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Abstract

In this thesis the central charge of the vector-tensor multiplet is gauged, giving rise
to N = 2 supersymmetric models in four dimensions which involve nonpolynomial yet
local couplings of 1-form gauge potentials to an antisymmetric tensor field.
Following an introduction to the N = 2 supersymmetry algebra with a local central
charge and a discussion of the massive Fayet-Sohnius hypermultiplet as a simple re-
alisation, we investigate deformations of the superfield constraints that determine the
vector-tensor multiplet. The supersymmetry and central charge transformations of its
tensor components as well as the Bianchi identities for the field strengths are given
for arbitrary consistent deformations, which facilitates the formulation of a particular
model. To verify the validity of a given constraint, we supply a set of consistency
conditions.
We then focus on the coupling to an abelian vector multiplet that gauges the central
charge. The consistency conditions yield a system of partial differential equations, and
two classes of solutions are presented which provide superfield constraints for both the
linear and the self-interacting vector-tensor multiplet.
With these as the foundation, we first consider the linear case. It is shown how the
particular structure of the Bianchi identities is responsible for the nonpolynomial cen-
tral charge transformations of the vector and antisymmetric tensor. From a general
prescription for the construction of invariant actions by means of a linear superfield we
derive the Lagrangian, whose nonpolynomial vector-tensor interactions turn out to fit
into the framework of new (nonsupersymmetric) gauge field theories found recently by
Henneaux and Knaepen, to which we provide an introduction.
The nonlinear version of the vector-tensor multiplet is investigated in the last chap-
ter. We explain in detail how the superfield constraints give rise to couplings of the
antisymmetric tensor to Chern-Simons forms of both the vector and the central charge
gauge field. We are unable, however, to construct a corresponding Henneaux-Knaepen
model.
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N=2 supersymmetrische Eichtheorien

mit nichtpolynomialen Wechselwirkungen

Zusammenfassung

In der vorliegenden Arbeit eichen wir die zentrale Ladung des Vektor-Tensor Multi-
pletts, was auf N = 2 supersymmetrische Modelle in vier Dimensionen führt, welche
nichtpolynomiale, jedoch lokale, Wechselwirkungen zwischen Eins-Form Eichfeldern
und einem antisymmetrischen Tensor beinhalten.
Es wird zunächst die N = 2 Supersymmetrie-Algebra mit zentralen Ladungen vorge-
stellt. Als ein einfaches Beispiel für ein Modell mit lokaler zentraler Ladung diskutieren
wir das massive Hypermultiplet nach Fayet und Sohnius. Anschließend untersuchen
wir Deformationen der dem Vektor-Tensor Multiplett zugrunde liegenden Superfeld-
Constraints. Die Supersymmetrie- und die von der zentralen Ladung erzeugten Trans-
formationen der Tensor-Komponenten sowie die Bianchi-Identitäten der Feldstärken
werden, soweit als möglich, für beliebige konsistente Deformationen bestimmt, was
eine spätere Spezialisierung auf bestimmte Modelle erleichtert. Eine wesentliche Hilfe-
stellung für das Auffinden möglicher Constraints bieten eine Reihe von Konsistenzbe-
dingungen, welche wir aus der Supersymmetrie-Algebra ableiten.
Danach konzentrieren wir uns auf die Kopplung an ein abelsches Vektor-Multiplett,
welches das Eichfeld für die zentrale Ladung bereitstellt. Die Konsistenzbedingungen
lassen sich in ein System partieller Differentialgleichungen übersetzen, für das zwei
Klassen von Lösungen gewonnen werden. Die entsprechenden Superfeld-Constraints
beschreiben das lineare sowie das selbstwechselwirkende Vektor-Tensor Multiplett.
Wir betrachten zunächst den linearen Fall. Wir zeigen auf, wie die spezielle Struk-
tur der Bianchi-Identitäten die nichtpolynomialen zentralen Ladungs-Transformationen
des Vektors und des antisymmetrischen Tensors hervorruft. Mittels einer allgemeinen
Vorschrift für die Konstruktion invarianter Wirkungen vermöge des sogenannten lin-
earen Superfelds bestimmen wir die Lagrange-Dichte, deren nichtpolynomiale Vektor-
Tensor Wechselwirkungen sich einordnen lassen in eine neue Art von (nicht supersym-
metrischer) Eichtheorie, welche erst kürzlich von Henneaux und Knaepen gefunden
wurde. Zu dieser geben wir eine kurze Einführung.
Im letzten Kapitel untersuchen wir dann die nichtlineare Version des Vektor-Tensor
Multipletts. Detailliert wird gezeigt, wie die Superfeld-Constraints Kopplungen des
antisymmetrischen Tensors an Chern-Simons Formen sowohl des Vektors wie auch des
Eichfelds der zentralen Ladung hervorrufen. Wir sehen uns allerdings außerstande,
auch diese auf ein Henneaux-Knaepen Modell zurückzuführen.

Schlagworte: Supersymmetrie, Eichtheorien, Zentrale Ladung
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Introduction

Despite the lack of experimental hints, supersymmetry counts among the most popular
and promising concepts in theoretical high energy physics. It features prominently
both in quantum theories of point particles and of extended objects; in particular it is
a prerequisite to the formulation of realistic string theories, which are assumed to unify
the standard model of strong and electroweak forces with Einstein’s gravity.

Although less attractive from a phenomenological point of view, models with extended,
i.e. more than one, supersymmetry have provided much insight into nonperturbative
phenomena of quantum field theories as well as into various (mostly conjectured) du-
alities between different superstring theories. N =2 supersymmetry in four dimensions
in particular has received great attention lately due to the seminal work of Seiberg and
Witten on N =2 supersymmetric Yang-Mills theories. While these are usually formu-
lated in terms of vector multiplets, there exists another multiplet describing the same
kind of physical states, which trades one scalar for an antisymmetric tensor field. Such
multiplets with 2-form gauge potentials occur universally in string theories, and the
so-called vector-tensor multiplet especially has recently been shown to be part of the
massless spectrum of four-dimensional N = 2 supersymmetric heterotic string vacua.
It was this discovery that has renewed interest in the long known, yet largely ignored,
vector-tensor multiplet and its possible interactions, and in the present thesis we offer
a novel derivation of the most important results obtained on this subject in the last
three years.

An off-shell formulation of the multiplet requires the presence of a central charge in the
supersymmetry algebra, at least when only a finite number of components is desired.
This central charge generates an on-shell nontrivial global symmetry of a rather unusual
kind. It can be promoted to a local symmetry by coupling the vector-tensor multiplet
to an abelian vector multiplet that provides the gauge field for the local central charge
transformations. These and the couplings of the vector-tensor components in the in-
variant action share the peculiar property of being nonpolynomial in the gauge field.
What at first had been considered a completely new type of gauge theory, turned out
to fit into a larger class of models found somewhat earlier by Henneaux and Knaepen
outside the framework of supersymmetry. In four dimensions, these bosonic models de-
scribe consistent interactions of 1-form and 2-form gauge potentials, which in general
are nonpolynomial in both kinds of fields. While recently an N = 1 supersymmetric
formulation of all Henneaux-Knaepen models has been given by Brandt and the author,
so far all attempts to go beyond the vector-tensor multiplet in order to construct more
general HK models with two supersymmetries have been unsuccessful. On the other
hand, we are going to show that the vector-tensor multiplet itself suggests a possible
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2 Introduction

generalization, for we find gauge couplings that do not conform to the models originally
formulated by Henneaux and Knaepen.
The thesis is organized as follows: In the first chapter we give an introduction to
rigid N = 2 supersymmetry with central charges. We review how to incorporate
gauge symmetries into the algebra, with special attention paid to local central charge
transformations. A general prescription for invariant actions is then derived from the
so-called linear multiplet, and as a demonstration of the previous results we gauge the
central charge of the massive Fayet-Sohnius hypermultiplet.
In the second chapter the free vector-tensor multiplet is introduced. We then consider
deformations of the corresponding superfield constraints and employ the supersym-
metry algebra to derive consistency conditions that impose severe restrictions on the
possible couplings of the vector-tensor multiplet to itself and to other multiplets. Fo-
cussing on the coupling to an abelian vector multiplet that gauges the central charge,
we make an Ansatz for the constraints and translate a certain subset of the consistency
conditions into a system of differential equations on the coefficient functions. An en-
suing analysis shows that there are essentially two classes of solutions; one of which
generalizes the free vector-tensor multiplet, while the other one will turn out to describe
additional self-interactions.
In chapter 3 the first solution is discussed in detail. We demonstrate how the nonpoly-
nomial central charge transformations of the vector-tensor complex arise as a result of a
coupling between the Bianchi identities the field strengths are required to satisfy. Then,
by means of the prescription derived earlier, the supersymmetric and gauge invariant ac-
tion is constructed, which is also found to be nonpolynomial in the central charge gauge
field. After extending the model by couplings to further nonabelian vector multiplets,
which introduces, among other things, an interaction of the antisymmetric tensor with
Chern-Simons forms of the additional gauge potentials, we discuss four-dimensional
bosonic Henneaux-Knaepen models and their relevance to the vector-tensor multiplet.
The last chapter is devoted to the self-interacting vector-tensor multiplet. We present
the nonlinear superfield constraints that underlie the construction and give a detailed
derivation of the Bianchi identities, their solutions and the invariant action, which again
displays the typical nonpolynomial dependence on the central charge gauge field.
Following the conclusions, we compile some useful formulae and list our conventions in
an appendix.



Chapter 1

Gauging the Central Charge

There exist basically two approaches to theories with N = 2 supersymmetry. While
without doubt the more sophisticated harmonic superspace [1] offers some advantages
over ordinary superspace, in this thesis we shall nevertheless employ the latter only,
which makes it easier to switch back and forth between superfields and components.
For a treatment of theories with gauged central charge within the framework of har-
monic superspace we refer to [2], where several results presented here have already been
published.
The reader might want to have a look at the appendix first to become acquainted with
our conventions concerning Lorentz and spinor indices.

1.1 The N=2 Supersymmetry Algebra

Extended supersymmetry algebras in four spacetime dimensions involve in addition
to the Poincaré generators Pµ and Mµν two-component Weyl spinor charges Qi

α and

their hermitian conjugates Q†
α̇i, which are Grassmann-odd and generate supersymmetry

transformations. The index i belongs to a representation of an internal symmetry group
and runs from 1 to some number N that counts the supersymmetries. In [3] Haag et al.
have determined the most general supersymmetry algebra compatible with reasonable
requirements on relativistic quantum field theories. It contains an invariant subalgebra
that is spanned by the generators of translations and supersymmetry transformations,
and for N > 1 additional bosonic generators, denoted by Z ij, may also occur. These
must commute with every element of the supersymmetry algebra and for this reason
are called central charges. The odd part of the subalgebra reads

{Qi
α , Q†

α̇j} = δi
jσ

µ
αα̇Pµ , {Qi

α , Qj
β} = εαβZ

ij , {Q†
α̇i , Q†

β̇j
} = εα̇β̇Z

†
ij , (1.1)

while all commutators vanish. It is evident that the central charges Z ij must be anti-
symmetric in the pair ij. For N = 2 this implies that there are at most two hermitian
central charges,

N = 2 ⇒ Z ij = εij(Z1 + iZ2) , Z†
ij = −εij(Z1 − iZ2) . (1.2)

When central charges are absent the above algebra is, among others, invariant under
unitary transformations

(Qi
α)′ = U i

jQ
j
α , (Q†

α̇i)
′ = U∗

i
jQ†

α̇j , P ′
µ = Pµ , U ∈ U(N) . (1.3)

3



4 Chapter 1. Gauging the Central Charge

In the N = 2 case the presence of central charges reduces this symmetry from U(2) to
SU(2), under which εij is an invariant tensor.

The algebra (1.1) with N = 2 can be represented on a so-called central charge super-
space [4] with coordinates xµ, θα

i , θ̄α̇i and a further bosonic complex variable z. On
superfields infinitesimal supersymmetry transformations are generated by differential
operators

Qi
α =

∂
∂θα

i

− i
2
(σµθ̄i)α∂µ + i

2
θi

α∂z , Q̄α̇i = −
∂

∂θ̄α̇i
+ i

2
(θiσ

µ)α∂µ + i
2
θ̄α̇i∂z̄ (1.4)

with commutation relations

{Qi
α , Q̄α̇j} = iδi

jσ
µ
αα̇∂µ

{Qi
α , Qj

β} = iεαβεij∂z {Q̄α̇i , Q̄β̇j} = −iεαβεij∂z̄ .
(1.5)

The commutator of two rigid supersymmetry transformations

∆(ξ) = ξα
i Qi

α + ξ̄i
α̇Q̄α̇

i , (ξα
i )∗ = ξ̄i

α̇ , (1.6)

yields global translations in the bosonic directions,

[ ∆(ξ) , ∆(ζ) ] = i(ξiσ
µζ̄ i − ζiσ

µξ̄i)∂µ + iξiζi∂z + iξ̄iζ̄
i∂z̄ . (1.7)

Supercovariant spinor derivatives

Di
α =

∂
∂θα

i

+ i
2
(σµθ̄i)α∂µ − i

2
θi

α∂z , D̄α̇i = −
∂

∂θ̄α̇i
− i

2
(θiσ

µ)α∂µ − i
2
θ̄α̇i∂z̄ (1.8)

anticommute with Qi
α and Q̄α̇i and therefore map superfields into superfields. Their

algebra involves a minus sign relative to the algebra of the Q’s,

{Di
α , D̄α̇j} = −iδi

jσ
µ
αα̇∂µ

{Di
α , Dj

β} = −iεαβεij∂z {D̄α̇i , D̄β̇j} = iεαβεij∂z̄ .
(1.9)

The coefficient functions in the θ-expansion of a superfield constitute a supersymmetry
multiplet. Their supersymmetry transformations are generated by differential operators
Di

α and D̄α̇i, whose action can be read off from the relation

Di
α Φ(x, θ, θ̄, z) = Qi

α Φ(x, θ, θ̄, z) , (1.10)

where Di
α acts only on the components and anticommutes with the θ-variables. The

algebra of Di
α and D̄α̇i is the same as for the supercovariant derivatives. The components

of a superfield Φ may be regarded as the lowest components of superfields obtained
from applying an appropriate polynomial P (D, D̄) of supercovariant derivatives to Φ.
Eq. (1.10) implies that the generators Di

α, D̄α̇i act on components P (D, D̄) Φ |θ=θ̄=0

according to

Di
α

[

P (D, D̄) Φ
]

θ=θ̄=0
=

[

Di
αP (D, D̄) Φ

]

θ=θ̄=0
. (1.11)
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If ϕ(x, z) = Φ(x, 0, 0, z) denotes the lowest component of Φ, it follows that

[

P (D, D̄) Φ
]

θ=θ̄=0
= P (D, D̄) ϕ(x, z) . (1.12)

While the θ-expansion of a superfield terminates after a finite number of steps, the z-
dependence in general is nonpolynomial, giving rise to an infinite tower of component
fields. The supercovariant derivatives may be employed to impose constraints on su-
perfields that eliminate all but a finite number of components without restricting their
x-dependence. It is convenient, and we shall make use of it from now on throughout this
thesis, to consider superfields living only on the subspace parametrized by x, θα

i , θ̄α̇i and
to regard central charge transformations not as translations in some additional bosonic
directions, but simply as transformations that map one superfield to a new superfield.
Instead of ∂z we denote the generator by δz, which then maps from one coefficient
in the z-expansion of a general superfield to the next. Also, we confine ourselves to
only a single real central charge, as the presence of a second one usually inhibits the
formulation of finite multiplets. In symbols, one has the equivalence

Φ(x, θ, θ̄, z) = Φ(x, θ, θ̄, 0) + z ∂zΦ(x, θ, θ̄, z) |z=0 + . . .

⇐⇒ δz : Φ(x, θ, θ̄) 7→ Φ(z)(x, θ, θ̄) 7→ . . . ,

and similar for the components. The purpose of superfield constraints then is to express
all but at most a finite number of the images Φ(z), Φ(zz), etc. in terms of the primary
superfield Φ and its spacetime derivatives.

The main reason why we altered our point of view concerning the central charge trans-
formations is the similarity to (abelian) super Yang-Mills theories that arises when
gauging the central charge. Let us briefly review the basics of supersymmetric gauge
theories, mainly to introduce our conventions and notations. We shall denote an in-
finitesimal gauge transformation with spacetime dependent parameters CI(x) by ∆g(C).
Tensor fields T are characterized by their homogeneous transformation law

∆g(C) T = CIδIT , (1.13)

whereas the transformation of the gauge fields AI
µ involves the derivative of the param-

eters CI ,

∆g(C)AI
µ = −∂µC

I − CJAK
µ fJK

I . (1.14)

Here the generators δI form a basis of a Lie algebra G with corresponding structure
constants fIJ

K ,

[ δI , δJ ] = fIJ
KδK , f[IJ

LfK]L
M = 0 . (1.15)

The transformation of the gauge fields is such that the covariant derivative

Dµ = ∂µ + AI
µδI (1.16)
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of a tensor transforms again as a tensor. This implies that the generators δI commute
with the Dµ, which in turn requires the gauge fields to transform in the adjoint repre-
sentation of the Lie algebra G under the δI , i.e. δIA

J
µ = fKI

JAK
µ . Note that the δI do

not generate the full transformations of the gauge fields.

The commutator of two covariant derivatives involves the field strength F I
µν ,

[Dµ , Dν ] = F I
µν δI , (1.17)

which is given by

F I
µν = ∂µA

I
ν − ∂νA

I
µ −AJ

µA
K
ν fJK

I , (1.18)

and which satisfies the Bianchi identity

εµνρσ DνF
I
ρσ = 0 . (1.19)

The field strength is a tensor that also transforms in the adjoint representation of the
Lie algebra G,

∆g(C)F I
µν = −CJfJK

IFK
µν . (1.20)

Hence, in the abelian case the field strength is gauge invariant.

In [5] Grimm et al. have shown how to embed 1-form gauge fields into N = 2 super-
symmetry multiplets. Let us first discuss the case without an explicit central charge,
δz = 0. In analogy to eq. (1.16) one extends the flat supercovariant derivatives Di

α to
super- and gaugecovariant derivatives Di

α and imposes constraints on the field strengths
such that only a minimal number of components survives. The Bianchi identities then
fix the algebra to read

{Di
α , D̄α̇j} = −iδi

jσ
µ
αα̇Dµ

{Di
α , D

j
β} = εαβεijφ̄IδI [ Di

α , Dµ ] = i
2
(σµD̄

iφ̄I)α δI (1.21)

{D̄α̇i , D̄β̇j} = εαβεijφIδI [ D̄α̇i , Dµ ] = i
2
(Diφ

Iσµ)α̇ δI .

The generators δI act trivially on the supercovariant derivatives, i.e. they commute.
We do not give the explicit realization of the Di

α as in the following we need only
their commutation relations. The calligraphic Di

α shall always generate supersymmetry
transformations of component fields, and we remark that the relations (1.11) and (1.12)
apply also to the present case when the Di

α are replaced by Di
α.

The so-called vector superfields φI transform as tensors in the adjoint representation
under gauge transformations. The Bianchi identities imply that they are subject to
constraints

D̄α̇iφ
I = 0 = D

i
αφ̄I , D

(i
D

j)φI = D̄
(i
D̄

j)φ̄I , (1.22)
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which lead to the field content of a complex scalar, a doublet of Weyl spinors, a real
SU(2) triplet of auxiliary scalars and a real antisymmetric tensor1,

φI | , χiI
α = D

i
αφI | , DijI = 1

2
D

(i
D

j)φI |

F I
µν = 1

4
(DiσµνDiφ

I − D̄iσ̄µνD̄
iφ̄I)| ,

(1.23)

the latter providing the field strength for the gauge potentials AI
µ. Here and henceforth

we shall employ the convention of labeling a superfield and its lowest component by the
same symbol. As we are going to deal with up to three multiplets simultaneously and
introduce a fair amount of abbreviations, a large number of symbols is needed, which
calls for an economical notation. It should be clear in each equation which is which;
when ambiguities might occur, we explicitly state whether the full superfield or merely
a component field is meant.
From eq. (1.11) and the algebra (1.21) one derives the supersymmetry transformations
of the tensor components of φI . The action of Di

α is found to be

Di
αφI = χiI

α , Di
αφ̄I = 0

Di
α
χjI

β = εαβ DijI + εijF I
µν σµν

αβ + 1
2
εαβεij φJ φ̄KfJK

I , Di
α
χ̄jI

α̇ = iεij Dαα̇φ̄I

Di
αDjkI = iεi(j (Dαα̇χ̄k)α̇I + iχk)J

α φ̄KfJK
I) (1.24)

Di
αF

I
µν = iD[µ(σν]χ̄

iI)α

while the action of D̄α̇i is readily obtained by complex conjugation. Since the gauge
fields AI

µ do not occur linearly and undifferentiated in a θ-expansion of the φI , their
supersymmetry transformations cannot be derived from eq. (1.11). We define the action
of Di

α on AI
µ by

Di
αA

I
µ = i

2
(σµχ̄

iI)α , (1.25)

which is compatible with the transformation of F I
µν . Then the supersymmetry algebra

reads on all component fields

{Di
α , D̄α̇j} = −iδi

j σµ
αα̇

(

∂µ + ∆g(Aµ)
)

{Di
α , Dj

β} = εαβ εij∆g(φ̄) {D̄α̇i , D̄β̇j} = εα̇β̇ εij∆
g(φ) .

