D1, D1D2, and D1D2D3 before and after the factorization.
The results demonstrate that the proposed factorization techniques are capable of
reducing the RDF triples by at least 53.22%. Moreover, the results report that
the factorized representation of sensor observations requires in average a small
number of RDF triples, i.e., five RDF triples instead of ten, while preserving all the
information within the original RDF graph. These results allows us to positively
answer research question ResearchQ1, i.e., factorized RDF graphs effectively
reduce the size of RDF graphs. We also measure factorization time and factorized
RDF loading time to RDF3X, and compare to the time required by RDF3X to
upload the original RDF graphs (Table 5.3). In all datasets, Algorithm 4 as well as
factorized RDF loading to RDF3X requires less than 50% of the time consumed
by RDF3X during original RDF data loading. Thus, with these results research
question ResearchQ2 can be also positively answered.

5.4.2 Impact of Factorized RDF on Query Processing

To answer research questions ResearchQ3 and ResearchQ4, we analyze the
efficiency of the proposed representations by running the queries generated using
Algorithm 5 over diverse RDF implementations. We run the queries over original
and factorized RDF data using centralized RDF engine, Big Data engines and
federated RDF engines.

Query Execution over Centralized RDF Engines

In order to exploit the benefits of cache, queries are executed on cold and warm
cache. The advantages of running these queries on cold and warm caches using
RDF3X are analyzed over the gradually increasing RDF datasets. The original
queries Q are compared to the reformulated queries Q′. Original queries (Q) are
executed against the original datasets, while plans for reformulated queries (Q′)
are run against gradually increasing factorized datasets. Figure 5.14 report on the
query execution time (milliseconds. log-scale) with cold cache, while Figure 5.15
depicts the observed execution time when queries are run on warm cache; the min-
imum value is reported in all the queries. In all cases, reformulated queries over
factorized RDF graphs exhibit better performance whenever they are run on cold
and warm caches. This observation supports the statement that because obser-
vation and measurement multiplicity is reduced to one in factorized RDF graphs,

110

5.4. Experimental Study

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000

100000

1000000 D1 Cold Run Q Q'

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(a) RDF3X Cold Run over Dataset D1

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000

100000

1000000 D1D2 Cold Run Q Q'

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(b) RDF3X Cold Run over Dataset D1D2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000

100000

1000000 D1D2D3 Cold Run Q Q'

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(c) RDF3X Cold Run over Dataset D1D2D3

Figure 5.14: Query Execution Time ET (ms Log-scale) over RDF3X on
Cold Cache. SPARQL queries are executed over the gradually increasing original
and factorized RDF data in cold cache. Original SPARQL queries Q and rewritten
SPARQL queries Q′ are evaluated on cold cache against original and factorized
RDF graphs, respectively. Rewritten SPARQL queries reduce execution time on
factorized RDF graphs by up one order of magnitude for all datasets.

factorized queries produce small intermediate results which can be maintained in
resident memory and re-used in further executions. Thus, the performance of
factorized queries is considerable better with warm cache, overcoming other exe-
cutions by up to three orders of magnitude, e.g., Q2 and Q6. Results also suggest
that performance of reformulated queries is not affected by the RDF graph size,
e.g., large RDF graphs like D1D2D3 with 325,827,468 RDF triples.

Query Execution over Big Data Engines

We evaluate the performance of the query execution task whenever queries
are executed against the relational representations, i.e., universal and factorized

111

Chapter 5. Integration of Historical Semantic Sensor Data

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0.01

0.1

1

10

100

1000

10000

100000

1000000 D1 Warm Run Q Q'
E

xe
. T

im
e

 (
m

s
L

o
g

-s
ca

le
)

(a) RDF3X Warm Run over Dataset D1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0.01

0.1

1

10

100

1000

10000

100000

1000000 D1D2 Warm Run Q Q'

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(b) RDF3X Warm Run over Dataset D1D2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
0.01

0.1

1

10

100

1000

10000

100000

1000000 D1D2D3 Warm Run Q Q'

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(c) RDF3X Warm Run over Dataset D1D2D3

Figure 5.15: Query Execution Time ET (ms Log-scale) over RDF3X on
Warm Cache. SPARQL queries are executed over the gradually increasing orig-
inal and factorized RDF data in warm cache. Original SPARQL queries Q and
rewritten queries Q′ are evaluated on warm cache against original and factor-
ized RDF graphs, respectively. To warm cache up, content of resident memory is
flushed, and each query is executed five times; the lowest value of execution time is
reported. Rewritten queries over factorized RDF graphs produce intermediate re-
sults that can be maintained in resident memory and re-used in further executions,
and reduce query execution time by up two order of magnitude.

tables, and the tabular representations of original and factorized RDF data around
the RDF molecule templates. The performance of queries over Parquet tables de-
pends on the number of attributes included in the query, as well as on the ratio
between the attributes in the query and the attributes in the tables 13. In queries
against the universal table, the ratio between the number of attributes used in

13http://techblog.appnexus.com/blog/2015/03/31/parquet-columnar-storage-for-
hadoop-data/

112

http://techblog.appnexus.com/blog/2015/03/31/parquet-columnar-storage-for-hadoop-data/
http://techblog.appnexus.com/blog/2015/03/31/parquet-columnar-storage-for-hadoop-data/

5.4. Experimental Study

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000
D1 Cold Run U F RDFmt F-RDFmt

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(a) Parquet Table Cold Run over Dataset D1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2 Cold Run U F RDFmt F-RDFmt

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(b) Parquet Table Cold Run over Dataset D1D2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2D3 Cold Run U F RDFmt F-RDFmt

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(c) Parquet Table Cold Run over Dataset D1D2D3

Figure 5.16: Query Execution Time ET (ms Log-scale) over Relations on
Cold Cache. Query evaluation over the gradually increasing universal, factor-
ized, and RDF-MT based tabular representations of the original and factorized
RDF graphs stored using parquet tables in cold cache. SQL queries representing
the original and rewritten SPARQL queries are evaluated over the universal (U),
factorized (F), RDF-MT based tabular representations of original (RDFmt) and
factorized (F-RDFmt) RDF graphs stored in parquet tables. Execution are timed
out after 100 minutes. SQL version of the rewritten SPARQL queries over the par-
quet tables storing the factorized (F) and RDF-MT based tables of the factorized
RDF graph (F-RDFmt) reduce execution time by up two orders of magnitude.

the universal table queries and the attributes varies from 0.09 to 0.45. While the
ratio in factorized queries is in the range from 0.46 to 0.75, and in original and
factorized RDF molecule templates is 0.25 and 0.78. So, based on this statement,
queries over the universal table should be faster than queries over the factorized
tables and RDF molecule template based tabular representations. However, as ob-
served in Figures 5.16 and 5.17, reformulated queries over factorized RDF molecule
template parquet tables speed up execution time to almost two orders of magni-

113

Chapter 5. Integration of Historical Semantic Sensor Data

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1 Warm Run U F RDFmt F-RDFmt
E

xe
. T

im
e

 (
m

s
L

o
g

-s
ca

le
)

(a) Parquet Table Warm Run over Dataset D1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2 Warm Run U F RDFmt F-RDFmt

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(b) Parquet Table Warm Run over DatasetD1D2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1

10

100

1000

10000 D1D2D3 Warm Run U F RDFmt F-RDFmt

E
xe

. T
im

e
 (

m
s

L
o

g
-s

ca
le

)

(c) Parquet Table Warm Run over Dataset D1D2D3

Figure 5.17: Query Execution Time ET (ms Log-scale) over Relations
on Warm Cache. Query evaluation over the gradually increasing universal,
factorized, RDF-MT based tabular representations of the original and factorized
RDF graphs stored using parquet tables in warm cache. To warm cache up,
content of resident memory is flushed, and each query is executed five times; the
lowest value of execution time is reported. SQL queries representing the original
and rewritten SPARQL queries are evaluated over the universal (U), factorized
(F), RDF-MT based tabular representations of original (RDFmt) and factorized
(F-RDFmt) RDF graphs stored in parquet tables. Execution are timed out after
100 minutes. SQL versions, of the rewritten queries, over the parquet tables storing
the factorized (F) and RDF-MT based tabular representations (F-RDFmt) reduce
execution time by up one orders of magnitude.

tude, except Q11 where factorized tables are performing better. Factorized RDF
molecule templates reduce the size of tables by creating them around each molecule
template and factorization further removes data redundancies. Actually, in two
queries (Q4 and Q5), query execution over the universal table times out after 60
minutes. These results allow us to conclude that formulated queries also reduce

114

5.4. Experimental Study

Q01

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(a) Q01

Q02

(TFFT)^−1

(ET)^−1

Comp T

dief@t

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(b) Q02

Q03

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(c) Q03
Q04

(TFFT)^−1

(ET)^−1

Comp T

dief@t
●

●

● ●

●

●

●

● ●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(d) Q04

Q05

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(e) Q05

Q06

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(f) Q06
Q07

(TFFT)^−1

(ET)^−1

Comp T

dief@t●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(g) Q07

Q08

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

●
●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(h) Q08

Q09

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(i) Q09
Q10

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(j) Q10

Q10

(TFFT)^−1

(ET)^−1

Comp T

dief@t

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

ANAPSID
ANAPSID−F
MULDER
MULDER−F

(k) Q11

Figure 5.18: Performance of Factorized RDF Graphs over SPARQL End-
points. Original and factorized RDF graphs accessible via SPARQL endpoints are
queried using ANAPSID and MULDER query engines. SPARQL queries are exe-
cuted over the original and factorized RDF graphs representing dataset D1D2D3
using ANAPSID and MULDER. Both query engines generate complete answers
with improved diefficiency and throughput for the factorized data, while the query
execution time is reduced. Same results are observed in datasets D1 and D1D2.

115

Chapter 5. Integration of Historical Semantic Sensor Data

execution time on Parquet tables.

Query Execution over Federated RDF Engines

We evaluate query performance over RDF implementations available through
virtuoso endpoints using MULDER and ANAPSID query engines. The results for
the largest dataset D1D2D3, shown in Figure 5.18, indicate that the factorization
improves performance of ANAPSID and MULDER to process RDF data available
through endpoints, and same results are observed for the other two datasets, i.e.,
D1 and D1D2. Overall ANAPSID performs better over factorized RDF data for
almost all the queries, except query Q4 where MULDER performs better over the
factorized RDF data. The query engines give significant improvement in query
execution time, throughput, and dief@t while producing complete answers over
the factorized data. In Q5 MULDER times out over factorized and original RDF
data, whereas, ANAPSID generates complete results from factorized data in 300
seconds as opposed to the original data which generates only one fourth of the
results from the factorized data in 73.49 seconds. Dief@t is computed at the
timestamp that is smaller among all the timestamps required by the approaches to
be compared, i.e., 73.49 seconds. Since at this time all the results for the original
data have been computed, whereas only some of the factorized data results are
computed at this time, thus, giving a smaller value for dief@t for the factorized
data. Actually, computing complete query answers from the factorized data takes
more time than producing few number of query results from the original data
These results reveal that query performance improves over the factorized data
available through SPARQL endpoints. Thus, we can positively answer questions
ResearchQ3 and ResearchQ4.

5.5 Summary

Large collections of sensor data are semantically described using ontologies,
e.g., the Semantic Sensor Network (SSN) ontology. Semantic sensor data are RDF
descriptions of sensor observations from related sampling frames or sensors at
multiple points in time, e.g., climate sensor data. Sensor values can be repeated in a
sampling frame, e.g., a particular temperature value can be repeated several times,
resulting in a considerable increase in data volume. We devise a factorized compact
representation of semantic sensor data using linked data technologies to reduce
repetition of same sensor values, and propose algorithms to generate collections of
factorized semantic sensor data that can be managed by existing RDF triple stores.
In addition, we present tabular-based representations for semantic sensor data to

116

5.5. Summary

exploit Big Data frameworks. We empirically study the effectiveness and efficiency
of the proposed RDF and tabular-based representations of semantic sensor data.
We show that the size of semantic sensor data is reduced by more than 50% on
average without loss of information. Further, we have evaluated the impact of
the proposed representations of semantic sensor data on query execution. Results
suggest that query optimizers can be empowered with semantics from factorized
representations to generate query plans that effectively speed up query execution
time on factorized semantic sensor data in RDF as well as Big Data engines.

