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The presented thesis contains an explicit treatment of the deformation
theory of determinantal singularities based on Ky-equivalence and a care-
ful construction of versal determinantal deformations. The necessary the-
ory involved is gathered from the scattered literature and distinct view-
points on the subject from different research groups are discussed. Based
on the existence of versal determinantal deformations, we construct the de-
terminantal Milnor fiber of a determinantal singularity as the preimage of
the corresponding generic determinantal variety under a stabilization of
the defining matrix considered as a map germ. In general, the determinan-
tal Milnor fiber is a Whitney stratified space, which is unique for a given
determinantal singularity up to homeomorphism.

We then turn to the study of topological invariants of the determinantal
Milnor fiber. We describe the work done by different groups on the van-
ishing Euler-characteristic and reprove a formula for its computation from
polar multiplicities for smoothable isolated determinantal singularities.

In Chapter 3, we introduce the Tjurina modification in family to reduce
topological questions about determinantal singularities to questions about
local complete intersections. In case of isolated singularities in the Tjurina
transform of a given determinantal singularity, this enables us to explicitly
determine the distinct homology groups of the Milnor fiber and we deduce
some formulas on their interplay with the space of infinitesimal deforma-
tions.

Finally, we pick up the theory for the topology of non-isolated singular-
ities, to also treat the case when the Tjurina transform is singular along a
whole projetive line. To this end, we generalize certain connectivity results
for the Milnor fibers of non-isolated singularities with one-dimensional sin-
gular locus to complete intersections with line singularities. This enables us
to prove that for certain matrix sizes for smoothable isolated determinantal
singularities we always find “characteristic cycles” which are directly re-
lated to the determinantal structure. They are the only contributions to the
homology of the Milnor fiber below the middle degree. This phenomenon
can not be observed for isolated complete intersection singularities.
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LEIBNIZ UNIVERSITAT HANNOVER

Zusammenfassung

Fakultat fiir Mathematik und Physik
Institut fiir Algebraische Geometrie

Topologische Invarianten Isolierter Determinantieller Singularititen

von Matthias Zach

Schlagworte: Determinantielle Singularitdt, Milnor Faser,
Homologiegruppen.

Die vorgelegte Arbeit beinhaltet eine explizite Darstellung der Deforma-

tionstheorie determinantieller Singularititen basierend auf Ky-Aquivalenz

und eine Konstruktion verseller determinantieller Deformationen. Die dazu
notwendige Theorie wird aus der verstreuten Literatur zusammengestellt

und es werden unterschiedliche Sichtweisen von verschiedenen Arbeits-

gruppen diskutiert. Basierend auf der Existenz verseller determinantieller

Deformationen konstruieren wir die determinantielle Milnor-Faser als das

Urbild der assoziierten generischen determinantiellen Varietdt unter einer

Stabilisierung der definierenden Matrix aufgefasst als Abbildungskeim. Im

Allgemeinen ist die determinantielle Milnor Faser ein Whitney-stratifizierter
Raum, welcher eindeutig bis auf Homdomorphie ist.

Wir wenden uns dann der Frage nach topologischen Invarianten der
determinantiellen Milnor-Faser zu. Wir geben eine Beschreibung der Beitrage
verschiedener Arbeitsgruppen zur verschwindenden Euler-Characteristik
und erarbeiten einen neuen Beweis fiir eine Formel zu ihrer Berechnung
durch Polar-Multiplizititen fiir glattbare isolierte determinantielle Singu-
laritaten.

In Kapitel 3 fiihren wir Tjurina-Modifikationen in Familie ein und re-
duzieren so Fragen zur Topologie von determinantiellen Singularititen auf
Fragen {tiber lokal vollstindige Durchschnitte. Im Fall von isolierten Sin-
gularitdten in der Tjurina-Transformierten ermoglicht uns dies eine genaue
Beschreibung der Homologiegruppen der Milnor-Faser und wir leiten einge
Formeln tiiber ihre Beziehung zum Raum der infinitesimalen Deformatio-
nen her.