(1.26)

On tensors the combination ∂µ + ∆g(Aµ) is just the covariant derivative. We conclude
that the commutator of two supersymmetry transformations yields a translation and a
field dependent gauge transformation,

[ ∆(ξ) , ∆(ζ) ] = ǫµ∂µ + ∆g(C) , (1.27)

with parameters

ǫµ = i(ζiσ
µξ̄i − ξiσ

µζ̄ i) , CI = ǫµAI
µ − ξiζ

i φ̄I + ξ̄iζ̄i φ
I . (1.28)

1A bar denotes projection to the lowest component of a superfield by setting θ = θ̄ = 0.
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Now let us compare the anticommutator of two spinor derivatives in eqs. (1.9) (substi-
tuting δz for ∂z = ∂z̄) and (1.21). Evidently, an operator δz generating a rigid central
charge transformation may formally be incorporated into the latter algebra by first ex-
tending the gauge group by an extra U(1) factor, the generator of which one identifies
with δz, and then replacing the corresponding superfield with the constant background
value i. Accordingly, the central charge is promoted to a local transformation by rein-
troducing the full vector superfield, denoted in the following by Z. This differs from
the other φI in that it has a nonvanishing vacuum expectation value (vev),

〈Z〉 = i . (1.29)

It seems the dimensions have gone awry. If the generators δI are taken to be dimen-
sionless, the corresponding vector superfields must have mass dimension unity. As is
clear from its representation as a space derivative, however, δz has the dimension of an
inverse length, which results in a shift of the dimension of Z. To compensate for this,
the central charge coupling constant gz that will be introduced with the Lagrangian
(see next section) carries mass dimension −1.
To distinguish the components of the central charge vector multiplet from those of
ordinary gauge multiplets, we denote them by

(

Z , Aµ , λi
α | Y ij

)

,

and the abelian field strength of Aµ we write as

Fµν = ∂µAν − ∂νAµ . (1.30)

The tensor components are invariant under an infinitesimal central charge transforma-
tion ∆z(C), while Aµ transforms into the gradient of the parameter C(x),

∆z(C)
(

Z , λi
α , Fµν , Y ij

)

= 0 , ∆z(C) Aµ = −∂µC . (1.31)

Note that the above discussion implies that the central charge multiplet is invariant
under gauge transformations ∆g, while the ordinary gauge multiplets are invariant
under central charge transformations ∆z.
The supersymmetry transformations can be copied from above. They are linear due to
the abelian nature of the central charge,

Di
αZ = λi

α , Di
αZ̄ = 0

Di
αλj

β = εαβ Y ij + εijFµν σµν
αβ , Di

αλ̄j
α̇ = iεij ∂αα̇Z̄

Di
αY jk = iεi(j ∂αα̇λ̄k)α̇ (1.32)

Di
αAµ = i

2
(σµλ̄

i)α , Di
αFµν = i ∂[µ(σν]λ̄

i)α .

Note that the nonvanishing vev of Z does not break supersymmetry spontaneously.
Since the vector-tensor multiplet transforms trivially under gauge transformations ∆g

(see next chapter), the algebra we shall be dealing with mostly in this thesis includes
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only the central charge generator δz, and for reference we list the commutation relations
as they are to hold on tensor components,

{Di
α , D̄α̇j} = −iδi

j σµ
αα̇Dµ [Dµ , Dν ] = Fµν δz

{Di
α , Dj

β} = εαβ εijZ̄δz [Di
α , Dµ ] = i

2
(σµλ̄

i)αδz (1.33)

{D̄α̇i , D̄β̇j} = εα̇β̇ εijZδz [ D̄α̇i , Dµ ] = i
2
(λiσµ)α̇δz .

The commutators involving δz vanish.

1.2 The Linear Multiplet

Once we have found a multiplet that realizes the N =2 supersymmetry algebra, be it
with gauged central charge or not, the task is to construct an invariant action. In this
section we discuss a procedure first developed by de Wit et al. [6] to derive possible
Lagrangians from the so-called linear multiplet. By definition a linear superfield is a
real Lorentz-scalar SU(2) triplet ϕij which satisfies the constraints

ϕij = ϕji , (ϕij)∗ = ϕij , D
(i
αϕjk) = 0 = D̄

(i
α̇ϕjk) . (1.34)

Let us first neglect a possible central charge and suppose that the linear superfield
transforms in some representation of the Lie group generated by the δI . As seen in the
previous section, a central charge can easily be introduced by assigning to one of the
δI the role of a central charge generator. The constraints then lead to a field content
of two Weyl spinors, a complex scalar and a real vector in addition to the three real
scalars which comprise the lowest components of the superfield,

ϕij| , ̺i
α = Dαjϕ

ij| , S = 1
2
DiDjϕ

ij| , Kµ = i
2
Diσ

µ
D̄jϕ

ij| . (1.35)

Note that if ϕij has (mass) dimension one, S and Kµ have dimension two and so must
assume the role of auxiliary fields or, in the case of Kµ, field strengths. In the presence
of a central charge the multiplet is larger as the action of δz on the components listed
above remains undetermined and so leads to further fields δzϕ

ij, etc.
We obtain the supersymmetry transformations of the multiplet (1.35) by evaluating
the algebra (1.21) on each component subject to the constraints on ϕij. This gives

Di
αϕjk = 2

3
εi(j̺k)

α

Di
α̺j

β = 1
2
εαβ (εijS − 3φ̄IδIϕ

ij) , Di
α ¯̺j

α̇ = − i
2
(εijKαα̇ + 3Dαα̇ϕij)

Di
αS = φ̄IδI̺

i
α , Di

αS̄ = −2iDαα̇ ¯̺α̇i − 3χI
αjδIϕ

ij − φIδI̺
i
α (1.36)

Di
αKµ =

(

2σµνDν̺
i + 3

2
i σµχ̄I

jδIϕ
ij + iφ̄I σµδI ¯̺i

)

α
.

However, these transformations realize the supersymmetry algebra only if the vector
Kµ satisfies a differential constraint, namely

DµK
µ = −

1
2

(

φIδIS + φ̄IδI S̄ + 2χI
i δI̺

i − 2χ̄iIδI ¯̺i + 3DI
ijδIϕ

ij
)

. (1.37)
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Evidently, this equation can only be solved when the linear multiplet is gauge invariant.
Then the constraint reduces to a Bianchi identity which identifies Kµ as the dual field
strength of a 2-form gauge field,

δIϕ
ij = 0 ⇒ ∂µK

µ = 0 ⇒ Kµ = 1
2
εµνρσ∂νBρσ . (1.38)

In this form the multiplet is known as the tensor multiplet, cf. [7].
What happens when we consider local central charge transformations instead of ordi-
nary gauge transformations? We can simply replace the generators δI with δz and the
multiplets φI with Z in the above equations. Then the constraint on Kµ reads

DµK
µ = −

1
2

δz

(

ZS + Z̄S̄ + 2λi̺
i − 2λ̄i ¯̺i + 3Yijϕ

ij
)

≡ −
1
2

δzL̂ , (1.39)

for now the gauge multiplet transforms trivially under the generator δz. While it cannot
be solved unless δzϕ

ij = 0, the constraint implies the existence of a gauge invariant
action. Let us consider the expression

L = L̂ + 2AµK
µ .

Applying a local central charge transformation, we can replace δzL̂ with the covariant
derivative of Kµ using the constraint and then combine this with the transformed of
the second term into a total derivative,

∆z(C)L = CδzL̂ − 2∂µC Kµ + 2CAµδzK
µ

= −2C DµK
µ − 2∂µ(CKµ) + 2C(∂µK

µ + AµδzK
µ)

= −2∂µ(CKµ) .

Thus upon integration over spacetime
∫

d4xL is invariant under gauged central charge
transformations. Amazingly it is even supersymmetric, for we find after a little calcu-
lation

Di
αL = −i ∂µ

(

2Z̄σµ ¯̺i + 3ϕijσµλ̄j − 4iAνσ
µν̺i

)

α
. (1.40)

Altogether we have found a general prescription to construct invariant actions: If the
components of the multiplets under consideration can be combined into a superfield
Lij = Lji = (Lij)

∗ such that it satisfies the constraints

D
(i
αL

jk) = 0 = D̄
(i
α̇L

jk) , (1.41)

then the Lagrangian

L =
1
12

(

ZDiDj + Z̄D̄iD̄j + 4λiDj − 4λ̄iD̄j + 6Yij + 2iAµDiσ
µD̄j

)

Lij| (1.42)

provides us with a supersymmetric action that is invariant under local central charge
transformations. Note that if the linear superfield Lij is also invariant under gauge
transformations ∆g, this rule extends to ordinary gauge theories as well. When we do
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not consider fields that are subject to local central charge transformations, we replace
the superfield Z by its background value 〈Z〉 = i, and the Lagrangian reduces to

L =
i

12

(

DiDj − D̄iD̄j

)

Lij| . (1.43)

Occasionally we shall call Lij the “pre-Lagrangian”. There is no guarantee, however,
that one can always find an Lij which gives rise to a nontrivial Lagrangian, i.e. one
which is not merely a total derivative.
It will not have escaped the reader’s attention that, although we started from a super-
field, we did not write the action formula as a superspace integral. Indeed we cannot
with the formalism introduced so far. Only recently Dragon et al. [2] have found a man-
ifestly supersymmetric version of eq. (1.42) using the harmonic superspace approach.

As a first application we use this recipe to determine the invariant action for N = 2
vector multiplets. The most general linear superfield one can construct from superfields
φI is given by

Lij
sYM = −i Di

D
j
F(φ) + i D̄i

D̄
j
F̄(φ̄) , δIF(φ) = 0 , (1.44)

where F is a holomorphic function of the φI and F̄ its complex conjugate. That Lij

is symmetric in its SU(2) indices follows from the gauge invariance of F, and the
constraints (1.41) are satisfied by virtue of the chirality of the φI ,

D
(i
αL

jk)
sYM = −i D(i

αD
j
D

k)
F(φ) + i D(i

αD̄
j
D̄

k)
F̄(φ̄) = i D̄(i

D̄
j
D

k)
α F̄(φ̄) = 0 .

Using the algebra and the properties of F, it is easy to show that the mixed generators
D̄iD̄jD

iDj in eq. (1.43) give rise only to a total derivative,

LsYM =
1
12

DiDj D
iDj

F(φ) + ∂µ∂µ F(φ) + c.c. . (1.45)

To obtain the usual super Yang-Mills Lagrangian, we choose

F(φ) =
1

8g2
δIJφIφJ , (1.46)

where δIJ is an invariant tensor in the case of a compact gauge group and g a dimen-
sionless coupling constant (see also section 3.4). Dropping all surface terms, we arrive
after some algebra at

g2 LsYM = −
1
4
FµνIF I

µν +
1
2
Dµφ̄I Dµφ

I −
i
4

χiIσµ
↔

Dµχ̄
I
i +

1
4

DijIDI
ij

+
1
4

(

χiIχJ
i φ̄K − χ̄I

i
χ̄iJφK

)

fJK
I +

1
8

(φJ φ̄KfJK
I)2 .

(1.47)

For the central charge multiplet, which is abelian, interaction terms do not occur, and
the Lagrangian is given simply by the sum of kinetic energies and the square of the
auxiliary scalars,

g2
z Lcc = −

1
4

F µνFµν +
1
2

∂µZ̄ ∂µZ −
i
4

λiσµ
↔

∂µλ̄i +
1
4

Y ijYij . (1.48)

Here the coupling constant gz carries mass dimension −1 in order to render the action
dimensionless.
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1.3 The Hypermultiplet

A simple yet instructive example for a multiplet with a nontrivial central charge is the
massive Fayet-Sohnius hypermultiplet [8, 4]. Although it contains no gauge fields by
itself, we shall nevertheless demonstrate, as a warm-up for more complicated things to
come, the gauging of the rigid transformation associated with the central charge. The
hypermultiplet is described by two complex scalar superfields ϕi, ϕ̄i = (ϕi)∗ that form
a doublet of the automorphism group SU(2) and, for rigid central charge, satisfy the
constraints (for simplicity we take ϕi to be gauge invariant, δIϕ

i = 0)

D(i
αϕj) = 0 = D̄

(i
α̇ϕj) . (1.49)

These imply that only ϕi itself contains independent components, while those of the
central charge images ϕi(z), etc. can be expressed in terms of the ones of ϕi and deriva-
tives thereof. It is now a fundamental question whether, upon gauging the central
charge, it suffices to simply replace the flat spinor derivatives with gaugecovariant ones
in the constraints on a superfield, or whether there are obstructions that require mod-
ifications of the constraints. As we shall see in the next chapter, in general a naive
“covariantization” leads to inconsistencies, and finding the proper constraints for the
vector-tensor multiplet is quite an effort. However, in the case of the hypermultiplet
it turns out that the first attempt is successful, i.e. the hypermultiplet with gauged
central charge is described by

D
(i
αϕj) = 0 = D̄

(i
α̇ϕj) . (1.50)

Let us define the component fields as

ϕi| , χα = 1
2
Dαiϕ

i| , ψ̄α̇ = 1
2
D̄α̇iϕ

i| , F i = δzϕ
i| , (1.51)

where the auxiliary scalars F i do occur also in a θ-expansion of ϕi. One may easily
verify that the supersymmetry transformations

Di
αϕj = εijχα , Di

αϕ̄j = −εijψα

Di
α
χβ = −εαβZ̄F i , Di

α
χ̄α̇ = −iDαα̇ϕ̄i (1.52)

Di
αψ̄α̇ = −iDαα̇ϕi , Di

αψβ = εαβZ̄F̄ i

Di
αF j = εijδzχα , Di

αF̄ j = −εijδzψα

represent the algebra (1.33) when δz acts as follows,

δzχα = −
1
Z

(

iσµDµψ̄ + λiF
i
)

α
, δzψ̄α̇ = −

1
Z̄

(

iDµχσµ + λ̄iF
i
)

α̇

δzF
i =

1
|Z|2

(

DµDµϕ
i + λiδzχ + λ̄iδzψ̄ − Y ijFj

)

.
(1.53)

These equations have a peculiar structure. The covariant derivative acting on ψ̄ in the
expression for δzχ contains the central charge generator δz, whose action is given by the
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second equation, which in turn involves a covariant derivative of χ. Hence, the central
charge transformation of χ is given only implicitly as the equations are coupled. Let
us insert the second one into the first,

|Z|2δzχα = −iAαα̇Z̄δzψ̄
α̇ − Z̄(i∂αα̇ψ̄α̇ + λαiF

i)

= −iAαα̇(iDα̇βχβ − λ̄α̇
i F i) − Z̄(i∂αα̇ψ̄α̇ + λαiF

i)

= Aαα̇Aα̇βδzχβ + Aαα̇(∂α̇βχβ + iλ̄α̇
i F i) − Z̄(i∂αα̇ψ̄α̇ + λαiF

i) .

According to eq. (A.23) Aαα̇Aα̇β = AµAµδ
β
α, so we have isolated δzχα. Doing a similar

calculation for ψ̄, we conclude that

δzχα = −
1
E

[

iZ̄(∂αα̇ψ̄α̇ − iλαiF
i) − Aαα̇(∂α̇βχβ + iλ̄α̇

i F i)
]

δzψ̄α̇ = −
1
E

[

iZ(∂αα̇χα − iλ̄α̇iF
i) − Aαα̇(∂β̇αψ̄β̇ + iλα

i F i)
]

,
(1.54)

where the abbreviation

E ≡ |Z|2 − AµAµ (1.55)

has been introduced. Since Z has a nonvanishing vev, E may be inverted at least
formally. We can restructure the central charge transformation of F i in like manner,
for the covariant d’Alembertian acting on ϕi may be expanded as

DµDµϕ
i = ¤ϕi + F i∂µA

µ + 2Aµ∂µF
i + AµAµδzF

i .

Thus one finds

δzF
i =

1
E

(

¤ϕi + F i∂µA
µ + 2Aµ∂µF

i + λiδzχ + λ̄iδzψ̄ − Y ijFj

)

. (1.56)

Note that in the limit Z = i, which corresponds to a rigid central charge, the transfor-
mations reduce to

δzχ = −σµ∂µψ̄ , δzψ̄ = −σ̄µ∂µχ , δzF
i = ¤ϕi , (1.57)

hence in the massless case they are trivial on-shell (cf. the Lagrangian given below).
In order to determine an invariant action, we apply the prescription (1.42) derived in
the previous section. The constraints (1.50) imply that the combinations

Lij
0 = −ϕ̄(i

↔

δzϕ
j) , Lij

m = −2i mϕ̄(iϕj) , m ∈ R (1.58)

are both linear superfields, thus giving rise to two independent invariants. Let us
consider the first; a straightforward computation leads to

L0 = −
1
2

ϕ̄iD
µDµϕ

i −
1
2

ϕiDµDµϕ̄i −
i
2

(

χσµ
↔

Dµχ̄ + ψσµ
↔

Dµψ̄
)

+ |Z|2F iF̄i

+
1
2

Aµ

(

ϕi
↔

DµF̄i + ϕ̄i

↔

DµF i + iχσµ
↔

δzχ̄ + iψσµ
↔

δzψ̄
)

.
(1.59)
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We observe that the terms in the second line exactly cancel those in the first which
involve a gauge potential, thereby reducing the covariant derivatives to partial ones.
All that remains is a Lagrangian of (at least classically) free fields,

L0 = ∂µϕ̄i ∂µϕ
i −

i
2

(

χσµ
↔

∂µχ̄ + ψσµ
↔

∂µψ̄
)

+ EF iF̄i , (1.60)

where a total derivative has been dropped. Now consider the second linear superfield
Lij

m. It yields the Lagrangian

1
m

Lm = iAµ
(

ϕ̄i

↔

∂µϕ
i
)

+ Aµ(χσµχ̄ − ψσµψ̄) − iE(F iϕ̄i − ϕiF̄i) − i Yijϕ̄
iϕj

− i(Z̄χ̄ψ̄ − Zχψ) − i ϕi(λ̄iχ̄ − λiψ) + i ϕ̄i(λ
i + λ̄iψ̄) .

(1.61)

This one involves couplings of the gauge potential to combinations of the scalars and
spinors which are reminiscent of U(1) currents, and indeed we find that the complete
Lagrangian, i.e. the sum L0 + Lm + Lcc,

L = ∇µϕ̄i ∇µϕ
i −

i
2

(

χσµ
↔

∇µχ̄ + ψσµ
↔

∇µψ̄
)

+ E |F i + imϕi|2

− m2|Z|2ϕ̄iϕ
i − im(Z̄χ̄ψ̄ − Zχψ) − imYijϕ̄

iϕj (1.62)

− imϕi(λ̄iχ̄ − λiψ) + im ϕ̄i(λ
iχ + λ̄iψ̄) + Lcc ,

describes nothing but (a special kind of) N = 2 supersymmetric electrodynamics. Here
the operator ∇µ is defined by

∇µ





ϕi

χ

ψ̄



 = (∂µ − imAµ)





ϕi

χ

ψ̄



 . (1.63)

Hence, on-shell the gauged central charge generates just local U(1) transformations
with an electric charge that is given by m (or rather mgz after a rescaling Aµ → gzAµ).
This may also be seen from the equation of motion for the auxiliary scalars F̄i (the
relation ≈ denotes on-shell equality),

δL
δF̄i

= E(F i + imϕi) ≈ 0 . (1.64)

Since two superfields are equal if the lowest components coincide, we thus have

δzϕ
i ≈ −imϕi (1.65)

for the full superfield. One may verify that this is in agreement with the eqs. (1.53).
Note that since 〈Z〉 = i, the masses of the “electron” (χ, ψ̄) and its superpartners ϕi

are given by the parameter m (where we assume m ≥ 0),

M(χ,ψ̄) = Mϕ = m , (1.66)
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so in the massless case the central charge is trivial on-shell as observed above. In
this regard the model is different from conventional supersymmetric electrodynamics,
where charge and mass are not related. What is more, whereas usually interactions
of the matter fields with the gauge potential are tied to the kinetic terms through
the covariant derivatives (the so-called minimal coupling), here these two derive from
actions that are (off-shell) gauge invariant separately.
At last we remark that the prefactor 1/E, which accompanies the local central charge
transformations, will prove to be a universal feature that we shall encounter again
in the discussion of the vector-tensor multiplet. Note however, that here only the
transformations are nonpolynomial, while the action is perfectly regular even off-shell.





Chapter 2

The Vector-Tensor Multiplet

The discovery of the vector-tensor multiplet by Sohnius, Stelle and West [9] dates back
to the year 1980, yet our current knowledge about its various incarnations and possible
interactions has been gathered only in the last three years. Its renaissance was triggered
by the work of de Wit et al. [10] on N = 2 supersymmetric vacua of heterotic string
theory compactified on K3 × T 2. The massless states in this theory comprise a vector
and an antisymmetric tensor along with the dilaton, which organizes the perturbative
expansion of a string theory. These three fields could be shown to fit into a vector-
tensor multiplet. In string theory, an antisymmetric tensor is usually dualized into a
pseudo-scalar, the axion, which in the case at hand results in an abelian N =2 vector
multiplet, whose couplings have been studied extensively. However, not every vector
multiplet can be converted into a vector-tensor multiplet (see [11] for details), which
experiences much more stringent restrictions on its couplings. In any case, the duality
transformation can be performed only on-shell, for the off-shell structure of the two
multiplets is considerably different: the supersymmetry algebra of the vector-tensor
multiplet contains a central charge in addition to the gauge transformations that are
always present when gauge fields are involved.

The rediscovery of the vector-tensor multiplet spawned a lot of activity in this field.
In [12] the superfield for the free multiplet was constructed for the first time, which
subsequently could be generalized to include Chern-Simons couplings to nonabelian
vector multiplets [13, 14]. In [15] an alternative formulation utilizing the harmonic
superspace approach was presented. Already somewhat earlier, the central charge of the
multiplet was gauged in [16, 17] as a preparatory step towards a coupling to supergravity
(later achieved in [18], see also [19]), where the corresponding transformations would
necessarily have to be realized locally. In the course of this, a second variant of the
multiplet was discovered with nonlinear transformation laws, which give rise to self-
interactions. These results were obtained by means of the so-called superconformal
multiplet calculus, yet their complexity called for a formulation in terms of superfields.
While in [20, 21] the nonlinear vector-tensor multiplet with rigid central charge could
be derived from a set of superfield constraints in harmonic superspace, the problem
of finding appropriate constraints describing the linear vector-tensor multiplet with
gauged central charge was first tackled by Dragon and the author in conventional
superspace [22, 23]. Finally, a general formalism for theories with gauged central charge
was developed in [2], again employing the virtues of harmonic superspace, and a natural
interpretation of the central charge of the linear vector-tensor multiplet as a remnant

17
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of translations in six-dimensional spacetime was presented.
In the following chapters we give a derivation of the superfield constraints that underlie
both the linear and nonlinear versions of the vector-tensor multiplet with gauged central
charge. Furthermore, the origin of the nonpolynomial transformations and couplings is
discussed in detail. Since we aim for an off-shell formulation, we shall not pass to the
dual picture, however, but keep the antisymmetric tensor instead of replacing it with
a scalar field.

2.1 Introducing the Multiplet

The multiplet consists of a real scalar, a vector and an antisymmetric tensor gauge field
and a doublet of Weyl spinors, which accounts for 4 + 4 (on-shell) degrees of freedom.
An off-shell formulation requires in addition a real auxiliary scalar field, and we shall
use the following notation for the components

(

L , Vµ , Bµν , ψi
α | U

)

.