117

Chapter 6

Integration of Streaming
Observational Data

In streaming data, produced by diverse IoT devices over time, the problem
of tackling redundancies is more challenging and requires the redundancies to be
detected on the fly. Despite the enormous benefits of optimization, monitoring,
and maintenance rendered by IoT devices, an ample amount of observational data
is generated continuously. Semantically describing IoT generated data using on-
tologies enables a precise interpretation of this data. However, ontology-based
descriptions tremendously increase the size of the data, and in the presence of
repeated sensor measurements, a large number of observations are duplicated that
do not contribute to new insights during query processing or data analytics. Chap-
ter 5 deals with historical data and addresses the problem of redundancies in RDF
knowledge graphs, whereas this chapter deals with data on motion, i.e., data is
received on the fly, and addresses the problem of on-demand knowledge graph
creation from streaming data. In this chapter, we capture the redundancies in
streaming data on the fly and compute knowledge graph without any duplicates.
Moreover, we present query execution techniques over streaming data. Figure 6.1
presents the challenge we tackle to solve the problem and the contribution to ad-
dress the challenge. The research work presented in this chapter is based on the
publications [54, 56]. This chapter addresses the following research questions:

RQ3: How can on-demand knowledge graph building reduce the size of the
streaming observational data?

RQ4: How can on-demand knowledge graph building speed up query pro-
cessing?

119

Chapter 6. Integration of Streaming Observational Data

Query Engines Analytics

Sensors Clinical
Devices

Semantic Description

Data Integration
and

Compact Representations

Web Services

Data Processing and Analytics

Streaming Observational Data Historical Semantic Sensor Data

On-demand semantic
description and

processing of streaming
observational data

CH3: Semantic
Description of

Streaming
Observational Data
in an Efficient Way

Figure 6.1: Challenges and Contributions. This chapter focuses on the prob-
lem of semantic description of streaming observational data, and presents tech-
niques for on-demand semantic description of streaming observation data.

In order to address the research questionsRQ3 andRQ4, we devise a knowledge-
driven approach named DESERT for streaming data that is able to on-Demand
factorizE and Semantically Enrich stReam daTa. DESERT resorts to a knowl-
edge graph to describe IoT stream data; it utilizes only the data required to answer
an input continuous SPARQL query and applies a novel method of data factor-
ization to reduce duplicated measurements in the knowledge graph. The main
contributions of this chapter are:

• A formal framework for defining on-demand stream data factorization and
semantification methods, as well as the implementation of this framework in
DESERT.

• An extensive analysis of the main characteristics of the state-of-the-art knowl-
edge graph building and continuous SPARQL query processing.

• An extensive empirical evaluation of DESERT framework, demonstrating
the impact of several parameters, e.g., the streaming window size and data
stream speed on the knowledge graph size and continuous query execution
on the DESERT performance.

This chapter is structured as follows: Section 6.1 motivates the work presented
in this chapter by building knowledge graphs from streaming data given a query
over the data stream. A knowledge graph constructed from all the data in the
stream is colossal, whereas the one created using the data required to answer the

120

6.1. Motivating Example

query is relatively sparse. However, several data duplicates are found in the sparse
knowledge graph resulting in an increase in the knowledge graph size. Section 6.2
formalizes the problem solved in this chapter. Section 6.3 describes the main
components of the DESERT architecture that is proposed to address the prob-
lem presented in Section 6.2. DESERT resorts to a knowledge graph to describe
IoT stream data; it utilizes only the data required to answer an input continuous
SPARQL query and applies a novel method of data factorization to reduce du-
plicated measurements in the knowledge graph. Section 6.4 reports the results of
our empirical evaluation. The performance of DESERT is empirically studied on
a collection of continuous SPARQL queries from SRBench, a benchmark of IoT
stream data and continuous SPARQL queries. Furthermore, data streams with
various combinations of uniform and varying data stream speeds and streaming
window size dimensions are considered in the study. Experimental results suggest
that DESERT is capable of speeding up query processing while creates knowledge
graphs that include no replications. We summarize this chapter in Section 6.5.

6.1 Motivating Example

Figure 6.2b illustrates a knowledge graph (KG) obtained by semantically de-
scribing, using the SSN ontology, a stream of 18, 632 observations about different
weather phenomena in the year 2008; the stream contains observations required
to answer the continuous SPARQL query in Figure 6.2a. The sensors generating
the data stream produce 15 observations per second of type rainfall, precipita-
tion, pressure, wind direction, relative humidity, wind speed, and temperature.
During the 20 minutes of query execution, all the observations in the stream are
semantically described within five minutes streaming window. An inspection to
a graphical visualization of the knowledge graph, generated by the Cytoscape
tool [96], illustrates that the knowledge graph is dense with 173, 238 RDF triples
describing 23, 792, 818 weather observations. Moreover, Figure 6.2d reports on
a network analysis of the knowledge graph from Figure 6.2b. It shows the high
values 43, 889.0, 7.0, and 18, 632.0, of the number of nodes, avg. number of neigh-
bors, and multi-edge node pairs, respectively, revealing thus the complexity of the
knowledge graph due to various connections among the nodes. In addition, the
knowledge graph in Figure 6.2c represents an ontology-based description of 2, 532
relative humidity observations within a five-minute streaming window, during a
20-minutes execution of the query in Figure 6.2a. The generated knowledge graph
is sparse containing 28, 997 RDF triples, describing the weather observations about
relative humidity required to answer the query. Furthermore, the network analysis
of the knowledge graph from Figure 6.2c, shown in Figure 6.2d, demonstrates

121

Chapter 6. Integration of Streaming Observational Data

SELECT DISTINCT ?sensor ?val ?uom
FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations>
[RANGE 5m TUMBLING]
WHERE {
 {?observation :procedure ?sensor ;
 rdf:type :RelativeHumidityObservation ;
 :result ?result}

 {?result :value ?val ;
 :uom ?uom }}

Get relative humidity observed once in 5 minutes window

2,532 RelativeHumidity observations

2,532 RelativeHumidity result values

(a) Query Q1 from SRBench (b) Complete KG

(c) Reduced KG

Parameter C.KG R.KG
of Nodes 43,889 9,894

Avg.# of neighbor 7 5
Multiedge node pair 18,632 3,793

(d) Analysis of KGs

Figure 6.2: Motivating Example. Knowledge Graphs (KGs) with observations
from the year 2008 MesoWest data stream of speed 15 obs/sec., for 20 min. (a) A
continuous SPARQL query from SRBench retrieves relative humidity observations
within five minutes window; (b) A knowledge graph with all observations sensed
within five minutes window for 20 minutes; (c) A knowledge graph with the rel-
ative humidity observations, required to answer the query in Figure 6.2a, for 20
minutes; (d) Analysis of complete (C.KG) and reduced (R.KG) knowledge graphs
in Figures 6.2b and 6.2c, respectively. The knowledge graphs in Figures 6.2b
and 6.2c, and the analysis in Figure 6.2d are generated by Cytoscape tool1.

that the knowledge graph is relatively less complex with low values, 9, 894.0, 5.0,
and 3, 793.0 of the number of nodes, avg. number of neighbors, and multi-edge node
pairs, respectively. However, an inquiry of the data in knowledge graph, from Fig-
ure 6.2c, shows that there are only 85 distinct measurement values among the
2, 532 relative humidity observations. Such a small number of distinct measure-
ment values within the streaming data indicates that the number of distinct values
produced by the IoT devices is much lower than the number of the observations.
With cases like this being a common occurrence in the semantic description of the
streaming data, further techniques are needed to improve the knowledge graph

1http://www.cytoscape.org/

122

http://www.cytoscape.org/

6.2. Problem Statement and Proposed Solution

obs1,WindSpeed,690,WSpeed,miles/hour,17

obs2,RelativeHum,A02,RelHum,percent,31

obs3,WindDirection,690,WindDir,degrees,135

obs4,WindSpeed,690,WSpeed,miles/hour,20

obs5,WindSpeed,690,WSpeed,miles/hour,18

obs7,WindSpeed,690,WSpeed,miles/hour,19

obs6,RelativeHum,A02,RelHum,percent,31

obs8,RelativeHum,A02,RelHum,percent,31

obs9,RelativeHum,A02,RelHum,percent,31

obs10,WindDirection,690,WindDir,degrees,130

obs11,WindDirection,690,WindDir,degrees,135

Data
Stream

Sensors

Time

ts11

ts10
ts9
ts8

ts7

ts6
ts5
ts4
ts3
ts2
ts1

(a) Stream of Data
Sensor

:detects

:detects

:detects

:hasMeasurementCapability

:observes

:observes

:observes

Wind Speed

Wind Speed

Humidity

:hasMeasurementCapability

:hasMeasurementCapability

High Speed Wind

Low Speed Wind

Relative
Humidity

(b) Knowledge Graph

Figure 6.3: Example of IoT Data Stream and Knowledge Graph. (a) A
stream of IoT data containing WindSpeed, RelativeHum, and WindDirection ob-
servations over a period of time. The continuous SPARQL query execution in
Figure 6.2a requires only RelativeHum observations to produce results. Relative-
Hum observations, obs2, obs6, obs8, and obs9 at timestamps ts2, ts6, ts8, and ts9,
respectively, have the same measurement value 31; (b) A Knowledge Graph com-
posed of wind speed and humidity weather phenomena; RDF triples semantically
describe a sensor’s measurement capability and observable property.

creation and continuous query processing.

6.2 Problem Statement and Proposed Solution
We leverage the semantics encoded in the streaming data generated contin-

uously by the IoT devices over time, and define the tackled problem and the
proposed solutions.

Definition 6.2.1 (Knowledge Graph [84]). Given a set T of RDF triples, a knowl-
edge graph is represented as G = (V,E, L), where V is a set of nodes defined as
V = {s | (s p o) ∈ T} ∪ {o | (s p o) ∈ T}; E is a set of edges defined as
E = {(s p o) ∈ T}, and L is a set of edge labels defined as L = {p | (s p o) ∈ T}.

Example 6.2.1. Figure 6.3b illustrates a knowledge graph that semantically de-
scribes three sensors observing wind speed and relative humidity weather phenom-
ena in the data stream in Figure 6.3a; for clarity, URIs are excluded. The knowl-
edge graph semantically describes the measurement capability and observable prop-
erty of sensors. The sensors are able to observe the low and high wind speeds and
the relative humidity measurements over time.

123

Chapter 6. Integration of Streaming Observational Data

Definition 6.2.2 (Observed Tuple). Given obs, proc, ph, pp, val, and uom cor-
responding to an observation identifier, procedure, observed phenomenon, observed
property, a measurement value, and measurement unit, respectively. An Observed
Tuple is a pair obsts = (oo, ts) where oo is an n-tuple oo = 〈obs, ph, proc, pp, uom, val〉
and ts is a numeric value; obsts = (oo, ts) represents an observation obs of a phe-
nomenon ph and parameter pp, collected at timestamp ts by procedure proc with
measurement value val and unit uom.

Example 6.2.2. Figure 6.3a presents observed tuples representing wind speed,
wind direction, and relative humidity observations generated by the sensors A02
and 690, within time interval [ts1, ts11]. All the tuples contain the complete infor-
mation about the corresponding observations. Each observation is identified using
a unique identifier, e.g., obs1, obs5, and obs10, within an observed tuple. The IoT
stream data represented by each tuple in Figure 6.3a can be seen as the data about
the observations and measurements collected during the act of carrying out obser-
vations. The data about an observation is described by the unique identifier, e.g.,
obs5, the phenomenon being observed, e.g., WindSpeed, the sensor generating the
observation, e.g., 690, and the property of the phenomenon being observed, e.g.,
WSpeed. The measurement data contain the measurement value of the observed
property, e.g., 18, and the measurement unit, e.g., miles/hour.

Observation tuples are collected in streams of data which are defined as follows:

Definition 6.2.3 (Data stream). A data stream DS is an ordered set of observed
tuples:

DS = {obstsi |obstsi = (ooi, tsi) ∧ tsi−1 ≤ tsi < tsi+1}

Knowledge graphs can be built by semantically describing the observed tuples,
generated within the data streams, in a particular range of time or window. The
SSN ontology can be used to create these Complete Knowledge Graphs which are
defined as follows:

Definition 6.2.4 (Complete Knowledge Graph). Given a set DSS = {DS1, DS2,
. . . , DSn} of data streams DSi and a window ω = [tsa, tsb]. A Complete Knowledge
Graph over DSS in the window ω named KGω

DSS, is defined as the union of the
knowledge graphs KGω

DSi
over data streams DSi in DSS.

