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Knöckel who helped me a lot at the beginning of my study. I would also like
to thank my colleague, Dr. Mirco Siercke, who has spent time exploring and
discussing this topic together with me. His guidance helped me throughout
the investigation and the writing of this thesis. There is also sincere grati-
tude that I would like to express to every group member, Torsten Hartmann,
Erik Schwanke, Julia Gerschmann... ..., who made my stay here a wonderful
journey in my life.

A special thanks to my husband for all the sacrifices and the huge support
during the difficult time I encountered. Thanks to my lovely son, you have
been always my power resource, and allow me to have the chance to grow up
together with you.

Last but not the least, I would like to thank my families in China for all
the spiritually support throughout the years.

i



ii ACKNOWLEDGEMENT



Contents

Acknowledgement i

1 Introduction 1

2 Electric dipole polarizability 5

2.1 Optical dipole trap . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Polarizability of the Lorentz model . . . . . . . . . . . . . . . 7

2.3 Polarizability derived by perturbation theory . . . . . . . . . . 10

2.3.1 Corrections to the energies by time-independent per-
turbation theory . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Derivation of the energy shifts of a two-level atom in
an AC field . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Polarizability of a multi-level atom . . . . . . . . . . . 21

3 Polarizable system-diatomic molecules 23

3.1 Wavefunctions of diatomic molecules . . . . . . . . . . . . . . 23

3.2 Solving the nuclear Schrödinger equation . . . . . . . . . . . . 26

3.3 Determination of potential energy function . . . . . . . . . . . 29

3.4 Hund’s cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Transition dipole moment of diatomic molecules . . . . . . . . 37

4 Optical dynamic polarizability of the diatomic molecules RbCs
and NaK 43

4.1 Dynamic polarizability formalism of the ground state X1Σ+ . 44

4.2 Molecular potential energy function and transition dipole mo-
ment data of RbCs and NaK . . . . . . . . . . . . . . . . . . . 45

4.3 Derivation of the rovibrational energies for NaK and RbCs . . 52

4.4 Dynamic polarizabilities of RbCs and NaK . . . . . . . . . . . 54

5 Identical dynamic polarizabilities between rotational states

iii



iv CONTENTS

of RbCs and NaK while applying with AC and DC field si-
multaneously 57
5.1 Mixing rotational states with a DC field . . . . . . . . . . . . 58
5.2 Dynamic polarizabilities of non-degenerate states . . . . . . . 59

5.2.1 Light polarized along the Z axis . . . . . . . . . . . . . 60
5.2.2 Circularly-polarized light . . . . . . . . . . . . . . . . . 61

5.3 Dynamic polarizabilities of degenerate states with M >0 . . . 64
5.3.1 Light polarized along the X axis . . . . . . . . . . . . 65
5.3.2 Light polarized along the Y axis . . . . . . . . . . . . . 65
5.3.3 Elliptically-polarized light . . . . . . . . . . . . . . . . 68

5.4 Dynamic polarizability as a function of the relative orientation 70

6 Realization of identical dipole potential depths of rotational
states in various optical lattice geometries 75
6.1 1D optical lattice . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 2D lattice configurations . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Two perpendicular propagating laser beams . . . . . . 81
6.2.2 2D triangular lattice geometry and hexagonal lattice

geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 3D optical cubic lattice configuration . . . . . . . . . . . . . . 86

7 Conclusions 89



Abstract

In this thesis, we determine the formalism of the dynamic polarizability
of diatomic molecules. This approach is then applied to investigate the effect
of a DC field on the dynamic polarizability of a few rotational states of RbCs
and NaK molecules at a wavelength of 1064 nm. We demonstrate the depen-
dence of the dynamic polarizability on the DC field strength and find that
at a certain DC field strength, two lowest rotational states of the molecules
have identical dynamic polarizabilities. This magic field strength is verified
to be independent of the light polarization. Besides this, we also investigate
the angle dependence of the polarizabilities when the light is linearly polar-
ized as a function of the relative angle with respect to the DC field. There
exists a magic angle which is independent of the DC field strength. This
state-insensitive polarizabilities finding can provide great advantages to the
development of experiments where polar molecules trapped in optical lattices
are ideal tools for quantum computing and simulations.

Keywords: dynamic polarizability, heteronuclear molecules, DC field strength
dependence, magic field strength, magic angle.
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Chapter 1

Introduction

When a neutral atom is placed in an oscillating electric field, the positive
charges and negative charges experience electrostatic forces in opposite direc-
tions. This leads to an induced dipole moment, which can interact with the
driving electric field. The resulting two important physical quantities are:
an optical dipole potential and a scattering rate. Both of them can be char-
acterized by the polarizability α which describes the response ability of the
atom to the light field. The optical dipole potential can be characterized by
the real part of the dynamic polarizability Re[α], and the scattering rate can
be characterized by the imaginary part of the dynamic polarizability Im[α].
Making use of the real part of the dynamic polarizability, an atom can be
trapped into a region of a red-detuned light field [1] where the electric field
has the highest intensity.

Generally, the polarizabilities of two atomic states can differ from each
other, therefore they can be trapped with different dipole potentials. This
will lead to unfavorable consequence to the experiments with atom system.
For example, in the context of an atomic clock in an optical dipole trap
where we consider the transition frequency between two atomic states as a
time base. A problem is generated since the two atomic states with differ-
ent polarizabilities will be shifted by different amount of energies, therefore
changing the transition frequency. One can circumvent this problem by find-
ing appropriate trapping wavelength [2–7], so that the transition frequency
is unperturbed by the laser light, while still benefiting from the trapping en-
vironment. Such trapping wavelength is also referred as magic wavelength.

Nowadays, there are various investigations about finding magic condi-
tions for molecules in ultracold experiments. The advantage of the molecules
is that they have non-zero dipole moment in the molecular frame. In the
laboratory frame, they are zero since the molecules are not aligned. In order
to take advantage of the dipole moment in experiments, they need to be non-
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CHAPTER 1. INTRODUCTION

zero in the laboratory frame. We can generate this by applying a DC electric
field, which has the effect of mixing rotational states [8], thereby aligning the
molecules. A long-range dipole-dipole interactions [9] can happen between
the molecules. Putting molecular systems with such interactions in optical
lattices [10, 11] can offer new opportunities for the development of quan-
tum simulations and quantum optics [12–15]. These applications require a
prerequisite that there is sufficient coherence time of the interactions. We
can fulfill this by finding certain values of the DC field strength or certain
laser polarizations, so that the energies of the mixed rotational states are
shifted by the same amount. Similar work has been done in an investiga-
tion which found a magic electric field strength and a magic angle for the
polarizabilities of rotational states of the molecules KRb and RbCs at a light
wavelength of 1090 nm [16]. Magic conditions have also been investigated in
other contexts. For example, in the precision measurements with the nonpo-
lar molecules Sr2 [17, 18], there exists a magic frequency for the vibrational
transitions. A magic frequency is also found of a microwave field which in-
duces identical AC Stark shift of the internal levels of the molecules KRb
and RbCs [19].

In this thesis, we aim to find ways to realize identical dynamic polarizabil-
ities of the two lowest rotational states of diatomic RbCs and NaK molecules
at a wavelength of 1064 nm, which is the most common wavelength used for
optical lattices or tweezers. As one of the approaches, the dependence of
the dynamic polarizability on the strength value of the external static field
is investigated. In addition to that, we also investigate the dynamic polar-
izability as a function of the relative angle between the DC field and the
linearly polarized light.

This thesis is arranged as follows:
In chapter 2, we discuss the interaction between an atom and an oscil-

lating field, which results in a dipole potential and a scattering rate. They
are proportional to the real part and imaginary part of the polarizability
respectively. In order to derive an expression of the polarizability, we use the
Lorentz model which is a system consisting of an electron which is elastically
bound to a nucleus with an eigenfrequency ω0 (this eigenfrequency is corre-
sponding to the atomic transition frequency). At the end of the chapter, we
go beyond the toy model and obtain the formalism of the polarizability using
perturbation theory.

Chapter 3 concentrates on the discussion of the more complex systems:
diatomic molecules. The Born-Oppenheimer approximation simplifies the
description of a molecule by considering the nuclei as stationary while we
are describing the electronic motions. Therefore, the wavefunctions of the
diatomic molecule are separated into a electronic component and a nuclear
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component. At the end, we derive an expression of the dynamic polarizability
of diatomic molecules by the second order energy corrections.

In chapter 4, we investigate the optical dynamic polarizabilities of the
rotational states with J = 0 and J = 1 of RbCs and NaK as a function of
the laser frequency in the near infrared region.

Chapter 5 discusses the dynamic polarizability when we introduce an
external DC field to mix the rotational states, and trap the molecules with a
light wavelength of 1064 nm. Since the field strength determines the mixing
constants, this motivates us to investigate the dependence of the polariz-
abilities on the static field strength. A magic field strength is found where
the polarizabilities of two mixed rotational states can match. Moreover, we
investigate the polarizability as a function of the angle between the laser
polarization and the static field direction. There exists also a magic angle.

chapter 6 extends the magic condition in the last chapter to optical
lattices with different configurations. We start with the introduction of the
simplest 1D optical lattice. Especially, we visualize and compare the dipole
potentials of the two mixed rotational states J = 0,M = 0 and J = 1,M = 0
of NaK in a 1D optical lattice when the DC electric field is smaller than, equal
to or larger than the magic field strength. Furthermore, we demonstrate
higher dimensional optical lattices different geometries.
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Chapter 2

Electric dipole polarizability

There are a lot of mechanisms with which light and atoms can interact. A
fairly general way of describing these interactions is given by the polarizability
α, which is a property of the atom characterizing its response to the light.
The real part of the polarizability Re[α] characterizes the dipole potential
resulting from the interaction between the light-induced dipole moment and
the driving field. The imaginary part of the polarizability Im[α] characterizes
the scattering rate, which is induced by the absorption of the light field by
the atom. Polarizability is also an important quantity in other various areas
of physics and chemistry. For example, it is been used to investigate and
explain the collision phenomena [20] between neutral particles.

In general, it is not easy to derive an expression of the atomic polarizabil-
ity. However, taking a good model will be helpful for us to understand. The
toy model we use here is a damping “Lorentz model” [21], where an electron
is connected to a nucleus with an eigenfrequency ω0. The system is in a driv-
ing field which has a frequency ω. The polarizability can be obtained when
we solve the equation of motion. With this expression, we are able to write
the dipole potential and the scattering rate in terms of the polarizability.

Although the “Lorentz model” provides us general formalism for the two
mechanisms, a real atom is not as simple as a harmonic oscillator. Fortu-
nately, we can treat the effect of a far-detuned laser light on a two-level atom
by perturbation theory [22]. The corresponding polarizability of a state can
be derived by evaluating the energy corrections.

A real atom is not a two-level system, it has complex multi-levels. In
general, different atomic levels have different polarizabilities, therefore, the
dipole potential depends on the specific sub-level of the atom [23,24]. Under
certain conditions, we can ensure that the potentials seen by the two specific
levels are identical. This state insensitive investigation can provide great
advantages to the precision spectroscopy with atoms [25, 26] and also other
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CHAPTER 2. ELECTRIC DIPOLE POLARIZABILITY

related applications.

2.1 Optical dipole trap

In this section, we introduce the interaction between the oscillator and
the radiation field and then characterize the resulting mechanisms with the
polarizability.

We use a complex notation for the field,

~E(~r, t) = êE(~r)e−iωt + c.c. (2.1)

where ê is a unit vector denoting the polarization of light field. ω is the
frequency of the field.

This light field induces an electric dipole moment by

~d(~r, t) = êd(~r)e−iωt + c.c. (2.2)

The component d(~r) of the induced dipole moment can be described by
a complex polarizability α with

d(~r) = α(ω)E(~r) (2.3)

where the polarizability is dependent on the light frequency.

We write the potential as a result of the interaction between the induced
dipole moment ~d and ~E by [27]

Vdipole(~r) = −1

2
〈~d ~E〉 = − 1

2ε0c
Re[α(ω)]I(~r) (2.4)

where the light intensity I(~r) is expressed by I(~r) = 2ε0c|E(~r)|2. c is the
speed of light, and ε0 is the dielectric constant.

A corresponding dipole force is induced due to the gradient of the dipole
potential and it is given by

~Fdipole(~r) = −∇Vdipole =
1

2ε0c
Re(α)∇I(~r) (2.5)

We still need to discuss another quantity: the atom can also absorb pho-
tons from the light field and then reemit them as dipolar radiation. This
excitation will heat up the atoms in the trap and therefore limit the perfor-
mance of the dipole trap.
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2.2. POLARIZABILITY OF THE LORENTZ MODEL

The absorption of the power from the driving field is given by [28]

Pabs(~r) = 〈 ~̇dE〉 =
ω

ε0c
Im(α)I(~r) (2.6)

where the imaginary part of the polarizability characterizes the out-of-phase
component of the dipole oscillation.

The corresponding scattering rate is

Γsc(r) =
Pabs

~ω
=

1

~ε0c
Im(α)I(~r) (2.7)

The two expressions of (2.4) and (2.7) give two important consequences
of light-atom interaction: the dipole potential in terms of the real part of the
polarizability Re(α) and light intensity I(~r), and the scattering rate in terms
of the imaginary part of the polarizability Im(α) and light intensity I(~r).

2.2 Polarizability of the Lorentz model

The two mechanisms of dipole potential and scattering rate as functions
of the polarizability are crucial if we want to design an optimal optical dipole
trap. Therefore, it is necessary for us to derive an expression of the frequency-
dependent polarizability α(ω). Here we take advantage of a Lorentz model.
In this classical model, the atom is considered as an electron connecting to
a nucleus by a spring of ω0. The oscillating field has a frequency of ω. See
Fig. 2.1.

Now we write the motion equation of the system

mẍ+mΓωẋ+mω2
0x = −ε̂eEe−iωt (2.8)

where Γω is the damping rate.

We solve the Eq. (2.8) and get

x = −ε̂ eE/m

ω2 − ω2
0 + iΓωω

e−iωt (2.9)

Therefore, the expression of the polarizability derived by the Lorentz
model is

α(ω) =
e2/m

ω2
0 − ω2 − iΓωω

(2.10)

By taking the real component of the polarizability Re[α] and the imag-
inary component of the polarizability Im[α], we are able to write down the

7



CHAPTER 2. ELECTRIC DIPOLE POLARIZABILITY

Displacement x

Electron mass m, and charge -e

F=-e E

Fixed nucleus position

Figure 2.1: The Lorentz atom model. The nucleus mass M is much larger
than the electrons’ mass m. They are connected with a spring.

dipole potential and the scattering rate in Eq. (2.4) and (2.7)

Vdipole(~r) = − e2

2ε0mc

ω2
0 − ω2

(ω2
0 − ω2)2 + Γ2

ωω
2
I(~r) (2.11)

Γsc(~r) =
e2

~ε0mc
Γωω

(ω2
0 − ω2)2 + Γ2

ωω
2
I(~r) (2.12)

The expressions of the two mechanisms are applicable for any light fre-
quency. From the Eq.(2.11), we get a first clue of an optimal dipole trap:
when the laser frequency is tuned to be below the resonance (ω − ω0 < 0)
(red-detuned), the dipole potential in Eq.(2.11) is negative. This can form a
trap for the atoms. The deepest potential locates at the intensity maximum
region.