The field strength of Vµ and the dual field strength of Bµν we will denote by Vµν and
Hµ, respectively,

Vµν = ∂µVν − ∂νVµ , Hµ = 1
2
εµνρσ∂νBρσ . (2.1)

These are invariant under abelian gauge transformations

∆V (Θ) Vµ = −∂µ Θ(x) , ∆B(Ω) Bµν = −2 ∂[µ Ων](x) , (2.2)

the latter being reducible, i.e. they are inert to a change of the parameter Ωµ by the
gradient of some scalar. From our experience with super Yang-Mills theories we should
expect that the supersymmetry algebra can be realized on the vector-tensor multiplet
only modulo such gauge transformations, with field dependent parameters Θ and Ωµ.
The multiplet, the supersymmetry transformations of its components and an invariant
action can be derived from a real scalar superfield, which we shall again label by its
lowest component, subject to the constraints

D(iDj)L = 0 , D(i
α D̄

j)
α̇ L = 0 . (2.3)

These give rise to the independent components

L| , ψi
α = iDi

αL| , U = δzL|

Gαβ = 1
2
[ Di

α , Dβi ] L| , Wαα̇ = −1
2
[ Di

α , D̄α̇i ] L| .
(2.4)

The bispinor Gαβ = Gβα and its complex conjugate can be combined into a real anti-
symmetric tensor Gµν according to eq. (A.21), while Wαα̇ is equivalent to a real vector
field W µ.
Similarly to the case of the linear multiplet, the algebra (1.9) is realized provided that
Gµν and W µ satisfy Bianchi identities,

∂µW
µ = 0 , εµνρσ∂νGρσ = 0 . (2.5)
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This allows to identify these components with the field strengths1 (2.1) of the gauge
potentials Vµ and Bµν . The reason for using different labels in the definition of the
component fields will become clear when we investigate deformations of the superfield
constraints (2.3) in the next chapters. There the relation between Gµν and W µ and
the field strengths Vµν and Hµ will be more complicated as the differential constraints
(2.5) on the former also get modified. As we shall see, the transformations and actions
can be formulated most easily in terms of components defined as in eq. (2.4) when
interactions are introduced. In this section, however, in which only the free case is
presented, there is no distinction between Gµν , W µ and Vµν , Hµ.

The supersymmetry transformations of the components (2.4) read

Di
αL = −iψi

α , Di
αU = −i(σµ∂µψ̄

i)α

Di
αVµν = −2 ∂[µ(σν]ψ̄

i)α , Di
αHµ = 2(σµν∂νψ

i)α (2.6)

Di
αψj

β = 1
2
εij(εαβU + iVµν σµν

αβ) , Di
αψ̄j

α̇ = 1
2
εijσµ

αα̇(∂µL − iHµ) ,

while those of the potentials are given by

Di
αVµ = −(σµψ̄

i)α , Di
αBµν = −2i (σµνψ

i)α . (2.7)

The commutation relations of these involve a global central charge. The action of the
generator δz reads

δzL = U , δzU = ¤L , δzψ
i = σµ∂µψ̄

i

δzVµν = −2 ∂[µHν] , δzH
µ = ∂νV

µν
(2.8)

on the tensors, and on the gauge fields one has

δzVµ = −Hµ , δzBµν = −1
2
εµνρσV

ρσ . (2.9)

We refrain from giving a detailed derivation of these results, as this will be done later
on in the more general case of an algebra with a gauged central charge.
On the potentials Vµ and Bµν the algebra (1.9) holds modulo gauge transformations
(2.2). The commutator of two rigid supersymmetry transformations is given on all the
fields2 by

[ ∆(ξ) , ∆(ζ) ] = ǫµ∂µ + ∆z(C) + ∆V (Θ) + ∆B(Ω) , (2.10)

with ǫµ as in eq. (1.28), C = i(ξiζ
i + ξ̄iζ̄i), and field dependent parameters

Θ = ǫµVµ − L(ξiζ
i − ξ̄iζ̄i)

Ωµ = ǫµL − Bµνǫ
ν − Vµ(ξiζ

i − ξ̄iζ̄i)
(2.11)

1Occasionally we call Hµ the field strength of Bµν for short, hoping not to confuse the reader by
this abuse of denotation.

2It is understood that ∆V and ∆B act nontrivially only on Vµ and Bµν , respectively.
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in the gauge transformations of Vµ and Bµν . Furthermore, ∆z commutes with a super-
symmetry transformation only modulo gauge transformations,

[ ∆z(C) , ∆(ξ) ] = ∆V (Θ) + ∆B(Ω) , (2.12)

where the parameters now read

Θ = C(ξiψ
i + ξ̄iψ̄i) , Ωµ = i C(ξiσµψ̄i + ψiσµξ̄i) . (2.13)

To construct an invariant action for the vector-tensor multiplet it suffices to combine
its components into a linear superfield, as shown in the previous chapter. From the
constraints (2.3) on L it follows that the field

Lij = κ DiLDjL + κ̄ D̄iL D̄jL (2.14)

with κ ∈ C constant has the desired properties, i.e. it is real, symmetric and satisfies
D

(i
αL

jk) = 0. When calculating the Lagrangian using eq. (1.43) we find that the real
part of κ gives rise to a total derivative, while the imaginary part provides the kinetic
terms for the multiplet components. For κ = i one obtains

LfreeVT =
1
2

∂µL∂µL −
1
2

HµHµ −
1
4

V µνVµν − iψiσµ
↔

∂µψ̄i +
1
2

U2 . (2.15)

We observe that the central charge transformations (2.8) of the tensor fields vanish by
virtue of the equations of motion. The gauge fields, however, transform nontrivially
even on-shell. The conserved current that corresponds to this global symmetry of the
action is given by

Jµ
z = V µνHν . (2.16)

Upon gauging the central charge transformations we therefore anticipate a coupling of
this current to the gauge field Aµ to first order in the deformation of the free theory.

At last we would like to clarify the above statement about the conversion of the vector-
tensor multiplet into an abelian vector multiplet. The equation of motion for Bµν may
be solved in terms of a real scalar field a(x), which is then constrained by virtue of the
Bianchi identity of the dual field strength Hµ,

∂[µHν] ≈ 0 ⇒ Hµ ≈ ∂µa

∂µH
µ = 0 ⇒ ¤a ≈ 0 .

(2.17)

Hence, the antisymmetric tensor Bµν describes one spin- and massless degree of free-
dom. Alternatively, one may consider Hµ to be a fundamental field and incorporate
the Bianchi identity by means of a Lagrange multiplier,

−1
2
HµHµ − a ∂µH

µ = 1
2
∂µa ∂µa − 1

2
(Hµ − ∂µa)2 − ∂µ(aHµ) .

The supersymmetry transformation of Hµ,

Di
αHµ = 2(σµν∂νψ

i)α = (σµσ̄ν∂νψ
i − ∂µψi)α ≈ −∂µψi

α ,
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implies

Di
αa = −ψi

α , (2.18)

which suggests to combine a and L into a complex scalar field that is then chiral,

φ ≡ 1
2
(iL − a) ⇒ Di

αφ = ψi
α , D̄α̇iφ = 0 . (2.19)

Using U ≈ 0, the Lagrangian (2.15) turns into

Ldual = 2 ∂µφ̄ ∂µφ −
1
4

V µνVµν − iψiσµ
↔

∂µψ̄i , (2.20)

while the transformations of ψi and ψ̄i read

Di
αψj

β ≈ i
2
εij Vµνσ

µν
αβ , Di

αψ̄j
α̇ ≈ iεij∂αα̇φ̄ . (2.21)

Thus an on-shell equivalence has been established between the vector-tensor multiplet
and an abelian vector multiplet.

2.2 Consistent Deformations

To couple the vector-tensor multiplet to an abelian vector multiplet such that the
central charge transformations are realized locally, it will be necessary to modify the
superfield constraints (2.3) which determine the multiplet. This is different from the
hypermultiplet where the constraints could be retained when gauging the central charge.
But also self-interactions and couplings to nonabelian vector multiplets are obtained
from suitable deformations of the constraints. Instead of starting from a distinct Ansatz
for each single case and then working out anew all the transformations and Bianchi
identities, we treat all models simultaneously as far as possible by considering the
most general deformation that does not alter the field content of the vector-tensor
multiplet. The supersymmetry algebra imposes conditions on the constraints that
restrict the possible deformations. These consistency conditions come in two kinds:
First there are conditions that involve spacetime derivatives like the Bianchi identities
(we shall call the differential constraints on W µ and Gµν so generically even if they
cannot be solved, in which case the constraints are inconsistent), and second there are
algebraic conditions without derivatives. We shall use the latter to single out possible
constraints before trying to solve the conditions of the first kind. In the course of this
we will encounter constraints that pass all hurdles save said Bianchi identities, so the
consistency conditions of the second kind are necessary but not sufficient. Furthermore,
seemingly different superfield constraints may be connected by a field redefinition. We
do not distinguish such constraints as they do not lead to different theories. This will
be of great help, for it allows to simplify the calculations by choosing certain “gauges”.
Let us consider the constraints

D
(i
D

j)L = M ij , D
(i
αD̄

j)
α̇ L = i

2
N ij

αα̇ , (2.22)
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M ij and N ij
αα̇ being arbitrary superfields with appropriate Lorentz and SU(2) transfor-

mation properties. The M ij are (possibly complex) Lorentz scalars while the N ij
αα̇ may

be converted into real Lorentz vectors N ij
µ by means of the σ-matrices,

M ij = M ji =
(

M̄ij

)∗
, N ij

µ ≡ 1
2
σ̄α̇α

µ N ij
αα̇ = N ji

µ =
(

Nµ ij

)∗
. (2.23)

Although at this stage there is no apparent reason for taking L to be gauge invariant,
we shall nevertheless require

δIL = 0 , δIM
ij = 0 , δIN

ij
αα̇ = 0 (2.24)

from the outset. We will justify this restriction in due course. Note, however, that M ij

and N ij
αα̇ may well depend also on superfields φI , etc. as long as these combine in a

gauge invariant way. Moreover, δIL = 0 does not exclude the possibility of Bµν or Vµ

transforming nontrivially under ∆g, cf. section 3.4.
The independent tensor components of the multiplet can be defined similarly to the
free case in the previous section,

L| , ψi
α = iDi

αL| , U = δzL|

Gαβ = 1
2
[ Di

α , Dβi ] L| , Wαα̇ = −1
2
[ Di

α , D̄α̇i ] L| .
(2.25)

We will now evaluate the supersymmetry algebra (1.33) on each component, starting
with the component of lowest dimension and using the results in the evalutation on
the next component and so on, until the commutation relations have been verified on
the whole multiplet. Note that, although we are going to work at the component level,
every equation which involves only tensor fields may equally well be read as a relation
for full-blown superfields.
From evalutating the anticommutators of Di

α and D̄α̇i on L we obtain the supersym-
metry transformations of ψi and ψ̄i,

Di
αψj

β = i
2
εij (εαβZ̄U − Gαβ) + i

2
εαβ M ij , (2.26)

Di
αψ̄j

α̇ = 1
2
εij (Dαα̇L − iWαα̇) + 1

2
N ij

αα̇ . (2.27)

Whereas in the free case the parts symmetric in the SU(2) indices vanished, these are
given in general by the deformations M ij and N ij

αα̇. The requirement that δz commutes
with the supersymmetry generators relates the transformation of U to the yet unknown
central charge transform of ψi,

Di
αU = −iδzψ

i
α . (2.28)

This already completes the evaluation on L. Next we consider the spinors with di-
mension 3/2. Here we must go into greater detail, for the equations contain many
irreducible components and actually provide all the missing transformations as well as
all the consistency conditions! Let us start with

{Di
α , Dj

β}ψk
γ

!
= εαβεijZ̄ δzψ

k
γ .
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Using eqs. (2.26) and (2.28), this gives

0 = iεkj (iεβγZ̄ δzψ
i
α + Di

αGβγ) + iεβγ D
i
αM jk − εαβεijZ̄ δzψ

k
γ +

(

i
α ↔ j

β

)

.

Symmetrizing in ijk, we obtain our first consistency condition (the second equation
being the complex conjugate of the first),

D(i
αM jk) = 0 , D̄

(i
α̇M̄ jk) = 0 . (C.1)

Only such deformations M ij that obey this condition can be taken into account. In
the following we will assume M ij to satisfy eq. (C.1).
If we symmetrize in the spinor indices αβγ, we find that the spin-3/2 part of Di

αGβγ

vanishes. This must be so as the maximum helicity in nongravitational theories is ±1.
The remaining components all involve DαiGαβ. Thus we can express the action of Di

α

on the self-dual part of Gµν through δzψ
i and M ij. We find

Di
αGβγ = −2 εα(β

(

iZ̄ δzψ
i − 1

3
DjM

ij
)

γ) . (2.29)

Now we consider

{Di
α , D̄j

α̇}ψk
β

!
= iεij Dαα̇ψk

β .

With the supersymmetry transformations of ψi as above and using [Di
α , Dβα̇ ]L =

−iεαβ λ̄i
α̇U , this can be written as

0 = iεkj (Dβα̇ψi
α + εαβλ̄i

α̇U −Di
αWβα̇) − iεik D̄j

α̇Gαβ − iεij Dαα̇ψk
β

+ iεαβ εik (λ̄j
α̇U + iZ̄ δzψ̄

j
α̇) + Di

αN jk
βα̇ + iεαβ D̄

j
α̇M ik .

We decompose the equation into parts which are symmetric and antisymmetric in the
indices αβ, respectively. Let us consider the former: symmetrized in ijk it provides us
with a second consistency condition,

D
(i
(βN

jk)
α)α̇ = 0 , D̄

(i

(β̇
N

jk)
α̇)α = 0 . (C.2)

The remaining components determine the action of D̄i
α̇ on Gαβ, of which we give the

complex conjugate expression,

Di
αḠα̇β̇ = 2Dα(α̇ ψ̄i

β̇)
− 2

3
i D̄j(β̇N ij

α̇)α , (2.30)

and supply the relation Di
(αWβ)α̇ = 1

2
D̄i

α̇Gαβ. From the part antisymmetric in αβ follows

first of all a relation between M ij and N ij
αα̇, which is a third consistency condition,

D̄
(i
α̇M jk) = i

2
Dα(iN

jk)
αα̇ , D(i

αM̄ jk) = i
2
D̄α̇(iN

jk)
αα̇ . (C.3)

Moreover, we obtain the central charge transformation of ψ̄i and thus of ψi,

Zδzψ
i
α = iDαα̇ψ̄α̇i − iλi

αU + i
3
DαjM̄

ij − 1
3
D̄α̇

j N ij
αα̇

Z̄δzψ̄
i
α̇ = iDαα̇ψαi + iλ̄i

α̇U − i
3
D̄α̇jM

ij + 1
3
Dα

j N ij
αα̇ ,

(2.31)
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and finally the part DαiWαα̇, which together with eq. (2.30) gives the complete super-
symmetry transformation of W µ,

Di
αWββ̇ = −Dββ̇ψi

α − εαβ

(

2iZ̄ δzψ̄
i + λ̄iU

)

β̇
+ i

2
εαβ D

γ
j N ij

γβ̇
− i

3
Dj(αN ij

β)β̇
. (2.32)

Before going any further, let us examine eqs. (2.31). We observe a structure similar
to that of the central charge transformations of the spinors in the hypermultiplet, eqs.
(1.53), namely the equations for δzψ

i and δzψ̄
i are coupled by virtue of the covariant

derivative. Let us try to solve for δzψ
i. For convenience we introduce the abbreviation

ηi
α ≡ λi

αU − 1
3
DαjM̄

ij − i
3
D̄α̇

j N ij
αα̇

and calculate

|Z|2δzψ
i
α = iAαα̇Z̄δzψ̄

α̇i + iZ̄(∂αα̇ψ̄α̇i − ηi
α)

= Aαα̇(Dα̇βψi
β − η̄α̇i) + iZ̄(∂αα̇ψ̄α̇i − ηi

α)

= Aαα̇Aα̇βδzψ
i
β + Aαα̇(∂α̇βψi

β − η̄α̇i) + iZ̄(∂αα̇ψ̄α̇i − ηi
α) .

Again the prefactor E, defined in eq. (1.55), emerges. We have now eliminated δzψ̄
i,

provided that ηi or its complex conjugate does not contain such a term. We assume
this to be the case3. Then the action of the central charge generator on ψi reads

δzψ
i
α =

1
E

[

iZ̄(∂αα̇ψ̄α̇i − ηi
α) + Aαα̇(∂α̇βψi

β − η̄α̇i)
]

. (2.33)

This expression does not appear to be covariant with respect to local central charge
transformations, as the gauge potential occurs explicitly. However, from eq. (2.31) it
should be clear that δzψ

i is indeed a tensor, and one may verify that all the differentiated
gauge parameters cancel when calculating the central charge transformation of δzψ

i

proceeding from eq. (2.33). In what follows it is advantageous to use the manifestly
covariant expression (2.31) rather than the complicated equation (2.33).
We resume the evaluation of the supersymmetry algebra with the anticommutator

{Di
α , Dj

β} ψ̄k
α̇

!
= εαβεijZ̄ δzψ̄

k
α̇ .

From eq. (2.27) we see that this involves Dj
βWαα̇, which is given in eq. (2.32). We find

that the equation is fulfilled identically provided the consistency condition (C.2) holds,
so we obtain no new information.
Next we investigate the consequences of the requirement that the central charge gen-
erator δz commute with the supersymmetry generator Di

α,

[ δz , Di
α ] ψj

β

!
= 0 .

In this equation we encounter two generators Di
α, D̄i

α̇ acting on the deformations M ij

and N ij
αα̇. From now on we assume the supersymmetry transformations of these fields

3All consistent constraints that we present in the following chapters have this property.
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to satisfy the commutation relations (1.33). This we can take for granted if M ij and
N ij

αα̇ are composed only of the covariant components of the vector multiplets to which
we wish to couple the vector-tensor multiplet. Of all the components of the latter only
L and the spinors ψi can also enter the deformations, as we have already verified (by
construction) the algebra to hold on those.
Let us first symmetrize in ij. The result can be rendered antisymmetric in αβ using
eq. (C.3), and we obtain

δz

(

Y ijL − iλ(iψj) + iλ̄(iψ̄j) + 1
2
ZM ij + 1

2
Z̄M̄ ij

)

=

= DµN ij
µ +

3
8
DkD

(iM̄ jk) +
3
8
D̄kD̄

(iM jk) .
(C.4)

This consistency condition differs from the ones found so far in that it is inhomogeneous.
Whereas eqs. (C.1–3) admit vanishing M ij and N ij

αα̇, we infer from eq. (C.4) that it
is actually necessary to modify the constraints on L when gauging the central charge!
According to eq. (C.3) we can express the term D̄kD̄

(iM jk) and its complex conjugate
through N ij

αα̇, so in the special case N ij
αα̇ = 0 condition (C.4) may be solved for the real

part of ZM ij,

1
2
(ZM ij + Z̄M̄ ij) = iλ(iψj) − iλ̄(iψ̄j) − Y ijL + M̂ ij , δzM̂

ij = 0 . (2.34)

This fact we shall exploit extensively in the next two chapters.
From (C.4) also follows why the vector-tensor superfield cannot transform nontrivially
under gauge transformations ∆g, i.e. δIL = 0. If we relax this condition, then eq. (C.4)
would read for Z = i

DijIδIL − iχI(iδIψ
j) + iχ̄I(iδIψ̄

j) =
i
2

δz(M̄
ij − M ij) −

1
2

φIδIM
ij −

1
2

φ̄IδIM̄
ij

+ DµN ij
µ +

3
8
DkD

(iM̄ jk) +
3
8
D̄kD̄

(iM jk) .

and it is easily verified that no choice of M ij and N ij
αα̇ can yield the expression on the

left-hand side of the equation. Thus, there is no minimal coupling of the vector-tensor
multiplet to a Yang-Mills potential.
Now we contract the commutator with εij. The result can be further reduced to parts
symmetric and antisymmetric in αβ, respectively. Taking the imaginary part of the
latter we derive the first Bianchi identity,

DµW
µ =

1
2

δz(λ̄
iψ̄i − λiψ

i) −
i

12
DiDjM̄

ij +
i

12
D̄iD̄jM

ij . (BI.1)

Note that the covariant derivative contains the central charge transformation of W µ

which we have not yet determined. The real part gives rise to

δz

[

|Z|2U − i
2
(λiψ

i + λ̄iψ̄i)
]

= DµDµL +
i
6
Diσ

µD̄jN
ij
µ

+
1
12

DiDjM̄
ij +

1
12

D̄iD̄jM
ij .

(2.35)
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Here we discover again the factor E accompanying the central charge generator, for the
covariant d’Alembertian acting on L may be written as

DµDµL = ¤L + U∂µAµ + 2Aµ∂µU + AµAµδzU .

The last term then combines with |Z|2δzU on the left-hand side of eq. (2.35) into EδzU .

It remains to consider the part symmetric in αβ. Using eq. (A.21) we readily obtain

δz

(

IGµν − RG̃µν − Σ̃µν

)

= −2D[µWν] +
i
6
εµνρσ D

iσρD̄jNσ
ij , (2.36)

with the abbreviations

I ≡ Im Z , R ≡ Re Z (2.37)

Σµν ≡ LFµν + i(λiσµνψ
i − ψ̄iσ̄µν λ̄

i) . (2.38)

At last we require

[ δz , Di
α ] ψ̄j

α̇
!
= 0 .

We again decompose the commutator into SU(2) irreducible parts. Symmetrized in ij
the equation is fulfilled identically when the conditions (C.1–3) hold. Antisymmetrized
the real part provides the second Bianchi identity,

I DνG̃
µν + RDνG

µν = −
1
2

U∂µ|Z|2 −
1
2

δz(Zψiσµλ̄i + Z̄λiσaψ̄i)

−
i

12
Z Diσ

µD̄jM
ij −

i
12

Z̄ Diσ
µD̄jM̄

ij

−
1
12

(

ZDiDj + Z̄D̄iD̄j

)

Na ij ,

(BI.2)

while the imaginary part gives rise to the central charge transformation of W µ,

δz

[

|Z|2W µ + i
2
L(Z∂µZ̄ − Z̄∂µZ) + i

2
(Zψiσµλ̄i − Z̄λiσµψ̄i)

]

=

= I DνG
µν − RDνG̃

µν +
1
12

Z Diσ
µD̄jM

ij −
1
12

Z̄ Diσ
µD̄jM̄

ij

−
i

12

(

ZDiDj − Z̄D̄iD̄j

)

Na ij .

