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The presented thesis contains an explicit treatment of the deformation
theory of determinantal singularities based on KV -equivalence and a care-
ful construction of versal determinantal deformations. The necessary the-
ory involved is gathered from the scattered literature and distinct view-
points on the subject from different research groups are discussed. Based
on the existence of versal determinantal deformations, we construct the de-
terminantal Milnor fiber of a determinantal singularity as the preimage of
the corresponding generic determinantal variety under a stabilization of
the defining matrix considered as a map germ. In general, the determinan-
tal Milnor fiber is a Whitney stratified space, which is unique for a given
determinantal singularity up to homeomorphism.

We then turn to the study of topological invariants of the determinantal
Milnor fiber. We describe the work done by different groups on the van-
ishing Euler-characteristic and reprove a formula for its computation from
polar multiplicities for smoothable isolated determinantal singularities.

In Chapter 3, we introduce the Tjurina modification in family to reduce
topological questions about determinantal singularities to questions about
local complete intersections. In case of isolated singularities in the Tjurina
transform of a given determinantal singularity, this enables us to explicitly
determine the distinct homology groups of the Milnor fiber and we deduce
some formulas on their interplay with the space of infinitesimal deforma-
tions.

Finally, we pick up the theory for the topology of non-isolated singular-
ities, to also treat the case when the Tjurina transform is singular along a
whole projetive line. To this end, we generalize certain connectivity results
for the Milnor fibers of non-isolated singularities with one-dimensional sin-
gular locus to complete intersections with line singularities. This enables us
to prove that for certain matrix sizes for smoothable isolated determinantal
singularities we always find “characteristic cycles” which are directly re-
lated to the determinantal structure. They are the only contributions to the
homology of the Milnor fiber below the middle degree. This phenomenon
can not be observed for isolated complete intersection singularities.
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Zusammenfassung
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Topologische Invarianten Isolierter Determinantieller Singularitäten

von Matthias Zach

Schlagworte: Determinantielle Singularität, Milnor Faser,
Homologiegruppen.

Die vorgelegte Arbeit beinhaltet eine explizite Darstellung der Deforma-
tionstheorie determinantieller Singularitäten basierend auf KV -Äquivalenz
und eine Konstruktion verseller determinantieller Deformationen. Die dazu
notwendige Theorie wird aus der verstreuten Literatur zusammengestellt
und es werden unterschiedliche Sichtweisen von verschiedenen Arbeits-
gruppen diskutiert. Basierend auf der Existenz verseller determinantieller
Deformationen konstruieren wir die determinantielle Milnor-Faser als das
Urbild der assoziierten generischen determinantiellen Varietät unter einer
Stabilisierung der definierenden Matrix aufgefasst als Abbildungskeim. Im
Allgemeinen ist die determinantielle Milnor Faser ein Whitney-stratifizierter
Raum, welcher eindeutig bis auf Homöomorphie ist.

Wir wenden uns dann der Frage nach topologischen Invarianten der
determinantiellen Milnor-Faser zu. Wir geben eine Beschreibung der Beiträge
verschiedener Arbeitsgruppen zur verschwindenden Euler-Characteristik
und erarbeiten einen neuen Beweis für eine Formel zu ihrer Berechnung
durch Polar-Multiplizitäten für glättbare isolierte determinantielle Singu-
laritäten.

In Kapitel 3 führen wir Tjurina-Modifikationen in Familie ein und re-
duzieren so Fragen zur Topologie von determinantiellen Singularitäten auf
Fragen über lokal vollständige Durchschnitte. Im Fall von isolierten Sin-
gularitäten in der Tjurina-Transformierten ermöglicht uns dies eine genaue
Beschreibung der Homologiegruppen der Milnor-Faser und wir leiten einge
Formeln über ihre Beziehung zum Raum der infinitesimalen Deformatio-
nen her.

Im letzten Kapitel benützen wir die Theorie zur Topologie von nicht-
isolierten Singularitäten, um auch den Fall behandeln zu können, in dem
der singuläre Ort der Tjurina-Transformierten eine projektive Gerade ist.
Dazu verallgemeinern wir bestimmte Resultate über den Zusammenhang
von Milnor-Fasern nicht-isolierter Singularitäten mit ein-dimensionalem sin-
gulären Ort für vollständige Durchschnitte, welche singulär entlang einer
Gerade sind. Dies ermöglicht es uns zu beweisen, dass für gewisse Ma-
trixgrößen für glättbare determinantielle Singularitäten immer “character-
istische Zykel” existieren, welche direkt mit der determinantiellen Struktur
in Verbindung stehen. Sie sind die einzigen Beiträge zur Homologie der
Milnor-Faser unterhalb des mittleren Grades. Dieses Phänomen kann nicht
für isolierte komplette Durchschnitte beobachtet werden.
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1

Prerequisites and Notation

In this thesis, we give a precise description of the Milnor fiber for determi-
nantal singularities and address questions about their topology. We assume
the reader to be familiar with the basic theory of complex analytic spaces
and singularities, commutative algebra, as well as algebraic topology. Some
standard references for these topics are for example [5], [6], [57], [38], [22],
and [42].

In the text we will be confronted with coherent sheaves and their holo-
morphic sections as well as with vector bundles and continuous or differ-
entiable sections in them. We try to adapt standard notation from analytic
geometry and sheaf cohomology and from differential geometry depend-
ing on the context. One disadvantage is of this is that in the one notation
TX,p denotes the stalk of the tangent sheaf of a space X at p, while the sim-
ilar expression TpX is only the fiber of the corresponding vector bundle in
the other notation. To avoid confusion, we therefore write p.F for the fiber
of a sheaf F at a point p and Fp for its stalk.

Another conflict of notation arises for space germs (X, p) and pairs of
spaces (A,B), especially because we will be considering germs (Y,E) not
only at points, but along compact subspaces E ⊂ Y . However, we hope
that it is clear from the context, which kind of object we mean.

Concerning the notation used in algebraic topology, it should be pointed
out that byHi(X) we always denote the i-th homology group of a topologi-
cal spaceX with integer coefficients. In any case we provide a list of symbols
and an index for the objects used in this thesis.
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Chapter 1

Deformations of Determinantal
Singularities

We give the common definition of determinantal singularities and gather
the results concerning their algebraic and geometric properties. While the
material itself is not new, the specific exposition and motivation is carried
out by the author. We try to reflect different viewpoints on the subject,
which appear in the common literature [11], [10], [22], and contemporary
research [18], [19], [61], [62], [49], [16], [15], [17], [20], [59], [8], [23], [28], [27].

This chapter aims at the development of versal determinantal deforma-
tions. To this end, we formulate a notion of equivalence for determinan-
tal singularities and equivalence of map germs into the space of matrices.
For the latter, we give an explicit formulation of KV -equivalence following
J. Damon and then continue with a hybrid system showing that a semi-
universal unfolding of the map germ leads to a versal determinantal de-
formation of the underlying determinantal singularity. At the core of this
interplay lays the fact that a determinantal singularity inherits a free reso-
lution of its defining ideal from the generic determinantal variety. This is used
to establish flatness of determinantal deformations. In the end, we discuss
the relation to semi-universal deformations of space germs in the sense of
Grauert, Schlessinger and the work of M. Schaps.

1.1 Determinantal Singularities

Definition 1.1.1. A germ of a complex space (X, 0) ⊂ (CN , 0) is called a
determinantal singularity of type (m,n, t) if there is a matrix

A ∈ Mat(m,n;ON )

with holomorphic entries in the ring of convergent power series ON =
C{x1, . . . , xN} such that

OX,0 = ON/〈A∧t〉

and
codimON 〈A

∧t〉 = (m− t+ 1)(n− t+ 1). (1.1)

Here 〈A∧t〉 denotes the ideal generated by the t-minors of A. We also say
that the quotient ring OX,0 is a determinantal ring. An isolated determinantal
singularity is a determinantal singularity (X, 0) such that 0 ∈ X is the only
singular point.

The notation for the ideal of t-minors is explained as follows: If we consider
A as a homomorphism of free ON -modules, then A∧t denotes the matrix
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representing the induced map on the t-th exterior powers (cf. Appendix
A.1). For any matrix B ∈ Mat(m,n;ON ) we denote by 〈B〉 the ideal gener-
ated by its entries, which, in case B = A∧t for some A, are just the t-minors
of A.

Remark 1.1.2. A priori for a given singularity (X, 0) there are many matrices
describing a structure of (X, 0) ⊂ (CN , 0) as a determinantal singularity.
Suppose that the t-minors of some A ∈ Mat(m,n;ON ) generate the vanish-
ing ideal of (X, 0) and one of the entries ai,j of A is a unit in ON . Without
loss of generality, we may assume (i, j) = (1, 1), and we can apply row and
column operations on A to reduce to the form

A ∼
(

1 0

0 Ã

)
.

Since these operations do not alter the ideal generated by the t-minors, we
see that (X, 0) is also a determinantal singularity of type (m−1, n−1, t−1)
by means of Ã.

Let m = 〈x〉 ⊂ ON be the maximal ideal. If there was a linear de-
pendence A · λ = 0 of the columns of A with λ =

(
λ1, . . . , λn

)T ∈ OnN ,
but λ /∈ m · OnN then we can, without loss of generality, assume λ1 = 1.
This means that the first column can be expressed by the others and con-
sequently, if we let Ã be the matrix obtained from A by deleting the first
column, then 〈A∧t〉 = 〈Ã∧t−1〉 are the same ideals in ON . The same argu-
ment holds for the rows of A.

For these reasons, we always assume that all entries of the describing
matrix are in the maximal ideal m of ON , i.e. they are non-units, and that
neither the columns nor the rows of A admit relations with coefficients in
ON \m.

But, as we can see in the following example 1.1.3, for a given singularity
even these minimality conditions are in general not sufficient to uniquely
determine the matrix A from (X, 0). Therefore, if we speak of a determi-
nantal singularity of type (m,n, t), we do not only mean the germ (X, 0) ⊂
(CN , 0), but also the matrix A.

Example 1.1.3. a) A complete intersection of codimension d is a determi-
nantal singularity of type (d, 1, 1).

b) Let (X, 0) ⊂ (C3, 0) be the A1-surface singularity given by the equation
f = x2 − yz = 0. It is a determinantal singularity in two different ways.
On the one hand we can consider the equation f as a 1×1-matrix, which
gives (X, 0) the structure of a determinantal singularity of type (1, 1, 1).
On the other hand we have

f = det

(
x y
z x

)
,

which makes it a determinantal singularity of type (2, 2, 2).

With these examples in mind we shall develop a notion of equivalence
for determinantal singularities parallel to contact equivalence. Recall that
two germs (X, 0), (Y, 0) ⊂ (CN , 0) are contact equivalent if there is a germ of
a diffeomorphism Φ : (CN , 0)→ (CN , 0), or equivalently an automorphism
Φ∗ ofON such that Φ takes (X, 0) to (Y, 0) and the other way round for Φ−1.
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In terms of algebra this translates to the following: Let J be the ideal in ON
defining (Y, 0) and I the ideal of (X, 0). Then we have

J
Φ∗ //

idJ

AAI
(Φ−1)∗//

idI

AAJ
Φ∗ // I .

These maps naturally induce homomorphisms on the C-vector spaces I/mI
and J/mJ which have to be isomorphisms. Let a1, . . . , an be a minimal set
of generators of I and b1, . . . , bn of J . Using Nakayama’s Lemma, we see
that there exist invertible matrices F ∈ Mat(1, 1;ON ), G ∈ Mat(n, n;ON )
such that (

a1 · · · an
)

= F ·
(
Φ∗(b1) · · · Φ∗(bn)

)
·G−1

and thus, the submodules I and J of ON = O1
N are identified by Φ∗.

For determinantal singularities we do not compare the ideals but the
defining matrices.

Definition 1.1.4. Let (X, 0) and (Y, 0) ⊂ (CN , 0) be two determinantal sin-
gularities of type (m,n, t) given by matrices A and B ∈ Mat(m,n;ON ). We
say (X, 0) and (Y, 0) are equivalent as determinantal singularities if there exists
an automorphism Φ∗ ofON and invertible matricesF ∈ Mat(m,m;ON ), G ∈
Mat(n, n;ON ) such that

A = F · (Φ∗B) ·G−1

in Mat(m,n;ON ).

The analogy should be obvious. Here we can see the minimality conditions
from Remark 1.1.2 in action. Just like we describe an ideal as a submodule
of ON by a minimal set of generators, the columns of A give a minimal
set of generators of the image of A in OmN when considered as an element
of HomON (OnN ,OmN ) and similarly for the rows. Requiring F and G to be
invertible is no restriction once minimality of A and B is assumed.

Contact equivalence of (X, 0) and (Y, 0) now follows directly from Corol-
lary A.1.2 since the matrices F and G in Definition 1.1.4 are invertible.

There is another point of view for describing determinantal singulari-
ties. We can regard the matrix A as a germ of a map

A : (CN , 0)→ (Mat(m,n;C), 0).

Then (X, 0) appears as a degeneracy locus of A, namely as the preimage of
the generic determinantal variety

M t
m,n := {M ∈ Mat(m,n;C) : rankM < t} (1.2)

under the map A. We will see that a determinantal singularity of type
(m,n, t) inherits many properties from its associated generic determinan-
tal variety M t

m,n. For the course of our studies, it is therefore beneficial to
have a good understanding of these: In the following, we will collect some
well known facts.
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Lemma 1.1.5 ([11], Proposition 1.1). The space M t
m,n ⊂ Mat(m,n;C) is irre-

ducible of codimension (m− t+ 1)(n− t+ 1) and its singular locus is precisely

SingM t
m,n = M t−1

m,n.

This shows where the condition (1.1) on the codimension for a determi-
nantal singularity comes from: It is the expected codimension of the preimage
of the generic determinantal variety.

A more involved computation shows that the spaces

{0} = M1
m,n (M2

m,n ( · · · (Mmin{m,n}
m,n ⊂ Mat(m,n;C) (1.3)

form a complex analytic Whitney stratification of the space Mat(m,n;C) with
strata

Σt
m,n = M t

m,n \M t−1
m,n,

see e.g. [3]. For the definition of Whitney stratifications see the Appendix.
On one hand, by considering maps, one automatically leaves the realm of
intrinsic properties of (X0, 0) because one has to take into account the be-
haviour of the map outside the singularity as well. On the other hand, since
the fundamental work done by Milnor ([53], cf. Theorem 2.1.13), the bene-
fits of this viewpoint for topological questions about the singularity are evi-
dent. For determinantal singularities, we will see a lot of interplay between
map germs and their unfoldings and space germs and their deformations.

While the definition of an unfolding of a map is rather trivial, the defor-
mation theory of space germs is much more involved. One reason for the
interest in determinantal singularities is that (parts of) their deformation
theory is accessible via perturbations of the defining matrix as a map germ.
The rest of this chapter is devoted to the exposition of this interplay.

1.2 Some Notions in Commutative Algebra

All the results of this section are well known and gathered from standard
sources. Mostly we refer to [22] and [10].

1.2.1 Flatness

Recall that a module M over a commutative ring R is called flat if the func-
tor −⊗RM from the category of R-modules to itself is exact.

Definition 1.2.1. Let (B, n) be a local ring with residue field k and R0 a
Noetherian k-algebra. A deformation of R0 over (B, n) is given by a flat B-
algebra R such that the fiber over n

R⊗B B/n Roo

B/n

OO

B

OO

oo

is isomorphic to R0. A deformation of a germ (X0, 0) ⊂ (CN , 0) over a
C-algebra B is a deformation of OX0,0.
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Remark 1.2.2. In practice, for any deformation of a ring OX0,0 = C{x}/I
the ring B will either be an Artinian C-algebra or another power series ring
C{u1, . . . , ut} or quotient C{u}/T thereof. In the first case, the deforma-
tion is called a formal deformation. In the second case R will be of the form
C{x, u}/Ĩ , where Ĩ is an ideal such that

C{x, u}/Ĩ + 〈u〉 ∼= C{x}/I ∼= OX0,0.

Here we get a geometric realization of the above diagram reversing the
arrows

(X0, 0)

��

// (X, 0)

��
{0} // (Y, p)

where (X, 0) and (Y, p) are the germs of complex spaces associated to C{x, u}/Ĩ
and C{u}/T , respectively.

In general, it is difficult to create flat families. The following theorem
gives the probably most common criterion for flatness. We present it as it
can be found in [22, Theorem 6.8]:

Theorem 1.2.3 (Local Criterion for Flatness). Let φ : (B, n) → (S,m) be a
homomorphism of Noetherian local rings and M a finitely generated S-module.
Then M is flat over B if and only if

TorB1 (B/n,M) = 0.

In view of the standard situations we will encounter as described above,
we deduce another criterion for our purposes. This one can e.g. be found
in [7, Proposition 3.1].

Suppose we are given (X0, 0) ⊂ (CN , 0) by means of an ideal I ∈ C{x}.
There is up to isomorphism a unique minimal free resolution

0 C{x}/Ioo C{x}oo F1
oo F2

oo · · ·oo (1.4)

of the quotient ring OX0,0, where the Fi are free C{x}-modules.
Now, let B be some analytic algebra and S = C{x}⊗̂CB. Here ⊗̂C

denotes the analytic tensor product, see e.g. [33] We will basically en-
counter two cases: IfB = C{u}/T for some ideal T , then C{x}⊗̂CC{u}/T =
C{x, u}/T , where T is considered as an ideal in C{x, u} in the obvious
sense. In the other case B is Artinian and ⊗̂C reduces to the usual tensor
product.

Let n be the maximal ideal of B. Suppose Ĩ is an ideal in S such that

C{x}/I ∼= S/(Ĩ + n) = S ⊗B B/n.

By the right exactness of the tensor product, this amounts to saying that any
free presentation

0 S/Ĩoo Soo P1
oo
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of the quotient S/Ĩ spezializes to the presentation of OX0,0 in (1.4).

Lemma 1.2.4 (Lifting of Relations). If in the above setup, there is a free resolu-
tion

0 S/Ĩoo Soo P1
oo P2

oo · · ·oo (1.5)

of the ring S/Ĩ as an S-module which is taken isomorphically to a given free reso-
lution (1.4) of C{x}/I by the functor B/n⊗B −, then TorB1 (B/n, S/Ĩ) = 0 and
S/Ĩ is flat over B.

Proof. All the Pi are free S-modules. But S itself is a free B-module and
hence we can regard (1.5) as a free resolution of B-modules as well. By
definition TorB1 (B/n, S/Ĩ) is the homology group of the complex obtained
from (1.5) by applying B/n⊗B −. If this is isomorphic to (1.4) then there is
no homology, because (1.4) was a resolution. The claim now follows from
the Local Criterion for Flatness, Theorem 1.2.3.

Remark 1.2.5. Of course, to check for the vanishing of the first Tor only, it
would be sufficient if the complex (1.5) was specializing to (1.4) in the first
four terms only. But if this is the case, then one can see inductively that this
must also hold for all other terms of the resolution. Hence the requirement
in Lemma 1.2.4 is not unnecessarily strong.

1.2.2 Perfect Ideals and Modules

We start with an algebraic notion of height, dimension and codimension.

Definition 1.2.6. Let R be a commutative Noetherian ring. For a prime
ideal P ⊂ R, the height is defined as the supremum of the lengths of strictly
descending chains of prime ideals Qi from P :

heightP = sup{r ∈ N : P ) Q1 ) Q2 ) · · · ) Qr ) 0}. (1.6)

If I ⊂ R is an arbitrary ideal, its height is

height I = inf{heightP : P ⊃ I prime }. (1.7)

The dimension ofR is the supremum of the heights of all its maximal ideals.
For anR-moduleM we let dimM be the dimension ofR/AnnM . We define
the codimension of an ideal I by

codim I = dimR− dimR/I.

It follows directly from the definition that we have an inequality

height I ≤ codim I (1.8)

for all ideals I ⊂ R.
Krull’s Principal Ideal Theorem (see e.g. [22, Theorem 10.2] 1) asserts

that the height of an ideal I ⊂ R is bounded from above by its number of
generators.

1In [22], the height of an ideal is referred to as codimension.
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The “Converse of the Principal Ideal Theorem” (see e.g. [22], Corollary
10.5) on the other hand assures that for any given ideal I of height c we can
find a sequence of elements x1, . . . , xc ∈ I such that for all 0 < i ≤ c one has
height〈x1, . . . , xi〉 = i.

To construct such a sequence, one has to choose the xi successively such
that xi+1 is not contained in the union of minimal primes over 〈x1, . . . , xi〉.
Recall from primary decomposition that for a given finite module M over
a Noetherian ring R, the set of zero divisors on M is given by the union of
associated primes

⋃
P∈AssM P , and that all primes minimal over AnnM are

contained in AssM (see e.g. [22, Theorem 3.1]).
Thus if we let M = R/〈x1, . . . , xi〉 and choose xi+1 to be a nonzerodivi-

sor on M , then this is in general a stronger condition on xi+1 than just not
being contained in the primes minimal over 〈x1, . . . , xi〉. There is a name
for sequences of nonzerodivisors:

Definition 1.2.7. Let R be a commutative Noetherian ring and M an R-
module. An element x ∈ Rwhich is not a zero divisor onM is called a regu-
lar element on M . A sequence of elements x1, . . . , xr ∈ R is a regular sequence
on M if for all 0 ≤ i < r the element xi+1 is regular on M/〈x1, . . . , xi〉M
and M 6= 〈x1, . . . , xr〉M .

Clearly, the maximal length of a regular sequence in I on R is bounded
by the height of I . But, in general, this number can be strictly smaller and,
hence, has a name of its own.

Definition 1.2.8. Let I be an ideal in a commutative Noetherian ring R and
M a finitely generated R-module. The grade of I on M is the number

grade(I,M) := sup{r ∈ N : ∃ (x1, . . . , xr) ∈ I regular sequence on M}.

By what has been said above for M = R, one has

grade(I,R) ≤ height I. (1.9)

The great advantage of the notion of grade is the following: If one wants
to compute the height of a given ideal I , one could start with a prime P
minimal over I and successively choose Q1 ⊂ P minimal over 〈0〉, then
Q2 ⊂ P minimal over Q1 and so on. One eventually ends up with a max-
imal chain of prime ideals in P . But the length of this chain need not be
equal to height I .

For the computation of grade(I,R), on the other hand, any maximal
regular sequence in I on R coming from a successive choice of elements xi
already has length grade(I,R). The next theorem assures that this is even
true for arbitrary modules M over R.

Theorem 1.2.9 ([10], Theorem 1.2.5). Let R be a commutative Noetherian ring,
I an ideal in R, and M an R-module. If x = (x1, . . . , xr) is a regular sequence in
I on M , then there is a natural isomorphism

HomR(R/I,M/xM) ∼= ExtrR(R/I,M),

and for all 0 ≤ i < r, the modules ExtiR(R/I,M) are zero. In particular,

grade(I,M) = min{r ∈ N : ExtrR(R/I,M) 6= 0},
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and any regular sequence in I onM can be extended to a maximal regular sequence
of length grade(I,M).

Using the description of grade in terms of Ext, one can extend this no-
tion to arbitrary modules.

Definition 1.2.10. Let M be a module over a commutative Noetherian ring
R. The grade of M is gradeM = min{r ∈ N : ExtrR(M,R) 6= 0}.

Since the Ext-modules over Noetherian rings can be computed from a
projective resolution of the first factor, the lengths of such resolutions come
into play for the computation of grade.

Definition 1.2.11. Let R be a commutative Noetherian ring and M an R-
module. The projective dimension of M is the minimal length of a projective
resolution

0 Moo P0
oo P1

oo · · ·oo Proo 0oo

of M over R. If no finite projective resolution of M over R exists, we write
projdimM =∞.

Clearly we have an inequality

gradeM ≤ projdimM. (1.10)

For the case of equality there is a special name.

Definition 1.2.12. A module M over a commutative Noetherian ring R is
perfect if

projdimM = gradeM.

An ideal I is perfect if R/I is a perfect module over R.

1.2.3 Cohen-Macaulay rings

Definition 1.2.13. Let (R,m) be a commutative Noetherian local ring and
M a finitely generated R-module. The depth of M is defined as

depthM := grade(m,M).

In case depthM = dimM we say that M is Cohen-Macaulay. The ring R
is Cohen-Macaulay if it is Cohen-Macaulay as a module over itself. An
arbitrary commutative Noetherian ring S is called Cohen-Macaulay if for
all prime ideals P ⊂ S, the localized ring SP is Cohen-Macaulay.

From (1.9), we obtain an inequality

depthR ≤ dimR− dimR/m = dimR (1.11)

because dimR/m = 0.
The power series ring C{x1, . . . , xn} and the polynomial ring C[x1, . . . , xn]

are both Cohen-Macaulay. Even more: They are regular:

Definition 1.2.14. A commutative Noetherian local ring (R,m) is called reg-
ular if its maximal ideal m can be generated by a regular sequence on R.
Again, an arbitrary commutative Noetherian ring S is regular if all of its
localizations at prime ideals are regular.
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In particular, every regular local ring is Cohen-Macaulay. Gathering the
inequalities (1.8) and (1.9), we obtain

grade(I,R) ≤ height I ≤ codim I.

The next theorem tells us why we should care about working in Cohen-
Macaulay rings: In this case the inequalities become equalities.

Theorem 1.2.15 ([10], Theorem 2.1.2). Let (R,m) be a commutative Noetherian
local ring and M a Cohen-Macaulay R-module.

i) One has an equality

grade(I,M) = dimM − dimM/IM

for all ideals I ⊂M .

ii) A sequence x = (x1, . . . , xr) of elements in R is a regular sequence on M if
and only if dimM/xM = dimM − r.

We finally describe the connection to the preceeding section by exhibit-
ing the interplay of perfect ideals and Cohen-Macaulay rings. The follow-
ing formula is well known (see e.g. [22] or [10]) and will be useful later
on.

Theorem 1.2.16 (Auslander Buchsbaum Formula). Let (R,m) be a Noetherian
local ring and M a finitely generated R-module with projdimM < ∞. One has
an equality

depthM + projdimM = depthR.

Now we have the following theorem.

Theorem 1.2.17 ([10],Theorem 2.1.5). Let R be a Cohen-Macaulay ring and M
a finitely generated R-module with projdimM <∞

i) If M is perfect, then it is Cohen-Macaulay.

ii) The converse holds when R is local.

Proof. In case R is a local ring and M = R/I , i.e. if I ⊂ R is a perfect ideal,
the assertions follow from the Auslander Buchsbaum Formula 1.2.16. One
has

depthR/I = depthR− projdimR/I

≤ dimR− grade(I,R)

= dimR− codim I

= dimR/I

by (1.10) and Theorem 1.2.15 i). Now if I is perfect, then projdimR/I =
grade(I,R) and hence depthR/I = dimR/I . On the other hand, provided
the latter equality, we may deduce perfectness of I .

For a full proof see [10, Theorem 2.1.5].
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1.2.4 The Koszul Complex

We first define the Koszul complex. Let R be a commutative ring and
x1, . . . , xn ∈ R be arbitrary elements. We can consider x = (x1, . . . , xn)
as an element of the free module Rn. For any p ∈ N0, we define 2

x∧ :

p∧
Rn →

p+1∧
Rn, ω 7→ x ∧ ω.

From this, we build the Koszul cocomplex in x over R:

K•(x) : 0 //
∧0Rn

x∧ //
∧1Rn

x∧ // · · · x∧ //
∧nRn // 0

(1.12)
The group of p-cochains is thus given by Kp(x) =

∧pRn.
This is a complex of free modules. The Koszul complex in x on R is de-

fined by dualizing K•(x):

K•(x) : 0 (
∧0Rn)∨oo (

∧1Rn)∨
x∨oo · · ·x∨oo (

∧nRn)∨
x∨oo 0oo .

The notation x∨ is motivated from the fact that x ∈ Rn can be considered as
a homomorphism R → Rn, 1 7→ x. We find this as the first nontrivial map
in (1.12). In this sense x∨ is the natural extension of the map dual to x to
the exterior powers.

On the other hand, given a homomorphism

Ψ : Rn → R, ei 7→ xi,

we will also speak of the Koszul complex associated to Ψ and just write Ψ
for all the maps x∨.

Using the duality (
∧pRn)∨ ∼=

∧p(R∨)n in (A.5) from the appendix, and
identifying R with R∨ in the canonical way, we obtain the final definition
of the Koszul complex:

K•(x) : 0
∧0Rnoo

∧1Rn
x∨oo · · ·x∨oo

∧nRn
x∨oo 0oo . (1.13)

Definition 1.2.18. For a module M over R we define the Koszul complex
and the Koszul cocomplex in x on M as

K•(x;M) := K•(x)⊗RM and K•(x;M) := K•(x)⊗RM. (1.14)

Recall that for a splitting F = P ⊕Q of a free module into two free parts
P and Q we obtain a decomposition of the exterior algebra:

n∧
F =

⊕
p+q=n

p∧
P ⊗R

q∧
Q. (1.15)

We use this to show the following:

2See the appendix A.1 for a definition of the exterior powers
∧pRn and exterior multi-

plication ∧
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Lemma 1.2.19. For any two sets x = (x1, . . . , xm) and y = (y1, . . . , yn) of
elements in R there is a natural description

Kr(x,y) ∼=
⊕
p+q=r

Kp(x)⊗Kq(y)

which identifies K•(x,y) with the total complex of the double complex Cp,q =∧pRm ⊗
∧q Rn with the boundary maps

y∨ : Cp,q → Cp,q−1, ω ⊗ η 7→ (−1)pω ⊗ y∨(η),

x∨ : Cp,q → Cp−1,q, ω ⊗ η 7→ x∨(ω)⊗ η.

Proof. Direct computation.

This can be used to build the Koszul complex inductively on the num-
ber of elements xi. The basic building block of this iteration is the Koszul
complex in one element x = (x1), which is just

K•(x) : 0
∧0R1oo

∧1R1·x1oo 0oo .

For any givenR-moduleM , the homology of the Koszul complex K(x1;M)
in x1 on M is

H0(K(x1;M)) = M/x1M

H1(K(x1;M)) = 0 :M x1

Hj(K(x1;M)) = 0 for all j 6= 0, 1.

We see that x1 is a nonzerodivisor on M if and only if all homology groups
of the associated Koszul complex vanish outside degree zero. This fact gen-
eralizes:

Lemma 1.2.20. Let R be a commutative ring, x1, . . . , xn ∈ R, and M an R-
module. If x = (x1, . . . , xn) is a regular sequence on M , then the Koszul complex
K•(x;M) in x on M has the homology groups

Hp(x;M) ∼=

{
M/〈x1, . . . , xn〉M if p = 0

0 otherwise
.

A special case deserves attention:

Corollary 1.2.21. In case M = R in Lemma 1.2.20 and a for a regular sequence
x = (x1, . . . , xn) on R, the Koszul complex gives a free resolution of the quotient
R/〈x〉.

Proof. (of Lemma 1.2.20). We do induction on the number of elements n =
#x. If n = 1, this is just the definition of a nonzerodivisor on M . So sup-
pose we did already prove the claim for the Koszul complex in n elements
and we are given a further element y ∈ R. Consider the Koszul complex
K•(x1, . . . , xn, y) in x and y and its decomposition according to Lemma
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1.2.19 as the total complex of the double complex

0

��

0

��
0

∧nRn ⊗
∧0R1oo

x∨��

∧nRn ⊗
∧1R1y∨oo

x∨��

0oo

...

��

...

��
0

∧2Rn ⊗
∧0R1oo

x∨

��

∧2Rn ⊗
∧1R1y∨oo

x∨

��

0oo

0
∧1Rn ⊗

∧0R1oo

x∨

��

∧1Rn ⊗
∧1R1y∨oo

x∨

��

0oo

0
∧0Rn ⊗

∧0R1oo

��

∧0Rn ⊗
∧1R1y∨oo

��

0oo

0 0

. (1.16)

We obtain K•(x, y;M) from (1.16) by tensoring with M . Observe that both
columns of (1.16) are canonically isomorphic to K•(x) since

∧0R1 ∼=
∧1R1 ∼=

R.
By the induction hypothesis, (x1, . . . , xn) is a regular M -sequence and,

hence, the columns of (1.16) tensored with M are exact. The homology of
the associated total complex in degree zero is obvious and anyway inde-
pendent of whether or not (x1, . . . , xn, y) is a regular sequence. In degree
one the homology is zero if and only if y is a regular element on M/xM .
For all higher degrees, the assertion follows from a simple diagram chase
using the exactness of the columns.

There is a converse of Lemma 1.2.20. We cite it for sake of completeness,
but we shall not need it.

Theorem 1.2.22 ([22], Theorem 17.4). LetM be anR-module and I = 〈x1, . . . , xr〉
a finitely generated ideal. One has

grade(I,M) = r − j,

where
j = max{i ∈ N : Hi(K•(x;M)) 6= 0}.

1.2.5 Dimension of Base and Fiber

We gather some theorems and lemmas concerning the interplay of the pre-
ceeding sections with deformation theory. The main source is [22].
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Theorem 1.2.23 ([22], Theorem 10.10). Let (B, n) → (R,m) be a homomor-
phism of local rings. Then

dimR ≤ dimB + dimR/nR.

If R is flat as a B-module, then equality holds.

The converse of the second statement is in general false. However, there
are certain conditions, which allow its deduction (cf. [22, Theorem 18.16]):

Theorem 1.2.24. Let (B, n) → (R,m) be a homomorphism of local rings where
(B, n) is regular and (R,m) is Cohen-Macaulay. Then R is flat over B if and only
if

dimR = dimB + dimR/nR.

Proof. One direction directly follows from 1.2.23. For the other one let u =
(u1, . . . , ur) be a regular B-sequence generating n. By abuse of notation,
we also write ui for their images in R. According to the local criterion for
flatness 1.2.3 for R to be flat over B, it is sufficient to show

TorB1 (B/n, R) = 0.

This can be computed from a free resolution of B/n over B. According to
Lemma 1.2.20, such a resolution is given by the Koszul complex K•(u). But
tensoring with R gives

TorRi (B/n, R) ∼= Hi(K•(u;R)).

Now if dimR/nR = dimR−dimB = dimR−r, then according to Theorem
1.2.15, u = (u1, . . . , ur) is a regular sequence on R and, hence, all homology
groups Hi(K•(u;R)) vanish in degree 6= 0 due to Lemma 1.2.20.

The next lemma assures that flatness behaves well under taking hyper-
plane sections.

Lemma 1.2.25. Let (B, n) → (R,m) be a homomorphism of Noetherian local
rings, and suppose that M is an R-module which is flat over B. For any nonzero-
divisor x ∈ m on M/nM , also M/xM is a flat B-module.

Proof. This follows directly from the long exact sequence of Tor. Consider
the short exact sequence

0 //M
·x //M //M/xM // 0 .

Applying −⊗B B/n, we obtain an exact sequence

TorB1 (M,B/n) // TorB1 (M/xM,B/n) //M/nM
·x //M/nM .

Now, by assumption on M , Tor1
B(M,B/n) vanishes. On the other hand the

kernel of multiplication by x is trivial because x was a nonzerodivisor on
M/nM . Thus the assertion follows from the Local Criterion for Flatness,
Theorem 1.2.3.
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1.3 Determinantal Deformations

The condition on the codimension in the definition of determinantal sin-
gularities 1.1.1 is natural in the following sense. It is a fact known as the
generalized principal ideal theorem, proved by Eagon and Northcott [18, The-
orem 3], that for any ideal I generated by the t-minors of an (m×n)-matrix
A with entries in a commutative Noetherian ring R, the height of I in R is
bounded from above by the number (m − t + 1)(n − t + 1). Since this is
also the codimension of the generic determinantal variety M t

m,n, it is also
the expected codimension of its preimage under the map given by A. The
definition of a determinantal singularity makes sure that this bound is at-
tained.

In this section we will develop the theory of determinantal deformations
of a given determinantal singularity (X0, 0) ⊂ (CN , 0). As it turns out, the
only requirement on (X0, 0) for the deformation theory to be well behaved
is to have expected codimension. As a guiding example, we first recall the
case of a complete intersection singularity.

1.3.1 Deformations of Complete Intersections

Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of type (d, 1, 1). This
means the ideal I of (X0, 0) in ON is generated by d elements f1, . . . , fd,
and codim I = codim(X0, 0) = d. In view of Lemma 1.2.4, a first step to
understanding deformations of (X0, 0) is to know a free resolution ofOX0,0

over ON .
SinceON is Cohen-Macaulay, Theorem 1.2.15 asserts that f = (f1, . . . , fd)

is a regular sequence on ON . Therefore, a free resolution is given by the
Koszul complex

0 OX0,0
oo K•(f)oo

according to Lemma 1.2.20. Because the length of this free resolution is d,
we may deduce that OX0,0 is a Cohen-Macaulay ON -module by using the
Auslander-Buchsbaum Formula.

Now suppose we are given another analytic algebra (B, n) and we want
to deform (X0, 0) over (B, n). We need to give the ideal Ĩ in the ring S :=
ON ⊗̂CB for the total space (X, 0) of the deformation in (CN , 0)×SpecB. In
order for OX,0 = S/Ĩ to specialize to OX0,0 = ON/I there have to be lifts
Fi ∈ Ĩ , which reduce to fi modulo nS. The next theorem says that any ideal
of the form Ĩ = 〈F1, . . . , Fd〉 already defines a flat family.

Theorem 1.3.1. Let I ⊂ ON be a complete intersection ideal generated by the
elements of a regular sequence f = (f1, . . . , fd). If (B, n) is any Noetherian local
C-algebra and Fi elements in S := ON ⊗̂CB reducing to Fi ⊗B B/n = fi for
i = 1, . . . , d, then S/〈F1, . . . , Fd〉 is flat over B.

Proof. We first prove the theorem in the case B = C{u} = Ok for some
u = u1, . . . , uk. In this case, S = C{x, u} = ON+k is Cohen-Macaulay and
flat as a B-algebra. One has

dimS = dimS/nS + dimB = dimON + dimB
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according to Theorem 1.2.23. Let J := 〈F1, . . . , Fd〉. For the extension of
rings S/Ĩ over B, we can say

dimS/J ≤ dimON/I + dimB = dimON + dimB − d = dimS − d.

We see that J is an ideal of codimension d generated by d elements in the
Cohen-Macaulay ring S and, hence, a complete intersection as well. It fol-
lows that the Koszul complex in (F1, . . . , Fc) over S gives a free resolution
of J as an S-module. It obviously specializes to the Koszul complex in the
fi and, hence, flatness follows from Lemma 1.2.4.

For a general analytic algebra B = Ok/T for some ideal T , let F̃i ∈
C{x, u} be any lifts of the Fi ∈ ON ⊗̂CB under the canonical projection
ON ⊗̂COk → ON ⊗̂CB. From the above said, it follows that the family de-
fined by these F̃i over Ok is flat. To show flatness of S/J over B, we may
now use the fact that base-change preserves flatness, since

S/J ∼= ON+k/〈F̃1, . . . , F̃d〉 ⊗Ok B.

From the perspective of determinantal singularities, Theorem 1.3.1 can
be rephrased as:

For a determinantal singularity of type (d, 1, 1) any family coming from a pertur-
bation of the defining matrix is flat.

The proof consisted of two essential steps: First, the reduction to defor-
mations over analytic algebras B = Ok, and secondly, the exploitation of
expected codimension to give a free resolution ofOX,0 spezializing to a free
resolution of OX0,0. We aim to show that this pattern works for determi-
nantal singularities of arbitrary type.

Theorem 1.3.2. Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of type
(m,n, t) given by a matrix A ∈ Mat(m,n;ON ), and let (B, n) be any local C-
algebra. Set S := ON ⊗̂CB, and let A ∈ Mat(m,n;S) be any matrix such that
A⊗B B/n = A. Then S/〈A∧t〉 is flat over B.

We postpone the proof of Theorem 1.3.2.

Definition 1.3.3. Deformations of a determinantal singularity as in Theo-
rem 1.3.2 are called determinantal deformations.

Remark 1.3.4. One can consider a determinantal deformation also as an un-
folding of maps. Namely, if A ∈ Mat(m,n;ON ) is as in Theorem 1.3.2, then

A : (CN , 0)× SpecB → (Mat(m,n;C), 0)

is a family of maps parametrized by SpecB. Here, SpecB can be a formal
scheme in case B was an Artinian algebra or if B = OY,p for some space
(Y, p), then SpecB = (Y, p).

Families of maps are naturally well behaved. The hard part is to estab-
lish flatness of the induced family of preimages A−1(M t

m,n, 0)→ SpecB for
a given analytic set (M t

m,n, 0) ⊂ (Mat(m,n;C), 0).

The first step to understand a special determinantal singularity (X0, 0)
of type (m,n, t) is to understand the generic singularity (M t

m,n, 0) ⊂ (Mat(m,n;C), 0).
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In some sense, one could see this already in the case where (X, 0) is a com-
plete intersection singularity given by a matrix

A =
(
a1 . . . ad

)T
.

Here the generic “singularity” is a (smooth) point V = {0} ∈ Cc. If y1, . . . , yd
are the coordinates on Cd, then the ideal J = 〈y1, . . . , yd〉 defining {0}
is generated by the regular sequence (y1, . . . , yd) and a free resolution of
OV,0 = Od/J is given by the Koszul complex. The free resolution of OX0,0,
the quotient by the ideal of 1-minors of A, is then inherited from the reso-
lution of OV,0 by substituting the entries ai of A for the variables yi.

This phenomenon that a special determinantal singularity (X0, 0) ⊂
(CN , 0) given by a matrixA ∈ Mat(m,n;ON ) inherits a free resolution of its
local ring OX0,0 as an ON -module from its generic singularity (M t

m,n, 0) ⊂
(Mat(m,n;C), 0) holds in general, as we shall see now. It is the key ingre-
dient for the existence of determinantal deformations.

1.3.2 Inheritance of Projective Resolutions

We start by observing that the term “Koszul complex” itself is merely a
name for an algorithm or pattern for how to construct a complex for a given
set of c elements in a ring. In [19], Eagon and Northcott extract and describe
this fact in their notion of a universal complex on c parameters. Apparently,
being algebraists, they seem to be targeted on the greatest possible gen-
erality of their results and thus work over Z instead of any field. For us,
however, it is more convenient to work over a field k (Q or C will do) be-
cause the description of projective resolutions of the generic determinantal
ideals is easier in this case. For example, we will be able to use the results
by Lascoux [49] on free resolutions of the ideals defining the generic deter-
minantal varieties M t

m,n.
We will reformulate the definitions and their theorem in this sense.