Im letzten Kapitel bentitzen wir die Theorie zur Topologie von nicht-
isolierten Singularitdten, um auch den Fall behandeln zu kénnen, in dem
der singuldre Ort der Tjurina-Transformierten eine projektive Gerade ist.
Dazu verallgemeinern wir bestimmte Resultate {iber den Zusammenhang
von Milnor-Fasern nicht-isolierter Singularitdten mit ein-dimensionalem sin-
guldren Ort fiir vollstindige Durchschnitte, welche singulédr entlang einer
Gerade sind. Dies ermoglicht es uns zu beweisen, dass fiir gewisse Ma-
trixgroflen fiir glattbare determinantielle Singularitdten immer “character-
istische Zykel” existieren, welche direkt mit der determinantiellen Struktur
in Verbindung stehen. Sie sind die einzigen Beitrdge zur Homologie der
Milnor-Faser unterhalb des mittleren Grades. Dieses Phanomen kann nicht
fiir isolierte komplette Durchschnitte beobachtet werden.
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Prerequisites and Notation

In this thesis, we give a precise description of the Milnor fiber for determi-
nantal singularities and address questions about their topology. We assume
the reader to be familiar with the basic theory of complex analytic spaces
and singularities, commutative algebra, as well as algebraic topology. Some
standard references for these topics are for example [5], [6], [57], [38], [22],
and [42].

In the text we will be confronted with coherent sheaves and their holo-
morphic sections as well as with vector bundles and continuous or differ-
entiable sections in them. We try to adapt standard notation from analytic
geometry and sheaf cohomology and from differential geometry depend-
ing on the context. One disadvantage is of this is that in the one notation
T, denotes the stalk of the tangent sheaf of a space X at p, while the sim-
ilar expression 7}, X is only the fiber of the corresponding vector bundle in
the other notation. To avoid confusion, we therefore write p.F for the fiber
of a sheaf F at a point p and F,, for its stalk.

Another conflict of notation arises for space germs (X, p) and pairs of
spaces (A, B), especially because we will be considering germs (Y, E) not
only at points, but along compact subspaces £ C Y. However, we hope
that it is clear from the context, which kind of object we mean.

Concerning the notation used in algebraic topology, it should be pointed
out that by H;(X) we always denote the i-th homology group of a topologi-
cal space X with integer coefficients. In any case we provide a list of symbols
and an index for the objects used in this thesis.






Chapter 1

Deformations of Determinantal
Singularities

We give the common definition of determinantal singularities and gather
the results concerning their algebraic and geometric properties. While the
material itself is not new, the specific exposition and motivation is carried
out by the author. We try to reflect different viewpoints on the subject,
which appear in the common literature [11], [10], [22], and contemporary
research [18], [19], [61], [62], [49], [16], [15], [17], [20], [59], [8], 23], [28], [27].

This chapter aims at the development of versal determinantal deforma-
tions. To this end, we formulate a notion of equivalence for determinan-
tal singularities and equivalence of map germs into the space of matrices.
For the latter, we give an explicit formulation of Ky-equivalence following
J. Damon and then continue with a hybrid system showing that a semi-
universal unfolding of the map germ leads to a versal determinantal de-
formation of the underlying determinantal singularity. At the core of this
interplay lays the fact that a determinantal singularity inherits a free reso-
lution of its defining ideal from the generic determinantal variety. This is used
to establish flatness of determinantal deformations. In the end, we discuss
the relation to semi-universal deformations of space germs in the sense of
Grauert, Schlessinger and the work of M. Schaps.

1.1 Determinantal Singularities

Definition 1.1.1. A germ of a complex space (X,0) C (CV,0) is called a
determinantal singularity of type (m,n, t) if there is a matrix

A € Mat(m,n; On)

with holomorphic entries in the ring of convergent power series Oy =
C{x1,...,zn} such that
Oxo = On/(AM)

and
codimp, (A™M) = (m —t +1)(n —t +1). (1.1)

Here (A') denotes the ideal generated by the ¢t-minors of A. We also say
that the quotient ring Ox ¢ is a determinantal ring. An isolated determinantal
singularity is a determinantal singularity (X, 0) such that 0 € X is the only
singular point.

The notation for the ideal of ¢-minors is explained as follows: If we consider
A as a homomorphism of free Oy-modules, then A" denotes the matrix
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representing the induced map on the t-th exterior powers (cf. Appendix
A.1). For any matrix B € Mat(m,n; Ox) we denote by (B) the ideal gener-
ated by its entries, which, in case B = AN for some A, are just the t-minors
of A.