(2.39)

With this the evaluation of the supersymmetry algebra on ψi is completed. We could
already determine all the supersymmetry and central charge transformations of the
covariant components of the vector-tensor multiplet. Evidently we cannot obtain any
information on the gauge fields Vµ and Bµν as long as the deformations M ij and N ij

αα̇

have not been specified and the Bianchi identities solved. It is now a tedious exercise
to check that the algebra holds also on W µ, Gµν and U and that we obtain no further
consistency conditions.
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2.3 The Ansatz

In this section we confine our investigation to couplings of the vector-tensor multiplet
to just one abelian vector multiplet that gauges the central charge, which is our main
objective. To this end we make an Ansatz for the constraints on L and apply the
consistency conditions (C.1–3), i.e. those that do not contain spacetime derivatives.
Since the only fields in the multiplets under consideration that transform nontrivially
under the automorphism group SU(2) are given by Di

αL, Di
αZ, DiDjZ and their com-

plex conjugates, the most general Ansatz compatible with the properties (2.23) reads

D
(i
αD̄

j)
α̇ L = a D

(i
αZ D̄

j)
α̇ L − ā D̄

(i
α̇ Z̄ D

j)
α L + b D

(i
αZ D̄

j)
α̇ Z̄ + c D

(i
αL D̄

j)
α̇ L (2.40)

D
(i
D

j)L = AD
(iZ D

j)L + B D̄
(iZ̄ D̄

j)L + C D
i
D

jZ + D D
iZ D

jZ

+ E D̄
iZ̄ D̄

jZ̄ + F D
iL D

jL + G D̄
iL D̄

jL .
(2.41)

Here the coefficients are arbitrary local functions of the superfields L, Z and Z̄. ā is
the complex conjugate of a, and b and c must be real. Recall that since Z is an abelian
vector superfield, it satisfies

D
i
D

jZ = D
(i
D

j)Z = D̄
i
D̄

jZ̄ , D
i
αZ̄ = 0 = D̄

i
α̇Z . (2.42)

The first consistency condition (C.1), now written as a proper superfield equation,
requires

D
(i
αD

j
D

k)L = 0 , (2.43)

which simply expresses the fact that the spinor derivatives Di
α anticommute when

symmetrized in the SU(2) indices,

D
(i
αD

j
D

k) = −εγβ
D

(j
β D

i
αD

k)
γ = −1

2
εγβεαγD

(j
β D

i
D

k) = −1
2
D

(i
αD

j
D

k) = 0 . (2.44)

When the Ansatz (2.41) is inserted, condition (2.43) translates into a set of nonlinear
partial differential equations for the coefficient functions. Differentiations with respect
to L and Z arise from the action of Di

α on the coefficients4, while quadratic terms
appear because we have to use the constraints (2.40), (2.41) when the spinor derivative
acts on Di

αL or D̄i
α̇L. Introducing the abbreviations

∂ ≡
∂

∂Z
, ∂̄ ≡

∂
∂Z̄

, ∂L ≡
∂
∂L

, (2.45)

we have for instance

D
(i
α

(

F D
jL D

k)L
)

=
(

∂F D
(i
αZ + ∂LF D

(i
αL

)

D
jL D

k)L − 2F D
β(iL D

j
αD

k)
β L

= ∂F D
(i
αZ D

jL D
k)L − F D

(i
αL D

j
D

k)L ,

4There is no differentiation with respect to Z̄ since it is antichiral.
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where the expression proportional to ∂LF vanishes by the same reasoning as for eq.
(2.44). In this way condition (2.43) decomposes into ten linearly independent terms
whose coefficients must vanish separately,

1) 0 = ∂F − 1
2
∂LA

2) 0 = ∂LC − 1
2
A − CF

3) 0 = ∂C − D − 1
2
AC

4) 0 = ∂LG + G(2c − F )

5) 0 = ∂G − 1
2
G(A − 4a) (2.46)

6) 0 = ∂LE − EF + āB

7) 0 = ∂E − 1
2
AE + bB

8) 0 = ∂LB + B(c − F ) + 2āG

9) 0 = ∂B − 1
2
B(A − 2a) + 2bG

10) 0 = ∂LD − DF − 1
2
∂A + 1

4
A2 .

Condition (C.2) may be recast into the form

D
(i
(αD

j
β)D̄

k)
α̇ L = 0 . (2.47)

Using the Ansatz (2.40) and proceeding as above, we obtain further differential equa-
tions,

11) 0 = ∂La − ∂c

12) 0 = ∂Lb − ∂ā + aā + bc .
(2.48)

Condition (C.3) we write as

D̄
(i
α̇D

j
D

k)L = D
(j
D

k
D̄

i)
α̇L . (2.49)

This must hold as the anticommutator of Di
α and D̄

j
α̇ involves an εij and thus vanishes

when symmetrized in the SU(2) indices. The condition gives rise to ten more differential
equations,

13) 0 = ∂L(F − c) − GḠ + c(F − c)

14) 0 = ∂̄F − ∂Lā − 1
2
BḠ + ā(F − c)

15) 0 = ∂̄C − E − 1
2
BC̄ − b − āC

16) 0 = ∂̄D − ∂b − 1
2
BĒ − āD + b(A − a)

17) 0 = ∂LC − 1
2
B − C̄G − a − cC (2.50)

18) 0 = ∂LD − ∂a − ĒG − cD + a(A − a)

19) 0 = ∂L(A − a) − ∂c − B̄G + 2a(F − c)

20) 0 = ∂̄A − ∂ā − ∂Lb − 1
2
BB̄ − aā + b(2F − c)

21) 0 = ∂̄G − 1
2
∂LB + 1

2
G(Ā − 2ā) − 1

2
B(F̄ − c)
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22) 0 = ∂LE − 1
2
∂̄B − D̄G − cE + 1

2
B(ā + 1

2
Ā) .

We may eliminate several derivatives in the above equations by virtue of the conditions
(2.46) and (2.48),

17)′ 0 = C(F − c) + 1
2
(A − 2a) − 1

2
B − C̄G

18)′ 0 = ∂(A − 2a) − 1
2
(A − 2a)2 + 2D(F − c) − 2ĒG

19)′ 0 = ∂L(A − 2a) − B̄G + 2a(F − c) (2.51)

20)′ 0 = ∂̄(A − 2a) − 1
2
BB̄ + 2bF

21)′ 0 = ∂̄G + 1
2
ĀG + 1

2
B(2c − F − F̄ )

22)′ 0 = ∂̄B − 2E(F − c) − 1
2
B(Ā − 2ā) + 2D̄G .

Before we are trying to solve these equations, it is important to note that the solutions to
the consistency conditions decompose into mutually disjoint equivalence classes, where
two sets of constraints are deemed equivalent if they are related by a local superfield
redefinition

L → L = L(L̂, Z, Z̄) . (2.52)

Each representative of such a class effectively describes the same physics. We may
employ this to choose representatives which simplify the subsequent calculations as
much as possible. Using

D
i
αL = L′

D
i
αL̂ + ∂LD

i
αZ (2.53)

and similar for D̄i
α̇L, where L′ ≡ ∂L̂L 6= 0, we rewrite the Ansatz (2.40), (2.41) in terms

of L̂. The coefficients as functions of L̂ are then given by

â = a + c ∂L − ∂L′/L′

b̂ = (b + a ∂̄L + ā ∂L + c ∂L ∂̄L − ∂∂̄L)/L′

ĉ = c L′ − L′′/L′

Â = A + 2F ∂L − 2∂L′/L′

B̂ = B + 2G ∂̄L (2.54)

Ĉ = (C − ∂L)/L′

D̂ = (D + A∂L + F ∂L∂L − ∂2L)/L′

Ê = (E + B ∂̄L + G ∂̄L ∂̄L)/L′

F̂ = FL′ − L′′/L′

Ĝ = GL′ .

The differential equations (2.46), (2.48) and (2.50) are invariant under the above trans-
formations in the sense that if A,B, etc. are solutions to the consistency conditions,
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then Â, B̂, etc. satisfy the same equations with ∂L replaced by ∂L̂. Consider for instance
eq. 1) in (2.46),

∂F̂ − 1
2
∂L̂Â = ∂ (FL′ − L′′/L′) − 1

2
∂L̂(A + 2F ∂L − 2∂L′/L′)

= ∂FL′ + ∂L∂LF L′ + F ∂L′ − ∂L′′/L′ + L′′∂L′/L′2

− 1
2
(L′∂LA + 2L′ ∂LF ∂L + 2F ∂L′ − 2∂L′′/L′ + 2L′′∂L′/L′2)

= L′(∂F − 1
2
∂LA) = 0 .

A superfield redefinition induces changes of the component fields. If we define the
components of L̂ similar to those of L in eq. (2.25), then one has

ψi = L′ψ̂i + i∂Lλi (2.55)

according to eq. (2.53). From this we readily obtain also the relations for W µ and Gµν ,

W µ = L′Ŵ µ − 1
2
L′′ ψ̂iσµ ˆ̄ψi −

1
2
∂̄∂L λiσµλ̄i −

i
2
(∂L′ λiσµ ˆ̄ψi − ∂̄L′ ψ̂iσµλ̄i) (2.56)

Gµν = L′Ĝµν + (∂L + ∂̄L)Fµν − i(∂L − ∂̄L)F̃µν −
1
2
L′′(ψ̂iσµνψ̂i + ˆ̄ψiσ̄µν

ˆ̄ψi)

+ 1
2
(∂2Lλiσµνλi + ∂̄2L λ̄iσ̄µν λ̄i) − i(∂L′ λiσµνψ̂i − ∂̄L′ ˆ̄ψiσ̄µν λ̄i) ,

(2.57)

while the auxiliary field simply transforms as U = L′Û .

2.3.1 Invariant Actions

Once a set of consistent constraints has been found, the construction of a linear super-
field is the crucial step towards an invariant action. Similar to the derivation of the
constraints themselves we start in full generality from an Ansatz for the pre-Lagrangian,

Lij = α D
iL D

jL + ᾱ D̄
iL D̄

jL + β D
(iZ D

j)L + β̄ D̄
(iZ̄ D̄

j)L

+ γ D
i
D

jZ + δ D
iZ D

jZ + δ̄ D̄
iZ̄ D̄

jZ̄ ,
(2.58)

with γ real. The coefficients are again functions of L, Z and Z̄. Whereas reality
and symmetry in ij have already been taken into account, the coefficients are further
constrained by the requirement

D
(i
αL

jk) = 0 .

Again this yields a set of differential equations analogous to the evaluation of the
consistency condition (2.43). They read

0 = ∂Lγ − 1
2
β − αC

0 = ∂γ − δ − 1
2
βC

0 = ∂Lᾱ − αG + 2ᾱc

0 = ∂ᾱ − 1
2
βG + 2ᾱa
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0 = ∂α − 1
2
∂Lβ − 1

2
βF + 1

2
αA (2.59)

0 = ∂Lβ̄ − αB + 2ᾱā + β̄c

0 = ∂β̄ − 1
2
βB + 2ᾱb + β̄a

0 = ∂β − 2∂Lδ + 2αD − 1
2
βA

0 = ∂Lδ̄ − αE + β̄ā

0 = ∂δ̄ − 1
2
βE + β̄b ,

and for given functions A,B, etc. determine the unknown coefficients α, β, etc.
Note that when D̄

α̇(iN
jk)
αα̇ = 0, for instance in the special case N ij

αα̇ = 0, the combination

κM ij + κ̄M̄ ij , κ ∈ C

is real and hence a linear superfield by itself according to eqs. (C.1) and (C.3),

D̄
α̇(iN

jk)
αα̇ = 0 ⇒ D

(i
α(κM jk) + κ̄M̄ jk)) = 0 . (2.60)

Thus it will turn up as a particular solution to the conditions (2.59).

2.3.2 Solutions for Z = i

The general Ansatz (2.40), (2.41) does not reduce to the free constraints (2.3) in the
limit Z = i but there remain terms quadratic in Di

αL. This suggests that the constraints
(2.3) may not be the only possible description of the vector-tensor multiplet, and indeed,
as mentioned in the introduction, Claus et al. have shown in [16] that there exists a
nontrivial deformation5 which gives rise to self-interactions. With the set of consistency
conditions given above we can reproduce this result:
The case Z = i corresponds to

a = b = A = B = C = D = E = 0 , ∂ = ∂̄ ≡ 0 .

The equations (2.48) are satisfied identically, whereas (2.46) and (2.50) each provide a
single condition on the remaining functions c(L), F (L) and G(L), namely

0 = (∂L + c)G − (F − c)G

0 = (∂L + c)(F − c) − GḠ .
(2.61)

These are invariant under field redefinitions L = L(L̂) and transformations

ĉ = c L′ − L′′/L′ , F̂ = FL′ − L′′/L′ , Ĝ = GL′

as in (2.54). Since c transforms inhomogeneously, we may choose a gauge in which
c = 0. Note that this does not fix the gauge completely, we are still free to shift and
rescale L by real constant parameters,

L = κL̂ + ̺ , κ ∈ R
∗ , ̺ ∈ R ⇒ L′′/L′ = 0 . (2.62)

5Nontrivial in the sense that it may not be removed by a field redefinition.
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For c = 0, i.e. N ij
αα̇ = 0, the consistency condition (C.4) can easily be evaluated. It

reduces to

0 = δz

[

D(iDj)L − D̄(iD̄j)L
]

= δz

[

(F − Ḡ) DiLDjL + (G − F̄ ) D̄iL D̄jL
]

.
(2.63)

Hence G = F̄ , and the equations (2.61) both imply

∂LF = FF̄ . (2.64)

From this we infer first of all that the imaginary part of F is L-independent, thus

F = f(L) + iκ , κ ∈ R ⇒ ∂Lf = f 2 + κ2 . (2.65)

When κ = 0, we have two solutions. On the one hand F1 = 0, which corresponds to
the free constraints (2.3) as then all coefficients vanish. The second solution is

F2 = −
1

L + µ
, µ ∈ R , (2.66)

where µ may be removed by a field redefinition (2.62). In the case κ 6= 0 the general
solution reads

F3 = κ
(

tan(κL + ̺) + i
)

, ̺ ∈ R . (2.67)

We may choose κ = 1 and ̺ = 0. Since we have fixed the gauge, the three solutions
evidently yield distinct constraints that are not connected by a field redefinition. This
may also be seen from the transformation law of the coefficient G: If G = 0 for one
representative of a class of constraints, then this holds in the whole class. Moreover,
there is no transition from the second to the third solution since G2 is real while G3 is
not.
The constraints that correspond to F3 were first discovered by Ivanov and Sokatchev
in [21]. However, these are inconsistent, for the Bianchi identities (BI.1) and (BI.2)
admit no local solution. We shall not demonstrate this fact, but remark that it shows
that the conditions (C.1–4) are by no means sufficient.
The solution F2 implies constraints

D(i
α D̄

j)
α̇ L = 0 , D(iDj)L = −

1
L

(

DiLDjL + D̄iL D̄jL
)

, (2.68)

which are indeed consistent and describe what is known as the nonlinear vector-tensor
multiplet. We shall first generalize these constraints to admit a gauged central charge
before investigating them in any more detail. This will be done in chapter 4. At this
point we just emphasize that the constraints may be rendered regular for L̂ = 0 by a
field redefintion

L = exp(−κL̂) , κ ∈ R
∗ , (2.69)

which gives (omitting the hat)

D(i
α D̄

j)
α̇ L = κ D(i

αL D̄
j)
α̇ L , D(iDj)L = 2κ DiLDjL + κ D̄iL D̄jL . (2.70)

In this form they were first derived in [20] and are evidently a deformation of the free
theory. While here the coefficients are constant, we shall nevertheless generalize the
constraints (2.68), for these have the useful property of vanishing N ij

αα̇.
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2.3.3 Generalization to Z(x)

In the general case of an x-dependent field Z the consistency conditions (C.1–3), which
we have translated into a set of differential equations, do not determine completely the
unknown coefficients in the Ansatz. This is quite obvious as the number of equations
is not sufficient to fix the dependence of the coefficients on all three variables L,Z, Z̄.
Our goal is to generalize the solutions found in the previous section. To this end we
simplify the Ansatz by setting

a = b = c = 0 ⇒ N ij
αα̇ = 0 , (2.71)

which can be justified a posteriori by showing that the resulting constraints do indeed
yield the linear and nonlinear vector-tensor multiplet with gauged central charge. Note
that we are still allowed to redefine

L = κL̂ + f(Z) + f̄(Z̄) , κ ∈ R
∗ . (2.72)

This is the general solution to the differential equations

L′′ = ∂L′ = ∂̄∂L = 0 ,

which according to eq. (2.54) guarantee the preservation of Ansatz (2.71).
The simplification is motivated by the fact that now condition (C.4) may easily be
evaluated. With the reduced Ansatz put in, it reads

0 = δz

[

(1
2
L + ZC) D

i
D

jZ + (1 + ZA) D
(iZ D

j)L + (1 + ZB) D̄
(iZ̄ D̄

j)L

+ ZD D
iZ D

jZ + ZE D̄
iZ̄ D̄

jZ̄ + ZF D
iL D

jL + ZG D̄
iL D̄

jL
]

+ c.c.

(2.73)

from which we infer

23) 0 = 2 + ZA + Z̄B̄ 24) 0 = ZF + Z̄Ḡ , (2.74)

as well as

25) u(Z, Z̄) = L + ZC + Z̄C̄ 26) v(Z, Z̄) = ZD + Z̄Ē , (2.75)

u and v being arbitrary L-independent functions that contribute only to δz-invariant
terms inside the square brackets in eq. (2.73). Equations 23 − 26) allow to eliminate
B, D and G in the eqs. (2.46), (2.50) and (2.51), leaving the four unknown functions
A, C, E and F , whereas u and v may be removed using the gauge freedom (2.72). To
show this, let us first consider eq. 16) in (2.50). Replacing B and D according to the
relations above, we obtain

0 = ∂̄v − Z̄(∂̄Ē − 1
2
ĀĒ) .
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Eq. 7) then implies ∂̄v = 0. Next we consider eq. 15). Using eqs. 25), 3) and 26), we
find

0 = ∂u − Z(∂C − 1
2
AC) − Z̄Ē = ∂u − v .

Since v does not depend on Z̄ and u is real, we conclude that there is a function w(Z)
such that

u(Z, Z̄) = w(Z) + w̄(Z̄) , v(Z) = ∂w(Z) . (2.76)

Now let us perform a field redefinition (2.72) in eq. 25). With the transformation of C
as in eq. (2.54), we calculate

L̂ + ZĈ + Z̄ ˆ̄C =
1
L′

(

L − f − f̄
)

+
Z
L′

(

C − ∂f
)

+
Z̄
L′

(

C̄ − ∂̄f̄
)

=
1
L′

(

w + w̄ − f − f̄ − Z∂f − Z̄∂̄f̄
)

.

The same redefinition applied to eq. 26) gives

ZD̂ + Z̄ ˆ̄E =
1
L′

(

ZD + Z̄Ē + ∂f (ZA + Z̄B̄) + ∂f ∂f (ZF + Z̄Ḡ) − Z∂2f
)

=
1
L′

∂
(

w − f − Z∂f
)

,

where eqs. 23) and 24) have been used. So provided there is a function g(Z) such that
∂g = w, a field redefinition with f = g/Z yields (omitting the hats)

25) 0 = L + ZC + Z̄C̄ 26) 0 = ZD + Z̄Ē . (2.77)

Note that there remains a residual gauge freedom

L = κL̂ +
̺

Z
+

¯̺

Z̄
, κ ∈ R

∗ , ̺ ∈ C , (2.78)

for g may be shifted by a complex constant ̺.
Working in a gauge where u = v = 0, the 26 consistency conditions can be reduced to
a set of 11 independent equations,

1) 0 = 2∂F − ∂LA

2) 0 = ∂LC − CF − 1
2
A

3) 0 = ∂C − 1
2
AC +

Z̄
Z

Ē

4) 0 = ∂LF̄ − FF̄

5) 0 = 2∂F̄ −
(

A +
2
Z

)

F̄

6) 0 = ∂LE − EF (2.79)

7) 0 = ∂E − 1
2
AE
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9) 0 = ∂Ā − 1
2

(

A +
2
Z

)(

Ā +
2
Z̄

)

10) 0 = ∂A − 1
2
A2 − 2Ē

(

F − F̄
) Z̄
Z

19) 0 = ∂LA −
(

A +
2
Z

)

F̄

25) 0 = L + ZC + Z̄C̄ .

The trivial solution M ij = 0 = N ij
αα̇ is now excluded as some of the equations are

inhomogeneous. Eq. 4) in (2.79) we have already solved in the previous section, only
now the integration constants may depend on Z and Z̄. The solution that corresponds
to F3 we discard again since, as mentioned, it leads to inconsistent constraints, and the
situation certainly does not improve when gauging the central charge. This leaves the
two possibilities

F1 = 0 , F2 = −
1

L + h(Z, Z̄)
, h real . (2.80)

In the following two chapters we shall explore the consequences of each in detail.





Chapter 3

The Linear Case

In this chapter we present the linear vector-tensor multiplet with gauged central charge.
Starting from the consistency conditions derived in the previous chapter, we determine
the constraints that underlie the model and work out the supersymmetry and central
charge transformations of the component fields. The Bianchi identities will be com-
puted and solved in terms of gauge potentials. Then we follow the procedure outlined
in sections 1.2 and 2.3.1 in order to derive an invariant action. After generalizing
the model to include couplings to additional nonabelian vector multiplets, we conclude
with a brief review of Henneaux-Knaepen models and their relation to the vector-tensor
multiplet.