Definition 1.3.5 ([19]). Let k[Y ] = k[Y1, . . . , Yp] be a polynomial ring over a
field k. A complex

K•(Y1, . . . , Yp) : 0 K0
oo K1

oo K2
oo · · ·oo

of projective k[Y ]-modules is called a universal projective complex on p param-
eters over k.

Given any universal projective complex on p parameters K•(Y1, . . . , Yp)
over a field k and p elements a1, . . . , ap in a k-algebra R, we obtain a new
complex of projective R-modules as follows. There is a unique homomor-
phism φ : k[Y ] → R sending 1 to 1 and Yi to ai, which makes R into a
k[Y ]-module. Set

K•(a1, . . . , ap;R) := K•(Y1, . . . , Yp)⊗k[Y ] R. (1.17)

Each term of this complex is naturally a projective R-module. We write

M(a;R) := coker(K1(a;R)→ K0(a;R)), (1.18)
I(a;R) := AnnRM(a;R), (1.19)
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for the natural augmentation module and its annihilator.

Theorem 1.3.6 ([19],Proposition 4). Let k be a field, I ⊂ k[Y ] = k[Y1, . . . , Yp]
a proper ideal, and

0 k[Y ]/Ioo K0
oo K1

oo · · ·oo Kµ
oo 0oo (1.20)

a projective resolution of k[Y ]/I over k[Y ] of minimal length, i.e. µ = pd(k[Y ]/I).
If R is any Noetherian k-algebra and a1, . . . , ap ∈ R, then

grade(I(a;R), R) ≤ µ;

and if equality holds, then

0 R/I(a;R)oo K0(a;R)oo · · ·oo Kµ(a;R)oo 0oo

is a projective resolution of R/I(a;R). In particular I(a;R) is a perfect ideal.

Remark 1.3.7. In [19], the authors formulate this result for ideals I in the ring
Z[Y ], for which Z[Y ]/I is a torsion-free Z-module. They show that in this
case, the resolution (1.20) is a generically acyclic complex K. But the only step
in the proof of Theorem 1.3.6 where they really use this fact is when they
deduce that for any ring R, the complex

K ⊗Z R

is again exact. If we work over a field k and take the tensor product with a
k-algebraR, then this is a trivial fact, sinceR is naturally flat as a k-module.
Remark 1.3.8. Theorem 1.3.6 also holds if we work over C and replace k[Y ]
by the ring of convergent power series C{Y }. In this case, we have to
restrict to R being another analytic algebra for the ring homomorphism
C{Y } → R to make sense.

Theorem 1.3.9. Let f : (Cq, 0) → (Cp, 0) be a holomorphic map and (V, 0) ⊂
(Cp, 0) a germ defined by an ideal 〈h1, . . . , hr〉 such thatOV,0 is Cohen-Macaulay.
If the preimage (X0, 0) := f−1(V, 0) ⊂ (Cq, 0) has expected codimension

codim(X0, 0) = codim(V, 0),

then for any local C-algebra (B, n) and unfolding F of f over B, the ring

Oq⊗̂CB/〈F ∗h1, . . . , F
∗hr〉

is a flat B-module.

(X0, 0) //

��

(X, 0)

��

// (V, 0)

��
(Cq, 0) //

��

(Cq, 0)× SpecB
F //

��

(Cp, 0)

{0} // SpecB

In other words, if we let (X, 0) := F−1(V, 0) ⊂ (Cq, 0)× SpecB, then the family
given by the projection (X, 0)→ SpecB is a deformation of (X0, 0).
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Proof. Again, we first prove the statement for B = Ok for some k. Since
both Op and OV,0 are Cohen-Macaulay, the Auslander Buchsbaum formula
gives

pdOp OV,0 = codim(V, 0) =: c,

and by assumption, this coincides with codim(X0, 0). We want to show that
also the total space (X, 0) has expected codimension. Let S = Oq+k be the
local ring of the ambient space (Cq, 0) × (Ck, 0) of (X, 0) and J ⊂ S its
defining ideal. Due to Theorem 1.2.23, we conclude

dimOX,0 ≤ dimOk + dimOX0,0 = k + q − c = dimS − c.

Since S is Cohen-Macaulay, we deduce from Theorem 1.2.15

codim J = height J = grade(J,Oq+k).

But J is nothing but I(F ;Oq+k) for the complex K• coming from a minimal
free resolution of OV,0. Because (V, 0) was assumed to be Cohen-Macaulay,
the length µ of the free resolution K• is equal to c = codim(V, 0). From
Theorem 1.3.6, it follows that K•(F ;Oq+k) gives a free resolution of OX,0
over Oq+k.

Now, flatness of OX,0 over Ok follows from Theorem 1.2.24. Alterna-
tively, one could argue that K•(f ;Oq) is a free resolution of OX0,0 over Oq
and that the resolution K•(F ;Oq) specializes to it. In this case, flatness fol-
lows from Lemma 1.2.4.

For general B = Ok/T , we conclude as in the proof of Theorem 1.3.1,
using a lift and the flatness of base change.

Remark 1.3.10. From the proof of Theorem 1.3.9 we see that for the preimage
(X0, 0) = f−1(V, 0) of a Cohen-Macaulay germ (V, 0), not only every per-
turbation of f induces a well behaved deformation of (X0, 0), but (X0, 0)
inherits a free resolution of OX0,0 from a free resolution of OV,0. Moreover,
this free resolution is preserved under deformations. This is why we need
to have a good understanding of the generic determinantal varieties.

1.3.3 The Generic Determinantal Singularities

We start by observing that all the ideals defining the varieties M t
m,n are

homogeneous polynomial ideals. We will therefore in this section consider
graded resolutions. They coincide with minimal resolutions when seen as
analytic ideals in Om·n. As usual for a graded ring

S =
⊕
d∈Z

Sd,

we will denote the degree d part by Sd. Any module M over S will be
assumed to be graded as well, i.e. M =

⊕
d∈ZMd, and multiplication by

elements of S has to be graded in the sense that degrees add up:

· : Sd ×Me →Me+d ⊂M.



1.3. Determinantal Deformations 21

A homomorphism of graded modules ϕ : M → N preserves degrees. For
any graded module M , we denote by M(d) the same module with its grad-
ing shifted by d, i.e.

(M(d))e = Me+d. (1.21)

For details on graded resolutions and their parallelism to minimal resolu-
tions over local rings, see e.g. [22] or [10].

Consider X = Mm
m,n for m < n, i.e. the variety cut out by the maximal

minors of the matrix

Y =

 y1,1 · · · y1,n
...

...
ym,1 · · · ym,n

 ∈ Mat(m,n;Om·n). (1.22)

Let R = C[y] := C[y1,1, . . . , ym,n] and I = 〈Y ∧m〉 ⊂ R. A minimal graded
resolution of R/I is given by the Eagon-Northcott complex first described
by Eagon and Northcott in [18]. We will reproduce the exposition of its
construction from [22, Appendix A2.6]. The Eagon-Northcott complex is
constructed for arbitrary rings R and homomorphisms ϕ : Rn → Rm. But
the reader may keep in mind the case R = C[y] and ϕ the homomorphism
represented by the matrix Y in the following.

Let ϕ : Rn → Rm be a homomorphism of free modules over a ring R.
Let x = (x1, . . . , xm) be the canonical generators of the free module Rm and
set S = R[x1, . . . , xm]. We consider S as a graded R-algebra with its natural
grading by degree in x.

There is a canonical map of S-modules induced by ϕ:

Φ : Rn ⊗R S(−1)→ S, ej ⊗ 1 7→
∑
i

yi,j · xj .

Here the ej are the standard generators ofRn. We may identifyRn⊗RS(−1)
with S(−1)n. Also, we have

p∧
S(d)r ∼= S(p · d)(

r
p) ∼= S(p · d)⊗R

p∧
Rr. (1.23)

Consider the Koszul complex associated to Φ on S:

0
∧0 S(−1)noo

∧1 S(−1)n
Φoo · · ·oo

∧n S(−1)noo 0oo .

Using (1.23), we obtain

0 Soo S(−1)⊗
∧1Rn

Φoo · · ·oo S(−n)⊗
∧nRnoo 0oo .

(1.24)
This can be viewed as a complex of graded, free R-modules. We now dual-
ize over R applying HomR(−, R). To fix notation we let

S∗ := HomR(S,R), S∗d = HomR(Sd, R). (1.25)
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The S∗d give a natural grading on S∗. Also, although a priori being only an
R-module, S∗ has a natural structure as an S-module via

(s, ϕ) 7→ s · ϕ := ϕ ◦ (a 7→ s · a).

Note, however, that the grading is in a sense reversed, i.e. we have

· : Sd × S∗e → S∗e−d.

Identifying HomR(
∧pRn, R) with

∧n−pRn using the canonical orientation
of
∧nRn in (A.9) as usual, the dualized Koszul complex takes the form

0 // S∗ ⊗
∧nRn // S∗(−1)⊗

∧n−1Rn // · · ·

· · · // S∗(−n+ 1)⊗
∧2Rn // S∗(−n)⊗

∧1Rn // 0

.

(1.26)
Now for d ∈ N0, consider the degree d part, a so called strand, of the com-
plex:

0 // S∗d ⊗
∧nRn // S∗d−1 ⊗

∧n−1Rn // S∗d−2 ⊗
∧n−2Rn // · · ·

· · · // S∗1 ⊗
∧n−d+1Rn // S∗0 ⊗

∧n−dRn // 0

.

(1.27)
Note that, since S∗k = 0 for all k < 0, this complex ends prematurely if
d < n. Something similar happens for the degree e part of (1.24):

0 Seoo Se−1 ⊗
∧1Rn

Φoo · · ·oo

· · · S1 ⊗
∧e−1Rnoo S0 ⊗

∧eRnoo 0oo

. (1.28)

For e = n−m−dwe now define a “splice map” ε from the right end of (1.27)
to the degree e part of the right end of (1.28) as follows. We can identify

S∗0 ⊗
n−d∧

Rn ∼= HomR(R,R)⊗
n−d∧

Rn ∼=
n−d∧

Rn

and

S0 ⊗
n−m−d∧

Rn ∼= R⊗
n−m−d∧

Rn ∼=
m∧
Rm ⊗

n−m−d∧
Rn.

Now ε :
∧n−dRn →

∧mRm ⊗
∧n−m−dRn is given by the contraction with

ϕ∧m ( see Appendix A.1, equation (A.13) for a definition).
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One can check that the splice map ε is indeed compatible with the other
differentials. Thus we obtain a family of complexes

0 // S∗d ⊗
∧nRn // S∗d−1 ⊗

∧n−1Rn // · · ·

· · · // S∗0 ⊗
∧n−dRn

ε // S0 ⊗
∧n−m−dRn // · · ·

· · · // Sn−m−d−1 ⊗
∧1Rn // Sn−m−d // 0

(1.29)

for all d ∈ N.

Definition 1.3.11. The Eagon-Northcott complex is defined to be (1.29) for
d = n−m.

The family of complexes for d < n − m consists of the Buchsbaum-Rim
complexes.

For d = n −m, i.e. if (1.29) is the Eagon-Northcott complex, the splice
map takes the following form:

ε :
m∧
Rn → R, eI 7→ ϕ∧mI,K ,

where K = (1, . . . ,m) is the only possible ordered multiindex of degree m.
Thus, the image of ε is the ideal generated by the maximal minors of the
matrix representing ϕ. Also, the target of ε is the last nonzero term in the
complex.

Theorem 1.3.12. In caseR = C[y], and ϕ represented by Y as in 1.22, the Eagon-
Northcott gives a free graded resolution of R/〈Y ∧m〉. Also the Buchsbaum-Rim
complexes are exact except at their right end and, hence, describe a free resolution
of their final cokernel.

Proof. See [18] for the Eagon-Northcott complex. Both cases including the
Buchsbaum-Rim complex are treated in [22, Theorem A2.10]3. Another con-
struction of the Eagon-Northcott complex is described in [12].

Corollary 1.3.13. For all n > m > 0, the variety Mm
m,n ⊂ Mat(m,n;C) is

Cohen-Macaulay at the origin.

Proof. This follows directly from the Auslander-Buchsbaum formula 1.2.16
and the fact that the length of the Eagon-Northcott complex is equal to the
codimension: n−m+ 1.

Remark 1.3.14. We include the Buchsbaum-Rim complexes in Theorem (1.3.12),
because of the following fact. Let d = n−m− 1. Then (1.29) ends with

· · · // S∗0 ⊗
∧m+1Rn

ε // S0 ⊗
∧1Rn

ϕ // S1.

Thus the first Buchsbaum-Rim complex gives a free resolution of the mod-
ule presented by ϕ.

3 The proof in [22] is formulated for more general situations. But historically, the exact-
ness of the Eagon-Northcott complex was proved for this case first, while the general case
was deduced using generically acyclic complexes as introduced above.
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Giving resolutions of the rings of the M t
m,n for t < min{m,n}, i.e. the

case of non-maximal minors, has taken much longer. Lascoux was the first
one to construct them over rings R which contain the rationals, Q, in [49].
Working over Q was necessary for him, since he heavily used representa-
tion theory and Schur functors. His ideas were then picked up and people
tried to carry over his results to the integers. For example, in [2] the case of
(m− 1)-minors of m× n-matrices is treated.

It should be pointed out, however, that despite the fact that Lascoux
was the first to give explicit resolutions, Hochster and Eagon proved the
following theorem already seven years earlier in [46].

Theorem 1.3.15 ([46], Corollary 4). Let Y be as in (1.22) and R = K[y] =
K[(yi,j)i,j ] for a Noetherian domain K. The ideal 〈Y ∧t〉 ⊂ R is perfect of grade
(m− t+ 1)(n− t+ 1) for all 0 < t ≤ min{m,n}.

In particular, ifK is a field, (M t
m,n, 0) ⊂ (Mat(m,n;C), 0) is Cohen-Macaulay.

In the proof the authors show that the length of a minimal free resolu-
tion must be equal to (m+ t− 1)(n+ t− 1). However, they do not construct
it.

We are now in the position to prove Theorem 1.3.2.

Proof. (of Theorem 1.3.2) From Theorem 1.3.15 we know that every generic
determinantal singularity (M t

m,n, 0) ⊂ (Mat(m,n;C), 0) is Cohen-Macaulay.
Hence, Theorem 1.3.9 is applicable and the result follows.

Finally we may furnish an explicit corollary out of what has already
been hinted in Remark 1.3.10.

Corollary 1.3.16. Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of type
(m,n, t) given by a matrix A ∈ Mat(m,n;C). Then a minimal free resolution of
OX0,0 as anON -module is given by substituting the entries ai,j of A for the yi,j in
a minimal graded resolution of OMt

m,n,0
as an Om·n-module.

Proof. This directly follows from Theorem 1.3.6 and the fact that (M t
m,n, 0)

is Cohen-Macaulay 1.3.15. Also, one uses that minimal graded resolutions
over C[y] give minimal free resolutions over C{y}.

1.4 Versal Families

Any matrixA ∈ Mat(m,n;ON ) defining a determinantal singularity (X0, 0) ⊂
(CN , 0) can be regarded as a map germ

A : (CN , 0)→ (Mat(m,n;C), 0)

and determinantal deformations of (X0, 0) are precisely those coming from
a perturbation of A. Hence, the deformation theory of (X0, 0) is closely
related to unfoldings of the map A.

In this section we will first develop a construction of semi-universal un-
foldings of map germs into the space of matrices. Then we will discuss its
implications for the determinantal deformations of a determinantal singu-
larity and finally compare the determinantal deformations with the semi-
universal deformation of the underlying space germ.
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1.4.1 Versal Unfoldings of Map Germs into the Space of Matrices

The first step in the development of the theory of versal unfoldings is an
adequate notion of equivalence of maps. What we will present now is ba-
sically KV -equivalence - an idea originally suggested by James Damon. In
his book [16] he treats a more general case and we will reformulate many
of his results there explicitly for our purposes. In this process we are, of
course, able to drastically simplify the exposition.

Since we are dealing with maps to the space of matrices Mat(m,n;C)
and we are doing geometry, we might prefer to work independently of any
chosen basis or local coordinates. This suggests the following definition.

Definition 1.4.1. Two map germs A1, A2 : (CN , 0) → (Mat(m,n;C), P )
are called equivalent if there is a germ of an analytic diffeomorphism Φ :
(CN , 0)→ (CN , 0) at 0 and two germs

F : (CN , 0)→ GL(m;ON ), G : (CN , 0)→ GL(n;ON )

such that
A2 = F · (Φ∗A1) ·G−1.

The reader may note the compatibility with the definition of equivalence of
determinantal singularities 1.1.4. Note that we do not require that 0 ∈ CN
is mapped to the zero matrix. For determinantal singularities the notion
of minimality allowed us to reduce to this case. But for reasons that will
become appearent later, it will be more convenient to consider this more
general setup in the context of map germs. If we forget about the matrix
structure of the target space, we can, however, assume that P is just the
origin of some Cp again.

Definition 1.4.2. An unfolding of a map germ f : (CN , 0) → (Cp, 0) over a
local C-algebra (B, n) is a commutative diagram

(CN , 0)

(id,0)
��

f

))
(CN , 0)× SpecB

F //

π2

))

(Cp, 0)× SpecB

π2

��
SpecB

(1.30)

where π2 is the projection to the second factor.
If B = Oq for some q, then SpecB stands for (Cq, 0) and F is called an
unfolding of f on q parameters.
If (B, n) is Artinian, then F is called an infinitesimal unfolding of f .
If furthermore n2 = 0, then F is called a first order unfolding of f .

Remark 1.4.3. The commutativity of the lower triangle of (1.30) implies that
F corresponds to a morphism ofB-algebras. Geometrically this means that,
if we interpret F as a function on two arguments (x, u) ∈ CN ×SpecB, then
F (x, u) = (F̃ (x, u), u) ∈ Cp × SpecB for some F̃ (x, u), which takes values
in Cp. In other words F̃ ∈ (ON ⊗̂CB)p. Since F is compeletely determined
by commutativity over B and F̃ , we will, by abuse of notation, also write
F ∈ (ON ⊗̂CB)p.
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For any map Ψ : SpecB′ → SpecB of local C-algebras and F an unfold-
ing of f over B, we obtain an induced unfolding F ′ = Ψ∗F via Ψ

(CN , 0)×SpecB SpecB′ //

��

F̃ ′

))
(CN , 0)× SpecB

F̃ //

��

(Cp, 0)

SpecB′
Ψ // SpecB

(1.31)

over SpecB′. In terms of functions this means

F̃ ′(x, v) = (Ψ∗F )∼(x, v) = F̃ (x,Ψ(v)).

Remark 1.4.4. If we want to classify unfoldings of maps, it is no restriction
to consider only unfoldings with smooth base (Ck, 0), i.e. over power series
rings Ok. If B is any analytic algebra, then it is of the form Ok/J for some
ideal J ⊂ Ok. Now, if F̃ ∈ (ON ⊗̂CB)p is an unfolding of F : (CN , 0) →
(Cp, 0), we can consider any lift

F̃ ′ ∈ (ON ⊗̂COk)p

of F̃ . This is an unfolding of F over Ok and F̃ is induced from F̃ ′ via the
natural map Ok → B.

Definition 1.4.5. Let A : (CN , 0)→ (Mat(m,n;C), P ) be a given map germ.
Two unfoldings

A1,A2 : (CN , 0)× SpecB → (Mat(m,n;C), 0)× SpecB

of A over B are called equivalent if there is an unfolding of the identity

Φ : (CN , 0)× SpecB → (CN , 0)× SpecB, Φ|(CN ,0)×{0} = id(CN ,0),

and two unfoldings of map germs

F ∈ GL(m;ON ⊗̂CB), F ⊗B C = 1m

G ∈ GL(n;ON ⊗̂CB), G⊗B C = 1n

such that
A2 = F · (Φ∗A1) ·G−1

as unfoldings over B.
A unfolding A of A over B is trivial, if A is equivalent to the unfolding

given by A⊗̂C1B .

Definition 1.4.6. For a given A : (CN , 0) → (Mat(m,n;C), P ) let Inf(A) be
the space of equivalence classes of unfoldings of A over C[ε]/ε2.

Remark 1.4.7. Inf(A) is what Damon calls the extended tangent space to A in
Mat(m,n;ON ) in [16].
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Lemma 1.4.8. The space Inf(A) for a given A : (CN , 0)→ (Mat(m,n;C), P ) is
canonically isomorphic to the ON -module

Mat(m,n;ON )/

〈
∂A

∂xi
: i = 1, . . . , N

〉
+ 〈im(g)〉 (1.32)

where im(g) is the image of the map

g : Mat(m,m;ON )×Mat(n, n;ON )→ Mat(m,n;ON ), (F,G) 7→ F ·A+A·G.

Proof. The algebra B := C[ε]/ε2 has a natural splitting as C ⊕ ε · C, which
induces an isomorphism

V ⊗̂CC[ε]/ε2 ∼= V ⊕ ε · V

for any C-vector space V . An unfolding Ã of A over B is, hence, given by

Ã = A0 ⊕ ε ·A1 ∈ Mat(m,n;ON )⊗̂CB

with A0 = A. From this we see that Ã is trivial if and only if A1 = 0.
Suppose Ã is equivalent to the trivial unfolding. Then there exist

Φ = idCN ,0 +ε · Φ1(x) ∈ ONN ⊗̂CB

F = 1m + ε · F1(x) ∈ Mat(m,m;ON )⊗̂CB

G = 1n + ε ·G1(x) ∈ Mat(n, n;ON )⊗̂CB

such that
Ã = A0 + εA1 = F · (Φ∗(A+ ε · 0)) ·G−1.

Performing the Taylor expansion for the entries of A = A0 and G−1, we
obtain for the right hand side

(1m + ε · F1) ·

(
A0 ◦ id(CN ,0) +ε ·

N∑
i=1

Φi
1

∂A0

∂xi
◦ id(CN ,0)

)
· (1n − ε ·G1)

= A0 + ε ·

(
F1 ·A0 +

(
N∑
i=1

Φi
1

∂A0

∂xi

)
−A0 ·G1

)
,

where Φi
1 is the i-th component of Φ1. It follows that A1 ∈ Mat(m,n;ON ) is

a trivial unfolding if and only if it is zero in the quotient (1.32).

Lemma 1.4.8 gives the set Inf(A) of a given map germ A : (CN , 0) →
(Mat(m,n;C), P ) the nice structure of a finitely generated ON -module. By
definition it covers all equivalence classes of unfoldings over C[ε]/ε2. If κ :=
dimC Inf(A) < ∞, we can choose elements G1, . . . , Gκ ∈ Mat(m,n;ON ),
which reduce to a C-basis of Inf(A). From this we built the unfolding

A = A+
κ∑
i=1

ui ·Gi (1.33)

over B := C[u1, . . . , uκ]/〈u1, . . . , uκ〉2 with coordinates u1, . . . , uκ.
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Let n = 〈u1, . . . , uκ〉 be the maximal ideal. The tangent space to (SpecB, 0)
at 0 is

0.TCκ ∼= HomC(n/n2,C) = (n/n2)∨.

There is a canonical isomorphism ψ : TSpecB,0
∼=−→ Inf(A) given by

ψ : ϕ 7→
κ∑
i=1

ϕ(ui) ·Gi. (1.34)

This generalizes to arbitrary local C-algebras (B′, n′) and unfoldings Ã of
A over B′. Let v1, . . . , vτ be a minimal set of generators of n′/n′2. If ϕ ∈
TSpecB′,0, then we have

Ψ : ϕ 7→
τ∑
i=1

ϕ(ui) ·
∂Ã

∂ui
⊗B B/n ∈ Inf(A). (1.35)

This homomorphism of vector spaces Ψ is called the determinantal Kodaira-
Spencer map of the unfolding.

In case n′2 = 0 in B′, i.e. if Ã is a first order unfolding, the dual map
of ψ−1 ◦Ψ : TSpecB′,0 → TSpecB,0 uniquely determines a homomorphism of
algebras Φ : B → B′. It is now easy to see that we necessarily have

Ã = A⊗B B′,

i.e. that Ã can be written as an unfolding of A induced from A via Φ.
In other words, the unfolding given by (1.33) is a universal object in

the sense that any other first order unfolding can be obtained from it in an
essentially unique way. The following definition is the generalization of
this idea.

Definition 1.4.9. Let A : (CN , 0) → (Mat(m,n;ON ), P ) be a map germ.
An unfolding A of A over (Ck, 0) is called a versal unfolding of A if any
other unfolding A′ over some complex space germ (Y, 0) is equivalent to
an unfolding induced from A via some map Ψ : (Y, 0)→ (Ck, 0).

An unfolding A of A is called infinitesimally versal if any first order un-
folding of A can be obtained from A via some homomorphism Ψ∗ : Ok →
C[ε]/ε2.

Moreover, an infinitesimally versal unfolding A is semi-universal if the
dimension k of the base is equal to dimC Inf(A).

Theorem 1.4.10. Let A : (CN , 0) → (Mat(m,n;C), 0) be a holomorphic map
germ with κ := dimC Inf(A) < ∞, and suppose G1, . . . , Gκ ∈ Mat(m,n;ON )
reduce to a C-basis of Inf(A). Then the unfolding of A over (Cκ, 0) given by

A = A+

κ∑
i=1

ui ·Gi ∈ Mat(m,n;ON ⊗̂COk),

where the ui are the coordinates of (Ck, 0), is semi-universal.

The key idea for the proof is extracted in the following reduction lemma.

Lemma 1.4.11. Let A : (CN , 0) → (Mat(m,n;C), P ) be a holomorphic map
germ and suppose A ∈ Mat(m,n;ON+1) is a 1-parameter unfolding of A with
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unfolding parameter v. If there exists a vector field ξ ∈ TCN+1,0 with dv(ξ) = 1
and matrices

F ∈ Mat(m,m;ON+1), G ∈ Mat(n, n;ON+1)

such that
ξ(A) = F ·A + A ·G,

then A is trivial.

Proof. Associated to ξ there is a holomorphic flow

Φ : U ×D → CN+1

defined on some open neighborhood U ⊂ CN+1 of the origin and some
open disk D ⊂ C (cf. Theorem A.4.1). As usual, let (x, v) be the coordinates
of CN+1 = CN ×C. Denote the second argument of Φ by t. By the assump-
tion dv(ξ) = 1 we have Φ((x, v), t) = (x, v + t). In particular if we restrict
the first argument of Φ to the x-plane CN × {0}, then

Φ : (U ∩ CN × {0})×D → CN+1

is a holomorphic diffeomorphism onto its image W ⊂ CN+1 preserving
t = v. We will use this as our new coordinate system (x, v) of CN+1 on W
around the origin. In these coordinates ξ = ∂

∂v is the constant vector field.
Now consider the complex ordinary differential equation given by{

d
dtM(x, t) = F (x, t) ·M(x, t) +M(x, t) ·G(x, t)

M(x, 0) = M0(x)
(1.36)

for a function M on W taking values in Mat(m,n;C). According to A.4.5
there exist solution operators L(x, t) ∈ GL(m;C) andR(x, t) ∈ GL(n;C) for
1.36 describing the solution as

M(x, t) = L(x, t) ·M0(x) ·R(x, t)

on some neighborhood of the origin.
But, since the solution of 1.36 is unique and A(x, t) is a solution with

A(x, 0) = A(x), in the new coordinates we find

A(x, t) = L(x, t) ·A(x) ·G(x, t).

By the definition of triviality this finishes the proof.

Proof. (of Theorem 1.4.10). Let Ã ∈ Mat(m,n;ON ⊗̂CB) be any other unfold-
ing of A over some base SpecB.

We will first prove the theorem for the case B = Or for some r ∈ N
and then the general case will follow as usual. Let v = (v1, . . . , vr) be the
coordinates of (Cr, 0). Then Ã is of the form

A+

r∑
j=1

vr ·Hj
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for some matrices Hj ∈ Mat(m,n;ON ⊗̂COr). We will write ON+κ for
C{x, u}, ON+r for C{x, v} and ON+κ+r for C{x, κ, v}. Consider the “com-
posite unfolding” given by

A := A+

(
κ∑
i=1

ui ·Gi

)
+

 r∑
j=1

vj ·Hi


in Mat(m,n;ON+κ+r) and its associated space of relative infinitesimal unfold-
ing

Infrel(A) := Mat(m,n;ON+κ+r)/

〈
∂A
∂x

〉
+ 〈F · A+A ·G〉. (1.37)

Here 〈∂A/∂x〉 denotes the submodule generated by all partial derivatives
with respect to the xi, and 〈F · A + A · G〉 is the submodule generated by
left- and right-multiplication with square matrices F and G in ON+κ+r as
usual.

Clearly Infrel(A)/〈u, v〉 ∼= Inf(A) and the Gi give a C-basis of it. By
the Weierstrass Finiteness Theorem it follows that Infrel(A) is a finite Oκ+r-
module and the (Gi)

κ
i=1 generate Infrel(A) overOκ+r. We deduce that there

is an expression

∂A
∂vr

=
κ∑
i=1

ai(u, v) ·Gi +
N∑
j=1

bj(x, u, v) · ∂A
∂xj

+

F (x, u, v) · A+A ·G(x, u, v)

in Mat(m,n;ON+κ+r) for some a = (a1, . . . , aκ), b = (b1, . . . , bN ), F ∈
Mat(m,m;ON+κ+r), and G ∈ Mat(n, n;ON+κ+r). If we let

ξ =
∂

∂vr
−

κ∑
i=1

ai ·
∂

∂ui
−

N∑
j=1

bj ·
∂

∂xj
,

then we can rewrite this expression as

ξ(A) = F · A+A ·G

with dvr(ξ) = 1. It follows from Lemma 1.4.11 that A regarded as an un-
folding of A|{vr=0} by vr over (C, 0) is trivial.

We may therefore change coordinates on (CN+κ+r−1, 0)× (C, 0) in such
a way that vr is preserved and the new ones agree with the old ones on
(CN+κ+r−1, 0)×{0} = {vr = 0}. If we let pr be the projection to (CN+κ+r−1, 0)
in these new coordinates, then

A = p∗A|vr=0.

By induction on r we finally obtain a morphism

p : (CN+κ+r, 0)→ (CN+κ, 0)

such that
A = p∗A|{v=0} = p∗A
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and hence Ã = A|{u=0} is induced from A.
For arbitrary B = Or/T the result follows by taking a lift Ã′ of the

unfolding to Or and finding a morphism Ψ : (Cr, 0) → (Cκ, 0) such that
Ã′ = Ψ∗A. If we let ι : SpecB ↪→ (Cr, 0) be the (scheme-theoretic) inclu-
sion, then

Ã = Ψ∗A⊗Or B = (Ψ ◦ ι)∗A.

1.4.2 Versal Determinantal Deformations

If A ∈ Mat(m,n;ON ) describes a determinantal singularity (X0, 0) of type
(m,n, t) and κ := dimC Inf(A) < ∞ so that a semi-universal unfolding A
of A exists, then clearly A also covers all determinantal deformations of
(X0, 0). More precisely, if we let

(X0, 0) �
� //

��

(X, 0) �
� //

u

��

(CN , 0)× (Cκ, 0)

u
ww

{0} �
� // (Cκ, 0)

(1.38)

be deformation of (X0, 0) defined by the ideal 〈A∧t〉 ⊂ ON+κ, then for any
other germ (Y, 0) and determinantal deformation of (X0, 0) over OY,0 there
is a morphism Φ : Oκ → OY,0, through which the deformation of (Y, 0) is
obtained as a pullback of (1.38). In other words: (1.38) is a versal determinan-
tal deformation of (X0, 0). But it is not clear that for all nontrivial unfoldings
of A also the space germ (X0, 0) is deformed in a nontrivial way. What one
would like to have is a semi-universal determinantal deformation. We give a
precise meaning to these notions.

Definition 1.4.12. Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of
type (m,n, t) given by a matrix A ∈ Mat(m,n;ON ). A determinantal de-
formation of (X0, 0) over an analytic algebra B given by a matrix A ∈
Mat(m,n;ON ⊗̂CB) is called versal determinantal deformation of (X0, 0) if any
other deformation of the space germ (X0, 0) coming from an unfolding of A
is equivalent to a deformation obtained from the one given by A via pull-
back.

A versal determinantal deformation is called semi-universal if the dimen-
sion of the tangent space of the base B at 0 is minimal among all versal
determinantal deformations.

As we already saw in the development of semi-universal unfoldings of
map germs, the tangent space of the base of a versal unfolding encodes all
first order unfoldings. Requiring the tangent space of the base of a semi-
universal determinantal deformation to have minimal dimension, is there-
fore equivalent to saying that its elements uniquely represent all first order
deformations up to equivalence. It follows that, if the deformation over B
is semi-universal, then for any other determinantal deformation of (X0, 0)
over some base (S, 0) and the corresponding map Ψ : (S, 0) → SpecB the
differential dΨ is uniquely determined.

But it seems to be difficult to get a control over this minimality. We do
not have an analogue of the space Inf(A), with which we could begin to
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build a semi-universal deformation of (X0, 0) by first classifying the first
order determinantal deformations.

What we can do, however, is to compare versal determinantal deforma-
tions of (X0, 0) with its semi-universal deformation as a space germ - if they
exist. Recall the following fundamental Theorem by Grauert:

Theorem 1.4.13 ([32]). Let (X0, 0) ⊂ (CN , 0) be a singularity with dimC T
1
X0,0

<

∞. Then there exists a semi-universal 4 analytic deformation

(X0, 0) �
� //

��

(X, 0) �
� //

u

��

(CN , 0)× (S, 0)

u
ww

{0} �
� // (S, 0)

of (X0, 0) over some analytic base (S, 0).

Here, in the context of deformations of space germs, the term versal
means what it should: Any other deformation (X ′, 0) −→ (S′, 0) of (X0, 0)
as a space germ is equivalent to one obtained from the versal one via pull-
back Ψ : (S′, 0) → (S, 0). The interesting part is the minimality condition
in the definition of semi-universality. If (X0, 0) ⊂ (CN , 0) is defined by the
ideal I ⊂ ON , then the T 1

X0,0
is defined as

T 1
X0,0 := HomON (I,OX0,0)/TCN ,0. (1.39)

Here HomON (I,OX0,0) is the stalk of the normal bundle of (X0, 0) in (CN , 0)
at the origin, and the action by elements ξ ∈ TCN ,0 is given by

ξ : I → OX0,0, f 7→ ξ(f) + I.

A direct calculation shows that if (X0, 0) is smooth at 0, then T 1
X0,0

= 0.
Consequently, the coherent analytic sheaf associated to T 1

X0,0
is supported

in the singular locus of (X0, 0) and in particular the requirement dimC T
1
X0,0

in the statement of Theorem 1.4.13 is fulfilled for all isolated singularities.
The dimension

τ := dimC T
1
X0,0

is called the Tjurina number of the singularity (X0, 0).
The space T 1

X0,0
is the equivalent object - in the realm of deformations

of space germs - of the space Inf(A) in the following sense: It classifies all
first order deformations of (X0, 0), i.e. deformations over C[ε]/ε2, up to
equivalence. For a more detailed treatment of the T 1

X0,0
, the reader may

consult e.g. [7], [64], [38] or also the original article by Schlessinger [63].

Definition 1.4.14. A versal deformation of an arbitrary singularity (X0, 0) ⊂
(CN , 0) as a space germ over a base (S, 0) is semi-universal if dimC T

1
X0,0

is
equal to the dimension of the tangent space of (S, 0) at 0.

Clearly, the tangent space of the base of a semi-universal deformation is
minimal among all versal deformations of the given singularity.

4 In [32] Grauert speaks of a “versal deformation”. However, this translates to the more
common notion of a semi-universal deformation, which we shall adapt here.
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From the definitions of semi-universal unfoldings of map germs A :
(CN , 0)→ (Mat(m,n;C), 0) to the space of matrices and semi-universal de-
formations of space germs it follows that if we have a determinantal singu-
larity (X0, 0) ⊂ (CN , 0) of type (m,n, t) given byAwith κ := dimC Inf(A) <
∞ and also τ := dimC T

1
X0,0

< ∞ so that the semi-universal unfolding of A
and the semi-universal deformation of (X0, 0) both exist, then we have a
comparison map

Φ : (Cκ, 0)→ (S, 0), (1.40)

where (S, 0) is the base of a semi-universal deformation of (X0, 0). In the
following we will discuss this map with the view towards the question,
whether or not a semi-universal determinantal deformation can be con-
structed.

The idea for the proof of Theorem 1.4.13 by Grauert is to use the tech-
niques developed by Schlessinger in [63], from which one obtains the ex-
istence of a formal semi-universal deformation in the setup of Theorem
1.4.13. By the latter we mean a deformation over a formal scheme asso-
ciated to an algebra of the form C[[u1, . . . , uk]]/T , where C[[u]] denotes the
ring of formal power series. Grauert proved that if such a formal semi-
universal deformation exists, then it exists already in the rings of conver-
gent power series and therefore enjoys all the functorial properties pro-
vided by the theory developed by Schlessinger plus a concrete geometric
realisation.

The application of Schlessingers approach to determinantal deforma-
tions has been pursued by M. Schaps in [62]. She gives a criterion for a
determinantal singularity (X0, 0) ⊂ (CN , 0) to have a semi-universal de-
terminantal deformation. However, large parts of [62] are devoted to the
exposition of examples, in which these criteria are not met.
Example 1.4.15. i) Let (X0, 0) ⊂ (C3, 0) of type (2, 2, 2) be given by the

matrix

A =

(
x y
z x

)
.

The ideal I of (X0, 0) is thus generated by the equation f = x2−yz and
we recognize the well-known A1 surface singularity. A basis of Inf(A)
is given by (

1 0
0 −1

)
and hence if we let u be the deformation parameter in the semi-universal
unfolding ofA, then the induced deformation of the space germ (X0, 0)
comes from a perturbation of f by −u2.

The semi-universal deformation of (X0, 0) as a space germ on the other
hand is given by the perturbation of f by a constant v. It follows that
the comparison map (1.40) takes the form

Φ : (C, 0)→ (C, 0), u 7→ v = u2.

In other words: The base of the semi-universal unfolding of A is a 2 : 1
cover of the base of the semi-universal deformation of (X0, 0).

ii) (Pinkham, [58]) Let (X0, 0) ⊂ (C5, 0) be the cone over the rational nor-
mal curve of degree 4. As a determinantal singularity it is given by the
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2× 2-minors of the matrix

A =

(
x1 x2 x3 x4

x2 x3 x4 x5

)
.

One easily checks that the following matrices give a basis for Inf(A)(
0 0 0 0
1 0 0 0

)
,

(
0 0 0 0
0 1 0 0

)
,

(
0 0 0 0
0 0 1 0

)
and hence dimC Inf(A) = 3. Let u1, u2 and u3 be the deformation pa-
rameters corresponding to these matrices.

In [58] Pinkham shows explicitly that the semi-universal deformation
of (X0, 0) as a space germ has a base (S, 0) ⊂ (C4, 0) of the following
form. Let v1, . . . , v4 be the coordinates of C4. Then (S, 0) consists of
two components: The plane H = {v4 = 0} and the line L = {v1 =
v2 = v3 = 0}. Furthermore, the comparison map Φ : (C3, 0) → (S, 0)
takes (C3, 0) isomorphically to (H, 0). In this case the determinantal
deformations of (X0, 0) coming from A embed as a component of the
base of the semi-universal deformation.

The deformation of (X0, 0) by v4 along the line L can be described as
follows. Its total space over (L, 0) ∼= (C, 0) is given by the 2× 2-minors
of the matrix

B =

 x1 x2 x3 − v4

x2 x3 x4

x3 − v4 x4 x5

 .

Note that despite being described by the minors of a matrix, (X0, 0)
does not become a determinantal singularity via B: It does not have
expected codimension. However, the induced deformation from the
perturbation by v4 is apparently flat. The reason behind this is that B
is a symmetric matrix, and in the appropriate deformation theory for
this setup (X0, 0) does have the correct codimension.

iii) Consider the A1 threefold singularity in (C4, 0) as a determinantal sin-
gularity of type (2, 2, 2) via the matrix

A =

(
x y
z w

)
.

There are no nontrivial determinantal deformations of this singularity.
For the space germ on the other hand we have T 1

X0,0
∼= C so that the

comparison map takes the form

Φ : {pt} → (C, 0).

iv) This example is taken from Schaps [62]. It also appears in [13] and was
recently picked up by Frühbis-Krüger in [24], where the computations
for the comparison map Φ are carried out explicitly.
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Let (X0, 0) ⊂ (C4, 0) be the union of the four coordinate axis. This is a
determinantal singularity via any matrix(

x1 α · x2 β · x3 γ · x4

0 x2 x3 x4

)
for general values α, β, γ ∈ C. Using row and column operations and
local coordinate changes, one can always bring this matrix to the form

A :=

(
x1 0 x3 γ′ · x4

0 x2 x3 x4

)
with γ′ /∈ {0, 1}. One can show that the following matrices give a C-
basis of Inf(A):(

0 0 0 0
1 0 0 0

)
,

(
0 1 0 0
0 0 0 0

)
,

(
0 0 1 0
0 0 0 0

)
,(

0 0 0 1
0 0 0 0

)
,

(
0 0 0 x4

0 0 0 0

)
.

Hence, the base of the semi-universal unfolding of A is (C5, 0). Let
u1, . . . , u5 be the standard coordinates of this space corresponding to
the five matrices above.

Computations of Rim5 and independently of Buchweitz [13] have shown
that the base (S, 0) of the semi-universal deformation of (X0, 0) is iso-
morphic to the cone of the Segre embedding of P1×P3 into P7 and thus
also of dimension 5. Consider the comparison map

Φ : (C5, 0)→ (S, 0).

It is easy to see that the perturbation by u5 alone does not change the
ideal generated by the 2-minors of A in O4: This is a non-trivial defor-
mation of the map germ A which induces a trivial deformation of the
underlying space germ! Accordingly, as the computations by Frühbis-
Krüger show, Φ is a contraction of the u5-axis, i.e. the set

C := {(u1, . . . , u5) ∈ C5 : u1 = · · · = u4 = 0}

is mapped to the point 0 ∈ S, but outside C the map Φ is a local diffeo-
morphism.