Remark 1.1.2. A priori for a given singularity (X, 0) there are many matrices
describing a structure of (X,0) C (CV,0) as a determinantal singularity.
Suppose that the ¢t-minors of some A € Mat(m, n; On) generate the vanish-
ing ideal of (X, 0) and one of the entries a; ; of A is a unit in Oy. Without
loss of generality, we may assume (7, j) = (1,1), and we can apply row and
column operations on A to reduce to the form

10
Since these operations do not alter the ideal generated by the ¢-minors, we
see that (X, 0) is also a determinantal singularity of type (m—1,n—1,t—1)

by means of A.
Let m = (z) C Op be the maximal ideal. If there was a linear de-

pendence A - A = 0 of the columns of A with A = (Xq,..., )\n)T e O,
but A ¢ m - O} then we can, without loss of generality, assume \; = 1.
This means that the first column can be expressed by the others and con-
sequently, if we let A be the matrix obtained from A by deleting the first
column, then (A") = (AN~1) are the same ideals in Oy. The same argu-
ment holds for the rows of A.

For these reasons, we always assume that all entries of the describing
matrix are in the maximal ideal m of Oy, i.e. they are non-units, and that
neither the columns nor the rows of A admit relations with coefficients in
On \ m.

But, as we can see in the following example 1.1.3, for a given singularity
even these minimality conditions are in general not sufficient to uniquely
determine the matrix A from (X,0). Therefore, if we speak of a determi-
nantal singularity of type (m,n,t), we do not only mean the germ (X,0) C
(CN,0), but also the matrix A.

Example 1.1.3. a) A complete intersection of codimension d is a determi-
nantal singularity of type (d,1, 1).

b) Let (X,0) C (C3,0) be the A;-surface singularity given by the equation
f = 2% — yz = 0. It is a determinantal singularity in two different ways.
On the one hand we can consider the equation f as a 1 x 1-matrix, which
gives (X, 0) the structure of a determinantal singularity of type (1,1, 1).
On the other hand we have

_ Yy
f—det<z x>’

which makes it a determinantal singularity of type (2,2, 2).

With these examples in mind we shall develop a notion of equivalence
for determinantal singularities parallel to contact equivalence. Recall that
two germs (X, 0), (Y,0) C (CV,0) are contact equivalent if there is a germ of
a diffeomorphism @ : (CV,0) — (CV,0), or equivalently an automorphism
®* of Oy such that ® takes (X, 0) to (Y, 0) and the other way round for L.
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In terms of algebra this translates to the following: Let J be the ideal in On
defining (Y, 0) and I the ideal of (X, 0). Then we have

id; id;

These maps naturally induce homomorphisms on the C-vector spaces I /m/
and J/mJ which have to be isomorphisms. Let ay, ..., a, be a minimal set
of generators of I and b1, ...,b, of J. Using Nakayama’s Lemma, we see
that there exist invertible matrices F' € Mat(1,1;Oy),G € Mat(n,n; Oy)
such that

(al an) =F. (q)*(bl) e <I>*(bn)) .Gt

and thus, the submodules I and J of Oy = (9]1\, are identified by ¢*.
For determinantal singularities we do not compare the ideals but the
defining matrices.

Definition 1.1.4. Let (X,0) and (Y,0) c (CV,0) be two determinantal sin-
gularities of type (m,n,t) given by matrices A and B € Mat(m, n; Oy). We
say (X, 0) and (Y, 0) are equivalent as determinantal singularities if there exists
an automorphism ®* of Oy and invertible matrices F' € Mat(m,m; On), G €
Mat(n, n; On) such that

A=F. - (®*B)-G™!
in Mat(m,n; On).

The analogy should be obvious. Here we can see the minimality conditions
from Remark 1.1.2 in action. Just like we describe an ideal as a submodule
of Oy by a minimal set of generators, the columns of A give a minimal
set of generators of the image of A in Off when considered as an element
of Homp, (O}, OF}) and similarly for the rows. Requiring F' and G to be
invertible is no restriction once minimality of A and B is assumed.

Contact equivalence of (X, 0) and (Y, 0) now follows directly from Corol-
lary A.1.2 since the matrices F' and G in Definition 1.1.4 are invertible.

There is another point of view for describing determinantal singulari-
ties. We can regard the matrix A as a germ of a map

A (CN,0) = (Mat(m,n;C),0).

Then (X, 0) appears as a degeneracy locus of A, namely as the preimage of
the generic determinantal variety

an,n = {M € Mat(m,n;C) : rank M < ¢t} (1.2)

under the map A. We will see that a determinantal singularity of type
(m,n,t) inherits many properties from its associated generic determinan-
tal variety M, ... For the course of our studies, it is therefore beneficial to
have a good understanding of these: In the following, we will collect some
well known facts.
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Lemma 1.1.5 ([11], Proposition 1.1). The space M}, , C Mat(m,n;C) is irre-
ducible of codimension (m —t 4+ 1)(n — t + 1) and its singular locus is precisely

Sing an,n = an_é

This shows where the condition (1.1) on the codimension for a determi-
nantal singularity comes from: It is the expected codimension of the preimage
of the generic determinantal variety.