For a case where light frequency is far away from resonances (|ω0−ω| �
Γω), then

Vdipole(~r) = − e2

4ε0ω0mc

(
1

ω0 − ω
+

1

ω0 + ω

)
I(~r) (2.13)

Γsc(~r) =
e2Γωω

4~ε0mcω2
0

(
1

ω0 − ω
+

1

ω0 + ω

)2

I(~r) (2.14)

The second term in the bracket of Eqs.(2.13) and Eqs.(2.14) are contri-
butions from the resonance at negative frequency ω = −ω0. If the laser fre-
quency is tuned relative close to the resonance of ω0 such that |ω−ω0| � ω0,

8



2.2. POLARIZABILITY OF THE LORENTZ MODEL

then the terms with negative frequency are small enough to neglect. This is
also known as the ”Rotating wave approximation”. From this we can derive
an important relation between the dipole potential and scattering rate

Γsc

Vdipole

=
Γω
~∆

(2.15)

The relation in Eq.(2.15) reveals another important rule for an optimal
dipole trap: the detuning ∆ can be chosen to be large such that the scattering
rate can be suppressed as much as possible. Although the large detuning
frequency causes a decrease to the depth of the potential, we can still increase
the light intensity I(~r) to compensate this.

A simple optical dipole trap for atoms is constructed by a single red-
detuned Gaussian beam which is propagating along z direction (See Fig.2.2).
The intensity of a Gaussian beam [29] has its largest value in the center of
the beam and then decreases in the radial and axial directions as

I(x, y, z) =
2P

πw2(z)
e−2(x2+y2)/w2(z) (2.16)

where P is the total power of the laser beam, and ω(z) is defined by

w(z) = w0

√
1 +

z2

z2
R

(2.17)

where w0 is the narrowest radius of the Gaussian beam, z is the axial distance
to the center of the laser beam. zR is the Rayleigh range, at this zR position,
the beam waist increases to

√
2ω0.

The Gaussian beam has a highest intensity at position r = 0, z = 0. The
dipole force can attract the atoms to the center of the Gaussian beam for a
red-detuned light. When we move the position of the Gaussian Beam, the
dipole force can also move the particles correspondingly. This property is
also referred as “optical tweezers” [30].

9



CHAPTER 2. ELECTRIC DIPOLE POLARIZABILITY

Amplitude of electric field

Intensity

Figure 2.2: The amplitude and intensity profile of a Gaussian beam in the
radial direction. Blue curve: the electric field amplitude. Orange curve: the
intensity distribution of the beam.

2.3 Polarizability derived by perturbation the-

ory

Although the Lorentz model provides us a classical picture of the inter-
action between a light field and an atom, especially the sign of detuning and
scaling of the dipole potential and the scattering rate. However, real atoms
are more complicated than the simple harmonic oscillator. Fortunately, the
effect of static and dynamic external field on the atoms is small enough, and
we can derive the energy correction of the system by perturbation theory [22].
The corresponding polarizability can be obtained by Eq. (2.4).

In this section, we start with the discussion of static polarizability by
time-independent perturbation theory, where the effect of a static electric
field is introduced as an interaction Hamiltonian H ′ = −dE. In princi-
ple, the dynamic polarizability can be obtained also through time-dependent
perturbation theory, just as the treatment for the static polarizability. In-
stead of this, we treat this problem by doing some transformations to the
time-dependent interaction Hamiltonian. We can get a time-independent
Hamiltonian-like form which is similar to the Hamiltonian of the DC stark
effect. The energy modification and dynamic polarizability can be derived
by comparing the two Hamiltonians.

At the end, we state the issue of a state-dependent dipole potential of a
multi-level atom.

10



2.3. POLARIZABILITY DERIVED BY PERTURBATION THEORY

2.3.1 Corrections to the energies by time-independent
perturbation theory

Generally, the various systems in the nature can not be solved exactly for
the eigenvalues and eigenfunction. Fortunately, at many times, the interac-
tion with an external field, which we consider as Ĥ ′, is only a small perturba-
tion to the original Hamiltonian Ĥ0 of the system, which means that it only
results in a small energy correction compared to the original eigenenergies.
This treatment is called perturbation theory, which is a widely used theory
in quantum mechanics.

We write this concept as a form

H = Ĥ0 + λĤ ′ (2.18)

where we split the full Hamiltonian into two parts: the part of unperturbed
Hamiltonian Ĥ0, and the other part H

′
which describes the perturbation. λ

is a small parameter.

The eigenfunctions of Ĥ0 are

Ĥ0|ψ(0)
nν 〉 = E(0)

n |ψnν〉, ν = 1, 2, · · · , fn (2.19)

〈ψ(0)
nν |ψ(0)

mµ〉 = δnmδνµ, (2.20)

where E
(0)
n is the eigenenergy and |ψ(0)

nν 〉 is the corresponding eigenstate. E
(0)
n

might be non-degenerate (fn = 1), or degenerate (fn ≥ 2).

The effect of a DC electric field on atoms is introduced as

Ĥ ′ = −~d· ~E (2.21)

What’s worthwhile to mention is, when we are dealing with some detailed
problems, we should choose an appropriate Hamiltonian operator Ĥ0 and a

perturbation H
′
. For some cases, the determination of Ĥ0 and Ĥ ′ is very

obvious, for example, the Stark effect here, where we usually take the effect
from the external field as the perturbation H

′
to Ĥ0. There are still other

situations which might be more complex. The determination of Ĥ0 and Ĥ ′

depends always on how to make the calculations of the system more simple.

The Schrödinger equation is

Ĥ|ψ〉 = E|ψ〉 (2.22)

where E is the eigenenergy of the perturbed system.

11



CHAPTER 2. ELECTRIC DIPOLE POLARIZABILITY

The energy and wavefunction can be written in terms of different orders
of perturbation as

|ψ〉 = |ψ(0)〉+ λ|ψ(1)〉+ λ2|ψ(2)〉+ · · · , (2.23)

E = E(0) + λE(1) + λ2E(2) + · · · , (2.24)

We substitute Eq.(2.23) and Eq.(2.24) into Eq. (2.22), and then compare
the same-order terms, we get the eigenfunctions for each order as

(Ĥ0 − E(0))|ψ(0)〉 = 0, (2.25a)

(Ĥ0 − E(0))|ψ(1)〉 = (E(1) − Ĥ ′)|ψ(0)〉, (2.25b)

(Ĥ0 − E(0))|ψ(2)〉 = (E(1) − Ĥ ′)|ψ(1)〉+ E(2)|ψ(0)〉, (2.25c)

(Ĥ0 − E(0))|ψ(3)〉 = (E(1) − Ĥ ′)|ψ(2)〉+ E(2)|ψ(1)〉+ E(3)|ψ(0)〉, (2.25d)

We multiply the 〈ψ(0)| to both left sides of Eqs.(2.25b), (2.25c), (2.25d),
and using the orthogonal conditions, we derive

E(1) = 〈ψ(0)|Ĥ ′|ψ(0)〉 (2.26a)

E(2) = 〈ψ(0)|Ĥ ′|ψ(1)〉 (2.26b)

We assume that, without the perturbation, the system is non-degenerate
(fn = 1) with energy E

(0)
n ,

E(0) = E(0)
n (2.27)

and the corresponding zero-order eigenstates are

|ψ(0)〉 = |ψ(0)
n 〉 (2.28)

To find the first order correction to the eigenstates, we write it as a
superposition of non-perturbed states:

|ψ(1)〉 =
∑
n

a(1)
n |ψ(0)

n 〉 (2.29)

Substituting Eqs.(2.28) and (2.29) to (2.25b) gives,

(Ĥ0 − E(0))
∑
n

a(1)
n |ψ(0)

n 〉 = (E(1) − Ĥ ′)|ψ(0)
k 〉 (2.30)

Multiplying 〈ψ(0)
n | to both left sides of equation above, and also due to

12



2.3. POLARIZABILITY DERIVED BY PERTURBATION THEORY

orthogonality of the eigenstates, we get

(E(0)
n − E

(0)
k )a(1)

n = E(1)δnk −H ′nk (2.31)

where
H ′nk = 〈ψ(0)

n |Ĥ ′|ψ
(0)
k 〉 (2.32)

If we set n = k, it is the first-order eigenenergy (2.26a), and when n 6= k,

a(1)
n =

H ′nk

(E
(0)
k − E

(0)
n )

(2.33)

Therefore, the energy and wavefunction with the first-order correction are

En = E(0)
n + 〈ψ(0)

n |Ĥ ′|ψ(0)
n 〉 (2.34a)

|ψ(1)
n 〉 =

∑
n6=k

H ′kn

(E
(0)
k − E

(0)
n )
|ψ(0)
k 〉 (2.34b)

In the context of the atom-light interaction, perturbation theory comes

down to calculating the matrix elements of the dipole operator ~̂d. For any
symmetric or anti-symmetric wavefunction, by letting ~r = −~r, we get that

〈ψ| ~̂d|ψ〉 = −〈ψ| ~̂d|ψ〉. The expectation value of the dipole operator is equal
to its negative. In other words, any symmetric or anti-symmetric wavefunc-
tion has zero dipole moment. Therefore, the first order correction to the
eigenenergy in Eq. (2.34a) is also zero 〈ψ(0)

n |Ĥ ′|ψ(0)
n 〉 = 0.

Although the field does not affect the energy of the atomic levels to the
first order, there is a correction to the eigenfunction in Eq. (2.34b), which
means that the field mixes the states with opposite parity.

The fact that Ĥ ′mn is non-zero only if |Ψn〉 and |Ψm〉 have opposite parities

is very insightful. According to the orbital angular momentum ~L [31], the
atom orbitals are grouped into S orbitals (L=0), P orbitals (L=1), D orbitals
(L=2), etc...and the parity of the orbitals changes alternatively. In other
words, every time when L changes by 1, the parity of the orbital changes.
S orbitals are symmetric, P-orbitals are anti-symmetric, D orbitals are sym-
metric again. For first-order, the electric field can couple S orbitals to P
orbitals, but not to D orbitals.

It can be easily proved that the expectation value of the dipole moment
operator for the new, first order corrected eigenstates |ψn〉 = |ψ(0)

n 〉 + |ψ(1)
n 〉

is not zero. A dipole moment is induced in the atom.
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CHAPTER 2. ELECTRIC DIPOLE POLARIZABILITY

A resulting energy shift comes in as the second order correction to the
energy. Substituting Eqs.(2.29) and (2.33) to (2.26b), we get that

E(2)
n = 〈ψ(0)

n |Ĥ ′|ψ
(1)
k 〉 =

∑
n6=k

H ′nkH
′
kn

E
(0)
k − E

(0)
n

(2.35)

This second -order energy shift scales with the square of the magnitude of
the electric field, which matches the result of dipole potential in Eq. (2.13).
This is a consequence of the fact that the energy shift is a second order
process: first we need to induce a dipole with a electric field, then we can
couple to it.

At the end, the discussion of the convergency of the non-degenerate per-
turbation theory is necessary. The Eqs.(2.33) and (2.35) show that the con-
vergency requirement to extend the non-degenerate perturbation through
orders is ∣∣∣∣ H ′nk

(E
(0)
k − E

(0)
n )

∣∣∣∣� 1 (2.36)

which means that the energy difference E
(0)
k −E

(0)
n has to be large compared

with the perturbation Hamiltonian H ′nk, in other words, the two energy levels
should be separated far enough from each other.

2.3.2 Derivation of the energy shifts of a two-level atom
in an AC field

We have introduced the perturbation theory and derived the corrections
to the energy and wavefunction when the atoms interact with an DC electric
field. It is of significance to investigate the energy shift of the atom due to the
AC stark effect since atomic physics work extensively with lasers nowadays.
There are many different ways to approach this problem of a two-level atom
in a laser field. We will choose a slightly round-about way of doing this.

The electric field of a travelling wave is given by

~E ≈ ~E0 cos(~k·~r − ωt) (2.37)

We make an assumption here: The electric field is spatial independent
over the atom. This is due to the reason that the laser wavelength is much
larger than the size of the dipole of the atom. Since the magnitude of ~k is
inversely related to the wavelength of the incident light, k = 2π

λ
, therefore

14



2.3. POLARIZABILITY DERIVED BY PERTURBATION THEORY

there exists that ~k·~r � 1. Then the electric field can be written as

~E ≈ ~E0 cos(ωt) (2.38)

This approximation is known as the “dipole approximation”. The full
Hamiltonian then becomes

Ĥ =

(
Eg 0
0 Ee

)
+

(
0 −~d· ~E0 cos(ωt)

−~d· ~E0 cos(ωt) 0

)
(2.39)

Obviously, this Hamiltonian has a time-dependent part cos(ωt). If we
try to solve the Schrödinger equation i~dΨ

dt
= ĤΨ by assuming Ψn(t) =

Ψn(0)e−iEnt/~, we find that

i~
dΨn(t)

dt
= i~

dΨn(0)e−iEnt/~

dt

= i~Ψn(0)
d(e−iEnt/~)

dt
= Ψn(0)e−iEnt/~

(
En(t) + t

dEn(t)

dt

) (2.40)

There energy term is time-dependent in Eq. (2.40). With the following
treatment, we are able to get rid of it.

We now decompose the field into its positive- and negative-rotating com-
ponents

~E(t) =
~E0

2
(e−iωt + eiωt)

= ~E(+)e−iωt + ~E(−)eiωt
(2.41)

Therefore, the full Hamiltonian can be split into three components

Ĥ =

(
Eg 0
0 Ee

)
+

(
0 − ~d· ~E0

2
eiωt

− ~d· ~E0

2
e−iωt 0

)
+

(
0 − ~d· ~E0

2
e−iωt

− ~d· ~E0

2
eiωt 0

)
(2.42)

We will at first ignore the last part of the Hamiltonian in Eq. (2.22) to
see the effect of only the middle part on the system.

By combining the first two terms of Eq. (2.42), we get

Ĥ = ~

(
ωg

Ω
2
eiωt

Ω
2
e−iωt ωe

)
(2.43)

where Ω = − ~d· ~E0

~ , ωg = Eg

~ , ωe = Ee

~ .
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CHAPTER 2. ELECTRIC DIPOLE POLARIZABILITY

If we write the wavefunction as

|Ψ(t)〉 ≡

(
cg(t)
ce(t)

)
(2.44)

The Schrödinger equation then becomes

i

(
ċg(t)
ċe(t)

)
=

(
ωg

Ω
2
eiωt

Ω
2
e−iωt ωe

)(
cg(t)
ce(t)

)
(2.45)

However, Eq. (2.45) still has a time-dependence in the Hamiltonian, but
it is about to change with a small substitution.

We define c̃g = cg(t)e
−iωt and c̃e = ce(t)e

iωt. The vector

(
cg(t)
ce(t)

)
can be

written in terms of

(
c̃g(t)
c̃e(t)

)
by

(
cg(t)
ce(t)

)
=

(
c̃g(t)e

iωt/2

c̃e(t)e
−iωt/2

)
(2.46)

We also write down the vector

(
ċg(t)
ċe(t)

)
as a function of

(
c̃g(t)
c̃e(t)

)
and(

˙̃cg(t)
˙̃ce(t)

)
,

(
ċg(t)
ċe(t)

)
=

(
˙̃cg(t)e

iωt/2 + iω
2
c̃ge

iωt/2

˙̃ce(t)e
−iωt/2 − iω

2
c̃ee
−iωt/2

)
(2.47)

We substitute Eq. (2.46) and Eq. (2.47) to Eq. (2.45),

i

(
˙̃cg(t)e

iωt/2 + iω
2
c̃ge

iωt/2

˙̃ce(t)e
−iωt/2 − iω

2
c̃ee
−iωt/2

)
=

(
ωg

Ω
2
eiωt

Ω
2
e−iωt ωe

)(
c̃g(t)e

iωt/2

c̃e(t)e
−iωt/2

)
(2.48)

Grouping the time derivatives on one side and the rest on the other side,
we get the matrix equation
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i

(
eiωt/2 0

0 e−iωt/2

)(
˙̃cg(t)
˙̃ce(t)

)
=

(
(ωg + ω/2)eiωt/2 Ω

2
eiωt

Ω
2
e−iωt (ωe − ω/2)e−iωt/2

)(
c̃g(t)
c̃e(t)

)
(2.49)

We can get rid of

(
eiωt/2 0

0 e−iωt/2

)
by multiplying a time derivatives of

matrix

(
e−iωt/2 0

0 eiωt/2

)
on both sides. We find that

i

(
˙̃cg(t)
˙̃ce(t)

)
=

(
(ωg + ω/2) Ω

2
Ω
2

(ωe − ω/2)

)(
c̃g(t)
c̃e(t)

)
(2.50)

We find that Eq. (2.50) is familiar, except that all the

(
cg(t)
ce(t)

)
now

become to

(
c̃g(t)
c̃e(t)

)
. Most importantly, there is no time dependence left in

the matrix and we essentially have an equation of the form i~ ˙̃Ψ(t) = H̃Ψ̃(t)
which is a Schrödinger-like equation with a time-independent Hamiltonian.