It is evident from this list of examples that there is no general pattern
of how the comparison map Φ behaves. It neither needs to be injective nor
surjective. The last example even shows that Φ can have non-finite fibers.

One could hope that in a semi-universal unfolding of the map A the pa-
rameters, which lead to trivial deformations of (X0, 0) can be singled out
on an infinitesimal level: If v ∈ TCκ(0) ∼= Inf(A) is any element of the tan-
gent space of the base of the semi-universal unfolding, then one could ask
whether the induced infinitesimal deformation of (X0, 0) given by dΦ(v)
is zero. The candidate for the tangent space of a semi-universal determi-
nantal deformation of (X0, 0) would be the quotient Inf(A)/ ker dΦ. How-
ever, Example 1.4.15 i) also shows that it is pointless to try to construct

5The computations are attributed to Rim in [62] without further reference
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a semi-universal determinantal deformation of (X0, 0) from this quotient,
since dΦ|0 is the zero map.

We conclude this section by sketching a possible step towards a con-
struction of a semi-universal determinantal deformation. However, the au-
thor can not precisely estimate the benefits of it.

Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of type (m,n, t)
given by A ∈ Mat(m,n;ON ). We define

Inft(A) := Inf(A)⊗ON OX0,0. (1.41)

The following theorem shows that if we start to build a determinantal
deformation of (X0, 0) from the infinitesimal ones described by this space,
then we indeed obtain a versal determinantal deformation.

Theorem 1.4.16. Let (X0, 0) be as above with γ := dimC Inft(A) < ∞ and let
(Gi)

γ
i=1 ∈ Mat(m,n;ON ) be matrices, which reduce to a C-basis of Inft(A). The

determinantal deformation of (X0, 0) given by

A = A+

γ∑
i=1

ui ·Gi (1.42)

over Oγ = C{u} is a versal determinantal deformation of (X0, 0).

Remark 1.4.17. There is no guarantee for any minimality of this deforma-
tion. Note, however, that dimC Inft(A) might be finite also in cases where
dimC Inf(A) is not. Thus dimC Inf(A) <∞ need not be a necessary criterion
for a versal determinantal deformation of (X0, 0) to exist.

The proof of Theorem 1.4.16 is straightforward given the proof of Theo-
rem 1.4.10. It also uses a reduction lemma similar to Lemma 1.4.11.

Lemma 1.4.18. Suppose (X0, 0) ⊂ (CN , 0) is described by the ideal I = 〈f1, . . . , fn〉 ⊂
ON and thatF1, . . . , Fn ∈ ON ⊗̂CO1 = ON+1 are power series such thatFi(x, 0) =
fi(x). Let u be the additional coordinate, i.e. the variable of O1. Consider the fam-
ily (X, 0) ⊂ (CN , 0)× (C, 0) over (C, 0) defined by the Fi. If there exists a vector
field ξ ∈ TCN+1,0 with du(ξ) = 1 such that

ξ(Fi) ∈ 〈F1, . . . , Fn〉,

then there is a commutative diagram

(X, 0)
∼= //

u
$$

(X0, 0)× (C, 0)

u
ww

(C, 0)

and the family (X, 0) is trivial.

Proof. Suppose such a vector field ξ ∈ TCN+1,0 exists. Let Φ : (CN , 0) ×
(C, 0) → (CN+1, 0) be the flow of ξ associating to any point (x, v) the point
in CN+1 reached by traveling for time v starting from (x, 0) ∈ CN+1 =
CN ×C. Because du(ξ) = 1 the map Φ commutes with u, i.e. u(Φ(x, v)) = v,
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and since the differential of Φ at the origin is the identity, Φ is a germ of a
diffeomorphism. We may, therefore, after a change of coordinates, which
preserves u = v, assume that ξ = ∂

∂u .
By assumption we find matrices Λ ∈ Mat(n, n;ON+1) such that

ξ(Fi) =
∂Fi
∂u

(x, u) =

n∑
j=1

Λi,j(x, u)Fj(x, u).

Along a flow line through a fixed x ∈ CN+1 this is a linear differential
equation on F =

(
F1 · · · Fn

)T which, by the general theory on those
equations, has a unique solution operator Ux(u). By this we mean a matrix
Ux ∈ GL(n;O1) such that

F (x, u) = Ux(u) · F (x, 0)

for u small enough. The claim of the lemma follows directly from the ob-
servation that U depends holomorphically on x.

Proof. (of Theorem 1.4.16). The proof is very similar to the proof of Theorem
1.4.10 and we will make use of the notation there.

Suppose A ∈ Mat(m,n;ON+γ+k) is a k-parameter unfolding of A with
unfolding parameters v = (v1, . . . , vk). We will show that on the level of
analytic space germs the deformations by v are trivial.

We define the space of relative infinitesimal deformations as

Infrel
t (A) := Infrel(A)/〈A∧t〉Mat(m,n;ON+γ+1).

Just as in the proof of Theorem 1.4.10 we obtain a vector field

ξ =
∂

∂vr
−
∑
i

ai ·
∂

∂ui
−
∑
j

bj ·
∂

∂xj
∈ TCN+κ+1,0

such that
ξ(A) = F (x, u, v) · A − A ·G(x, u, v) +H

with the difference that now we also have a term H , which is a matrix with
entries in 〈A∧t〉.

Consider now A∧t as a vector with
(
m
t

)
·
(
n
t

)
components in ON+κ+1.

For any two ordered multiindices I and J we write (·)∧tI,J for the function
on Mat(m,n;C) associating the minor of rows in I and columns in J to a
matrix A. Along ξ we find

ξ
(
A∧tI,J

)
=

∑
i,j

∂(·)∧tI,J
∂yi,j

(A) · ξ(Ai,j)

=
∑
i,j

∂(·)∧tI,J
∂yi,j

(A) · (F · A+A ·G+H)i,j .
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The terms
∂(·)∧tI,J
∂yi,j

(A) can be computed using row- or column expansion of
determinants:

∂(·)∧tI,J
∂yi,j

(A) =

{
0 if i /∈ I or j /∈ J
(−1)p+qA∧t−1

I\{i},J\{j} otherwise
(1.43)

where in the second case i is the p-th entry of the ordered multiindex I and
j is the q-th of J .

With this at hand we can exand the first two summands on the right
hand side:

∑
i,j

∂(·)∧tI,J
∂yi,j

(A) · (F · A)i,j =
∑

i∈I,j∈J
(−1)p+qA∧t−1

I\{i},J\{j} ·

(∑
k

Fi,k · Ak,j

)
=

∑
k,i∈I

Fi,k(−1)p
∑
j∈J

(−1)qA∧t−1
I\{i},J\{j} · Ak,j

=
∑
k,i∈I

Fi,k(−1)pA∧t(I\{i})∪{k},J

and similarly for the term involving G. The resulting expressions clearly
are in 〈A∧t〉 and so is ∑

i,j

∂(·)∧tI,J
∂yi,j

(A) ·Hi,j .

Hence, Lemma 1.4.18 is applicable and the deformation by vk is trivial. The
proof is now concluded as for Theorem 1.4.10.

1.4.3 Complete Intersections and Cohen-Macaulay Schemes of Codi-
mension 2

After what has been said in the previous section about the (im-)possibility
to construct semi-universal determinantal deformations, we would like to
single out two important classes of determinantal singularities, for which
the notions of a semi-universal unfolding of the defining matrix considered
as a map germ and the semi-universal deformation of the underlying space
germ coincide.

The first class consists of the complete intersection singularities. If (X0, 0) ⊂
(CN , 0) is a complete intersection given by a matrixA ∈ Mat(1, d;ON ), then
clearly every deformation of (X0, 0) is determinantal. A direct computation
shows that there is a canonical isomorphism

Inf(A) ∼= T 1
X0,0. (1.44)

Thus a semi-universal unfolding ofA exists if and only if the semi-universal
deformation of (X0, 0) exists; and this is the case if and only if (X0, 0)
has an isolated singularity at the origin. It is well known (see e.g. [57])
that a semi-universal deformation of (X0, 0) can be constructed from a C-
basis of the space T 1

X0,0
in the same way that we constructed the semi-

universal unfolding of map germs in 1.4.10. Consequently for complete
intersections the base of a semi-universal deformation is smooth of dimen-
sion τ = dimC T

1
X0,0

. It follows from (1.44) that the comparison map Φ
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between the base (Cκ, 0) of the semi-universal unfolding of A and the base
(Cτ , 0) of the semi-universal deformation of (X0, 0) has a differential of full
rank at the origin we deduce:

Theorem 1.4.19. For an isolated determinantal singularity (X0, 0) ⊂ (CN , 0) of
type (1, d, 1) the comparison map Φ from the base of a semi-universal unfolding of
the defining matrix A to the base of a semi-universal deformation of (X0, 0) is an
isomorphism.

The second class of singularities which we would like to consider are
singularities (X0, 0) ⊂ (CN , 0), which are Cohen-Macaulay and of codi-
mension 2. As a consequence of the Hilbert Burch Theorem below, they are
determinantal singularities in a canonical way. For them the semi-universal
unfolding of the defining matrix A and the semi-universal deformation of
the space germ (X0, 0) also coincide. This was found by M. Schaps and
published in an article [61] preceeding [62].

Theorem 1.4.20 (Hilbert-Burch). Let I ⊂ ON be an ideal of codimension 2 such
that ON/I is Cohen-Macaulay. Then the minimal resolution of ON/I as an ON -
module takes the form

0 ON/Ioo ONoo Ot+1
N

foo OtN
Aoo 0oo (1.45)

for some matrix A ∈ Mat(t+ 1, t;ON ) and I = 〈A∧t〉 as ideals in ON .
Conversely suppose A ∈ Mat(t + 1, t;ON ) is any matrix such that the ideal

I := 〈A∧t〉 has codimension 2. If we let

f =
(
δ1 · · · δt+1

)
,

where δi is (−1)i times the determinant ofA after deleting the i-th row, then (1.45)
gives a minimal free resolution of ON/I .

Proof. We show the second part. By assumption (X0, 0) is a determinantal
singularity of type (t, t + 1, t). In this case the Eagon-Northcott complex
(1.29) for the generic determinantal Singularity (M t

t,t+1, 0) takes the form

0 // S∗1 ⊗
∧t+1Rt+1 ϕ // S∗0 ⊗

∧tRt+1 ϕ∧t // S0 ⊗
∧0Rt+1 // 0 .

According to Corollary 1.3.16, we only need to substitute ON for R and the
matrix A for ϕ to obtain a resolution of OX0,0 as an ON -module. The result
is exactly (1.45).

For the other direction see e.g. [22] or also [7].

Schaps made use of this fact to prove the following theorem.

Theorem 1.4.21 (Schaps, [61]). Any deformation of a Cohen-Macaulay codimen-
sion 2 singularity is determinantal.

Along the same lines one can prove:

Lemma 1.4.22 (Frühbis-Krüger, [23]). For any Cohen-Macaulay codimension 2
singularity (X0, 0) given by a matrix A ∈ Mat(t, t + 1;ON ) one has a canonical
isomorphism

Inf(A) ∼= T 1
X0,0.
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Just like for the isolated complete intersection singularities one can show:

Theorem 1.4.23. Let (X0, 0) ⊂ (CN , 0) be a Cohen-Macaulay codimension 2 sin-
gularity of type (t, t+1, t) with defining matrixA as in the Hilbert-Burch Theorem
1.4.20. If Inf(A) is of finite dimension so that the semi-universal unfolding of A
exists, then the comparison map Φ from the base of the semi-universal unfolding of
A to the base of the semi-universal deformation of (X0, 0) is an isomorphism.

Note that in this theorem the singularity does not need to be isolated.

Proof. This follows from the fact that the semi-universal deformation of
(X0, 0) is smooth of dimension τ = dimC T

1
X0,0

in the same way as for com-
plete intersection singularities. In [61] M. Schaps announces to give a proof
for this fact in a subsequent paper. However it seems that this paper did
not appear. For a construction of the semi-universal deformation see e.g.
[57].

For the author the Cohen-Macaulay codimension 2 case was the start-
ing point of his investigations in the field of determinantal singularities and
a good part of the research exhibited in this thesis was done for isolated
Cohen-Macaulay codimension 2 singularities. The fact that they are de-
terminantal in a canonical way and that any deformation is determinantal
makes a comparison of analytic and topological invariants, like the Tjurina
number and the vanishing Euler-characteristic of the singularity (which we
will define later), more reasonable. The definition of the Tjurina number of
an isolated singularity does not require any determinantal structure what-
soever, while the vanishing Euler-characteristic - as we will define it - de-
pends on the choice of a matrix describing a given singularity.
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Chapter 2

Topological Invariants of
Singularities

This chapter is devoted to the development of the notion of Milnor fibers.
We first recall the classical definitions and theorems concerning topological
invariants of isolated complete intersection singularities (ICIS). Essentially,
the material can also be found in the standard sources such as [53], [5], [6],
and [31]. We reproduce the existence and uniqueness of Milnor fibers for
ICIS as a motivation for our considerations for determinantal singularities.
Then we state the main results concerning Milnor and Tjurina number from
[53], [70], [35], [34], and [35].

For determinantal singularities, which are not always smoothable, we
develop the notion of a stabilization. After some preparations, we recover
the notion of an essentially isolated determinantal singularity (EIDS) as de-
fined in [20]; and prove the existence and uniqueness of a determinantal
Milnor fiber for this class of singularities.

Finally, we reprove a formula for the computation of the vanishing Euler
characteristic in terms of polar multiplicities for isolated determinantal sin-
gularities, which admit a determinantal smoothing. This was already done
in [8] and [59], but during the writing of this thesis, the author pointed out
a mistake in a result, which was used in [8]; and this made it necessary to
find a new proof. The one presented here is due to the author. However in
the same time the authors of [8] independently came up with an erratum,
which turned out to use similar methods. For a third proof, the reader may
consult [59].

2.1 Smoothings, Milnor Fibers and Topology

As stated above, the results of this section are not new. It is collected and
reformulated in a concise way from the mentioned standard sources.

Suppose we are given a singularity (X0, 0) ⊂ (CN , 0) and we want to
study its change in topology under deformation. The first thing to do is to
single out a concrete neighborhood of 0 ∈ X0, which we want to observe.
Clearly, the result should only depend on the germ and not on the chosen
representative. All this is contained in the notion of a Milnor ball, which we
will introduce now.

There exists a complex analytic Whitney stratification of X0 coming
from a strictly ascending chain of analytic subspaces

{0} ⊂ X(0)
0 ⊂ · · · ⊂ X(d)

0 = X0
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ofX0 at 0, see e.g. [40], [45]. In this setting the strata are, of course, given by
the sets Si := X

(i)
0 \X

(i−1)
0 . For the definition of Whitney stratifications see

the Appendix A.3. We will usually assume that the stratification is minimal
in the sense that the singular locus SingX

(i)
0 is equal to X(i−1)

0 and not only
contained in it for all i > 0.

Lemma 2.1.1. There is an ε > 0 such that the sphere Sε′ ⊂ CN of radius ε′2

around the origin intersects all strata X(i)
0 of X0 transversally for all ε ≥ ε′ > 0.

The proof is standard and using the Curve Selection Lemma as it can be
found in [53]. Although the statement there is formulated for algebraic sets,
the proof is known to carry over to real analytic sets as well.

Proof. Let
ρ : CN → R, x 7→ |x|2

be the squared distance function from the origin. We show that ρ does not
have critical points on any of the strata of the given Whitney stratification.

Set

Ki =

{
x ∈ X(i+1)

0 \X(i)
0 : dρ = 0 in x.Ω1

X
(i+1)
0 \X(i)

0

}
.

Clearly, Ki is a closed analytic subset of X(i+1)
0 and Ki \ X(i)

0 satisfies the
conditions of the Curve Selection Lemma. Suppose 0 ∈ K. Then according
to the Curve Selection Lemma there is a real analytic curve

γ : [0, δ)→ Ki, γ(0) = 0, γ(t) ∈ Ki \X(i)
0 ∀t > 0.

Along this curve we find

ρ(γ(t)) =

∫ t

0
dρ(γ(τ)) · γ̇(τ) dτ = 0

since by assumption dρ(γ(τ)) = 0 for all τ > 0. K ⊂ X
(0)
0 be the critical

locus of ρ on X(0)
0 . This contradicts the choice of γ.

Since there are only finitely many Ki and ρ is bounded from below on
each of them, there is a minimal ε > 0 for which the assertion follows.

Definition 2.1.2. For any ε as in Lemma 2.1.1 the ballBε of radius ε2 around
the origin is called a Milnor ball for (X0, 0). The space X0 ∩ ∂Bε is called the
link of the singularity (X0, 0)

Corollary 2.1.3. For ε as in Lemma 2.1.1 the space X0 = Bε∩X0 is contractible,
i.e. the map

X0 → X0, x 7→ 0

is homotopic to the identity on X0.

Proof. This is an easy consequence of Thom’s First Isotopy Lemma A.3.2.
Lemma 2.1.1 shows that the squared distance function from the origin ρ is
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a stratified submersion on X0 \ {0}. Consequently we have a homeomor-
phism

X0 \ {0}
∼= //

ρ
((

X0 ∩ ∂Bε × (0, ε]

��
(0, ε].

Thus we may write each point x ∈ X0 \ {0} as x = (y, τ) with y in the link
and τ ∈ (0, ε]. A homotopy of the point map to the identity can now be
constructed as follows:

H : X0 × [0, 1] → X0,

(x, t) 7→

{
(y, t · τ) if t 6= 0 and x = (y, τ) ∈ X0 \ {0},
0 otherwise

.

Because 0 is an isolated zero of ρ on CN , this map is continuous.

It is appearent from Lemma 2.1.1 and Corollary 2.1.3 that a Milnor ballB for
(X0, 0) can be chosen arbitrarily small without changing the space X0 ∩ B
up to homeomorphism. ThereforeX0∩B depends indeed only on the germ
(X0, 0) and not on a chosen representative X0 or on B.

Now let

(X0, 0) �
� //

��

(X, 0) �
� //

π

��

(CN , 0)× (Ck, 0)

π
��

{0} �
� // (Y, 0) �

� // (Ck, 0)

be a flat family over a germ (Y, 0) with central fiber π−1({0}) ∩ (X, 0) =

(X0, 0) ⊂ (CN , 0). For chosen representatives X0 ↪→ X
π−→ Y in open sets

U × D ⊂ CN × Ck we say that the family is a smoothing of the singularity
(X0, 0), if there are points u ∈ Y arbitrary close to 0 such that the fiber
Yu = π−1({u}) is smooth. It is easy to see that the property of a deformation
to be a smoothing does not depend on the chosen representatives.

We can choose a Milnor ball B ⊂ U ⊂ CN for X0. Then the space

X0 = X0 ∩B

is compact and since X is closed in U ×D the restriction

π : X ∩ (B ×D)→ D

is proper. In this case B × D is called a Milnor tube for the deformation
X0 ↪→ X

π−→ Y .
If u ∈ Y is a point with smooth fiber Xu, then the Milnor fiber is sup-

posed to be the space
Xu := Xu ∩B × {u}.

However, in general this notion is not yet well behaved. To make a Mil-
nor fiber an invariant of the given singularity, we need make further as-
sumptions which can differ depending on whether or not the singularity is
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isolated, whether it admits a versal deformation, whether it is equidimen-
sional and so on.

2.1.1 Milnor Fibers of Isolated Singularities

In this section we shall restrict ourselves to equidimensional isolated sin-
gularities (X0, 0) ⊂ (CN , 0), which admit a smoothing over some (Ck, 0).
This is to avoid unnecessary technicalities arising from deformations over
germs (Y, 0), which are singular themselves. We saw such a deformation
in Example 1.4.15 ii). But even in this case the definition of Milnor fibers
for isolated singularities could be reduced to smoothings over (Ck, 0) as we
will sketch in the end of this section.

Lemma 2.1.4. Let (X0, 0) ⊂ (CN , 0) be an isolated singularity andX0 ↪→ X
π−→

Ck a deformation of (X0, 0). Again let ρ be the squared distance function from the
origin in CN and B = {ρ = ε} a Milnor ball for (X0, 0). There exists η > 0 and
an open ball D in Ck around the origin such that

(ρ, π) : (ρ−1(ε− η, ε+ η)×D) ∩X → (ε− η, ε+ η)×D

is a trivial fiber bundle.

Proof. This is almost a direct consequence of Thom’s First Isotopy Lemma
A.3.2. We first show that at each point p ∈ ∂X0 ⊂ X the space X must also
be smooth.

Let fi ∈ ON be holomorphic functions definingX0 in a neighborhood U
of B around the origin in CN and Fi lifts of the fi to holomorphic functions
on U × D ⊂ CN × Ck in the ideal sheaf of the total space X . Since the
deformation of (X0, 0) is flat, also the induced deformation of (X0, p) at p is
flat and hence

dimOX,p = dimOX0,p + k

by Theorem 1.2.23. Therefore X is smooth at p if the jacobian matrix(
∂F
∂x

∂F
∂u

)
has rank N − dim(X0, p) at p. But from the equations defining (X0, p) we
see

rank

(
∂F
∂x

∂F
∂u

0 1k

)
= rank

(
∂F
∂x

)
+ k = N − dim(X0, p) + k

since at p the derivatives ∂F/∂x and ∂f/∂x coincide and X0 is smooth at p.
Now that we can assume X to be smooth at all points of ∂X0, we con-

sider the map (ρ, π) as above. Clearly it is a submersion at all points of
∂X0. We can use the compactness of ∂X0 to construct a neighborhood as in
the statement, on which (ρ, π) is a proper submersion. Now the statement
follows from Thom’s First Isotopy Lemma.

The control on the boundary ∂X0 in the deformation of a singularity
provided by Lemma 2.1.4 is a first ingredient to a well defined Milnor fiber
for isolated singularities. The second one is a good control on the singular
fibers in a deformation.
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Definition 2.1.5. Let (X0, 0) ↪→ (X, 0)
u−→ (Ck, 0) be a deformation of a

singularity (X0, 0) ⊂ (CN , 0). The germ in (Ck, 0) coming from the set

∆ = {u ∈ Ck : Xu is singular}

is called the discriminant of the deformation.

In general this set can be very badly behaved. However, we have:

Lemma 2.1.6. If (X0, 0) ⊂ (CN , 0) as in Definition 2.1.5 is an isolated singular-
ity, then the discriminant (∆, 0) is a closed analytic set.

Proof. Let S = {x ∈ X : Xu(x) is singular at x} ⊂ X be the relative singular
locus of the deformation. Clearly S is a closed analytic set since it has a
description as the vanishing locus of certain minors of the jacobian of the
equations defining (X, 0). Moreover, the projection u : (S, 0) → (Y, 0) is
finite. To see this, observe that OS,0 is a finite ON -module and X0 ∩ S is
just a point. Hence, dimCOS,0/〈u〉 < ∞ and we can apply the Weierstrass
Finiteness Theorem to deduce that OS,0 is a finite OY,0-module. Now ∆ =
SuppOY,0 OS,0 is closed analytic and we’re done.

Putting this together with the third ingredient - the existence of a semi-
universal deformation - we obtain the following theorem:

Theorem 2.1.7. Let (X0, 0) ⊂ (CN , 0) be an isolated complete intersection singu-
larity giver by a matrix A ∈ Mat(1, c;ON ) and A ∈ Mat(1, c;ON+κ) the matrix
describing the semi-universal unfolding of A over (Cκ, 0). Let B×D ⊂ CN ×Cκ
be a Milnor tube for the induced versal determinantal deformation of (X0, 0) and
∆ ⊂ D the discriminant. The complement of ∆ is nonempty and if D is chosen
small enough, then for all points u ∈ D \∆ the fibers Xu are diffeomorphic.

Recall from Theorem 1.4.19 that, if they exist, the semi-universal unfolding
of A and the semi-universal deformation of (X0, 0) agree. But existence is
clear from Theorem 1.4.13, because (X0, 0) was assumed to be an isolated
singularity.

Proof. We first show that (∆, 0) is a proper subset of (Cκ, 0). To this end
consider the deformation over (Cc, 0) given by

Ã = A+ Y

where Y = (y1, . . . , yc) ∈ Mat(1, c;Oc) is the matrix, whose entries are just
the coordinate functions of Cc. The induced deformation of (X0, 0) can, of
course, be understood as taking fibers of arbitrary points y ∈ Mat(1, c;C)
under the map A. Thus any representative X ⊂ CN+c of the total space
of the induced deformation of (X0, 0) is canonically isomorphic to an open
set U ⊂ CN . According to Sard’s Theorem [60] for any such representative
there is a dense set Ω ⊂ Cc of points q ∈ Ω, such that Xq is smooth.

Because the unfolding over (Cκ, 0) is semi-universal, we get a map Φ :
(Cc, 0) → (Cκ, 0) such that Ã is equivalent to A ◦ (idCN ,Φ). Hence there
must be smooth fibers Xu for u arbitrary close to 0 in Cκ, too; and (∆, 0) ⊂
(Cκ, 0) is a proper subset.

Choose a Milnor ball B for the given representative X0 of (X0, 0). we
show that there exists a neighborhood D of the origin in Cκ such that over
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the complement U := D \∆ of ∆ in D the projection

π : π−1(U) ∩X ∩B ×D → U

is a fiber bundle.
For the boundary this is just Lemma 2.1.4 for some open ball D ⊂ Cκ.

Now if q ∈ D \ ∆ is arbitrary and Xq the smooth fiber over u, then the
total space X must be smooth at all points p ∈ Xq for the same reasons
as in the proof of Lemma 2.1.4. In particular, if the coordinates of Cκ are
u1, . . . , uκ, then the functions ui − ui(q) are a submersion on X at all points
of Xq and a submersion on the boundary ∂X at all points in ∂Xq. In other
words: If we regard the manifold with boundary Xq as a stratified space,
then the projection π is a stratified submersion along the compact set Xq.
Since the condition to be a submersion is open and Xq is compact, there
exists a neighborhood of the form W × D′ ⊂ CN × Cκ of Xq in X such
that π is a submersion on X ∩W ×D and we can again apply Thom’s First
Isotopy Lemma.

Now the claim follows, since the complex analytic set ∆ has real codi-
mension at least 2 in D and hence its complement U is connected: All the
fibers of a fiber bundle over a connected space are diffeomorphic.

Definition 2.1.8. The space Xu for u ∈ D \∆ as in Theorem 2.1.7 is called
the Milnor fiber of the isolated complete intersection singularity (X0, 0).

Example 2.1.9. We give two examples to illustrate the difficulties beyond
isolated complete intersection singularities.

a) Consider the A1-line singularity X0 = {xy = 0} ⊂ C3, where the coor-
dinates of C3 are (x, y, z). Clearly the singular locus of X0 is the whole
z-axis. For different k ∈ N the deformations over C[u] are given by the
equation

xy − u · zk − u2 = 0.

We shall see in the next section that if we chose a Milnor ball B for X0

centered at the origin, then for different k the fibers Xu over u 6= 0 in
these families are not diffeomorphic. From this we see that for non-
isolated singularities we have to specify the deformation we’re inter-
ested in.

b) Let (X0, 0) ⊂ (C6, 0) be the singularity of the generic determinantal va-
riety M2

3,2 at the origin given by the 2× 2-minors of the matrix(
x y z
u v w

)
.

This is an isolated singularity. We know from Theorem 1.4.21 that any
deformation of (X0, 0) is determinantal. But there are only trivial de-
terminantal deformations, since any perturbation of the matrix can be
absorbed into an analytic change of coordinates. Therefore (X0, 0) does
not have a Milnor fiber at all. This is an example of a rigid singularity.

One can try to define the Milnor fiber for arbitrary isolated singulari-
ties. Given the existence of a semi-universal deformation one can show the
following.
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Theorem 2.1.10. Let (X0, 0) ⊂ (CN , 0) be an isolated singularity and (Y, 0) the
base of a semi-universal deformation of (X0, 0) in the sense of Grauert, Theorem
1.4.13. Then for each of the components of (Y, 0) there is at most one Milnor fiber
of (X0, 0) up to diffeomorphism. In particular, the number of Milnor fibers of an
isolated singularity is finite.

The proof of Theorem 2.1.10 proceeds as the proof of Theorem 2.1.7,
but for every one of the finitely many components of the base (Y, 0) seper-
ately. In Pinkham’s example, Example 1.4.15 ii), this would work directly,
since both components are smooth when considered for themself. But in
the example by Rim, Example 1.4.15 iv), the base is irreducible and singu-
lar. Consequently the total space X of any deformation, being a subspace
of CN × (Y, 0), might not be smooth at points in X0 and we might not be
able to apply the arguments above directly.

One way to make our machinery work is to reduce to a flat family over
a smooth base by pulling back the deformation over (Y, 0) to a resolution
ρ : (Ŷ , E) → (Y, 0) in the sense of Hironaka [43], [44]. Another way is
to use Whitney stratifications of the total space (X, 0) and the base (Y, 0)
compatible with the projection π and a chosen Milnor ball.

The second approach also allows one to define an analogue of the Mil-
nor fiber for any given deformation over (C, 0) of a singularity (X0, 0) with
arbitrary singular locus. This was done for example by Lê in [50]. He proves
the following fibration theorem, which we will need in Chapter 4, when we
define Milnor fibers for nonisolated singularities.

Theorem 2.1.11. (Lê, [50]) Let X ⊂ U ⊂ CN be an analytic subset of an open
set U of CN . Let f : X → C be an analytic function. Let x ∈ X and suppose that
f(x) = 0. Then if ε > 0 is small enough and η > 0, ε � η, then the mapping
induced by f :

Ψε,η : Bε ∩X ∩ f−1(Dη \ {0})→ Dη \ {0}

- where Bε is the closed real ball in CN of center x and radius ε > 0, Dη is the
open disc of C centered at 0 and with radius η > 0, is a topological fibration.

Note that in this theorem the fibers of Ψε,η are not necessarily smooth.
It applies in our setting above if we take f to be the projection π of a given
deformation. In this case we may replace Bε by a Milnor tube.

2.1.2 Homology Groups of Milnor Fibers

We gather the important theorems concerning the topology of smooth Mil-
nor fibers. The first one is a rather general statement about the intersection
of complex analytic submanifolds of CN .

Theorem 2.1.12 (Lefschetz Hyperplane Theorem). Let B ⊂ CN be a ball and
X ⊂ CN be a locally closed holomorphic embedding of a complex manifold X of
complex dimension d such that X := X ∩ B is compact and ∂X = ∂B ∩X is a
transversal intersection. Then

Hk(X) = 0 for all k > d

and
Hk(X, ∂X) = 0 for all 0 ≤ k < d.
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For a proof see e.g. [52]. It uses Morse theory and the Levy form of the
squared distance function to a point in CN to bound the index on critical
points. The next theorem marks the starting point of the investigation of
the topology of Milnor fibers.

Theorem 2.1.13 (Milnor, [54]). Let (X0, 0) ⊂ (Cn+1, 0) be an isolated hypersur-
face singularity given by a holomorphic map germ f : (Cn+1, 0) → (C, 0). Then
the Milnor fiber Xu of (X0, 0) is homotopic to a bouquet of spheres of real dimen-
sion n = dim(X0, 0). The number of these spheres, i.e. the middle Betti number of
Xu, is equal to

µ = dimCON/
〈
∂f

∂x1
, . . . ,

∂f

∂xn+1

〉
, (2.1)

the Milnor number of (X0, 0).

The formula (2.1) for the computation of the middle Betti number of the
Milnor fiber is a remarkable connection between topological invariants of
the Milnor fiber and analytic invariants of the singularity itself. However, a
priori the Milnor algebra

Mf := ON/
〈
∂f

∂x1
, . . . ,

∂f

∂xn+1

〉
,

comes from the map f and not a from the singularity (X0, 0). In fact it is the
space of infinitesimal unfoldings of the map germ f up to R-equivalence,
see e.g. [5]. From the definition of the T 1

X0,0
we see that in this case

T 1
X0,0
∼= ON/

〈
f,
∂f

∂x1
, . . . ,

∂f

∂xn+1

〉
,

and therefore we have a natural inequality

µ ≥ τ. (2.2)

of the Milnor- and the Tjurina number.

Example 2.1.14. Consider the Ak-surface singularity (X0, 0) given by the
equation

f = x · y − zk+1 = 0

in (C3, 0). The Milnor algebra is easily computed to be

Mf = C{x, y, z}/〈x, y, zk〉

and hence µ = k. Because f is a quasihomogeneous polynomial, the Euler
relation1 gives

2(k + 1) · f = (k + 1) · x · ∂f
∂x

+ (k + 1) · y · ∂f
∂y

+ 2 · z · ∂f
∂z

and we see that f is already contained in the ideal generated by the partial
derivatives of f . We deduce T 1

X0,0
∼= Mf and τ = µ.

1For a definition of quasihomogeneity and the Euler relation see e.g. [38]
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A Milnor ball B for this singularity can be chosen to be of arbitrary size
- another consequence of quasihomogeneity. For a small u ∈ C the space
Xu = B∩{f = u} ⊂ C3 is smooth and homotopic to a bouquet of k spheres
of real dimension 2.

From this we see that also the smooth fibers in Example 2.1.9 i) had
different homotopy type for different k: For fixed k one can show that they
are diffeomorphic to Xu from this example.

Milnor’s result was generalized to isolated complete intersection singu-
larities by Hamm, Lê and Greuel.

Theorem 2.1.15 (Hamm, [39]). Let (X0, 0) ⊂ (CN , 0) be an isolated complete
intersection singularity of codimension d defined by

f = (f1, . . . , fd) : (CN , 0)→ (Cd, 0).

Then the Milnor fiber of (X0, 0) is homotopic to a bouquet of spheres of real dimen-
sion N − d = dim(X0, 0).

The number µ(f) of such spheres can be computed by the so called Lê-
Greuel formula, see [70] and [35]. The key observation leading to this formula
is that if (X0, 0) ⊂ (CN , 0) is an isolated complete intersection singularity of
codimension d defined by

f =
(
f1 · · · fd

)
,

then, if we replace f by a general C-linear combination of the fi, also (X ′0, 0) =
{f1 = · · · = fd−1 = 0} is an ICIS given by f ′ := (f1, . . . , fd−1). Now if we let

D =


∂f1
∂x1

· · · ∂f1
∂xN

...
...

∂fd
∂x1

· · · ∂fd
∂xN


be the jacobian of f and I ⊂ ON the ideal defined by the maximal minors
of D and 〈f ′〉, then Lê proved in [70]:

µ(f) + µ(f ′) = dimCON/I. (2.3)

This gives a way to compute the middle Betti number of any ICIS induc-
tively. In particular, this can easily be done for any explicit singularity with
the help of a computer algebra system. A similar formula was found by
Greuel in [35] by quite different methods using relative holomorphic de
Rham Cohomology.

There is a more structural reason behind the formula (2.2), as one can
guess from Example 2.1.14. The quasihomogeneity of a singularity implies
the equality of Milnor- and Tjurina number for isolated complete intersec-
tion singularities - another result by Greuel:

Theorem 2.1.16 ([36]). Let (X0, 0) ⊂ (CN , 0) be an ICIS of dimension n ≥ 1
with Milnor number µ = bn(Xu) and Tjurina number τ = dimC T

1
X0,0

. We have

µ ≥ τ.

If the equations describing (X0, 0) are quasihomogeneous, then equality holds.
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There was little insight to what happens beyond isolated complete inter-
section singularities. However, there is one specific estimate on the possible
degrees of nonzero reduced homology groups of Milnor fibers of smooth-
able isolated singularities. We shall not actually need it in what follows, but
it played an important role in the development of the research carried out
for this thesis. Therefore we state it here.

Theorem 2.1.17 (Greuel, Steenbrink [34]). Let (X0, 0) ⊂ (CN , 0) be an equidi-
mensional isolated singularity of codimension c, which admits a smoothing with
Milnor fiber Xu. Then

Hk(Xu) = 0 for all k < N − 2c.

Note that the codimension of a singularity is bounded from below by its
embedding dimension. In the same article Greuel and Steenbrink also show:

Theorem 2.1.18 (Greuel, Steenbrink [34]). LetXt be the Milnor fiber of a smooth-
ing of a normal isolated singularity; then b1(Xt) = 0.

Being Cohen-Macaulay, determinantal singularities of dimension ≥ 2
fall into this category. However, the statement of Theorem 2.1.18 is about
the Betti-number only. It remains an open question, whether there are
smoothable determinantal singularities, for which the first homology group
of the Milnor fiber is torsion.

2.2 The Milnor Fiber of a Determinantal Singularity

In this section we develop the notion of a determinantal Milnor fiber. While
the ideas were present in the literature as for example in [20], [8], [59], [9],
[17], it is - to the knowledge of the author - the first attempt to explic-
itly prove the existence and uniqueness of the determinantal Milnor fiber
in this generality, using the versal determinantal deformation from KV -
equivalence developed in the previous chapter.

There were three ingredients to the uniqueness of the Milnor fiber for
isolated complete intersection singularities: The good behavior of the bound-
ary under deformations, the analyticity of the discriminant and the exis-
tence of a semi-universal deformation with a smooth base. For a determi-
nantal singularity (X0, 0) given by a matrix A ∈ Mat(m,n;CN ) the semi-
universal deformation might in general have a base with several compo-
nents as Pinkham’s example shows. But the determinantal deformations
coming from A and, in case dimC Inf(A) < ∞, or probably more general
dimC Inft(A) <∞, a versal determinantal deformation of (X0, 0) give a dis-
tinct choice of deformations of (X0, 0). Moreover, we can always assume
that the base of such a deformation is smooth. We may therefore in a first
attempt make the following definition.

Definition 2.2.1. LetA ∈ Mat(m,n;ON ) describe an isolated determinantal
singularity (X0, 0) of type (m,n, t) with a versal determinantal deformation
over (Cγ , 0) given by A ∈ Mat(m,n;ON+γ). If A is a smoothing of (X0, 0),
we define the determinantal Milnor fiber of (X0, 0) to be the Milnor fiber of
the versal determinantal deformation.
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The following examples point out the problems with this definition.

Example 2.2.2. We first give an example of an isolated determinantal singu-
larity, which is not smoothable.

i) (Frühbis-Krüger, Neumer [25]) For k ≥ 2 let (X0, 0) ⊂ (C6, 0) be defined
by the 2-minors of the matrix(

x y v
z w x+ uk

)
.

A versal determinantal deformation over C{t0, . . . , tk−2} is given by
perturbation with

t0 ·
(

0 0 0
0 0 u0

)
+ · · ·+ tk−2 ·

(
0 0 0
0 0 uk−2

)
.

Thus, for fixed t = (t0, . . . , tk−2) we will find a polynomial x+ Pt(u) =
x + uk +

∑t−2
i=0 ti · ui in the lower right corner. If t is general, we will

assume Pt(u) to have k distinct roots u1, . . . , uk, and at each of these
roots we can do an analytic change of coordinates and replace u by
ũ = x + Pt(u). But in this coordinate system the fiber Xt over t just
looks like the singularity from example 2.1.9 defined by(

x y v
z w ũ

)
.

Thus for general t there will always be at least k singular points on
each fiber Xt and the versal determinantal deformation of (X0, 0) is
not a smoothing.

ii) Consider the determinantal singularity (X0, 0) ⊂ (C7, 0) of type (2, 3, 2)
given by the matrix

A =

(
x1 x2 x3

x4 x5 x2
6 + x2

1 + x2
2 − x2

7

)
.

The singular locus of (X0, 0) is a whole curve given by the equation
x2

6 − x2
7 = 0 in the (x6, x7)-plane, so (X0, 0) is not an isolated singu-

larity. However, direct computations using Singular show that the di-
mension dimC Inf(A) is equal to 3 and in particular finite. Thus (X0, 0)
admits a versal determinantal unfolding given by perturbations with
the matrices (

1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 0
0 0 1

)
.

The singularity in the first example did not admit a smoothing. But the
remaining singularities for a generic perturbation were rigid, i.e. they did
not admit any nontrivial deformations. Therefore, despite being singular,
there is hope that the generic fiber in the versal determinantal deformation
of (X0, 0) is a unique topological space up to homeomorphism.

It is reasonable to assume that the same holds for the second example.
Again, if we let A be a matrix defining the semi-universal unfolding of
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A and u a generic point in the base close to 0, then the fiber Xu = B ∩
A−1
u (M2

2,3) for a chosen Milnor ball B will be singular. But if p ∈ Xu is a
singular point in the interior of Xu, then locally at p the space Xu looks like
a product

(Xu, p) ∼= (C, 0)× (Y0, 0),

where (Y0, 0) is the rigid singularity in (C6, 0) from Example 2.1.9, ii). In the
following we will show that the notion of a Milnor fiber for determinantal
singularities can be extended to such cases.

2.2.1 Deformations to Stabilizations

In [71] S. Trivedi deals with holomorphic mappings f : M → N between
complex manifolds. Given a countable collection of submanifolds (Σα)α∈N,Σα ⊂
N (e.g. a stratification of N ), one can ask for f to be transversal to all Σα

along a given subset K ⊂M .

Definition 2.2.3. A differentiable map f : M → N between smooth man-
ifolds is transversal to a given submanifold Σ ⊂ N at a point p ∈ M if
either dimM < codimN Σ and f(p) /∈ Σ, or, in case dimM ≥ codimN Σ and
f(p) ∈ Σ, we have

df |p(TpM) + Tf(p)Σ = Tf(p)N. (2.4)

In this case we write f tp Σ. If f is transversal to Σ for all points in a given
subset K ⊂M , we write f tK Σ.

Here df |p is the differential of f at p. This definition carries over to holo-
morphic maps between complex manifolds in the obvious way. We have
the following theorem by S. Trivedi:

Theorem 2.2.4 ([71],Theorem 2.1 and Theorem 3.1). Let M be a Stein mani-
fold, N be an Oka manifold and (Σα)α∈N a countable collection of complex sub-
manifolds in N . Then the set

{f : M → N holomorphic : f tM Σα ∀α ∈ N}

is dense in the weak topology on the set of holomorphic maps between M and
N . Moreover, if the Σα give a Whitney (a)-regular stratification of the space⋃
α∈N Σα ⊂ N and K ⊂M is any compact subset, then the set

{f : M → N holomorphic : f tK Σα ∀α ∈ N}

is open.