3.1 Consistent Constraints

Having singled out two possible coefficient functions F in the previous chapter, we shall
now attempt to solve the consistency conditions (2.79) subject to the first solution
F1 = 0.
Eqs. 4) and 5) are satisfied identically, while from eqs. 1) and 19) we infer that A does
not depend on L. The same holds for E according to eq. 6). Now consider eq. 10),

∂A = 1
2
A2 . (3.1)

The general solution is given by A1 = 0 and

A2 =
2

h̄(Z̄) − Z
, (3.2)

where h̄ is an arbitrary function of Z̄. Next let us differentiate eq. 25) with respect to
L; using eq. 2) it follows that

0 = 1 + 1
2
ZA + 1

2
Z̄Ā + ZCF + Z̄C̄F̄ . (3.3)

With F = 0 we find

A +
2
Z

= −
Z̄
Z

Ā , (3.4)

which excludes first of all the solution A1 = 0. When inserted into eq. 9) we obtain

∂̄A = 1
2
AĀ , (3.5)

37
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which gives a condition on h̄,

∂̄h̄ =
h̄ − Z

Z̄ − h
, (3.6)

h(Z) being the complex conjugate of h̄(Z̄). Differentiating once more with respect to
Z̄ yields

∂̄2h̄ =
∂̄h̄

Z̄ − h
−

h̄ − Z

(Z̄ − h)2
= 0 ,

thus ∂̄h̄ is constant. Furthermore, the absolute value of the right-hand side of eq. (3.6)
equals one, hence

∂̄h̄ = e2iϕ ⇒ h̄ = e2iϕZ̄ + c , (3.7)

where ϕ ∈ R and c ∈ C are constant. Inserting this expression back into eq. (3.6),

e2iϕ =
e2iϕZ̄ + c − Z

Z̄ − e−2iϕZ − c̄
= e2iϕ Z̄ − e−2iϕZ + e−2iϕc

Z̄ − e−2iϕZ − c̄
,

we conclude

e−2iϕc = −c̄ ⇒ c = ir eiϕ , r ∈ R , (3.8)

which eventually leads to the solution

A =
2 e−iϕ

eiϕZ̄ − e−iϕZ + ir
. (3.9)

Eq. (3.4) requires r = 0, while the parameter ϕ may be removed by a U(1) rotation

Z 7→ eiϕZ , Di
α 7→ e−iϕ/2Di

α . (3.10)

Having determined A, we continue with eq. 7),

∂E = 1
2
AE ⇒ E = 1

2
AZ̄∂̄ḡ , (3.11)

where ḡ(Z̄) is independent of Z, and the peculiar form chosen for E will soon proove
beneficial. Eq. 2) fixes the L-dependence of C,

∂LC = 1
2
A ⇒ C = 1

2
LA + v(Z, Z̄) , (3.12)

while eq. 25) implies

0 = Zv + Z̄v̄ . (3.13)

It remains to solve eq. 3). When C and E are inserted, the L-dependent terms cancel
and we arrive at

0 = ∂v − 1
2
A(v + Z̄∂g) , (3.14)
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which is readily solved by making an Ansatz v = 1
2
AZ̄ u(Z, Z̄) leading to

0 = ∂u − ∂g ⇒ u = g(Z) + k̄(Z̄)

for some function k̄. Eq. (3.13) then requires k̄ = ḡ, so the general solution is given by

v =
Z̄

Z̄ − Z

(

g(Z) + ḡ(Z̄)
)

. (3.15)

This finishes the solution to the consistency conditions (C.1–4) subject to the restriction
(2.71) and F = 0. The complete set of coefficient functions reads

A = B =
2

Z̄ − Z
, C =

1
Z̄ − Z

(

L + Z̄g + Z̄ḡ
)

D =
Z̄∂g

Z̄ − Z
, E =

Z̄∂̄ḡ

Z̄ − Z
, a = b = c = F = G = 0 ,

(3.16)

with some arbitrary function g(Z). When inserted into the Ansatz (2.41), the g-
dependent terms can be written as

Z̄
Z̄ − Z

[

D
i(g D

jZ) + D̄
i(ḡ D̄

jZ̄)
]

, (3.17)

and if there is a function f(Z) with ∂f = g, they simplify to

Z̄
Z̄ − Z

[

D
i
D

jf(Z) + D̄
i
D̄

j f̄(Z̄)
]

. (3.18)

We shall first consider the simplest case g = 0, which corresponds to the constraints

D
(i
αD̄

j)
α̇ L = 0

D
(i
D

j)L =
2

Z̄ − Z

(

D
(iZ D

j)L + D̄
(iZ̄ D̄

j)L + 1
2
L D

i
D

jZ
)

.
(3.19)

In the limit Z = i they reduce to the free constraints (2.3). We return to g 6= 0 in
section 3.4.

3.2 Transformations and Bianchi Identities

By construction, the constraints (3.19) satisfy the necessary consistency conditions
(C.1–4). The task now is to solve, if possible, the Bianchi identities (BI.1) and (BI.2).
Then we would have shown the constraints to be consistent and could proceed to
determine the invariant action. To do this, we need to compute DαjM

ij, DiDjM
ij and

D̄α̇iD̄αjM
ij, which suffices as in the case at hand M ij is imaginary and N ij

αα̇ = 0, cf.
section 2.2.
In terms of component fields the deformation M ij reads

M ij = −M̄ ij =
1
I

(

λ(iψj) − λ̄(iψ̄j) + iLY ij
)

. (3.20)
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Applying a supersymmetry generator Dαj and summing over j, we obtain

DαjM
ij =

3
2I

(

Fµνσ
µνψi + i

2
Gµνσ

µνλi + i
2
Wµσ

µλ̄i − i∂µZ̄σµψ̄i + Y ijψj

− Lσµ∂µλ̄
i − 1

2
DµLσµλ̄i − i

2
Z̄Uλi + i

2
λjM

ij
)

α
,

(3.21)

where eqs. (2.26) and (2.27) have been employed. This expression enters the central
charge transformation of ψi as well as the supersymmetry transformations of W µ and
Gµν , which may be cast into the form

Di
αW µ =

(

iZ̄σµδzψ̄
i + 1

2
Uσµλ̄i −Dµψi

)

α

Di
αGµν =

(

2Iσµνδzψ
i + Uσµνλ

i + iεµνρσ σρDσψ̄i
)

α
.

(3.22)

Next we calculate

DiDjM
ij = −

3
I

[

Gµν(F̃µν + iFµν) + 2W µ∂µZ̄ + 2iDµ(L∂µZ̄)

+ iλiσµDµψ̄i + iDµψ
iσµλ̄i + 2iψiσµ∂µλ̄i

+ 2iIλiδzψ
i − i

3
(λiDj + λ̄iD̄j + 3Yij)M

ij
]

,

(3.23)

and insert the result into eq. (BI.1),

IDµW
µ =

i
12

I DiDjM
ij − 1

2
I λiδzψ

i + c.c. = −W µ∂µI + DµΛµ + 1
2
FµνG

µν ,

where we introduced the abbreviation

Λµ ≡ L∂µR + 1
2
(ψiσµλ̄i + λiσµψ̄i) . (3.24)

The first Bianchi identity thus reads

Dµ

(

IW µ − Λµ
)

= 1
2
FµνG

µν . (3.25)

To determine the second one, we first apply D̄α̇i to eq. (3.21),

D̄α̇iDαjM
ij =

3
I

σµ
αα̇

[

Gµν∂
νR + G̃µν∂

νI + DνΣµν + F̃µνW
ν

− 1
2
U∂µ|Z|2 − 1

2
δz(Zψiσµλ̄i + Z̄λiσµψ̄i)

]

.
(3.26)

Σµν has been defined in eq. (2.38). When put into eq. (BI.2), it follows that

I DνG̃
µν + RDνG

µν = 1
6
I Diσ

µD̄jM
ij − 1

2
U∂µ|Z|2 − 1

2
δz(Zψiσµλ̄i + Z̄λiσµψ̄i)

= −G̃µν∂νI − Gµν∂νR −DνΣ
µν − F̃ µνWν ,

and combining the derivatives, we eventually obtain

Dν

(

IG̃µν + RGµν + Σµν
)

= −1
2
εµνρσFνρWσ . (3.27)
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We observe that the Bianchi identities of W µ and Gµν are not independent of each
other but constitute a coupled system of differential equations. We cannot solve them
yet as the covariant derivatives contain the central charge generator δz, whose action
on W µ and Gµν needs to be determined first. Since N ij

αα̇ = 0, eq. (2.36) immediately
gives

δz

(

IG̃µν + RGµν + Σµν
)

= −εµνρσDρWσ , (3.28)

whereas the determination of δzW
µ is somewhat involved. According to eq. (2.39),

Iδz

[

|Z|2W µ + i
2
L(Z∂µZ̄ − Z̄∂µZ) + i

2
(Zψiσµλ̄i − Z̄λiσµψ̄i)

]

=

= I2 DνG
µν − IRDνG̃

µν + 1
6
IRDiσ

µD̄jM
ij

= I2 DνG
µν − GµνR∂νR − R

[

Dν(IG̃µν + Σµν) + F̃ µνWν

]

+ 1
2
UR ∂µ|Z|2

+ 1
2
R δz(Zψiσµλ̄i + Z̄λiσµψ̄i) .

The expression in square brackets can be rewritten by means of the Bianchi identity
(3.27),

Iδz

[

|Z|2W µ + i
2
L(Z∂µZ̄ − Z̄∂µZ) + i

2
(Zψiσµλ̄i − Z̄λiσµψ̄i)

]

=

= |Z|2 DνG
µν + 1

2
UR ∂µ|Z|2 + 1

2
R δz(Zψiσµλ̄i + Z̄λiσµψ̄i) ,

from which follows

δz

(

IW µ − Λµ
)

= DνG
µν . (3.29)

One can now easily check that the Bianchi identities, together with the central charge
transformations just obtained, satisfy the integrability condition

D[µDν] = 1
2
Fµνδz ,

which is the covariant analogue of d2 = 0.
We first solve the constraint on W µ. Let us split the covariant derivative in eq. (3.25)
into the partial derivative and the central charge transformation, which we then replace
using eq. (3.29),

∂µ

(

IW µ − Λµ
)

= 1
2
FµνG

µν − Aµδz

(

IW µ − Λµ
)

=
(

1
2
Fµν − AµDν

)

Gµν

= ∂µ(GµνAν) .

In the last step we employed the identity A[µDν] = A[µ∂ν]. We conclude that the terms
in parentheses equal the dual field strength of an antisymmetric tensor gauge field Bµν ,

IW µ = 1
2
εµνρσ(∂νBρσ − AνG̃ρσ) + Λµ . (3.30)

Note how the first two terms on the right-hand side resemble a covariant derivative,
and indeed we shall find that Bµν transforms into −G̃µν under δz. In the limit Z = i
we recover the relation W µ = Hµ just as in the free case.
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To solve the Bianchi identity (3.27) we proceed along the same lines,

∂ν

(

IG̃µν + RGµν + Σµν
)

= −εµνρσ(1
2
FνρWσ − AνDρWσ)

= −εµνρσ∂ν(AρWσ) .

Hence there is a vector field Vµ such that

IG̃µν + RGµν = εµνρσ(∂ρVσ − AρWσ) − Σµν . (3.31)

Again the terms in parentheses will turn out to be the covariant derivative of the
potential Vµ. For Z = i the equation reduces to Gµν = Vµν .
We are not done yet, as the equations for W µ and Gµν are still coupled. To simplify
the following calculations let us introduce the abbreviations

Hµ ≡ 1
2
εµνρσ∂νBρσ + Λµ (3.32)

Vµν ≡
I

|Z|2
(

Vµν + Σ̃µν

)

+
R
|Z|2

(

Ṽµν − Σµν

)

. (3.33)

Then we first solve eq. (3.31) for Gµν ,

Gµν = Vµν −
2I
|Z|2

A[µWν] −
R
|Z|2

εµνρσA
ρW σ , (3.34)

and insert this into eq. (3.30),

IW µ = Hµ + VµνAν −
2I
|Z|2

A[µW ν]Aν . (3.35)

Collecting the terms with W µ, this can be written as

IKµνWν = |Z|2(Hµ + VµνAν) , (3.36)

where the field dependent matrix Kµν is given by

Kµν = ηµν
E + AµAν , (3.37)

E being the expression (1.55) that we have already encountered in the central charge
transformation of the spinors ψi. To solve for W µ, we need to invert Kµν . It can be
easily checked that

(K−1)µν =
1
E

(

ηµν − |Z|−2AµAν

)

. (3.38)

Due to the appearance of E in the denominator, this expression is nonpolynomial in
the gauge field Aµ.
Having determined W µ, we obtain Gµν from eq. (3.34). The final solution to the Bianchi
identities then reads

W µ =
|Z|2

IE

(

Hµ + VµνAν − |Z|−2AµAνH
ν
)

(3.39)
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Gµν = Vµν −
2
E

A[µ

(

Hν] + Vν]ρA
ρ
)

−
R
IE

εµνρσA
ρ
(

Hσ + VσλAλ

)

. (3.40)

The fundamental fields of course are the gauge potentials Vµ and Bµν rather than
W µ and Gµν , so we now have to determine their supersymmetry and central charge
transformations as well. These can be obtained most easily from eqs. (3.30) and (3.31).
Applying ∆z to the former we have

∆z(C) (IW µ − Λµ) = 1
2
εµνρσ∂ν

(

∆z(C) Bρσ

)

− Gµν∂νC + CAν δzG
µν .

On the other hand it follows from eq. (3.29) that

∆z(C) (IW µ − Λµ) = CDνG
µν = C∂νG

µν + CAν δzG
µν ,

and comparing the two expressions we find

εµνρσ∂ν

(

∆z(C) Bρσ + CG̃ρσ

)

= 0 .

It comes as no surprise that the action of ∆z on Bµν is determined only modulo a gauge
transformation ∆B. We are free to choose a homogeneous transformation law, however,
which is then generated by

δzBµν = −1
2
εµνρσ Gρσ , (3.41)

and the terms in parantheses in eq. (3.30) constitute a proper covariant derivative of
Bµν . The central charge transformation of Vµ is derived in like manner. From the eqs.
(3.31) and (3.28) we obtain

εµνρσ∂ρ

(

∆z(C) Vσ + CWσ

)

= 0 ,

so that we set

δzVµ = −Wµ . (3.42)

Thus, formally the action of the central charge generator δz on Vµ and Bµν has not
changed upon gauging the symmetry, cf. equation (2.9). The difference is that now W µ

and Gµν are not merely the field strengths but composite expressions that are moreover
nonpolynomial in the gauge field Aµ. Therefore we expect that also the action will be
nonpolynomial. Since E contains no derivatives this should not spoil locality.
The supersymmetry transformations of the gauge potentials can be determined in the
same way as demonstrated for the central charge transformations. As this is a lengthy
calculation we just give the result, again choosing the simplest form possible by ne-
glecting any contribution that is a gauge transformation,

Di
αVµ = −

(

iZ̄σµψ̄
i + 1

2
Lσµλ̄

i − Aµψ
i
)

α
(3.43)

Di
αBµν = −2i

(

Iσµνψ
i + 1

2
Lσµνλ

i + A[µσν]ψ̄
i
)

α
. (3.44)
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There is a short cut, however, that immediately yields the supersymmetry transforma-
tions modulo possible δz-invariant terms: Using eqs. (3.22), we calculate

δz D
i
αVµ = −Di

αWµ + [ δz , Di
α ] Vµ

= −δz

(

iZ̄σµψ̄
i + 1

2
Lσµλ̄

i − Aµψ
i
)

α
+ ∂µψ

i
α + [ δz , Di

α ] Vµ ,

and similarly for Bµν ,

δz D
i
αBµν = −Di

αG̃µν + [ δz , Di
α ] Bµν

= −2i δz

(

Iσµνψ
i + 1

2
Lσµνλ

i + A[µσν]ψ̄
i
)

α
− 2i ∂[µ(σν]ψ̄

i)α + [ δz , Di
α ] Bµν .

Comparing the δz-exact terms on the left and on the right, one obtains the previously
found relations. In addition, the equations show that central charge transformations
commute with supersymmetry transformations only modulo gauge transformations, a
result we have stated already in the presentation of the free multiplet, section 2.1.
Indeed, a more careful analysis reveals that eqs. (2.12) and (2.13) hold even in the
present case, but with an x-dependent parameter C.
At last, we determine the commutator of two supersymmetry transformations. To this
end, and to check the compatibility of the results just stated, we need to compute the
anticommutators of two supersymmetry generators on the gauge potentials. This is
again a tedious exercise of which we give no details. On Vµ one finds

{Di
α , Dj

β}Vµ = εαβ εij
(

Z̄δzVµ − i∂µ(Z̄L)
)

{Di
α , D̄α̇j}Vµ = −iδi

j

(

Dαα̇Vµ − ∂µVαα̇

)

,
(3.45)

while on Bµν the relations read

{Di
α , Dj

β}Bµν = εαβ εij
(

Z̄δzBµν + 2i ∂[µ(Aν]L + iVν])
)

{Di
α , D̄α̇j}Bµν = −iδi

j

(

Dαα̇Bµν + 2 ∂[µ(Bν]ρ − ην]ρIL)σρ
αα̇

)

.
(3.46)

On the other components of the vector-tensor multiplet the algebra (1.33) holds exactly
by construction. We conclude that the commutator of two global supersymmetry trans-
formations yields in addition to a translation and a local central charge transformation
also gauge transformations of the potentials Vµ and Bµν ,

[ ∆(ξ) , ∆(ζ) ] = ǫµ∂µ + ∆z(C) + ∆V (Θ) + ∆B(Ω) ,

where the parameters are given by

ǫµ = i(ζiσ
µξ̄i − ξiσ

µζ̄ i)

C = ǫµAµ + ξ̄iζ̄iZ − ξiζ
iZ̄ (3.47)

Θ = ǫµVµ − iL (ξiζ
iZ̄ + ξ̄iζ̄iZ)

Ωµ = ǫµIL − Bµνǫ
ν − Vµ(ξiζ

i − ξ̄iζ̄i) + iAµL (ξiζ
i + ξ̄iζ̄i) .
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3.3 The Lagrangian

Now that we have found a consistent supersymmetry multiplet, the task is to construct
an invariant action. With the general method outlined in section 1.2 and the Ansatz
(2.58) this is pretty straightforward though tedious. At first we have to solve the
differential equations (2.59) subject to the constraints (3.19) on L in order to determine
the linear multiplet. With the coefficient functions as in eq. (3.16) (for g = 0), the
equations (2.59) read

1) 0 = ∂Lγ − 1
2
β −

αL
Z̄ − Z

2) 0 = ∂γ − δ −
βL/2

Z̄ − Z

3) 0 = ∂Lᾱ 4) 0 = ∂ᾱ

5) 0 = ∂α − 1
2
∂Lβ +

α
Z̄ − Z

6) 0 = ∂Lβ̄ −
2α

Z̄ − Z

7) 0 = ∂β̄ −
β

Z̄ − Z
8) 0 = ∂β − 2∂Lδ −

β

Z̄ − Z

9) 0 = ∂Lδ̄ 10) 0 = ∂δ̄ .

From eqs. 3), 4) and 9), 10) it follows that α = α(Z) and δ = δ(Z), respectively. Since
α does not depend on L, we can integrate eq. 6),

β =
2ᾱL

Z − Z̄
+ β̂(Z, Z̄) .

Next we insert this into eq. 8); the L-dependent terms cancel and the Z-dependence of
β̂ is fixed,

∂β̂ = −
β̂

Z − Z̄
⇒ β̂ =

h̄(Z̄)

Z − Z̄
.

Now we can determine α from eq. 5),

∂α =
α + ᾱ
Z − Z̄

⇒ α = i(κZ + ̺) , κ, ̺ ∈ R . (3.48)

We use this in eq. 7) to derive an analogous condition on h̄(Z̄),

∂̄h̄ = −
h + h̄
Z − Z̄

⇒ h̄ = −2i (νZ̄ + µ) , ν, µ ∈ R .

With α and β known, eq. 1) may be integrated. The reality of γ requires ν = 0, and
we find

γ = −
i
2

2̺ + κ(Z + Z̄)

Z − Z̄
L2 −

iµ

Z − Z̄
L + σ(Z, Z̄) , (3.49)

with σ real. It remains to solve eq. 2). When β and γ are inserted, the L-dependent
terms drop out and we are left with δ = ∂σ. Eq. 10) then implies

σ(Z, Z̄) = f(Z) + f̄(Z̄) , (3.50)
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where f is an arbitrary function of Z. We have thus found the most general linear
multiplet one can build from the linear vector-tensor multiplet with gauged central
charge.
When the coefficients are inserted into the Ansatz (2.58), it comes as no surprise that
several terms group together to form the expression iD(iDj)L, as this is evidently a
linear superfield by itself (cf. the remark in section 2.3.1). The complete pre-Lagrangian
finally reads

Lij = Lij
linVT + Lij

cc , (3.51)

where

Lij
linVT = i̺

(

D
iL D

jL − D̄
iL D̄

jL + L D
(i
D

j)L
)

+ iµD
(i
D

j)L

+ iκ
[

2L
Z̄ − Z

(

Z̄ D
(iZ D

j)L + Z D̄
(iZ̄ D̄

j)L + 1
4
L (Z + Z̄) D

i
D

jZ
)

+ Z D
iL D

jL − Z̄ D̄
iLD̄

jL
]

, ̺, µ, κ ∈ R ,

(3.52)

and Lij
cc is the super Yang-Mills pre-Lagrangian as in eq. (1.44) with ∂F(Z) = f(Z).

Without going into detail, the terms proportional to κ, which in the limit Z = i
reduce to the real part of DiLDjL, can be shown to yield a Lagrangian that is a total
derivative. Therefore we confine ourselves to κ = 0 in the following. The constant µ
on the other hand can be removed by a shift of L, hence we also take µ = 0.
This leaves the terms proportional to ̺, where without loss of generality we can take
̺ = 1. Actually, they constitute a linear superfield irrespective of the precise form of
M ij as long as N ij

αα̇ = 0 and M̄ ij = −M ij, for we have

D
(i
α

(

D
jL D

k)L − D̄
jL D̄

k)L + L D
j
D

k)L
)

=

= −2 D
β(iL D

j
αD

k)
β L + D

(i
αL D

j
D

k)L = 0 .

For this reason we shall first compute the Lagrangian without specifying M ij, the result
of which then may also be used in the following section, where we extend the model by
additional vector multiplets such that the properties of the deformations just mentioned
are preserved.
Let us consider therefore

Lij = i
(

ψiψj − ψ̄iψ̄j − LM ij
)

, M̄ ij = −M ij , N ij
αα̇ = 0 , (3.53)

and work out the Lagrangian according to eq. (1.42), with the supersymmetry trans-
formations given in section 2.2. The first step is to apply a supersymmetry generator
Dαj to Lij,

DαjL
ij =

3
2

[

Z̄Uψi − Gµνσ
µνψi − (Wµ + iDµL)σµψ̄i − M ijψj −

2
3
iLDjM

ij
]

α
. (3.54)

Next we apply a second generator Dα
i , sum over α and i, multiply with Z/6 and take

the real part of the result. We find after some algebra

1
12

Z DiDjL
ij + c.c. =

1
2

I
[

DµLDµL − W µWµ − 2i ψiσµ
↔

∂µψ̄i + |Z|2U2
]
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−
1
4

Gµν(IGµν − RG̃µν) − RW µDµL + R ∂µ(ψiσµψ̄i)

− U(Z̄λiψ
i − Zλ̄iψ̄i) + iAµU(ψiσµλ̄i − λiσµψ̄i) (3.55)

+ iAµ(ψiσ
µσ̄νDνψ

i + ψ̄iσ̄µσνDνψ̄i) +
1
4

IM ijMij

−
i

12
L

(

Z DiDj + Z̄ D̄iD̄j

)

M ij −
2i
3

I(ψiDj + ψ̄iD̄j)M
ij

+
i
3

Aµ(ψiσ
µD̄j + ψ̄iσ̄

µDj)M
ij .