Since the overall energy of a state doesn’t matter, only the energy dif-
ference matters. In other words, we can define that Eg = 0, Ee = E or
Ee = 0, Eg = −E. The two choices are the same. We can therefore add any
constant we want to ωg as long as we also add the same to ωe.

We shift the energies by adding the constant (ωe − ωg)/2 to the atomic
frequencies. Defining that ωeg ≡ ωe − ωg and ∆ = ωeg − ω, we can write

down the matrix form of ˆ̃H in terms of ωeg and Ω

ˆ̃H = ĤAC = ~

(
(ω − ωeg)/2 Ω/2

Ω/2 −(ω − ωeg)/2

)
= ~

(
−∆/2 Ω/2
Ω/2 ∆/2

)
(2.51)

The Schrödinger-like equation 2.50 now becomes:

i

(
˙̃cg(t)
˙̃ce(t)

)
=

(
−∆/2 Ω/2
Ω/2 ∆/2

)(
c̃g(t)
c̃e(t)

)
(2.52)
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With the math and a few approximations, we notice that the Hamiltonian
above is essentially the same as the Hamiltonian for a DC field [32]

ĤDC = ~

(
−ωeg/2 Ω/2

Ω/2 ωeg/2

)
(2.53)

while

ĤAC = ~

(
−∆/2 Ω/2
Ω/2 ∆/2

)
(2.54)

In other words, all our formulas and reasonings for DC field still apply,
with only the difference that the energy difference term Ee − Eg in ĤDC is
now replaced with the detuning of the laser from the resonance (Ee−Eg)−~ω
in ĤAC . Therefore, it is reasonable if we replace the energy difference term
in the Eqs.(2.35) with a detuning term to obtain the energy correction of the
states for the AC field. Here we choose to find the exact eigenenergies.

The time-independent Schrödinger-like equation is written in a matrix
form as

~

(
−∆/2 Ω/2
Ω/2 ∆/2

)(
c̃g(t)
c̃e(t)

)
= En

(
c̃g(t)
c̃e(t)

)
(2.55)

We can get the eigenenergies by

det

(
−~∆

2
− En ~Ω

2
~Ω
2

~∆
2
− En

)
= 0 (2.56)

and the eigenenergies are En = ±∆~
2

√
1 +

Ω2

∆2
.

We consider the case
Ω

∆
� 1, where the interaction is much weaker than

the detuning of the laser frequency from the resonance. The energy can
be expanded in a Taylor series around Ω

∆
≈ 0 up to order of ( Ω

∆
)2. For a

monochromatic optical field of the form

~E(t) =
~E0

2
e−iωt = ~E(+)e−iωt (2.57)

we get the perturbed energies

E ′g = Eg −
~Ω2

4∆
= Eg −

|〈g|~d· ε̂|e〉|2|E(+)|2

~(ω0 − ω)
(2.58)
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E ′e = Ee +
~Ω2

4∆
= Ee +

|〈g|~d· ε̂|e〉|2|E(+)|2

~(ω0 − ω)
(2.59)

where we write here ωeg = ω0 and ~E0 = ε̂E0.

They are the eigenenergies of the tilde-system. In principle, we could try
to find the energies in the non-tilde system. Fortunately, when Ω = 0, the
ground state energy Eg and excited state energy Ee in the tilde system are
corresponding to that of the non-tilde system. It is therefore reasonable for
us to assign the perturbed energies in Eq. 2.58 and Eq. 2.59 to the non-tilde
system.

Until now, we should not forget the fact that we ignored the last part of
our Hamiltonian in Eq. (2.42). Now we take it into account. Fortunately,
we don’t have to go through all the math again, we just realized that if we
had thrown out the middle term in (2.42) instead of the last, our calculation
would have performed with ω −→ −ω. Correspondingly, our Hamiltonian
would then be

ĤAC = ~

(
−(ω + ωeg)/2 Ω/2

Ω/2 (ω + ωeg)/2

)
(2.60)

The energy shift would then be

−|〈g|
~d· ε̂|e〉|2|E(−)|2

~(ω0 + ω)
and

|〈g|~d· ε̂|e〉|2|E(−)|2

~(ω0 + ω)
(2.61)

If ω ≈ ω0, then ∆ = ω0 − ω � ω0 + ω, and the energy shifts in Eq.
(2.61) are small to be neglected. This is also known as the Rotating Wave
Approximation (RWA). That is way we threw out the rotating wave term in
Eq. (2.42). If it turns out that ∆ = ω0 − ω ∼ ω0 + ω, we need to keep them
however. In that case, we would simply add the two perturbations together:

∆Eg = −|〈g|
~d· ε̂|e〉|2|E(+)|2

~(ω0 − ω)
− |〈g|

~d· ε̂|e〉|2|E(+)|2

~(ω0 + ω)
(2.62)

and

∆Ee =
|〈g|~d· ε̂|e〉|2|E(+)|2

~(ω0 − ω)
+
|〈g|~d· ε̂|e〉|2|E(+)|2

~(ω0 + ω)
(2.63)

where |E(+)|2 = |E(−)|2. For a two-level atom in a red-detuned laser light,
the energy shift is negative for the ground state and positive for the excited
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CHAPTER 2. ELECTRIC DIPOLE POLARIZABILITY

state. Therefore, the effect of the perturbation is to raise the energy of the
excited state and lower the ground state. The behaviors of the two states is
demonstrated in Fig 2.3.

(a) (b) (c)

Figure 2.3: Schematic of the energy shift of a two-level atom in a red-detuned
light with intensity I. (a) The energy shift is zero when I = 0. (b) The
ground state energy is shifted down by ∆Eg, and the excited state energy is
shifted up by ∆Ee, respectively. (c) The energy shifts of ground state and
excited state in a Gaussian beam.

The energy shift increases with the strength of the Ω2 which is propor-
tional to the intensity of the light. The energy shift also decreases with the
detuning of the laser from the resonance .

With the relation between the potential and polarizability in Eq.(2.4), we
get the corresponding dynamic polarizability

Re[α(ω)] =
2ω0|〈g|~d· ε̂|e〉|2

~(ω2
0 − ω2)

(2.64)
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2.3.3 Polarizability of a multi-level atom

Until now, we treated the atom as a two-level system, however, real atoms
have multiple levels. Therefore, we need to sum over contributions of multiple
levels in order to drive a right expression of the polarizability of the state |i〉

Re[α(ω)] =
∑
j 6=i

2ωji|〈i|~d· ε̂|j〉|2

~(ω2
ji − ω2)

(2.65)

The matrix element 〈i|~d· ε̂|j〉 can be written as a product of a reduced
matrix element ||d|| and a real transition coefficient cij by the Wigner Eckart
theorem [33],

〈i|~d· ε̂|j〉 = cij||d|| (2.66)

where ||d|| depends on the electronic orbital wavefunctions. The transition
coefficient cij refers to the coupling strength between two specific sublevels
|i〉 and |j〉.

If we consider the angular momentum quantum number of the states |i〉
and |j〉 as Ji and Jj, with the corresponding magnetic quantum numbers as
mi and mj. The coefficient cij can be written as [29]

cij =
√

(2Jj + 1)

(
Ji 1 Jj
−mi p mj

)
(2.67)

where p denotes the polarization of the laser light. p = 0 stands for π-
polarized light, and p = ±1 are for circularly-polarized light. The expression
above is not zero only when

mi + p = mj (2.68)

Therefore, the specific transition matrix element is then

〈i|~d· ε̂|j〉 =
√

(2Jj + 1)

(
Ji 1 Jj
−mi p mj

)
||d|| (2.69)

In order to calculate the state-dependent ground-state dipole potential or
state-dependent polarizability, we have to sum up the contributions from all
transition allowed specific excited states, with linestrengths cij and detunings
∆ij taken into account.

Although this state-dependent consideration gives modifications to the
dipole transitions, making the calculations more complex, it can provide
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great advantages to the experiments with the ultracold atoms. An example
is the context of an atomic clock in an optical dipole trap [34], where the
transition frequency between two atomic states serves as a time base for
the atomic clock. However, this transition frequency is changed if the two
atomic states have different polarizabilities, thereby experiencing difference
energy shifts in the optical dipole trap. This problem can be solved by
finding an appropriate light frequency, such that the frequency-dependent
polarizabilities of the two atomic states are identical. Consequently, the
transition frequency of the clock is unperturbed by the laser light, while the
experiment still benefits from the trapping environment. This frequency is
also known as magic frequency.
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Chapter 3

Polarizable system-diatomic
molecules

As we mentioned in the introduction, it is worthwhile to extend the in-
vestigation of the dynamic polarizability to diatomic molecules due to their
special properties. According to the formalism of the polarizability in the last
chapter, the derivation of the molecular polarizability requires a knowledge
of the energy difference ωji between two molecular states |i〉 and |j〉 and the

operator |〈i|~d· ε̂|j〉|. They are not easy to obtain since molecules possess com-
plex internal structures with more internal degrees of freedom than atoms.
Fortunately, we can simplify the description of diatomic molecules with the
Born-Oppenheimer approximation [35] which separates the molecular wave-
function into an electronic component and a nuclear component. With this
approximation, we are able to derive the molecular energy as contributions
from the electrons and nuclei. This separation works also for the transition
dipole moment.

3.1 Separation of diatomic molecular wave-

functions with Born-Oppenheimer approx-

imation

Atoms and molecules both contain negatively charged electrons and pos-
itively charged nuclei. However, in contrast to atoms which contain only one
nucleus, molecules contain two or more positively charged nuclei. Diatomic
molecules consist of two positively charged nuclei which are connected by
the internuclear axis. The electrons move outside the nuclei, meanwhile, the
two nuclei in diatomic molecules can vibrate, changing the internuclear dis-
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tance. They can also rotate with respect to each other around an axis. The
vibrational motion and rotational motion make the structures of diatomic
molecules complex. In total, all the particles which make up the molecules
are moving relative to each other. Therefore, it can be very difficult when
we try to get the energies of diatomic molecules by solving the Schrödinger
equation.

Fortunately, there exist various sophisticated approximations in quantum
mechanics. We introduce here the Born-Oppenheimer approximation, which
simplifies the motions of diatomic molecules by separating them into a nuclear
component and an electronic component. If we write this concept in the math
frame, the full Hamiltonian of a diatomic molecule can be written with two
components

Ĥ = Ĥnu + Ĥe (3.1)

where

Ĥnu = −~2

2

2∑
k=1

1

Mk

∇2
k (3.2)

and

Ĥe = − ~2

2me

∑
i

∇2
i −

e2

4πε0

∑
i

Z1

r1i

− e2

4πε0

∑
i

Z2

r2i

+
e2

4πε0

∑
ij

1

rij
+

e2

4πε0

Z1Z2

R

(3.3)

Ĥnu represents the kinetic energies of the nuclei 1 and 2, M1, M2 are
the mass of the nuclei 1 and 2, ∇2

1 and ∇2
2 are the Laplace operator of

the nuclear positions. The first term of Ĥe is the electronic kinetic energy,
me is the mass of an electron, ∇2

i is the Laplace operator of the electronic
position. The second and third terms are the attractive Coulomb potentials
between the nuclei and the electrons, r1i is the distances between nuclei 1
and electrons. r2i is the distances between nuclei 2 and electrons, Z1 and
Z2 are the atomic number of the nuclei 1 and nuclei 2. The fourth term is
the repulsive Coulomb potential between the electrons, rij is the distance

between electrons i and j. The last term of Ĥe is a repulsive term, R is the
distance between the two nuclei.

The repulsive term
e2

4πε0

Z1Z2

R
in the Ĥe has a dependence on the inter-

nuclear distance R. This is based on the fact that: Since the mass of the
nuclei M are heavier than the electrons me, the electrons in molecules move
much faster than the nuclei. We can consider the two motions are largely
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(a) (b)

(c)

Figure 3.1: The nuclei motion includes: (a) Rotation in the plane of the
paper. (b) Rotation out of the plane of the paper. (c) Vibrational motion
along the bond between two nucleus.

decoupled. In other words, the nuclei are taken as stationary when we are
describing the electronic motions. However, the nuclei can be stationary at
different positions. Therefore, the electronic motion depends parametrically
on the nuclei coordinate.

Based on this, we can separate the wavefunctions ψ(~ri, ~Rk) into nuclear
part and electronic part.

ψ(~ri, ~Rk) = Ψ( ~Rk)ϕe(~ri, ~Rk) (3.4)

where Ψ( ~Rk) is the nuclear wavefunction which depends on the positions ~Rk

of the nuclei. ϕe(~ri, ~Rk) is the electronic wavefunction of a clamped molecule

at fixed nuclear parameter ~Rk. ~ri is the position of the electrons.

Inserting Eq. (3.4) into the Schrödinger equation of diatomic molecules,
we obtain that

[Ĥnu + Ĥe]Ψ( ~Rk)ϕe(~ri, ~Rk) = EΨ( ~Rk)ϕe(~ri, ~Rk) (3.5)

where E is the total energy of the molecule.
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By expanding all terms in the last equation,

ϕe(~ri, ~Rk)ĤnuΨ(~Rk) + Ψ(~Rk)Ee(~Rk)ϕe(~ri, ~Rk) = Ψ( ~Rk)ϕe(~ri, ~Rk) (3.6)

we derive a Schrödinger-like equation with just the nuclear degrees of free-
dom.

[Ĥnu + Ee( ~Rk)]Ψ(~Rk) = EΨ(~Rk) (3.7)

The energy term Ee(Rk) in Eq. (3.7) depends on the nuclear coordinates.
It is obtained by the following process: for a fixed nuclear coordinate Rk, we
solve the electronic Schrödinger equation

Ĥe(~ri, ~Rk)ϕe(~ri, ~Rk) = Eeϕe(~ri, ~Rk) (3.8)

If we keep on repeating the calculations of the energies of Ee in Eq. (3.8)

at many nuclear coordinates, we can get this Ee(~Rk) which is an electronic
energy curve with a parametric dependence on the nuclear position. We
usually call this the electronic potential energy curve.

The eigenenergy E of the molecular system can be derived if the electronic
potential energy Ee(~Rk) and the nuclear Hamiltonian are known.

3.2 Solving the nuclear Schrödinger equation

In this section, we will try to solve the nuclear Schrödinger equation (3.7)
by discussing the kinetic energy term Ĥnu.