In our setting M will be an open neighborhood U of the origin in CN
and f will be a representative of a map germ A defining a determinantal
singularity (X0, 0). For a chosen Milnor ball B ⊂ U the theorem states that
there are other matrices A′ close to A such that A′ tB M t

m,n \ M t−1
m,n for

all t and that once such a map has been found, it is stable. This stability
then carries over to the preimageA′−1(M t

m,n)∩B and we obtain our Milnor
fiber. In this sense we shall use Theorem 2.2.4 as a replacement of Sard’s
Theorem for determinantal singularities. For the rest of this section we will
work on making Theorem 2.2.4 available in our setting of unfoldings of
maps to Mat(m,n;C).
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In his proof of Theorem 2.2.4 S. Trivedi gives an explicit construction of
a deformation F : M × (Ck, 0) → N of a given map f : M → N such that
there exist parameters u ∈ Ck arbitrary close to 0 with Fu : M → N, x 7→
F (x, u) transversal. Since we will not need the Whitney topology and only
work with representatives of complex space germs, it is this construction,
which we may extract from Theorem 2.2.4. S. Trivedi attributes the idea to
R. Abraham [1].

Lemma 2.2.5. Suppose A : U ⊂ CN → Mat(m,n;C) is a holomorphic map.
Consider the unfolding of A over Cm·n = Mat(m,n;C) given by

A = A+ Y

where Y = (yi,j) is the matrix, whose entries are the variables yi,j of Om·n. Let
K ⊂ U be a compact subset of U Then the set of points y ∈ Cm·n for which the
map Ay = A(·, y) : U → Mat(m,n;C) fulfills

Ay tK M t
m,n \M t−1

m,n

for all 0 ≤ t ≤ min{m,n}, is dense.

For a proof see e.g. the proof of [71, Lemma 2.2].

We need some preparations to link the space Inf(A) to transversality.

Theorem 2.2.6. A : (CN , 0)→ (Mat(m,n;C), P ) a holomorphic map germ. The
following are equivalent:

i) Inf(A) = 0.

ii) The mapA is transversal to all strata (M t
m,n\M t−1

m,n)
min{m,n}
t=0 of the canonical

Whitney stratification of Mat(m,n;C) at 0.

The next theorem reveals the connection with smoothness.

Theorem 2.2.7. Let A : (CN , 0) → (Mat(m,n;C), P ) be a holomorphic map
germ and 0 < t ≤ min{m,n} be arbitrary. Suppose that (X0, 0) := (A−1(M t

m,n), 0)
has expected codimension (m− t+ 1) · (n− t+ 1). If (X0, 0) is smooth at p then
rankP = t− 1 and A is transversal to all strata (M s

m,n \M s−1
m,n )

min{m,n}
s=0 at 0. In

particular Inf(A) = 0.

We see that if (X0, 0) = (A−1(M t
m,n), 0) has expected codimension, then

smoothness of (X0, 0) is a sufficient, but in general not a necessary condition
for transversality of A at p.

In order to prepare for the proofs of Theorem 2.2.6 and Theorem 2.2.7,
we first shift our attention to the stratification (M t

m,n \ M t−1
m,n)

min{m,n}
t=0 of

Mat(m,n;C). Suppose P ∈ M t+1
m,n \ M t

m,n is a matrix of rank t. We first
change coordinates on Mat(m,n;C) so that

P =

(
1t 0
0 0

)
.

This can be done by left- and right-multiplication with suitable invertible
matrices F ∈ GL(m,C) and G ∈ GL(n,C). In particular this operation
preserves all the strata of Mat(m,n;C).
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Now we may again change coordinates in a non-linear way as follows.
Let U ⊂ Mat(t, t;C) be a neighborhood of the origin such that the matrix
exponential

exp : U → Mat(t, t;C), A 7→
∞∑
k=0

1

k!
Ak

is a holomorphic diffeomorphism onto its image. If we let X ∈ U and
Y ∈ Mat(t, n − t;C), Z ∈ Mat(m − t, t;C),W ∈ Mat(m − t, n − t;C) be
arbitrary, we can write each matrix Q close to P as

Q(X,Y, Z,W ) =

(
exp(X) Y
Z Z · exp(−X) · Y +W

)
∈ Mat(m,n;C)

In these coordinates given by the entries of X,Y, Z and W around P the
stratum M t+1

m,n \M t
m,n appears as {W = 0}.

What about the other strata? Consider the ideal 〈Q(X,Y, Z,W )∧t〉 in
the local ring OCm·n,P of Mat(m,n;C) at M . As a consequence of Corollary
A.1.2 this ideal does not change if we multiply Q from the left or from the
right by invertible matrices F ∈ GL(m;OCm·n,P ) and G ∈ GL(n;OCm·n,P )
respectively:

〈Q∧s〉 = 〈(F ·Q ·G)∧s〉.

Hence if we decompose

Q =

(
1t 0

Z · exp(−X) 1m−t

)
·
(

exp(X) 0
0 W

)
·
(
1t exp(−X) · Y
0 1n−t

)
(2.5)

we see that

〈Q∧s〉 =

〈(
exp(X) 0

0 W

)∧s〉
= 〈W∧(s−t)〉.

This immediately implies the following Lemma.

Lemma 2.2.8. If P ∈M t+1
m,n \M t

m,n is a matrix of rank t, then for s ≥ t+1 locally
at P the analytic varieties M s

m,n at P are isomorphic to the products(
(Mat(m,n;C), P ) ⊃ · · · ⊃ (M t+2

m,n, P ) ⊃ (M t+1
m,n, P )

)
∼= (Cm·n−(m−t)·(n−t), 0)×

(
· · · ⊃M1

m−t,n−t, 0) ⊃ (M0
m−t,n−t, 0)

)
.

We are now in the position to proof Theorem 2.2.6.

Proof. (of Theorem 2.2.6) We first show ii)⇒ i). Let p = 0 ∈ CN be the origin.
We use the coordinates above around P = A(p) and write X = X ◦ A,
Y = Y ◦ A and so on for the composition of A with the local coordinate
matrices introduced above.

Let t be the rank of P . Being transversal implies that A does not meet
strata of codimension > N , so we can assume codimM t+1

m,n \M t
m,n = (m −

t) · (n − t) ≤ N and A tp M t+1
m,n \M t

m,n. In the introduced coordinates we
see from Lemma 2.2.8 that this is the case if and only if W ◦ A : (CN , p) →
(Mat(m − t, n − t;C), 0) is a submersion at p. It follows at once that A is
also transversal to all strata M s

m,n \ M s−1
m,n in a neighborhood of p for all

t+ 1 ≤ s ≤ min{m,n}.
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We have to show Inf(A) = 0. So let H ∈ Mat(m,n;OCN ,p) be arbitrary.
Write

H =

(
H1,1 H1,2

H2,1 H2,2

)
and A =

(
eX Y
Z Z · e−X · Y +W

)
with the usual block sizes as above. We need to show that H reduces to the
zero matrix in Mat(m,n;OCN ,p). This is done in two steps.

As usual let 〈F · A + A · G〉 denote the submodule of Mat(m,n;OCN ,p)
generated by left and right-multiplication of A with square matrices F and
G. From the decomposition of A into A = L ·A′ ·R as in (2.5) we see that

〈F ·A+A ·G〉 = 〈F̃ ·A′R+ LA′ · G̃〉.

Direct computation yields

A′R =

(
eX Y
0 W

)
and LA′ =

(
eX 0
Z W

)
.

Using this, we can reduce any given H to(
H1,1 H1,2

H2,1 H2,2

)
=

1

2

(
H1,1e

−X 0
0 0

)
A′R+

1

2
LA′

(
e−XH1,1 0

0 0

)
+

(
0 0

(H2,1 − 1
2Ze

−XH1,1)e−X 0

)
A′R

+LA′
(

0 e−X(H1,2 − 1
2H1,1e

−XY )
0 0

)
+

(
0 0
0 H2,2 − (H2,1e

−XY + Ze−XH1,2 + Ze−XH1,1e
−XY )

)
.

Note that during this reduction process we only used matrices F̃ and G̃
with lower right block being zero. For the remaining block we find(

0 0
0 F ′

)
A′R =

(
0 0
0 F ′W

)
and

LA′
(

0 0
0 G′

)
=

(
0 0
0 WG′

)
.

For the second step observe that the same reduction process to an (m−
t)× (n− t)-matrix can be done with the differential dA. Modulo 〈FA+AG〉
we obtain

dA ≡
(

0 0
0 dW − (dZe−XY + Ze−X dY + Ze−X(deX)e−XY )

)
.

Denote the lower right entry by Q. Regarding W = W ◦A as a C(m−t)(n−t)-
valued function, we see that W ◦ A being a submersion at the point p = 0
means nothing else but that

dW |p : p.TCN → P.TC(m−t)·(n−t)

has full rank. This property is measured modulo m, the maximal ideal
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of OCN ,p at p. But since Y and Z have entries in m, also Q|p : p.TCN →
P.TC(m−t)·(n−t) has full rank (m− t) · (n− t) and, hence,

Q : ONCN ,p → O
(m−t)(n−t)
CN ,p

gives an epimorphism of free modules by Nakayama’s Lemma. Putting
these two steps together, we see that every H can first be reduced to an
(m− t)× (n− t)-matrix and then successively to zero by Q.

For the other direction i) ⇒ ii) we use Lemma 2.2.5. Let A be the un-
folding of A over (Cm·n, 0) with a dense set of parameters u ∈ Cm·n with
transversal fibers from Lemma 2.2.5.

Since by assumption Inf(A) = 0, every unfolding of A is trivial and
hence there exist matrices F ∈ GL(m;ON+m·n), G ∈ GL(n;ON+m·n) and a
germ of an analytic diffeomorphism

(Φ, idCm·n) : (CN , 0)× (Cm·n, 0)→ (CN , 0)× (Cm·n, 0)

such that A(x, y) = F (x, y) · (A ◦ Φ(x, y)) ·G(x, y).
But left- and right multiplication by invertible matrices preserves the

stratification of Mat(m,n;C) and hence for any y ∈ Cm·n the map Ay is
transversal to the canonical stratification at 0 if and only if A ◦ Φ(·, y) is
transversal. Clearly, transversality is independent of the composition with
the diffeomorphism Φ(·, y). If we now choose a closed ball B around the
origin of CN and a polydisc D ⊂ Cm·n in the deformation base such that a
representative of A is defined on some open neighborhood of B ×D, then
we can choose y ∈ D such that Ay is transversal at all points p ∈ B × {y}
and deduce that also A must have been.

Proof. (of Theorem 2.2.7). Let r = rankP be the rank of P = A(0). Clearly,
if t ≤ r, then (A−1(M t

m,n), 0) = ∅, so we can assume t > r. We may change
coordinates on the target space as above and thus decompose the map A
into the block matrices:

X ◦A ∈ Mat(r, r;C) Y ◦A ∈ Mat(r, n− r;C)

Z ◦A ∈ Mat(m− r, r;C) W ◦A ∈ Mat(m− r, n− r;C).

As already described in Lemma (2.2.8) we have

X0 = A−1(M t
m,n) = (W ◦A)−1(M t−r

m−r,n−r)

and the equations defining V are the entries of the matrix (W ◦A)∧t−r.
According to the jacobian criterion (X0, 0) is smooth at 0 if and only if

the jacobi matrix

d(W ◦A)∧t−r = (d(W ◦A)) ·
(
d(·)∧t−r|W◦A

)
has rank codim(V, 0) at 0. Now (W ◦ A)(0) is the zero matrix and hence all
its entries lay in the maximal ideal m of the ring ON . It follows from the
expression for the differential of minors (1.43) that for t− r 6= 1 the second
differential d(·)∧t−r|W◦A always has rank zero at 0. In this case the germ
(X0, 0) cannot be smooth, because the rank of d(W ◦ A) at 0 is bounded
from above by the rank of d(·)t−r|W◦A.
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Hence t − r = 1, or equivalently: rankP = t − 1. The condition (W ◦
A)t−r = W ◦A = 0 gives exactly

c := (m− t+ 1)(n− t+ 1)

equations. This number agrees with the codimension of (X0, 0) and hence
(X0, 0) is a complete intersection and smooth if and only if d(W ◦A)(0) has
rank c. But this is equivalent to the condition on A to be transversal to all
M s
m,n at p.

The assertion about Inf(A) now follows from Theorem 2.2.6

Unlike a singularity a Milnor fiber is not a space germ anymore. It is not
a local, but a global object. In the following we therefore need to shift our
point of view and take a global perspective on what we encountered only
in the local setting before. One instance of this shift to a global viewpoint
is the following. Given A : (CN , 0) → (Mat(m,n;C), 0) we can choose
representatives

A : U → Mat(m,n;C)

ofA on some open setU ⊂ CN . OnU the mapA induces a coherent analytic
sheaves Inf(A) associated to the presentation

Mat(m,n;O(U))⊕Mat(m,n;O(U))⊕ TCN (U) → Mat(m,n;O(U)),

(F,G, ξ) 7→ F ·A+A ·G+ ξ(A).

By O(U) we mean the holomorphic functions on U ⊂ CN and TCN (U)
are, of course, the holomorphic sections in the tangent bundle over U . The
germs of those sheaves on any point p ∈ U are

Inf(A)p = Inf(A : (CN , p)→ (Mat(m,n;C), A(p)).

The obvious analogue can be constructed for any unfolding A of A over
(Ck, 0) and we obtain a coherent analytic sheaf Inf rel(A) on an open set
U ×D for some D ⊂ Ck.

This enables us to link the condition dimC Inf(A) < ∞ to a more com-
mon notion in the context of determinantal singularities.

Definition 2.2.9 ([20]). Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity
of type (m,n, t) given by a matrixA ∈ Mat(m,n;ON ). Then (X0, 0) is called
an essentially isolated determinantal singularities (EIDS), if the map

A : (CN , 0)→ (Mat(m,n;C), 0)

is transversal to all strataM s
m,n\M s−1

m,n of Mat(m,n;C) in a punctured neigh-
borhood of the origin.

Corollary 2.2.10. A determinantal singularity (X0, 0) as in Definition 2.2.9 is
an EIDS if and only if dimC Inf(A) < ∞. In particular the matrix A defining an
EIDS admits a semi-universal unfolding and, hence, the singularity (X0, 0) has a
versal determinantal deformation.

Proof. The condition dimC Inf(A) < ∞ is equivalent to Inf(A) being sup-
ported only at the origin for any representative of A which is defined on
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a sufficiently small open neighborhood of the origin. Given the two theo-
rems above, Theorem 2.2.6 and Theorem 2.2.7, we see that dimC Inf(A) <∞
if and only if the map A is transversal to all strata M s

m,n \M s−1
m,n in a punc-

tured neighborhood of the origin.

2.2.2 Stabilizations in the Versal Determinantal Unfolding

We now start to prove the existence and uniqueness of the Milnor fiber for
an EIDS. First, we give an analogue of 2.1.4.

Lemma 2.2.11. Let U ⊂ CN be an open domain containing the origin and A :
U → Mat(m,n;C) be a representative of a holomorphic map germ defining an
EIDS (X0, 0) = A−1(M t

m,n), 0) ⊂ (CN , 0), and let A be a representative of
a semi-universal unfolding of A over some open polydisc D ⊂ Cκ. Denote the
projection to Cκ by u.

Choose a Milnor ballB = {ρ = ε} for (X0, 0) inU and letX = A−1(M t
m,n) ⊂

U ×D be a representative of the total space of the deformation. There exist η > 0
and an open polydisc D′ ⊂ D around the origin in Cκ such that the map

(ρ, u) : X ∩ ρ−1((ε− η, ε+ η)) ∩ u−1(D′)→ D′

is a topological fiber bundle.

Proof. For any point p ∈ ∂X0 we have Inf(A)p = 0 and hence the induced
deformation of (X0, p) is trivial. In particular, for any i = 1, . . . , κ there
exist matrices Fi ∈ Mat(m,m,OCN+κ,p) and Gi ∈ Mat(n, n,OCN+κ,p) and a
vector field ξi ∈ TCN+κ,p with dui(ξ) = 1 and duj(ξ) = 0 for all j 6= i, such
that

ξi(A) = Fi ·A + A ·Gi.

All involved elements are defined on some open neighborhood W ×D′ of
p. Since ∂X0 is compact, we can cover it by finitely many of these neigh-
borhoods:

∂X0 ⊂
M⋃
α=1

Wα ×D′α.

Taking the minimum of all the radii of the D′α, we may assume that all D′α
are the same D′. We denote the union of this cover by W ×D′.

Now we choose a C∞ partition of unity (ϕα,Wα × D′) subordinate to
this cover and glue the local holomorphic sections to differentiable sections
of the respective vector bundles:

F̃i =
M∑
α=1

ϕα · Fαi ∈ Mat(m,m;C∞(W,C)),

G̃i =

M∑
α=1

ϕα ·Gαi ∈ Mat(n, n;C∞(W,C)),

ξ̃i =
M∑
α=1

ϕα · ξαi ∈ C∞(W,TCN+κ).

Clearly for all λ ∈ C we have

λ · ξ̃i(A) = λ · F̃i ·A + λ ·A · G̃i.
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Note that due to the complex structure on the tangent bundle TCN×Cκ , mul-
tiplication with complex scalars still makes sense. We can now proceed as
in the proof of Theorem 1.4.10 for the 2κ different C∞-vector fields ξ̃i and√
−1 · ξ̃i.

Consider the real- and imaginary parts of the coordinates (x, u) of CN ×
Cκ as real coordinates and let τ = =uκ be the last one of them. We write
(x, ũ, τ) for this coordinate system, where ũ consists of all remaining real
and imaginary parts of the complex coordinates u.

Since ∂X0 is compact, after possibly shrinking W again, there exists a
C∞-flow

Φκ : W × (−ε, ε)→ CN × Cκ

of the vector field
√
−1 · ξ̃κ and we can do a differentiable change of coor-

dinates on W , which preserves τ = =uκ, such that in the new coordinates
ξ̃κ = ∂

∂τ . Along the flow lines there exist C∞-solution operators P and Q
for the differential equation

d

dτ
A = F̃ ·A + A · G̃.

depending smoothly on the initial condition, i.e. the starting point p ∈ ∂X0,
such that

A(x, ũ, τ) = P (x, ũ, τ) ·A(x, ũ, 0) ·Q(x, ũ, τ)

on some open neighborhood W ×D′ of ∂X0. Consequently locally around
∂X0 the space X is a product in the direction of τ .

We proceed with the next vector field as usual and eventually end up
with an isomorphism

X ∩W ∼= (X0 ∩W )×D′ (2.6)

of Whitney stratified spaces. Note that the stratification is not necessarily
complex analytic anymore, although the central fiber X0 ∩W is canonically
stratified by the strata A−1(M s

m,n \M s−1
m,n ) according to Theorem 2.2.6.

It remains to show that also the squared distance function ρ locally de-
fines a fibration on this space. But this is easy given the fact that ρ was a
stratified submersion on X0 around ∂X0. From (2.6) it is clear that (ρ, u)
defines a proper stratified submersion on X in a neighborhood of ∂X0. We
can now apply Thom’s First Isotopy Lemma A.3.2 to finish the proof.

Since not all determinantal singularities are smoothable, as we saw in
Example 2.2.2, the classical discriminant is not the right object to work with.
With a view towards Theorem 2.2.6, we give the following definition.

Definition 2.2.12. Suppose A : (CN , 0) → (Mat(m,n;C), P ) is a holomor-
phic map germ and A ∈ ON+k an unfolding of A over (Ck, 0). Let

Infrel(A) = Mat(m,n;ON+k)/

〈
∂A

∂x
+ F ·A + A ·G

〉
(2.7)

be the relative infinitesimal deformations of A. The germ

(∆det, 0) = SuppOk Infrel(A) ⊂ (Ck, 0)
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is called the determinantal discriminant of the deformation.

The Weierstrass Finiteness Theorem implies that, if A defines an EIDS, i.e.
if dimC Inf(A) <∞, then the determinantal discriminant is closed analytic.

For complete intersection singularities the classical discriminant was a
proper subset of the base of a versal deformation because of Sard’s Theo-
rem. In our case of determinantal singularities we can use Theorem 2.2.6
and the density of transversal maps 2.2.4 to obtain a “generic” and “stable”
fiber.

Theorem 2.2.13. Let (X0, 0) be an EIDS of type (m,n, t) given by a matrix A ∈
Mat(m,n;ON ). Let (∆det, 0) ⊂ (Cκ, 0) be the determinantal discriminant in
the versal determinantal deformation of (X0, 0) coming from the semi-universal
unfolding A of A. Suppose 0 ∈ B ⊂ CN is a Milnor ball for (X0, 0). For any
open polydisc D ⊂ Cκ the complement U = D \ ∆det is nonempty and we can
choose D small enough such that for all u ∈ U = D \∆det the fibers

Xu = B ∩A−1
u (M t

m,n)

are isomorphic as Whitney stratified spaces.
If N < (m − t + 2) · (n − t + 2), then Xu is smooth. Otherwise let r ∈ N

be the smallest number such that N ≥ (m − r) · (n − r). For r ≤ s < t set
X

(s)
u := B ∩A−1

u (M s+1
m,n ). Then these sets form a Whitney stratification of Xu

Xu = X
(t−1)
u ) X

(t−2)
u ) · · · ) X

(r)
u

and locally around a point p ∈ X(s)
u \X

(s−1)
u we find analytic isomorphisms

(Xu, p) ∼= (CN−(m−s)(n−s), 0)× (M t−s+1
m−s,n−s, 0).

Note the shift of indices: X(s)
u \X

(s−1)
u is the set of points, on which Au has

rank exactly s while M t
m,n are the matrices of rank < t.

Definition 2.2.14. The space Xu as in Theorem 2.2.13 is called the deter-
minantal Milnor fiber of the singularity (X0, 0). An unfolding of A like A
above is called a stabilization of A, if there are points u arbitrary close to
0 in the base of the unfolding, for which Au is transverse to all strata of
Mat(m,n;C).

Proof. The fact that (∆det, 0) ⊂ (Cκ, 0) is a proper subset follows directly
from Theorem 2.2.6 and Lemma 2.2.5: There exists a stabilization of A and
hence these must also appear in the semi-universal unfolding. For any set
of representatives of the semi-universal unfolding A of A we then have
Inf(Au)p = 0 at all points p ∈ Xu for u /∈ ∆det.

Since the determinantal discriminant (∆det, 0) ⊂ (Cκ, 0) is closed ana-
lytic, it is of real codimension ≥ 2 and hence the space U is connected. To
prove uniqueness of Xu it is therefore sufficient to show that the restriction
of the projection

π : X ∩B × U → U

is a fiber bundle over U .
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To see this we may proceed as in the proof of Lemma 2.2.11 and con-
struct local holomorphic vector fields ξαi and matrices Fαi and Gαi , only this
time on a neighborhood W × D′′ of the whole space Xu. We may assume
that the polydisc D′′ around u in Cκ is chosen small enough such that D′′ is
contained in the polydisc D′ around the origin from Lemma 2.2.11, so that
we have a well behaved fibration along the boundary. Now glueing these
local sections to a partition of unity, we obtain a local fibration overD′′ with
the whole space Xu as fiber.

Another consequence of Inf(Au)p = 0 for all points p ∈ Xu is that
Au tB M s

m,n \M s−1
m,n for all s. In particular, Au does not meet any strata of

codimension > N . Therefore, if N < (m− t+ 2) · (m− t+ 2), then Xu is the
preimage of a smooth manifold M t

m,n \M t
m,n under a transversal map Au

and hence smooth itself.
For the other case, let p ∈ X

(s)
u \ X

(s−1)
u for some r ≤ s < t and P =

Au(p) ∈ Mat(m,n;C). As we saw in the outlines preceeding Lemma 2.2.8,
we can choose local coordinates (X,Y, Z,W ) on the target space and then
W ·Au is a submersion at p. Hence, the stratumX

(s)
u has dimensionN−(m−

s) · (n−s). The higher-dimensional strata appear as preimages ofM•m−s,n−s
under the submersion W ◦ Au. Since the preimage of a Whitney regular
stratification under a submersion is again Whitney regular, they connect
to X(s)

u in a Whitney regular way forming the germ of a fiber bundle over
X

(s)
u .

Definition 2.2.15. We call the spaceXu as in Theorem 2.2.13 the determinan-
tal Milnor fiber of the singularity (X0, 0). The Betti numbers

bi(X0, 0) = rankHi(Xu)

of Xu are called the Betti numbers of (X0, 0). Generators of the homol-
ogy groups H•(Xu) are vanishing cycles, and the difference of the Euler-
characteristics

ν(X0, 0) := (−1)dim(X0,0) · (χ(Xu)− χ(X0)) = (−1)dim(X0,0) · (χ(Xu)− 1)

is the vanishing Euler-characteristic of the singularity (X0, 0).

Remark 2.2.16. The idea to use transversality theorems to obtain a “generic”
and “stable” fiber of a given determinantal singularity is not new. In fact W.
Ebeling and S.M. Gusein-Zade gave the idea of an “essential determinantal
smoothing”, which in our case is the determinantal Milnor fiber, in their
article [20]. However, their arguments were only sketched and not prop-
erly put into context in the theory of versal unfoldings. A more detailed
treatment is given by J.J. Nuño-Ballesteros, B. Oréfice-Okamoto and J.N.
Tomazella in [8], where the authors also take a generic constant perturba-
tion of the defining matrix, to define what we call the determinantal Milnor
fiber. But again, the theory of unfoldings and its associated analytic invari-
ants are not presented. The consequent development of the space Inf(A)
and semi-universal unfoldings enable us to present the results of this sec-
tion in this generality.
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Remark 2.2.17. Also, the authors in [8] only treat the smoothable case and
make further assumptions in their definition of isolated determinantal sin-
gularities (IDS). For them an IDS (X0, 0) of type (m,n, t) given by A has to
fulfill

• (X0, 0) is an isolated singularity, which admits a determinantal smooth-
ing,

• rankA(x) = t − 1 for all x ∈ X in a punctured neighborhood of the
origin.

Due to Theorem 2.2.7 it is possible to omit the second requirement since it
follows from the first one.

Remark 2.2.18. In view of the section on versal determinantal deformations,
we would like to point out that all results in this section can be reformulated
using Inft(A) instead of Inf(A) and adapting the proofs in a similar way as
one obtains the proof of Theorem 1.4.16 from the one of Theorem 1.4.10.

2.3 The Euler-characteristic of smooth Milnor fibers

We give an overview on different results concerning the vanishing Euler-
characteristic of determinantal singularities. As a new contribution to the
field we reprove Theorem 2.3.10 using methods from stratified Morse the-
ory. For an alternative proof using methods similar to those exhibited in
[6], see [59].

There are at least three methods to compute the Euler characteristic of a
determinantal Milnor fiber of a smoothable determinantal singularity. Two
of them can effectively be implemented in computer algebra systems to ac-
tually perform the computation for any explicitly given singularity.

For the author it was the results by J. Damon and B. Pike in their ar-
ticle [17], which marked the starting point of this work. They developed
an algorithm for the computation of the vanishing Euler characteristic and
applied it to certain members of the list of simple isolated Cohen-Macaulay
codimension 2 singularities from A. Frühbis-Krüger and A. Neumer in [25].
This lead to conjectures concerning the vanishing Euler characteristic of the
Milnor fibers in discrete families of simple singularities.

They observed a rather unexpected behaviour for the threefold singu-
larities. Due to the Theorem by Greuel and Steenbrink 2.1.17, dimension 3
and codimension 2 leaves two Betti-numbers b2 and b3 to contribute to the
vanishing Euler-characteristic. At that point it seems to have been a usual
assumption that Cohen-Macaulay codimension 2 singularities behave like
isolated complete intersection singularities, i.e. that only the middle Betti-
number, b3 in this case, is nonzero. However, this could not possibly be the
case as the following example shows.

Example 2.3.1. i) Consider the so called A+
0 singularity in (C5, 0) of type

(2, 3, 2) given by the matrix (
x v y
z w x

)
.
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According to the computations in [17] the vanishing Euler-characteristic
of this singularity is

ν(X0, 0) = −1 = b3 − b2

and hence b2 must be nonzero.

ii) The singularity above can be seen as a member of a whole family.
Namely for k ∈ N the Πk singularity is described by the matrix(

x v y
z y − wk x

)
.

For k = 1 we can bring this matrix to the form of the A+
0 singular-

ity by a linear change of coordinates in (C5, 0). The vanishing Euler-
characteristic seems not to depend on k since, according to [17], for the
first few values k = 2, . . . , 4 it was always equal to −1 again.

2.3.1 Indices of 1-forms on Determinantal Singularities

Some years before, W. Ebeling and S.M. Gusein-Zade published a series of
papers including [20], in which they related the vanishing Euler character-
istic of an EIDS to indices of 1-forms. In the case of isolated smoothable
determinantal singularities they obtain the following formula ([20, Section
3]):

indPH(ω;X0, 0) = indrad(ω;X0, 0) + (−1)dim(X0,0)(χ(Xu)− 1). (2.8)

Here (X0, 0) ⊂ (CN , 0) is an isolated determinantal singularity and ω the
germ of a continous complex 1-form on (X0, 0) with no zero on the regular
part X0 \ {0} in a neighborhood of the origin.

The radial index indrad(ω;X0, 0) of the 1-form ω on (X0, 0) is defined as
the sum of indices on X0 \ {0} of a generic perturbation ω̃ of ω, which
coincides with ω in a neighborhood of the boundary ∂X0 = ∂B ∩X0 for a
Milnor ball B. For the definition of the index see e.g. [54].

On the other hand, the Poincaré-Hopf index indPH(ω;X0, 0) needs the Mil-
nor fiber Xu for its definition. Again let ω̃ be a perturbation of ω, which
coincides with ω on a neighborhood of ∂Xu. This index is then defined as
the number of indices of ω̃ on the interior of Xu.

A special case, in which the formula (2.8) can be applied, is when ω = df
for a holomorphic function f : (X0, 0)→ (C, 0). If the differential df has no
singular point on X0 \ {0} in a neighborhood of the origin, then (Y0, 0) =
{f = 0} ∩ (X0, 0) is an isolated singularity of dimension dim(X0, 0) − 1
and the perturbation of f by a constant v gives a smoothing of (Y0, 0) with
Milnor fiber

Y v = {f = v} ∩X0 ∩B,

whereB is a Milnor ball for (X0, 0) and (Y0, 0) at the same time and v ∈ C is
chosen sufficiently close to 0. In a preceeding paper the authors prove the
following.

Theorem 2.3.2 ([21], Theorem 3). In the above setup one has

indrad(df ;X0, 0) = (−1)dim(X0,0)+1(χ(Y v)− 1).
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In fact the theorem holds for arbitrary equidimensional complex space germs
(X0, 0) with an isolated singularity at 0.

If f = l ∈ HomC(CN ,C) = (CN )∨ is a general linear form, then the
differential dl is regular on the interior of X0 \ {0} and has only isolated
critical points on the interior of all smooth fibers Xu for a given determi-
nantal smoothing of (X0, 0). Therefore the formula (2.8) and Theorem 2.3.2
are applicable – even without a perturbation to ω̃. The Milnor fiber Y v of
l on (X0, 0) is also known as the complex link of the singularity (X0, 0), see
e.g. [31].

Comparing the results we see the following:

indPH(dl;X0, 0) = (−1)dim(X0,0)(χ(Xu)− χ(Y v)). (2.9)

Apparently the Poincaré-Hopf index measures the difference of the Euler-
characteristics of the Milnor fiber Xu of (X0, 0) and its complex link Y v =
X0 ∩ {l = v}. Now observe that, since Y v is a smooth manifold with
boundary, it is, for u small enough, diffeomorphic to the hyperplane sec-
tion Xu ∩ {l = v} by Ehresmann’s Fibration Theorem. Thus we are in fact
dealing with the difference of Euler-characteristics of the Milnor fiber Xu

and a smooth hyperplane section thereof.

A geometric interpretation of this fact can be found in [8] and also in
[59]. Roughly speaking, the machinery works as follows. The function l
has only isolated non-degenerate critical points on the interior of Xu, i.e. it
is a complex Morse function. Then the real part <l is a real Morse function,
whose index is always exactly n := dimCXu at the same critical points.
Since each one of these points contributes with index 1 to the Poincaré-Hopf
index, the number of critical points is equal to e := indPH(dl;X0, 0). Thus
we obtainXu from Y v = Xu∩{l = v} by attaching e cells of real dimension
n. The formula (2.9) now easily follows from the long exact sequence of the
pair (Xu, Y v).

But there is one detail that has been forgotten in these outlines: The
space Xu is a smooth manifold with boundary. Hence, applying classical
Morse theory to the function <l on Xu, does not work directly. One has to
switch to stratified Morse theory as for example exhibited by Goresky and
MacPherson in [31]. This means, we also have to take into account critical
points of <l on the boundary ∂Xu.

In [8] the authors work with open Milnor balls and, hence, with open
Milnor fibers without boundary. Unfortunately they based there original
results on a theorem that apparently turned out to be false. In the following
we will describe a way to make the Morse theoretic arguments work in our
setting with closed Milnor balls. During the prepraration of this work, the
authors of [8] independently came up with an erratum, which uses quite
similar methods also based on stratified Morse theory.

2.3.2 Polar Varieties and the Scanning Process

Of course, for the machinery sketched above to work, the smoothing of
(X0, 0), the linear form l and the Milnor ball B have to be chosen in a com-
patible way. This leads us to the realm of polar curves and multiplicities.
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Definition 2.3.3. Let M be a manifold of real dimension n and f : M → R
a C∞-function on M . For another function g : M → R the polar locus of g
with respect to f is defined as

Γ(g, f) =
{
x ∈M \ Crit(f) : dg(x) ∈ 〈df(x)〉R ⊂ x.Ω1

M

}
.

The notion of polar locus carries over in the obvious way to Whitney strati-
fied spaces and the analytic category. In the latter case, · denotes the analytic
closure.

Given this definition one can use Bertini-Sard type methods to prove
the following lemma.

Lemma 2.3.4. Let (X0, 0) ⊂ (CN , 0) be an equidimensional singularity of pure
dimension n with a strictly descending sequence of analytic subspaces

X0 ⊃ · · · ) X
(2)
0 ) X

(1)
0 ⊃ {0}

giving rise to a complex analytic Whitney stratification with strata X(i)
0 \X

(i−1)
0 .

Let (X0, 0) ↪→ (X, 0)
u−→ (C, 0) be a smoothing of (X0, 0) and (X, 0) ⊂ (CN , 0)×

(C, 0) the total space. Denote by u the projection to the deformation base and let
p be the projection to (CN , 0). There exists a dense set Ω of linear forms l on CN
with complement of measure zero such that

i) the closure of the polar locus Γ(p∗l, u) ⊂ X \X0 is either empty or a branched
covering over (C, 0) via u.

ii) the linear form l does not have any critical points on (X0, 0) in the Whitney
stratified sense.

Proof. We first show i) and define

M = {(x, l) ∈ X \X0 × (CN )∨ : x.TX ⊂ ker p∗l} ⊂ X × (CN )∨.

Since u is a submersion onX\X0, the spaceX\X0 is a complex submanifold
of CN+1. At each point x ∈ X \X0 the natural pairing p∗(CN )∨×x.TX → C
induces a surjection (CN )∨ � (ker du)∨. From this it is easy to see that
M∗ := M \ (M ∩X0) is a complex manifold of dimension

n+ 1 +N − n = N + 1.

Let l0 ∈ (CN )∨ be a regular value of p restricted to M∗. Either C :=
p−1({l0}) ∩M is empty, or it consists of analytic curves, which are smooth
outside points in X0. Right now we are only interested in the polar locus
outsideX0, so no harm is done if we replaceC byC \X0. NowC = Γ(l0, u)
is the polar locus and clearly the restriction of u to C gives a branched cov-
ering over (C, 0).

The set of such regular values of p|M∗ in (CN )∨ is a first candidate for Ω.
To show ii) we proceed in a similar way. Let X(i)

0 \X
(i−1)
0 be one of the

strata of X0 with its reduced structure as a complex manifold. The set

M (i) = {(x, l) ∈ X(i)
0 \X

(i−1)
0 × (CN )∨ : x.T

X
(i)
0

⊂ ker l}
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is a proper complex analytic subset of X(i)
0 × (CN )∨ and over all points

x outside X(i−1)
0 it is a smooth manifold of dimension N . Again let p :

X
(i)
0 × (CN )∨ → (CN )∨ be the second projection. For a regular value l

of p|
X

(i)
0 \X

(i−1)
0

the preimage K = p−1({l}) ⊂ X
(i)
0 \ X(i−1)

0 is smooth of
dimension 0. In particular all the points belonging to K are isolated and
K ⊂ X(i)

0 is complex analytic.
Now if 0 was in the closure of K, then there would be a real analytic

curve γ : [0, ε) → K with γ(0) = 0 and γ(t) ∈ K ⊂ X
(i)
0 for all t > 0. But

this would contradict the fact that K consists only of isolated points.
Since this holds for all of the finitely many strata, we may replace Ω by

the intersection of all the regular values for all constructions in this proof at
once.

Definition 2.3.5. The multiplicity of the branched covering u : Γ(l0, u) in
the setting of Lemma 2.3.4 is the polar multiplicity of l0 on the given smooth-
ing.

Remark 2.3.6. The definitions of polar multiplicities we give here might
seem quite unusual. In fact there is a more general notion of polar varieties
and their multiplicities. It has recently seen a lot of interest in the context of
determinantal singularities, see e.g. [28], [29], [27].

In view of Lemma 1.2.25, we also want to make sure that a linear form
l can be chosen in such a way that any deformation of (X0, 0) induces a
deformation of (X0, 0) ∩ {l = 0}, i.e. the induced family is indeed flat.

Lemma 2.3.7. Let OX0,0 = ON/I be an analytic quotient of ON . If OX0,0 not
Artinian, then the set of zero divisors on OX0,0 in (CN )∨ has measure zero.

Proof. Let m be the maximal ideal of OX0,0 and

R = grmOX0,0 = OX0,0/m⊕
⊕
d∈N

md/md+1

the associated graded ring (see e.g. [22]). Since any nonzerodivisor on R is
automatically a nonzerodivisor on OX0,0, and R is Artinian if and only if
OX0,0 is, it is sufficient to show the existence of Ω for R.

But this is clear since, unless R is Artinian, for all d ∈ N the set

Ωd =
{
l ∈ (CN )∨ : md/md+1 ·l−→ md+1/md+2 is injective

}
is a proper open algebraic set in (CN )∨ and therefore in particular dense
with complement of measure zero. But then also the intersection Ω =⋂
d∈N Ωd has a complement of measure zero. For any l ∈ Ω also the multi-

plication by l on R must be injective and such an l can not be a zerodivisor
on OX0,0.

Given a smoothing (X0, 0) ↪→ (X, 0)
u−→ (C, 0) of a determinantal sin-

gularity (X0, 0) ⊂ (CN , 0) of dimension d, we can choose a linear form
l1 ∈ (CN )∨ satisfying all the requirements of Lemma 2.3.4 and Lemma 2.3.7.
After a linear change of coordinates we may assume that l = xN is just the
last coordinate. Thus we obtain a second isolated determinantal singularity
(Y 1

0 , 0) ⊂ (CN−1, 0) from the intersection Y 1
0 = X0 ∩ {l1 = 0}.
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We can proceed inductively and define hyperplanes l2, . . . , ld until we
finally end up with the analytic point-scheme Y d

0 = X0 ∩ {l1 = l2 = · · · =
ld = 0}. We also set Y 0

0 = X0. Having done this, we can choose a Milnor
ball B for all singularities at once and deform by u just as much that for all
induced deformations of the Y i

0 the intersection Y i
0 ∩ ∂B stays transversal.

Now consider the function l1 on Xu. If 0 is not a regular value of l1,
then we can replace l1 by l1 − c for some regular value c close to 0. In this
situation Y

1
u = Xu ∩ {l1 = 0} is a smooth manifold with boundary, the

Milnor fiber of (Y 1
0 , 0). Again, we can proceed inductively and we obtain a

chain of Milnor fibers

Y
d
u ⊂ Y

d−1
u ⊂ · · · ⊂ Y 1

u ⊂ Xu.

The topology of Y d
u is simple: It is just a collection of smooth points, whose

number is equal to the multiplicity e of the singularity (X0, 0) at 0. This
follows from the flatness of the induced deformation of (Y d

0 , 0) guaranteed
by Lemma 2.3.7 and Lemma 1.2.25. In particular

χ(Y
d
u) = e.

At this point the hope is that we can rebuild the Milnor fiber Xu step-
wise from Y

d
u as follows. We obtain Y d−1

u from Y
d
u by attaching m1 cells of

dimension 1 where m1 is the polar multiplicity of ld on the smoothing of
(Y d−1

0 , 0). This allows us to compute the Euler-characteristic of Y d−1
u :

χ(Y
d−1
u ) = −m1 + e.

We may now proceed inductively and finally recover the Euler-characteristic
of Xu from the polar multiplicities and the multiplicity e of (X0, 0) at 0. But
for this to work we have to prove that, in fact, the polar multiplicity alone
determines, which cells are attached.

Instead of the real part <li we will consider |li|2 as a Morse function on
Y
i−1
u . The particular problem with this does not lay in the interior of Xu,

and the Y i
u, where |li|2 has critical points precisely at the critical points of l,

but at their boundaries: We have to show that they can be neglected. To do
so, we first prove a technical lemma. It is inspired by the work of Y. Yomdin
[47] and his “lemma on gradh1 and gradh2”.

Lemma 2.3.8. Let (X, 0) ⊂ (CN , 0) be a germ of a complex space, X a represen-
tative and

{0} ⊂ X(1) ( X(2) ( · · · ( X(r) = X

a strictly ascending chain of analytic subspaces, which give rise to a complex
analytic Whitney stratification as usual. Suppose we’re given two real analytic
functions g, h : X → R≥0 taking values only in the nonnegative real num-
bers with g(0) = h(0) = 0. Then there exists a neighborhood U of the origin
in CN , such that both f and g have no critical points on X ∩ U in the Whit-
ney stratified sense outside {f = 0} and {g = 0} respectively. Furthermore, if
x ∈ (X ∩ U) \ ({f = 0} ∪ {g = 0}) is a point, Σ(i) = X(i) \X(i−1) the stratum
containing x and dg and dh are linearly dependent in x.Ω1

Σ(i) over R, say

dg(x) = λ · dh(x) in x.Ω1
Σ(i) ,
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then λ ≥ 0.