We already recognize the properly normalized kinetic terms for L and ψi, keeping in
mind that 〈I〉 = 1. The naked gauge field Aµ appears due to the splitting of the
covariant derivative of ψi as in the calculation leading to eq. (2.33). It remains to
compute the mixed derivative of Lij that couples to Aµ in eq. (1.42). It reads

i
6

AµDiσ
µD̄jL

ij = RUAµW
µ − IUAµD

µL − GµνAµWν + G̃µνAµ∂νL

− iAµ(ψiD
µψi + ψ̄iDµψ̄i) −

i
3

Aµ(ψiσ
µD̄j + ψ̄iσ̄

µDj) M ij

+
1
6

LAµ Diσ
µD̄jM

ij ,

(3.56)

and we observe that the terms in the second line cancel the corresponding ones in
the previous equation. While in general M ij has to be specified before the action
of the supersymmetry generators can be computed, the last term in eq. (3.56) may
be simplified by virtue of the Bianchi identity (BI.2). Since by assumption M ij is
imaginary and N ij

αα̇ = 0, one has

1
6

LAµ Diσ
µD̄jM

ij =
1
I

AµL
[

I ∂νG̃
µν + R ∂νG

µν + 1
2
U∂µ|Z|2

+ 1
2
δz(Zψiσµλ̄i + Z̄λiσµψ̄i)

]

.
(3.57)

The effect of the terms (3.56) is twofold; first they introduce the anticipated coupling
of the current (2.16) to the gauge field Aµ (contained in the term GµνAµWν , see below),
and second they reduce the covariant derivatives to partial ones, similar to the case of
the hypermultiplet (cf. L0 in eq. (1.59)). One finds for instance

DµLDµL − 2UAµD
µL = ∂µL∂µL − AµAµU

2 .

The resulting Lagrangian eventually reads

L =
1
2

I
(

∂µL∂µL − W µWµ − 2i ψiσµ
↔

∂µψ̄i + EU2
)

+
R
I

LAµ∂νG
µν + LM

−
1
4

Gµν
(

IGµν − RG̃µν + 4AµWν

)

+ W µΛµ +
1
2

G̃µνΣµν − W µ∂µ(LR)

+
1
2I

LUAµ∂µ|Z|2 −
i
2

∂µL (ψiσµλ̄i − λiσµψ̄i) +
i
2

Yij(ψ
iψj − ψ̄iψ̄j) (3.58)

−
1
2

U(Z̄λiψ
i − Zλ̄iψ̄i) +

i
2

AµU(ψiσµλ̄i − λiσµψ̄i) + R ∂µ(ψiσµψ̄i)
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+
i
2

Fµν(ψiσ
µνψi + ψ̄iσ̄µνψ̄i) +

1
2I

LAµ δz(Zψiσµλ̄i + Z̄λiσµψ̄i)

− ∂µ

[

LG̃µνAν + iAν(ψiσ
µνψi + ψ̄iσ̄µνψ̄i)

]

,

where the part

LM = −
i

12
LZ DiDjM

ij −
i
3

(Lλi + 2Iψi)DjM
ij +

1
8

IMijM
ij

−
1
4

(

λiψj − λ̄iψ̄j + iLYij

)

M ij + c.c.
(3.59)

has to be determined separately for each model, which however is easy as all the terms
have been computed already for the Bianchi identities.
Now let us consider M ij as in eq. (3.20). Using eqs. (3.21) and (3.23), we find

LM = −W µΛµ −
1
2

G̃µνΣµν − LR ∂µW
µ −

R
I

LAµ∂νG
µν −

1
2I

LUAµ∂µ|Z|2

+
1
2

U(Z̄λiψ
i − Zλ̄iψ̄i) −

i
2

AµU(ψiσµλ̄i − λiσµψ̄i) + 2ψiσµψ̄i ∂µR

−
1
2

L2
¤I − iL(ψiσµ∂µλ̄i − ∂µλ

iσµψ̄i) − iYij(ψ
iψj − ψ̄iψ̄j) (3.60)

− iFµν(ψiσ
µνψi + ψ̄iσ̄µνψ̄i) −

1
2I

LAµ δz(Zψiσµλ̄i + Z̄λiσµψ̄i)

+
1
4

IMijM
ij −

1
2

∂µ

[

L∂µI + iL(ψiσµλ̄i − λiσµψ̄i)
]

.

When put into eq. (3.58), several terms cancel or combine into total derivatives, and
we arrive at

LlinVT =
1
2

I
(

∂µL∂µL − W µWµ − 2i ψiσµ
↔

∂µψ̄i + EU2
)

−
1
2

L2
¤I

−
1
4

Gµν
(

IGµν − RG̃µν + 4AµWν

)

−
i
2

Yij (ψiψj − ψ̄iψ̄j)

−
i
2

Fµν (ψiσ
µνψi + ψ̄iσ̄µνψ̄i) −

i
2

L (ψiσµ
↔

∂µλ̄i + λiσµ
↔

∂µψ̄
i) (3.61)

+ ψiσµψ̄i ∂µR +
1
4

IM ijMij

− ∂µ

[

LRW µ + LG̃µνAν + iAν(ψiσ
µνψi + ψ̄iσ̄µνψ̄i)

+ 1
2
L2∂µI − ψiσµψ̄iR + iL (ψiσµλ̄i − λiσµψ̄i)

]

.

At last, we have to replace W µ and Gµν by the solutions to the Bianchi identities found
in the previous section. We first insert Gµν from eq. (3.34), which allows to combine
the terms containing W µ in a nice way,

−
1
4

Gµν
(

IGµν − RG̃µν + 4AµWν

)

−
1
2

I W µWµ =

= −
1
4
Vµν

(

IVµν − RṼµν

)

−
I

2|Z|2
W µKµνW

ν ,
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with Kµν as in eq. (3.37). Next we replace W µ using eq. (3.36). As each W µ contributes
an inverse of Kµν , the result

−
I

2|Z|2
W µKµνW

ν = −
|Z|2

2I

(

Hµ + VµρAρ

)

(K−1)µν

(

Hν + VνσAσ

)

(3.62)

also involves the inverse matrix, giving rise to nonpolynomial but local couplings to the
gauge field Aµ. When K−1 is inserted, we obtain

−
1
4

Gµν
(

IGµν − RG̃µν + 4AµWν

)

−
1
2

I W µWµ =

= −
1
4
Vµν(IVµν − RṼµν) −

|Z|2

2IE
(Hµ + VµνAν)

2 +
1

2IE
(AµH

µ)2 .
(3.63)

To conclude this section, let us concentrate on the gauge field part of the model by
freezing the scalars to constants (in particular Z = i and L = 0) and neglecting the
fermions. Dropping the total derivative, the complete Lagrangian (3.61) reduces to

L = −
1
4

V µνVµν −
1
2E

(Hµ + V µνAν)
2 +

1
2E

(AµH
µ)2 −

1
4g2

z

F µνFµν , (3.64)

where a kinetic term for Aµ originating from Lcc, eq. (1.48), has been added. Super-
symmetry has now been broken explicitly of course, but the gauge invariances remain
intact. After a rescaling Aµ → gzAµ, such that all fields have canonical dimension one1,
we can expand the Lagrangian in powers of the coupling constant gz, which gives up
to first order

L = −
1
4

V µνVµν −
1
2

HµHµ −
1
4

F µνFµν + gzAµV
µνHν + O(g2

z) , (3.65)

and we recognize the coupling of Aµ to the current Jµ
z from eq. (2.16).

The Lagrangian (3.64) had previously been found outside the framework of supersym-
metry in [24], and is actually but one example of a whole class of gauge theories known
as Henneaux-Knaepen models, which we review in the last section of this chapter.

3.4 Chern-Simons Couplings

Let us now consider the more general solution (3.16) to the consistency conditions
(C.1–4), containing an arbitrary holomorphic function g(Z). We note that in every
coefficient it is accompanied by a factor Z̄. This may be removed by a field redefinition

L = L̂ + f(Z) + f̄(Z̄)

with ∂f = g, for the transformation rules (2.54) give (dropping the hats)

C =
1

Z̄ − Z

(

L + h + h̄
)

, D =
∂h

Z̄ − Z
, E =

∂̄h̄
Z̄ − Z

, (3.66)

1Recall that the coupling constant gz has mass dimension −1.
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while the other coefficients are unchanged. Here h = Zg + f . The functions u and v in
eqs. 25) and 26) do not vanish anymore, but one has

L + ZC + Z̄C̄ = −(h + h̄) , ZD + Z̄Ē = −∂h ,

which however is compatible with condition (C.4). We now write the constraints as

D
(i
αD̄

j)
α̇ L = 0

D
(i
D

j)L =
2

Z̄ − Z

(

D
(iZ D

j)L + D̄
(iZ̄ D̄

j)L + 1
2
L D

i
D

jZ

− i Di
D

j
F + i D̄i

D̄
j
F̄

)

,

(3.67)

and it is easily verified that these satisfy the consistency conditions (C.1–4) for any

function F that is chiral, D̄α̇iF = 0, and invariant under central charge and gauge
transformations. In particular, F may be a gauge invariant combination of vector
superfields φI , with appropriately extended spinor and covariant derivatives, i.e.

Dµ = ∂µ + Aµδz + AI
µδI , etc. ,

where L and Z transform trivially under the δI . This provides a means of coupling
the vector-tensor multiplet to additional (even nonabelian) vector multiplets, as long
as the Bianchi identities admit such a coupling. We shall see that this is the case only
for a very specific function F(Z, φ).
To determine the Bianchi identities, we follow the steps in section 3.2. With the benefit
of hindsight we take F to depend only on the φI , which simplifies the calculations
considerably. The deformations then read

N ij
αα̇ = 0 , M ij = −M̄ ij = M ij

1 + M ij
2 , (3.68)

with M ij
1 as in eq. (3.20) and

M ij
2 =

1
I

[

χiIχjJ
FIJ − χ̄iI χ̄jJ

F̄IJ + 2DijI(FI − F̄I)
]

, (3.69)

where a subscript on F denotes a differentiation with respect to φ and similar for F̄,

FI1...In
≡

∂
∂φI1

. . .
∂

∂φIn

F , F̄I1...In
≡

∂
∂φ̄I1

. . .
∂

∂φ̄In

F̄ . (3.70)

The derivatives of F are not independent of each other, for gauge invariance implies

0 = δIF = δIφ
K

FK = −fIJ
KφJ

FK , (3.71)

and differentiating once more with respect to φ we obtain another identity,

0 = fIJ
K

FK + fIL
KφL

FJK . (3.72)
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We observe that, modulo the prefactor 1/I, the expression M ij
2 is precisely the linear

superfield from which one constructs the super Yang-Mills Lagrangian, cf. section 1.2.
Applying a supersymmetry generator to M ij yields

DαjM
ij =

3
I

[

DijIχJ
j FIJ + F I

µνσ
µνχiJ

FIJ − iDµ(F̄Iσ
µχ̄iI) + iFIσ

µDµχ̄
iI

− 1
2
χiI φ̄JfIJ

K
FK + 1

3
(χiIχjJ) χK

j FIJK + i
4
λjM

ij
2

]

α
+ . . . ,

(3.73)

where only contributions from M ij
2 have been written explicitly, while the dots denote

the terms already given in eq. (3.21) (where now M ij = M ij
1 ). Next we apply D̄α̇i.

Making frequent use of the above identities for the derivatives of F, we arrive at

D̄α̇iDαjM
ij = −

3
I

iσµ
αα̇D

ν
[

2(FI − F̄I)F
I
µν − 2i (FI + F̄I)F̃

I
µν + FIJ χiIσµνχ

J
i

− F̄IJ χ̄I
i σ̄µνχ̄

iJ
]

+ . . . .
(3.74)

Here the covariant derivative actually reduces to the partial derivative since the terms
in square brackets are gauge invariant, and a similar remark as above applies to the
dots. With the result from section 3.2, the second Bianchi identity (BI.2) takes the
form

Dν

(

IG̃µν + RGµν + Σ̂µν
)

= −F̃ µνWν , (3.75)

where Σ̂µν is given by

Σ̂µν = Σµν − i
[

2(FI − F̄I)F
I
µν − 2i (FI + F̄I)F̃

I
µν

+ FIJ χiIσµνχ
J
i − F̄IJ χ̄I

i σ̄µνχ̄
iJ

]

.
(3.76)

Since (Σ̂µν − Σµν) is δz-invariant, we can replace Σµν with the extended expression in
eq. (3.28) and thus in the solution (3.31). Hence, the second Bianchi identity does not
restrict the φ-dependence of the function F. It is the first Bianchi identity for W µ,
however, that imposes a constraint on F. It now reads

Dµ

(

IW µ − Λµ
)

=
1
4

FµνG
µν +

i
12

IDiDjM
ij
2 −

1
12

(2Yij + λ̄iD̄j)M
ij
2 + c.c. ,

where the last term originates from DiDjM
ij
1 . So let us apply a generator Dα

i to eq.
(3.73); the contribution from M ij

2 is

DiDjM
ij
2 =

12
I

[

FIJD
µφI Dµφ̄

J − 1
2
FIJ(Fµν − iF̃µν)

IFµνJ − iFIJ χiIσµDµχ̄
J
i

+ 1
2
FIJDI

ijD
ijJ + 1

2
FIJ χiIχK

i φ̄LfKL
J − 1

2
FIJ χ̄I

i
χ̄iKφLfKL

J

− 1
4
FIJ(φK φ̄JfKL

I)(φM φ̄NfMN
L) + ∂µ

(

(F̄I − FI)D
µφ̄I

)

(3.77)

+ 1
2
FIJKDijIχJ

i
χK

j + 1
2
FIJK F I

µν
χJ

i σµνχiK

+ 1
12

FIJKL χiIχjJ χK
i

χL
j

]

+
i
I

(Yij + λiDj)M
ij
2 .
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Clearly the imaginary part2 of the expression inside the square brackets can combine
into a total derivative only if FIJ is constant and real. For a compact gauge group this
fixes F modulo a normalization,

F(φ) =
e
2

δIJφIφJ , (3.78)

e being a coupling constant of mass dimension −1. Then the first Bianchi identity
reduces to

Dµ

(

IW µ − Λ̂µ
)

= 1
2
FµνG

µν , (3.79)

where

Λ̂µ = Λµ − e
[

2εµνρσ(AI
ν∂ρA

I
σ − 1

3
AI

νA
J
ρA

K
σ fJK

I)

+ i(φ − φ̄)IDµ(φ + φ̄)I − χiIσµχ̄I
i

] (3.80)

contains the nonabelian Chern-Simons form that lends its name to this section. It
originates from the term F I

µνF̃
µνI , which can be written as a total derivative using the

Jacobi identity and the antisymmetry of the structure constants fIJ
KδKL,

1
2
εµνρσF I

µνF
I
ρσ = 2εµνρσ

(

∂µA
I
ν ∂ρA

I
σ − fJK

IAJ
µA

K
ν ∂ρA

I
σ

+ 1
4
AJ

µA
K
ν AL

ρA
M
σ fJK

IfLM
I
)

= 2εµνρσ∂µ

(

AI
ν∂ρA

I
σ − 1

3
AI

νA
J
ρA

K
σ fJK

I
)

.

Again, one can replace Λµ with Λ̂µ in eq. (3.29), and we conclude that for the function
(3.78) the constraints (3.67) are consistent, since the Bianchi identities can be solved
exactly as in section 3.2. Note however that, although Λ̂µ is δI-invariant, a full gauge
transformation ∆g yields

∆g(C) Λ̂µ = 2e εµνρσ∂ν(C
I∂ρA

I
σ) . (3.81)

Hence, in order to render the solution (3.30) to the first Bianchi identity ∆g-invariant,
we have to cancel the contribution from Λ̂µ by assigning to Bµν the nontrivial trans-
formation law

∆g(C) Bµν = −4e CI∂[µA
I
ν] . (3.82)

Vµ on the other hand remains gauge invariant.
What happens when we choose eφ = Z, i.e. F = Z2/2e? This corresponds to the
function h = −2iZ/e in the coefficients (3.66), and by a field redefinition

L = L̂ +
i
e (Z − Z̄) (3.83)

we can achieve ĥ = 0. Thus the Bianchi identities have singled out a function F(Z)
that may be gauged away, which shows that, modulo field redefintions, the constraints
(3.19) uniquely describe the linear vector-tensor multiplet with gauged central charge.

2The real part is exactly the super Yang-Mills Lagrangian (1.45) for an arbitrary prepotential F.
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An invariant action can now easily be written down, as in the previous section we
have used only the two properties N ij

αα̇ = 0 and M̄ ij = −M ij in the derivation of the
Lagrangian (3.58), and these are also valid in the case at hand. Therefore, we just need
to determine LM according to eq. (3.59). As all the ingredients have been given above,
this is merely a matter of inserting and combining terms, and we proceed immediately
to the final Lagrangian, which reads (modulo a total derivative)

L = LlinVT

(

Λµ → Λ̂µ, Σµν → Σ̂µν

)

+ Lcc

− 2e
[

iF I
µνψiσ

µνχiI − ψiσµχ̄I
iDµφ̄

I + (φ − φ̄)IψiσµDµχ̄
I
i + iDijIψiχ

I
j

+ i
2
ψiχJ

i φ̄KfJK
IφI + c.c.

]

− e ∂µL (φ + φ̄)I∂µ(φ + φ̄)I (3.84)

+ (eL + 1/4g2)
[

2DµφI Dµφ̄
I −FµνIF I

µν − iχiIσµ
↔

Dµχ̄
I
i + DI

ijD
ijI

+
(

χiIχJ
i φ̄K − χ̄I

i
χ̄iJφK

)

fJK
I + 1

2

(

φJ φ̄KfJK
I
)2 ]

.

LlinVT has been given in eq. (3.61) and depends on Λµ and Σµν through the composite

fields W µ and Gµν . Upon replacing Λµ with Λ̂µ in the generalized field strength Hµ,
eq. (3.32), a coupling of the Chern-Simons form to the tensor gauge field Bµν emerges
to zeroth order in gz, cf. (3.63). For the pure gauge field part we find

L = −
1
4

V µνVµν −
1
2E

(Ĥµ + V µνAν)
2 +

1
2E

(AµĤ
µ)2 −

1
4g2

z

F µνFµν

−
1

4g2
FµνIF I

µν ,
(3.85)

where

Ĥµ =
1
2

εµνρσ
[

∂νBρσ − 4e
(

AI
ν∂ρA

I
σ − 1

3
AI

νA
J
ρA

K
σ fJK

I
) ]

. (3.86)

3.5 Henneaux-Knaepen Models

We conclude the chapter by showing how the special gauge couplings we have found
as a result of supersymmetry fit into a more general scheme devised by Henneaux and
Knaepen in [25]. When formulated in D spacetime dimensions, these models involve
interactions of (D−2)-form gauge fields with gauge potentials of lesser form degree and
include as a subset the so-called Freedman-Townsend models [26, 27], which describe
nonpolynomial self-couplings of (D − 2)-forms. In four dimensions the field content
consists of 2-form and ordinary 1-form gauge potentials. While it has been shown by
Brandt and the author in [28] that every four-dimensional Henneaux-Knaepen model
admits an N = 1 supersymmetric generalization, the only known example of such
a model possessing two supersymmetries is the (linear) vector-tensor multiplet with
gauged central charge.
Let us now collectively denote the antisymmetric tensors as BµνA and the vector fields
as Aa

µ, with field strengths

Hµ
A = 1

2
εµνρσ∂νBρσA , F a

µν = ∂µA
a
ν − ∂νA

a
µ . (3.87)
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In the case of the vector-tensor multiplet with gauged central charge we would have
two 1-forms A1

µ, A2
µ, one of which being identical to what we used to call Vµ, and just

one 2-form Bµν .
A Lagrangian that is invariant under abelian gauge transformations

∆z(C) Aa
µ = −∂µC

a , ∆B(Ω) BµνA = −2 ∂[µΩν]A (3.88)

is given simply in terms of the field strengths,

L = −
1
2

Hµ
AHA

µ −
1
4

F µν
a F a

µν . (3.89)

The key observation is that the action has in addition global symmetries generated by

δaA
b
µ = −HA

µ T b
A a , δaBµνA = −1

2
εµνρσF

ρσ
b T b

A a , (3.90)

where the T a
A b are, at this stage, arbitrary real constants. The corresponding Noether

currents read

Jµ
a = T b

A aF
µν
b HA

ν . (3.91)

Comparing with section 2.1, we observe that the δa generalize the rigid central charge
transformations of the free vector-tensor multiplet. When more than one antisymmetric
tensor is considered, there are also nontrivial second-order currents

JµνA = 1
2
fBC

AεµνρσHB
ρ HC

σ , (3.92)

which are conserved on-shell for any constants fAB
C = f[AB]

C , but do not correspond
to any global symmetry of L.
Henneaux and Knaepen have been able to simultaneously deform the free action (3.89)
and the gauge transformations (3.88) such that the symmetries generated by the δa are
realized locally. At first order in the deformation parameter g the gauge fields couple to
the respective currents, giving rise to so-called Freedman-Townsend vertices. At second
order in g a condition arises on the as yet arbitrary constants T a

A b and fAB
C , namely

the fAB
C have to satisfy a Jacobi identity, which identifies them as structure constants

of a Lie algebra, while the matrices TA are required to define a real representation of
the same,

f[AB
DfC]D

E = 0 , [ TA , TB ] = fAB
CTC . (3.93)

It is possible, and convenient, to present the resulting model in a first order formula-
tion, where the Lagrangian and the transformations are polynomial. To this end, we
introduce auxiliary vector fields WA

µ , which may be eliminated later on to obtain the
nonpolynomial form. The complete Lagrangian then reads

LHK = −
1
4

εµνρσWA
µνBρσA −

1
4

F
µνa

(

δabF
b
µν + cabF̃

b
µν

)

+
1
2

δABW µAWB
µ , (3.94)
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where cab ∈ R and

WA
µν = ∂µW

A
ν − ∂νW

A
µ + gfBC

AWB
µ WC

ν (3.95)

F
a
µν = ∇µA

a
ν −∇νA

a
µ , ∇µA

a
ν = ∂µA

a
ν + gWA

µ T a
A bA

b
ν . (3.96)

WA
µν resembles a nonabelian Yang-Mills field strength, in particular it satisfies the

Bianchi identity

εµνρσ∇νW
A
ρσ = εµνρσ(∂νW

A
µν + gWB

ν fBC
AWC

ρσ) = 0 , (3.97)

but due to the presence of the last term in LHK there is no gauge transformation
associated with WA

µ that leaves LHK invariant. The term proportional to the constants
cab, which may be chosen arbitrarily, slightly extends the original model of Henneaux
and Knaepen. As we shall see, it gives rise to Chern-Simons couplings, which however
neither include the nonabelian ones of the previous section, nor do they describe the
nonlinearities of the self-interacting vector-tensor multiplet we are going to construct
in the following chapter. This suggests that the Henneaux-Knaepen models presented
here admit a further generalization.
The conditions (3.93) are sufficient3 to render

∫

d4xLHK invariant under the following
two sets of gauge transformations: First one may vary just the BµνA,

∆B(Ω) BµνA = −2∇[µΩν]A , ∆B(Ω) Aa
µ = 0 , ∆B(Ω) WA

µ = 0 , (3.98)

where the action of the “covariant derivative” ∇µ on the parameters ΩµA is given by

∇µΩνA = ∂µΩνA − gWB
µ fBA

CΩνC . (3.99)

By means of the Bianchi identity (3.97) one easily verifies that LHK changes by a total
derivative only. The second set subsumes what we have previously encountered as local
central charge transformations (hence the denomination ∆z),

∆z(C) Aa
µ = −∇µC

a , ∆z(C) WA
µ = 0

∆z(C) BµνA = g (cabF
a
µν − δabF̃

a
µν) T b

A cC
c .