The Eq. (3.7) can be translated to[
− ~2

2µ
∇2 + Ee(R)

]
Ψ(~R) = EΨ(~R) (3.9)

This is an equation of a “particle” with reduced mass µ = MAMB/(MA+
MB) in a potential of Ee(R) which depends only on the internuclear distance

R between the two nuclei. However, the nuclear wavefunction Ψ(~R) depends
not only on the distanceR, but also on the orientation of nuclei in space which
we describe with the spherical harmonics Y (θ, φ). Therefore, the nuclear

wavefunction Ψ(~R) can be written as

Ψ(~R) = χ(R)Y (θ, φ) (3.10)

If we insert the 3.10 and write out the Laplace operator ∇2 into Eq. (3.9),
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it becomes as[
− ~2

2µ

(
1

R2

∂

∂R

[
R2 ∂

∂R

]
− Ĵ2

~2R2

)
+ Ee(R)

]
χ(R)Y (θ, φ) = Eχ(R)Y (θ, φ)

(3.11)
where J is the operator of the rotational angular momentum

Analogous to the treatment of the hydrogen atom, we can get equations
for the radial part and the angular part,

Ĵ2Y (θ, φ) = J(J + 1)~2Y (θ, φ) (3.12)

[
− ~2

2µ

1

R2

d

dR

(
R2 d

dR

)
− J(J + 1)~2

2µR2
+ Ee(R)

]
χ(R) = Eχ(R) (3.13)

where J is the quantum number of the rotational angular momentum. The

angular dependent term
J(J + 1)~2

2µR2
in Eq. (3.13) is also referred as a rota-

tional energy

Erot =
~2

2µR2
J(J + 1) (3.14)

The energy interval between two rotational levels J and J + 1 is

∆Erot = Erot(J + 1)− Erot(J) =
(J + 1)~2

2µR2
(3.15)

which is not equidistant, however, it increases linearly the with the rotational

quantum number J .

Around the bottom of the potential Re, the potential energy Ee(R) in
Eq. (3.13) can be well approximated by a parabolic potential

Ee(R) ≈ Ee(Re) +
1

2
kx2 (3.16)

where x = R−Re and k =
d2Ee(R)

dR2

∣∣∣∣
R=Re

.

By putting Eq. (3.16) into the nuclear radial Schrödinger equation (3.13)
and define a vibrational wavefunction Ψυ = χ(R)R, it becomes as[

− ~2

2µ

∂

∂x2
+

1

2
kx2

]
Ψυ = EυΨυ (3.17)
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where

Eυ = E − ~2

2µR2
J(J + 1)− Ee(Re) (3.18)

This is the Schrödinger equation for the 1D quantum harmonic oscillator.
In a harmonic approximation of the potential energy, the vibrational energy
is

Eυ = (υ +
1

2
)~

√
k

µ
(3.19)

υ is the vibrational quantum number.

The total energy E is thus

E = EeυJ = Ee(Re) + Eυ + Erot

= Ee(Re) + (υ +
1

2
)~

√
k

µ
+

~2

2µR2
J(J + 1)

(3.20)

Now we have finished the process of finding the total energy of diatomic
molecules with a few approximations, however, we should be aware that
the parabolic potential is only a good approximation in the vicinity of the
potential minimum at R = Re. When |R − Re| gets larger, this harmonic
potential approximation breaks down. A typical potential curve behaves like
this: when the two atoms in the molecules are very far from each other, the
potential energy curve will flatten out, showing a dissociation limit, where
the molecule is no longer bound, but two separate atoms instead. When R
is getting smaller, the potential energy is going down below the dissociation
limit. The curve keeps going down until the two atoms reach an equilibrium
distance value Re. The energy arises when R is smaller than Re. If R� Re ,
the internuclear repulsion gets so large that the potential is large and positive.
A common-used function which is used to describe this behavior is the Morse
potential [36] Ee(R) = De[1 − e−a(R−Re)]2 is plotted in Fig 3.2, where De is
the difference between dissociation energy and energy at equilibrium position.
There are also many excited states which are not bound, and their potential
energy curves decay with the internuclear distance exponentially.

The corresponding expression of the vibrational energy levels with the
Morse potential can be derived by the potential into the Eqs. (3.13). In such
cases, the intervals between adjacent levels are no longer equidistant, the
separations decrease with increasing vibrational quantum number υ. This
agrees well with experimental observations.
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Energy

Dissociation energy

Figure 3.2: A sketch of a Morse potential [36] for a bound electronic state of
a diatomic molecule. The energy curve flattens out at very large internuclear
distance where the molecule is no longer bound. It is two separate atoms
instead. As the two atoms move towards each other, the potential energy
decreases. The energy reaches a minimum value at an internuclear distance
Re. De is the dissociation energy. The vibrational energy difference between
two adjacent vibrational levels decreases, which is different from that of a
harmonic potential.

3.3 Determination of the analytical potential

energy functions

Although Morse potential describe the anharmonicity part of the poten-
tial, it is a simple function which is defined only with three parameters,
therefore, it is not used often in modern spectroscopy. Nowadays, there is
considerable amount of work which has developed sophisticated potentials
of diatomic molecules. Among them, there are theoretical approaches, e.g.
ab initio methods [37, 38], however, the derivation of potential energy with
spectroscopic data from the experimental measurements can provide more
accuracy than the theoretical approaches. In this section, we will introduce
several common used examples.
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The first one is the parameter-fit/Rydberg-Klein-Rees(RKR) method [39]
(demonstrated in Fig. 3.3) which decides the diatomic potential by calcu-
lating the turning point of the potential. It is been known that the energy
levels of diatomic molecules can be described with the [40] expressions

G(υ) = ωe(υ +
1

2
)− ωexe(υ +

1

2
)2 + ωeye(υ +

1

2
)3 + · · · (3.21)

Fυ(J) = BυJ(J + 1)−Dυ[J(J + 1)]2 +Hυ[J(J + 1)]3 + · · · (3.22)

Bυ = Be − αe(υ +
1

2
) + γe(υ +

1

2
)2 + · · · (3.23)

Dυ = De + βe(υ +
1

2
) + · · · (3.24)

In the next step, the parameters Gυ, Bυ, Dυ, Hυ in the expressions are
obtained by fitting the experimental data with an empirical fitting proce-
dure [41]. With the two parameters Gυ and Bυ, a RKR potential can be
produced by an inversion procedure [42]. Doing one round of this procedure
might not ensure the consistency. This is due to the reason that: by using the
program “Level” [43], the RKR potential can reversely generate parameters
of Dυ, Hυ, etc., which might not consistent with those from the empirical
fitting procedure. We therefore have to do iterative procedure. It is done as
follows: We keep the Dυ, Hυ generated from the program “Level” and then
operate another fit from the experimental data to get the improved param-
eters Gυ and Bυ. With these two improved Gυ and Bυ, a RKR potential is
again produced. Repeat this iterative procedure several times until the self
consistency test is done.

This parameter-fit/RKR method has some limitations, e.g. it lacks in-
formation to extrapolate the point wise potential to a region beyond the
experimental data.

Regarding the limitations, there are approaches which directly define ana-
lytical potential function for wide range of internuclear distance R and fit the
experimental data with the potential function directly. The determination
procedure is demonstrated in Fig. 3.4:

Step 1: At first, parametrized potential functions are chosen for diatomic
molecules of interest.

Step 2: Inserting the potential to the radial Schrödinger equation 3.13
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Select a parameterized

energy expression

Fit experimental data

to expression

Calculate RKR 

potential

Yes

Done

NoCalculate energies

by solving equation

Refit data to get

improved energy expression

Self-consistency 

test

Figure 3.3: Outline of the iterative constrained-parameter fitting procedure.
Fitting the experimental data to an empirical energy expression is done by the
program [41]. Then a point-wise potential can be decided by RKR inversion
procedure [42]. The energies are derived by solving the Schrödinger equation
with the program “Level” [43].
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and solving it by the program “Level” [43], we obtain the eigenvalues of the
molecules.

Step3: Now compare the calculated transition frequencies with the ex-
perimental frequency data.

Step 4: Adjusting the parameters of the analytical potential function if
they are not consistent with each other.

In recent years, there are a number of groups which developed successful
analytical potential functions for various diatomic molecules. Here we intro-
duce two which we use to describe the potentials of the molecules of interest
in this thesis.

(i) The “Morse/Lennard-Jones” potential function V(r) was proposed by
R. J. Le. Roy and P. G. Hajigeorgiou in [45]. For example, this potential
function was adopted in a paper [46] to decide the potential of the state D1Π
of NaK molecules. The expression of the analytical potential is

VMLJ(R) = De

[
1− (Re)

6

R6
e−φMLJ(R)yp(R)

]2

(3.25)

where R is the internuclear distance, Re is the equilibrium distance and De

is the vertical potential difference between the dissociation limit and equilib-
rium distance.

φMLJ(R) and yp(R) are functions which are defined as

φMLJ(R) = [1− yp(R)]

NS(orNL)∑
i=0

φiyp(R)i + yp(R)φ∞ (3.26)

yp(R) =
Rp −Rp

e

Rp +Rp
e

(3.27)

where p, φi, φ∞ are parameters. For short-range of the potential (R < Re),
φMLJ(R) sums from i = 0 to NS. For long-range of the potential (R > Re),
φMLJ(R) sums from NS to NL. In the paper [46], p = 2, Ns = 2 and NL = 8.
The parameters of φi are chosen with optimized values.

(ii) Another analytical potential curve is introduced by Tiemann and co-
workers [47,48] where a complete potential energy curve is divided into three
parts, a repulsive short range part USR(R), an inner well U(R) which includes
the equilibrium position Re and a long range part ULR(R).
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Select an initial

trial potential

Give parameters to
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Calculate energies

by solving the equation
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Done

No

Adjust parameters

of potential

Figure 3.4: Schematic of the direct fitting potential procedure which fits the
observed experimental data to a compact analytical potential function by a
least-square fitting method [44].
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The expressions for the three ranges are given respectively as

USR(R) = A+
B

Rq
for R < Ri (3.28)

U(R) =
n∑
k=0

akx
k for Ri ≤ R ≤ Ro (3.29)

with x =
R−Rm

R + bRm

(3.30)

and

ULR(R) = −C
6

R6
− C8

R8
− C10

R10
± Eex for R > Ro (3.31)

where Ri and Ro are turning points which separate the R into short range,
inner well and long range. Rm is chosen to be close to the equilibrium distance
Re. A and B are parameters for the short-range potential, they are set
together with q so that the short range potential connects smoothly with the
inner well potential at the position Ri. C6, C8 and C10 are coefficients in
the inverse power series for the long range potential and Eex is the exchange
term with expression of

Eex = AexR
γe−βR (3.32)

For deeply bound levels, the parameters C6, C8 and C10 don’t make sig-
nificant contributions, and they are set only to extend the potential curves
smoothly in the long range part to the dissociation limit.

Besides a variety of potential functions, the potential can be expanded
generally as

Ee(R) =
1

n!

(
∂nEe(R)

∂Rn

)
Re

(R−Re)
n (3.33)

It is not easy to solve the Schrödinger equation for this general poten-
tial expansion. Fortunately, Dunham [49] generated an expression for the
vibrational-rotational energies

EνJ =
∑

Yij

(
ν +

1

2

)i
[J(J + 1)]j (3.34)

where Yij are the Dunham parameters. They are carefully chosen such that
the energy expression can fit with the experimental values.
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The Dunham energy expression of the vibrational-rotational energy levels
corresponds to the Herzberg energy level expressions in Eq. (3.21) to (3.24).
The parameters in the two expressions are corresponding to each other by
Y01 = Be, Y10 = ωe, Y11 = −αe, and so forth.

3.4 Hund’s cases

In atoms, the electronic spin S and the electronic orbital angular mo-
mentum L couple with each other with an form of AL · S, where A is the
spin-orbit coupling constant. For molecules, besides the spin-orbit coupling,
there is also an electrostatic force resulting from the two nuclei, which are
connected along the internuclear axis. Due to this electrostatic force, L can
then couple to the internuclear axis electrostatically, giving a projection Λ,
S can couple to L through spin-orbit coupling. Moreover, the rotation of the
molecule N which is absent in atoms, also produces a field which interacts
with the momentum of the electrons. However, the effect of the nuclear spin
is neglected here. The total angular momentum for a diatomic molecule is
written as

J = L+N + S (3.35)

In the absence of an external electric field, the total angular momentum
conserves with the eigenvalues of J(J + 1)~2 for operator J2 and M~ for
the operator JZ , Z is the quantized axis in a space-fixed coordinate system
(Labeled with X, Y and Z).

In order to describe the relative strength of the electrostatic, spin-orbit
and rotation coupling, Hund identified five cases [50,51]. We introduce here
mainly from Case (a) to Case (d) which is demonstrated in Figure 3.5.

Hund’s case (a): The electrostatic interaction of the nuclei is much larger
than the spin-orbit interaction. Since nuclei in diatomic molecules are con-
nected by the internuclear axis z, therefore the electrostatic interaction has
an axial symmetry. The electronic orbital angular momentum precesses
about this internuclear axis, giving a projection of ±Λ~. The spin-orbit
coupling in this case is larger than the interaction with the rotation. The
electronic spin possesses also a projection of Σ~ to the internuclear axis,
where Σ = −S,−S+ 1, · · · , S− 1, S. The total projection is Ω = Λ + Σ. For
a given value of Λ, there are 2S+ 1 fine-structure levels. For example, for an
electronic state 3Π, which has quantum numbers of Λ = 1 and S = 1, then
Σ = −1, 0, 1, therefore Ω = 0, 1, 2. The multiple fine structures are written
as 3Π0, 3Π1, 3Π2.

Then, the rotational angular momentum N couples with the electronic
angular momentum and we have the total angular momentum J = Ω + N .
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Figure 3.5: Hund’s coupling cases

For each fine structure 3Π0, 3Π1, 3Π2, there are multiple rotational levels.

In Hund’s case (b), the spin-orbit coupling is weak when Λ 6= 0, or zero
when Λ = 0. In the situation of Λ 6= 0, although L precesses about the
internuclear axis, giving a projection with quantum number Λ, it does not
couple to the electronic spin. However, it couples to the rotation N to get a
K, and then K couples with S to form a total angular momentum J .

For diatomic molecules with light atoms, the electrostatic coupling is
stronger than spin-orbit coupling, hence Hund’s case (a) and (b) are good
approximations. However, the spin-orbit coupling will get stronger than the
electrostatic interaction when the number of electrons in molecules is getting
larger, Hund’s case (a) and (b) are not useful approximations. We therefore
introduce Hund’s case (c) for molecules consisting of heavy atoms.

In Hund’s case (c), the spin angular momentum couples to the orbit
angular momentum strongly, therefore the quantum numbers of Λ and Σ
are not good quantum numbers any more. Spin and orbit form a vector P
which will precess about the internuclear axis. We denote the projection to
the axis as Ω~, the total angular momentum is then J = Ω + N . Since N
is perpendicular to the internuclear axis, the projection of the total angular
momentum to the z axis is also Ω. The rotational energy expression is
therefore the same as Hund’s case (a).

In Hund’s case (d), the electrostatic effect is relative weaker compared
with the rotational coupling, therefore, L couples to N to form K which
then interacts to S to form a total angular momentum J .

Hund’s cases are ideal cases, molecules can undergo transformation be-
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tween different cases. For example, in Hund’s case (a), S couples with the
internuclear axis for low J , however, for high J levels, S can decouple with
the axis, but couple with K instead.

3.5 Transition dipole moment of the diatomic

molecules

Although we have introduced the way of obtaining the diatomic energy
levels, the derivation of the polarizability in Eq. (2.65) also requires the

knowledge of the interaction operator ~d· ε̂ between two molecular states. This
will be discussed with more details in this section.

At first, the dipole operator of diatomic molecules can be written as two
components: the electronic dipole operator and the nuclear dipole operator
~d = ~de + ~dnu. If we recall the Born-Oppenheimer approximation and describe
two molecular states |i〉 and |j〉 by Eq. (3.4), the transition dipole moment
between these two state can be written as

~dij =
x

Ψ∗iϕ
∗
i (
~de + ~dnu)Ψjϕjdτedτnu (3.36)

where τe refers to the coordinates in the electronic wavefunction (~r and ~R).
τe are the coordinates to describe the nuclear wavefunction (R, θ and φ).