Proof. Consider X and its Whitney stratification with its reduced structure.
The existence of a neighborhood U of the origin, such that neither f nor g
have a critical point on X ∩ U outside their zero set, follows just like the
existence of Milnor balls.

For 0 < i ≤ r we set

K(i) = {x ∈ Σ(i) : dg(x) and dh(x) linearly dependent over R in x.Ω1
Σ(i)},

where we consider dg and dh as real analytic sections in the cotangent bun-
dle of Σ(i).

We would like to single out those points x in K(i), for which we have
dg(x) = λ · dh(x) for some λ < 0 in R. To do so, let π : Y → X(i) be the
generalized Nash-blowup of X(i) along its cotangent sheaf Ω1

X(i) . For the
definition of generalized Nash-blowups see the appendix, Definition A.2.5.
Let K(i) ⊂ Y be the analytic closure of K(i) in Y . Clearly, K(i)∩π−1(Σ(i)) ∼=
K(i). Now let g be any real analytic metric on the Nash bundle Q over Y .
We set

K
(i)
− := {y ∈ K(i) \ π−1(X(i−1)) : g(π∗(dg), π∗(dh)) < 0}.

Here, π∗ : Ω1
X(i) → π∗Q is the Nash homomorphism. The set K(i)

− is real

semi-analytic and its semi-analytic closure K(i)
− in Y suffices K(i)

− ∩ Σ(i) =

K
(i)
− .

Suppose there is a point y ∈ K(i)
− such that π(y) = 0. Then according to

the Curve Selection Lemma there exists a real analytic curve

γ : [0, ε)→ K
(i)
− , γ(0) = y

such that γ(t) ∈ K(i)
− for all t > 0.

We can integrate dg and dh along γ. For t > 0 we find

g(γ(t)) =

∫ t

0
dg(γ(t)) · γ̇(τ) dτ (2.10)

and the density dg(γ(t)) · γ̇(τ) is real analytic. Hence, there exists a nonzero
initial term a · tn for some n ∈ N. The coefficient a must be > 0, since, if
it wasn’t, then for τ small enough, the integrand would be negative and,
hence, also g(γ(t)) for some small t. The same holds for the function h and
the coefficient of the initial term of dh(γ(t)).

By construction, dg and dh are linearly dependent along γ for t > 0, i.e.
we have dg(t) = λ(t) ·dh(t) in γ∗Ω1

Σ(i) with λ(t) < 0 for all t > 0. Now along
γ the coefficient λ = λ(t) is a quotient of real analytic functions

λ(t) =
dg(γ(t)) · γ̇(t)

dh(γ(t)) · γ̇(t)
.

Depending on the order in t of numerator and denominator either λ(t) or
1/λ(t) exists as an analytic function in t at t = 0. But then this function must
have a positive leading coefficient contradicting the assumption λ(t) ≤ 0 for
all t > 0.
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We deduce that such a point y ∈ K(i)
− ∩ π−1({0}) can not exist. Conse-

quently 0 ∈ X can not be in the image π(K
(i)
− ). Since π : Y → X(i) is an

isomorphism outside X(i−1), the result follows.

The generalized Nash-blowup in the preceeding proof was necessary in
order for the real analytic metric to exist. There is no canonical way to put
a metric on the fibers of the coherent sheaf Ω1

Σ(i) and we need to replace it
by a vector bundle.

When we encounter functions g and h as in Lemma 2.3.8 in the follow-
ing, we will say that the (real) differentials dg and dh “point in the same
direction”. This notion originally comes from the gradients and not from
differentials, but we shall adapt it here since mathematically the formula-
tions in terms of gradients and differentials are equivalent.

Theorem 2.3.9. Let (X0, 0) ⊂ (CN , 0), l ∈ (CN )∨ and (X0, 0) ↪→ (X, 0)
u−→

(C, 0) be as in Lemma 2.3.4, and Lemma 2.3.7. We set (Y0, 0) = (X0, 0)∩{l = 0}.
Let md be the polar multiplicity of l on the given smoothing. The Milnor fiber Xu

of (X0, 0) is obtained from the Milnor fiber Y v of (Y0, 0) by attaching md cells of
dimension n = dim(X0, 0).

Proof. As usual let ρ(x) = |x|2. We set q(x) = |l|2. According to Lemma
2.3.8, there exists a neighborhood U of the origin, on which dρ and dq point
in the same direction on all points of (X0∩U)\ ({ρ = 0}∪{q = 0}). Choose
a Milnor ball B for (X0, 0) and (Y0, 0), which is properly contained in U .

We would like to deform by u, but there are certain further restrictions
on the choice of this parameter. Let K ⊂ ∂X0 be the set of critical points of
q on the boundary ofX0 outside ∂Y 0. Clearly, K is a compact subset of CN .
We can choose a real analytic metric g on the real vector bundle Ω1

X0
|∂X0

.
From this we obtain an expression

λ(x) =
g(dρ(x),dq(x))

g(dρ(x),dρ(x))

on ∂X0. Along K the function λ(x) is just the coefficient of the linear de-
pendence dq(x) = λ(x) · dρ(x). According to Lemma 2.3.8, the function
λ(x) is positive on K and, hence, bounded from below away from zero on
a neighborhood V of the compact set K in the representative X0.

A perturbation by u induces a family of diffeomorphisms

Φu : (X0, ∂X0)→ (Xu, ∂Xu)

depending smoothly on u. So does λ(Φu(x)) as a function of u. We choose
u small enough such that λ is still bounded away from zero on the open set
V ′ = Φu(V ) ⊂ Xu and such that outside V the differentials dq and dρ stay
linearly independent.

Consider q as a function on Xu. By construction, the intersection {l =
0} ∩ ∂Xu was transversal and for u small enough, this will be preserved. If
{l = 0} ∩Xu is not a smooth manifold with boundary, we may replace l by
l − c for some constant c ∈ C close to zero. A direct calculation shows that
on the interior of Xu, the real valued function q has nondegenerate criti-
cal points of index n precisely at the critical points of the complex valued
function l.
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On the boundary ∂Xu we only know that the critical points of q are
contained in V ′. We may approximate q by a Morse function q̃ on both,
the interior and the boundary of Xu. On the interior, this does not change
the number of critical points or their indices. On the boundary the criti-
cal points (pi)

m
i=1 of q̃ also only appear in V ′. If we now use q̃ as a Morse

function on the manifold with boundary X̃u, then the following happens.
At each critical point x of q̃ in the interior of Xu we attach a cell of real

dimension n.
For a critical point y of q̃ on the boundary ∂Xu the homotopy type does

not change due to Theorem A.3.6, because we have a linear dependence
dq̃(y) = λ · dρ(y) for some λ > 0 and, hence, “the gradient of q̃ is pointing
outwards”.

Theorem 2.3.10. Let (X0, 0) ⊂ (CN , 0) be a smoothable isolated determinantal
singularity of dimension d and type (m,n, t) given by a matrixA ∈ Mat(m,n;ON )
such that dimC Inf(A) < ∞. Then the vanishing Euler-characteristic of (X0, 0)
can be computed as

ν(X0, 0) = (−1)d ·

(
e+

d∑
i=1

(−1)i ·mi

)
, (2.11)

where e is the multiplicity of (X0, 0) at 0 and the mi are the polar multiplicities of
successive general hyperplane sections of (X0, 0).

Proof. This directly follows from what has been said before Lemma 2.3.8
and Theorem 2.3.9.

Remark 2.3.11. Note that the polar multiplicities are purely algebraic objects.
This enables us to use Theorem 2.3.10 to effectively compute the vanishing
Euler-characteristic for any smoothing of an isolated determinantal singu-
larity with the help of computer algebra systems like Singular.

Remark 2.3.12. In [20], the authors work out formulas for the vanishing Eu-
ler characteristic for arbitrary EIDS, i.e. also those, which are not smooth-
able. Using methods of stratified Morse theory, it should be possible to
give the analogous theorems in terms of polar multiplicities, i.e. to extend
Theorem 2.3.10 in a generalized way also to these cases.
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Chapter 3

Tjurina Transformations

This chapter summarizes and extends the results from [26]. They are new
and were obtained in a joint work by A. Frühbis-Krüger and the author. The
simple isolated Cohen-Macaulay codimension 2 singularities - especially
the threefolds - were the main ground for development and verification of
hypotheses. We will therefore mainly be concerned with singularities that
fall into the same category concerning their describing matrices. Most of the
stated theorems, however, are valid not only for simple singularities. The
key tool for the topological considerations is the Tjurina modification, an
idea that has been around for many years. But it seems that [26] is the first
account of its systematic usage for the explicit computation of vanishing
cycles.

What we today call Tjurina modifications is a blowup construction, which
was first used by G. Tjurina in [69] in her studies of rational triple point
singularities, where she applied it to determinantal surface singularities of
type (2, 3, 2). Later, also D. van Straten used them in his PhD-thesis [68].
The Tjurina modification has a natural generalization to determinantal sin-
gularities, which was already used by W. Ebeling and S.M. Gusein-Zade
in [20]. But they applied it only to the remaining singularities in determi-
nantal Milnor fibers, not to the original singularities themselves. Another
recent instance of the usage of Tjurina modifications can be found in [28]
by T. Gaffney and A. Rangachev.

We apply Tjurina modifications to the total space of determinantal de-
formations. As we will see below, under certain conditions, deformation
and modification are compatible and we can reduce questions about the
vanishing topology of a determinantal singularity (X0, 0) to questions about
isolated complete intersection singularities - a world which is understood
much better.

This compatibility must have been observed already by other mathe-
maticians since traces of it can be found in the literature concerning the si-
multaneous resolution of surface singularities and cones over rational nor-
mal curves. Nevertheless, it seems that a systematic study of this interplay
as we present it here for determinantal singularities has not been done be-
fore.

The construction of the Tjurina modification has also been carried out
recently by H. Møller Pedersen in [55]. He uses a slightly different defini-
tion and applies it to determinantal singularities of type (d, d, d) to construct
resolutions.
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3.1 Tjurina Modification

3.1.1 . . . for the Generic Determinantal Varieties

Definition 3.1.1. Let t ≤ m < n be positive integers and Y = (yi,j)0<i≤m, 0<j≤n
the generic matrix with entries yi,j over the ring C[y]. The Tjurina modifica-
tion of the generic determinantal variety M t

m,n ⊂ Mat(m,n;C) is defined
as the generalized Nash-blowup of M t

m,n along the coherent sheaf G pre-
sented by the matrix Y |Mt

m,n
. The strict transform of M t

m,n is called the
Tjurina transform and denoted by W t

m,n ⊂M t
m,n ×Grass(t− 1,m).

The transpose Tjurina modification is the modification coming from the
generalized Nash-blowup of the sheaf presented by Y T |Mt

m,n
, the transpose

of Y restricted to M t
m,n.

The Tjurina modification for the generic determinantal varieties has an
easy explicit description. Consider the following commutative diagram.

W t
m,n
� � //

Π
��

Mat(m,n;C)×Grass(t− 1,m)

��

L̂

**
M t
m,n
� � //Mat(m,n;C)

L
// Grass(t− 1,m)

(3.1)

Here, Π is the map induced from the first projection to Mat(m,n;C), L is the
rational map taking a point A ∈M t

m,n to spanA (cf. (A.24) in the appendix)
and L̂ is its natural prolongation over the blowup.

The locus on which L is not defined is precisely M t−1
m,n. In the defini-

tion of the generalized Nash blowup A.2.5 we find equations (A.26), which
have to vanish on W t

m,n on each of the standard charts UI of Mat(m,n;C)×
Grass(t− 1,m):

ΘI ·A = 0 ∈ Om·n[ZI ] (3.2)

Lemma 3.1.2. LetW t
m,n ⊂ Mat(m,n;C)×Grass(t−1,m) be the Tjurina trans-

form of M t
m,n as in (3.1).

i) Π is a isomorphism over M t
m,n \M t−1

m,n.

ii) The equations (3.2) already determine W t
m,n in each chart. If T → Grass(t−

1,m) is the tautological bundle over Grass(t−1,m), thenW t
m,n is canonically

isomorphic to the total space of
⊕n

i=1 T . In particular, Π is a resolution of the
singularities of M t

m,n.

iii) For all 0 ≤ r < t and each point A ∈ M r
m,n \ M r−1

m,n we find the fiber
Π−1({A}) ∼= Grass(t− r,m− r + 1).

Proof. Part i) directly follows from the definition A.2.5 and the properties
of the generalized Nash-blowup, Lemma A.2.7.

To see ii) first observe that each column of A gives one copy of T in the
description of the tautological bundle over Grass(t − 1,m), Lemma A.2.4.
Thus the space W ′ defined by these equations is smooth and irreducible
and contains W t

m,n. On the other hand

ΓL(M t
m,n \M t−1

m,n) ⊂W ′ ⊂W t
m,n
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andM t
m,n\M t−1

m,n is an open dense subset ofM t
m,n, sinceM t

m,n is irreducible.
We deduce that W ′ = W t

m,n.
For part iii) let W := spanA ⊂ Cm be the r-dimensional subspace

spanned by A. Then as above (A, p) ∈ W t
m,n if and only if spanA is con-

tained in the linear subspace represented by p and hence

Π−1({A}) = {W ⊂ V ⊂ Cm : dimV = t− 1}
∼= {{0} ⊂ V ′ ⊂ Cm−r+1 : dimV = t− r}
= Grass(t− r,m− r + 1)

by passing to Cm/W ∼= Cm−r+1.

3.1.2 . . . for Determinantal Singularities

In Chapter 1 we saw that every determinantal singularity (X0, 0) ⊂ (CN , 0)
of type (m,n, t) inherits a free resolution of OX0,0 over ON from the graded
free resolution associated to the generic determinantal variety M t

m,n via the
defining matrix A. The Tjurina modification of (X0, 0) is also defined as the
“modification inherited from M t

m,n”.

Definition 3.1.3. The Tjurina modification of (X0, 0) is defined by the fol-
lowing commutative diagram:

X0 ×Mt
m,n

W t
m,n

��

//W t
m,n

L̂

&&
Π
��

X0
A //M t

m,n L
// Grass(t− 1,m)

. (3.3)

Usually we will consider the Tjurina transform of (X0, 0) as a germ in (CN , 0)×
Grass(t−1,m) along the compact subset E := {0}×Grass(t−1,m) and de-
note it by (Y0, E). The natural projection (Y0, E) → (X0, 0) will be denoted
by π0.

It is clear that π0 : (Y0, E) → (X0, 0) is an isomorphism outside the set
A−1(M t−1

m,n) ⊂ X0. From Corollary 2.2.7 we obtain the following result:

Lemma 3.1.4. Let (X0, 0) ⊂ (CN , 0) be an isolated determinantal singularity of
type (m,n, t) defined by A ∈ Mat(m,n;ON ) and (Y0, E) its Tjurina transform.
Then

π0 : (Y0, E)→ (X0, 0)

is an isomorphism over X0 \ {0}.

Proof. Let X0 be a representative and p ∈ X0 \ {0} an arbitrary point. Since
(X0, p) has expected codimension under the map

A : (CN , p)→ (Mat(m,n;C), A(p))

and X0 is smooth at p, we deduce from 2.2.7, that rankA(p) = t − 1, so
p /∈ A−1(M t−1

m,n). Now the claim follows from the fact that the Tjurina modi-
fication of the generic determinantal variety M t

m,n is an isomorphism away
from M t−1

m,n, Lemma 3.1.2 i).
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The given definition of the Tjurina transform has the advantage that we
can easily give explicit equations. We describe them in the next lemma.

Lemma 3.1.5. Let I ⊂ {1, . . . ,m} be an ordered multiindex of order #I = t− 1
and UI the standard chart of the Grassmannian Grass(t − 1,m). The equations
for the Tjurina transform (Y0, E) ⊂ (CN , 0) × Grass(t − 1,m) in this chart are
given by

ΘI ·A = 0 ∈ Mat(m− t+ 1, n;ON [ZI ]),

where ΘI is the standard representative matrix and ZI the standard affine coordi-
nates for this chart as defined in (A.14) and (A.18).

Proof. It is clear from the construction of the fiber product that these equa-
tions have to vanish on (Y0, E). We have to show that also the equations
defining (X0, 0) in CN are already contained in the ideal generated by the
entries of ΘI ·A.

But if we let J ⊂ {1, . . . ,m} be the multiindex complementary to I ,
L = (1, . . . ,m− t+ 1) and K = (1, . . . , n), then from the definition of ΘI we
have

ΘI ·A = 0 ⇔ ΘI
L,I ·AI,K = AJ,K .

From this we see that the rows ofA in J can be expressed by the t−1 rows in
I modulo 〈ΘI · A〉. Consequently, all t-minors of A considered as elements
in ON [ZI ] are already contained in 〈ΘI ·A〉.

In the definition of the Tjurina transform of a determinantal singularity,
we do not blow up the rational map

L ◦A : X0 99K Grass(t− 1,m).

Therefore in general the Tjurina transform (Y0, E) has a decomposition

Y0 = Y0 \X0 ×Mt
m,n

W t−1
m,n ∪X0 ×Mt

m,n
W t−1
m,n , (3.4)

where the space Y0 \X0 ×Mt
m,n

W t−1
m,n is the strict transform 1 of X0 under

the blowup of L ◦ A. In particular it has the same dimension as (X0, 0)
along E.

To clearify what we mean by this, we define the dimension of a germ
germ (Y,E) along a compact set E as

dim(Y,E) = sup
p∈E

dim(Y, p). (3.5)

Corollary 3.1.6. The Tjurina transform (Y0, E) is a local complete intersection if
and only if

dim(X0 ×Mt
m,n

W t−1
m,n , E) ≤ dim(X0, 0). (3.6)

If (X0, 0) is an isolated singularity, then

X0 ×Mt
m,n

W t−1
m,n = {0} ×Grass(t− 1,m) (3.7)

and (3.6) becomes
N ≥ n · (m− t+ 1). (3.8)

1 In fact in [55], and [28] the Tjurina transform is defined to be this strict transform.
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Proof. The ambient space of (Y0, E) has dimension

N + dim Grass(t− 1,m) = N + (t− 1) · (m− t+ 1).

Let p ∈ CN ×Grass(t− 1,m) be an arbitrary point in E and X × UI a chart
containing it. According to Lemma 3.1.5, there are n · (m− t+ 1) equations
defining (Y0, p). Therefore the expected dimension of (Y0, p) as a complete
intersection would be

N + (t− 1) · (m− t+ 1)− n · (m− t+ 1) = N − (n− t+ 1) · (m− t+ 1).

But this is equal to the dimension of (X0, 0). From the decomposition (3.4)
we see that

dim(Y0, p) = max{dim(X0, 0),dim(X0 ×Mt
m,n

W t−1
m,n , p)}.

Thus if (3.6) holds, then (Y0, p) has codimensionN−(n−t+1)(m−t+1) in a
Cohen-Macaulay ring and its ideal is generated by the same number of ele-
ments. According to Theorem 1.2.15 (Y0, p) must be a complete intersection
at p.

If (X0, 0) has an isolated singularity, then according to Corollary 2.2.7
A(p) /∈ M t−1

m,n for all p ∈ X0 \ {0}. On the other hand due to the minimality
condition on A we may assume that all entries ai,j ∈ m - the maximal ideal
of ON . Hence A(0) = 0 and with the given equations for the Tjurina trans-
form from Lemma 3.1.5 we find no conditions on the affine coordinates of
Grass(t−1,m) in each chart in the fiber over 0. Putting this together, we ob-
tain (3.7). The inequality (3.6) is now a simple consequence from counting
dimensions.

3.1.3 . . . in Family

Definition 3.1.7. Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of
type (m,n, t) given by a matrixA ∈ Mat(m,n;ON ) and (X0, 0) ↪→ (X, 0)

u−→
(Ck, 0) be a determinantal deformation described by A ∈ Mat(m,n;ON+k).
The Tjurina modification in family is defined by the following commutative
diagram:

X0 ×Mt
m,n

W t
m,n

π0

��

� � // X ×Mt
m,n

W t
m,n

π

��

//W t
m,n

L̂

&&
Π
��

X0
� � //

��

X
A //

u
��

M t
m,n L

// Grass(t− 1,m)

{0} �
� // Ck

(3.9)
We usually think of the space X ×Mt

m,n
W t
m,n sitting over X as a germ in

(CN , 0)×Grass(t−1,m)×(Ck, 0) along the set {0}×Grass(t−1,m)×{0} ∼= E
and denote it by (Y,E).
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By the same reasoning as in the preceeding section for the determinantal
singularities, the equations for (Y,E) in the chart CN × UI are given by

ΘI ·A = 0 (3.10)

For u ∈ Ck we denote the fibers over it by Xu and Yu := π−1(Xu) respec-
tively. The restriction of π to Yu will be named πu. In the whole setup of
Definition 3.1.7, we consider representatives and we may choose a Milnor
BallB for (X0, 0) and a neighborhoodD ⊂ Ck of the origin compatible with
the choice of B and the given deformation.

Lemma 3.1.8. Consider the Tjurina modification in family as in (3.9).

i) If Xu is a determinantal Milnor fiber over some u ∈ D, then

πu : Y u → Xu

is a resolution of the singularities of Xu. If Xu is smooth, then πu is an
isomorphism.

ii) If (Y0, E) is a local complete intersection, then the family

u ◦ π : (Y,E)→ (Ck, 0) (3.11)

is flat at all points p ∈ E.

Proof. Part i) directly follows from the description of the singularities of a
determinantal Milnor fiber in Theorem 2.2.13 and the fact that Tjurina mod-
ification gives a resolution of the singularities of the generic determinantal
varieties, Lemma 3.1.2.

For part ii) we only need Theorem 1.3.1, because the equations given
by ΘI · A can be regarded as perturbations of the equations ΘI · A in all
charts.

The direction in which we want to go from here is already revealed in
the formulation of Lemma 3.1.8. We would like to study the Tjurina modifi-
cation in family for stabilizations of determinantal singularities. If the Tju-
rina transform (Y0, E) is a local complete intersection, then we can study
the vanishing cycles in the induced deformation of (Y0, p) at points p ∈ E,
which occur as we pass to a deformed fiber Y u. Then we use the map πu to
compare Y u with Xu, our object of interest.

Remark 3.1.9. For Cohen-Macaulay codimension 2 singularities (i.e. deter-
minantal singularities of type (t, t + 1, t), cf. Theorem 1.4.20), the Tjurina
transform takes a particularly simple form. The Grassmannian in question
is always

Grass(t− 1, t) ∼= Grass(t− 1, t)∨ = Grass(1, t) = Pt−1.

If we let s = (s1 : · · · : st) be the homogeneous coordinates of Pt−1 and
A a matrix defining a deformation of a Cohen-Macaulay codimension 2
singularity (X0, 0), then the equations for the Tjurina modification in family
are (

s1 · · · st
)
·A = 0. (3.12)
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3.2 Topology of Simple ICMC2 Singularities

As remarked earlier, the starting point of the research carried out for this
thesis was the observations by J. Damon and B. Pike in [17] concerning
the vanishing Euler-characteristic of simple Cohen-Macaulay codimension
2 threefold singularities. These were classified by A. Frühbis-Krüger and
A. Neumer in [25]. Simple isolated Cohen-Macaulay codimension 2 singu-
larities occur in dimensions from 0 to 4.

For fat point singularities, topological questions are rather trivial. The
topology of curves could be treated already using methods which were
not specific to determinantal singularities, see [14], and [37]. In dimen-
sion 2, there is always only one Betti number of the determinantal Milnor
fiber, which contributes to the vanishing Euler-characteristic due to Theo-
rem 2.1.18. This Betti number can therefore be determined using Theorem
2.3.10.

It is dimension 3, where for the first time we do have two Betti numbers
besides b0, namely b3 and b2, which can be nonzero. J. Damon and B. Pike
showed with their computation of the vanishing Euler-characteristic that
among the singularities listed in [25], see also Table 3.1, there are members,
for which b2 must be nonzero and others, for which b3 is not zero. However,
they were unable to determine them individually. The starting point of
this work was, to compute those numbers and explain their behaviour and
growth within the discrete families of singularities listed in Table 3.1.

This task could finally be achieved in [26], where, together with A.
Frühbis-Krüger, we announced the outcomes of those computations. The
methods developed for this purpose can, of course, be applied to more gen-
eral singularities, i.e. being simple is not a requirement of the involved
theorems. Nevertheless, the conditions in the formulated theorems would
seem rather unmotivated and restrictive if one did not have in mind the
original lists of simple singularities from the classification. In this chapter,
we therefore carry them along to explain, in which sense the exhibited the-
ory is natural. The results in the individual dimensions are then presented
in the order in which they were found. For fourfolds we only give an idea,
how it should be possible to generalize the methods to non-smoothable sin-
gularities.

First of all, the simple Cohen-Macaulay codimension 2 singularities con-
sidered in [25] are always isolated. Since the type of a Cohen-Macaulay
codimension 2 singularity is always (t, t + 1, t) for some t ∈ N, we know
from Corollary 3.1.6 and Remark 3.1.9 that if (X0, 0) ⊂ (CN , 0) is isolated,
then

E = π−1
0 ({0}) = {0} × Pt−1

is the exceptional set of the Tjurina transform (Y0, E). A simple computa-
tion shows that (Y0, E) is a local complete intersection if and only if N ≥
t+ 1, i.e. dim(X0, 0) = N − 2 ≥ t− 1.

Isolated simple Cohen-Macaulay codimension 2 singularities, which are
not complete intersections, occur only as determinantal singularities of type
(2, 3, 2), as shown in [25]. Their classification proceeds by roaming through
the space of jets of defining matrices and demarcating those leading to non-
simple singularities.
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For any integer r the r- jet of a holomorphic function f ∈ ON can be
defined as the equivalence class

jrf = f + mr+1 ∈ ON/mr+1 (3.13)

where m is the maximal ideal ofON . In particular we have df(0) 6= 0 if and
only if j1f 6= 0. This notion carries over to matrices A ∈ Mat(m,n;ON ) in
the obvious way.

We can use the jets to classify matrices A defining a determinantal sin-
gularity (X0, 0). Suppose there is one entry ai,j with nonzero 1-jet. Without
loss of generality we may assume (i, j) = (1, 1). After a change of coordi-
nates on the ambient space (CN , 0), we may assume that a1,1 = x1 is the
first coordinate. Using row and column operations, we can eliminate all
occurences of terms involving x1 in the first row and the first column and
thus bring A to the form 

x1 a1,2 · · · a1,n

a2,1 ∗ · · · ∗
...

...
. . .

...
am,1 ∗ · · · ∗


where neither of the ai,1 nor of the a1,j involves x1 at all. If now any of the
entries ai,j outside the first column has a 1-jet, which is linealy independent
of j1a1,1 = x1, we can add λ times the i-th row to the first for a sufficiently
general λ ∈ C and replace the coordinate x1 by x1 − λ · ai,j . Then without
loss of generality we can assume that it is the entry a1,2, whos 1-jet is inde-
pendent of x1. Now we can repeat the procedure: After another change of
coordinates in (CN , 0), which can be chosen to preserve x1, we can assume
a1,2 = x2 and then use column operations on A to eliminate any further
occurence of x2 among the a1,j for j > 2. Note, however, that if we tried to
eliminate x2 also from the other entries of the second column, we would in
general ruin the elimination of x1-terms in the first column. Hence this re-
duction is a privilege of the first step only. If we continue looking for 1-jets
of entries outside the first two columns, which are linearly independent of
x1 and x2, we eventually end up with a matrix

x1 x2 · · · xd a1,d+1 · · · a1,n

a2,1 ∗ · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

. . .
...

am,1 ∗ · · · ∗ ∗ · · · ∗

 , (3.14)

where d is the maximal number of linearly independent 1-jets in the first
row and for all the entries ai,j in the last n − d columns we can assume
j1ai,j = 0, i.e. ai,j ∈ m2.

As it turns out in [25], for all simple ICMC2 singularities of dimension
> 1 and those cases bounding the simple ones in the classification, the
defining matrices A ∈ Mat(2, 3;ON ) are all equivalent to matrices, whos
1-jet takes the following form (

x1 x2 x3

∗ ∗ ∗

)
(3.15)
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For all such singularities, the Tjurina modification is particularly well be-
haved.

Lemma 3.2.1 ([26]). Let (X0, 0) ⊂ (CN , 0) be an isolated determinantal singu-
larity of type (2, 3, 2) and of dimension > 0. Then the Tjurina transform (Y0, E)
has at most isolated singularities, iff the defining matrixA for (X0, 0) is equivalent
to a matrix of the form (3.15).

Proof. Tjurina modification is an isomorphism outside the singular locus,
which implies that the singular locus of Y0 is contained in E = π−1

0 ({0}) ∼=
P1. BecauseE is irreducible, the singular locus of Y0 is either a finite number
of points or the whole P1.
From the type of the singularity we deduce that (Y0, E) is a local complete
intersection.

We first show that (Y0, E) has isolated singularities if the defining matrix
is of the form (3.15). Consider the second chart U(2) of P1 = Grass(1, 2)∨.
The local equations for (Y0, E) are

(
1 z(2)

)
·
(
x1 x2 x3

a b c

)
= 0,

where a, b, c ∈ m are arbitrary entries in the maximal ideal. The jacobian
matrix of these three defining equations takes the form1 + z(2) ∂a

∂x1
z(2) ∂a

∂x2
z(2) ∂a

∂x3
· · ·

z(2) ∂b
∂x1

1 + z(2) ∂b
∂x2

z(2) ∂b
∂x3

· · ·
z(2) ∂c

∂x1
z(2) ∂c

∂x2
1 + z(2) ∂c

∂x3
· · ·

 (3.16)

Clearly, the first minor of this matrix is a unit in OCN×C,0, the local ring at
the origin of this chart. Hence Sing(Y0, E) can not be the whole exceptional
set E = {0} × P1 and must therefore consist of finitely many points.

On the other hand, suppose that the defining matrix A of (X0, 0) can
not be brought to the form (3.15). Then according to the normal form (3.14),
we can assume that the entries of the last column of A are all in m2. But
then one row of the jacobian has all entries in m and hence also all all the
maximal minors of the jacobian will be in m. Since the vanishing locus of
m = 〈x〉 on (Y0, E) is exactly the exceptional set E = {0} × P1, it must
therefore consist of singular points of Y0 in this case.

Lemma 3.2.2. Let (X0, 0) ⊂ (CN , 0) be an isolated determinantal singularity of
type (m,n, t) and

π0 : (Y0, E)→ (X0, 0)

the projection of the Tjurina modification of (X0, 0). Then for a suffiently small
representative E is a deformation retract of Y0.

Proof. Since (X0, 0) is an isolated singularity, the varietyE = {0}×Grass(t−
1,m) is closed and projective, hence compact. It follows from [51], that E is
a Euclidean Neighborhood Retract of an open neighborhood U of E in Y0.
But outside E the map π0 is an isomorphism, so π0(U) ⊂ X0 is open. We
may replace X0 by X0 ∩ π0(U) and Y0 by π−1

0 (X0).

For ICMC2 singularities of type (t, t+1, t) this means that the homotopy
type of Y0 is completely determined by the exceptional set E ∼= Pt−1 of the
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Tjurina transform. In particular we find

Hi(Y0) ∼= Hi(Pt−1) =

{
Z if 0 ≤ i ≤ 2(t− 1) is even
0 otherwise

(3.17)

For the statement of the next theorem compare with Theorem 2.2.13 and
Corollary 3.1.6.

Theorem 3.2.3. Let (X0, 0) ⊂ (CN , 0) be an ICMC2 singularity of type (t, t +
1, t) for t + 1 ≤ N < 6, so that the Tjurina transform (Y0, E) is a local complete
intersection and (X0, 0) has a determinantal smoothing. Let d = N − 2 be the
dimension of (X0, 0). Suppose the singular set Σ ⊂ E of (Y0, E) consists only of
isolated points and let Fq be the Milnor fiber of the isolated singularity (Y0, q).

There is a long exact sequence

0 // Hd+1(Pt−1) //
⊕

q∈ΣHd(Fq) // Hd(Xu) //

// Hd(Pt−1) // 0 // · · ·

· · · // 0 // H2(Xu) //

// H2(Pt−1) // 0 // H1(Xu) // 0

(3.18)

and Xu is connected.

Note that the way in which (3.18) is presented is probably a bit misleading.
We attempt to make a general statement, but in fact the condition t + 1 ≤
N ≤ 6 narrows the possible configurations drastically. As it turns out, we
can observe very different outcomes for the topology of Xu depending for
different choices of t and N within these ranges. This will be discussed
below in further sections.

Proof. Choose a Milnor ball B for (X0, 0) and let X0 ↪→ X
u−→ C be a

smoothing. For some discD ⊂ C around the origin, over which the smooth-
ing is well behaved for the chosen Milnor ball, we consider the Milnor tube
B ×D ⊂ CN × C and its preimage

T = π−1(B ×D) ⊂ CN × Pt−1 × C

We set Y = Y ∩ T and denote the fiber over u by Y u.
At all singular point q ∈ E of Y0, we can choose Milnor balls Bq for

the singularities (Y0, q), which are disjoint from the boundary ∂Y 0
∼= ∂X0.

Since the underlying family for (X0, 0) is a smoothing, the projection

πu : Y u → Xu

is an isomorphism for small u 6= 0 by Lemma 3.1.8, the induced deforma-
tions of all singularities (Y0, q) are smoothings as well.

Now the (Y0, q) are isolated complete intersection singularities and hence
their Milnor fiber is known due to Theorem 2.1.13, Theorem 2.1.15, and the
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Lê-Greuel formula (2.3). Outside the singular points we have a smooth
manifold with boundary

Z0 := Y 0 \
⋃
p∈Σ

(Y0 ∩
◦
Bq),

where as usual ◦ denotes the interior. The boundary of Z0 decomposes as

∂Z0 = ∂1Z0 ∪ ∂2Z0 = ∂Y0 ∪
⋃
p∈Σ

∂Bq ∩ Y0.

We may now choose u small enough such that the associated deformation of
Z0 is trivial in the differentiable category and for all singularities (Y0, q) we
pass to a Milnor fiber Fq := Bq ∩ Y u. From the pair of spaces (Y u,

⋃
q∈Σ Fq)

we obtain a long exact sequence

· · · //
⊕

q∈ΣHi(Fq) // Hi(Y u) // Hi(Y u,
⋃
q∈Σ Fq)

// · · ·
(3.19)

We can compute the termsHi(Y u,
⋃
p∈Σ Fq) as follows. By excision we have

isomorphisms

Hi(Y u,
⋃
p∈Σ

Fq) ∼= Hi(Zu, ∂2Zu) ∼= Hi(Z0, ∂2Z0) ∼= Hi(Y 0, Bq ∩ Y0) ∼= Hi(Y 0)

for all i ≥ 0. The last step is explained as follows. The spaces Bq ∩ Y0 are
contractible according to their conical structure and the properties of the
Milnor ball and hence Hi(Bq ∩ Y0) = 0 for all i > 0. Thus the isomorphism
follows from the long exact sequence of the pair (Y 0, Bq ∩ Y0).

Since according to Lemma 3.2.2 Y0 is homotopy equivalent to the excep-
tional set E ∼= Pt−1, we can replace any occurence of Hi(Y u,

⋃
p∈Σ Fq) in

(3.19) by Hi(Pt−1). If we also take into account the isomorphism Y u
∼= Xu

and the result by Hamm on the Fq, we obtain (3.18).

The following example illustrates how one can use the exact sequence
(3.18) to compute the Betti numbers of the Milnor fiberXu of a determinan-
tal singularity.

Example 3.2.4. Let us consider the ICMC2 singularity (X0, 0) ⊂ (C5, 0) given
by the 3-minors of the matrix

A =

 x y z 0
y − v z − v 0 u
y + z x+ u x− u v

 .

Let (s1 : s2 : s3) be the projective coordinates of P2 = Grass(2, 3). Then we
obtain Y0 ⊂ C5 × P2 as the zero locus of the equations

(
s1 s2 s3

) x y z 0
y − v z − v 0 u
y + z x+ u x− u v

 = 0. (3.20)

The Tjurina transform Y0 is still singular at 10 distinct points in {0} × P2 ⊂
C5 × P2. But there we only find 3-dimensional A1 singularities embedded
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in higher dimensional space. Thus compared to the singularity (X0, 0), the
situation became much simpler. Consider e.g. the singularity at the point
p = (0, (1 : 0 : 0)) in the chart s1 6= 0: The first three lines of the system
(3.20) define a smooth variety H of dimension 4 around p. Inside H the
equation

s
(1)
2 · u+ s

(1)
3 · v = 0

in the last line provides the A1 singularity.
Consider the deformation with a parameter ε given by the matrix

A =

 x y z 3ε
y − v z − v 3ε u
y + z x+ u x− u v


Let X ⊂ C5 × C be the total space of the deformation

X0
//

��

X

ε

��
{0} // C

The Tjurina modification in family in C5 × C × P2 is now described by the
equations (

s1 s2 s3

)
·A = 0

As a direct computation shows, all fibers of this family except the one over
ε = 0 are smooth. The long exact sequence (3.18) splits into several parts:

0 // H4(P2) //
⊕

q∈ΣH3(Fq) // H3(Xu) // H3(P2) (3.21)

0 // H2(Xu) // H2(P2) // 0 (3.22)

0 // H1(Xu) // H1(P2) // 0 (3.23)

Concerning (3.21): Recall from (3.17) that the homology of P2 vanishes in
odd degrees and we therefore have a zero on the right. Now it is well
known that H3(Fq) = Z for the Milnor fiber Fq of an A1-threefold singu-
larity. Since there are 10 of them we obtain a short exact sequence

0 // Z // Z10 // H3(Xu) // 0

and hence b3(Xu) = 9. A closer observation with explicit coordinates in
fact shows that H3(Xu) does not have torsion.

From the other two equations (3.22) and (3.23) we directly obtain iso-
morphisms

H2(Xu) ∼= Z, H1(Xu) = 0.

In total we find

bi(X0, 0) =


9 if i = 3

1 if i = 0, 2

0 otherwise
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for the Betti numbers of the Milnor fiber of the original determinantal sin-
gularity (X0, 0).

Depending on the choices of N and t in Theorem 3.2.3 we can observe
very different behaviour. However, in all cases we will recognize phenom-
ena, which could already be observed in the above example.

3.2.1 Betti Numbers for the Threefolds

Theorem 3.2.5. Let (X0, 0) ⊂ (C5, 0) be an ICMC2 singularity of type (3, 4, 3)
such that the Tjurina transform (Y0, E) has only isolated singularities (Y0, q) at
points q ∈ E. If we let b3(q) be the middle Betti number of the ICIS (Y0, q) at q,
then the Betti numbers of (X0, 0) are

bi(X0, 0) =


(∑

q∈Sing(Y0,E) b3(q)
)
− 1 if i = 3

1 if i = 0, 2

0 otherwise

.

All homology groups are torsion free.

Proof. Directly along the lines of example 3.2.4. It remains to show that
H3(X0, 0) is free in general. But this can be seen from the attachment pro-
cess leading to Theorem 2.3.10: We obtain the Milnor fiberXu from a generic
hyperplane section H ∩Xu of it, by attaching cells of real dimension 3. The
corresponding part from the long exact sequence of the pair (Xu, H ∩Xu)
is

0 // H3(Xu) // H3(Xu, H ∩Xu) // H2(H ∩Xu) ,

since the dimension of H ∩Xu) is 2 and hence its third homology group is
zero due to the Lefschetz Hyperplane Theorem. Now the relative homology
group H3(Xu, H ∩ Xu) is just Zr, where r is the number of attached cells.
Being a submodule of a torsion free module, H3(Xu) can not have torsion
itself.

Theorem 3.2.6. Let (X0, 0) ⊂ (C5, 0) be an ICMC2 singularity of type (2, 3, 2)
such that the Tjurina transform (Y0, E) has only isolated singularities (Y0, q) at
points q ∈ E. If we let b3(q) be the middle Betti number of the ICIS (Y0, q) at q,
then the Betti numbers of (X0, 0) are

bi(X0, 0) =


∑

q∈Sing(Y0,E) b3(q) if i = 3

1 if i = 0, 2

0 otherwise

.

All homology groups are torsion free.

Proof. The proof is the same as for Theorem 3.2.5, only that the term H4(P1)
appearing in (3.18) is zero.

We used this theorem to compute the homology groups of all simple
ICMC2 threefold singularities. In the following table we do not only list
the Betti numbers of the Milnor fibers, but also the types of the singularities
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appearing in the Tjurina transform (we adapt the classical names by Arnold
[4]), and the Tjurina number

τ = dimC T
1
X0,0

of (X0, 0). Recall that, as a consequence of Schaps result, Theorem 1.4.21
and the description of the infinitesimal deformation space in Lemma 1.4.22,
this number is equal to dimC Inf(A) for the presentation matrix A of the
singularity.

A τ sing. in Y0 b2 b3(
x y z
v w x

)
1 - 1 0(

x y z
v w xk+1 + y2

)
k + 2 Ak 1 k(

x y z
v w xy2 + xk−1

)
k + 2 Dk 1 k(

x y z
v w x3 + y4

)
8 E6 1 6(

x y z
v w x3 + xy3

)
9 E7 1 7(

x y z
v w x3 + y5

)
10 E8 1 8(

w y x
z w y + vk

)
2k − 1 - 1 0(

w y x
z w yk + v2

)
k + 2 Ak−1 1 k − 1(

w y x
z w yv + vk

)
2k A1 1 1(

w + vk y x
z w yv

)
2k + 1 A1 1 1(

w + v2 y x
z w y2 + vk

)
k + 3 Ak−1 1 k − 1(

w y x
z w y2 + v3

)
7 A2 1 2(

v2 + wk y x
z w v2 + yl

)
k + l + 1 Ak−1, Al−1 1 k + l − 2(

v2 + wk y x
z w yv

)
k + 4 Ak−1, A1 1 k(

v2 + wk y x
z w y2 + vl

)
k + l + 2 Ak−1, Al−1 1 k + l − 2(

wv + vk y x
z w yv + vk

)
2k + 1 A1, A1 1 2(

wv + vk y x
z w yv

)
2k + 2 A1, A1 1 2(

wv + v3 y x
z w y2 + v3

)
8 A1, A2 1 3(

wv y x
z w y2 + v3

)
9 A1, A2 1 3(

w2 + v3 y x
z w y2 + v3

)
9 A2, A2 1 4
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(
z y x
x w v2 + y2 + zk

)
k + 4 Dk+1 1 k + 1(

z y x
x w v2 + yz + ykw

)
2k + 5 A2k+2 1 2k + 2(

z y x
x w v2 + yz + yk+1

)
2k + 4 A2k+1 1 2k + 1(

z y x
x w v2 + yw + z2

)
8 D5 1 5(

z y x
x w v2 + y3 + z2

)
9 E6 1 6(

z y x+ v2

x w vy + z2

)
7 D3 1 3(

z y x+ v2

x w vz + y2

)
8 A4 1 4(

z y x+ v2

x w z2 + y2

)
9 D5 1 5

TABLE 3.1: Homology of Milnor fibers of simple ICMC2
threefold singularities

The classification of simple ICMC2 singularities provided a further set
of examples, for which these computations could be done. The result is the
following table.