A knowledge graph KGω
DSi

is built from RDF triples in T ω
DSi

that describe all
the observation tuples of DSi in the window ω using the transformation function
δ(.):

• T ω
DSi

is a set of RDF triples described using the SSN ontology: T ω
DSi

=
{δ(obstsi)|obstsi = (ooi, tsi) ∧ tsi ∈ ω ∧ obstsi ∈ DSi}

124

6.2. Problem Statement and Proposed Solution

• δ(.) is a transformation function that outputs the RDF representation of an
observation tuple obstsi .

Example 6.2.3. Figure 6.2b illustrates an RDF graph that includes all the RDF
triples of the data streams with observations sensed within five minute window in
a period of 20 minutes. As observed in Figure 6.2, a complete knowledge graph
may include RDF triples that are not required to answer a set of input continu-
ous queries. We define a reduced knowledge graph as the knowledge graph that is
composed of the RDF triples required to produce the complete answer of a continu-
ous query. For simplicity, we define a continuous SPARQL query as a set of basic
graph patterns BGPj associated with an RDF type representing a phenomenon and
produces RDF data mappings within the streaming window over time.

Definition 6.2.5 (Continuous SPARQL Query). A continuous query Q is a triple
Q = 〈BGP,PH, ω〉 where:
• BGP is a set of basic graph patterns BGPj = {t1, . . . , tn} where tk is a triple
pattern; each BGPj is associated with a phenomenon RDF type in PH.

• The evaluation of BGPj against a data stream DSi in a window ω, named
[[BGPj]]

ω
DSi

, produces mappings µ from variables in BGPj to resources and
literals in DSi within the window ω.

Based on a continuous SPARQL query Q against the streams of data generated
continuously by the IoT devices over time, a reduced knowledge graph is defined
as follows:

Definition 6.2.6 (Reduced Knowledge Graph). Given a continuous SPARQL
query Q = 〈BGP,PH, ω〉, a set DSS = {DS1, DS2, . . . , DSn} of data streams
DSi, and a window ω = [tsa, tsb], a Reduced Knowledge Graph over DSS in the
window ω for Q, named KGQ

DSS, is defined as the union of the knowledge graphs
KGQ

DSi
over data streams DSi in DSS that only include the results of [[BGP]]ωDSi

.

Example 6.2.4. Figure 6.2c presents a knowledge graph that only includes RDF
triples required to answer the continuous SPARQL query in Figure 6.2a. A reduced
knowledge graph also provides a compact representation of the observed data, where
measurements are represented only once and associated with their corresponding
observations. Consider, for instance, the observations obs2, obs6, obs8 and obs9
in Figure 6.3a; they report the same value of 31 percent of relative humidity. A
compact representation in a reduced knowledge graph allows for the description of
the measurement with the value 31 and the unit percent and the association of this
measurement to the corresponding observations. The temporal measurement mul-
tiplicity of the measurement with value 31 and unit percent within time interval
[ts1, ts11] is four. Instead of repeating these values, the multiplicity of measure-
ments in a reduced knowledge graph is always one.

125

Chapter 6. Integration of Streaming Observational Data

We formally define a temporal measurement multiplicity as follows:

Definition 6.2.7 (Temporal Measurement Multiplicity). Given an data stream
DS, a window ω, the temporal multiplicity of a measurement with values val and
uom in DS within ω, Mm(val, uom,DS, ω), corresponds to the number of obser-
vation tuples in the window ω that have same value val and unit uom.

Mm(val, uom,DS, ω) =| {obsts | obsts ∈ DS ∧ obsts = (〈obs, ph, proc, pp, uom, val〉,
ts) ∧ ts ∈ ω} |

In this chapter, we address the problem of building a knowledge graph on-
demand according to the streaming data required to answer a continuous SPARQL
query. Observations in data streams are represented in a knowledge graph in a
way that multiplicity of the entities represented in the knowledge graph is reduced
to one. We call this compact representation of the data in a knowledge graph,
on-demand factorization. In previous work, Karim et al. [55] propose techniques
for factorizing historical RDF data; the experimental results show evidence that
representing factorized RDF data not only reduces the size of the RDF datasets
but also speeds up query execution time. Building on factorization methods for
RDF data, we devise solutions to the problem of generating knowledge graphs
from streaming data on demand; the generated knowledge graph maintains the
characteristics observed and demonstrated in RDF historical data, i.e., answers of
queries over original and factorized RDF data are the same while the knowledge
graph size is reduced. In the next section, we formally define the problem of creat-
ing factorized knowledge graphs on-demand and present DESERT, a continuous
SPARQL query engine able to create and query these knowledge graphs.

6.2.1 Problem Statement

We define the problem of building a knowledge graph composed of the RDF
triples required to answer a continuous SPARQL query; RDF triples in the data
are factorized. We name this problem, the on-demand knowledge graph creation
(OKGC); it is defined as follows:

Given a continuous SPARQL queryQ = 〈BGP,PH, ω〉, a set DSS= {DS1, DS2,
. . . , DSn} of data streams, and a window ω, the on-demand knowledge graph cre-
ation problem corresponds to finding a reduced knowledge graph KGQ

DSS, such
that:

• Answer correctness and completeness of Q is enforced in KGQ
DSS. The results

of evaluating Q over KGQ
DSS and over KGω

DSS are the same.

• Measurements are factorized in KGQ
DSS. For each measurement value val

and unit uom in the observation tuples of the data streams DS in DSS,

126

6.2. Problem Statement and Proposed Solution

temporal measurement multiplicity of val and uom is equal to one, i.e.,
Mm(val, uom,DS, ω)=1.

• Only relevant observation tuples are semantically enriched and included in
KGQ

DSS. There is no observation tuple obsts in a data stream DS of DSS
such that δ(obsts) is in KGQ

DSS, but if δ(obsts) is removed, the results of
evaluating Q over KGQ

DSS and against KGω
DSS remain the same.

Example 6.2.5. Figure 6.4 illustrates an instance of the on-demand knowledge
graph creation problem, given the continuous SPARQL query in Figure 6.2a and
the stream data in Figure 6.3a. Firstly, the relevant observation tuples are selected
and factorized to ensure that the temporal multiplicity is equal to one; Figure 6.4a
shows factorization of relative humidity measurements with value 31% over the
observations obs2, obs6, obs8 and obs9. Figure 6.4b presents the knowledge graph
resulting from applying the transformation function δ(.) to the factorized observa-
tions in Figure 6.4a; note that there are no nodes with the same label.

6.2.2 Proposed Solution

We propose DESERT, a continuous SPARQL query engine able to solve
the on-demand knowledge graph creation problem. DESERT is build over the
CSPARQL-engine and is able to receive a continuous SPARQL query and IoT
data streams as inputs. Streaming data from different IoT devices is retrieved by
the DESERT framework using the customized wrappers based on the observation
tuples required to answer the input continuous SPARQL query. The retrieved
data, corresponding to the observations required to answer the query, is factor-
ized, semantified and integrated into a knowledge graph. The knowledge graph
models the semantics of the integrated data in terms of the observations required
to answer the query, as well as the relationships among them. DESERT imple-
ments query rewriting techniques, decomposes the input queries into subqueries
against the knowledge graph and the data streams, factorizes and semantifies the
data received from different data streams, and integrates the semantified such data
into the knowledge graph. Finally, it transforms and optimizes the queries to run
against the knowledge graph to produce the query answers. Further, wrappers
hide the complex implementations of the heterogeneous data streams. The se-
lective retrieval of data streams, in terms of observation tuples that are required
to answer an input continuous SPARQL query, reduces the size of the knowledge
graph. In addition, the factorization of the measurements produce more compact
representations of the knowledge graph, resulting in faster query execution times.

127

Chapter 6. Integration of Streaming Observational Data

X
RelativeHum

A02

RelHum

percent

31

Factorized Streaming
Observational Data

ts2 ts6 ts8 ts9

obs2 obs6 obs8 obs9

Factorized Streaming
Observational Data

(a) On-demand Factor-
ization of a Data Stream

:obs2

:time2

:ts2

:m6

31.0^^:float
:MeasureData

:mM11

:A02

:RelHum

:Relative
Hum

:obsM11

:percent

:ts6

:ts8

:procedure

rdf:type

:property

:instanceOf:instanceOf :in
sta

nce
Of

:result

:re
su

lt

:result

:samplingTime:samplingTime

:samplingTime

:tim
estamp

:timestamp

:timestamp

rd
f:ty

pe

:unit

:value

:result

Semantified Streaming Observational Data

:in
sta

nc
eO

f

:re
su

lt

:s
am

pl
in

gT
im

e

:ti
m

es
ta

m
p

:ts9

:time6 :time8

:time9

:obs6

:m9
:m2

:m8

:obs8

:obs9

Semantified Streaming Observational Data

(b) On-demand Semantic Enrichment of a Data
Stream containing factorized data required to answer a con-
tinuous SPARQL query

Figure 6.4: Instance of the On-demand Knowledge Graph Creation Prob-
lem. (a) Relative humidity observations obs2, obs6, obs8, and obs9, at timestamp
ts2, ts6, ts8 and ts9 respectively, are required to answer the query in Figure 6.2a
and have same values for :property, :procedure, :value, and :unit. These observa-
tions are extracted from the streaming data and are factorized; (b) The factorized
relative humidity observations are semantified using ontologies.

6.2.3 Knowledge Graph Description Model

The knowledge graph is built on-demand by answering continuous SPARQL
queries against data streams containing data produced from different IoT devices.
A knowledge graph can be described in terms of the observed phenomenon and
the property of phenomena being observed including a timestamp at which the
observations are measured in the data stream. DESERT relies on Observed Tuple
Molecule Templates to describe the type of the phenomenon and the property of
the phenomenon sensed by observations and timestamps at which they are taken
by IoT devices in data streams.

Definition 6.2.8 (Observed Tuple Molecule Template (OT-MT)). An Observed
Tuple Molecule Template (OT-MT) is a triple = 〈StreamIRI, C, TS〉, where:

128

6.2. Problem Statement and Proposed Solution

obs1,Temperature,690,DewPoint,oF,17

DS1

Sensors

Sensors

Sensors

Time

DS2

DS3

obs2,Temperature,A02,AirTemp,oF,31

obs3,WindDirection,690,WindD,deg,135

obs4,Temperature,690,DewPoint,oF,20

obs5,Temperature,A02,AirTemp,oF,18

obs6,Temperature,A02,AirTemp,oF,31

obs7,WindDirection,A02,WindD,deg,19

obs8,Temperature,A02,DewPoint,oF,31

obs9,Temperature,A02,AirTemp,oF,31

obs10,WindDirection,690,WindD,deg,130

obs11,WindDirection,690,WindD,deg,135

ts1

ts2

ts3

ts4

ts5

ts1

ts2

ts8

ts9

ts2

ts9

(a) IoT Data Streams

StreamIRI Phenomenon, Property TS

DS1 Temperature, DewPoint ts1,ts4

DS1 Temperature, AirTemp ts2,ts5

DS1 WindDirection , WindD ts3

DS2 Temperature, DewPoint ts8

DS2 Temperature, AirTemp ts1,ts9

DS2 WindDirection , WindD ts2

DS3 WindDirection , WindD ts2,ts9

(b) Description of Knowledge Graph

Figure 6.5: Example of Knowledge Graph Description. (a) Three streams,
DS1, DS2 and DS3, of data with observations about wind direction and tempera-
ture measured at different timestamps; (b) an instance of the description, based on
the concept of OT-MT, of the on-demand knowledge graph, built from the streams
of data in Figure 6.5b.

• StreamIRI - is an IRI to identify the data stream DS;

• C - is a phenomenon type such that the observed tuple obsts = (oo, ts), where
oo = 〈obs, C, proc, pp, uom, val〉, is in DS;

• PP - is a property of the phenomenon C observed within the observed tuple
obsts = (oo, ts), where oo = 〈obs, C, proc, PP, uom, val〉, is in DS;

• TS - is a finite set of timestamps such that the observed tuple obsts = (oo, ts),
where ts ∈ TS, is in DS

An OT-MT is created for each distinct phenomenon and the property ob-
served within the data stream, and includes the timestamps at which the observa-
tions about the phenomenon are measured along with the IRI of the data stream.
Figure 6.5 illustrates the creation of OT-MTs describing the data about sev-
eral weather phenomena and the observed property integrated into the knowledge
graph which is built on-demand from the data streams in Figure 6.5a. An OT-MT
is created for each phenomenon and its property being observed within each data
stream. Three OT-MTs, for temperature and wind direction phenomena, and
the corresponding properties are created within DS1, stream IRI and timestamps
of the observations are included in OT-MTs. Similarly, three distinct OT-MTs
are created for DS2 for temperature and window direction phenomenon, and the

129

Chapter 6. Integration of Streaming Observational Data

Continuous
SPARQL

Query

Factorization
& Semantic
Enrichment

Query
Execution

Engine

Query
Optimizer

Query
Decomposer

Query
Translator

Knowledge Graph
Description

Wrapper Wrapper Wrapper

Continuous Query
Answers

Reduced
Knowledge

Graph

Mapping
Rules

Processing Layer
Data Access Layer

Sensors

...