(3.100)

Here ∇µ acts on the Ca as it does on the Aa
µ, eq. (3.96). In view of the relation

∆z(C) F
a
µν = −[∇µ , ∇ν ] Ca = −gWA

µν T a
A bC

b , (3.101)

the variation of the BµνA evidently cancels the one of the Aa
µ, thus LHK is ∆z-invariant.

Since WA
µν ≈ 0 by virtue of the equations of motion for the BµνA, the transformations

commute on-shell, so the algebra of gauge transformations is in fact abelian to all orders
in the coupling constant.

3We emphasize that the Lie algebra need not be compact and that the metrics δab, δAB as well as
the constants cab need not be invariant tensors.
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Let us now eliminate the auxiliary fields in order to make contact with the vector-tensor
multiplet. We rearrange LHK such that the WA

µ effectively decouple from the dynamical
fields. Dropping a total derivative, this gives

LHK =
1
2

WA
µ Kµν

ABWB
ν − WA

µ H
µ
A −

1
4

δab F µνaF b
µν

= −
1
2

H
µ
A (K−1)AB

µν H
ν
B −

1
4

δab F µνaF b
µν

+
1
2

[

WA
µ − (K−1)AC

µρ H
ρ
C

]

Kµν
AB

[

WB
ν − (K−1)BD

νσ H
σ
D

]

,
(3.102)

with the abbreviations

H
µ
A = Hµ

A + g T a
A cA

c
ν(δabF

µνb + cabF̃
µνb) (3.103)

Kµν
AB = δABηµν − 1

2
g fAB

CεµνρσBρσC

− g2 T a
A cT

b
B d (δabη

µνAρcAd
ρ − δabA

µdAνc − cabε
µνρσAc

ρA
d
σ) ,

(3.104)

and (K−1)AC
µρ Kρν

CB = δν
µ δA

B. Hence, on-shell we can replace WA
µ with (K−1)AB

µν Hν
B in the

above transformations and omit the second line in eq. (3.102), leaving a Lagrangian
that is nonpolynomial in the fields and the coupling constant g. Since Kµν

AB and its
inverse do not involve derivatives, the action remains local, however. Note that the
H

µ
A include Chern-Simons terms F̃ µνbAc

ν , which in the Lagrangian couple to the field
strengths of the 2-forms with coefficients cabT

a
A c.

The pure gauge field part of the linear vector-tensor multiplet, given in eq. (3.64), is
now recovered by making the identification

A1
µ = Aµ , A2

µ = Vµ , Bµν1 = Bµν , (3.105)

together with the choice

T a
1 b =

(

0 0
1 0

)

, cab = 0 , (3.106)

which conforms to f11
1 = 0 for a single antisymmetric tensor. When substituted in eqs.

(3.103), (3.104), these coefficients yield the expressions

H
µ = Hµ + gF µν2A1

ν , Kµν = ηµν(1 − g2Aρ1A1
ρ) + g2Aµ1Aν1

K−1
µν =

ηµν − g2A1
µA

1
ν

1 − g2A1ρA1
ρ

,

which coincide exactly with their counterparts in the supersymmetric model after re-
placing the scalars by their background values.
At last we point out that what made the construction of the bosonic Henneaux-Knaepen
models possible in the first place was the introduction of auxiliary fields, resulting in
polynomial actions and transformations (a feature shared by the N = 1 supersymmetric
versions in [28]). As yet, we do not know how to do this in the N = 2 supersymmetric
case.



Chapter 4

The Nonlinear Case

In section 2.3.2 we have argued that there exist two inequivalent sets of constraints
describing the vector-tensor multiplet. So far, we have been dealing only with the
first one and its generalizations to admit couplings to vector multiplets. We shall now
show how the second set gives rise to a new feature, namely self-interactions of the
vector-tensor multiplet. As announced, this will be done from the beginning in the
presence of a gauged central charge, but in somewhat less detail than in the previous
chapter, for the steps from the constraints to the Bianchi identities and ultimately to
the Lagrangian are essentially the same. From the latter in particular we give only the
purely bosonic part, as we are mostly interested in the gauge field interactions.

4.1 Consistent Constraints

Let us resume the evaluation of the consistency conditions in section 2.3.3. We recall
the second solution to eq. 4) of the system of differential equations (2.79),

F = −
1

L + h(Z, Z̄)
, h real.

We now continue by solving eq. 5) for A,

A +
2
Z

=
2
F̄

∂F̄ = −
2∂h

L + h
. (4.1)

Then it can easily be checked that also eqs. 1) and 19) hold identically. When put into
eq. 9), we obtain a condition on h, namely

∂̄∂h = 0 . (4.2)

From eq. 10) follows another condition,

0 = ∂A − 1
2
A2 = −

2
L + h

(

∂2h +
2
Z

∂h
)

, (4.3)

which allows to determine h completely,

h =
̺

Z
+

¯̺

Z̄
+ µ , ̺ ∈ C , µ ∈ R . (4.4)
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We observe that the combination L + h is, modulo the constant µ, precisely of the
form (2.78), thus we can achieve ̺ = 0 by a field redefinition, thereby fixing the gauge
modulo rescalings of L by a constant parameter. Next we insert A and F into eq. 2),

(L + µ)∂LC + C = −
1
Z

(

L + µ
)

, (4.5)

the general solution to which is given by

C =
v(Z, Z̄)

L + µ
−

L + µ

2Z
. (4.6)

Eq. 25) then implies

µ(L + µ) = Zv + Z̄v̄ ⇒ µ = 0 . (4.7)

From eqs. 6) and 7) we obtain the dependence of E on L and Z, respectively,

L∂LE + E = 0 = Z∂E + E ⇒ E =
∂̄ḡ

ZL
, (4.8)

where ḡ(Z̄) is independent of Z. At last, we consider eq. 3), which requires

Z∂v + v = −∂g . (4.9)

By differentiating eq. (4.7) with respect to Z, we find

0 = Z∂v + v + Z̄∂v̄ = ∂(Z̄v̄ − g) ⇒ v̄ =
g

Z̄
+ ū(Z̄) , (4.10)

and finally from eq. (4.7) the relation u = −g/Z. The coefficient functions thus read

A = −
2
Z

, C = −
L
2Z

−
1

ZL

(

g − ḡ
)

, E =
∂̄ḡ

ZL
, D = −

∂g

ZL

F = −
1
L

, G =
Z̄
ZL

, a = b = c = B = 0 ,

(4.11)

where g(Z) is some arbitrary holomorphic function. Similar to the case of the linear
vector-tensor multiplet, the g-dependent terms combine to

−
1

ZL

[

D
i(g D

jZ) − D̄
i(ḡ D̄

jZ̄)
]

= −
1

ZL

[

D
i
D

jf(Z) − D̄
i
D̄

j f̄(Z̄)
]

, (4.12)

provided g can be integrated, ∂f = g. In the following we consider the case g = 0
only, for it can be shown [2] that the Bianchi identities again single out a function
g(Z) which may be removed by a superfield redefinition. We shall not generalize the
model to include Chern-Simons couplings to nonabelian vector multiplets (this can be
found in the reference just mentioned), but Chern-Simons-like terms for Vµ and Aµ

arise automatically, as we will see. The constraints we are now going to investigate
read

D
(i
αD̄

j)
α̇ L = 0 ,

D
(iDj)L = −

1
ZL

(

2L D
(iZ D

j)L + 1
2
L2

D
i
D

jZ + ZD
iL D

jL − Z̄D̄
iL D̄

jL
)

.
(4.13)
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4.2 Transformations and Bianchi Identities

To determine the Bianchi identities, we need to calculate the action of the supersym-
metry generators on the deformation

M ij =
1

ZL

(

2i Lλ(iψj) − L2Y ij + Zψiψj − Z̄ψ̄iψ̄j
)

. (4.14)

Note that contrary to the case of the linear vector-tensor multiplet, M ij is neither real
nor imaginary, which makes things a little more complicated. Applying Dαj, we obtain

DαjM
ij =

3
2ZL

[

2iLY ijψj − iL2σµ∂µλ̄
i + Z̄LUλi + Gµνσ

µν(iZψi − Lλi)

+ 2iLFµνσ
µνψi − Z̄(DµL − iWµ) σµψ̄i + M ij(iZψj − Lλj)

+ (ψiψj)λj + (λiψj)ψj

]

α
,

(4.15)

while the action of D̄α̇j now cannot be derived by complex conjugation of the above
expression but needs to be computed separately. One finds

D̄α̇jM
ij = −

3
2ZL

[

2Lψiσµ∂µZ + iLDµ(Lλiσµ) − LWµλ
iσµ + i|Z|2Uψ̄i

+ Z(DµL + iWµ) ψiσµ + iZ̄ Gµν ψ̄iσ̄µν − iZ̄ M̄ ijψ̄j

+ (ψ̄iψ̄j)λ̄j + (λ̄iψ̄j)ψ̄j

]

α̇
.

(4.16)

The central charge transformation of W µ and the Bianchi identity for Gµν involve the
real and imaginary part of ZDiσ

µD̄jM
ij, respectively. After a lengthy calculation, we

arrive at

1
6

Z Diσ
µD̄jM

ij = U(iZ̄∂µZ + λiσµλ̄i) − (G̃µν + iGµν)∂νZ − (iF̃ µν − F µν)Wν

−Dν(LF̃ µν + iLF µν + 2ψiσµνλi) + iZ̄ λiσµδzψ̄i

+
1

2L

[

(IGµν − RG̃µν)DνL + (IG̃µν + RGµν)Wν (4.17)

− |Z|2UW µ + 2iψiσµνψi ∂νZ − 2iZ ψiDµψi

− 2i λiσµνψi(Wν − iDνL) + 2
3
iZ ψiσ

µD̄jM
ij + c.c.

]

.

When inserted into eq. (BI.2), only a few terms survive,

I DνG̃
µν + RDνG

µν = −
1
2

UZ̄∂µZ −
1
2

Z̄ λiσµδzψ̄i −
i

12
Z Diσ

µD̄jM
ij + c.c.

= −G̃µν∂νI − Gµν∂νR −Dν(LF µν + iλiσ
µνψi − iψ̄iσ̄µν λ̄

i)

− F̃ µνWν ,

and the second Bianchi identity is found to read

DνG̃
µν = −1

2
εµνρσFνρWσ , (4.18)
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where we have introduced the abbreviation1

Gµν ≡ IGµν − RG̃µν − Σ̃µν . (4.19)

A comparison with eq. (3.27) shows that this is exactly the same constraint as for the
linear vector-tensor multiplet! This was to be expected, however, for according to eq.
(2.36) the action of the central charge generator δz on Gµν depends only on N ij

αα̇, which
we chose to be zero in both cases,

δzG̃
µν = −εµνρσDρWσ . (4.20)

Therefore, the second Bianchi identity in the case at hand could have deviated from
eq. (3.27) at most by δz-invariant terms under the covariant derivative. Due to this
correspondence, we can simply copy the solution from section 3.2,

Gµν = Vµν − 2A[µWν] , (4.21)

and it is obvious that also the central charge and supersymmetry transformations of
the gauge potential Vµ are the same,

δzVµ = −Wµ , Di
αVµ = −

(

iZ̄σµψ̄
i + 1

2
Lσµλ̄

i − Aµψ
i
)

α
, (4.22)

for the second relation follows from the first, which in turn is a consequence of eqs.
(4.20) and (4.21).
We observe that the expressions just derived are linear in the components of the vector-
tensor multiplet. Nonlinearities enter through the constraint on W µ, the central charge
transformation of which we obtain by multiplying eq. (2.39) with L and inserting the
real part of expression (4.17),

L δz

[

|Z|2W µ + i
2
L(Z∂µZ̄ − Z̄∂µZ) + i

2
(Zψiσµλ̄i − Z̄λiσµψ̄i)

]

=

= ILDνG
µν − RLDνG̃

µν +
L
12

[

Z Diσ
µD̄jM

ij + c.c.
]

= −|Z|2UW µ + G̃µνWν + Dν(LIGµν − LRG̃µν) + |Z|2δz(ψ
iσµψ̄i)

− LDνΣ̃
µν − i

2
L δz(Zψiσµλ̄i − Z̄λiσµψ̄i) − iU(Zψiσµλ̄i − Z̄λiσµψ̄i)

− i
2
LU(Z∂µZ̄ − Z̄∂µZ + 2iλiσµλ̄i) + (λiσ

µνψi + ψ̄iσ̄
µν λ̄i)DνL

+ iDν(Zψiσµνψi − Z̄ψ̄iσ̄µνψ̄i) .

Here we have expressed D̄jM
ij in terms of δzψ̄

i rather than using eq. (4.16),

i
3
Zψiσ

µD̄jM
ij = Zψiσ

µ(iλ̄iU − iσ̄νDνψ
i − Z̄δzψ̄

i) .

The above equation can now be written as

δzW
µ = Dν(LG

µν + 1
2
L2F̃ µν + Πµν) + G̃µνWν , (4.23)

1This we could have done already in section 2.2, where the combination occured for the first time.
However, it is only now that equations simplify considerably when formulated in terms of Gµν .
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where the real composite fields

Wµ ≡ |Z|2(LW µ − ψiσµψ̄i) + i
2
L2(Z∂µZ̄ − Z̄∂µZ + iλiσµλ̄i)

+ iL (Zψiσµλ̄i − Z̄λiσµψ̄i)
(4.24)

Πµν ≡ i(Zψiσµνψi − Z̄ψ̄iσ̄µνψ̄i) (4.25)

are both bilinear in the components of the vector-tensor multiplet. In view of eq. (2.56)
one might search for a superfield redefintion which simplifies Wµ. In the limit Z = i
we would have

LW µ − ψiσµψ̄i = LL′ Ŵ µ − (L′2 + 1
2
LL′′) ψ̂iσµ ˆ̄ψi ,

so the spinors could be removed indeed (with L ∼ L̂1/3). However, this would merely
shift complications from one place to another, as both Wµ and W µ occur in the Bianchi
identities and their solutions. Hence, we stick to our original choice (4.13) for the
constraints.
It is quite an effort to derive the first Bianchi identity from eq. (BI.1). Applying D̄α̇

i to
eq. (4.16) gives

i
6

Z D̄iD̄jM
ij = iL¤Z − 2(W µ − iDµL) ∂µZ − Zλiδzψ

i + 2i ∂µλ
iσµψ̄i

−
1
L

[

i
2
Z(Wµ − iDµL)2 + i

4
Z̄Gµν(Gµν + iG̃µν) + i

2
Z|Z|2U2

+ λiσµψ̄i (Wµ − iDµL) + iFµν ψ̄iσ̄µνψ̄i − Z Dµ(ψiσaψ̄i) (4.26)

− 2 ψiσµψ̄i ∂µZ + ZUψiλi − iY ijψ̄iψ̄j −
i
4
Z̄M̄ijM̄

ij

+ 1
3
Z (ψiDjM̄

ij − ψ̄iD̄jM
ij)

]

.

This we insert into eq. (BI.1) and multiply the equation with |Z|2L, upon which the
covariant divergence of Wµ emerges,

DµW
µ = −1

4
(IGµν − RG̃µν)(IG̃µν + RGµν) − 1

2
Gµν(Z λiσ

µνψi + Z̄ ψ̄iσ̄
µν λ̄i)

+ 1
2
FµνΠ

µν − i
2

[

1
4
Z(ZMij − 4i λiψj)M

ij + (ZYij − λiλj)ψ
iψj

− λiψj λiψj − c.c.
]

.

By virtue of eqs. (A.35) and (A.25) the four-fermion terms that remain when M ij is
inserted can be written as the product of an antisymmetric tensor with its dual,

1
4
Z(ZMij − 4i λiψj)M

ij + (ZYij − λiλj)ψ
iψj − λiψj λiψj − c.c. =

= −1
2
(λiλj ψiψj + λiψj λjψi) − c.c.

= − i
4
εµνρσ (λiσµνψ

i − ψ̄iσ̄µν λ̄
i) (λjσρσψ

j − ψ̄jσ̄ρσλ̄
j)

= i
2
(Σµν − LFµν) (Σ̃µν − LF̃ µν) ,

which together with the relation

−1
2
Gµν(Z λiσ

µνψi + Z̄ ψ̄iσ̄
µν λ̄i) = −1

2
(IGµν − RG̃µν) (Σµν − LF µν)
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results in

DµW
µ = −1

4
GµνG̃

µν + 1
2
Fµν(LG

µν + 1
2
L2F̃ µν + Πµν) . (4.27)

Let us now split the covariant derivative and express δzW
µ by means of eq. (4.23),

∂µW
µ = DµW

µ − AµδzW
µ

= (1
2
Fµν − Aµ∂ν) (LGµν + 1

2
L2F̃ µν + Πµν) − 1

4
(Gµν + 4AµWν)G̃

µν

= ∂µ(LGµνAν + 1
2
L2F̃ µνAν + ΠµνAν) −

1
2
εµνρσ(∂µVν + AµWν) (∂ρVσ − AρWσ)

= ∂µ(LGµνAν + 1
2
L2F̃ µνAν + ΠµνAν −

1
2
εµνρσVν∂ρVσ) .

Here we have inserted the solution for Gµν in the third step. The first Bianchi identity
may thus be solved in terms of an antisymmetric tensor gauge field Bµν ,

Wµ = 1
2
εµνρσ(∂νBρσ − Vν∂ρVσ) + (LGµν + 1

2
L2F̃ µν + Πµν)Aν , (4.28)

which proves that the constraints (4.13), and their flat limit (2.68) in particular, are
indeed consistent. We observe that they give rise to abelian Chern-Simons terms both
for the gauge potential Vµ of the vector-tensor multiplet and for the vector field Aµ

associated with the central charge.
We are interested in W µ rather than in Wµ, of course, as the former determines the
central charge transformation of Vµ (and also the one of Bµν , see below), while the
latter had been introduced merely as an auxiliary means to simplify our calculations.
When Gµν is replaced in eq. (4.28), we find that the prefactors of W µ combine into the
matrix Kµν given in eq. (3.37) just as for the linear vector-tensor multiplet,

LKµνWν = Hµ − 1
2
Ṽ µνVν + 1

2
L2F̃ µνAν + (LV µν + Πµν)Aν , (4.29)

where Hµ is now defined by

Hµ ≡ 1
2
εµνρσ∂νBρσ + |Z|2ψiσµψ̄i − iL (Zψiσµλ̄i − Z̄λiσµψ̄i)

− i
2
L2(Z∂µZ̄ − Z̄∂µZ + iλiσµλ̄i) .

(4.30)

Inverting Kµν then yields

W µ =
1

LE

(

Hµ − 1
2
Ṽ µνVν + 1

2
L2F̃ µνAν + (LV µν + Πµν)Aν

− |Z|−2AµAνH
ν + 1

2
|Z|−2AµṼ νρAνVρ

)

,
(4.31)

with E as in eq. (1.55). It remains to determine the transformations of the gauge field
Bµν . The central charge transformation we obtain most easily by applying ∆z(C) to
eq. (4.28) and comparing the result with CδzW

µ as it follows from eq. (4.23). This
gives

0 = εµνρσ∂ν

[

∆z(C)Bρσ + C(LG̃ρσ − 1
2
L2Fρσ + Π̃ρσ − VρWσ)

]

− εµνρσC Wν(Gρσ − Vρσ) ,
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and as the terms proportional to C vanish by virtue of the antisymmetry of the ε-tensor,
we conclude that

δzBµν = V[µWν] − Lεµνρσ(∂ρV σ − AρW σ) + 1
2
L2Fµν − Π̃µν . (4.32)

As we had seen in section 3.4, the occurence of a Chern-Simons term in the generalized
field strength of Bµν requires the gauge transformation associated with the correspond-
ing vector field to act nontrivially on Bµν in order to render the field strength gauge
invariant. According to eq. (4.28), the change of Vµ by the gradient of some scalar field
Θ is to be accompanied by the transformation

∆V (Θ) Bµν = −1
2
ΘVµν . (4.33)

At last, the supersymmetry transformation of Bµν follows from the one of δzBµν ,

δzD
i
αBµν = Di

α

(

V[µWν] − LεµνρσD
ρV σ + 1

2
L2Fµν − Π̃µν

)

+ [ δz , Di
α ] Bµν

= δz

[

V[µσν] (iZ̄ψ̄i + 1
2
Lλ̄i) − V[µAν] ψ

i − Z̄Lσµν (2i Zψi − Lλi)

− iLA[µσν] (2i Z̄ψ̄i + 1
2
Lλ̄i)

]

α
+ ∂[µ

(

Vν]ψ
i + 2Z̄Lσν]ψ̄

i − i
2
L2σν]λ̄

i
)

α

+ 1
2
ψi

αVµν + [ δz , Di
α ] Bµν .