The Eq. (3.36) can be expanded as two terms

~dij =

∫
Ψ∗i

[ ∫
ϕ∗i
~deϕjdτe

]
Ψjdτnu +

∫
Ψ∗i
~dnu

[ ∫
ϕ∗iϕjdτe

]
Ψjdτnu (3.37)

We can discuss Eq. (3.37) for two different transition cases:

Transition case (a): The dipole transition happens in the same electronic
state, but in different vibrational-rotational states. Due to the symmetry
property of the dipole moment, the first term of Eq. (3.37) is zero,∫

Ψ∗i

[ ∫
ϕ∗i
~deϕjdτe

]
Ψjdτnu = 0 (3.38)

Therefore, the transition dipole moment dij becomes as
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~dij =

∫
Ψ∗i
~dnu

[ ∫
ϕ∗iϕjdτe

]
Ψjdτnu

=

∫
Ψ∗i
~dnuΨjdτnu

(3.39)

The dipole transition in this case
∫

Ψ∗i
~dnuΨjdτnu can happen as a pure

rotational transition between the same vibrational state, or between different
vibrational states.

It is worthwhile to mention that the homonuclear diatomic molecules have
no vibrational-rotational spectra in the same electronic state because Z1 = Z2

and M1 = M2, therefore ~R2 = −~R2. This makes ~dnu = e(ZA ~R1 +ZB ~R2) = 0.

Transition case (b) : The dipole transition occurs between two different
electronic states. Since different electronic eigenstates are orthogonal to each
other, therefore the second term of Eq. (3.37) is zero,∫

Ψ∗i
~dnu

[ ∫
ϕ∗iϕjdτe

]
Ψjdτnu = 0 (3.40)

The transition dipole moment dij in Eq. (3.37) becomes as

~dij =

∫
Ψ∗i

[ ∫
ϕ∗i
~deϕjdτe

]
Ψjdτnu

=

∫
Ψ∗i
~deijΨjdτnu

(3.41)

where the electronic transition dipole moment ~deij is a parametric function
of the internuclear distance R. Because of the electronic contribution, the
electronic transition dipole moment can be along the internuclear axis, or
perpendicular to the internuclear axis.

The function ~deij can be expanded about the equilibrium distance Re as

~deij(R) = ~deij(Re) + (R−Re)
d

dR
~deij(R)

∣∣∣∣
R=Re

+ · · · (3.42)

Actually, ~deij(R) changes slowly against the internuclear distance, we can
make a rough approximation by taking the first term of Eq. (3.42)

~deij(R) ≈ ~deij(Re) (3.43)

Therefore the matrix element in Eq. (3.41) becomes that
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~dij = ~deij(Re)

∫
Ψ∗i (R)Ψj(R)dR (3.44)

If the interaction between the vibration and rotation is neglected, and we
only consider the vibrational part of the nuclear wavefunction Ψ(R) in Eq.
(3.44), we introduce here the Franck-Condon factor [52,53]

FCF (υi, υj) =

∣∣∣∣ ∫ Ψ∗υi(R)Ψυj(R)dR

∣∣∣∣2 (3.45)

The Franck-Condon factor describes the probability of the vibrational
transition between two different electronic states. If the two vibrational wave-
functions overlap more, the vibrational transition is more likely to happen.
It is approximated that the coordinates of the nuclei are not changed during
the electronic transition. Therefore, this transition is also referred as vertical
transition.

The formalism of the dynamic polarizability requires not only the knowl-
edge of the transition dipole moment, but also the matrix dipole moment of
the operator ~d· ε̂. There exists a problem that the molecular dipole moment
~d is defined in the molecule-fixed system (labeled with x, y and z), and the
light field ε̂ is defined in the space-fixed system (labeled with X, Y and Z).
In order to make a dot product of them, we need to make a transformation of
the dipole moment from the molecule-fixed system to the space-fixed system.
This transformation is accomplished by the rotation matrices [50,54].

We now write ~d· ε̂ with the tensor form

T 1
p (ε̂)

1∑
q=−1

D1
pq
∗
T 1
q (~d) (3.46)

where p indicates the polarization of light, D1
pq
∗

is the rotational matrix
which rotates the dipole moment from the molecular-fixed system to the
space-fixed system. T 1

q (~d) = ~dq denotes the electronic dipole moment in the

molecular frame. T 1
0 (~d) = ~d0 = ~dz which is along the internuclear axis z.

T 1
±1(~d) = ~d±1 = ∓ 1√

2
(~dx ± i~dy) are perpendicular to the z axis.

Putting Eq. (3.46) into 〈i|~d· ε̂|j〉, we obtain that

〈i|~d· ε̂|j〉 =
1∑

q=−1

〈
υi|~dq(ei, ej)|υj

〉〈
Ji,Ωi,Mi|D1

pq
∗|Jj,Ωj,Mj

〉
(3.47)

where the rotational wavefunction is included in the nuclear wavefunction.
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〈
υi|dq(ei, ej)|υj

〉
=
∫

Ψ∗υi(R)

[ ∫
ϕ∗i (r, R)dqϕj(r, R)dτe

]
Ψυj(R)dτnu. e denotes

the electronic state and υ denotes vibrational function Ψυ(R). . It is assumed
here that the vibrational wavefunction is independent of the rotational part
here. J , Ω and M are the quantum numbers of the total angular momentum
and its projection to the internuclear axis and the space-fixed quantization
axis respectively.

The eigenfunction with |J,Ω,M〉 in Eq. (3.47) can be written as rota-
tional matrices

|J,Ω,M〉 =

√
(2J + 1)

8π2
DJ
MΩ

∗
(3.48)

Therefore, the last term of Eq. (3.47)
〈
Ji,Ωi,Mi|D1

pq
∗|Jj,Ωj,Mj

〉
is an

integral of three rotational matrices. We can evaluate it by angular momen-
tum algebra [55]〈

Ji,Ωi,Mi|D1
0q
∗|Jj,Ωj,Mj

〉
= [(2Ji + 1)(2Jj + 1)]1/2

×

(
Ji 1 Jj
−Mi p Mj

)(
Ji 1 Jj
−Ωi q Ωj

)
(3.49)

With the expression in Eq. (3.49), Eq. (3.47) can be written as

〈i|~d· ε̂|j〉 =
1∑

q=−1

〈
υi|~dq(ei, ej)|υj

〉
[(2Ji + 1)(2Jj + 1)]1/2

×

(
Ji 1 Jj
−Mi p Mj

)(
Ji 1 Jj
−Ωi q Ωj

) (3.50)

Finally, we can reach a general formalism of the polarizability for the
diatomic molecular state |i〉 as

Re[α(ω)] =
∑

ejυjJjMjΩj

2ωeiυiJiMiΩi,ejυjJjMjΩj

~(ω2
eiυiJiMiΩi,ejυjJjMjΩj

− ω2)

×
1∑

q=−1

∣∣∣∣ 〈υi|~dq(ei, ej)|υj〉 ∣∣∣∣2(2Ji + 1)(2Jj + 1)

×
[(

Ji 1 Jj
−Mi p Mj

)(
Ji 1 Jj
−Ωi q Ωj

)]2

(3.51)
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where ωeiυiJiMiΩi,ejυjJjMjΩj
= ωeiυiJiMiΩi

− ωejυjJjMjΩj
is the rovibrational

energy difference between the state |i〉 and the state |j〉. The 3-j symbol is
nonzero when q = Ωi − Ωj.
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Chapter 4

Optical dynamic polarizability
of the diatomic molecules RbCs
and NaK

As we stated the significance of the magic wavelength for atoms, a magic
wavelength is also expected to be found for diatomic molecules, such that
two molecular states have identical polarizabilities. Motivated by this, in this
chapter, we will take advantage of the theoretical approach in the last chapter
and discuss the dynamic polarizabilities of the rotational states in the ground
state X1Σ+ of the NaK and RbCs molecules at a light polarization along Z
axis. This chapter is arranged as follows: first, the formalism of the dynamic
polarizability is reorganized for the ground state X1Σ+. In other words, we
need to figure out which excited levels should be taken into account in the
summation of Eq.(3.51). Second, we demonstrate the potential curves of the
ground state X1Σ+ and the excited states, as well as the transition dipole
moments. Third, we use the program “Level” [43] to obtain the rovibrational
energy and matrix element of transition dipole moment. An output example
is demonstrated between the ground state X1Σ+ and the excited state A1Σ+

of NaK. At the end, we demonstrate the dynamic dipole polarizabilities of
the two lowest rotational states of RbCs and NaK as a function of the laser
frequency in a near infrared region when the light polarization is along Z
axis.
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CHAPTER 4. OPTICAL DYNAMIC POLARIZABILITY OF THE
DIATOMIC MOLECULES RBCS AND NAK

4.1 Dynamic polarizability formalism of the

ground state X1Σ+

According to the discussion in the last chapter, we will identify the tran-
sition dipole moment between the state X1Σ+ and the excited states with
q = 0 and q = ±1 cases.

In the case of the q = 0 electronic transition, Eq. (3.50) reduces to

〈i|~d· ε̂|j〉 =
〈
υi|~d0(Ωi,Ωj)|υj

〉
[(2Ji + 1)(2Jj + 1)]1/2

×

(
Ji 1 Jj
−Mi p Mj

)(
Ji 1 Jj
−Ωi 0 Ωj

)
(4.1)

Here p = 0 for polarization along Z axis. Since Ωi = 0, therefore Ωj = 0,

and ~d0(Ωi,Ωj) is the electronic transition dipole moment from Σ state to Σ

state ~d0(Σ,Σ). The Σ − Σ transition is also referred as parallel transition.
The 3-j symbol in Eq. (4.1) is nonzero when Mi = Mj.

In the case of the q = ±1 electronic transition,

〈i|~d· ε̂|j〉 =
〈
υi|~d±1(Ωi,Ωj)|υj

〉
[(2Ji + 1)(2Jj + 1)]1/2

×

(
Ji 1 Jj
−Mi p Mj

)(
Ji 1 Jj
−Ωi ±1 Ωj

)
(4.2)

Here p = 0. We know that Ωi = 0 and Ωj = ∓1. ~d±1(Ωi,Ωj)(q = ±1)
is the electronic transition dipole moment from the Σ state to the Π state
~d±1(Σ,Π). The Σ−Π transition is also referred as perpendicular transition.
The 3-j symbol in Eq. (4.2) is nonzero when Mi = Mj.

With the two expressions in Eq. (4.1) and Eq. (4.2), the diatomic polar-
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TRANSITION DIPOLE MOMENT DATA OF RBCS AND NAK

izability of the ground state X1Σ+ can be specified as

Re[α(ω)] =
∑

ejυjJjMjΩj∈Σ

2ωeiυiJiMiΩi,ejυjJjMjΩj

~(ω2
eiυiJiMiΩi,ejυjJjMjΩj

− ω2)
|
〈
υi|~d0(Σ,Σ)|υj

〉
|2

× (2Ji + 1)(2Jj + 1)

[(
Ji 1 Jj
−Mi 0 Mj

)(
Ji 1 Jj
0 0 0

)]2

+
∑

ejυjJjMjΩj∈Π

2ωeiυiJiMiΩi,ejυjJjMjΩj

~(ω2
eiυiJiMiΩi,ejυjJjMjΩj

− ω2)
|
〈
υi|~d±1(Σ,Π)|υj

〉
|2

× (2Ji + 1)(2Jj + 1)

[(
Ji 1 Jj
−Mi 0 Mj

)(
Ji 1 Jj
0 ±1 ∓1

)]2

(4.3)

4.2 Molecular potential energy function and

transition dipole moment data of RbCs

and NaK

In principle, we should consider all singlet Σ and Π excited states (A1Σ+,
B1Π, C1Σ, D1Π, . . .). However, only a few excited states can make noticeable
contributions to the sum in Eq. (3.51). The main contributions are from
the transition to the excited states A1Σ+ and B1Π, since these two excited
states have similar potential curves as the ground state X1Σ+ and their
equilibrium position are close with that of the state X1Σ+. Higher excited
states don’t make remarkable contributions to the polarizability since the
electronic transition dipole moment from the ground state towards them are
much weaker. Furthermore, the polarizability scales in inverse proportion
to the difference of the square of energies ω2

ji − ω2, therefore, excited states
with higher energies contribute even less to the polarizability. Due to these
reasons, it is reasonable for us to consider only a few excited states, while
the validity is still ensured.

In the table 4.1, we list the potentials and transition dipole moments
of the RbCs and NaK molecules. The data are derived from experimental
measurements as well as theoretical results. For example, an analytical po-
tential expression of the ground state X1Σ+ of NaK is taken from the work
by E.Tiemann’s group [59], where the analytical potential function is split
into a repulsive short range part USR(R), an inner well U(R) which contains
the equilibrium position and a long range part ULR(R). The parameters of
the analytical potential function from the work of [59] are given in table 4.2.
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Table 4.1: We list in this table the potential energy curves of the ground
state as well as some excited states of RbCs and NaK. Some of them are de-
rived by ab inito calculations, and some are derived from experimental data.
In addition, the spin-orbit coupling is also considered in some potentials,
although it is less important for lighter molecules.

Molecule
Experimental ground state

X1Σ+

ab initio
excited potential energy

Experimental excited
states

S-O
coupling

PDMs
TDMs

RbCs [56]
21Σ+, 13Π

23Σ+, 11Π [57]
21Σ+, 13Π [58]

(21Σ+/13Π)
(23Σ+/11Π)

[57]

NaK [59]
(4, 5)1Σ+

(2− 4)1Π [57]

A1Σ+, b3Π [60]
B1Π [61],C1Σ [62]
D1Π, d3Π [46]

(A1Σ+/b3Π)
(D1Π/d3Π)

[63]

The reference paper [63] gives non-zero transition dipole moments be-
tween the singlet state and triplet states, which does not agree with the
general transition rules. This is due to the spin-orbit coupling (SO) [64–66]
The singlet excited states can couple with triplet excited states, resulting a
non-zero transition dipole moment from the ground state X1Σ+ to the triplet
electronic states. For example, in the paper [63] where the coupling between
the singlet state A1Σ+ and the triplet state b3Π of NaK are introduced.

We plot the potential curves of the ground state and several electronic
higher states of RbCs in Fig. 4.2. The transition dipole moments of RbCs
are given in Fig. 4.3. The potentials of NaK is demonstrated in Fig. 4.4 for
NaK. The permanent dipole moment of the ground state X1Σ+ of NaK, as
well as its transition dipole moments towards excited states are given in Fig.
4.1.
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Table 4.2: Here we cite the potential energy function of the ground state
X1Σ+ of NaK from [59]. The potential is given with respect to the common
asymptote 3s+4s.