...

Figure 6.6: The DESERT Architecture. DESERT receives continuous
SPARQL queries and produces continuous answers to these queries. Input queries
are translated and decomposed into dynamic subqueries against the Reduced
Knowledge Graph. Wrappers collect the stream data from various IoT devices.
Sensor data that is not part of the Reduced Knowledge Graph yet gets seman-
tified and factorized on-demand. The Query Optimizer and Execution Engine
retrieve continuous query results from the Reduced Knowledge Graph.

stream IRI and timestamps of the observations are added. Only one OT-MT is
created for DS3 to describe the wind direction phenomenon observations observed
at time ts2 and ts9.

6.3 The DESERT Architecture
Figure 6.6 depicts the architecture of DESERT; it comprises the following

components:
Query Translator: implements query transformation rules and translates an
input continuous SPARQL query, against a complete knowledge graph, into a con-
tinuous SPARQL query over a corresponding reduced knowledge graph containing
the factorized streaming data. That is, the translated continuous SPARQL query
includes a list of triple patterns that can find mappings from the reduced knowl-
edge graph describing the factorized streaming data.

Query Decomposer: given the description of the knowledge graph, the query
decomposer decomposes an input continuous SPARQL query into multiple sim-
ple dynamic (i.e., continuous) subqueries and determines the target source for
the subqueries. The knowledge graph description is OT-MTs based and contains

130

6.3. The DESERT Architecture

a list of stream IRIs, the phenomenon and property being observed within the
stream, and the observations timestamps. Each input query is decomposed into
multiple subqueries based on the type of observations required to answer the in-
put query. A simple dynamic subquery is composed of a list of triple patterns
that can provide the mappings to the most recent and relevant observations in
the data stream and to the data integrated into the knowledge graph. Therefore,
each subquery is against a particular type of observations that have been recently
measured in the data stream. Then the IRIs of all the data streams, that con-
tain the recently observed data about the observations type required to answer
the dynamic subquery, are appended in the subquery. Figure 6.7 illustrates the
decomposition of a continuous SPARQL query, composed of nine triple patterns,
into three star-shaped subqueries [101] each around an observation phenomenon
using OT-MTs from 6.5b. Answers to these subqueries are retrieved from the
relevant data streams and knowledge graph and final query results are generated
using the bushy-plan shown in Figure 6.7c. The dynamic subqueries are passed
to the query optimizer.

Query Optimizer: generates an optimized query plan to integrate, over time,
continuous answers of dynamic subqueries, generated by the query decomposer.
Optimized plans are based on the star-shaped groups produced using OT-MTs as
shown in Figure 6.7c.

Wrappers: provide an interface between DESERT and streams of data, and
perform on-demand data retrieval from data streams. Complex implementations
and heterogeneity of data streams remain hidden with the help of the wrappers.
Wrappers convert the dynamic SPARQL subqueries into calls to data streams and
retrieve the most recent observations, from the data streams, generated by IoT
devices. Further, wrappers convert the retrieved data, from data streams, into the
DESERT internal structures and pass these representations to the query execu-
tion engine component, which integrates these data representations to generate
the continuous query results, and creates the knowledge graph.

Query Execution Engine: is able to execute the optimized query plan and to
integrate the continuous results of dynamic subqueries retrieved, continuously over
time, using the customized wrappers in order to generate the answers for the input
continuous SPARQL query. The answers to an input continuous SPARQL query
are produced, over a period of time, within the streaming window size defined in
the input continuous SPARQL query.

Factorization and Semantic Enrichment: receives a set of mapping rules
to convert the input streaming data, retrieved from the wrappers, into the RDF
knowledge graph. The factorization and semantic enrichment component continu-
ously selects a portion, equal to the window size of the input continuous SPARQL

131

Chapter 6. Integration of Streaming Observational Data

SELECT DISTINCT ?sensor
FROM STREAM <http://www.cwi.nl/observations>
[RANGE 5m TUMBLING]
WHERE {
 ?obs1 rdf:type :Temperature.
 ?obs1 :property :DewPoint.
 ?obs1 :sampleTime ?time.
 ?obs2 rdf:type :Temperature.
 ?obs2 :property :AirTemp.
 ?obs2 :sampleTime ?time.
 ?obs2 :procedure ?sensor.
 ?obs3 rdf:type :WindDirection.
 ?obs3 :procedure ?sensor.}

ts2
ts1

ts4
ts3

ts6
ts5

ts8
ts7

ts9

(a) Continuous SPARQL Query Q

ts1 ts2
ts3

ts4
ts5 ts6

ts7

ts9
ts8

?o1 ?o3

?o2
(b) Star-shaped subqueries

?o1 ?o3?o2

ts1 ts2
ts3

ts4
ts5 ts6

ts7 ts9
ts8

(c) Execution Plan for subqueries

Figure 6.7: Query Decomposition. (a) A continuous SPARQL query, over
stream data, composed of 9 triple patterns that can be decomposed into star-
shaped subqueries; (b) Three star-shaped subqueries around subjects in triple
pattern describing different weather phenomena associated with three OT-MTs in
Figure 6.5b; (c) A plan for star-shaped subqueries.

query, of the observation tuples received from the customized wrappers. The col-
lected stream is factorized by integrating observation tuples with the same mea-
surement unit and value in order to reduce the number of repeated measurement
values and the corresponding data. Figure 6.4a illustrates the factorization of the
stream in Figure 6.3a within the window [ts1, ts11] with respect to the relative
humidity observations that are required to answer the continuous SPARQL query
in Figure 6.2a. Factorization integrates all measurements and observations with
the same value into single measurement and observation RDF graphs, respectively.
Once the observation and measurement RDF graphs have been constructed, the
factorization and semantic enrichment component describes the semantics of the
observation tuples using ontologies and integrates the semantified data into the
knowledge graph. Figure 6.4b presents the knowledge graph generated by se-
mantifying the factorized stream in Figure 6.4a. The factorized knowledge graph
contains only data required to answer the SPARQL query.

132

6.4. Experimental Evaluation

6.4 Experimental Evaluation
In this chapter, we study effectiveness and efficiency of DESERT for streaming

data generated at different speeds by IoT devices equipped with sensors. Particu-
larly, we evaluate the performance in terms of throughput, and the impact on the
size of the knowledge graph for different data stream speeds and window sizes. We
consider three different configurations:

• CSPARQL: All types of entities in the data stream are semantified using
conventional RDF stream processing implemented by the C-SPARQL engine.

• onDS : Only entities, within a streaming window, required for producing the
answers of an input continuous SPARQL query are all semantified.

• onDFS : Only entities, within the streaming window, required for producing
the answers of an input query are factorized, and then semantified.

Moreover, all these cases are evaluated in two dimensions, i.e., data stream speed
and window size, by considering different combinations of uniformity and variation
of the data stream speed and window size. We empirically assessed the following
research questions: ResearchQ1) Is the size of knowledge graph impacted by
the selectivity of the queries? ResearchQ2) Is query execution in DESERT
affected by the the selectivity of queries? ResearchQ3) Is the performance of
DESERT affected by the data stream speed and size of the streaming window?
ResearchQ4) Are the continuous query answers equivalent in all three cases?
The experimental configuration to evaluate these research questions is as follows:
Datasets: Experiments are conducted on datasets including observations of dif-
ferent climate phenomena, e.g., temperature, visibility, and precipitation, during
the blizzard season in the United States of year 20032. Several data streams with
a particular velocity are generated, for 20 minutes and for 1 hour, from these
datasets. The main characteristics of each data stream, generated for 20 minutes
and 1 hour with different combinations of data stream speed and window size di-
mensions, are described in the next corresponding sections.
Queries: The SRBench-Version 0.9 queries3 provide the testbed for our exper-
imental evaluation. The continuous SPARQL queries range from simple queries
with four triple patterns to complex one having up to fourteen triple patterns
including UNION, OPTIONAL, and FILTER clauses. From the 17 continuous
SPARQL queries only ten SELECT queries with OPTIONAL and UNION op-
erators, aggregate modifiers like AVG, GROUP BY, and HAVING and FILTER

2Datasets can be downloaded from http://wiki.knoesis.org/index.php/
LinkedSensorData

3https://www.w3.org/wiki/SRBench

133

http://wiki.knoesis.org/index.php/LinkedSensorData
http://wiki.knoesis.org/index.php/LinkedSensorData
https://www.w3.org/wiki/SRBench

Chapter 6. Integration of Streaming Observational Data

clauses are included in our experimental testbed. Furthermore, each continuous
SPARQL query is provided with one and ten minutes streaming window sizes.
Metrics: We report on the following metrics for each of the ten queries executed
with different combinations of uniform and varying data stream speeds and win-
dow sizes: a) Inverse Throughput (Inv.Throughput) is the inverse of the number
of answers produced per unit of time. b) Knowledge Graph Size (KG.Size) is the
average size of the knowledge graph in megabytes in the given window. c) Used
Memory (Used.Memory) is the average memory used by the system to generate
answers in the given window. d) Number of Normalized Triples (Norm.Triples)
is the number of RDF triples generated in the knowledge graph divided by the
maximum number of triples in the three cases for the given window. e) Inverse
Percentage of Answers Completeness (Inv.AnsComp) is the inverse of the percent-
age of produced answers completeness. For all metrics lower values are better.
Implementation: The experiments were performed on a Ubuntu 17.10 machine
with CPU Intel Xeon(R) W-2133 CPU @ 3.06GHz x 12 and 64GB RAM. Node-
Red v0.18.4 (npm)4 is used to synthesize the streams of data generated by the
IoT devices. A websocket interface passes the data streams from Node-Red to
DESERT for processing. Afterwards, continuous SPARQL queries are run over
the data streams in the three cases with different combinations of the data stream
speeds and window sizes: (i) all types of entities in the data stream are semanti-
fied (CSPARQL), (ii) only entities facilitating the query execution are semantified
within the streaming window (onDS), and (iii) the entities facilitating query exe-
cution are semantified as well as factorized within the streaming window (onDFS).

6.4.1 Performance with Uniform Data Stream Speed and
Window Size

To evaluate the performance of DESERT over uniform data stream speed and
window size, we executed ten SRBench Version 0.9 queries with ten minutes win-
dow size over a data stream, with 20 observations per second speed, for one hour.

Table 6.1: Data Stream Description for Uniform Data Stream Speed
and Window Size Dimensions: Observations are collected from around 20,000
weather stations in the United States with twenty observations per second speed
and ten minutes streaming window size.

ID Climate Event Stream Rate Window Size # Obs/Window # Obs
(# Obs/sec) (sec)

DS1 Blizzard 20 600 12,000 72,000

4https://nodered.org/

134

https://nodered.org/

6.4. Experimental Evaluation

Q1

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q2

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q3

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q4

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q5

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q6

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q7

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q8

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q9

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q10

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Figure 6.8: Performance with Uniform Data Stream Speed and Window
Size. Continuous queries, with 10 min. window, are executed over IoT stream
data, with 20 obs. per sec. speed, by (i) semantifying all entities in the stream, i.e.,
CSPARQL engine (CSPARQL), (ii) semantifying only the entities that satisfy the
SPARQL queries, i.e., On-Demand Semantification (onDS) and (iii) factorizing
and semantifying only the entities that satisfy the SPARQL queries, i.e., On-
Demand Factorization and Semantification (onDFS).