From this we infer that (modulo δz-invariant terms, which can be neglected however)

Di
αBµν =

[

V[µσν] (iZ̄ψ̄i + 1
2
Lλ̄i) − V[µAν] ψ

i − Z̄Lσµν (2i Zψi − Lλi)

− iLA[µσν] (2i Z̄ψ̄i + 1
2
Lλ̄i)

]

α
,

(4.34)

and it is easily verified that on all the component fields supersymmetry and central
charge transformations commute modulo gauge transformations,

[ ∆z(C) , ∆(ξ) ] = ∆V (Θ) + ∆B(Ω) ,

where ∆V now acts on both Vµ and Bµν . Here the parameters read explicitly

Θ = C(ξiψ
i + ξ̄iψ̄i) , Ωµ = C Re(Vµξiψ

i + 2Z̄L ξiσµψ̄
i − i

2
L2 ξiσµλ̄

i) . (4.35)

Finally, a straightforward though tedious computation of the supersymmetry commu-
tation relations on Bµν results in

{Di
α , Dj

β}Bµν = εαβ εij
(

Z̄δzBµν − ∂[µ(iVν]Z̄L + Aν]Z̄L2) − i
2
Z̄LVµν

)

{Di
α , D̄α̇j}Bµν = −iδi

j

(

Dαα̇Bµν + 2 ∂[µ(Bν]ρ −
1
2
ην]ρ|Z|2L2)σρ

αα̇ − 1
2
Vαα̇Vµν

)

,
(4.36)

which implies that the parameters ǫµ, C and Θ on the right-hand side of the equation

[ ∆(ξ) , ∆(ζ) ] = ǫµ∂µ + ∆z(C) + ∆V (Θ) + ∆B(Ω)

coincide with those for the linear vector-tensor multiplet, eqs. (3.47), while Ωµ reads

Ωµ = 1
2
ǫµ|Z|2L2 − Bµνǫ

ν − i
2
VµL(ξiζ

iZ̄ + ξ̄iζ̄iZ) − 1
2
AµL

2(ξiζ
iZ̄ − ξ̄iζ̄iZ) . (4.37)
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4.3 The Lagrangian

Now everything is set to determine the invariant action, which we again derive from
a linear superfield that is the solution to the differential equations (2.59). When the
coefficient functions (4.11) (with g = 0) are inserted, they read

1) 0 = ∂Lγ − 1
2
β +

L
2Z

α 2) 0 = ∂γ − δ +
L
4Z

β

3) 0 = ∂Lᾱ −
Z̄

ZL
α 4) 0 = ∂ᾱ −

Z̄
2ZL

β

5) 0 = ∂α − 1
2
∂Lβ +

β

2L
−

α
Z

6) 0 = ∂Lβ̄

7) 0 = ∂β̄ 8) 0 = ∂β − 2∂Lδ +
β

Z
9) 0 = ∂Lδ̄ 10) 0 = ∂δ̄ .

From eqs. 6), 7) and 9), 10) we infer that β = β(Z) and δ = δ(Z), respectively. β is
then fully determined through eq. 8),

∂β = −
β

Z
⇒ β = −

2κ
Z

, κ ∈ C . (4.38)

Eq. 5) now fixes the Z-dependence of α,

∂α =
1
Z

(

α +
κ
L

)

⇒ α = Z h(Z̄, L) −
κ
L

,

which we insert into eq. 4) to obtain a condition on the function h,

∂̄h = −
κ̄

LZ̄2
⇒ h = k(L) +

κ̄
LZ̄

.

Eq. 3) holds if

L∂Lk = k̄ ⇒ k = i
µ

L
− ̺L , µ, ̺ ∈ R .

Eq. 1) requires µ = 0 due to the reality of γ, so α finally reads

α =
κ̄Z − κZ̄

LZ̄
− ̺ZL . (4.39)

We can easily integrate eq. 1) and obtain

γ =
1
6

̺L3 −
κ̄Z + κZ̄

2|Z|2
L + σ(Z, Z̄) , σ real . (4.40)

Eventually, eq. 2) yields the same relation between δ and σ as in the case of the linear
vector-tensor multiplet,

δ = ∂σ ⇒ σ = f(Z) + f̄(Z̄) .
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This of course is not surprising as these functions determine the Lagrangian for the
central charge vector multiplet, which does not depend at all on the constraints on L.

Again similar to the case of the linear vector-tensor multiplet, the terms proportional
to κ combine into the real part of κD(iDj)L,

κ̄Z − κZ̄
L

(

1
Z̄

D
iL D

jL −
1
Z

D̄
iL D̄

jL
)

−
2κ
Z

D
(iZ D

j)L −
2κ̄
Z̄

D̄
(iZ̄ D̄

j)L

−
κ̄Z + κZ̄

2|Z|2
L D

i
D

jZ = κD
(i
D

j)L + κ̄ D̄
(i
D̄

j)L ,

which is a linear superfield by itself. It has been shown in [2], however, that it gives rise
only to a total derivative Lagrangian for any value of κ. Therefore we choose κ = 0.

Altogether the pre-Lagrangian for the nonlinear vector-tensor multiplet with gauged
central charge reads

Lij = Lij
nlinVT + Lij

cc , (4.41)

where the remaining parameter in

Lij
nlinVT = −̺L

(

Z D
iL D

jL + Z̄ D̄
iL D̄

jL − 1
6
L2

D
i
D

jZ
)

(4.42)

may be chosen as ̺ = 1/〈L〉, which turns out to yield the proper normalization of the
kinetic terms.

For the sake of simplicity we confine ourselves to the purely bosonic part of the action.
According to the general prescription (1.42) for the Lagrangian we need to compute
the second supersymmetry variations of Lij

nlinVT. When acting with Dαj on this field,

DαjL
ij
nlinVT =

3̺

2

[

Z̄L (DµL − iWµ) σµψ̄i + iZLGµνσ
µνψi − i|Z|2LUψi

+ i
3
L3σµ∂µλ̄

i − iL2 Y ijψj − iZ̄ψ̄iψ̄j ψj −
i
3
Z(ψiψj) ψj

+ 1
2
L(ψiψj) λj −

1
2
L(λiψj) ψj

]

α
,

(4.43)

the fermion trilinears can be neglected. We now need to apply Dα
i and D̄α̇i only to the

remaining spinors, which results for the former in (the relation ≃ denotes omission of
fermions)

DiDjL
ij
nlinVT ≃

3̺

2Z

[

2|Z|2L
(

DµLDµL − W µWµ − 2i W µDµL + |Z|2U2
)

− Z2LGµν(iG̃µν − Gµν) −
4
3
L3Z¤Z̄ − L3 Y ijYij

]

,
(4.44)

while the latter yields the expression

D̄α̇iDαjL
ij
nlinVT ≃ −3i̺Lσµ

αα̇

[

(IGµν − RG̃µν)W
ν − (IG̃µν + RGµν)D

νL

+ |Z|2UDµL + 1
3
L2∂νFµν

]

.
(4.45)
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Putting it all together, we find

LnlinVT ≃ ̺L
[

1
2
|Z|2

(

∂µL∂µL − W µWµ + EU2
)

−
1
6

L2(Z¤Z̄ + Z̄¤Z)

−
1
4
Gµν

(

Gµν + 4AµWν + 2εµνρσ ∂ρ(LAσ)
)

+ LWµF̃
µνAν

+
1
12

L2F µνFµν −
1
12

L2 Y ijYij

]

+
̺

3
∂µ (L3F µνAν) ,

(4.46)

where for consistency the fermions contained in the composite fields W µ and Gµν have
to be set to zero. The latter depends on the former according to eq. (4.21), so we first
replace Gµν ,

−
1
4
Gµν

(

Gµν + 4AµWν + 2εµνρσ ∂ρ(LAσ)
)

=

= −
1
4

V µνVµν − Ṽ µν∂µ(LAν) − LWµF̃
µνAν + AµW νA[µWν] .

Then the terms linear in W µ cancel, while the bilinear ones combine into W µKµνW
ν

just as for the linear vector-tensor multiplet,

LnlinVT ≃ ̺L
[

1
2
|Z|2

(

∂µL∂µL + EU2
)

−
1
2

W µKµνW
ν −

1
4

V µνVµν −
1
4

LF̃ µνVµν

+
1
12

L2F µνFµν −
1
6

L2(Z¤Z̄ + Z̄¤Z) −
1
12

L2 Y ijYij

]

+
̺

6
∂µ

(

2L3F µνAν − 3L2Ṽ µνAν

)

.

(4.47)

Again the nonpolynomial interactions arise from inverting Kµν . Using eqs. (3.38) and
(4.29), the substitution of W µ gives

−
̺

2
LW µKµνW

ν = −
̺

2L
(LKµρWρ) (K−1)µν (LKνσWσ)

= −
̺

2LE

[

Hµ − 1
2
Ṽ µνVν + 1

2
L2F̃ µνAν + (LV µν + Πµν)Aν

]2

+
̺

2LE|Z|2
(

AµH
µ − 1

2
AµṼ

µνVν

)2
.

(4.48)

At last, let us neglect also fluctuations of the scalars around their background values
〈Z〉 = i and 〈L〉 = 1/̺. Then only the gauge potentials Vµ, Bµν and Aµ remain, and
after rescaling

Aµ → gzAµ , Bµν → Bµν/̺ ,

such that both fields have canonical dimension 1, we find2 (dropping a total derivative)

L = −
1
4

V µνVµν −
1
4

(

1 − g2
z/3̺

2
)

F µνFµν

−
1
2E

(

Hµ − 1
2
̺Ṽ µνVν + gzV

µνAν + 1
2
̺−1g2

z F̃
µνAν

)2

+
g2

z

2E

(

AµH
µ − 1

2
̺AµṼ

µνVν

)2
.

(4.49)

2Evidently, positivity of the kinetic energies requires 3̺2 > g2

z .
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Apart from the normalisation of Aµ, this Lagrangian follows from the one in eq. (3.64),
when in the latter we make the substitution

Hµ → Hµ − 1
2
̺Ṽ µνVν + 1

2
̺−1g2

z F̃
µνAν , (4.50)

which introduces couplings of Ha to Chern-Simons terms of both Vµ and Aµ. At
first glance, these seem to fit into the structure of the Henneaux-Knaepen models, eq.
(3.103). However, it is easily verified that no choice of the parameters cab, which govern
the Chern-Simons couplings, can result in the specific combination

H
µ = Hµ − 1

2
̺Ṽ µνVν + 1

2
̺−1g2

z F̃
µνAν + gzV

µνAν (4.51)

as displayed above: A comparison with eq. (3.103) shows that again the second column
of the matrix T a

1 b vanishes (otherwise at least one of the two terms V µνVν , F µνVν would
be present), hence the coefficients cabT

a
1 c can at most yield a Chern-Simons term for

A1
µ = Aµ.

We conclude that the Henneaux-Knaepen models, in their current formulation, cannot
account for the type of gauge field interactions described by the nonlinear vector-
tensor multiplet with local central charge. Most likely, however, the former admit a
generalization which then includes also the case presented here. Work in this direction
is in progress, but as yet we cannot report on results.





Conclusions and Outlook

In the present thesis we have given a derivation of the superfield constraints which
describe the two versions of the vector-tensor multiplet in presence of a gauged central
charge. Key to this was the formulation of consistency conditions every deformation
of the free model has to meet. We stress that these may be, and have been to a
certain extent in [2], employed to determine superfield constraints that yield even more
general models than the ones presented here, like for instance the linear vector-tensor
multiplet with global scale and chiral invariance first obtained in [17] by means of the
superconformal multiplet calculus. This involves a coupling to another abelian vector
multiplet with a nonvanishing background value (the nonlinear one with gauged central
charge possesses these invariances without further modifications).

Even in the case of a single vector multiplet, however, the consistency conditions turned
out to be insufficient when starting from a completely general Ansatz for the constraints.
While we were able to find solutions to the differential equations on the coefficients
that provide the sought generalizations of the two different vector-tensor multiplets,
we cannot exclude further solutions which may not be obtained from the known ones
merely by a field redefintion. However, what has been shown is that each solution
must reduce in the limit Z = i to either of two possible versions with global central
charge. Since we have found two corresponding classes of deformations, we venture the
assertion that no third one exists.

Unfortunately, as yet we do not know how to determine in a manifestly supersymmetric
way whether a given set of constraints is really compatible with the supersymmetry
algebra. While the consistency conditions (C.1–4) provide a preliminary selection of
superfield constraints, it is still necessary in each case to solve the Bianchi identities at
the component level in order to verify their validity.

Of course, the ultimate goal is to describe the vector-tensor multiplet in terms of an
unconstrained superfield, as it is possible for the hypermultiplet in harmonic superspace
at the expense of a finite number of off-shell components [1].

What we consider the most exciting feature of the vector-tensor multiplet (rather than
its relevance to certain string theory compactifications, which is beyond the scope of
this thesis), is the similarity of its local central charge transformations to the kind
of gauge transformations that occur in the new class of theories by Henneaux and
Knaepen. It is natural to ask for supersymmetric versions of these models. While this
problem could be solved completely for N = 1, in the case of two supersymmetries the
only known example we have presented here suffers from the explicit nonpolynomial
dependence on the central charge gauge field. As is clear in view of the complexity of
our component calculations, a first-order superfield formulation is indispensable. It is
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likely to exist only in harmonic superspace, which admits unconstrained prepotentials
for N = 2 vector multiplets that could serve as the necessary auxiliary superfields.
In fact, the superfield constraints we have found in this thesis can readily be converted
into constraints on a corresponding harmonic superfield, cf. [2]. However, presumably
the 2-forms have to be embedded in other multiplets than the ones of the vector-tensor
variety, since the latter always introduce in addition as many vectors as there are
tensors, which is likely to prevent a formulation of pure Freedman-Townsend models.
The only other multiplet known to include a 2-form gauge field (apart from the yet
to be constructed double-tensor multiplet which, as the name suggests, would hardly
be an alternative) is the so-called tensor multiplet [7] we have encountered briefly in
section 1.2.
Finally, we note that also the purely bosonic Henneaux-Knaepen models deserve further
study concerning a possible extension of the Chern-Simons couplings. As has been
shown in the last chapter, the gauge field part of the nonlinear vector-tensor multiplet
with local central charge hints at a generalization that exceeds the one included already
in [28] and in our exposition of the models in section 3.5.



Appendix A

Conventions

A.1 Vectors and Spinors

We denote Lorentz vector indices as usual by small letters from the middle of the
greek alphabet, while those from the beginning are reserved for two-component Weyl
spinors, which are used exclusively in this thesis. Small letters from the middle of the
latin alphabet denote SU(2) spinors in the fundamental representation and run also
from 1 to 2.
The signature of the Minkowski metric follows the convention in particle physics,

ηµν = diag (1, −1, −1, −1) . (A.1)

Parantheses and square brackets denote symmetrization and antisymmetrization of the
enclosed indices respectively,

V(A1...An) =
1

n!

∑

π∈Sn

VAπ(1)...Aπ(n)
(A.2)

V[A1...An] =
1

n!

∑

π∈Sn

sgn(π) VAπ(1)...Aπ(n)
, (A.3)

where A ∈ {µ, α, α̇, i}. The Levi-Civita tensor εA1...Ad is antisymmetric upon inter-
change of any two indices, and the following relations hold,

εA1...Ad
= ηA1B1 . . . ηAdBd

εB1...Bd , ηAB = diag (1, −1, . . . , −1) (A.4)

ε0...(d−1) = 1 , ε0...(d−1) = (−)d−1 (A.5)

εA1...Ad
εB1...Bd = (−)d−1d! δ

[B1

A1
. . . δ

Bd]
Ad

. (A.6)

The Hodge dual of an antisymmetric Lorentz tensor is denoted by a tilde,

F̃ µν = 1
2
εµνρσFρσ . (A.7)

Our conventions concerning Weyl spinors agree with those in [29]. Indices are raised
and lowered by means of the ε-tensors according to

ψα = εαβψβ , ψα = εαβψβ (A.8)
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ψ̄α̇ = εα̇β̇ψ̄β̇ , ψ̄α̇ = εα̇β̇ψ̄β̇ , (A.9)

and the following summation rule is used,

ψχ = ψαχα , ψ̄χ̄ = ψ̄α̇χ̄α̇ . (A.10)

Similarly, an SU(2) spinor may be converted into a spinor transforming in the contra-
gredient representation by means of an ε-tensor, which is invariant under SU(2),

ϕi = εijϕ
j , ϕi = εijϕj . (A.11)

However, we always spell out SU(2) indices even when contracted. Complex conjugation
raises and lowers SU(2) indices. Due to the reality properties of εij,

(εij)∗ = εij = −εij , (A.12)

a change of sign has to be taken into account whenever complex conjugation applies
also to an implicit ε-tensor,

(ϕi)∗ = ϕ̄i ⇒ (ϕi)
∗ = −ϕ̄i . (A.13)

A.2 σ-Matrices

The σ-matrices

σµ =

[(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)]

(A.14)

provide the link between the proper orthochronous Lorentz group and its universal
covering SL(2, C). The index structure of these hermitian matrices is

σµ

αβ̇
, (σµ

αβ̇
)∗ = σµ

βα̇ , (A.15)

and σ̄-matrices with upper indices are defined by

σ̄µ α̇β = εα̇γ̇εβδσµ
δγ̇ = (1, −~σ)α̇β . (A.16)

Lorentz vector indices can be converted into spinor indices and vice versa,

Vαβ̇ = σµ

αβ̇
Vµ , V µ = 1

2
σ̄µ β̇α Vαβ̇ . (A.17)

The generators of the Lorentz group in the two inequivalent spinor representations are
given by

σµν = 1
4
(σµσ̄ν − σν σ̄µ) , σ̄µν = 1

4
(σ̄µσν − σ̄νσµ)

(σµν
β

α)∗ = −σ̄µν α̇
β̇ .

(A.18)
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We use a shorthand notation for σµν-matrices whose indices have been lowered by
means of the ε-tensor,

σµν
αβ = −(σµνε)αβ , σ̄µν

α̇β̇ = (εσ̄µν)α̇β̇ (A.19)

They are symmetric in the spinor indices,

σµν
αβ = σµν

βα , σ̄µν
α̇β̇ = σ̄µν

β̇α̇ . (A.20)

Using the σµν-matrices, an antisymmetric tensor Fµν can be decomposed into its “self-
dual” and “anti-selfdual” part,

Fαα̇ ββ̇ = εα̇β̇Fαβ + εαβF̄α̇β̇ , F̃αα̇ ββ̇ = i εα̇β̇Fαβ − i εαβF̄α̇β̇

Fαβ = −Fµν σµν
αβ , F̄α̇β̇ = Fµν σ̄µν

α̇β̇ .
(A.21)

There are numerous relations between the quantities defined so far. The ones used
frequently in this thesis shall be listed here.
Identities containing two σ-matrices:

σµ
αα̇σµ ββ̇ = 2εαβεα̇β̇ , σµ

αα̇ σ̄ β̇β
µ = 2 δβ

α δβ̇
α̇ (A.22)

(σµσ̄ν)α
β = ηµν δβ

α + 2 σµν
α

β , (σ̄µσν)α̇
β̇ = ηµν δα̇

β̇
+ 2 σ̄µν α̇

β̇ (A.23)

σ
[µ
αα̇σ

ν]

ββ̇
= εαβ σ̄µν

α̇β̇ − εα̇β̇ σµν
αβ (A.24)

εµνρσσρσ = 2iσµν , εµνρσσ̄ρσ = −2i σ̄µν (A.25)

εµνρσσρ αα̇σσ ββ̇ = −2i (εαβ σ̄µν
α̇β̇ + εα̇β̇ σµν

αβ) . (A.26)

Identities containing three σ-matrices:

σµνσρ = 1
2
(ηνρσµ − ηµρσν + iεµνρσσσ) (A.27)

σ̄µν σ̄ρ = 1
2
(ηνρσ̄µ − ηµρσ̄ν − iεµνρσσ̄σ) (A.28)

σ̄µσνρ = 1
2
(ηµν σ̄ρ − ηµρσ̄ν − iεµνρσσ̄σ) (A.29)

σµσ̄νρ = 1
2
(ηµνσρ − ηµρσν + iεµνρσσσ) (A.30)

σµν
αβ σν γα̇ = −εγ(β σµ

α)α̇ , σ̄µν
α̇β̇ σν αγ̇ = −σµ

α(α̇ εβ̇)γ̇ . (A.31)

Identities containing four σ-matrices:

σµνσρσ = 1
2
(ηµσσνρ − ηµρσνσ + ηνρσµσ − ηνσσµρ)

+ 1
4
(ηµσηνρ − ηµρηνσ + iεµνρσ)

(A.32)

σ̄µν σ̄ρσ = 1
2
(ηµσσ̄νρ − ηµρσ̄νσ + ηνρσ̄µσ − ηνσσ̄µρ)

+ 1
4
(ηµσηνρ − ηµρηνσ − iεµνρσ)

(A.33)

σµν
α

βσν
ρ
γ

δ = 1
2
(δβ

γ σµρ
α

δ − δδ
ασµρ

γ
β) + 1

4
ηµρ (εαγ εβδ + δδ

α δβ
γ ) (A.34)
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σµν
αβ σµν γδ = −2 εα(γ εδ)β , σµν

α
βσ̄µν

γ̇
δ̇ = 0 . (A.35)

These identities imply among others the following two useful relations: Let Fµν , Gµν ,
Hµν be antisymmetric tensors and Vµ, Wµ be vectors. Then one has

Fα
βGβ

α + F̄ α̇
β̇H̄ β̇

α̇ = iF̃ µν(Gµν − Hµν) − F µν(Gµν + Hµν) (A.36)

Fα
βVβα̇ + Wαβ̇F̄ β̇

α̇ = iσµ
αα̇F̃µν(V

ν − W ν) − σµ
αα̇Fµν(V

ν + W ν) . (A.37)

A.3 Multiplet Components

In the course of the present thesis we encounter numerous supersymmetry multiplets.
For quick reference we now list their components. As explained in section 1.1 the cor-
responding superfields are labeled by the same letter as used for the lowest component
(if there are several components of the same dimension, the first in the respective list
provides the superfield label). Symbols separated by a semicolon denote field strengths.
Components of the vector-tensor multiplet:

L , Vµ , Bµν , ψi
α , U ; Gµν , W µ ; Vµν , Hµ .

Components of the central charge vector multiplet:

Z , Z̄ , Aµ , λi
α , Y ij ; Fµν .

Components of additional vector multiplets:

φI , φ̄I , AI
µ , χI

α , DijI ; F I
µν .

Components of the linear multiplet:

ϕij (Lij) , ̺i
α , S , S̄ , Kµ .

Components of the hypermultiplet:

ϕi , ϕ̄i , χα , ψ̄α̇ , F i , F̄i .
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