For R < Ri = 2.53Å
A –0.44525554× 104 cm−1

B + 0.107112840 × 106 cm−1Å4

q 8.3980

For 2.53Å = Ri ≤ R ≤ Ro = 11.3Å
b -0.4

Rm 3.49901422 Å
a0 –5273.6205 cm−1

a1 –0.1254 cm−1

a2 0.14536158 × 105 cm−1

a3 0.11484948 × 105 cm−1

a4 –0.3902171 × 103 cm−1

a5 –0.16931635 × 105 cm−1

a6 –0.374520762 × 105 cm−1

a7 0.106906160 × 106 cm−1

a8 0.5495867136 × 106 cm−1

a9 –0.2164021160× 107 cm−1

a10 –0.10160808788 × 108 cm−1

a11 0.22144308806× 108 cm−1

a12 0.10995928468 × 109 cm−1

a13 –0.15497420539× 109 cm−1

a14 –0.782460886034 × 109 cm−1

a15 0.764737283856 × 109 cm−1

a16 0.3818679376129 × 1010 cm−1

a17 –0.270560881733 × 1010 cm−1

a18 –0.1307771478369× 1011 cm−1

a19 0.6931241396136 × 1010 cm−1

a20 0.3179698977691 × 1011 cm−1

a21 –0.1275832531699 × 1011 cm−1

a22 –0.5474439830834 × 1011 cm−1

a23 0.1640384471424 × 1011 cm−1

a24 0.6534858404306 × 1011 cm−1

a25 –0.139350481085 × 1011 cm−1

a26 –0.5148927815627 × 1011 cm−1

a27 0.700666554236 × 1010 cm−1

a28 0.240949154116 × 1011 cm−1

For R > Ro11.3Å

C6 0.1179302 × 108 cm−1Å6

C8 0.3023023× 109 cm−1Å8

C10 0.9843378 × 1010 cm−1Å10

Aex 0.1627150× 104 cm−1Å−γ

γ 5.25669

β 2.11445 ×−1Å−1
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Figure 4.1: The permanent dipole moment of the ground state X1Σ+ (blue
curve) and the transition dipole moments to other excited states of NaK. All
the dipole moment data are taken from [63].
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Figure 4.2: We take the potentials of the ground singlet state X1Σ+

and other electronic excited of RbCs from the paper [57](The excited
states of 21Σ+, 13Π, 23Σ+, 11Π are corresponding to the convention of
A1Σ+, a3Π, b3Σ+, B1Π). The points in the plot are the pointwise data ob-
tained by the ab initio calculations.
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Figure 4.3: Pointwise transition dipole moments (TDMs) of RbCs from the
ground state X1Σ+ to excited states as a function of internuclear separation
R are from [57]. At short-range internuclear separation, the dipole moments
depend stronger on R than the long-range. The dipole moment curves change
suddenly near 10a0 of the top panel and 8.2a0 of the bottom panel, which
means that there are avoided crossings between two potentials due to the
spin-orbit coupling.
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Figure 4.4: The analytical potential of the ground singlet state X1Σ+ and
other electronic excited states of NaK as a function of the internuclear dis-
tance R. The references where we cite the potentials are listed in the table
4.1.
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4.3 Derivation of the rovibrational energies

for RbCs and NaK

Now we will insert the potential energy information introduced in the last
section into the radial Schrödinger equation (3.13) and solve the equation by
taking advantage of the program “Level” [43]. In the program, the potential
can be given either by potential functions or by pointwise potential data. In
the former case, in order to characterize the potential function, a series of
parameters which defines the potential function are assigned to the READ
statements. In the latter case where potential is given by read-in pointwise
data, an interpolation has to be operated to generate a data array which is
sufficient for the numerical integral in Eq.(3.13). Besides the derivation of the
rovibrational energy, the program also provides other calculations, e.g., it can
evaluate expectation values or the matrix element between two rovibrational
levels.

In this thesis, we use the program and calculate energy difference and
dipole moment for several transitions. The table down below is an output
example. The transition is between the ground state X1Σ+ and the excited
state A1Σ+ of NaK. υ′, J ′ and υ′′, J ′′ in the program stand for the upper
and lower states. E ′ and E ′′ label the energy. A(Einstein) in the table
denotes Einstein coefficient [67]. 〈υ′J ′|M |υ′′J ′′〉 is the matrix element of the
transition dipole moment. The R here is not the internuclear distance. It is
the R branch of the rotational transitions. The D in the table is the notation
of the exponential of 10.

=======================================================================

dJ(J") v’ v" E’ E"-E’ A(Einstein) F-C Factor <v’J’|M|v"J">

----- ------ ----- --------- ----------- ----------- -----------

R(0) 0 - 0 61.86 12115.8682 6.18719D+02 3.24364D-05 5.76866D-02,

R(0) 1 - 0 61.86 12196.5782 5.35357D+03 2.76966D-04 -1.68006D-01,

R(0) 2 - 0 61.86 12276.7813 2.40211D+04 1.22664D-03 3.52395D-01,

R(0) 10 - 0 61.86 12902.2563 1.84052D+06 8.52669D-02 2.86306D+00,

R(0) 11 - 0 61.86 12978.6345 1.99859D+06 9.15374D-02 -2.95718D+00,

R(0) 12 - 0 61.86 13054.6480 2.04549D+06 9.26331D-02 2.96558D+00,

R(0) 13 - 0 61.86 13130.3050 1.98561D+06 8.89237D-02 -2.89664D+00,

R(0) 14 - 0 61.86 13205.6126 1.83788D+06 8.14053D-02 2.76300D+00,

R(0) 15 - 0 61.86 13280.5772 1.62939D+06 7.13884D-02 -2.57957D+00,

R(0) 16 - 0 61.86 13355.2043 1.38900D+06 6.02040D-02 2.36175D+00,

R(0) 17 - 0 61.86 13429.4986 1.14237D+06 4.89896D-02 -2.12409D+00,

R(0) 18 - 0 61.86 13503.4640 9.09112D+05 3.85779D-02 1.87932D+00,
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R(0) 19 - 0 61.86 13577.1039 7.01873D+05 2.94750D-02 -1.63787D+00,

R(0) 20 - 0 61.86 13650.4211 5.26899D+05 2.19000D-02 1.40768D+00,

R(0) 21 - 0 61.86 13723.4176 3.85399D+05 1.58561D-02 -1.19432D+00,

R(0) 22 - 0 61.86 13796.0950 2.75172D+05 1.12074D-02 1.00122D+00,

R(0) 23 - 0 61.86 13868.4544 1.92099D+05 7.74613D-03 -8.30004D-01,

R(0) 24 - 0 61.86 13940.4963 1.31317D+05 5.24304D-03 6.80930D-01,

R(0) 25 - 0 61.86 14012.2209 8.80192D+04 3.48007D-03 -5.53207D-01,

R(0) 26 - 0 61.86 14083.6280 5.79203D+04 2.26795D-03 4.45352D-01,

R(0) 27 - 0 61.86 14154.7169 3.74603D+04 1.45281D-03 -3.55462D-01,

R(0) 28 - 0 61.86 14225.4865 2.38369D+04 9.15721D-04 2.81438D-01,

R(0) 29 - 0 61.86 14295.9357 1.49376D+04 5.68476D-04 -2.21147D-01,

R(0) 30 - 0 61.86 14366.0627 9.22670D+03 3.47886D-04 1.72535D-01,

R(0) 31 - 0 61.86 14435.8655 5.62219D+03 2.10035D-04 -1.33705D-01,

R(0) 32 - 0 61.86 14505.3420 3.38213D+03 1.25201D-04 1.02959D-01,

R(0) 33 - 0 61.86 14574.4897 2.01005D+03 7.37374D-05 -7.88085D-02,

R(0) 34 - 0 61.86 14643.3059 1.18099D+03 4.29360D-05 5.99824D-02,

R(0) 35 - 0 61.86 14711.7875 6.86396D+02 2.47330D-05 -4.54097D-02,

R(0) 36 - 0 61.86 14779.9315 3.94865D+02 1.41029D-05 3.42039D-02,

R(0) 37 - 0 61.86 14847.7343 2.24960D+02 7.96449D-06 -2.56403D-02,

R(0) 38 - 0 61.86 14915.1923 1.26992D+02 4.45717D-06 1.91339D-02,

R(0) 39 - 0 61.86 14982.3019 7.10678D+01 2.47307D-06 -1.42177D-02,

R(0) 40 - 0 61.86 15049.0588 3.94467D+01 1.36115D-06 1.05221D-02,

R(0) 41 - 0 61.86 15115.4590 2.17265D+01 7.43492D-07 -7.75751D-03,

R(0) 42 - 0 61.86 15181.4979 1.18796D+01 4.03222D-07 5.69886D-03,

R(0) 43 - 0 61.86 15247.1711 6.45088D+00 2.17215D-07 -4.17239D-03,

R(0) 44 - 0 61.86 15312.4738 3.48017D+00 1.16271D-07 3.04503D-03,

R(0) 45 - 0 61.86 15377.4009 1.86586D+00 6.18610D-08 -2.21551D-03,

R(0) 46 - 0 61.86 15441.9474 9.94410D-01 3.27215D-08 1.60727D-03,

R(0) 47 - 0 61.86 15506.1078 5.26948D-01 1.72112D-08 -1.16276D-03,

R(0) 48 - 0 61.86 15569.8767 2.77723D-01 9.00425D-09 8.38953D-04,

R(0) 49 - 0 61.86 15633.2484 1.45642D-01 4.68697D-09 -6.03850D-04,

R(0) 50 - 0 61.86 15696.2168 7.60492D-02 2.42879D-09 4.33725D-04,

R(0) 51 - 0 61.86 15758.7759 3.95818D-02 1.25410D-09 -3.11045D-04,

R(0) 52 - 0 61.86 15820.9192 2.05648D-02 6.46077D-10 2.22882D-04,
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4.4 Dynamic polarizabilities of ultracold po-

lar molecules NaK and RbCs

The Fig. 4.5 down below shows the dynamic polarizability as a function
of laser frequency in the near infrared domain when the light polarization is
along the Z direction. The four states shown in the figure are υ=0, J=0,
M = 0, and υ=0, J=1, M=0,±1 of the X1Σ+ ground state. The laser
light range we choose is in a region from 9000 cm−1 to 10000 cm−1, where
an often-used wavelength 1064 nm (or wavenumber of 9398cm−1) for optical
latttice or optical tweezer is included. One atomic unit of polarizability is
1.648 777 2731× 10−41C2 m2/J.

It is obvious that the polarizability curves of four states as a function of
the laser frequency do not cross in this near-infrared region. In other words,
with only the influence of a near-infrared trapping laser field, we can not
find a “magic frequency” where the polarizabilities of two rotational states
of RbCs and NaK are identical. Unfortunately, this result does not provide
magic conditions to the experiments where the molecules are trapped in
optical lattices.

In the next chapter, another approach is introduced to find the magic
conditions where we apply a static electric field to align the molecules and
trap the molecules with a wavelength of 1064 nm.
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Figure 4.5: We calculate the real part of the dynamic polarizability of the
rotational states J = 0 and J = 1 of RbCs (top panel) and NaK (bottom
panel) as a function of laser frequency in the near-infrared region. The po-
larizability curves of different rotational states do not cross. In other words,
we can not find a “magic frequency” in the near infrared region.
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Chapter 5

Magic field strength and magic
angle for rotational states of
RbCs and NaK

The inducement of the dipole moment in the lab frame by mixing the
rotational states with a DC electric field is of great significance to the ex-
periments. The corresponding mixing strength depends on the electric field
value. This motivates us to investigate the polarizability of the mixed rota-
tional states in the ground state X1Σ+ as a function of the DC electric field
strength. In this thesis, we present this dependence of a few low rotational
states of RbCs and NaK when the trapping light has a specified wavelength
at 1064 nm, which is different from the last chapter where the wavelength is
a variable. A magic field strength value is expected, where the polarizabil-
ities of two mixed rotational states match. In addition, we verify that this
magic field strength is independent of the light polarization by discussing the
dynamic polarizability at different laser polarizations.

Similar work has been done in a publication [16] where the dependence of
the mixed rotational states of RbCs was discussed when the linearly polarized
light has a different wavelength at 1090 nm.

Besides that, we also investigate the polarizability when the light is lin-
early polarized as a function of the relative angle with respect to the DC
field. This angle dependence is discussed when the field strength ε is set
with several discrete values. Similar to the magic field strength, a magic
angle is also expected between two mixed rotational states.
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BETWEEN ROTATIONAL STATES OF RBCS AND NAK WHILE
APPLYING WITH AC AND DC FIELD SIMULTANEOUSLY

5.1 Mixing rotational states with a DC field

First we discuss the mixing of the rotational states in the ground state
X1Σ+ by an external DC electric field ~ε which is aligned along the space-
fixed Z direction (~ε = εẐ). The full Hamiltonian of a diatomic system in an
electric field is given by

H = H0 − ~d· ~ε (5.1)

The Hamiltonian H0 has an eigenenergy expression of

E(υ, J) = Gυ +BυJ(J + 1) (5.2)

where Gυ is the vibrational energy and Bυ is the rotational constant of the
vibrational level υ. We consider here only the lowest order of the rotational
energy.

The matrix element of the DC stark shift between two rovibrational states
|υiJiMiΩi〉 and |υjJjMjΩj〉 in the ground state can be written as

〈υiJiMiΩi| − ~d· ~ε|υjJjMjΩj〉 =−
√

(2Ji + 1)(2Jj + 1)× 〈υi|d|υj〉 × ε

×

(
Ji 1 Jj
−Mi 0 Mj

)
×

(
Ji 1 Jj
−Ωi q Ωj

)
(5.3)

where q = Ωi = Ωj = 0, since the transition occurs in the same electronic
state X1Σ+. 〈υi|d|υj〉 =

∫∞
0
dRΨ∗υi(R)d(R)Ψυj(R) where d(R) is the perma-

nent electric dipole moment of the ground state X1Σ+. Ψυ is the vibrational
wavefunction. The two 3-j symbols are non-zero when Mi = Mj and Ji+Jj+1
is even. We are able to make the assumption here that the coupling between
different vibrational states is neglected here.

By diagonalizing the full Hamiltonian matrix, we can obtain the result-
ing new rotational states |υJ̃M〉. It is can be expressed as a superposition
of the original rotational states by |υJ̃M〉 =

∑
J U

υM
J̃,J
|υJM〉. UυM

J̃,J
is the

corresponding coupling constant of the rotational states |υJM〉.
For example, the new rotational state of |J̃ = 0,M = 0〉 can be written

as

|υ, J̃ = 0,M = 0〉
=UυM

J̃=0,J=0
|υ, J = 0,M = 0〉+ UυM

J̃=0,J=1
|υ, J = 1,M = 0〉

+UυM
J̃=0,J=2

|υ, J = 2,M = 0〉+ · · · .
(5.4)

For zero static electric field strength value, the mixing constant UυM
J̃=0,J=0
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of the state |υ, J = 0,M = 0〉 is equal to 1, and other constants are zero. The
DC field that we use here is up to a strength of 15 kV/cm. At this strength
value, we can treat that the state |J̃ = 0,M = 0〉 is a mixture of rotational
states which are truncated at J = 10.

The fact that the mixing constants UυM
J̃,J

depend on ε motivates us to

explore the dynamic polarizability of the state |υJ̃M〉 as a function of the
field strength. In this thesis, we are interested at the two lowest rotational
states with J̃ = 0 and J̃ = 1 in the first vibrational state of the electronic
ground state X1Σ+.

5.2 Dynamic polarizabilities of non-degenerate

states

Now we will reorganize the polarizability formula in order to write it in
terms of the mixing constant UυM

J̃,J
and the original rotational states |υJM〉 [1]

Re[α(ω)] =
∑

ejυjJjMjΩj

2ωejυjJjMjΩj

(ωejυjJjMjΩj
− ωυJ̃M)2 − ω2

× 〈υJ̃M |~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ̃M〉

=
∑
J1,J2

UυM
J̃,J1

UυM
J̃,J2
×

∑
ejυjJjMjΩj

2ωejυjJjMjΩj

(ωejυjJjMjΩj
− ωυJ̃M)2 − ω2

× 〈υJ1M |~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ2M〉

(5.5)

where J1 can be different from J2.

As the way discussed in Eq. (3.51), the polarizability can be further
written as

Re[α(ω)] =
∑
Ωj

αΩj(ω)
∑
J1,J2

UυM
J̃,J1

UυM
J̃,J2

×
∑
Jj ,Mj

[(2J1 + 1)(2Jj + 1)]1/2

(
J1 1 Jj
−M p Mj

)(
J1 1 Jj
0 q Ωj

)

× [(2J2 + 1)(2Jj + 1)]1/2

(
Jj 1 J2

−Mj −p M

)(
Jj 1 J2

−Ωj −q 0

)
,

(5.6)
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where
αΩj(ω) ≈

∑
ejυj

〈υ|dµ|ejυjΩj〉〈ejυjΩj|dν |υ〉

×
2ωejυj

(ωejυj − ωυ)2 − ω2

(5.7)

When q = 0, Ωj = 0, the transition is corresponding to the Σ − Σ
transition. When q = ±1, Ωj = ∓1, the transition is corresponding to the
Σ − Π transition. Here we make the approximation that 〈υ|d|ejυjΩj〉 and
ωejυj − ωυ in Eq. (5.7) depend nearly only on the electronic and vibrational
levels.