Table 6.1 describes the main characteristics of the data stream generated for one
hour. Figure 6.8 compares the three cases (CSPARQL, onDS, onDFS) for queries
Q1–Q10 with respect to Inv.Throughput, KG.Size, Used.Memory, Norm.Triples,
and Inv.AnsComp, for ten minutes window, with twenty observations per second
data stream speed. The interpretation of the metrics Inv.Throughput, KG.Size,
Used.Memory, Norm.Triples, and Inv.AnsComp is, lower is better. Although for
all queries the results are complete in all cases, we observe big differences in the
inverse throughput values, as well as the knowledge graph size, the number of RDF
triples produced and the used memory. Regarding knowledge graph size (KG.Size)
and produced RDF triples (Norm.Triples) the advantages of on-demand semantifi-
cation and on-demand factorization and semantification are more obvious. Com-
pared with CSPARQL, we observed up to 80.14% and 80.60% savings for onDS,
and up to 91.63% and 93.37% savings for onDFS, with respect to knowledge graph
size and the number of RDF triples produced respectively, within the ten minutes
window size. These results allow us to answer positively answer research question
ResearchQ1, i.e., knowledge graph size can be significantly reduced using on-
demand factorization and semantification techniques. Moreover, the results show
that the inverse throughput in on-demand semantification is comparable to the
full semantification (lower for most of the queries), whereas with both on-demand
factorization and semantification the inverse throughput is reduced up to three
orders of magnitude, e.g., Q8 and Q10. However, for the complex query Q5, we
were able to retrieve answers only in the case of onDFS (for CSPARQL and onDS

135

Chapter 6. Integration of Streaming Observational Data

we got timeouts after one hour). Finally, the memory usage in onDFS is reduced
compared to onDS and CSPARQL. Thus, research question ResearchQ2 can be
positively answered, i.e., the lower inverse throughput (i.e., inverse of the number of
retrieved answers in a unit of time) shows that the throughput using DESERT can
be improved, especially when both semantification and factorization are applied
on-demand. Further, the equivalent values, zero for onDFS, onDS and CSPARQL
for the inverse percentage of answers completeness, allows us to positively answer
research questionResearchQ4, i.e., the returned results are complete, in all cases.

6.4.2 Performance with Uniform Data Stream and Varying
Window Size

To evaluate the performance of DESERT over uniform data stream speed
and varying window size, we executed ten SRBench-Version 0.9 queries with one
and ten minutes windows size over a data stream, with ten observations per sec-
ond speed, for twenty minutes and one hour, respectively. Table 6.2 describes
the main characteristics of the data stream generated for twenty minutes and one
hour. Figures 6.9a and 6.9b compare the three aforementioned cases (CSPARQL,
onDS, onDFS) for queries Q1–Q10 with respect to Inv.Throughput, KG.Size,
Used.Memory, Norm.Triples, and Inv.AnsComp, for one and ten minutes windows,
with ten observations per second data stream speed. All the metrics KG.Size,
Inv.Throughput, Used.Memory, Norm.Triples, and Inv.AnsComp are lower the
better. For all queries, the results are complete in all cases; however, differences
can be observed whenever the window size is increased and the stream is larger.
Consistently, the knowledge graph size, the number of RDF triples produced, and
the used memory increase as well. Within one minute window, the knowledge
graph size and number of produced RDF triples are reduced by onDFS and onDS.
Nevertheless,onDFS outperforms CSPARQL and onDS when larger streams are
observed, i.e., the window size is increased. Compared with CSPARQL, we ob-
served up to 92.53% and 94.34% savings for onDFS, with respect to knowledge

Table 6.2: Data Stream Description for Uniform Data Stream Speed and
Varying Window Size Dimensions: Observations are collected from around
20,000 weather stations in the United States with ten observations per second, and
one and ten minutes windows size.

ID Climate Event Stream Rate Window Size # Obs/Window # Obs
(# Obs/sec) (sec)

DS2 Blizzard 10 60 600 12,000
DS3 Blizzard 10 600 6,000 36,000

136

6.4. Experimental Evaluation

Q1

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q2

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q3

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q4

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q5

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q6

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q7

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q8

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q9

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q10

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

(a) Continuous SPARQL queries execution with one minute window over 10 obs.per.sec. data
stream for 20 minutes.

Q1

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q2

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q3

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q4

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q5

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q6

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q7

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q8

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q9

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q10

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

(b) Continuous SPARQL queries execution with ten minutes window over 10 obs.per.sec. data
stream for one hour.

Figure 6.9: Performance with Uniform Data Stream Speed and Varying
Window Size. Continuous queries, with one and 10 minutes windows, are exe-
cuted over IoT stream data, with 10 obs. per sec. speed, by (i) semantifying all
entities in the stream, i.e., the C-SPARQL engine (CSPARQL), (ii) semantifying
only the entities that satisfy the queries, i.e., On-Demand Semantification (onDS)
and (iii) factorizing and semantifying only the entities that satisfy the queries,
i.e., On-Demand Factorization and Semantification (onDFS). onDFS outperforms
CSPARQL and onDS in all the dimensions for selective queries over large streams.
In a small stream (one minute window over 10 obs.per sec.), the three engines ex-
hibit the same throughput for Q1, Q6, and Q7.

graph size and the number of RDF triples produced respectively, with increasing
window size. Moreover, the results report the inverse throughput in onDFS and
onDS is comparable to CSPARQL (lower for most of the queries), whereas with
increasing window size, onDFS improvements can be seen in the inverse through-

137

Chapter 6. Integration of Streaming Observational Data

put values reducing up to two orders of magnitude, e.g., Q2, Q4, Q8, Q9, and Q10.
However, for the complex query Q5, we were able to retrieve answers only in the
case of onDFS both for one minute and ten minute windows, for onDS Q5 results
are obtained only for one minute window and for ten minute window Q5 timed
out, whereas for CSPARQL we got timeouts for one and ten minutes windows after
twenty minutes and one hour, respectively. Finally, the memory usage in onDFS
is reduced compared to onDS and CSPARQL with increasing window size. These
results allow us to positively answer the research question ResearchQ3 regard-
ing the size of the streaming window, i.e., more savings in terms of knowledge
graph size and better query execution time can be achieved using onDFS, with the
increasing streaming window size.

6.4.3 Performance with Varying Data Stream and Uniform
Window Size

To evaluate the performance of DESERT over varying data stream speed
and uniform window size, we executed ten SRBench-Version 0.9 queries with one
minute window size over two data streams, with 25 observations per second data
stream speed, for twenty minutes. Table 6.3 describes the main characteristics of
the data stream generated for twenty minutes. Figures 6.10a and 6.10b com-
pare the three aforementioned cases (CSPARQL, onDS, onDFS) for queries Q1–
Q10 with respect to Inv.Throughput, KG.Size, Used.Memory, Norm.Triples, and
Inv.AnsComp, for one and ten minutes windows, with ten observations per sec-
ond data stream speed. All the metrics Inv.Throughput, KG.Size, Used.Memory,
Norm.Triples, and Inv.AnsComp, are lower the better. For all queries, the results
are complete in all cases; however, with increasing data stream speed, we observe
big differences in the inverse throughput values, as well as the knowledge graph
size, the number of RDF triples produced and the used memory. Up to 90.36%
and 92.53% savings are observed for onDFS in knowledge graph size and number
of triples produced, respectively, with increasing data stream speed. Moreover, in-

Table 6.3: Data stream Description for Varying Data Stream Speed and
Uniform Window Size Dimensions: Observations are collected from around
20,000 weather stations in the United States with 20 and 50 observations per
second, and one minute window size.

ID Climate Event Stream Rate Window Size # Obs/Window # Obs
(# Obs/sec) (sec)

DS4 Blizzard 20 60 1,200 24,000
DS5 Blizzard 50 60 3,000 60,000

138

6.4. Experimental Evaluation

Q1

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q2

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q3

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q4

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q5

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q6

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q7

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q8

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q9

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q10

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

(a) Continuous SPARQL queries execution with one min. window over 20 obs.per.sec. data
stream for 20 minutes.

Q1

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q2

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q3

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q4

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q5

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q6

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q7

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q8

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q9

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q10

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

(b) Continuous SPARQL queries execution with one min. window over 50 obs.per.sec. data
stream for 20 minutes.

Figure 6.10: Performance with Varying Data Stream Speed and Uni-
form Window Size. Continuous queries, with one minute window, are executed
over IoT stream data, with 20 and 50 obs. per sec. speeds, by (i) semantifying
all entities in the stream, i.e., CSPARQL engine (CSPARQL), (ii) semantifying
only the entities that satisfy the queries, i.e., On-Demand Semantification (onDS)
and (iii) factorizing and semantifying only the entities that satisfy the queries,
i.e., On-Demand Factorization and Semantification (onDFS). onDFS outperforms
CSPARQL and onDS in all the dimensions for selective queries over large streams.
In a small stream (one minute window over 20 obs.per sec.), the three engines ex-
hibit the same throughput for Q1, Q6, and Q7.

verse throughput for onDS is relatively lower than the CSPARQL, while for onDFS
the inverse throughput reduced up to three orders of magnitude, e.g., Q2 and Q4,
with increasing data stream speed. Nonetheless, for the complex query Q5, we
were able to retrieve answers only in the case of onDFS, whereas for CSPARQL

139

Chapter 6. Integration of Streaming Observational Data

and onDS, Q5 timed out both for twenty and fifty observations per second data
stream speed. Finally, the memory usage in onDFS remains lower than onDS and
CSPARQL with increasing data stream speed. These results allow us to positively
answer ResearchQ3 regarding the data stream speed, i.e., more savings in terms
of knowledge graph size and better query execution time can be achieved using
onDFS whenever the size of the IoT stream data is increased.

6.4.4 Performance with Varying Data Stream and Window
Size

To evaluate the performance of DESERT over varying data stream speed
and window size, we executed ten SRBench-Version 0.9 queries with one minute
window over an data stream with seventy observations per second speed and ten
minutes window size over data stream with fifty observations per second speed,
for twenty minutes and one hour, respectively. Table 6.4 describes the main
characteristics of the data stream generated for twenty minutes and one hour.
Figures 6.11a and 6.11b compare the three aforementioned cases (CSPARQL,
onDS, onDFS) for queries Q1–Q10 with respect to Inv.Throughput, KG.Size,
Used.Memory, Norm.Triples, and Inv.AnsComp, for one and ten minutes windows,
with ten observations per second data stream speed. All the metrics KG.Size,
Inv.Throughput, Used.Memory, Norm.Triples, and Inv.AnsComp, are lower the
better. As in previous experiments, the query answers are complete in all cases
and varying data stream speed and window size impact on the engine performance.
First, we observe big differences in the inverse throughput values, as well as the
knowledge graph size, the number of RDF triples produced and the used memory.
More savings are observed in knowledge graph size and number of triples with ten
minute window and fifty observations per second data stream speed. Moreover,
inverse throughput for onDS is relatively lower than the CSPARQL for most of the
queries, while for onDFS the inverse throughput is less than 25% for all queries
with ten minute window and fifty observations per second data stream speed. For

Table 6.4: Data Stream Description for Varying Data Stream Speed
and Window Size Dimensions: Observations are collected from around 20,000
weather stations in the United States with 70 and 50 obs. per sec. speed within
one and 10 minutes windows, respectively.

ID Climate Event Stream Rate Window Size # Obs/Window # Obs
(# Obs/sec) (sec)

DS6 Blizzard 70 60 4,200 84,000
DS7 Blizzard 50 600 30,000 180,000

140

6.4. Experimental Evaluation

Q1

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q2

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q3

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q4

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q5

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q6

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q7

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q8

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q9

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q10

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

(a) Continuous SPARQL queries execution with one min. window over 70 obs.per.sec. data
stream for 20 minutes.

Q1

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q2

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q3

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q4

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q5

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q6

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q7

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q8

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q9

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

Q10

0.00
0.25
0.50
0.75
1.00

Inv.Throughput

Inv.AnsComp

Norm.Triples Used.Memory

KG.Size

CSPARQL
onDS
onDFS

(b) Continuous SPARQL queries execution with ten min. window over 50 obs.per.sec. data stream
for one hour.