A τ sing. in Y0 b2 b3(
x y z
w v x4 + y4

)
11 X9 1 9(

x y z
w v x3 + y6

)
12 J10 1 10(

w + v2 y x
z w y3 + v3

)
8 D4 1 4(

w + v3 y x
z w y2 + v4

)
9 A3 1 3(

z y x
x w v2 + y3 + z3

)
11 T3,3,3 1 8(

z y x
x w v3 + y2 + z3

)
2 13 T3,3,3 1 8(

z y x
x w v3 + y3 + z2

)
17 U12 1 12(

z y x
x w v2 + y4 + z2

)
12 X9 1 9(

z y x+ v2

x w vz + yz + vw

)
10 D6 1 6(

z y x+ v3

x w vy + z2

)
9 A3 1 3

2There is a typesetting error in this matrix in [25]. The right-hand lower entry here is the
correct one.
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(
z y x+ v3

x w y2 + yz + z2

)
15 X9 1 9(

z y x+ v2

x w vy + yz + z3

)
8 D4 1 4

TABLE 3.2: Homology of Milnor fibers for the bounding
non-simple threefold singularities

3.2.2 Decomposition of Infinitesimal Deformations

For simple ICMC2 singularities (X0, 0) ⊂ (C5, 0) there are only simple hy-
persurface singularities occuring in the Tjurina transform (Y0, E). There
is a reason behind this, which becomes appearent if one considers the in-
finitesimal deformations of (X0, 0), i.e. the space T 1

X0,0
∼= Inf(A), and the

induced infinitesimal deformations for the isolated singularities (Y0, q) in
the Tjurina transform.

In this section we aim to prove the following theorem:

Theorem 3.2.7. Let N ≥ 3 and (X0, 0) ⊂ (CN , 0) be an ICMC2 singularity of
type (2, 3, 3) such that the Tjurina transform (Y0, E) has at most isolated singu-
larities (cf. Lemma 3.2.1). Furthermore let X0 ↪→ X −→ Cτ be a semi-universal
deformation of X0 in the sense of Grauerts Theorem 1.4.13. There is a decomposi-
tion

T 1
X0,0
∼= H1(Y0, TY0)⊕

⊕
q∈Sing(Y0,E)

T 1
Y0,q, (3.24)

where TY0 denotes the tangent sheaf HomOY0 (Ω1
Y0
,OY0) of (Y0, E). In particular,

the induced family (Y0, q) ↪→ (Y, q) −→ Cτ is again versal for each of the arising
singularities.

We first discuss some implications of this theorem with a view towards
the question, to which extend there are analogues of Milnor’s formula in
Theorem 2.1.13, the inequality µ ≥ τ , (2.2), and Theorem 2.1.16 for the com-
putations of the Betti numbers of the Milnor fiber.

Corollary 3.2.8. Let (X0, 0) be as in Theorem 3.2.7 and of dimension 3. If all the
isolated singularities (Y0, p) in the Tjurina transform are quasihomogeneous, then
we have an equality

τ = h1(Y0, TY0) + b3(X0, 0),

where τ = dimC T
1
X0,0

is the Tjurina number.

Proof. From Theorem 2.1.16 it follows that the local Milnor numbers of the
ICIS (Y0, p) in the Tjurina transform are all equal to the local Tjurina num-
bers τ(Y0, p). The formula is now deduced from the decomposition (3.24)
and Theorem 3.2.6.

For simple ICMC2 threefold singularities, the versality of the induced
deformations for all (Y0, p) explains, why we only find simple singularities
in the Tjurina transform. As one can observe from the Table 3.1, they are
all hypersurfaces and therefore members of the original classification by
Arnold [4]. Since all these singularities are quasihomogeneous, Corollary
3.2.8 holds in particular for all singularities in Table 3.1.
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Remark 3.2.9. There are families in Table 3.1, for which the term h1(Y0, TY0)
grows linearly with k. For example the seventh entry, the so called Πk fam-
ily, as well as the 17th and 18th entry. The deformation parameters corre-
sponding to the term H1(Y0, TY0) in the decomposition (3.24) of the T 1

X0,0

are not reflected in the vanishing topology of the singularity at all. This
phenomenon is contrary to anything that could be observed for isolated
complete intersection singularities before.

We prepare for the proof of Theorem 3.2.7. As usual let x = (x1, . . . , xN )
be the affine coordinates of CN at 0 and s = (s1 : s2) the homogeneous
coordinates of P1. The space of embedded first order deformations for the
Tjurina transform ι : (Y0, E) ↪→ C5×P1 can be described as follows (see e.g.
[64], [41]). Let I be the ideal sheaf defining (Y0, E) in (C5 × P1, E). We take
global sections of the normal bundle

NY0 = H0(Y0,HomO(I,OY0))

and divide by those deformations coming from global sections of the tan-
gent bundle H0(Y0, ι

∗TC5×P1). The resulting quotient will be denoted by

N ′ := NY0/H
0(Y0, ι

∗TC5×P1). (3.25)

Note that the global section functor takes coherent sheaves to finitely gen-
erated C{x}-modules. In fact N ′ is naturally a C{x}-module with support
in the point 0 and hence a finite dimensional vector space over C. To see
this, observe that outside the singular locus 0 ∈ X0 (and outside E ⊂ Y0

respectively), the space Y0 is described as a graph over X0 and we therefore
have a natural splitting of the normal bundle

NY0 = NX0 ⊕ TP1 |Y0 .

Because the tangent bundle of P1 is globally generated, the second sum-
mand is killed when forming the quotient N ′. But the first summand can-
cels on the smooth locus anyway.

It is clear from the construction that every deformation of (X0, 0) in-
duces a deformation of (Y0,P1 × {0}). Let (X0, 0) be given by the matrix

A =

(
x1 x2 x3

a b c

)
∈ Mat(2, 3;C{x1, . . . , xN}).

and let

H1 = s1 ·a+s2 ·x1, H2 = s1 ·b+s2 ·x2, H3 = s1 ·c+s2 ·x3 ∈ C{x}[s1, s2]

be the three equations defining the Tjurina transform Y0 in C5 × P1, which
are homogeneous in s. On the level of equations there is a map

{Perturbations of A} Λ //

1:1

{Perturbations of H}

1:1

Mat(2, 3;C{x}) Λ

E
(2,3)
i,j 7→ejsi

//
(
(C{x}[s1, s2])3

)
(1)
,

(3.26)
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where the ei denote the generators of the free module on the right hand side
and E

(r,s)
i,j denote the r × s matrices possessing only one non-zero entry of

value 1 at position i, j. The lower index (1) signifies that we only consider
the homogeneous part of degree 1 in s.

Lemma 3.2.10. The map Λ induces an isomorphism of first order deformations of
(X0, 0) and (Y0, E), i.e. an isomorphism of C{x}-modules

Λ : T 1
X0,0

∼=−→ N ′.

Proof. We have already obtained the isomorphism Λ between Mat(2, 3;C{x})
and (C{x}[s1, s2])3

(1). From the description of the T 1
X0,0

in Lemma 1.4.22 and
the definition of N ′ we know the relations on both sides. It hence remains
to prove that the modules

K :=

〈
∂A

∂x

〉
+ 〈F ·A+A ·G〉

from the description of Inf(A) ∼= T 1
X0,0

and (JH + IH)(1) are isomorphic.
Here IH = 〈H1, H2, H3〉C{x}3 and JH is generated by the columns of the
Jacobian matrix of the Hi defining Y0.
By construction of H , we see immediately

Λ(
∂A

∂xi
) =

∂H

∂xi
,

Λ(E
(2,2)
i,j ·A) = si

∂H

∂sj

and
Λ(A · E(2,3)

i,j ) = Hiej .

This provides a 1 : 1 correspondence of the generators of these two modules
and hence proves the claim about the cokernels:

0 // K //

∼=Λ

��

Mat(2, 3;C{x}) //

∼=Λ
��

T 1
X0,0

//

��

0

0 // (JH + IH)(1)
// (C{x}[s1, s2])3

(1)
// N ′ // 0

There is a splitting of the module N ′ coming from the local-to-global
spectral sequence of the exact sequence of sheaves

0 // TY0
// ι∗TP1×C5 // NY0

// T 1
Y0

// 0, (3.27)

which can be explicitly described as follows.
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We first split the exact sequence (3.27) into short exact sequences

0 // TY0
// ι∗TP1×C5 // K // 0

0 // K // NY0
// T 1
Y0

// 0

. (3.28)

The long exact sequences in cohomology both have to finish after the degree
one terms, because the underlying scheme is covered by two affine charts.

Let again I be the ideal sheaf of (Y0,P1). If we tensor the short exact
sequence

0 // I // OP1×C5 // OY0 // 0

with the locally free sheaf TP1×C5 and take the long exact sequence in coho-
mology, we see that

H1(Y0, ι
∗TP1×C5) = 0.

Looking at the first long exact sequence in cohomology of (3.28), we deduce
that

coker
(
H0(Y0, ι

∗TP1×C5)→ H0(Y0,K)
) ∼= H1(Y0, TY0)) (3.29)

and
H1(Y0,K) = 0. (3.30)

Combining these results with the second long exact sequence of (3.28) and
recalling that N ′ = NY0/H

0(Y0, ι
∗TP1×C5), we obtain a short exact sequence

0 // H1(Y0, TY0) // N ′ // H0(Y0, T
1
Y0

) // 0 ,

the middle term of which is a finite dimensional vector space over C. Any
choice of a splitting gives us

N ′ = H1(Y0, TY0)⊕H0(Y0, T
1
Y0). (3.31)

The sheaf underlying the right hand side summand is supported only in the
singular points and hence affine. Thus if we let Σ(Y0) be the set of singular
points of Y0 we can rewrite (3.31) as

N ′ = H1(Y0, TY0)⊕
⊕

p∈Σ(Y0)

T 1
Y0,p (3.32)

which is the same as (3.24), given the identification T 1
X0,0
∼= N ′ from Lemma

3.2.10.
In particular for any q ∈ Σ(Y0) we get a surjective map from T 1

X0,0
onto

T 1
Y0,q

by the composition

T 1
X0,0
∼= N ′ ∼= H1(Y0, TY0)⊕

⊕
p∈Σ(Y0)

T 1
Y0,p −→ T 1

Y0,q,

where the last map is the projection to the summand for q. This proves
Theorem 3.2.7.

Note that the induced local deformations for the isolated singularities
of Y0 do not need to be semi-universal, i.e. τ might not be minimal.
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3.2.3 The surface case

We state the analogue of Theorem 3.2.6 for surfaces.

Theorem 3.2.11. Let (X0, 0) ⊂ (C4, 0) be an ICMC2 singularity of type (2, 3, 2)
such that the Tjurina transform (Y0, E) has only isolated singularities (Y0, q) at
points q ∈ E. If we let b2(q) be the middle Betti number of the ICIS (Y0, q) at q,
then the Betti numbers of (X0, 0) are

bi(X0, 0) =


(∑

q∈Sing(Y0,E) b2(q)
)

+ 1 if i = 2

1 if i = 0

0 otherwise

.

All homology groups are torsion free and there is a splitting of the second homology
group

H2(Xu) ∼=

 ⊕
q∈Sing(Y0,E)

H2(Fq)

⊕ Z, (3.33)

where Fq is the Milnor fiber of the singularity (Y0, q).

In particular H1(Xu) is zero, not just of rank zero. This is stronger then the
result by Greuel and Steenbrink on normal surface singularities [34].

Proof. The long exact sequence (3.18) splits into

0 //
⊕

q∈Sing(Y0,E)H2(Fq) // H2(Xu) // H2(P1) // 0

and
0 // H1(Xu) // 0

according to (3.17). The desired splitting exists, because H2(P1) = Z is
torsion free. This concludes the proof.

For the ICMC2 surface singularities of type (3, 4, 3), we obtain a surpris-
ing corollary.

Corollary 3.2.12. There are no ICMC2 surface singularities of type (3, 4, 3), which
have only isolated singularities in the Tjurina transform.

Proof. Suppose this was the case. Then we would find the following part of
the long exact sequence (3.18):

0 // H4(P2) // H3(Xu) // 0 .

But according to the Lefschetz Hyperplane Theorem, Xu can not have a
nonzero fourth homology group.

Also for surfaces we can discuss the decomposition of T 1
X0,0

in the Tju-
rina modification form Theorem 3.2.7.

Corollary 3.2.13. Let (X0, 0) ⊂ (C4, 0) be as in Theorem 3.2.7 and of dimension
2. If all the isolated singularities in the Tjurina transform are quasihomogeneous,
then

τ = h1(Y0, TY0) + b2(X0, 0)− 1.
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Proof. This is basically the same as in the proof of Corollary 3.2.8, only that
this time we have a correction term −1 from the decomposition of H2(Xu)
in (3.33).

Remark 3.2.14. In [24], A. Frühbis-Krüger uses Corollary 3.2.13 for ICMC2
surface singularities with isolated singularities in the Tjurina transform, to
prove a conjecture by Wahl [72] in this special case. The conjecture says
that for a non-Gorenstein surface singularity (X0, 0) ⊂ (C4, 0) we have an
inequality

b2(X0, 0) = µ ≥ τ − 1,

with equality if and only if (X0, 0) is quasihomogeneous.
In the proof, A. Frühbis-Krüger shows that for ICMC2 surface singulari-

ties with isolated singularities in the Tjurina transform the spaceH1(Y0, TY0)
in the decomposition (3.24) always has dimension 2 for quasihomogeneous
singularities. This is contrary to what we observed for the threefolds in
Remark 3.2.9. For surfaces, there seems to be a much stricter correspon-
dence between the degrees of freedom for deformation in a semi-universal
deformation of the singularity and its vanishing topology. In the case of
nonisolated singularities in the Tjurina transform, however, the conjecture
is still open.

3.2.4 Topology of Space Curves

ICMC2 singularities of dimension 1, which meet the requirements of Theo-
rem 3.2.3 are space curves, i.e. curve singularities in (C3, 0). Independently
of the development of the methods exhibited here, J. Kass worked out the
Tjurina modification in this case for the simple singularities from the list
in [25]. He gave a talk about his results in Hannover in June 2014, but, as
of this writing, did not yet publish on the subject. We will formulate the
analogue of Theorem 3.2.3 for space curves.

Theorem 3.2.15. Let (X0, 0) ⊂ (C3, 0) be an ICMC2 singularity of type (2, 3, 2)
such that the Tjurina transform (Y0, E) has only isolated singularities (Y0, q) at
points q ∈ E. If we let b1(q) be the middle Betti number of the ICIS (Y0, q) at q,
then the Betti numbers of (X0, 0) are

bi(X0, 0) =


(∑

q∈Sing(Y0,E) b1(q)
)
− 1 if i = 2

1 if i = 0

0 otherwise

.

All homology groups are torsion free.

After all that has been said in the previous sections, the proof is left to
the reader.

3.2.5 Simple Fourfold Singularities

For ICMC2 singularities dimension 4 is special, because according to Theo-
rem 2.2.13 the singularities will not be smoothable anymore. Nevertheless
we can apply the machinery provided above, to ask about the topology of
the determinantal Milnor fiber.



92 Chapter 3. Tjurina Transformations

We start by observing that Theorem 3.2.3 is still true, if we replace Xu

by Y u in (3.18). This means, we can use it to compute the homology groups
of the Tjurina transform Y u of the determinantal Milnor fiber Xu.

If (X0, 0) ⊂ (C6, 0) is of type (2, 3, 2), we obtain

Hi(Y u) =


⊕

q∈Sing(Y0,E)H4(Fq) if i = 4

Z if q = 2

0 otherwise

(3.34)

The problem for the fourfolds is, that the Tjurina transform on the determi-
nantal Milnor fiber

πδ : Y δ → Xδ

is not an isomorphism anymore, but a resolution of singularities. Recall
from Example 2.2.2 i) the singularity (X0, 0) ⊂ (C6, 0) defined by the matrix

A =

(
x y v
z w x+ uk

)
.

for some k ∈ N. Direct computations show that the Tjurina transform
(Y0, E) ⊂ (C4, 0)× P1 is smooth. Now consider the stabilization of A given
by the perturbation with the matrix

δ ·
(

0 0 0
0 0 1

)
In this dimension, the degeneracy locus ofA defined by 〈A∧1〉 is a complete
intersection:

〈A∧1〉 = 〈x, y, z, v, w, uk〉.

Any determinantal deformation of (X0, 0) therefore also leads to a defor-
mation of the degeneracy locus. In this case, the perturbation by δ results
in k distinct smooth points p1, . . . , pk ∈ Xδ, over which πδ is not an isomor-
phism anymore.

We know from Theorem 2.2.13 and Lemma 3.1.8 what happens over
these points: We find the resolution of singularities from the generic deter-
minantal varieties. Thus over every point pi there is an exceptional set

Ei = P1 × {pi} ⊂ Y δ

sitting over it. In this particular example one can see that if we consider the
exceptional set E ⊂ Y0 as the preimage of the fat point scheme defined by
〈A∧1〉, then the embedded deformation of E in Y0 induced from the pertur-
bation of A by δ splits E into the Ei above. From this, it is easy to see that
the fundamental cycles of these Ei in homology are all homologous to the
generator of H2(Y δ).

Now for fixed δ 6= 0 let (Bi)
k
i=1 be Milnor balls for the singularities

(Xδ, pi). If we now consider the long exact sequence of the pair (Y δ,
⋃k
i=1 π

−1
δ (Bi∩
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Xδ)), we obtain

Hi(Y δ,

k⋃
i=1

π−1
δ (Bi ∩Xδ)) =


Z if i = 0,

Zk−1 if i = 3,

0 otherwise

But these groups are canonically isomorphic to the reduced homology groups
of Xδ, since all the Bi ∩Xδ are contractible. We therefore obtain

Hi(Xδ) =


Z if i = 0,

Zk−1 if i = 3,

0 otherwise

. (3.35)

It should be possible to obtain a general result for the topology of the de-
terminantal Milnor fibers of ICMC2 fourfold singularities along these lines.
The difficulty is to show that the exceptional sets over the isolated singular-
ities in Xδ are homologous to the generator of the second homology group
of the Tjurina transform in general.
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Chapter 4

Line Singularities in the
Tjurina Transform

The results presented in this chapter are the exclusive work of the author.
In large parts it coincides with the article [73]. Central to our considerations
is the theory of vanishing cycles for nonisolated singularities as developed
by Lê, Siersma, Tibăr, Yomdin and others. Using the original fibration theo-
rem by Milnor [53] and Hamm [39], we generalize results from D. Siersma
[66] about hypersurfaces to complete intersections. Then we pick up the
considerations by D. Siersma and M. Tibăr in [67] concerning the vanish-
ing topology of projective hypersurfaces with nonisolated singularities and
apply it to isolated Cohen-Macaulay codimension 2 (ICMC2) singularities
with nonisolated singularities in the Tjurina transform.

4.1 Characteristic Vanishing Cycles

In the computations of the homology groups of Milnor fibers of smooth-
able ICMC2 singularities in the preceeding chapter we can observe, how
the cycles of the Tjurina transform (Y0, E) ∼= Pt−1 contribute in (3.18). In
some cases they “survive” and in other cases they lead to relations among
the local vanishing cycles of the singularities (Y0, q) in the Tjurina trans-
form, depending on the degree of the homology group in question and the
dimension of (X0, 0).

Suppose (X0, 0) is a smoothable ICMC2 singularity of type (2, 3, 2), for
which the Tjurina transform is smooth. Then the Milnor fiber is diffeomor-
phic to (Y0, E), because the deformation of (Y0, E) induced from a smooth-
ing of (X0, 0) is trivial in the differentiable category. Consequently if we
let

L : Xu → P1, x 7→ spanAu(x),

be the regular map on the Milnor fiber given by the deformed matrix Au,
then a generator of H2(Xu) is given by the fundamental class of a differen-
tiable section l : P1 → Xε of L, i.e. a map l such that L ◦ l = IdP1 .

In general the existence of such a section is hard to prove. But from the
proof of the Theorems 3.2.6 and 3.2.11 it is evident that the generator of the
second summand of the splitting (3.33), or just the generator of the second
homology group in Theorem 3.2.6, “is coming from” the exceptional set. To
make this more precise, we give the following definition.

Let (X0, 0) ⊂ (CN , 0) be a determinantal singularity of type (m,n, t)
given by a matrix A and

Au : B →Mm,n
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the fiber of a a stabilization A of A defined on some Milnor ball B ⊂ CN
for (X0, 0). Because Au is transverse to all the strata M s

m,n of Mat(m,n;C),
the Tjurina transform Y u ⊂ B × Grass(t − 1,m) of Xu = A−1

u (M t
m,n) is a

smooth compact manifold with corners (recall that Yε is isomorphic to Xε

in case (X, 0) is smoothable). By abuse of notation, let

L : Y u ⊂ B ×Grass(t− 1,m)→ Grass(t− 1,m)

be the projection to the Grassmannian. Consider the image G ⊂ H•(Y u) of
the induced map

L∗ : H•(Grass(t− 1,m))→ H•(Y u)

in cohomology.

Definition 4.1.1. A cycle [σ] ∈ H•(Y u) is said to be horizontal if the cap
product g ∩ [σ] is zero for all g ∈ G = L∗(H•(Grass(t− 1,m))). We write

[σ] ∈ G⊥.

All other cycles in H•(Y u) are called vertical or characteristic vanishing cycles
of (X0, 0). We also say they are sitting over the Grassmannian.

Corollary 4.1.2. Let Xu be the Milnor fiber of an ICMC2 singularity (X0, 0) ⊂
(Cn+2, 0) of dimension n = 2 or 3 and of type (2, 3, 2) with only isolated singu-
larities in the Tjurina transform. Then the homology of Xu splits into

H•(Xu) ∼= G⊥ ⊕ Z

where the second summand lives in degree 2, and the cap product with L∗(H2(P1))
gives a perfect pairing with H2(P1) ∼= Z.

4.1.1 Main Theorem for Line Singularities in the Tjurina Trans-
form

The main goal of this section is to extend Theorem 3.2.6, Theorem 3.2.11 and
Corollary 4.1.2 to the case of arbitrary ICMC2 singularities of type (2, 3, 2)
and dimension 2 or 3, i.e. we also allow nonisolated singularities in the
Tjurina transform.

Theorem 4.1.3. Let Xu be the Milnor fiber of an ICMC2 singularity (X0, 0) ⊂
(Cn+2, 0) of dimension n = 2 or 3 and type (2, 3, 2) given by a matrix A ∈
Mat(2, 3;ON ). Let A ∈ Mat(2, 3;ON+1) be a stabilization of A in the parameter
u. For u 6= 0 let

L : Xu → P1, x 7→ spanAu(x).

The Milnor fiber Xu has H1(Xu) = 0 and the homology of Xu splits into

H•(Xu) ∼=
(
L∗H2(P1)

)⊥ ⊕ Z.

The cap product with L∗(H2(P1)) gives a perfect pairing of the vertical cycles with
H2(P1) ∼= Z. If n = 3, then H2(Xu) ∼= Z consists of the vertical cycles only.

Since for any given example the Euler characteristic ν(X0, 0) can be
computed with Theorem 2.3.10, we obtain the following corollary.
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Corollary 4.1.4. Let Xu be the Milnor fiber of an ICMC2 threefold singularity of
type (2, 3, 2). The Betti numbers of Xu can be computed as

bi(X0, 0) =


1 if i = 0, 2

ν(X0, 0)− 1 if i = 3

0 otherwise

.

4.1.2 An Example and Outline of the Proof

To illustrate the ideas of the proof of Theorem 4.1.3, we give an example
of an ICMC2 threefold singularity with non-isolated singular locus in the
Tjurina transform.

Example 4.1.5. Let (X0, 0) ⊂ (C5, 0) be given by the matrix v x
w y
−2xy v2 + w2 + z2

 (4.1)

and consider the smoothing obtained by perturbing the lower left entry
with a constant δ. We denote the homogeneous coordinates of P1 by (s1 :
s2). Then the equations for the Tjurina transform (Y0, V ) ⊂ (C5 × P1, {0} ×
P1) and its deformation by δ are v x

w y
−2xy − δ v2 + w2 + z2

 · (s1

s2

)
= 0. (4.2)

Let us look at the first chart {s1 6= 0}. We write s = s2/s1 for the corre-
sponding standard affine coordinate. The equations from the first two rows
read

v = −s · x, w = −s · y.

Substituting this in the equation from the last row, we obtain a hypersurface

h = s3 · x2 + s3 · y2 − 2xy + s · z2,

which is perturbed by a constant δ. We can interpret this as a quadratic
form Qs in (x, y, z) parametrized by s and write it in the standard matrix
form:

h = Qs(x, y, z) =
(
x y z

)
·

 s3 −1 0
−1 s3 0
0 0 s

 ·
xy
z

 = δ.

Any quadratic form should of course be diagonalized. To do this, we intro-
duce new coordinatesx̃ỹ

z̃

 :=


1√
2
−1√

2
0

1√
2

1√
2

0

0 0 1

 ·
xy
z

 ,
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in which our hypersurface equation takes the form

h = Qs(x̃, ỹ, z̃) =
(
x̃ ỹ z̃

)
·

s3 + 1 0 0
0 s3 − 1 0
0 0 s

 ·
x̃ỹ
z̃

 = δ. (4.3)

This is a family of A1-surface singularities, which degenerates as s ap-
proaches one of the seven values

s ∈ 6
√

1 ∪ {0}.

Now it is clear that in this chart the Tjurina transform Y0 is singular along
the whole exceptional set V , the s-axis in this chart.

Let L : C5×P1 → P1 be the standard projection, i.e. in this chart the pro-
jection to the s-axis. If we restrict h to a general transversal slice to V given
by the hypersurface {L = c} for a general c ∈ C, we obtain the transversal
singularity denoted by Y t0 :

h|{L=c} = (c3 + 1)x̃2 + (c3 − 1)ỹ2 + cz̃2 = δ

and a smoothing induced by the perturbation with the constant δ. This
transversal singularity is isolated and of type A1.

For δ 6= 0 we see a vanishing cycle [σ] in the Milnor fiber

Y tδ = {h = δ} ∩ {L = c}

of the transversal singularity. It lives in the second homology groupH2(Y tδ )
and can be represented by a 2-sphere. This is a candidate for further contri-
butions of the second homology group of

Yδ ⊂ C5 × P1,

the fiber over δ in the given deformation and, hence, for the Milnor fiberXε

of (X0, 0). Whether or not [σ] is nonzero as an element of H2(Yδ) depends
on the inclusion

Y tδ ⊂ Yδ.

To shed some light on this question, let us observe the behaviour close to
the degeneracy points

K :=
{

(x̃, ỹ, z̃, s) : x̃ = ỹ = z̃ = 0, s ∈ 6
√

1 ∪ {0}
}
.

The analytic type of the singularity h at either of these points is what D.
Siersma calls the D∞-singularity, a.k.a. the Whitney umbrella. For any p ∈ K
we can choose a Milnor ball B = B(p) for the singularity of h around p
and a value c ∈ C for the transversal singularity sufficiently close to s(p)
such that the intersection B with the hyperplane {L = c} is nonempty. D.
Siersma shows in [65, Proposition 3.8]:

For the D∞ singularity of dimension n the pair of Milnor fibers (Yδ ∩B, Y tδ ∩B)
is homotopy equivalent to the pair of spheres

(Sn, Sn−1)
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FIGURE 4.1: The Tjurina transform with non-isolated sin-
gularities.

where Sn−1 ↪→ Sn is the standard equatorial embedding.

Let W ⊂ C be the complement of some small discs around the special
points in K ⊂ C. Then for δ > 0 small enough

L : Yδ ∩ L−1(W ))→W (4.4)

is a fiber bundle with fiber Y tδ . This means we can freely move the equator
of all the vanishing cycles coming from the seven D∞ points and connect
all half spheres globally. The affine part of Yδ is therefore homotopic to a
bouquet of spheres:

Yδ \ {s1 = 0} ∼= S3 ∨ · · · ∨ S3︸ ︷︷ ︸
2·7−1 times

(4.5)

with each of their equators being homologous to the vanishing cycle S2 of
any of the transversal Milnor fibers.

To complete the picture, let us look at the other chart {s2 6= 0}. We
denote the corresponding affine coordinate of P1 by t = s1/s2. Again the
equations for the first two rows of the matrix allow us to substitute in the
equation of the third row and we obtain the perturbation of a hypersurface
equation:

h := v2 + w2 − 2t3 · vw + z2 = δ · t.

Regarding this as a quadratic form Qt in (v, w, z) parametrized by t and
diagonalizing as before, we obtain

(
ṽ w̃ z̃

)
·

1 + t3 0 0
0 1− t3 0
0 0 1

 ·
 ṽw̃
z̃

 = δ · t.

We do recover the six degeneracy values for t of the quadratic form at the
six roots of unity. However, Qt does not degenerate at the point (0,∞) ∈
C5 × P1, the origin in this chart. Hence, we can make an analytic change of
coordinates around this point such that the local equation h for Y0 at (0,∞)
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is just an A∞ singularity:

h = x2 + y2 + z2 : (C4, 0)→ (C, 0).

But note that we do not perturb by a constant, but by δ · t. This means the
transversal slice over {t = 0} does not deform! We have

Y t∞ := Y0 ∩ {t = 0} = Yδ ∩ {t = 0}.

The set Y t∞ is what we call an axis of the deformation. The point (0,∞), in
which the axis intersects the exceptional set V , is called the axis point.

Being a representative of the germ of an isolated singularity, Y t∞ is a
contractible fiber in the family given by L : Yδ → P1. If we let L−1(D) ⊃ Y t∞
be the preimage of a sufficiently small disk D ⊂ P1 around∞, then we can
assume that L−1(D) is also contractible. We compute the Mayer-Vietoris
sequence for the two patches L−1(W ) and L−1(D).

The intersection L−1(W ∩ D) is homotopic to a fiber bundle over the
circle S1 with fiber Y tδ , which in turn is homotopic to a 2-sphere S2. The
topology of L−1(W ∩ D) is thus determined by the Wang sequence of the
fibration and we get

H3(L−1(W ∩D)) = 0, H2(L−1(W ∩D)) = Z/2Z, (4.6)
H1(L−1(W ∩D)) = Z, H0(L−1(W ∩D)) = Z. (4.7)

The second homology group is generated by the transversal vanishing cycle
in Y tδ and the first one by a continous section of the projection to S1.

Putting all this together, we obtain the following exact sequence for the
H3-term:

0 // Z13 // H3(Yδ) // Z/2Z // 0 .

We may deduce that b3(Yδ) = 13. But from this it is not clear whether or not
there is a further torsion part inH3(Yδ). For the second homology group the
connecting homomorphism in the long exact sequence is an isomorphism:

0 // H2(Yδ) // H1(L−1(W ∩D)) // 0 .

The generator therefore is the difference of two relative cycles for the pairs
(L−1(D), L−1(W ∩D)) and (L−1(W ), L−1(W ∩D)), whose common bound-
ary is the fundamental class [l] of a section l : S1 = ∂D ⊂ P1 → Yδ of L.
We can construct the generator of H2(Yδ) by extending l to both D and W
as a section of L. Away from the special points, i.e. where L is a fiber bun-
dle, this section exists and is unique up to homotopy by general obstruction
theory and the connectivity of the base and fiber. At the D∞-points we can
change coordinates and reduce to the normal form

s · x2 + y2 + z2 = δ.

Here l can be extended by

s 7→ (s, x, y, z) = (s, 0, 0,
√
δ).
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It is evident that

H2(P1)×H2(Yδ)→ Z, (ω, [σ]) 7→ L∗ω ∩ [σ]

is a perfect pairing of free Z-modules.
Since the deformation we started with was a smoothing of (X0, 0), the

spaces Yδ and Xδ are naturally isomorphic and we are done with the deter-
mination of the homology groups of the Milnor fiber of (X0, 0).

We will now outline the proof of the main Theorem 4.1.3 using this ex-
ample. It is widely inspired by the work of D. Siersma and M. Tibăr on the
vanishing topology of projective hypersurfaces [67], in the way we piece
together the global picture from local computations and the role played by
the axis point.

Step I: Study line singularities, which are local complete intersections. In general
the singular locus V = {0} × P1 of the Tjurina transform Y0 ⊂ C5 × P1 will
consist of a Zariski open set U , over which the projection L to P1 is the germ
of a submersion along the exceptional set, i.e. it locally induces the structure
of a fiber bundle with fiber Y t0 , the transversal singularity. Its Milnor fiber
Y tδ is well defined up to diffeomorphism. This is done in section 4.2.4.

Then we will treat the special points, i.e. the complement of U . In the
above example we saw that the vanishing cycle [σ] of the transversal sin-
gularity became homologous to zero in the local Milnor fibers of the D∞
singularities. But in the general case of arbitrary line singularities which
are complete intersections, there is no reason for this to hold. Consider for
example the F1A3 singularity from De Jongs list [48]:

f = xz2 + y2z = z · (xz + y2).

He shows that its Milnor fiber F is homotopy equivalent to S1. If we find
such a singularity in the Tjurina transform of an ICMC2 surface singularity
or a double suspension of it in the Tjurina transform of a threefold, then
there are cycles of the transversal Milnor fiber Ft, which are not homolo-
gous to zero in F .

It turns out that the important property we need is the fact that any van-
ishing cycle of degree (n−1) of the Milnor fiber F of a complete intersection
line singularity can be represented by a cycle in the transversal Milnor fiber
Ft. This is done in section 4.2.5, where we give a description of how the lo-
cal Milnor fiber of those singularities is connected to its transversal Milnor
fiber (Corollary 4.2.9 and Theorem 4.2.11 for the threefolds and respectively
4.2.10 and 4.2.13 for the surface case).

Step II: The role of the axis point. In section 4.3.1 we show that for deforma-
tions of an ICMC2 singularity (X0, 0) of dimension n and its Tjurina trans-
form (Y0, V ) coming from a perturbation of the defining matrix A with a
general constant matrix B of rank 1, a generic rank 1 perturbation, we always
have an axis Y t∞ and an axis point (0,∞) ∈ V . For the fiber Yδ of the Tjurina
transform in such a deformation, the connectivity of local Milnor fibers F of
complete intersection line singularities with their transversal Milnor fibers
Ft will imply that all homology of degree n− 1 of Yδ \ Y t∞ is concentrated
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in the transversal Milnor fiber Y tδ . When gluing in the fiber Y t∞ of L over
∞, all the cycles in Y tδ collapse.

Step III: Putting together the global picture. In the last part, section 4.3.3, we
use Mayer-Vietoris arguments to compute the homology groups of Yδ for a
general rank 1 perturbation (Theorem 4.3.4): While the vanishing cycles of
Y tδ and, hence, also all (n−1)-cycles of the local Milnor fibers of the special
points are homologous to zero in Yδ, adding Y t∞ to Yδ \ Y t∞ will also give
rise to a new 2-cycle sitting over P1 in the sense of Definition 4.1.1. This
finally leads to the proof of Theorem 4.1.3, in which we pass from a general
rank 1 perturbation, for which neither Yδ nor Xδ are necessarily smooth, to
a smoothing of (X0, 0).

4.2 Line Singularities in the Tjurina Transform

4.2.1 Complete Intersection Line Singularities

Definition 4.2.1. A singularity (Y0, 0) ⊂ (CN , 0) is called a line singularity if
the singular locus V = Sing(Y0) is the germ of a line in CN at 0.

Curves cannot have line singularities unless they are a multiple line them-
selves. In this section, we will therefore always assume n = dim(Y0, 0) ≥ 2.

Let (Y0, 0) ⊂ (CN , 0) be a line singularity, which is a complete intersec-
tion of codimension d given by the equations f1 = · · · = fd = 0. For line
singularities there is in general no unique smoothing, as we saw in Example
2.1.9. For hypersurfaces one can, however, consider the “perturbation by a
generic constant” and use the Fibration Theorem by Lê, Theorem 2.1.11.

For complete intersections, there is a well-known trick to reduce to a
constant perturbation of one holomorphic function on a controlled ambient
space, see e.g. [39]. Let

~f : (CN , 0)→ (Cd, 0),

be the map defining the line singularity (Y0, 0) and 0 ∈ U ⊂ CN a neighbor-
hood of the origin on which all the fi are defined. Consider the map

P~f : U \ Y0 → Pd−1, x 7→ (f1(x) : · · · : fd(x))

and choose a regular value p ∈ Pd−1 for Pf . After a change of coordinates
of Pd−1, which corresponds to a new C-linear combination of the generators
fi, we can assume that p = (1 : 0 : · · · : 0). Then the closure of its preimage
in U ⊂ CN is given by

Y ∗ = {x ∈ U : f2(x) = · · · = fd(x) = 0}. (4.8)

Lemma 4.2.2. The singular locus of Y ∗ is contained in the singular locus of Y .

Proof. (cf. [39, Lemma 1.1 or Lemma 2.2]) Outside Y0 the space Y ∗ is already
smooth. If Y ∗ had a singular point p ∈ Y0, this means that the jacobian
of (f2, . . . , fd) would not have full rank at p. But then also the jacobian of
(f1, f2, . . . , fd) could not have full rank and thus pwould be a singular point
of Y0 as well.
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We rename the first function f1 to f . Without loss of generality we can
assume that the singular line (V, 0) = (Sing(Y ), 0) is just the germ of the
first coordinate axis of CN . This will be the standard situation, from which
we will proceed for this section:

f : (Y ∗, 0) ⊂ (CN , 0)→ (C, 0), Y0 := Y ∗ ∩ {f = 0}, (4.9)
Sing(Y ∗, 0) ⊂ Sing(Y0, 0) = ({x2 = · · · = xN = 0}, 0). (4.10)

Since we are primarily interested in topological questions about the sin-
gularity, we will use Whitney stratifications to provide the setup for appli-
cations of the first Thom isotopy Lemma. We may assume that Y ∗ admits a
Whitney stratification by the strata

(Y ∗ \ Y0, Y0 \ V, V \ {0}, {0}) (4.11)

sufficiently close to the origin. The last stratum {0} might, however, be
optional.

If we apply Lê’s Fibration Theorem 2.1.11 in this setting for some suffi-
ciently small Milnor ball B, we obtain a smooth fiber

Fu = B ∩ f−1({u}) ∩ Y ∗

for u ∈ C sufficiently close to 0. This is what we refer to as the Milnor fiber
of the complete intersection line singularity (Y0, 0).

4.2.2 The Polar Curve

Besides the Whitney stratification there is one more thing we need to take
into account. Let

L : CN → C, (x1, . . . , xN ) 7→ x1

be the projection to the first coordinate axis. Consider the polar locus of f
with respect to L on Y ∗

Γ(f, L) = {x ∈ Y ∗ \ Y0 : dL(x), df(x) are linearly dependent in x.Ω1
Y ∗},
(4.12)

where · denotes the closure. The polar locus can be very nasty. However,
for most choices of the projection L we get reasonable control over Γ(f, L)
in the usual way.

Lemma 4.2.3. For a = (a2, . . . , aN ) let

La : CN → C, (x1, . . . , xN ) 7→ x1 −
N∑
i=2

ai · xi

be the projection bent by a. There exists a dense set Ω ⊂ CN−1 of values for a such
that for a ∈ Ω the polar locus Γ(f, La) ⊂ Y ∗ is either empty or an analytic curve,
which is smooth outside Y0.

Proof. This is a Bertini-type theorem. Consider the following incidence
space

N∗ := {(x, a) ∈ Y ∗×CN−1 : dLa(x), df(x) are linearly dependent in x.Ω1
Y ∗}.
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It comes along with the two natural projections

N∗

pr1

}}

pr2

##
Y ∗ CN−1.

Over Y ∗\Y0 the function f has a full rank differential on TY ∗ and, therefore,
N∗ \ pr−1

1 (Y0) is a smooth manifold of complex dimension

dimN∗ = dimY ∗ + (N − 1)− (dimY ∗ − 1) = N.

Let a be a regular value of the projection pr2 restricted to N∗ \ pr−1
1 (Y0). Its

preimage
pr−1

2 ({a}) ⊂ Y ∗ × {a}

is either empty or an analytic curve which is smooth outside Y0 × {a}.

We will, in the following, assume that La has been chosen according to
lemma 4.2.3. Then we readjust the coordinate system of CN in a way that
La = L = x1 is just the first coordinate function, i.e. the projection to the
first axis.

Corollary 4.2.4. Passing to a smaller representative of Y0 if necessary, we can
furthermore assume that the polar curve meets Y0 only at points in V .

4.2.3 The Choice of a Milnor Ball

Let ρ : CN → R be the squared distance function from the origin and set
Bε := {ρ ≤ ε}. For sufficiently small ε > 0 we may assume that

• ρ is a Whitney stratified submersion on Y ∗ ∩ Bε with respect to the
standard stratification (4.11).

• (cf. [39, Korollar 3.2]) the function

arg f : Y ∗ \ Y0 → S1

has a differential, which is linearly independent from dρ over R in the
real cotangent bundle T ∗Y ∗ of Y ∗ along Bε ∩ (Y ∗ \ Y0).

• the function f has no critical points on Bε ∩ Y ∗ away from Y0.

• the polar curve Γ is either empty or, if it intersects Bε ∩ V , it does so
only at the origin.

4.2.4 The Milnor Fiber in the Product Case

In this section we will treat the case that

(Y ∗ \ Y0, Y0 \ V, V )

is already a Whitney stratification of Y ∗ at 0 and the polar curve Γ(f, L) is
empty.