5.2.1 Light polarized along the Z axis

Fig. 5.1 gives the dynamic polarizabilities of the four mixed rotational
levels |J̃ = 0,M = 0〉, |J̃ = 1,M = 0〉 and |J̃ = 1,M = ±1〉 of RbCs and
NaK as a function of the electric field from 0 to 15 kV/cm. Here the laser
field here is polarized along the external DC electric field (ε̂=Ẑ).

We see that the polarizability curves of the states |J̃ = 0,M = 0〉 and
|J̃ = 1,M = 0〉 cross at a strength of 5.2 kV/cm for NaK and 2 kV/cm for
RbCs.

The magic field strength value of RbCs molecules is smaller for NaK
molecules, this can be explained by the perturbation theory of the rotating
molecules in external electric field. In the perturbative assumption, the dipole
interaction due to the DC Stark shift is considered much smaller than the
rigid rotor energy level splitting

dε� Bυ (5.8)

According to Eq.(2.33), the first order correction to the rotational wave-
function has a dependence on dε/Bυ. In other words, it depends on the
relative strength between the DC Stark effect Hamiltonian and the rota-
tional energy splitting. As a consequence, the magic field strength scales
with Bυ/d. This can be verified in the following table where we list out the
dipole moment and rotational constant for RbCs and NaK compare their
magic field strengths.

Molecules Bυ(cm−1) d(Debye)
Bυ

d
(cm−1/Debye) Magic field(kV/cm)

RbCs 0.0166 1.3 0.0127 2
NaK 0.095 2.76 0.0333 5.2
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The scale of the magic electric field strengths between RbCs and NaK
molecules is 2/5.2 ≈ 0.384. It agrees well with the scale of the Bυ/d of these
two molecules, which is 0.0127/0.0333 ≈ 0.382. Therefore, if the perma-
nent dipole moment and the rotational constant of other diatomic molecules
are known, the magic field strength can be predicted without repeating the
calculation discussed above.

Moreover, the polarizabilities of the states |J̃ = 1,M = −1〉 and |J̃ =
1,M = 1〉 remain degenerate and they cross with the state J̃ = 1,M = 0
around 12 kV/cm for NaK and 4.7 kV/cm for RbCs.

5.2.2 Circularly-polarized light

We now extend the investigation of the dependence of the dynamic po-
larizability on the field strength to the case when ultracold molecules are
trapped with circularly-polarized light. A good example is the 2D hexago-
nal optical lattice discussed in the paper [68], where the polarizations at the
potential minima are changing from σ+ to σ− alternately.

We illustrate the dynamic polarizability dependence in this case in Fig.
5.2. The magic field strength of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉
is 2 kV/cm for RbCs and 5.2 kV/cm for NaK, which remain the same as that
when the light is polarized along Z. Moreover, we can verify that whether
the light polarization is σ+ or σ− does not change the polarizability of a
state.
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Figure 5.1: We demonstrate the dependence of the dynamic polarizabilities
of the mixed rotational states J̃ = 0 and J̃ = 1 on the DC electric field
strength at a wavelength 1064 nm. The laser is polarized along Z(ε̂=Ẑ). The
polarizabilities of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 meet at a
strength 5.2 kV/cm for NaK and 2kV/cm for RbCs. Besides, there is another
crossing point between the states |J̃ = 1,M = 0〉 and |J̃ = 1,M = ±1〉 which
occurs at 12 kV/cm for NaK and 4.7 kV/cm for RbCs.
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5.2. DYNAMIC POLARIZABILITIES OF NON-DEGENERATE
STATES
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Figure 5.2: We present the dynamic polarizabilities of the rotational states
of RbCs (top panel) and NaK (bottom panel) when they are trapped with
circularly-polarized (σ+ or σ−) light. Actually, whether light is σ+ or
σ− doesn’t change the polarizability of a state. Moreover, the magic field
strength between the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 is 2kV/cm
for RbCs and 5.2kV/cm for NaK, which are the same as that when the light
is polarized along Z.
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5.3 Dynamic polarizabilities of degenerate states

with M >0

We now investigate the dynamic polarizability when the light is polar-
ized along X or Y directions. In this case, the dynamic polarizability of
the degenerate rotational states |υJ̃,M〉 and |υJ̃,−M〉 with M > 0 are de-
rived by degenerate perturbation theory [69]. The corresponding right eigen-
states are the combination of the degenerate states |υJ̃M,±〉 = (|υJ̃,M〉 ±
|υJ̃,−M〉)/

√
2.

The dynamic polarizabilities for the new eigenstates are then

Re[αυJ̃M,±(ω)] =
∑

ejυjJjMjΩj

2ωejυjJjMjΩj

(ωejυjJjMjΩj
− ωυJ̃M)2 − ω2

× 〈υJ̃M,±|~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ̃M,±〉

=
∑
J1,J2

UυM
J̃,J1

UυM
J̃,J2
×

∑
ejυjJjMjΩj

2ωejυjJjMjΩj

(ωejυjJjMjΩj
− ωυJ̃M)2 − ω2

× 〈υJ1M,±|~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ2M,±〉
(5.9)

where |υJ1M,±〉 = {|υJ1,M〉±|υJ1,−M〉}/
√

2 and |υJ2,M±〉 = {|υJ2,M〉±
|υJ2,−M〉}/

√
2.

Expanding all terms, Eq. (5.9) becomes

Re[αυJ̃M,±(ω)] =
1

2

∑
J1,J2

UυM
J̃,J1

UυM
J̃,J2
×

∑
ejυjJjMjΩj

2ωejυjJjMjΩj

(ωejυjJjMjΩj
− ωυJ̃M,±)2 − ω2

×
{
〈υJ1,M |~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ2,M〉

± 〈υJ1,M |~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ2,−M〉
± 〈υJ1,−M |~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ2,M〉

+ 〈υJ1,−M, |~d · ε̂|ejυjJjMjΩj〉〈ejυjJjMjΩj|~d · ε̂∗|υJ2,−M〉
}

(5.10)
where the transition dipole moments and the energy terms in Eq.(5.10) can
be calculated in the same way as Eq. (5.6) and (5.7).

64



5.3. DYNAMIC POLARIZABILITIES OF DEGENERATE STATES
WITH M >0

5.3.1 Light polarized along the X axis

We demonstrate in Fig.5.3 the dependence of the dynamic polarizability
on the field strength when the polarization of the light field is perpendicular
to the external electric field direction and along X axis (ε̂=X̂).

We see that in the static field strength range from 0 to 15 kV/cm, the
polarizability curves cross only at one point which occurs between the states
|J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉. It is interesting to find out that the
“magic field strength” value is the same as the case when diatomic molecules
are trapped with parallelly polarized light (ε̂=Ẑ).

For the states |J̃ = 1,M = 1〉 + |J̃ = 1,M = −1〉 and |J̃ = 1,M = 1〉 −
|J̃ = 1,M = −1〉, however, their dynamic polarizabilities are not degenerate
any more.

5.3.2 Light polarized along the Y axis

Fig.5.4 gives the the dynamic polarizabilities of the mixed rotational
states when the light is polarized along Y axis (ε̂=Ŷ ).

By comparing the Fig.5.3 and Fig.5.4, we see that the dynamic polariz-
abilities of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 do not change no
matter the laser polarization is along the X axis or Y axis and the magic
field strength for these two mixed rotational states remains at 2 kV/cm for
RbCs and 5.2 kV/cm for NaK. Actually, according to the discussions with
several polarizations, we can verify that the magic field strength remains the
same for any polarizations.

The states |J̃ = 1,M = 1〉+ |J̃ = 1,M = −1〉 and |J̃ = 1,M = 1〉− |J̃ =
1,M = −1〉 switch their polarizabilities if the light polarization direction
changes from X axis to Y axis. This is quite understandable due to the form
of X-polarization and Y -polarization.
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Figure 5.3: We calculate the dynamic polarizabilities of a few mixed rota-
tional states of RbCs and NaK when the molecules are trapped with X-
polarized trapping light (ε̂=X̂). The polarizability curves cross only at one
field strength between the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉. This
magic field strength is the same as that when the light is polarized along the
Z axis. However, in contrast to Fig.5.1, the polarizability degeneracy of the
states |υJ̃M,±〉 = (|υJ̃,M〉 ± |υJ̃,−M〉) is lifted.
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Figure 5.4: We calculate the dynamic polarizabilities of the mixed rotational
states with J̃ = 0 and J̃ = 1 of RbCs and NaK when the light polarization
is along the Y axis (ε̂=Ŷ ). We find out that the polarizabilities of the states
|J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 remain the same no matter if the laser
polarization is along Z, X or Y directions. However, the states |J̃ = 1,M =
1〉 + |J̃ = 1,M = −1〉 and |J̃ = 1,M = 1〉 − |J̃ = 1,M = −1〉 switch their
polarizabilities if the polarization direction changes from X axis to Y axis.
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5.3.3 Elliptically-polarized light

We have introduced the polarizabilities of the mixed rotational states
when the light polarization is either circular or linear. Here we introduce
another case where the polarization is elliptical and formed by

ε̂ = aX̂ + ibŶ (5.11)

where a2 + b2 = 1.
In Fig. 5.5, we present the dependence of an example with

a =

√
1

3
, b =

√
2

3
(5.12)

The polarizability curves of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉
in an elliptical polarization case remain the same as the situations with the
circular polarization and perpendicular polarization. Moreover, the magic
field strength in Fig. 5.5 confirms again that the strength value is indepen-
dent of the polarization of the light.
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Figure 5.5: We demonstrate here the dynamic polarizabilities of the rota-
tional states with J̃ = 0 and J̃ = 1 of RbCs and NaK when the light is
elliptically-polarized with ~ε =

√
1/3X̂ + i

√
2/3Ŷ . The polarizability curves

of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 cross at an electric field
strength value of 5.2 kV/cm. Actually, the magic field strength value of the
two rotational states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 remains the same,
regardless of the polarization of the light.
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5.4 Dynamic polarizability as a function of

the relative orientation

We are also interested in the dynamic polarizability property when the
light with a wavelength of 1064 nm is polarized in the X − Z plane

ε̂ = cos θẐ + sin θX̂. (5.13)

where θ is the angle between the light polarization and the DC electric field.

The angle dependence of the dynamic polarizability is demonstrated in
Fig. 5.6 for RbCs and Fig. 5.7 for NaK. Each curve in the figures is calculated
when the external DC electric field has a specified value, which ranges from
0.25 kV/cm to 2.5 kV/cm in steps of 0.75 kV/cm. The top rows of Fig. 5.6
and Fig. 5.7 give the dynamic polarizabilities of the states |J̃ = 0,M = 0〉
and |J̃ = 1,M = 0〉. The bottoms rows of Fig. 5.6 and Fig. 5.7 demonstrate
the dynamic polarizabilities of the states J̃ = 1, (| + 1〉 + | − 1〉)/

√
2 and

J̃ = 1, (|+ 1〉 − | − 1〉)/
√

2.

We found that there exists a magic angle θ0 with cos2 θ0 = 1/3 where the
polarizabilities of the rotational states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉
are identical. Especially, this magic angle value stays the same, when the
DC electric field has different values. This property can be explained by the
fact that the polarizability is a rank-two tensor operator. A more explicit
derivation and explanation can be found in [70].

No magic angle exists for the states J̃ = 1, (| + 1〉 + | − 1〉)/
√

2 and
J̃ = 1, (|+ 1〉 − | − 1〉)/

√
2 of both molecules RbCs and NaK.

Besides that, we find that for small and near-zero DC field strength value,
the angle dependence of the |J̃ = 1,M = 0〉 is larger than that of the state
|J̃ = 0,M = 0〉. This is due to the fact that: at zero DC field, the polariz-
ability of the state |J̃ = 0,M = 0〉 at 1064 nm is a scalar and independent of
the polarization direction. At small DC field ε, the dependence of the state
|J̃ = 0,M = 0〉 extends the behavior at zero DC field and changes slowly
with the angle. When ε gets larger, the dependence curves of the two states
start to get closer to each other. When the field ε reaches the value of magic
field strength, the polarizability curves of the two states overlap. If ε is larger
than this magic field value, the curves of the two states start to cross over
each other.

The knowledge of the “magic angle” is helpful if we try to build a state-
insensitive 3D optical lattice with three orthogonal retroreflected laser beams.The

70



5.4. DYNAMIC POLARIZABILITY AS A FUNCTION OF THE
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polarization directions ε̂a, ε̂b, ε̂c can be arranged such that

|ε̂a· Ẑ|2 = |ε̂b· Ẑ|2 = |ε̂c· Ẑ|2 =
1

3
. (5.14)

The frequencies of lasers are chosen to be slightly different from each other,
such that the interference term between the lasers can average to zero over
the time.
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Figure 5.6: We demonstrate here the dynamic polarizability of the rotational
states of RbCs as a function of the angle θ when the laser field with a wave-
length 1064 nm is polarized as ε̂ = cos θẐ + sin θX̂. Each curve is evaluated
under a certain DC field strength value, which ranges from 0.25 to 2.5 kV/cm
in steps of 0.75 kV/cm. At the angle θ0 with cos2 θ0 = 1/3, the polarizabilities
of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 are identical. This magic
angle value is independent of the value of the DC electric field strength. No
magic angle exists for the states J̃ = 1, |+1〉+ |−1〉 and J̃ = 1, |+1〉−|−1〉.
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Figure 5.7: We demonstrate here the dynamic polarizability of the rotational
states of NaK as a function of the angle θ when the laser field with a wave-
length 1064 nm is polarized as ε̂ = cos θẐ + sin θX̂. Different curves of each
state are corresponding to calculation of the polarizability with different field
strength value. At the angle θ0 which satisfies with cos2 θ0 = 1/3, the polariz-
abilities of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 are identical. This
magic angle value is independent of the static electric field strength value. No
magic angle exists for the states J̃ = 1, |+1〉+ |−1〉 and J̃ = 1, |+1〉−|−1〉.
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Chapter 6

Realization of identical dipole
potential depth of rotational
states in various optical lattice
geometries

Optical lattices are optical configurations which has a periodic intensity
pattern. Due to the interaction between the light and the atoms (see Section
2.1), the optical lattices can trap the atoms at locations which have intensity
maximum. The resulting pattern with trapped atoms is analogous to that
of the crystal lattice. The simplest one dimensional (1D) optical lattice
can be formed by a retroreflected laser beam. A 2D optical lattice can be
constructed by two retroreflected beams which are propagating perpendicular
to each other. Further, a 3D optical lattice can be realized by adding another
retroreflected laser beam which is perpendicular to the 2D lattice laser beams.

In the past few decades, optical lattices has served as ideal environment
for strong correlated atomic system in many experiments. In 1998, D. Jaksch
and coworkers firstly proposed the idea of loading the ultracold bosons into
3D optical lattice to realize strongly correlated system [71, 72]. In 2002, the
quantum phase transition from a superfluid to a Mott-Insulator state has
been observed in an experiment by M. Greiner and the coworkers [73] by
loading a BEC into a 3D optical lattice. There are still more experiments
which operated in optical lattices with either bosonic or fermionic atoms, see
for examples of [74–83].