Figure 6.11: Performance with Varying Data Stream Speed and Window
Size. Continuous queries, with one and 10 min. windows, are executed over IoT
stream data, with 70 and 50 obs.per.sec. speeds, respectively, by (i) semantifying
all entities in the stream, i.e., the C-SPARQL engine (CSPARQL), (ii) semanti-
fying only the entities that satisfy the queries, i.e., On-Demand Semantification
(onDS) and (iii) factorizing and semantifying only entities that satisfy queries,
i.e., On-Demand Factorization and Semantification (onDFS). onDFS outperforms
CSPARQL and onDS in all the dimensions over large streams.

most of the queries inverse throughput is significantly reduced whenever the size
of the stream is large. For example, onDFS outperforms CSPARQL and onDS
in terms of the inverse throughput when the window size is ten minutes and fifty
observations are collected per second. Nevertheless, in smaller streams, e.g., one
minute window with seventy observations per second, this difference in the inverse
throughput is not always observed, e.g., Q1, Q3, Q6, and Q7. For the complex

141

Chapter 6. Integration of Streaming Observational Data

query Q5, only onDFS produces answers, whereas CSPARQL and onDS timed
out within both one and ten minutes windows with seventy and fifty observations
per second data stream speed, respectively. Finally, the memory usage in onDFS
remains lower than onDS and CSPARQL during all executions. These results
suggest that the on-demand knowledge graph techniques implemented by onDFS
provide a scalable solution for continuous query processing, supporting thus a pos-
itive answer of ResearchQ3, i.e., DESERT performance is impacted by the size
of the IoT stream data.

6.5 Summary
Big data and streaming nature of IoT data imposes several challenges that

need to be addressed in order to provide efficient and scalable management and
processing of IoT data. We address these challenges and focus on the problems
of describing the meaning of IoT data using ontologies and integrating this data
in a knowledge graph. We devise DESERT, a SPARQL query engine able to on-
Demand factorizE and Semantically Enrich stReam daTa in a knowledge graph.
Resulting knowledge graphs model the semantics or meaning of merged data in
terms of entities that satisfy the SPARQL queries and relationships among those
entities; thus, only data required for query answering is included in the knowledge
graph. We empirically evaluate the results of DESERT on SRBench, a benchmark
of Streaming RDF data, using different combinations of data stream speed and
windows size. The experimental results suggest that DESERT allows for speeding
up query execution while the size of the knowledge graphs remains relatively low.

142

Chapter 7

Conclusion and Future Directions

Observational data comprise observations that are expressed as measurements
whose values can be repeated several times in a sampling frame, resulting in a con-
siderable increase in streaming and historical observational data volume. With the
maturing of semantic technologies and their increasing industrial use, scalability,
performance, and robustness progressively shift into the focus. RDF Knowledge
graphs provide descriptions of observations from related sampling frames or sen-
sors at multiple points in time, e.g., patient medical records or climate sensor
data. One particular important dimension of RDF knowledge graphs is to rep-
resent observations over time, i.e., time series. Examples of such data are sensor
measurements, clinical study data, stock prices, logistics, and traffic data. Also,
for making RDF knowledge graphs representations more suitable to be applied
in Big Data scenarios the velocity and volume dimensions have to be better sup-
ported. Representing observational data and their meaning directly in RDF will
result in a significant expansion of the data volume due to repetition. In this thesis,
we study the problem of identifying redundancies in observational data semanti-
cally described in RDF knowledge graphs and present compact representations of
RDF knowledge graphs. Furthermore, we address the problem of efficient query
processing over historical semantic sensor data, and propose compact representa-
tions of historical semantic sensor data that can be managed by existing RDF and
Big Data stores. Moreover, we investigate the problem of on-demand knowledge
graph creation from streaming data, and develop a continuous query processing
framework. The proposed approach models, in knowledge graphs, the meaning
of streaming data in terms of observation entities which are needed to answer an
input continuous query.

143

Chapter 7. Conclusion and Future Directions

7.1 Revising the Research Questions

RQ1: What are the criteria to identify frequent star patterns?

Chapter 4 presents computational methods to identify frequent star patterns
and to generate a factorized RDF graph, with a minimized number of frequent
star patterns. A frequent star pattern contains class entities linked to the ob-
jects or other resources using labeled edges annotated with properties in the class.
These frequent star patterns introduce redundancy in terms of edges and nodes.
Our proposed computational methods implement the frequent star pattern detec-
tion algorithm based on search space pruning techniques to identify the classes
and properties involved in frequent star patterns. Furthermore, the proposed fac-
torization techniques generate compact representation of RDF graphs, factorized
RDF graph, by replacing a frequent star pattern with a compact RDF molecule,
composed of a surrogate entity connected to the object in the frequent star pat-
tern using the labeled edges annotated with relevant properties. We empirically
study the effectiveness of the frequent star pattern detection algorithm to identify
class and properties involved in the frequent star pattern. Furthermore, we eval-
uate the impact of the factorization techniques on the gradually increasing RDF
graphs size and different combinations of class properties. Experimental results
suggest that the proposed computational methods successfully identify the class
properties involved in the frequent star patterns and remove redundancy caused
by these frequent star patterns. For the best set of properties, identified by the
frequent star pattern detection algorithm, the RDF graph size is reduced by up
to 66.56%. Our work broadens the repertoire of techniques for representing and
storing knowledge graphs by providing RDF graph compression techniques which
exploit the semantics encoded in the data; these techniques generate compact rep-
resentations of RDF graphs to help improving query processing over RDF graphs
without requiring a customized engine. Our work contributes to the crucial knowl-
edge graph representation and provides the basics for further development of the
efficient processing techniques over the compact knowledge graphs.

RQ2: How can efficient representations be exploited to manage historical
semantic sensor data?

Chapter 5 presents compact RDF representations for semantic sensor data to
reduce data redundancy without losing any encoded information, enhance the per-
formance of diverse RDF implementations, ensure correctness of query answers,
and preserve complexity of query processing tasks. Furthermore, tabular repre-
sentations for a loss-less large-scale storage of factorized semantic sensor data are

144

7.1. Revising the Research Questions

presented. A factorization algorithm transforms original observations and mea-
surements to a more compact representation where data redundancy is reduced.
Additionally, query rewriting rules and a query re-writing algorithm are presented.
The query rewriting algorithm exploits the rewriting rules to rewrite SPARQL
queries against factorized RDF graphs, and speeds up query execution time. The
factorized observations and measurements are also exploited to produce tabular
representations for factorized RDF graphs utilizing Parquet tables. We empirically
evaluate the effectiveness of the proposed factorization techniques and results con-
firm that exploiting semantics encoded in semantic sensor data allow for reducing
redundancy by up to 57.96%, while the time taken by the process of factorizing
RDF data is less than 50% of loading time for the original RDF data in the state-of-
the-art RDF stores. Moreover, for all RDF datasets, the loading time for factorized
RDF data is reduced by more than 45% of the loading time of original RDF data
in native RDF stores. Also, we evaluated the impact of proposed compact rep-
resentations on the diverse implementations available for RDF data, i.e., native
RDF implementations, non-native large-scale tabular based implementations, and
centralized RDF data accessible via SPARQL endpoints. Our experiments confirm
the efficiency of the queries generated by the CSSD approach over several RDF
implementations. In summary, factorization techniques provide efficient RDF rep-
resentations that are able to solve the problem RDF data redundancy and enhance
the performance of query engines over diverse RDF implementations.

RQ3: How can on-demand knowledge graph building reduce the size of the
streaming observational data?

Chapter 6 presents on-demand factorization and semantification techniques for
IoT stream data. The proposed techniques have been implemented in DESERT,
a continuous SPARQL query engine. DESERT is able to create a knowledge
graph on-demand by integrating IoT data collected from heterogeneous stream
data sources, with different data generation speeds. Furthermore, DESERT ex-
ploits semantics encoded within the IoT stream data to generate knowledge graphs.
We have explained the retrieval of stream data based on input continuous SPARQL
query using customized wrappers; we also presented how on-demand factorization
and semantification techniques can be used to reduce the size of the resulting
knowledge graph. We evaluated the DESERT framework with various combi-
nations of uniform and varying data stream speed and streaming window size
dimensions. The results of the empirical evaluation suggest that DESERT is able
to effectively reduce the size of the integrate knowledge graph compared to the
conventional semantification techniques. The experiments also provide evidence
that in comparison to the existing RDF stream processing engines, the on-demand
factorization and semantification techniques implemented in DESERT are able

145

Chapter 7. Conclusion and Future Directions

to integrate IoT stream data in a knowledge graph efficiently and speed up query
execution. Savings are significant in all the dimensions, in large streams of data
produced by high-speed sensors or observed during large periods of time.

RQ4: How can on-demand knowledge graph building speed up query pro-
cessing?

Chapter 6 implements efficient query processing techniques for streaming obser-
vational data in DESERT, a SPARQL query engine able to on-Demand factorizE
and Semantically Enrich stReam daTa. DESERT has been implemented on
top of C-SPARQL engine [15], an RDF engine for continuous SPARQL queries.
DESERT receives a continuous SPARQL query and executes query over the het-
erogeneous observational data sources and produces knowledge graphs on-demand.
We have empirically evaluated DESERT on SRBench[107], a state-of-the-art bench-
mark for continuous query processing of SPARQL queries; observed results ev-
idence that knowledge graphs created by DESERT are able to both speed up
query processing and reduce the knowledge graph size.

7.2 Limitations

Despite the overall achieved research objectives, we acknowledge that there
are limitations of this research work which have not been covered in the scope of
the thesis. Firstly, the proposed factorization techniques are worthy if the dataset
under consideration has the characteristics of observational data, i.e., a large num-
ber of redundancies occur in the data. These redundancies in the dataset generate
frequent star patterns when these datasets and the knowledge encoded in the data
are described in knowledge graphs using Semantic Web technologies. In case, the
number of frequent star patterns is not sufficient the proposed techniques generate
overhead in terms of knowledge graph size and processing. Secondly, DESERT
relies on the blocking SPARQL operators implemented by C-SPARQL; in conse-
quence, query answers are not produced incrementally. These limitations need to
be addressed in future research work. In order to maximize the scope of factoriza-
tion techniques certain heuristics can be adopted, e.g., discretization of measure-
ment values improves the savings and defining a canonical ontology will enable
a joint factorization of multiple datasets that are described using various ontolo-
gies. Moreover, multi-query optimizations using non-blocking operators can be
implemented in order to produce query answers incrementally from data streams.

146

7.3. Future Directions

7.3 Future Directions
Based on our findings, and the contributions made in this thesis, we now

present some of the future directions of this work for the research community:

• Exploit parallel processing frameworks to efficiently find frequent star pat-
terns.

• Exploit parallel processing frameworks for the RDF graph factorization to
efficiently minimize the frequent graph patterns.

• Performance evaluation of the proposed RDF and tabular-based representa-
tions over federated engines.

• Extend the streaming query optimization techniques over on-demand factor-
ization and semantification of streaming observational data by implementing
multi-query optimization approaches based on the concept of streaming win-
dows and the multiple continuous SPARQL queries.

7.4 Closing Remarks
The growing amount of streaming and historical data generated from diverse

IoT devices demands efficient data integration approaches. These approaches
should be able to transform such big and streaming data into actionable knowledge
for decision making. Transforming IoT data into actionable knowledge requires
novel and scalable techniques for enabling not only data streams semantification,
but also for efficient large-scale semantic data integration, exploration, and dis-
covery. In this thesis, we have shown that the factorized representations of data
described in RDF knowledge graphs reduce the size of the data while all the en-
coded information is preserved. Moreover, these factorized RDF representations
enhance query processing over diverse native and non-native RDF frameworks.
In addition, on-demand factorization and semantification techniques are able to
efficiently manage the streaming data. These results suggest that the techniques
proposed in this thesis provide an efficient solution for supporting IoT and facilitat-
ing the management of IoT data and implementation of data-driven approaches.

147

Bibliography

[1] Daniel J Abadi et al. “The design of the borealis stream processing engine.” In: Cidr.
Vol. 5. 2005. 2005, pp. 277–289.

[2] Daniel Abadi, Samuel Madden, and Miguel Ferreira. “Integrating compression and ex-
ecution in column-oriented database systems”. In: Proceedings of the 2006 ACM SIG-
MOD international conference on Management of data. ACM. 2006, pp. 671–682. doi:
10.1145/1142473.1142548.

[3] Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter. “Diefficiency metrics: measur-
ing the continuous efficiency of query processing approaches”. In: International Semantic
Web Conference. Springer. 2017, pp. 3–19.

[4] Maribel Acosta et al. “ANAPSID: An Adaptive Query Processing Engine for SPARQL
Endpoints”. In: ISWC. 2011. doi: 10.1007/978-3-642-25073-6_2.

[5] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. “CityBench: a configurable
benchmark to evaluate RSP engines using smart city datasets”. In: International Semantic
Web Conference. Springer, 2015, pp. 374–389.

[6] David Allen et al. “Understanding Trolls with Efficient Analytics of Large Graphs in
Neo4j”. In: BTW 2019 (2019). doi: 10.18420/btw2019-23.