Thom’s first isotopy Lemma yields that Y0 is a product over V , that is

(Y0, 0) ∼= (Y t0 × V, 0), (4.13)
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where (Y t0 , 0) is the germ of the transversal singularity. This is an isolated
singularity obtained from Y0 by intersecting it with a hyperplane in general
position, i.e. transversal to all strata at 0. Lemma 4.2.3 and Corollary 4.2.4
show us how to choose the equation for such a hyperplane.

We will show that the product structure (4.13) also holds for the Milnor
fiber. To do so, it is more convenient to have a polydisc rather than a Milnor
ball. Assume that the projection L = x1 to the first axis is general and let

q =

N∑
i=2

xi · xi : CN → R

be the squared distance from V . According to [30, Lemma 2.3], the map

(L, q) : Y0 \ V → V × R

is a submersion on a neighborhood U of the origin. We may choose α, β ∈
R>0 small enough such that the polydisc

∆αβ := {q ≤ α2} ∩ {|L| ≤ β}

is contained in U .

Theorem 4.2.5. In the above setup for fixed α and β there exists a δ > 0 such that
the map

(f, L) : Y ∗ ∩∆αβ ∩ f−1(Dδ)→ Dδ ×Dβ (4.14)

is a fiber bundle away from Y0 = Y ∗ ∩ {f = 0}.

Definition 4.2.6. The fiber of (4.14) over a general point is called the transver-
sal Milnor fiber and denoted by Ft.

Clearly for fixed δ > 0 we have F ∼= Ft ×Dβ .

Proof. (of Theorem 4.2.5) Since (L, q) was a submersion on Y0 ∩ ∆αβ , the
horizontal part of the boundary

∂h(Y0 ∩∆αβ) := Y0 ∩ {q = α2} ∩ {|L| ≤ β}

is a fiber bundle over the closed disc Dβ . Because it is compact, this prop-
erty is preserved under small perturbations of f . Hence, we can assume
that

(f, L) : Y ∗ ∩ f−1(Dδ) ∩ {q = α2} ∩ L−1(Dβ)→ Dδ ×Dβ

is a fiber bundle.
The absence of the polar curve assures that away from Y0 we also find

no critical points of (f, L) in the interior of Y ∗ ∩ ∆αβ . Therefore (4.14) is
a proper submersion away from Y0 and, hence, a fiber bundle by Ehres-
mann’s Fibration Theorem.

4.2.5 The Milnor Fiber at a Special Point

We now treat the general case; i.e. we have a Whitney stratification of Y ∗ ⊂
CN by the strata

(Y ∗ \ Y0, Y0 \ V, V \ {0}, {0})
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and a possibly nonempty polar curve Γ ⊂ Y ∗, which meets Y0 at {0}. By
passing to smaller representatives, if necessary, we can always reduce to
this setup.

Let B be a Milnor ball for Y0 at 0. When we investigate the topology
at the special points in the setting of the Tjurina modification of an ICMC2
singularity, it is the part of the boundary Σ = Y0 ∩ ∂B, which is close to V ,
along which Y0 connects to the remaining space. Therefore we will study
mainly two objects in this section: The topology of the second boundary

∂2F ⊂ ∂F,

which is the part of the boundary of the Milnor fiber F close to V , and the
relative homology groupsHq(F, ∂2F ), which determine howF is connected
to ∂2F . The precise definition of the second boundary ∂2F is given below.

The Second Boundary

In this section we will denote the boundaries of the spaces in question by

Σ∗ := Y ∗ ∩ ∂B, Σ := Y0 ∩ ∂B, S := V ∩ ∂B.

Along the points of S we find the product situation of the preceding section
for Y0. Thus, Theorem 4.2.5 is applicable along the whole circle. However,
we do need the slight modification to change L to

L̃ : B → C, x 7→
√
ρ(x) · exp(

√
−1 · argL),

with ρ = |L|2 + q the squared distance from the origin. The function L̃ is
not holomorphic, but approximates L as a differentiable function close to
S. Repeating the arguments in the setup and proof of Theorem 4.2.5 along
the compact manifold S we obtain:

Corollary 4.2.7. There exist α > 0, and δ > 0 sufficiently small with respect to α
such that

(f, argL) : Σ∗ ∩ {q ≤ α2} ∩ f−1(Dδ)→ Dδ × S1 (4.15)

is a smooth fiber bundle away from {f = 0}.

It is easy to see that the fiber of this fiber bundle is canonically diffeo-
morphic to the transversal Milnor fiber Ft.

Definition 4.2.8. For α and δ as in Corollary 4.2.7 the space

∂2F := Σ∗ ∩ {q ≤ α2} ∩ {f = δ}

is called the second boundary of the Milnor fiber F and the monodromy T•
from the fibration

argL : ∂2F → S1 (4.16)

the vertical monodromy.

The topology of ∂2F is completely determined by the topology of Ft

and the Wang sequence of (4.16). The transversal Milnor fiber Ft comes
from an ICIS of dimension n − 1, so it is (n − 2)-connected. For n ≥ 3 the
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Wang sequence splits into two parts:

0 // Hn(∂2F ) // Hn−1(Ft)
Tn−1−1// Hn−1(Ft) // Hn−1(∂2F ) // 0

(4.17)
and

0 // H1(∂2F ) // H0(Ft)
T0−1 // H0(Ft) // H0(∂2F ) // 0 ,

(4.18)
where T• is the monodromy operator of (4.16). Clearly, T0 − 1 in (4.18) is
the zero map. Thus, we proved the following:

Corollary 4.2.9. Let n = dim(Y0, 0) ≥ 3. The homology groups of ∂2F have the
following properties:

1. Hn(∂2F ) is a free subgroup of Hn−1(Ft).

2. Every cycle in Hn−1(∂2F ) can be represented by a cycle in Hn−1(Ft).

3. H1(∂2F ) is free abelian of rank 1 and generated by a section of argL.

4. ∂2F is connected.

5. All other homology groups are zero.

If n = dim(Y0, 0) = 2, the terms Hn−1(∂2F ) from (4.17) and H1(∂2F )
from (4.18) come together. But the kernel of T0−1 is still free of rank 1 and
hence there is a (non-canonical) splitting

H1(∂2F ) ∼= H ′1 ⊕ Z = coker(T1 − 1)⊕ ker(T0 − 1). (4.19)

We call H ′1 = cokerT1 − 1 the transversal or horizontal and the other sum-
mand Z = kerT0 − 1 the vertical cycles of the second boundary ∂2F .

Corollary 4.2.10. The homology groups of the second boundary ∂2F of the Milnor
fiber F of a complete intersection line singularity (Y0, 0) of dimension 2 have the
following properties:

1. H2(∂2F ) is a free subgroup of H1(Ft).

2. Every cycle inH1(∂2F ) can be represented by a transversal cycle inH1(Ft).

3. H1(∂2F ) splits into transversal and vertical cycles (4.19) and a generator of
the latter is given by the fundamental class of a section of argL.

4. ∂2F is connected.

5. All other homology groups are zero.

Connectivity with the Second Boundary

Having described the topology of the second boundary, we now turn to the
question how it connects with the Milnor fiber. We will first treat the case
n = dim(Y0, 0) ≥ 3 and modify the arguments for the surface case in the
next section.
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Theorem 4.2.11. Let n = dimY0 ≥ 3. Then we have

Hq(F, ∂2F ) ∼=


0 2 < q < n

Hq−1(∂2F ) q = 2

0 0 ≤ q ≤ 1

(4.20)

where the isomorphisms are induced from the long exact sequence of the pair of
spaces (F, ∂2F ).

The proof of Theorem 4.2.11 follows closely the ideas of Dirk Siersma
in his paper [66]. He proved the theorem in the case of hypersurfaces with
possibly even more complicated singular locus as the corollary of Lemma
3.8, his “second variation sequence” 1. It picks up the idea of the original
fibration by Milnor and Hamm

arg f : Σ∗ \ Σ→ S1 (4.21)

where, as before, Σ∗ = Y ∗ ∩ ∂B with Σ being the boundary of Y0. Hamm
shows in [39, Satz 1.6], that this is a C∞-fiber bundle with open fibers.
Moreover, he proves that for δ > 0 sufficiently small, (4.21) is in fact fiber-
wise diffeomorphic to

f

δ
: {|f | = δ} ∩ Y ∗ ∩

◦
B → S1. (4.22)

The proof proceeds by construction of an outward pointing vector field on
Y ∗ \ Y0, whose flow takes {|f | = δ} ∩ Y ∗ ∩B fiberwise onto Σ∗ \ {|f | ≥ δ}.
For two chosen single fibers we can then establish an isomorphism.

Unlike in the case of an ICIS it is not so easy to see that, if we pass to the
closure in B, we still get a fibration.

Lemma 4.2.12. For sufficiently small δ > 0 the map

f

δ
: {|f | = δ} ∩ Y ∗ ∩B → S1 (4.23)

is a C∞ fiber bundle with closed fibers

F = {f = δ} ∩ Y ∗ ∩B.

Proof. By choice of the Milnor ball there are no critical points of f on (Y ∗ \
Y0) ∩ B. Hence, we only have to check that f/|δ| is a submersion at the
boundary

{|f | = δ} ∩ Σ∗.

This can be achieved by first using the Curve Selection Lemma to show that
f has no critical points on Σ∗ \ Σ on a neighborhood U of Σ. In a second
step we can exploit the compactness of Σ: For sufficiently small δ the set
{|f | ≤ δ} ∩ Σ∗ will be contained in U .

To create the setup to prove Theorem 4.2.11, we first choose α > 0 such that

1There is a typo in [66]: The third case in the mentioned corollary is 2 < q ≤ n− 1.
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• all requirements of Corollary 4.2.7 are fulfilled so that we will have a
fibration of the second boundary.

• the space
Nα := Σ∗ ∩ {q ≤ α2}

has S = V ∩ Σ as a strong deformation retract in Σ∗.

After that we choose δ > 0 sufficiently small with respect to α such that

• again the assumptions of Corollary 4.2.7 are met.

• Lemma 4.2.12 holds and we get a Milnor fibration by f .

• we have Σ as a strong deformation retract of the space

Σ≤δ := Σ∗ ∩ {|f | ≤ δ}

and the retraction takes the subset ∂Nα ∩ Σ≤δ into itself.

This last space now decomposes as

Σ≤δ = (Σ≤δ ∩ (Σ∗ \Nα)) ∪ (Σ≤δ ∩Nα) =: T1 ∪ T2.

The attentive reader may recognize T2 from Corollary 4.2.7. The other part,
T1, has a natural structure as a trivial disc bundle over Σ as in the case of
isolated singularities since Σ \Nα was compact and smooth.

Now we can decompose the space Σ∗ as

Σ∗ ∼= (Σ∗ ∩ {|f | ≤ δ}) ∪ (Σ∗ ∩ {|f | ≥ δ})
∼= (Σ≤δ) ∪ (Y ∗ ∩B ∩ f−1(∂Dδ))

according to Hamm’s computations where the second part is a smooth fiber
bundle over the circle by Lemma 4.2.12.

Proof. (of Theorem 4.2.11) Consider the triple of spaces (Σ∗, F ∪ T2, T2). We
have the following isomorphisms for the relative homology groups.

Hq(Σ
∗, F ∪ T2) ∼= Hq(Σ

∗, F ∪ T2 ∪ T1) (4.24)
∼= Hq(Y

∗ ∩B ∩ f−1(∂Dδ), F ∪ (Σ∗ ∩ f−1(∂Dδ)))(4.25)
∼= Hq(F × [0, 1], ∂(F × [0, 1])) (4.26)
∼= Hq−1(F, ∂F )⊗H1(I, ∂I) = Hq−1(F, ∂F ) (4.27)

for q > 0 and H0(Σ∗, F ∪ T2) = 0. The first line (4.24) holds because T1

retracts onto the part of the boundary of F outside Nα. By excision we get
(4.25), and (4.26) comes from the fibration (Lemma 4.2.12). We deduce (4.27)
from the Künneth formula. Furthermore,

Hq(Σ
∗, T2) ∼= Hq(Σ

∗, Nα ∩ Σ) (4.28)
∼= Hq(Σ

∗, S) (4.29)

because by assumption T2 retracts onto Nα ∩ Σ, which in turn retracts onto
S = V ∩ Σ. Finally, by excision we deduce

Hq(F ∪ T2, T2) ∼= Hq(F, ∂2F ). (4.30)
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With these identifications the long exact sequence from the triple reads

· · · // Hq+1(Σ∗, F ∪ T2) //

∼=
��

Hq(F ∪ T2, T2) //

∼=
��

Hq(Σ
∗, T2) //

∼=
��

· · ·

· · · // Hq(F, ∂F ) // Hq(F, ∂2F ) // Hq(Σ
∗, S) // · · · .

(4.31)
Recall that according to the Lefschetz Hyperplane Theorem 2.1.12, the rel-
ative homology groups Hq(F, ∂F ) vanish for q < n. Thus we find isomor-
phisms

Hq(F, ∂2F ) ∼= Hq(Σ
∗, S) for q < n. (4.32)

To determine the connectivity of the pair (F, ∂2F ), we are therefore left with
the computation of the relative homology groups Hq(Σ

∗, S).
The rest of the proof will split into three cases. In any of these we will

show that from the long exact sequence in homology of the pair (Σ∗, S) we
get

Hq(Σ
∗, S) ∼=

{
0 for 2 < q < n

Hq−1(S) = Z for 0 < q ≤ 2
. (4.33)

Case I: Y ∗ is smooth.
This has been done by Dirk Siersma in [66]. The pair (Σ∗, S) is just (S2n−1, S1)
with the usual equatorial embedding. Clearly (4.33) holds and (4.20) fol-
lows for the case 0 ≤ q < n, q 6= 2. For q = 2 consider the following
commutative diagram

H2(F, ∂2F )

��

∼= // H2(F ∪ T2, T2)

��

∼= // H2(Σ∗, T2)

��

∼= // H2(Σ∗, S)

∼=
��

H1(∂2F )
∼= // H1(T2)

∼= // H1(T2)
∼= // H1(S)

(4.34)

All horizontal maps are isomorphisms. In the lower row they are induced
by the inclusion ∂2F ↪→ T2 and the retraction of T2 onto S. The vertical map
on the left clearly is an isomorphism, too. This concludes the proof in case
I.

Case II: Y ∗ has an isolated singular point at the origin.
In this case Σ∗ is a smooth compact manifold. Let F ∗ be the Milnor fiber
of the isolated complete intersection singularity (Y ∗, 0). The dimension of
F ∗ is n + 1 and according to Theorem 2.1.15 it is homotopic to a bouquet
of (n+1)-dimensional spheres. The Lefschetz Hyperplane Theorem asserts
that one can obtain F ∗ from Σ∗ by attaching cells of dimension≥ n+1. Then
clearly Σ∗ must be (n− 1)-connected and (4.33) follows from the long exact
sequence of the pair (Σ∗, S). The proof is finished with the same arguments
as in case I.

Case III: Y ∗ is also singular along V .
Here S denotes the singular part of the boundary Σ∗ of Y ∗. For α suffi-
ciently small the pair (Σ∗, S) is homotopic to the pair (Σ∗, Nα). Let again F ∗

be the Milnor fiber in a smoothing of Y ∗ and consider the triple (F ∗, ∂F ∗, ∂2F
∗).
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By excision we clearly have isomorphisms

Hq(Σ
∗, S) ∼= Hq(Σ

∗, Nα) ∼= Hq(∂F
∗, ∂2F

∗)

for all q. The long exact sequence for the triple reads

· · · // Hq+1(F ∗, ∂F ∗) // Hq(∂F
∗, ∂2F

∗) // Hq(F
∗, ∂2F

∗) // · · ·

and for q + 1 < n + 1 = dimF ∗ the terms Hq+1(F ∗, ∂F ∗) vanish. Thus for
all 0 < q < n we have isomorphisms

Hq(F, ∂2F ) ∼= Hq(Σ
∗, S) ∼= Hq(∂F

∗, ∂2F
∗) ∼= Hq(F

∗, ∂2F
∗). (4.35)

The claim now follows by induction on the codimension of Y ∗. For 0 ≤ q <
n, q 6= 2 the right hand term of (4.35) is zero and in case q = 2 we can extend
the diagram (4.34) by one more column to obtain

H2(F, ∂2F )

��

∼= // · · ·
∼= // H2(Σ∗, S)

��

∼= // H2(F ∗, ∂2F
∗)

∼=
��

H1(∂2F )
∼= // · · ·

∼= // H1(S)
∼= // H1(∂2F

∗) .

(4.36)

The Surface Case

We already saw in Section 4.2.5, Corollary 4.2.10 that surfaces need special
treatment. The reason for this is that the horizontal and the vertical cycles of
the second boundary ∂2F do not live in distinct homology groups anymore.
In view of its applications for ICMC2 singularities in the next section we
will formulate a different connectivity result for the pair (F, ∂2F ) in the
case n = 2.

Theorem 4.2.13. Let (Y0, 0) ⊂ (CN , 0) be a complete intersection line singularity
of dimension n = 2. Recall the (non-canonical) decomposition

H1(∂2F ) ∼= H ′1 ⊕ Z

into horizontal and vertical cycles (4.19) for the second boundary ∂2F of the Milnor
fiber F of Y0. With these identifications the natural map ι1 : H1(∂2F ) → H1(F )
is surjective and factors via

H ′1 ⊕ Z ι1 // //

##

H1(F )

H ′1

<<

.

(4.37)

In other words: The vertical cycles are homologous to zero in F while every
remaining 1-cycle of F comes from a cycle in ∂2F .

Proof. We can literally copy the setup and the beginning of the proof of The-
orem 4.2.11 up to the point where we deduce the isomorphisms (4.32). From
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this point onwards the proof of Theorem 4.2.13 becomes an investigation of
the following part of the long exact sequence from the pair (F, ∂2F )

H2(F, ∂2F ) // H1(∂2F ) // H1(F ) // H1(F, ∂2F ) // 0

(the space ∂2F is connected, as can be seen from the Wang sequence; this
gives the zero on the right).

Let l : S1 → ∂2F be a section of argL representing the homology class
[l] of the generator of the vertical cycles in H1(∂2F ). Consider the commu-
tative diagram

H2(F, ∂2F )

��

∼= // H2(F ∪ T2, T2)

��

∼= // H2(Σ∗, T2)

��

∼= // H2(Σ∗, S)

δ
��

H1(∂2F )
κ // H1(T2)

∼= // H1(T2)
∼= // H1(S)

(4.38)

where the column maps are the natural ones from the corresponding pairs
of spaces. Contrary to the higher dimensions the map κ coming from the in-
clusion ∂2F ↪→ T2 is not necessarily an isomorphism anymore. But clearly,
it maps [l] into the homology class of the generator of H1(S) ∼= Z.

The factorization (4.37) would follow from δ on the right being surjec-
tive. Surjecitivity of ι1 in (4.37) directly follows fromH1(F, ∂2F ) being zero.

Case I: Y ∗ is smooth (cf. [66]).
The pair (Σ∗, S) is nothing but a pair of spheres (S5, S1) with the standard
equatorial embedding. Clearly δ in (4.38) is surjective and from (4.32) we
get

H1(F, ∂2F ) ∼= H1(S5, S1) = 0.

Case II: Y ∗ has an isolated singularity at the origin.
The Milnor fiber F ∗ of Y ∗ is a bouquet of spheres of dimension 3 and the
pair (F ∗, ∂F ∗) is 2-connected. We consider a smoothing of (Y ∗, 0) compati-
ble with the constructions made for (Y0, 0). The term

H1(F, ∂2F ) ∼= H1(Σ∗, S) ∼= H1(∂F ∗, ∂2F
∗)

appears in the long exact sequence of the triple (F ∗, ∂F ∗, ∂2F
∗):

· · · // H2(F ∗, ∂F ∗) // H1(∂F ∗, ∂2F
∗) // H1(F ∗, ∂2F

∗) // · · ·

The term on the left is zero because of the connectivity of the pair (F ∗, ∂F ∗).
The one on the right also appears in the long exact sequence of the pair
(F ∗, ∂2F

∗):

H1(F ∗) // H1(F ∗, ∂2F
∗) // H0(∂2F

∗)
ι0 // H0(F ∗) .

Since ∂2F
∗ is clearly connected, the map ι1 is injective. On the other hand

H1(F ∗) = 0, so we deduce H1(F ∗, ∂2F
∗) = 0. Tracing this back we have

shown H1(F, ∂2F ) = 0 as desired.
The space Σ∗ = ∂F ∗ is 1-connected, for if it wasn’t, according to the

connectivity with its boundary due to the Lefschetz Hyperplane Theorem,
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F ∗ couldn’t be a bouquet of 3-spheres. This shows surjectivity of δ in (4.38).

Case III: Y ∗ is singular along V .
For the surjectivity of δ in (4.38) we apply the same argument as in the high-
erdimensional case. From the long exact sequence of the triple (F ∗, ∂F ∗, ∂2F

∗),
the connectivity of (F ∗, ∂F ∗) and Theorem 4.2.13, we deduce surjectivity of
the natural map

H2(Σ∗, S) ∼= H2(∂F ∗, ∂2F
∗)→ H2(F ∗, ∂2F

∗) ∼= H1(∂2F ).

Thereby we can extend the diagram (4.38) to the right by the column

H2(F, ∂2F )

��

∼= // · · ·
∼= // H2(Σ∗, S)

δ
��

// // H2(F ∗, ∂2F
∗)

∼=
��

H1(∂2F )
κ // · · ·

∼= // H1(S)
∼= // H1(∂2F

∗)

. (4.39)

Furthermore, we get

H1(F, ∂2F ) ∼= H1(Σ∗, S) ∼= H1(F ∗, ∂2F
∗) = 0

from the connectivity of (F ∗, ∂2F
∗).

4.3 Application to Determinantal Singularities

Let (X0, 0) ⊂ (Cn+2, 0) be an ICMC2 singularity of Cohen-Macaulay type
t = 2 described by the matrix

A =

(
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)
,

so that the Tjurina transform (Y0, {0}×P1) ⊂ (Cn+2×P1, {0}×P1) is given
by the equations

(
f1 f2 f3

)
:=
(
s1 s2

)
·
(
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)
= 0.

Assume that Y0 is singular along the exceptional set V = {0} × P1. We may
choose a Whitney stratification for Y0 by strata

(Y0 \ V, V \ {p1, . . . , pN}, {p1, . . . , pN}).

The first part of this section is devoted to creating a setup, in which the
conditions for the methods and results of section 2 are met.

First we construct the space Y ∗ globally by the same arguments. Let
X0 ⊂ U ⊂ Cn+2 be a representative of (X0, 0) in some open neighborhood
U of the origin and Y0 ⊂ U × P1 its Tjurina transform. Consider

P~f : U × P1 \ Y0 → P2, (x, s) 7→ (f1(x, s) : f2(x, s) : f3(x, s)).
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This is a well defined map, even though the fi are not functions. Choose a
regular value z ∈ P2 and define

Y ∗ := P~f−1({z}) ⊂ U × P1.

After a change of coordinates of P2 sending z to (0 : 0 : 1), which naturally
translates to row operations on A, we can assume that Y ∗ is given by the
equations f1 = f2 = 0 and that

Y0 = {f = 0} ∩ Y ∗ ⊂ Y ∗

is the zero locus of f := f3 ∈ H0(U × P1,O(1)).

Next we define the polar curve. Let L : Y ∗ ⊂ Cn+2 × P1 → P1 be the
projection to P1 and z ∈ P1 a regular value of L on Y0 \ V . We may, after a
change of coordinates, which corresponds to a canonical column operation
on A, assume that z = (0 : 1) = ∞. In the chart {s1 6= 0} we can do the
same as in Lemma 4.2.3 in the whole chart at once to obtain a bending of
L, which is sufficiently general for our needs. Any chosen bending in this
chart will not alter the fiber of L over∞.

Observe that on the overlap {s1 6= 0} ∩ {s2 6= 0} the polar loci with
respect to L of the functions f/s1 and f/s2 = f/s1 · s1/s2 coincide. We can
express L as s2/s1. Then, because

d
f

s1
= d

(
f

s2
· s2

s1

)
=
s2

s1
· d f
s2

+
f

s2
· ds2

s1

clearly

Γ =

{
x ∈ Y ∗ \ Y0 : d

f

s2
(x) and d

s2

s1
(x) are linearly dependent in Ω1

Y ∗

}
=

{
x ∈ Y ∗ \ Y0 : d

f

s1
(x) and d

s2

s1
(x) are linearly dependend in Ω1

Y ∗

}
.

After possibly repeating the bending process of L on the other chart, we
have a well defined global polar curve Γ ⊂ Y ∗, which is smooth outside Y0

and meets Y0 only at finitely many points along V . We add those points to
the zero-dimensional stratum of the Whitney stratification of Y0.

4.3.1 The Generic Rank 1 Perturbation and the Axis

Since f = a1,3 · s1 + a2,3 · s2 is a section of O(1) and not a function on Y ∗,
we can not globally perturb by a constant, but we have to choose another
section b = b1 · s1 + b2 · s2 ∈ H0(Cn+2 × P1,O(1)) and consider

f − δ · b = 0

in Cn+2 × P1 × C. Thus there will always be one point in V , the zero locus
of b, at which we will perturb the local equation of f by zero. This point is
called the axis point of the deformation. It is unavoidable, but we can choose
its position by the parameters (b1 : b2).
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Let us assume that after a change of coordinates the point (0,∞) :=
(0, (0 : 1)) ∈ V is not in the stratum {p1, . . . , pN} of Y0 and consider the
deformation, which has (0,∞) as the axis point. For the original ICMC2
singularity (X0, 0) this means we consider the deformation given by the
perturbation (

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

)
− δ ·

(
0 0 1
0 0 0

)
. (4.40)

This gives the equations for the total space Y ⊂ Cn+2×P1×C of the defor-
mation of Y0 in the obvious way.

Note that, due to the generality assumptions in the choices of Y ∗ and
the axis point, this is a generic rank 1 perturbation. Every perturbation of A
by a constant matrix B of rank 1 can be brought to this form using row and
column operations on A− δ ·B.

In the chart {s1 6= 0} we now have a deformation of Y0 given by the
perturbation of

f

s1
: Y ∗ \ {s1 6= 0} → C (4.41)

by δ. At the axis point (0,∞) on the other hand, we find

f

s2
: (Y ∗, (0,∞))→ (C, 0) (4.42)

perturbed by δ · s where s = s1/s2 is the local coordinate of P1 at∞.

4.3.2 Yδ at the Axis Point

By assumption the axis point (0,∞) of the generic rank 1 deformation was
in general position along V . This means, if we let g = f

s2
be the local equa-

tion (4.42) for Y0 in Y ∗ at the axis point, we find ourselves in the setup of
Theorem 4.2.5.

Let s = s1/s2 and x1, . . . , xn+2 be local coordinates in this chart such
that the point (0,∞) is the origin and choose α, β > 0 as in Theorem 4.2.5.
Then for δ small enough the map

G := (g, s) : Y ∗ ∩∆αβ ∩ g−1(Dδ)→ Dδ ×Dβ

is a fiber bundle away from Y0 = G−1({0} ×Dβ).
The Milnor fiber of g at 0 is the preimage of a line {δ′} ×Dβ 0 < δ′ < δ,

under this map. It inherits its product structure from the fibration by s.
To obtain the deformed fiber Yδ of the generic rank 1 deformation of Y0 at
(0,∞) , we have to take a bent line

W = {(δ · y, y) : y ∈ Dβ} ⊂ Dδ ×Dβ.

Now Yδ ∩∆αβ = G−1(W ). We deduce the following lemma:

Lemma 4.3.1. Let g : Y ∗ → C be the local equation for Y0 at the axis point
(0,∞) ∈ V , s a local coordinate for V at (0,∞) with s(0,∞) = 0 and ∆αβ a
chosen polydisc in the sense of Theorem 4.2.5. Then for δ > 0 sufficiently small
with respect to α and β the space

Yδ ∩∆αβ := Y ∗ ∩∆αβ ∩ {g = s · δ}
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FIGURE 4.2: The fiber of the generic rank 1 perturbation at
the axis point.

is the fiber over δ of the generic rank 1 perturbation (4.42) close to the axis point.
The map

L : Yδ ∩∆αβ → P1

is a fibration over a punctured neighborhood D×β of∞ ∈ P1. The central fiber

Y t∞ := Yδ ∩∆αβ ∩ {L =∞} = Y0 ∩∆αβ ∩ {L =∞},

however, does not change as we pass from Y0 to Yδ. Consequently Yδ may retain a
singular point at (0,∞). If this happens, it is at most an ICIS.

Definition 4.3.2. The space Y t∞ is called the axis of the deformation.

Corollary 4.3.3. The space Yδ ∩∆αβ as in Lemma 4.3.1 is contractible.

Proof. The central fiber Y t∞ is a euclidean neighborhood retract of some
open neighborhood U in Yδ ∩∆αβ . Clearly the fiber bundle (Yδ ∩∆αβ) \Y t∞
can be retracted onto U and successively onto Y t∞. Being the representa-
tive of a germ of an isolated singularity in a Milnor ball, Y t∞ is contractible.
Concatenation of these two contractions establishes the claim.

4.3.3 The Global Picture in the Generic Rank 1 Perturbation

After we already have a description of what happens at the axis point (0,∞)
in a generic rank 1 peturbation, let us now compute the topology of Yδ in the
other chart. To create a global setup, first choose Milnor balls Bi of radius
ε for all special points {p1, . . . , pN} of Y0. Let B′i be a Milnor ball of radius
ε/2 around pi and set

B =

N⋃
i=1

Bi, B′ =

N⋃
i=1

B′i.

We now choose α > 0 sufficiently small such that

• all the local theory (Theorem 4.2.11 for threefolds or Theorem 4.2.13
in the surface case) works at the special points pi,
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• Theorem 4.2.5 holds along the set

V ′ := V \ (B′ ∪ {(0,∞)}),

i.e. for δ > 0 small enough the map

L : Yδ ∩ {q ≤ α2} ∩ L−1(V ′)→ V ′ (4.43)

is a fiber bundle over V ′ with fiber Ft.

Note that for the last requirement we can use Lemma 4.3.1 to achieve this
behaviour in a neighborhood of the axis point. After that we’re left with a
compact subset of V , along which the existence of a global minimal α > 0
can certainly be assured.

Now we choose δ > 0 small enough with respect to all prior choices
such that all the local theory developed above works at once along all points
of the compact set V .

We can now piece together the topology of Yδ from the topology of the
several known patches. We regard the axis point (0,∞) as a further special
point p0 in the Whitney stratification of Y0. Let ∆ be the chosen polydisc
around p0 and set

U := Yδ ∩ (B ∪∆), W := Yδ ∩ {q ≤ α2} ∩ L−1(V ′). (4.44)

Furthermore let ∂2Fi be the second boundary of the local Milnor fiber of
(Y0, pi) at pi for i > 0. In case i = 0, i.e. at the axis point, we just set

∂2F0 := Yδ ∩ {q ≤ α2} ∩ L−1(∂Dβ)

where Dβ is the chosen disc around ∞ ∈ P1. We easily verify that the
inclusion

∂2Fi ↪→ (U ∩W )i

induces a homology equivalence

Hq(U ∩W ) ∼=
N⊕
i=0

Hq((U ∩W )i) ∼=
N⊕
i=0

Hq(∂2Fi) (4.45)

where (U∩W )i is the component of U∩W close to pi. For q = 1 and i > 0 let
[li] be the generator of H1(∂2Fi) – respectively the generator of the vertical
part in case n = 2 – represented by a section li : S1 → ∂2Fi of argL in (4.16),
cf. Corollary 4.2.9 and 4.2.10.

The homology groups of W itself are determined by the structure of
W as a fiber bundle over V ′ (4.43). Since V ′ has the homotopy type of
a finite bouquet of circles around the points p1, . . . , pN , we can basically
repeat the arguments leading to Corollary 4.2.9 and 4.2.10. In particular we
can assume

H0(W ) = Z, H1(W ) =

{
ZN if n = 3

H ′1 ⊕ ZN if n = 2
, (4.46)

where H ′1 is the quotient of H1(Y tδ ) by the monodromies around all loops
in the base V ′. In both cases ZN is generated by the [li]. We can view the
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latter as sections of the generators of H1(V ′).

Theorem 4.3.4. Let Yδ be the fiber over δ 6= 0 in the genereric rank 1 perturbation
of the Tjurina transform (Y0, V ) ⊂ (Cn+2×P1, {0}×P1) of an ICMC2 singularity
(X0, 0) ⊂ (Cn+2, 0) of dimension n = 2 or 3 and type (2, 3, 2). Let L : Yδ → P1

be the projection to P1 and G ⊂ H•(Yδ) the image of L∗ : H•(P1) → H•(Yδ).
Then Yδ has a trivial first homology group and the total homology of Yδ splits into

H•(Yδ) ∼= G⊥ ⊕ Z

where G⊥ = {[σ] ∈ H•(Yδ) : g ∩ [σ] = 0 ∀g ∈ G} are the horizontal cycles of
Yδ. The cap product with L∗(H2(P1)) gives a perfect pairing of the vertical cycles
H•(Yδ)/G

⊥ = Z withH2(P1). If n = 3, thenH2(Xε) ∼= Z consists of the vertical
cycles only.

Proof. Consider the Mayer-Vietoris sequence for Yδ for the choice (4.44) of
the two patches U and W . First of all, the tail gives a short exact sequence

0 // H0(U ∩W ) // H0(U)⊕H0(W ) // H0(Yδ) // 0

0 // ZN+1 // ZN+1 ⊕ Z // Z // 0

and Yδ is clearly connected. The first homology group H1(Yδ) appears in
the exact sequence

H1(U ∩W )
ι1 // H1(U)⊕H1(W ) // H1(Yδ) // 0 (4.47)

We proceed with the proof for the case n = 3. From Theorem 4.2.11 we
know that H1(U) = 0. On the generators chosen above, the map ι1 to the
second summand is given by the matrix

1 1 0 · · · 0

1 0 1
. . .

...
...

...
. . . . . . 0

1 0 · · · 0 1

 (4.48)

and is, therefore, clearly surjective. Thus H1(Yδ) = 0.
Proceeding along the Mayer-Vietoris sequence to the left, we see in (4.49)

that H2(Yδ) must be nonzero because clearly the kernel of (4.48) is free of
rank 1.

H2(U)⊕H2(W )
κ2 // H2(Yδ)

∂2 // H1(U ∩W )
ι1 // H1(U)⊕H1(W ) .

(4.49)
But κ2 is, in fact, the zero map. To see this, observe the following. Every
homology class [σ] ∈ H2(U) can be represented as a sum of 2-cycles in the
boundaries

σ =

N∑
i=1

σi, [σi] ∈ H2(∂2Fi)

as a consequence of Theorem 4.2.11. Corollary 4.2.9 then tells us that [σi]
even comes from a cycle in a transversal Milnor fiber [σi] ∈ H2(Fti ) close to
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pi. The same holds for any [σ] ∈ H2(W ) and any other chosen transversal
Milnor fiber over a point in V ′.

Mapping any [σ] ∈ H2(U) ⊕ H2(W ) into H2(Yδ), therefore, makes it
homologous to a cycle in a transversal Milnor fiber arbitrary close to Y t∞,
the fiber of L over the axis point. Here it collapses, because Yδ ∩ ∆ was
contractible by Corollary 4.3.3.

Consequently H2(Yδ) = ker ι1. We construct a generator for H2(Yδ) as
follows. Over V ′ ∪ {∞} there exists a continous section

l : V ′ → Yδ ∩ L−1(V ′)

of L because L gives Yδ ∩ L−1(V ′) the structure of a fiber bundle with 1-
connected fiber Y tδ over a base, which is homotopic to a bouquet of 1-
spheres. We can extend l over ∞ because we only glue in a contractible
fiber. Let D = P1 \ (V ′ ∪ {∞}) be the closure of the complement of the do-
main of definition of l. Then the fundamental class of the image of l defines
a unique relative cycle

[l] ∈ H2(Yδ, L
−1(D)).

Consider the following commutative diagram

H2(L−1(D)) // H2(Yδ)
π//

L∗
��

H2(Yδ, L
−1(D))

L∗
��

// H1(L−1(D))

H2(P1)
∼= // H2(P1, D)

.

(4.50)
The image of [l] in H1(L−1(D)) is zero by Theorem 4.2.11: At each special
point pi the component of the boundary of [l] in the local Milnor fiber is
homologous to the generator of H1(∂2F ) ∼= H2(F, ∂2F ). On the other hand
the map on the left into H2(Yδ) is the zero map by the previous arguments:
All 2-cycles of the local Milnor fibers become homologous to zero in Yδ. A
generator [σ] of H2(Yδ) is therefore given as a preimage of [l] under π.

The map L∗ on the right is an isomorphism and, hence, on the left L∗
maps [σ] to the fundamental class of P1. This concludes the proof for the
threefolds.

If n = 2, we need to modify the arguments above. First we show surjec-
tivity of ι1 in (4.47). Recall that we can split

H1(U ∩W ) ∼=
N⊕
i=0

H1(∂2Fi) ∼=
N⊕
i=0

(
H ′1(∂2Fi)⊕ Z

)
into its horizontal and vertical part, whereH ′1(∂2Fi) is the cokernel ofH1(Ft)
by the vertical monodromy at pi.

We can restrict the first component of ι1 mapping intoH1(U) =
⊕N

i=1H
′
1(Fi)

to the summand
⊕N

i=1H1(∂2Fi) and the second component of ι1 mapping
into H1(W ) to H ′1(∂2F0)⊕ZN+1. Both restrictions themselves are surjective
by Theorem 4.2.13 and (4.46), hence, ι1 is, as well. This makes sure that the
first homology group of Yδ vanishes.
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On the vertical cycles ZN+1 of H1(U ∩ W ) the map ι1 again takes the
same form as in (4.48) and consequently we can choose a splitting

H2(Yδ) = H ′2(Yδ)⊕ Z

of the second homology group of Yδ with the second summand mapping
to the kernel of ι1 on the vertical cycles. We can construct a generator [σ] of
the quotient H2(Yδ)/H

′
2(Yδ) = Z similar to the threefold case. Start with a

continous section
l : V ′ ∪ {∞} → Yδ

ofL : Yδ → P1. For surfaces the relative homology class [l] ∈ H2(Yδ, L
−1(D))

is not unique, but depends on the choice of l. Nevertheless, any preimage
[σ] ∈ H2(Yδ) under the map π in (4.50) generates the quotientH2(Yδ)/H

′
2(Yδ) =

Z and the composite map L∗ ◦ π is an isomorphism when restricted to the
second summand of the splitting H2(Yδ) = H ′2(Yδ)⊕ Z.

Hence, [σ] is mapped to the fundamental class of P1 again by L∗. All
other cycles in H2(Yδ) can be represented as sitting in the preimage of discs
or paths in P1 and are, therefore, mapped to zero by L∗. This concludes the
proof for n = 2.

We can now prove the main theorem of this paper.

Proof. (of Theorem 4.1.3) Consider a deformation of (X0, 0) with two pa-
rameters (δ, ε) where the first one, δ, is for a generic rank 1 perturbation
and the second one, ε, is for a smoothing. For the Tjurina transform Yδ,0
over Xδ,0, the fiber over (δ, 0) for δ 6= 0 small enough, the homology groups
are described by Theorem 4.3.4. However, according to Lemma 4.3.1 there
might still be an ICIS of Yδ at the axis point.

In case Yδ,0 is smooth, its diffeomorphism type does not change as we
pass to a smooth fiber Yδ,ε for δ, ε 6= 0. If it was not, its topology changes at
most at the axis point (0,∞) where it is the smoothing of an ICIS.

This means that, in the notation above, the local Milnor fiber Yδ,ε ∩∆ of
(Yδ,0, (0,∞)) is (n− 1)-connected. Hence, all (n− 1)-cycles in Y tδ appearing
in the proof of Theorem 4.3.4 close to Y t∞ (i.e. representable by cycles in
Yδ,ε ∩∆) still become homologous to zero in Yδ,ε and we can literally repeat
all the arguments. The theorem then follows from the isomorphism Yδ,ε ∼=
Xδ,ε.

4.4 Concluding Remarks

The results presented in this thesis are merely a glimpse of what there might
be to discover concerning the vanishing topology of determinantal singu-
larities. Perhaps the most remarkable phenomenon is the existence of char-
acteristic vanishing cycles, Definition 4.1.1, in the Milnor fiber.

For smoothable isolated determinantal singularities of type (2, 3, 2) we
saw that if there are vanishing cycles outside the middle degree, then they
are indeed characteristic. It would be interesting to explore, whether this
is always the case. Certainly, the methods of Chapter 4 are also applicable
to singularities of type (2, 2 + k, 2) for all k > 0. For other shapes of the
describing matrix, we saw in Example 3.2.4 and Theorem 3.2.5 that in case
of isolated singularities in the Tjurina transform, we can also observe the
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characteristic cycles below the middle degree in the homology of the Mil-
nor fiber. We give a further example with nonisolated singularities in the
Tjurina transform for this matrix size.

Example 4.4.1. Consider the threefold singularity (X0, 0) ⊂ (C5, 0) defined
by a generic embedding

A : C5 ↪→ Mat(4, 5;C)

of a 5-dimensional subspace into Mat(4, 5;C). The Tjurina transform now
decomposes as

Y0 = L(X0 \ {0}) ∪ ({0} × P3) ⊂ C5 × P3,

where L(X0 \ {0}) is the strict transform ofX0 and {0}×P3 is an additional
component. The locus

S = X0 ∩ ({0} × P3),

where they meet, is a smooth projective hypersurface of degree 5, so we
encounter “plane singularities” in the Tjurina transform in the sense that
the singular locus itself has dimension two!

Nevertheless, the induced families in the Tjurina transform coming from
determinantal deformations of (X0, 0) are flat. Experimental computations
show that the fiber Y δ over δ 6= 0 for a generic rank 2 perturbation is al-
ready smooth and hence diffeomorphic to the Milnor fiber Xε. The axis
of such a deformation is a whole projective line H ⊂ P3 and the fiber
Y 0 ∩ L−1(H) = Y δ ∩ L−1(H) of L sits over it. This means that the fun-
damental class of H ∼= P1 is also passed on to Xε and then sitting over
the corresponding cycle in P3. Yet, to develop a complete description of
the topology of Xε in the spirit of Chapter 4, we would need to deal with
singular loci of dimension 2 and their interplay with the topology of S and
the axis – a task which is far more evolved than what has been done in this
chapter.