Nowadays, there are arising interests about the investigation of the strongly
correlated regime with heteronuclear molecules in optical lattices. Especially,
the long-range interactions between polar molecules can provide new oppor-
tunities for quantum simulations. In order to achieve the best performance
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DEPTHS OF ROTATIONAL STATES IN VARIOUS OPTICAL
LATTICE GEOMETRIES

of the experiments and avoid the detrimental decoherence to the interac-
tions, two internal states of molecules are required to be equally trapped.
Various publications have demonstrated ways for the achievement of magic
conditions. In this thesis, the magic condition has been accomplished by the
magic field strength and magic angle (see Section 5.2 and 5.3).

This chapter is arranged as follows: at first, we introduce the electric field
and dipole potential of a Gaussian laser beam. Then, we discuss different
dimensional lattices with various geometries. Especially, we introduce here
two 2D lattice geometries discussed in the paper [68]: a 2D triangular lat-
tice geometry where the potential minima in the lattice have π polarization
and a 2D hexagonal lattice geometry where the polarizations at the poten-
tial minima are changing from left-handed circular to right-handed circular
alternately.

6.1 1D optical lattice

The electric field of the Gaussian beam which is propagating along the z
direction is

E(x, y, z, t) =
E0e

−iφ(z)√
1 + z2/z2

0

eik(x2+y2)/2R(z)e−(x2+y2)/w2(z)e−ikzeiωt (6.1)

where w(z) is spot size, R(z) is the radius of curvature, and z0 is Rayleigh
range.

The intensity of the Gaussian beam is

I(x, y, z) =
cε0
2
|E(x, y, z, t)|2

=
2P

πw2(z)
e−2(x2+y2)/w2(z)

(6.2)

where P is the beam power. Therefore, the dipole potential seen by a state
with the polarizability Re[α(ω)] is

V (x, y, z) = V0
1

(1 + z2/z2
0)
e−2(x2+y2)/w2(z) (6.3)

where

V0 = Re[α(ω)]
2P

πw2
0

(6.4)

By expanding the potential V (x, y, z) around z � z0 and x2 + y2 � w2
0,
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we get that

V (x, y, z) ≈ V0

[
1− 2

x2 + y2

w2
0

−
(
z

z0

)2]
(6.5)

The potential in the radial direction is

Vr = V0

(
− 2

x2 + y2

w2
0

)
(6.6)

Therefore the corresponding radial trapping frequency is

ωr =

√
4V0

mw2
0

(6.7)

the trapping frequency in axial direction is

ωz =

√
2V0

mz2
0

(6.8)

(a) Schematic sketch

(b) optical lattice configuration

Figure 6.1: 1D optical lattice structure. a) The 1D optical lattice experimen-
tal setup by the interference pattern of a retroreflected Gaussian laser beam.
b) Periodic pancake-like structure of 1D optical lattice.

If this Gaussian beam retroreflects by a mirror (See Fig. 6.1), the overall
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electric field of this 1D optical lattice is

E1D Lattice(x, y, z, t) =
E0e

−iφ(z)√
1 + z2/z2

0

eik(x2+y2)/2R(z)e−(x2+y2)/w2(z)eikze−iωt

+
E0e

−iφ(z)√
1 + z2/z2

0

eik(x2+y2)/2R(z)e−(x2+y2)/w2(z)e−ikze−iωt

(6.9)
and the corresponding intensity is

I1D Lattice(x, y, z) =
cε0
2
|E1D Lattice(x, y, z, t)|2

=
8P

πw2(z)
e−2(x2+y2)/w2(z) cos2(kz)

(6.10)

The overall optical potential is

V1D Lattice(r, z) = VLattice
1

(1 + z2/z2
0)

exp

(
− 2

r2

w(z)2

)
cos2(kz) (6.11)

The potential is periodic in the z-direction and has a pancake-like geom-
etry in the other two dimensions. VLattice is four times as the dipole potential
V0 of a single beam dipole trap (VLattice = 4V0) because the counterpropagat-
ing beams interfere with each other in a constructive way.

We can expand the potential in Eq.(6.11) in the z and r directions around
the center z = r = 0. The axial trapping frequency ωz in the z direction is

ωz =

√
2VLattice

m
k2 (6.12)

The trapping frequency ωr in the r radial direction is

ωr =

√
4VLattice

mw2
0

(6.13)

Given the dependency of the polarizability on the DC field strength in
the Chapter 5, we will now illustrate the potentials of two rotational states
|J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 of NaK in optical lattices and compare
them when the electric field strength is smaller than, equal to, or larger than
the “magic field strength” which has been introduced in Section 5.2.

In Figure 6.2, the potentials of the two states are demonstrated in Fig.(a)
when the DC electric field strength value is smaller than the magic electric
field strength with ε=1kV/cm, in Fig. (b) when the DC electric field strength
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value equal to the magic electric field strength at ε=5.2 kV/cm and in Fig.
(c) when the DC electric field strength value is larger than the magic electric
field strength with ε=12 kV/cm. We see that the potentials of the two
rotational states |J̃ = 0,M = 0〉 and J̃ = 1,M = 0 of NaK are identical
while applying the “magic field strength” discussed in the Section 5.2. This
provides sufficient coherence time for the experiments where polar molecules
are trapped in optical lattices.
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(b) ε=5.2 kV/cm
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(c) ε=12 kV/cm

Figure 6.2: We demonstrate here the potentials (with a unit of 2P/πw2
0)

in the z axis of a 1D optical lattice. Blue curve is the potential of the
state |J̃ = 0,M = 0〉. Orange dashed curve is the potential of the state
|J̃ = 1,M = 0〉. Fig.(a), Fig.(b) and Fig.(c) compare the two potentials
when the external electric field strength is smaller than, equal to, or larger
than the magic electric field strength respectively.
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6.2 2D lattice configurations

Higher dimensional optical lattices can be created by superimposing ad-
ditional standing waves from other directions. For example, we can upgrade
a 1D optical lattice to a 2D lattice by adding another standing wave. In the
following discussion, we first introduce a 2D optical lattice which are con-
structed by two retroreflected trapping laser beams which are traveling along
the y and z directions respectively. Afterwards we introduce another two 2D
lattice geometries: triangular geometry and hexagonal geometry.

6.2.1 Two perpendicular propagating laser beams

First, we introduce a case where two retroreflected trapping laser beams
are traveling along the y and z directions respectively. Their polarization
directions are ~ε1 and ~ε2, and the relative phase is φ. Moreover, we consider
that the potentials at the center in both y and z directions are the same,
which is V y

0 = V z
0 = V0, and the Gaussian beam shapes are the same in both

directions.

In order to investigate the periodicity of lattice potential in the propa-
gating direction, we write here the axial component of a 2D lattice potential

V2D Lattice(y, z) = VLattice

(
cos2(ky)+cos2(kz)+2~ε1· ~ε2 cos(φ) cos(ky) cos(kz)

)
(6.14)

If the polarizations of the two lattice beams are orthogonal to each other
~ε1⊥~ε2, the interference term between the two can be eliminated since ~ε1· ~ε2 =
0. The resulting total potential is then simply given by the sum of the two
superimposed 1D lattices

V2D Lattice(y, z) = 4V0

(
cos2(ky) + cos2(kz)

)
(6.15)

We can see that in Fig. 6.3, the potential is periodic in both y and
z directions, and the 2D optical lattice consists of an array of quasi-one-
dimensional tubes.

Again, the “radial” trapping frequencies of a single tube are

ωz = ωy =

√
2VLattice

m
k2 (6.16)
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x

y
z

Figure 6.3: A 2D optical lattice which is constructed by two retroreflected
trapping laser beams which are traveling along the y and z directions respec-
tively. The polarizations of the two laser beams are perpendicular to each
other. The resulting lattice consists of an array of quasi-one-dimensional
tubes.

and the “axial” trapping frequency of a single tube is

ωx =

√
8VLattice

mw2
0

(6.17)

Besides the orthogonal polarizations of the two standing waves, the fre-
quencies of the two beams are chosen to be different in order to suppress the
residual interference. We can choose the frequency difference on a order of a
few ten MHz such that the interference averages out.

When the polarizations of the two lattice beams are not orthogonal to
each other, therefore ~ε1· ~ε2 6= 0. In other words, the interference Eq. (6.3) be-
tween the beams is not zero. The change of phase will cause a variation of the
lattice geometry, resulting a detrimental effect of heating and decoherence.

In Fig. 6.4, we illustrate that the geometry of the optical lattice changes
in terms of the relative phase cos(φ). When the phase φ changes from 0 to
π/2 and π, we can see that the potential depths of the neighing sites are
changing correspondingly.
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Figure 6.4: 2D optical lattices which are built by two standing waves which
are propagating along y direction and z direction respectively. When the
polarizations of the standing waves are arranged as so ~ε1· ~ε2 = 1, the phase
difference φ leads to a change of the lattice geometry. a) φ = 0. b) φ = π/2.
c) φ = π.

6.2.2 2D triangular lattice geometry and hexagonal
lattice geometry

Up until recently, experiments concerning optical lattices have been fre-
quently operated in simple cubic lattices since its requirements can be easily
fulfilled [84], comparing with other lattice geometries. However, there is
arising experimental and theoretical interest about manipulation in more
complex optical lattice geometries. For example, it is proposed [85–87] that
loading cold atoms to triangular or hexagonal optical lattices can open up
new possibilities for various applications, e.g. superconductivity [68,88],.

A triangular geometry and a hexagonal geometry can be built by three
laser beams. The total field vector is

E2D(~r, t) =
3∑
i=1

E0i~εi cos(~ki~r − ωt+ φi) (6.18)

The three laser beams propagate in the x − y plane and intersect with
angles of 120◦ (See Figure 6.5). The corresponding wavevectors are defined
as

~k1 = k(0, 1, 0) (6.19a)

~k2 = k(−
√

3

2
,−1

2
, 0) (6.19b)

~k3 = k(

√
3

2
,−1

2
, 0) (6.19c)
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Next we are going to introduce how two different lattice geometries are
formed with different polarizations of the three laser beams.

Case a) For a case that all the polarizations are perpendicular to the
propagating plane (x− y plane) of the lattice beams. See Figure 6.5a,

~ε1 = ~ε2 = ~ε3 = ẑ (6.20)

The overall spatial electric field is

~E = E0~ze
iky + E0ẑe

ik(−
√
3

2
x− 1

2
y) + E0ẑe

ik(
√
3

2
x− 1

2
y) (6.21)

It is certain that the resulting triangular geometry optical lattice is po-
larized along the z direction in every potential mimina sites.

Case b) For another case that all the polarizations of the three lattice
beams are lying in the x− y plane and they intersect with each other by an
angle of 120◦,

~ε1 = ~εx

~ε2 = −1

2
~εx +

√
3

2
~εy

~ε3 = −1

2
~εx −

√
3

2
~εy

(6.22)

The overall spatial electric field is

~E = E0~εxe
iky +E0(−1

2
~εx +

√
3

2
~εy)e

ik(−
√
3

2
x− 1

2
y) +E0(−1

2
~εx−

√
3

2
~εy)e

ik(
√
3

2
x− 1

2
y)

(6.23)

The potential minima form a hexagonal lattice geometry, as shown in Fig.
6.5b.

Since the polarization vectors relationships are

~ε0 = ~εz

~ε+ = −1

2
~εx − i

√
1

2
~εy

~ε− =
1

2
~εx − i

√
1

2
~εy

(6.24)

The polarizations at the potential minima are circular and they are chang-
ing from left-handed to right-handed alternatively.
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x

y

z

(a) Triangular optical lattice geometry (b) Hexagonal optical lattice geometry

Figure 6.5: Two 2D optical lattice geometries constructed by three laser
beams which are propagating in the x − y plane. The intersection angles
between the propagating directions are 120◦. The potential minina in the
figure are the darkest locations. (a) A triangular optical lattice geometry is
built when all the polarizations of all laser beams are along z. (b) A hexag-
onal optical lattice geometry is built when the polarizations are lying in the
x−y plane and intersecting with an angle 120◦. Moreover, the potential min-
ima are having alternate left-handed circular polarization and right-handed
circular polarization.
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Using the magic field strength that I have calculated in the Section 5.2, we
can also find that in the 2D triangular optical lattice and hexagonal optical
lattice constructed in Fig. 6.5, the potentials of the states |J̃ = 0,M = 0〉
and |J̃ = 1,M = 0〉 of NaK are identical.

6.3 3D optical cubic lattice configuration

A 3D optical lattice can be constructed when an additional standing
wave is superimposed perpendicularly to a 2D optical lattice. In Fig. 6.6,
the simplest 3D cubic optical lattice is constructed by three retroreflected
laser beams which are propagating in the x, y and z directions. Moreover,
the polarizations are also chosen to be perpendicular with respect to each
other.

Besides the appropriate choice of orthogonal polarizations to eliminate
the interference term, the frequencies are also shifted from each other to
average out the residual interference.

Similar to the 1D lattice equation (6.11), the intensity and the potential
in a 3D optical lattice is

I3D Lattice =
8P

πw2(z)
e−2(x2+y2)/w2(z) cos2(kz)

+
8P

πw2(y)
e−2(x2+z2)/w2(z) cos2(ky)

+
8P

πw2(x)
e−2(y2+z2)/w2(z) cos2(kx)

(6.25)

and

V3D Lattice =VLattice
1

w2(z)
e−2(x2+y2)/w2(z) cos2(kz)

+VLattice
1

w2(y)
e−2(x2+z2)/w2(y) cos2(ky)

+VLattice
1

w2(x)
e−2(y2+z2)/w2(x) cos2(kx)

(6.26)

where wx, wy, wz are the x, y, z-dependent waists of the Gaussian laser beams.
Therefore the trapping frequencies in the x, y and z directions are

ωx = ωy = ωz =

√
2VLattice

m
k2 (6.27)

In the Sections 6.1 and 6.2.2, we stated that by applying the “magic field
strength” values (2 kV/cm for RbCs and 5.2 kV/cm for NaK), two rotational
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states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 experience identical potentials. It
is easy for us to extend the field strength value to a 3D cubic optical lattice
in Fig 6.6 and therefore the lattice can be ”state-insensitive”.
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y
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x

Lattice Y

Lattice Z

Lattice X

Figure 6.6: The simplest 3D cubic optical lattice configuration. The lattice
is constructed with three retroreflected laser beams propagating in the x,
y and z directions. The propagating directions are labeled with bold black
arrows. The corresponding polarizations of the laser beams are labeled with
red arrows. ε̂x is along the y-direction, ε̂y is along the z-direction, and ε̂z is
along the x-direction.
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Chapter 7

Conclusions

In this thesis, we firstly investigated the dynamic polarizabilities of the
two lowest rotational states J̃ = 0 and J̃ = 1 of the ground state X1Σ+ of
RbCs and NaK molecules as a function of the laser frequency. We found that
the polarizabilities of the rotational states do not cross in the near infrared
laser field. Therefore, there exists no magic frequency.

When we applied a static electric field along the Z direction which mixes
rotational states of the diatomic molecules and a laser light with a wavelength
of 1064 nm simultaneously, the polarizability depends not only on the static
field strength value, it is also a function of the relative orientation between the
external static field direction and the polarization direction. We found that
the dynamic polarizabilities of the two rotational states |J̃ = 0,M = 0〉 and
|J̃ = 1,M = 0〉 are identical when the field strength is around 2 kV/cm for
RbCs and around 5.2 kV/cm for NaK. The magic field strength value remains
the same for any polarization cases of the trapping light. We also found
that when the relative angle θ between the external field and polarization
direction satisfied the condition of cos2 θ = 1/3, the dynamic polarizabilities
of the states |J̃ = 0,M = 0〉 and |J̃ = 1,M = 0〉 match and independent of
any external static electric field strength value.

We finished the thesis by applying the magic condition to various optical
lattice geometries, so that a pair of rotational states of diatomic molecules
can be trapped with identical potentials in optical lattices. The “state-
insensitive” lattice environments will bring substantial benefits to quantum
simulations and precision measurements.
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