[7] Sandra Alvarez-Garcia et al. “A succinct data structure for self-indexing ternary rela-
tions”. In: Journal of Discrete Algorithms 43 (2017), pp. 38–53. doi: 10.1016/j.jda.
2016.10.002.

[8] Sandra Álvarez-García et al. “Compressed k2-triples for full-in-memory RDF engines”.
In: arXiv preprint arXiv:1105.4004 (2011). url: http://arxiv.org/abs/1105.4004.

[9] Arvind Arasu et al. “Stream: The stanford stream data manager”. In: IEEE Data Eng.
Bull. 26.1 (2003), pp. 19–26.

[10] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. “Foundations of RDF databases”. In:
Reasoning Web. Semantic Technologies for Information Systems. Springer, 2009, pp. 158–
204. doi: 10.1007/978-3-642-03754-2_4.

[11] Sören Auer et al. “Towards a Knowledge Graph for Science”. In: Proceedings of the 8th
International Conference on Web Intelligence, Mining and Semantics, WIMS 2018. 2018.
url: https://doi.org/10.1145/3227609.3227689.

[12] Yijian Bai et al. “A data stream language and system designed for power and exten-
sibility”. In: Proceedings of the 15th ACM international conference on Information and
knowledge management. ACM. 2006, pp. 337–346.

149

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1007/978-3-642-25073-6_2
https://doi.org/10.18420/btw2019-23
https://doi.org/10.1016/j.jda.2016.10.002
https://doi.org/10.1016/j.jda.2016.10.002
http://arxiv.org/abs/1105.4004
https://doi.org/10.1007/978-3-642-03754-2_4
https://doi.org/10.1145/3227609.3227689

Bibliography

[13] Nurzhan Bakibayev, Dan Olteanu, and Jakub Zavodny. “FDB: A Query Engine for Fac-
torised Relational Databases”. In: PVLDB 5.11 (2012), pp. 1232–1243.

[14] Nurzhan Bakibayev et al. “Aggregation and Ordering in Factorised Databases”. In: PVLDB
6.14 (2013), pp. 1990–2001.

[15] Davide Francesco Barbieri et al. “An execution environment for C-SPARQL queries”.
In: Proceedings of the 13th International Conference on Extending Database Technology.
ACM. 2010, pp. 441–452.

[16] Davide Francesco Barbieri et al. “C-SPARQL: a continuous query language for RDF data
streams”. In: International Journal of Semantic Computing 4.01 (2010), pp. 3–25.

[17] Davide Francesco Barbieri et al. “Querying rdf streams with c-sparql”. In: ACM SIGMOD
Record 39.1 (2010), pp. 20–26.

[18] Payam Barnaghi et al. “Sense and sens’ ability: Semantic data modelling for sensor net-
works”. In: Conference Proceedings of ICT Mobile Summit 2009. 2009.

[19] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data: The story so far”. In:
Semantic services, interoperability and web applications: emerging concepts. IGI Global,
2011, pp. 205–227. doi: 10.4018/jswis.2009081901.

[20] Kyoungsoo Bok et al. “Provenance compression scheme based on graph patterns for large
RDF documents”. In: The Journal of Supercomputing (2019), pp. 1–23.

[21] Peter A Boncz, Marcin Zukowski, and Niels Nes. “MonetDB/X100: Hyper-Pipelining
Query Execution.” In: Cidr. Vol. 5. 2005, pp. 225–237. url: http://cidrdb.org/
cidr2005/papers/P19.pdf.

[22] Robert K Brayton. “Factoring logic functions”. In: IBM Journal of research and develop-
ment 31.2 (1987), pp. 187–198.

[23] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. “k2-trees for compact web graph
representation”. In: International Symposium on String Processing and Information Re-
trieval. Springer. 2009, pp. 18–30. doi: 10.1007/978-3-642-03784-9_3.

[24] Jim Chase. The Evolution of the Internet of Things (White Paper). Texas Instruments.
2013.

[25] Edgar F Codd. “Further normalization of the data base relational model”. In: Data base
systems (1972), pp. 33–64.

[26] Diego Collarana. “A Semantic Integration Approach for Building Knowledge Graphs On-
Demand”. In: International Conference on Web Engineering. Springer. 2017, pp. 575–
583.

[27] Diego Collarana et al. “Semantic Data Integration for Knowledge Graph Construction at
Query Time”. In: 11th IEEE International Conference on Semantic Computing, ICSC.
2017, pp. 109–116.

[28] Michael Compton et al. “The SSN ontology of the W3C semantic sensor network incubator
group”. In:Web semantics: science, services and agents on the World Wide Web 17 (2012),
pp. 25–32. doi: 10.1016/j.websem.2012.05.003.

[29] George P Copeland and Setrag N Khoshafian. “A decomposition storage model”. In: Acm
Sigmod Record. Vol. 14. 4. ACM. 1985, pp. 268–279. doi: 10.1145/318898.318923.

150

https://doi.org/10.4018/jswis.2009081901
http://cidrdb.org/cidr2005/papers/P19.pdf
http://cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.1007/978-3-642-03784-9_3
https://doi.org/10.1016/j.websem.2012.05.003
https://doi.org/10.1145/318898.318923

Bibliography

[30] Daniele Dell’Aglio and Emanuele Della Valle. “Incremental Reasoning on RDF Streams”.
In: Linked Data Management. 2014, pp. 413–435.

[31] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of data integration. Elsevier,
2012.

[32] Jin-Hang Du et al. “HadoopRDF: A scalable semantic data analytical engine”. In: Inter-
national Conference on Intelligent Computing. Springer. 2012, pp. 633–641.

[33] Mohammed Elseidy et al. “Grami: Frequent subgraph and pattern mining in a single large
graph”. In: Proceedings of the VLDB Endowment 7.7 (2014), pp. 517–528.

[34] Kemele M Endris et al. “MULDER: querying the linked data web by bridging RDF
molecule templates”. In: International Conference on Database and Expert Systems Ap-
plications. Springer. 2017, pp. 3–18.

[35] Patrick Ernst, Amy Siu, and Gerhard Weikum. “Knowlife: a versatile approach for con-
structing a large knowledge graph for biomedical sciences”. In: BMC bioinformatics 16.1
(2015), p. 157. doi: 10.1186/s12859-015-0549-5.

[36] Javier D. Fernández, Alejandro Llaves, and Óscar Corcho. “Efficient RDF Interchange
(ERI) Format for RDF Data Streams”. In: The Semantic Web - ISWC 2014 - 13th In-
ternational Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Pro-
ceedings, Part II. 2014, pp. 244–259. doi: 10.1007/978-3-319-11915-1_16.

[37] Javier D Fernández et al. “Binary RDF representation for publication and exchange
(HDT)”. In: Web Semantics: Science, Services and Agents on the World Wide Web 19
(2013), pp. 22–41. doi: 10.1016/j.websem.2013.01.002.

[38] Lianli Gao, Michael Bruenig, and Jane Hunter. “Semantic-based detection of segment out-
liers and unusual events for wireless sensor networks”. In: arXiv preprint arXiv:1411.2188
(2014).

[39] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream Management:
Processing High-Speed Data Streams. Springer, 2016.

[40] Aditya Gaur et al. “Smart city architecture and its applications based on IoT”. In: Procedia
computer science 52 (2015), pp. 1089–1094.

[41] Lukasz Golab and M Tamer Özsu. “Processing sliding window multi-joins in continuous
queries over data streams”. In: Proceedings of the 29th international conference on Very
large data bases-Volume 29. VLDB Endowment. 2003, pp. 500–511.

[42] Faming Gong et al. “Neo4j graph database realizes efficient storage performance of oilfield
ontology”. In: PloS one 13.11 (2018), e0207595. url: https://doi.org/10.1371/
journal.pone.0207595.

[43] Irlán Grangel-González et al. “Knowledge Graphs for Semantically Integrating Cyber-
Physical Systems”. In: Database and Expert Systems Applications - 29th International
Conference. 2018. doi: 10.1007/978-3-319-98809-2_12.

[44] Andrey Gubichev and Manuel Then. “Graph Pattern Matching: Do We Have to Reinvent
the Wheel?” In: Proceedings of Workshop on GRAph Data management Experiences and
Systems. ACM. 2014, pp. 1–7. doi: 10.1145/2621934.2621944.

[45] Alon Y Halevy. “Answering queries using views: A survey”. In: The VLDB Journal 10.4
(2001), pp. 270–294.

151

https://doi.org/10.1186/s12859-015-0549-5
https://doi.org/10.1007/978-3-319-11915-1_16
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1371/journal.pone.0207595
https://doi.org/10.1371/journal.pone.0207595
https://doi.org/10.1007/978-3-319-98809-2_12
https://doi.org/10.1145/2621934.2621944

Bibliography

[46] Cory Andrew Henson et al. “An ontological representation of time series observations on
the Semantic Sensor Web”. In: (2009).

[47] Richard Hull. “Managing semantic heterogeneity in databases: a theoretical prospective”.
In: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Prin-
ciples of database systems. ACM. 1997, pp. 51–61.

[48] S Idreos et al. “Monetdb: Two decades of research in column-oriented database”. In: IEEE
Data Engineering Bulletin (2012).

[49] Sohail Jabbar et al. “Semantic interoperability in heterogeneous IoT infrastructure for
healthcare”. In: Wireless Communications and Mobile Computing 2017 (2017).

[50] D UUman Jeffrey. Principles of database and knowledge-base systems. 1989.

[51] Amit Krishna Joshi, Pascal Hitzler, and Guozhu Dong. “Logical linked data compression”.
In: Extended Semantic Web Conference. Springer. 2013, pp. 170–184. doi: 10.1007/978-
3-642-38288-8_12.

[52] Farah Karim, Maria-Esther Vidal, and Sören Auer. “Efficient Processing of Semantically
Represented Sensor Data.” In: WEBIST. 2017, pp. 252–259.

[53] Farah Karim, Maria-Esther Vidal, and Sören Auer. “Factorization Techniques for Longi-
tudinal Linked Data”. In: ().

[54] Farah Karim et al. “DESERT: a continuous SPARQL query engine for on-demand query
answering”. In: International Journal of Semantic Computing 12.03 (2018), pp. 373–397.

[55] Farah Karim et al. “Large-scale storage and query processing for semantic sensor data”.
In: Proceedings of the 7th International Conference on Web Intelligence, Mining and
Semantics. ACM. 2017, p. 8. doi: 10.1145/3102254.3102260.

[56] Farah Karim et al. “Semantic enrichment of IoT stream data on-demand”. In: 2018 IEEE
12th International Conference on Semantic Computing (ICSC). IEEE. 2018, pp. 33–40.

[57] Vaibhav Khadilkar et al. “Jena-HBase: A distributed, scalable and efficient RDF triple
store”. In: Proceedings of the 11th International Semantic Web Conference Posters &
Demonstrations Track, ISWC-PD. Vol. 12. Citeseer. 2012, pp. 85–88.

[58] Jeong-Hee Kim et al. “Building a service-oriented ontology for wireless sensor networks”.
In: Computer and Information Science, 2008. ICIS 08. Seventh IEEE/ACIS International
Conference on. IEEE. 2008, pp. 649–654.

[59] Manolis Koubarakis and Kostis Kyzirakos. “Modeling and Querying Metadata in the Se-
mantic Sensor Web: The Model stRDF and the Query Language stSPARQL”. In: The Se-
mantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC.
2010, pp. 425–439.

[60] Tomas Lampo et al. “To cache or not to cache: The effects of warming cache in com-
plex sparql queries”. In: OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems". Springer. 2011, pp. 716–733.

[61] Ora Lassila, Ralph R Swick, et al. “Resource description framework (RDF) model and
syntax specification”. In: (1998). url: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.44.6030.

[62] Jens Lehmann et al. “DBpedia–a large-scale, multilingual knowledge base extracted from
Wikipedia”. In: Semantic Web 6.2 (2015), pp. 167–195. doi: 10.3233/SW-140134.

152

https://doi.org/10.1007/978-3-642-38288-8_12
https://doi.org/10.1007/978-3-642-38288-8_12
https://doi.org/10.1145/3102254.3102260
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.6030
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.6030
https://doi.org/10.3233/SW-140134

Bibliography

[63] Nicolás Lehmann and Jorge Pérez. “Implementing graph query languages over compressed
data structures: A progress report”. In: Alberto Mendelzon International Workshop on
Foundations of Data Management. 2015, p. 96. url: http://ceur-ws.org/Vol-1378/
AMW%5C_2015%5C_paper%5C_19.pdf.