The characteristic cycles exhibit at most an indirect interplay with the
infinitesimal deformations encoded in the T 1

X0,0
or Inf(A) as can be seen

from Table 3.1 and Remark 3.2.9. In the case of nonisolated singularities
in the Tjurina transform, an analogue of Theorem 3.2.7 is not yet formu-
lated. To address questions of the form µ vs. τ for general determinantal
singularities beyond Cohen-Macaulay codimension 2, one would also need
to develop a deeper understanding of the existence of semi-universal de-
terminantal deformations. To this end, one could for example pick up the
approach by M. Schaps in [62].

Also, it would be interesting to know, what happens for determinantal
singularities defined by non-maximal minors concerning their vanishing
topology and infinitesimal deformations. Are there examples of singular-
ities, for which the spaces Inf(A) and Inft(A) do not agree? Do they also
have characteristic vanishing cycles?

Another path that can be pursued is given by the non-smoothable EIDS
as for example the ICMC2 fourfolds and EIDS with non-isolated singulari-
ties, cf. Example 2.2.2 ii). As remarked at the end of Chapter 2, it should be
possible to create an algorithm for the computation of the vanishing Euler-
characteristic of these singularities in terms of polar multiplicities. This
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could provide a further testing ground for hypotheses on their topological
behaviour and reveal insights for new conjectures, just like the results by J.
Damon and B. Pike did for the work done in this thesis.
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Appendix A

Background and Notations

A.1 The Exterior Algebra

The exterior algebra of vector spaces, vector bundles and modules should
be known to mathematicians. Nevertheless, we briefly recall definitions
of the exterior algebra, exterior multiplication, dualities and orientations
and induced maps in the exterior powers for a homomorphism of mod-
ules, to introduce and fix the notation for this thesis. For a more thorough
treatment, the reader may consult any standard textbook on commutative
algebra, e.g. [22].

A.1.1 Exterior Powers and Multiplication

Let M be a module over a commutative ring R. One can define the tensor
algebra of M over R as

T (M) = R⊕M ⊕ (M ⊗RM)⊕ (M ⊗RM ⊗RM)⊕ · · · =
∞⊕
r=0

M⊗r. (A.1)

This is a non-commutative graded algebra with multiplication given by the
tensor product and grading by r. Consider the graded subalgebra K of
T (M) generated by the expressions

v ⊗ w + w ⊗ v, v, w ∈M.

We define the exterior algebra of M to be

∧
M := T (M)/K,

p∧
M := M⊗p/Kp, (A.2)

where Kp is the graded part of K in degree p of T (M). We also say that∧pM is the p-th exterior power of M . Note that by this definition
∧0M = R

for all modules M .
For the residue class of an element a1 ⊗ a2 ⊗ · · · ⊗ ap ∈ M⊗p we write

a1 ∧ a2 ∧ · · · ∧ ap ∈
∧pM . The multiplication on T (M) induces a graded

multiplication on the exterior algebra, which we shall also denote by ∧ :∧pM ×
∧qM →

∧p+qM given by

∧ : (a1 ∧ · · · ∧ ap, b1 ∧ · · · ∧ bq) 7→ a1 ∧ · · · ∧ ap ∧ b1 ∧ · · · ∧ bq. (A.3)

This multiplication is skew-commutative, i.e. for ω ∈
∧pM and η ∈

∧qM
we have

ω ∧ η = (−1)p·q η ∧ ω. (A.4)
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A.1.2 Dualities of Exterior Algebras

If M is finitely generated over R by elements e1, . . . , er ∈M , then

{ei1 ∧ · · · ∧ eip : 0 < i1 < · · · < ip ≤ r}

generate
∧pM . In particular

∧pM = 0 for all p > r. To abbreviate the
notation, we shall write

eI = ei1 ∧ · · · ∧ eip
where I = (i1, . . . , ip), 0 < i1 < · · · < ip ≤ r is an ordered multiindex. We
shall write I ⊂ {1, . . . , r} to indicate the range out of which the ordered ele-
ments ik of I are chosen. By #I = pwe indicate the order of the multiindex,
i.e. the length of the sequence 0 < i1 < · · · < ip ≤ r of the elements in I .

It is now easy to see that, if M = Rr is a module freely generated by
elements e1, . . . , er, then for all 0 < p ≤ r the module

∧pRr is also free of
rank

(
r
k

)
, and a set of free generators is given by (eI)I⊂{1,...,r}.

Moreover if we let ε1, . . . , εr ∈ (Rr)∨ be the dual basis of (Rr)∨ =
HomR(Rr, R), then the natural pairing

(Rr)∨ ⊗Rr → R, εi ⊗ ej 7→ εi(ej) = δi,j

extends to a pairing of exterior powers given by

p∧
(Rr)∨ ⊗

∧
Rr → R, εJ ⊗ eI 7→ δI,J .

In this formula we generalize the Kronecker delta δi,j in the sense that for
the ordered multiindices δI,J = 1 if I = J and δI,J = 0 otherwise. Clearly,
this pairing is non-degenerate, and thus we have canonical isomorphisms

(

p∧
Rr)∨ ∼=

p∧
(Rr)∨ ∼=

p∧
(R∨)r. (A.5)

But there is another duality for exterior powers of free modules, which
we shall exhibit now. Observe that, if Rr is freely generated by e1, . . . , er,
then

r∧
Rr = R · e1 ∧ · · · ∧ er ∼= R (A.6)

is free of rank 1. A generator γ of
∧r Rr is also called an orientation of the

free module Rr. Now for any 0 ≤ p ≤ r also exterior multiplication

∧ :

p∧
Rr ⊗

r−p∧
Rr →

r∧
Rr (A.7)

induces a nondegenerate pairing with

eI ∧ eJ =

{
±1 if ik 6= jl ∀ 0 < k ≤ p, 0 < l ≤ r − p
0 otherwise

. (A.8)

Thus (A.8) together with (A.5) and the choice of an orientation γ ∈
∧r Rr

gives isomorphisms

(

p∧
Rr)∨ ∼=

r−p∧
Rr (A.9)
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for all 0 ≤ p ≤ r.

A.1.3 Induced Maps on the Exterior Powers

Let us suppose the ring R is Noetherian so that for a finitely generated
module M we can find a finite presentation

0 Moo Rroo Rs
Aoo

for some matrix A ∈ Mat(r, s;R). Then we have isomorphisms

p∧
M ∼=

p∧
Rr/〈A ∧

p−1∧
Rr〉, (A.10)

where 〈A ∧
∧p−1Rr〉 is the submodule generated by the products of the

columns of A with elements of
∧p−1Rr.

Suppose ϕ : M → N is a map of finitely generated R-modules. Then
there is a map

ϕ∧p :

p∧
M →

p∧
N,

which is uniquely determined by requiring

ϕ∧p(v1 ∧ · · · ∧ vp) = ϕ(v1) ∧ · · · ∧ ϕ(vp).

Choosing generators for M and N is equivalent to a choice of presentations

0 // KM
// Rr //

φ
��

M //

ϕ

��

0

0 // KN
// Rs // N // 0

.

The homomorphism φ : Rr → Rs is a lift of ϕ. Since the underlying mod-
ules are free, we can write down a representing matrix A ∈ Mat(s, r;R) for
φ.

Just like φ completely determines ϕ, also the morphism ϕ∧p is deter-
mined by φ∧p :

∧pRr →
∧pRs. It is a well known fact that the module∧pRr is freely generated by the eI for I ⊂ {1, . . . , r} varying over all or-

dered multiindices as above. Hence, we find a representing matrix A∧p of
φ∧p. Direct computation shows that the entries of this matrix are

A∧pI,J = detAI,J ,

where AI,J is the submatrix obtained from A by taking only the rows in I
and columns in J . From this we may directly deduce the following lemma.

Lemma A.1.1. Suppose we are given two successive maps of R-modules

Rt Rs
Aoo Rr

Boo

determined by matrices A and B. Then for the matrices representing the induced
maps on the exterior powers we find

(A ·B)∧p = A∧p ·B∧p, (A.11)
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or in other words
(A ·B)∧pI,K =

∑
J⊂(1,...,s)

A∧pI,J ·B
∧p
J,K . (A.12)

In particular we see that, if p > min{r, s, t}, then (A ·B)∧p = 0. The follow-
ing corollary is immediate.

Corollary A.1.2. Let S ∈ GL(m;R) be an invertible matrix with inverse S−1.
Then for all 0 < t ≤ m also S∧t :

∧tR→
∧tR is invertible with inverse (S−1)∧t.

A little more subtle is another map ϕ∧dy derived from ϕ∧d for a homo-
morphism ϕ : Rr → Rs, which we shall call contraction by ϕ∧d:

ϕ∧dy :

p∧
Rr →

p−d∧
Rr ⊗

d∧
Rs. (A.13)

If eI = ei1 ∧ · · · ∧ eip generate
∧pRr and fJ = fj1 ∧ · · · ∧ fjd generate

∧dRs

as usual, it can be defined via

ϕ∧dy (eI) :=
∑

J⊂I,#J=d

∑
K⊂{1,...,s},#K=d

(−1)J⊂Iϕ∧dK,J fK ⊗ eJ .

The sign (−1)J⊂I for two ordered multiindices I, J ⊂ {1, . . . , r} is defined
as

(−1)J⊂I :=

d∏
k=1

(−1)min{l∈N0: jk=il}−k.

This of course induces a corresponding map on finitely generated modules.

A.2 Grassmannians and Generalized Nash-Blowups

Just like the exterior algebra, Grassmannians are standard objects. But since
notations and viewpoints differ throughout the literature, we include an ac-
count on them. Afterwards we define generalized Nash-blowups for coher-
ent sheaves. Also this idea is not new, but needs to be carried out explicitely.

A.2.1 Grassmannians

Definition A.2.1. For two positive integes 0 < r ≤ s the Grassmannian
Grass(r, s) is the set

Grass(r, s) = {V ⊂ Cs linear subspace : dimV = r}.

A standard example for a Grassmannian is projective space Pn ∼= Grass(1, n+
1). There is a way to give all Grassmannians the structure of a projective
complex manifold similar to the standard affine charts of Pn.

Any r-dimensional subspace V ⊂ Cs can be represented by an r × s-
matrix A of rank r, whose columns span V . Right-multiplication by invert-
ible matrices S ∈ GL(s;C) do not change the span:

spanA = span(A · S) = V.
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On the other hand any other matrix A′, whose columns span a given sub-
space V can be obtained from A by right-multiplication with some S. Thus
we can identify

Grass(r, s) ∼= (Mat(s, r;C) \M r
s,r)/GL(r,C),

where as usual M r
s,r = {A ∈ Mat(s, r;C) : rankA < r}.

For a given matrix A being of rank r means that at least one of the maxi-
mal minors of A does not vanish. This will give the conditions determining
the charts of the standard cover: Let I ⊂ {1, . . . , s} be an ordered multiin-
dex with #I = r and J ⊂ {1, . . . , s} the ordered multiindex complementary
to I , i.e. J contains exactly those elements of {1, . . . , s}, which are not con-
tained in I . We also setK = (1, . . . , r), the only ordered multiindex of order
#K = r in r elements.

On the open set UI = {A ∈ Mat(s, r;C) : A∧rI,K 6= 0} we can bring all
matrices to a unique normal form, by multiplying from the right with A−1

I,K .
In case I = (1, . . . , r), the result would be

ΞI :=



1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

zIr+1,1 zIr+1,2 · · · zIr+1,r

zIr+2,1 zIr+2,2
. . .

...
...

. . . . . . zIs−1,r

zIs,1 · · · zIs,r−1 zIs,r


. (A.14)

In general, the entries of the submatrix ZI := ΞJ,K = (zIj,k)j∈J, k∈K give the
standard coordinates on UI . In particular

dim Grass(r, s) = r · (s− r). (A.15)

For any ordered multiindex I ⊂ {1, . . . , s} and any chart UI of Grass(r, s)
we call ΞI as in (A.14) the standard representative matrix for the chart UI .

The map

Mat(r, s;C) \M r
r,s → Mat

((
s

r

)
, 1;C

)
\ {0}, A 7→ A∧r (A.16)

induces a well defined map

Grass(r, s) ↪→ P(sr)−1,

the so called Plücker embedding.

Definition A.2.2. The tautological bundle over Grass(r, s) is

T = {(v, V ) ∈ Cs ×Grass(r, s) : v ∈ V }.
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LetF = Cs×Grass(r, s) be the trivial bundle. There is a short exact sequence
of vector bundles

0 // T // F // Q // 0 (A.17)

and Q is the tautological quotient bundle. The whole sequence (A.17) is re-
ferred to as the tautological sequence over Grass(r, s).

Note that Q is always globally generated: If we let

e1, . . . , es ∈ H0(Grass(r, s), F )

be the global sections coming from the standard basis of Cs, then by con-
struction the residue classes [ei] ∈ H0(Grass(r, s), Q) span all fibers of Q.

If we dualize (A.17), we obtain a short exact sequence

0 T∨oo F∨oo Q∨oo 0oo .

Now F∨ ∼= F is self-dual in a canonical way and we obtain a map

D : Grass(r, s)→ Grass(s− r, s), V 7→ V ⊥ = ker((Cs)∨ → V ∨).

It is now not difficult to see the following.

Lemma A.2.3. The map D is an isomorphism of complex manifolds. In particu-
lar the tautological sequence over Grass(s − r, s) is isomorphic to the dual of the
tautological sequence over Grass(r, s).

In this sense we will also say that Grass(s− r, s) is the dual Grassmannian of
Grass(r, s) and write Grass(s−r, r) = Grass(r, s)∨. Since duality is symmet-
ric, the same holds the other way around. From Lemma (A.2.3) it is clear
that the standard coordinates of Grass(r, s) should induce another collec-
tion of standard coordinates on Grass(r, s)∨ = Grass(s − r, s). We will de-
scribe these coordinates now and refer to them as the standard coordinates of
the dual Grassmannian Grass(r, s)∨.

If we consider Grass(s − r, s) as Grass(r, s)∨, then we mean the the set
of (s− r)-planes in (Cs)∨, we can represent every W ∈ Grass(s− r, s) by a
matrix B ∈ Mat(s − r, s), the rows of which span W , with two matrices B
and B′ being equivalent, if there is an invertible matrix S ∈ GL(s − r;C)
such that B′ = S ·B.

Given two spaces V ⊂ Cs of dimension r and W ⊂ (Cs)∨ of dimension
s − r represented by matrices A ∈ Mat(s, r;C) and B ∈ Mat(s − r, s;C)
respectively, we have

D(V ) = W ⇔ B ·A = 0. (A.18)

For an ordered multiindex I ⊂ {1, . . . , s}with #I = r let VI be the open
set of Mat(s, s − r;C), on which the maximal minor with column indices
not in I does not vanish. If I = (1, . . . , r), then we can normalize to the
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following form:

ΘI :=


xI1,1 xI1,2 · · · xI1,r −1 0 · · · 0

xI2,1 xI2,2
. . .

... 0 −1
. . .

...
...

. . . . . . xIs−1,r

...
. . . . . . 0

xIs−r,1 · · · xIs−r,2 xIs−r,r 0 · · · 0 −1

 (A.19)

For arbitrary I ⊂ {1, . . . , s} with #I = r let again J = {1, . . . , s} \ I be the
ordered multiindex complementary to I and K = (1, . . . , s − r). Then the
submatrix ΘI

K,J of ΘI is equal to−1s−r and the other submatrixXI := ΘI
K,I

gives the coordinates (xIk,i)k∈K, i∈I .
Now consider the charts UI of Grass(r, s) and VI of Grass(r, s)∨. Let

J ⊂ {1, . . . , s} be the ordered multiindex complementary to I as above.
From (A.18) we have

ΘI · ΞI = ΘI
K,I − ΞJ,K = XI − ZI = 0 ∈ Mat(s− r, r;C).

In other words coordinates in the block matrices

XI = ΘI
K,I = ΞIJ,K = ZI (A.20)

are equal. From this we see that the standard coordinates (xIk,i) on the chart
UI of Grass(r, s) can be identified with the standard coordinates (zIj,k) on
the chart VI of Grass(r, s)∨ via In the (k, l)-th entry of this resulting matrix
we find

xIk,ik − z
I
jl,l

= 0 ⇔ xIk,ik = zIjl,l, (A.21)

where ik denotes the k-th entry of the ordered multiindex I and jl the l-th
entry of its complementary index J .

We extract the consequences of these observations for the tautological
bundle in a lemma.

Lemma A.2.4. Let (UI)I⊂{1,...,s},#I=r be the standard cover of Grass(r, s), ΞI

as in (A.14) and ΘI as in (A.18) with the canonical identification of the coordinate
functions (A.21).

For any I the tautological bundle T over UI takes the form

T |UI = {(p, v) ∈ UI × Cs : ΘI(p) · v = 0}. (A.22)

If we let J be the ordered multiindex complementary to I we can decompose v into
vI and vJ . Expanding the defining equations for T |UI we obtain

vJ = XI(p) · vI

and hence the components of vI give a local trivialization of T on UI .

A.2.2 Generalized Nash-blowups

Let (X, p) be the germ of a complex space, X a representative of (X, p) and
G a coherent sheaf on X . By definition we can find a presentation

0 Gpoo OsX,poo OtX,p
Aoo (A.23)
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of the stalk Gp of G at p with some matrix A ∈ Mat(s, t;OX,p). Let

r = min{t ∈ N : 〈A∧t〉 6= 〈0〉} − 1

be the maximal rank of A at p. and U = X \ V (〈A∧r〉) the set of points
x ∈ X , where rankA(x) = r. Clearly U is analytic, open and nonempty. On
U we can define the map

ΨG : U → Grass(r, s), x 7→ spanA(x). (A.24)

Let Γ(U,ΨG) ⊂ X×Grass(r, s) be the graph of ΨG and π : X×Grass(r, s)→
X the projection to X .

Definition A.2.5. The generalized Nash-blowup ofX along G at p is defined
as

Y = Γ(U,ΨG) ⊂ X ×Grass(r, s).

The set E := π−1(X \ U) is called the exceptional set of the blowup. By
(Y, π−1({p}) and (E, π−1({p})) we denote the germs of Y and E along the
compact set π−1({p}) ⊂ {p} ×Grass(r, s).

Clearly, the germs (Y, π−1({p}) and (E, π−1({p})) are independent of
the representative X of (X, p).

In the coordinates of the Grassmannian introduced above we can give
equations for Y ⊂ (X, p) × Grass(r, s) in OX,p⊗̂COGrass(r,s). For an or-
dered multiindex I ⊂ {1, . . . , s}, #I = r and the chart (X, p) × UI of
(X, p) × Grass(r, s) we could built the composite matrix (ΞI |A). Now a
point (x,W ) ∈ X × Grass(r, s) is in Y if and only if spanA ⊂ W , so the
equations (

ΞI |A
)∧r+1

= 0 (A.25)

have to hold along Y . On the other hand using the duality in Lemma A.2.3
and the explicit description of the tautological bundle, we can also require

ΘI ·A = 0. (A.26)

It should be pointed out that these equations do not necessarily generate
the ideal of Y in the respective chart. To obtain it in general, one needs to
saturate with respect to A∧rI,J :

〈ΘI ·A〉 : (A∧rI,J)∞ ⊂ OX,p[ZI ]. (A.27)

The same holds for the other choice of the equations. However, in both
cases the equations (A.25) and (A.26) are contained in the respective ideals
defining Y .

Let Q be the tautological quotient bundle from Grass(r, s) over
(Y, π−1({p})). It is a locally free coherent sheaf on Y , which is globally
generated by [e1], . . . , [es] as above. Denote by π∗Q the pushforward to X .
Since π is proper, π∗Q is a coherent sheaf of OX -modules. In particular the
stalk (π∗Q)p is a finitely generated OX,p-module. We claim that there is a
natural map

π∗ : Gp → (π∗Q)p (A.28)



A.3. Whitney Stratifications and Morse Theory 131

on the stalks of G and π∗Q induced from the following map of free modules:

ϕ : OsX,p → (π∗Q)p, (v1, . . . , vs) 7→
s∑
i=1

vi · [ei].

To see this, assume (a1, . . . , as)
T is a column of the matrix A. Let UI be

one of the standard charts of (X, p) × Grass(r, s). We may assume I =
(1, . . . , r). Let ΞI be as in (A.14). Since the equations (A.25) vanish on Y ∩UI ,
the element ϕ(a1, . . . , as)

T ∈ OsY is in the span of ΞI , i.e. ϕ(a1, . . . , as)
T ∈

H0((X, p) × UI , T ) is a section in the tautological bundle. Hence by the
definition of the tautological quotient bundle, [ϕ(a1, . . . , as)

T ] = [0] ∈ Q in
all charts. Thus π∗ in (A.28) is well defined.

Definition A.2.6. The bundleQ over the Nash-blowup (Y, π−1({p}) of (X, p)
along G is the Nash bundle of the blowup. We call π∗ in (A.28) the Nash ho-
momorphism.

From the above said and the explicit coordinates given, it is now not diffi-
cult to deduce the following lemma.

Lemma A.2.7. Let (Y, π−1({p})) ⊂ (X, p)×Grass(r, s) be the generalized Nash-
blowup of (X, p) along G and Q the Nash bundle over (Y, π−1({p}). Over U =
{rankA = r} ⊂ X the projection π : Y → X is an isomorphism and so is
π∗ : Gq → (π∗Q)q for all q ∈ U .

Remark A.2.8. The main application of the generalized Nash-blowup is to
replace a coherent sheaf by a vector bundle. In case A = (a1, . . . , ar)

T is a
r × 1-matrix, we obtain the classical blowup of the ideal 〈a1, . . . , ar〉.

A.3 Whitney Stratifications and Morse Theory

In this section we will give the definitions and main results concerning
Whitney stratifications and Stratified Morse Theory as it can be found in
[31]. Not only the results but also the exhibition of the subject can be found
there. We include it in order to provide enough background for the reader
to follow the outlines in this thesis, especially Chapter 2. In the end we
proof a Corollary concerning Morse functions on manifolds with bound-
ary.

The reader is assumed to be familiar with classical Morse theory (cf.
[52]). That is, if we for example write “for some small ε > 0” at some
point, we assume the reader to recognize the precise conditions for “small”
from the context. Having done this, we apply the theory to manifolds with
boundary.

A.3.1 Whitey stratified Sets and Thom’s First Isotopy Lemma

We give the definition of a Whitney stratification from [31].

Definition A.3.1 ([31]). Let X be a closed subset of a smooth manifold M
and suppose that

X =
⋃
i∈I

Si
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is a locally finite decomposition of Z into pairwise disjoint subsets Si, called
strata, such that each Si is a locally closed submanifold ofM and the bound-
ary

∂Si = Si \ Si ⊂M

is again a union of strata of lower dimension.
The stratification is said to satisfy Whitney’s conditions A and B, if the

following holds. Suppose yn is a sequence in Si converging to a point p ∈
Sj ⊂ ∂Si and zn a sequence in Sj converging to the same point. Fix a
local coordinate system of M around p and let ln be the secant line from zn
to yn. Suppose ln converges to a limit line l ∈ GrassR(1, dimM) in the real
Grassmannian and the sequence of tangent spaces TynSi ⊂ TynM converges
to a limit T ∈ GrassR(dimSi,dimM). Then the Whitney conditions are:

A The tangent space of Sj at the limit point TpSj is contained in T .

B Also the limit line l is contained in T .

By definition a function f : X → R on a Whitney stratified space X is
smooth at a point p ∈ X , if for some embedding of a neighborhood U ⊂ X
as a Whitney stratified subspace of RN , f can be given as the restriction of
a smooth function on RN to U .

We now describe Thom’s First Isotopy Lemma as stated in [31]. Let
X ⊂ M be a Whitney stratified set. A smooth function f : M → Rn is
called a stratified submersion if the restrition of f to all strata Si of X is a
submersion.

Theorem A.3.2 (Thom’s First Isotopy Lemma, [31]). Let f : X → Rn be a
proper stratified submersion on a Whitney stratified set X . Then there is a stratum
preserving homeomorphism,

h : X → Rn × f−1({0}) ∩X

which is smooth on each stratum and commutes with the projection to Rn. In
particular the fibers of f |X are homeomorphic by a stratum preserving homeomor-
phism.

A.3.2 Stratified Morse Theory

Definition A.3.3 ([31]). Let X be a Whitney stratified space and f : X → R
a proper smooth function. We say that f is a Morse function on X , if the
following holds:

i) All critical values of the restriction of f to a stratum Σ(i) of X are dis-
tinct.

ii) At each critical point p ∈ Σ(i) ⊂ X of f , the Hessian of f on Σ(i) is
nondegenerate at p.

iii) The differential df(p) does not annihilate any limit of tangent spaces
of strata Σ(j) with p ∈ Σ

(j).
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The Morse data of a Morse function f onX at a critical point p ∈ Σ(i) ⊂ X
is defined as follows. For c ∈ R let X≤c = {x ∈ X : f(x) ≤ c}. Choose some
local embedding (X, p) ↪→ (RN , 0) as a Whitney stratified subspace and let
D be a small ball around p in RN . If p ∈ X is a critical point of f and
v = f(p) its critical value, then for some small ε > 0, the space

A = X≤v+ε ∩D \X<v−ε ∩D

is attached to X≤v−ε as we cross the value v. The glueing of A happens
along the locus

B = Xv−ε ∩D = {x ∈ X : f(x) = v − ε} ∩D.

Now the Morse data is given by the pair of spaces (A,B) up to homotopy
equivalence. It measures the change in topology of X≤c as c crosses v.

We have the following two theorems from [31].

Theorem A.3.4 (Stratified Morse Theory Part A,[31]). As c varies within the
open interval between two adjacent critical values, the topological type of X≤c
remains constant.

This is, of course, merely a consequence of Thom’s First Isotopy Lemma
A.3.2. The interesting part for Morse theory is the following.

Theorem A.3.5 (Stratified Morse Theory Part B,[31]). Let f be a Morse func-
tion on a Whitney stratified space X . Then, Morse data measuring the change in
the topological type of X≤c as c crosses the critical value v of the critical point p, is
the product of the normal Morse data at p and the tangential Morse data at p.

The normal and tangential Morse data mentioned in Theorem A.3.5 are
defined as follows. For the tangential Morse data we just consider the
Morse data of f restricted to the stratum Σ(i), in which the critical point
p lives.

For the normal Morse data we choose some embedding (X, p) ↪→ (RN , 0)
and take a hyperplane slice N(p) through p transversal and of complemen-
tary dimension to Σ(i). LetD ⊂ N(p) be a small disc centered around p. The
normal Morse data of f at p is defined as the pair of spaces (A,B), where

A = D ∩ {x ∈ X : v − ε ≤ f(x) ≤ v + ε}

and
B = D ∩ {x ∈ X : f(x) = v − ε}

for some small ε > 0. Again, (A,B) is only considered up to homotopy
equivalence.

We would like to apply Stratified Morse Theory to manifolds with bound-
ary. Let M be a differentiable manifold of real dimension m with boundary
∂M . We will always assume that there exists a small extension M ′ of M
beyond the boundary ∂M so that every point p ∈ ∂M has a coordinate
neighborhood in M ′ with coordinates x1, . . . , xm such that x1(p) = · · · =
xm(p) = 0, ∂M is given by {xm = 0} and M = {xm ≤ 0}. We will con-
sider M as a stratified space with strata ∂M as one stratum and the interior
M \ ∂M as the other.
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Let p ∈ ∂M be a critical point of a Morse function f on the Whitney
stratified space M . By Definition A.3.3 p cannot be a critical point on some
extension M ′ of M at p since this would violate iii). So p is a critical point
of f restricted to ∂M .

In a coordinate system as above onM ′we use the classical Morse Lemma
to change the coordinates x1, . . . , xm−1 in a way that

f |∂M : x 7→ −
λ∑
i=1

x2
i +

m−1∑
i=λ+1

x2
i .

Here, λ is the Morse index of f |∂M at p. Outside ∂M we may have a differ-
ence

g = f −

(
−

λ∑
i=1

x2
i +

m−1∑
i=λ+1

x2
i

)
.

Now clearly
∂g

∂xm
(p) =

∂f

∂xm
(p) =: a 6= 0

since f does not have a critical point at p on M ′. We say that “the gradient
of f points outwards” if a is positive. Otherwise we say that “the gradient
of f points inwards”. We again change coordinates on M ′ replacing xm by
g if a > 0, or, in case a < 0, by −g. Note that with this choice we still have
∂M = {xm = 0} and M = {xm ≤ 0}. In this coordinate system the function
f finally takes the form

f = −
λ∑
i=1

x2
i +

m−1∑
i=λ+1

x2
i ± xm.

Theorem A.3.6. Let p ∈ ∂M be a critical point with Morse index λ of the Morse
function f on the manifold with boundary M . If the gradient of f is pointing
outwards, then the Morse data of f at p is given by its tangential and normal parts

(A,B) ∼= (Dλ, Sλ−1)× ([−1, 0], {−1})
= (Dλ × [0, 1], Dλ × {−1} ∪ Sλ−1 × [−1, 0])
∼= ({pt}, {pt}).

If the gradient of f is pointing inwards, the Morse data is

(A,B) ∼= (Dλ, Sλ−1)× ([−1, 0], ∅)
= (Dλ × [−1, 0], Sλ−1 × [−1, 0]) ∼= (Dλ, Sλ−1).

Consequently, as c crosses the critical value v, the topological type of M≤c does not
change in the first case and in the second a cell of real dimension λ is attached.

Here, Dλ denotes the closed ball of radius 1 in Rλ and Sλ−1 the sphere of
dimension λ− 1.

Proof. In the coordinate system introduced above the tangential Morse data
comes from the classical Morse data of the function f |∂M . The results can
be found in [52]. For the computation of the normal Morse data we may
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restrict f to the set {x1 = · · · = xm−1 = 0}. The result follows from Theorem
A.3.5.

A.4 Complex Ordinary Differential Equations

While the basic theory of ordinary differential equations is contained in any
undergraduate textbook on analysis, there seems to be no good reference
for holomorphic or complex differential equations and the holomorphicity of
their solutions. Hence we include them in this appendix. A good source for
the non-holomorphic theory of the differential equations considered here is
[56] from which we also adapt the exposition and formulation of the prob-
lems.

An ordinary differential equation is of the form{
d
dtu(t) = F (u(t), t) |t| ≤ ε
u(0) = u0

(A.29)

where the function u : (−ε, ε) ⊂ R → V takes values in a Banach space
V . The Picard Lindelöf Theorem assures existence and uniqueness of the
solution under the assumption that F is Lipschitz-continuous in the first
argument.

We are often confronted with the situation that we have an equation of
this form, only that t is a complex parameter, u takes values in a Hilbert
space H , and F is holomorphic function in both variables. This we call a
complex ordinary differential equation (cODE).

In the real differentiable case it is a subtle amendment that the solution
u of (A.29) depends smoothly on the initial condition v. We are interested
more generally in the case where the right hand sides of (A.29) depend
holomorphically on finitely many complex parameters x.

Theorem A.4.1. Suppose W ⊂ Ck, B ⊂ CN and D ⊂ C are open sets and

F : W ×B ×D → CN , v : W → B ⊂ CN

are holomorphic functions. Consider the differential equation{
d
dtu(x, t) = F (x, u(t), t)

u(x, 0) = v(x)
(A.30)

for u : W × D → CN . Then, for each x0 ∈ W and t0 ∈ D there are open
neighborhoods W ′ and D′ respectively and a unique solution

u : W ′ ×D′ → CN

of (A.30) depending holomorphically on both variables.

Corollary A.4.2. In case F : W ⊂ CN → CN is a holomorphic vector field on
CN , the flow Φ associated to F is holomorphic.

Proof. Just let v(x) = x be the dependence on the initial condition.

For the proof of Theorem (A.4.1) we merely have to go through the stan-
dard proof of the Picard-Lindelöf Theorem as for example in [56] and make
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sure that it translates well to the realm of holomorphic functions. In fact
the holomorphic dependence of the solutions on parameters of the equa-
tion becomes even easier compared to the smooth case. This is due to the
following well known theorem.

Theorem A.4.3. Let fn : U ⊂ CN → C be a sequence of holomorphic functions
which converge uniformly to a function f : U → C on every compact subset
K ⊂ U . Then the limit f is also holomorphic.

For the sake of completeness, we include a proof.

Proof. We use the Cauchy Integral Formula in several variables. Let z =
(z1, . . . , zN ) be a point in U and ∆ε a polydisc of polyradius ε = (ε1, . . . , εN )
around z in U . Then, since all the fn are holomorphic we have

fn(z) =

∫
|ξ1−z1|=ε1

· · ·
∫
|ξN−zN |=εN

fn(ξ1, . . . , ξN )

(ξ1 − z1) · · · (ξN − zN )
dξN · · · dξ1.

If we let n→∞, we can, because of the compact domain of integration and
uniform convergence of the fn, take the limit below the integral on the right
hand side. Thus

f(z) =

∫
|ξ1−z1|=ε1

· · ·
∫
|ξN−zN |=εN

f(ξ1, . . . , ξN )

(ξ1 − z1) · · · (ξN − zN )
dξN · · · dξ1

and the right hand side depends holomorphically on all the zi.

Proof. (of Theorem A.4.1). Given x0 ∈ W and t0 ∈ D, we construct a zeroth
and a first approximation to the solution by setting

u(0)(x, t) = v(x), u(1)(x, t) = v(x) +

∫ t

t0

F (x, v(x), τ) dτ

for x ∈W ′ ⊂W and t ∈ D′ ⊂ D some neighborhoods of x0 and t0. Observe
that the integral is defined via the choice of a path γ in D′ from t0 to t. Since
the integrand depends holomorphically on τ , the result only depends on
the homotopy class of the path γ. In order to have a well defined integral
we therefore assume D′ to be star-shaped around t0 in what follows.

The function u(1) : W ×D → CN takes values in CN . We would like to
iterate the process and define

u(n+1)(x, t) = v(x) +

∫ t

t0

F (x, u(n)(x, τ), τ) dτ.

But for this to work, u(n) has to actually take values in B, where F is de-
fined.

To this end choose a neighborhoodB′ ⊂ B of v(x0 with compact closure
B
′. Due to the continuity of v we may then choose a neighborhoodW ′ ⊂W

of x0 such that W ′ ⊂ v−1(B′) and also W ′ compact. Furthermore we take a
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disc D′ ⊂ D around t0 and define

C := max

{∥∥∥∥∂F∂u (x, u, t)

∥∥∥∥ : (x, u, t) ∈W ′ ×B′ ×D′
}

K := max{‖F (x, v(x), t‖ : (x, t) ∈W ′ ×D′}
δ := inf{‖u− v(x)‖ : u ∈ ∂B′, x ∈W ′}.

Since v(W
′
) is properly contained in B′, we clearly have δ > 0.

We now want to show that we can choose the radius ε > 0 of the disc
D′ so small that the iteration process for u(n+1)(x, t) works for all (x, t) ∈
W ′ ×D′. The definition of u(0) and u(1) immediately implies

‖u(1)(x, t)− u(0)(x, t)‖ ≤ K · ε (x, t) ∈W ′ ×D′.

Hence, if we choose ε < δ
K , then certainly u(1) takes values only in B′ when

restricted to W ′ ×D′.
Now suppose u(k)(x, t) ∈ B′ for all k ≤ n and (x, t) ∈W ′ ×D′.

‖u(n+1)(x, t)− u(n)(x, t)‖ ≤ ε · C · ‖u(n)(x, t)− u(n−1)(x, t)‖ (A.31)

and, hence, iteratively

‖u(n+1)(x, t)− v(x)‖ ≤ 1

1− ε · C
·K · ε.

If we choose ε so small that the right hand side is smaller than δ (which
certainly implies the previous assumption K · ε < δ, as well), then all the
u(n) will take values in B′ only.

Several things have shown up at this point. First of all, the iteration
gives a contraction from the set

{u : W ′ ×D′ → B′}

to itself, which due to the Banach Fixed Point Theorem has a unique fixed
point u solving the integral equation

u(x, t) = v(x) +

∫ t

t0

F (x, u(x, τ), τ) dτ.

Second, the sequence of functions
(
u(n)(x, t)

)
n∈N converge uniformly on

W ′ ×D′ because of the estimate

‖u(n)(x, t)− u(m)(x, t)‖ ≤ (ε · C)m

1− ε · C
·K · ε

for any n > m and all the u(k) are holomorphic in x and t. From Theorem
A.4.3 we deduce that also the limit u : W ′ ×D′ → B′ is holomorphic. This
finishes the proof.

We now formulate some consequences for linear cODEs which we will
need.
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A linear complex differential equation depending on a parameter x ∈
Ck is of the form {

d
dtu(x, t) = F (x, t) · u(x, t)

u(x, 0) = u0(x)
. (A.32)

where u takes values in Cm and A : W ×D ⊂ Ck × C→ Mat(m,m;C) and
u0 : W → Cm are holomorphic functions.

Theorem A.4.4. A linear cODE as above admits a unique solution operator

U : W ′ ×D′ → GL(m,C)

such that for any given u0 the solution is of the form

u(x, t) = U(x, t) · u0(x).

Moreover U is holomorphic in x and t and satisfies

d

dt
U(x, t) = F (x, t)U(x, t).

Proof. This follows directly from Theorem A.4.1 and the superposition prin-
ciple for linear differential equations. We construct the i-th column ofU(x, t)
as the solutions of the cODE{

d
dtu(x, t) = F (x, t) · u(x, t)

u(x, 0) = ei
,

where ei is the i-th vector of the standard basis of CN .

A special variant of linear cODEs is the following one for matrices:{
d
dtA(x, t) = F (x, t) ·A(x, t) +A(x, t) ·G(x, t)

A(x, 0) = A0(x)
(A.33)

where the function A takes values in the space Mat(m,n;C) and F (x, t) ∈
Mat(m;C), G(x, t) ∈ Mat(n;C) depend holomorphically on x and t.

Corollary A.4.5. For a matrix cODE as above there exist unique solution oper-
ators U(x, t) ∈ GL(m;C) and V (x, t) ∈ GL(n;C) such that for any A0(x) the
solution is given by

A(x, t) = U(x, t) ·A0(x) · V (x, t).

Proof. We obtain U(x, t) as the solution operator of the linear cODE given
by F (x, t) as in (A.32). For the operator V (x, t) we take the transpose of the
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solution operator of equation (A.32) with GT (x, t) in place of F (x, t).

d

dt
U(x, t) ·A0(x) · V (x, t)

=

(
d

dt
U(x, t)

)
·A0(x) · V (x, t) + U(x, t) ·A0(x) ·

(
d

dt
V (x, t)

)
= F (x, t) · U(x, t) ·A0(x) · V (x, t) + U(x, t) ·A0(x) ·

(
GT (x, t) · V T (x, t)

)T
= F (x, t) ·A(x, t) +A(x, t) ·G(x, t)

This solution is unique because (A.33) is in particular a linear cODE if we
consider A as a vector.
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tautological bundle, 127
tautological quotient bundle, 128
tautological sequence, 128
Tjurina modification, 72

in family, 75
Tjurina number, 32

unfolding, 25
universal complex, 18

vanishing cycles, 61
vanishing Euler-characteristic, 61
versal deformation of a space germ,

32
versal determinantal deformation, 31
versal unfolding, 28



147

Curriculum Vitae

Matthias ZACH

Personal Data

PLACE AND DATE OF BIRTH: Hannover, Germany | 28. December 1988

Education

NOV 2013 - SEP 2017 PhD student at the Institute for Algebraic Ge-
ometry at the Leibniz Universität Hannover

APR 2011 - OCT 2013 Postgraduate studies for M.Sc. in mathematics
at Leibniz Universität Hannover

OCT 2007 - MAR 2011 Undergraduate studies for B.Sc. in mathemat-
ics at Leibniz Universität Hannover

JUN 2007 Abitur at Gymnasium Sarstedt


	Abstract
	Acknowledgements
	Prerequisites and Notation
	Deformations of Determinantal Singularities
	Determinantal Singularities
	Some Notions in Commutative Algebra
	Flatness
	Perfect Ideals and Modules
	Cohen-Macaulay rings
	The Koszul Complex
	Dimension of Base and Fiber

	Determinantal Deformations
	Deformations of Complete Intersections
	Inheritance of Projective Resolutions
	The Generic Determinantal Singularities

	Versal Families
	Versal Unfoldings of Map Germs into the Space of Matrices
	Versal Determinantal Deformations
	Complete Intersections and Cohen-Macaulay Schemes of Codimension 2


	Topological Invariants of Singularities
	Smoothings, Milnor Fibers and Topology
	Milnor Fibers of Isolated Singularities
	Homology Groups of Milnor Fibers

	The Milnor Fiber of a Determinantal Singularity
	Deformations to Stabilizations
	Stabilizations in the Versal Determinantal Unfolding

	The Euler-characteristic of smooth Milnor fibers
	Indices of 1-forms on Determinantal Singularities
	Polar Varieties and the Scanning Process


	Tjurina Transformations
	Tjurina Modification
	…for the Generic Determinantal Varieties
	…for Determinantal Singularities 
	…in Family

	Topology of Simple ICMC2 Singularities
	Betti Numbers for the Threefolds
	Decomposition of Infinitesimal Deformations
	The surface case
	Topology of Space Curves
	Simple Fourfold Singularities


	Line Singularities in the Tjurina Transform
	Characteristic Vanishing Cycles
	Main Theorem for Line Singularities in the Tjurina Transform
	An Example and Outline of the Proof

	Line Singularities in the Tjurina Transform
	Complete Intersection Line Singularities
	The Polar Curve
	The Choice of a Milnor Ball
	The Milnor Fiber in the Product Case
	The Milnor Fiber at a Special Point
	The Second Boundary
	Connectivity with the Second Boundary
	The Surface Case


	Application to Determinantal Singularities
	The Generic Rank 1 Perturbation and the Axis
	Y at the Axis Point
	The Global Picture in the Generic Rank 1 Perturbation

	Concluding Remarks

	Background and Notations
	The Exterior Algebra
	Exterior Powers and Multiplication
	Dualities of Exterior Algebras
	Induced Maps on the Exterior Powers

	Grassmannians and Generalized Nash-Blowups
	Grassmannians
	Generalized Nash-blowups

	Whitney Stratifications and Morse Theory
	Whitey stratified Sets and Thom's First Isotopy Lemma
	Stratified Morse Theory

	Complex Ordinary Differential Equations

	Bibliography