[64] Maurizio Lenzerini. “Data integration: A theoretical perspective”. In: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. ACM. 2002, pp. 233–246.

[65] Linked Data. https://www.w3.org/DesignIssues/LinkedData.html. Accessed: 2019-
12-01.

[66] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. “Beyond macrobenchmarks:
microbenchmark-based graph database evaluation”. In: Proceedings of the VLDB Endow-
ment 12.4 (2018), pp. 390–403. doi: 10.14778/3297753.3297759.

[67] Roger MacNicol and Blaine French. “Sybase IQ multiplex-designed for analytics”. In:
Proceedings of the Thirtieth international conference on Very large data bases-Volume
30. VLDB Endowment. 2004, pp. 1227–1230.

[68] Mohamed Nadjib Mami et al. “Towards semantification of big data technology”. In: In-
ternational Conference on Big Data Analytics and Knowledge Discovery. Springer. 2016,
pp. 376–390.

[69] Norbert Martinez-Bazan, Sergio Gomez-Villamor, and Francesc Escale-Claveras. “DEX:
A high-performance graph database management system”. In: 2011 IEEE 27th Inter-
national Conference on Data Engineering Workshops. IEEE. 2011, pp. 124–127. doi:
10.1109/ICDEW.2011.5767616.

[70] Norbert Martínez-Bazan et al. “Dex: high-performance exploration on large graphs for
information retrieval”. In: Proceedings of the sixteenth ACM conference on Conference
on information and knowledge management. ACM. 2007, pp. 573–582. doi: 10.1145/
1321440.1321521.

[71] Michael Meier. “Towards rule-based minimization of RDF graphs under constraints”. In:
International Conference on Web Reasoning and Rule Systems. Springer. 2008, pp. 89–
103. doi: 10.1007/978-3-540-88737-9_8.

[72] Thomas Neumann and Gerhard Weikum. “RDF-3X: a RISC-style engine for RDF”. In:
Proceedings of the VLDB Endowment 1.1 (2008), pp. 647–659.

[73] Thomas Neumann and Gerhard Weikum. “The RDF-3X engine for scalable management
of RDF data”. In: The VLDB Journal The International Journal on Very Large Data
Bases 19.1 (2010), pp. 91–113.

[74] Zhi Nie et al. “Efficient SPARQL query processing in mapreduce through data partitioning
and indexing”. In: Asia-Pacific Web Conference. Springer. 2012, pp. 628–635.

[75] Jeff Z Pan et al. “Graph pattern based RDF data compression”. In: Joint International
Semantic Technology Conference. Springer. 2014, pp. 239–256. doi: 10.1007/978-3-
319-15615-6_18.

[76] Nikolaos Papailiou et al. “H 2 RDF+: High-performance distributed joins over large-scale
RDF graphs”. In: 2013 IEEE International Conference on Big Data. IEEE. 2013, pp. 255–
263.

153

http://ceur-ws.org/Vol-1378/AMW%5C_2015%5C_paper%5C_19.pdf
http://ceur-ws.org/Vol-1378/AMW%5C_2015%5C_paper%5C_19.pdf
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.14778/3297753.3297759
https://doi.org/10.1109/ICDEW.2011.5767616
https://doi.org/10.1145/1321440.1321521
https://doi.org/10.1145/1321440.1321521
https://doi.org/10.1007/978-3-540-88737-9_8
https://doi.org/10.1007/978-3-319-15615-6_18
https://doi.org/10.1007/978-3-319-15615-6_18

Bibliography

[77] Harshal Patni, Cory Henson, and Amit Sheth. “Linked sensor data”. In: Collaborative
Technologies and Systems (CTS), 2010 International Symposium on. IEEE. 2010, pp. 362–
370.

[78] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Complexity of
SPARQL”. In: International semantic web conference. Springer. 2006, pp. 30–43.

[79] Matthew Perry, Prateek Jain, and Amit P Sheth. “SPARQL-ST: Extending SPARQL
to Support Spatio temporal Queries”. In: Geospatial semantics and the semantic web.
Springer, 2011, pp. 61–86.

[80] Danh Le Phuoc et al. “The Graph of Things: A step towards the Live Knowledge Graph
of connected things”. In: J. Web Sem. 37-38 (2016), pp. 25–35.

[81] Danh Le-Phuoc et al. “A native and adaptive approach for unified processing of linked
streams and linked data”. In: International Semantic Web Conference. Springer. 2011,
pp. 370–388.

[82] Danh Le-Phuoc et al. “The Graph of Things: A step towards the Live Knowledge Graph
of connected things”. In: Journal of Web Semantics 37 (2016), pp. 25–35.

[83] Reinhard Pichler et al. “Redundancy elimination on RDF graphs in the presence of rules,
constraints, and queries”. In: International Conference on Web Reasoning and Rule Sys-
tems. Springer. 2010, pp. 133–148. doi: 10.1007/978-3-642-15918-3_11.

[84] Giuseppe Pirrò. “Explaining and suggesting relatedness in knowledge graphs”. In: ISWC.
Springer. 2015, pp. 622–639.

[85] E Prud’hommeaux and A Seaborne. SPARQL query language for RDF. W3C Recommen-
dation (January 15, 2008). 2011. url: https://www.w3.org/TR/rdf-sparql-query/.

[86] Eric Prud’hommeaux. “SPARQL query language for RDF, W3C recommendation”. In:
http://www. w3. org/TR/rdf-sparql-query/ (2008).

[87] Roshan Punnoose, Adina Crainiceanu, and David Rapp. “Rya: a scalable RDF triple store
for the clouds”. In: Proceedings of the 1st International Workshop on Cloud Intelligence.
ACM. 2012, p. 4.

[88] RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/. Accessed: 2019-12-01.

[89] RDF Schema 1.1 Recommendation. https://www.w3.org/TR/2014/REC-rdf-schema-
20140225/. Accessed: 2019-12-01.

[90] Mark A Roth and Scott J Van Horn. “Database compression”. In: ACM Sigmod Record
22.3 (1993), pp. 31–39. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.464.643&rank=1.

[91] David J Russomanno, Cartik Kothari, and Omoju Thomas. “Sensor ontologies: from
shallow to deep models”. In: Proceedings of the Thirty-Seventh Southeastern Symposium
on System Theory. 2005.

[92] Alexander Schätzle et al. “Cascading Map-Side Joins over HBase for Scalable Join Pro-
cessing.” In: SSWS+ HPCSW@ ISWC. 2012, pp. 59–74.

[93] Alexander Schätzle et al. “PigSPARQL: A SPARQL Query Processing Baseline for Big
Data.” In: International Semantic Web Conference (Posters & Demos). Vol. 1035. 2013,
pp. 241–244.

154

https://doi.org/10.1007/978-3-642-15918-3_11
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.464.643&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.464.643&rank=1

Bibliography

[94] Alexander Schätzle et al. “Sempala: Interactive SPARQL query processing on hadoop”.
In: International Semantic Web Conference. Springer. 2014, pp. 164–179.

[95] Michael Schmidt, Michael Meier, and Georg Lausen. “Foundations of SPARQL query
optimization”. In: Proceedings of the 13th International Conference on Database Theory.
ACM. 2010, pp. 4–33.

[96] Paul Shannon et al. “Cytoscape: A Software Environment for Integrated Models of
Biomolecular Interaction Networks”. In: Genome Research 13 (2012), pp. 2498–2504.

[97] Amit Singhal. “Introducing the knowledge graph: things, not strings”. In: Official google
blog 5 (2012). url: https://www.blog.google/products/search/introducing-
knowledge-graph-things-not/.

[98] Mike Stonebraker et al. “C-store: a column-oriented DBMS”. In: Proceedings of the 31st
international conference on Very large data bases. VLDB Endowment. 2005, pp. 553–564.
doi: 10.1145/3226595.3226638.

[99] Jeffrey D Ullman. “Information integration using logical views”. In: International Con-
ference on Database Theory. Springer. 1997, pp. 19–40.

[100] Jeffrey D Ullman. Principles of database systems. Galgotia publications, 1984.

[101] Maria-Esther Vidal et al. “Efficiently Joining Group Patterns in SPARQL Queries”. In:
The Semantic Web: Research and Applications, 7th Extended Semantic Web Conference,
ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I. 2010,
pp. 228–242.

[102] Maria-Esther Vidal et al. “On the selection of SPARQL endpoints to efficiently exe-
cute federated SPARQL queries”. In: Transactions on Large-Scale Data-and Knowledge-
Centered Systems XXV. Springer, 2016, pp. 109–149.

[103] Maria-Esther Vidal et al. “Transforming Heterogeneous Data into Knowledge for Per-
sonalized Treatments A Use Case”. In: Datenbank-Spektrum (), pp. 1–12. url: https:
//doi.org/10.1007/s13222-019-00312-z.

[104] Till Westmann et al. “The implementation and performance of compressed databases”.
In: ACM Sigmod Record 29.3 (2000), pp. 55–67. doi: 10.1145/362084.362137.

[105] Xifeng Yan and Jiawei Han. “gspan: Graph-based substructure pattern mining”. In: 2002
IEEE International Conference on Data Mining, 2002. Proceedings. IEEE. 2002, pp. 721–
724.

[106] Matei Zaharia et al. “Apache Spark: a unified engine for big data processing”. In: Commun.
ACM 59.11 (2016), pp. 56–65. doi: 10.1145/2934664. url: http://doi.acm.org/10.
1145/2934664.

[107] Ying Zhang et al. “SRBench: A Streaming RDF/SPARQL Benchmark”. In: The Semantic
Web - ISWC 2012 - 11th International Semantic Web Conference, Boston, MA, USA,
November 11-15, 2012, Proceedings, Part I. 2012, pp. 641–657.

[108] Marcin Zukowski et al. “Super-Scalar RAM-CPU Cache Compression.” In: Icde. Vol. 6.
2006, p. 59. doi: 10.1109/ICDE.2006.150.

155

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1145/3226595.3226638
https://doi.org/10.1007/s13222-019-00312-z
https://doi.org/10.1007/s13222-019-00312-z
https://doi.org/10.1145/362084.362137
https://doi.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
http://doi.acm.org/10.1145/2934664
https://doi.org/10.1109/ICDE.2006.150

	Introduction
	Motivation
	Existing Approaches
	Problem Statement and Challenges
	Research Questions
	Thesis Overview
	Contributions
	List of Publications

	Thesis Structure
	Summary

	Background
	Data Integration System
	Local-as-View (LAV)
	Global-as-View (GAV)
	IoT Data Integration

	Semantic Web
	The Semantic Sensor Network (SSN) Ontology
	The Resource Description Framework (RDF)
	RDF Schema
	The SPARQL Query Language and SPARQL Protocol
	C-SPARQL - A Continuous SPARQL Query Language
	SPARQL Query Processing
	C-SPARQL Query Processing

	Summary

	Related Work
	Frequent Pattern Mining Approaches
	Historical Data Representations
	Data Compression Approaches
	Data Compression based Query Optimization
	Big Data Tools and RDF

	Streaming Data Management
	Building Knowledge Graph On-Demand
	Query Processing for Streaming Data

	Summary

	Compact Representations
	Motivating Example
	RDF Graph Factorization Approach
	Problem Statement
	FSP Detection Approach
	A Factorization Approach

	Experimental Study
	Efficiency of FSP Detection Approach
	Effectiveness of FSP Detection Approach
	Effectiveness of RDF Graph Factorization

	Summary

	Integration of Historical Semantic Sensor Data
	Motivating Example
	The Semantic Sensor Data Factorization Approach
	Problem Statement
	A Factorization Approach
	Queries over Factorized RDF Graphs

	Tabular Representation of RDF Graphs
	Experimental Study
	Efficiency and Effectiveness of Factorized RDF
	Impact of Factorized RDF on Query Processing

	Summary

	Integration of Streaming Observational Data
	Motivating Example
	Problem Statement and Proposed Solution
	Problem Statement
	Proposed Solution
	Knowledge Graph Description Model

	The DESERT Architecture
	Experimental Evaluation
	Performance with Uniform Data Stream Speed and Window Size
	Performance with Uniform Data Stream and Varying Window Size
	Performance with Varying Data Stream and Uniform Window Size
	Performance with Varying Data Stream and Window Size

	Summary

	Conclusion and Future Directions
	Revising the Research Questions
	Limitations
	Future Directions
	Closing Remarks

	Bibliography