A more involved computation shows that the spaces

{0y = My, € M, © - € MRt € Mat(m,n;C)  (1.3)
form a complex analytic Whitney stratification of the space Mat(m, n; C) with
strata

t t—1
g = My \ M

m,n>’

see e.g. [3]. For the definition of Whitney stratifications see the Appendix.
On one hand, by considering maps, one automatically leaves the realm of
intrinsic properties of (X, 0) because one has to take into account the be-
haviour of the map outside the singularity as well. On the other hand, since
the fundamental work done by Milnor ([53], cf. Theorem 2.1.13), the bene-
fits of this viewpoint for topological questions about the singularity are evi-
dent. For determinantal singularities, we will see a lot of interplay between
map germs and their unfoldings and space germs and their deformations.

While the definition of an unfolding of a map is rather trivial, the defor-
mation theory of space germs is much more involved. One reason for the
interest in determinantal singularities is that (parts of) their deformation
theory is accessible via perturbations of the defining matrix as a map germ.
The rest of this chapter is devoted to the exposition of this interplay.

1.2 Some Notions in Commutative Algebra

All the results of this section are well known and gathered from standard
sources. Mostly we refer to [22] and [10].

1.2.1 Flatness

Recall that a module M over a commutative ring R is called flat if the func-
tor — ®g M from the category of R-modules to itself is exact.

Definition 1.2.1. Let (B,n) be a local ring with residue field £ and Ry a
Noetherian k-algebra. A deformation of Ry over (B, n) is given by a flat B-
algebra R such that the fiber over n

R®pB/n<——R

|

B/n

B

is isomorphic to Ry. A deformation of a germ (Xy,0) C (CV,0) over a
C-algebra B is a deformation of Oy, o.
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Remark 1.2.2. In practice, for any deformation of a ring Ox, o = C{z}/I
the ring B will either be an Artinian C-algebra or another power series ring
C{ui,...,us} or quotient C{u}/T thereof. In the first case, the deforma-
tion is called a formal deformation. In the second case R will be of the form
C{z,u}/ I, where I is an ideal such that

C{z,u}/T + (u) = C{z}/I = Ox, 0.

Here we get a geometric realization of the above diagram reversing the
arrows
(X07 0) - (X7 O)

L

{0} (Y,p)

where (X, 0) and (Y, p) are the germs of complex spaces associated to C{z,u} /T
and C{u}/T, respectively.

In general, it is difficult to create flat families. The following theorem
gives the probably most common criterion for flatness. We present it as it
can be found in [22, Theorem 6.8]:

Theorem 1.2.3 (Local Criterion for Flatness). Let ¢ : (B,n) — (S, m) be a
homomorphism of Noetherian local rings and M a finitely generated S-module.
Then M is flat over B if and only if

Tor? (B/n, M) = 0.

In view of the standard situations we will encounter as described above,
we deduce another criterion for our purposes. This one can e.g. be found
in [7, Proposition 3.1].

Suppose we are given (X, 0) C (CV,0) by means of an ideal I € C{z}.
There is up to isomorphism a unique minimal free resolution

0<—C{z}/1 C{z} Fy Fy (1.4)

of the quotient ring Ox, o, where the F; are free C{z }-modules.

Now, let B be some analytic algebra and S = C{z}®cB. Here &¢
denotes the analytic tensor product, see e.g. [33] We will basically en-
counter two cases: If B = C{u}/T for some ideal T, then C{z}&cC{u}/T =
C{z,u}/T, where T is considered as an ideal in C{z,u} in the obvious
sense. In the other case B is Artinian and ®¢ reduces to the usual tensor
product.

Let n be the maximal ideal of B. Suppose I is an ideal in S such that

C{z}/I = S/(I+n)=S®p B/n.

By the right exactness of the tensor product, this amounts to saying that any
free presentation

0 S/T S Py
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of the quotient S/I spezializes to the presentation of Ox, o in (1.4).

Lemma 1.2.4 (Lifting of Relations). If in the above setup, there is a free resolu-
tion

0 S/I S P, P, e (1.5)

of the ring S/I as an S-module which is taken isomorphically to a given free reso-
lution (1.4) of C{x}/I by the functor B/n ®p —, then Tor? (B/n, S/I) = 0 and
S/1 is flat over B.

Proof. All the P; are free S-modules. But S itself is a free B-module and
hence we can regard (1.5) as a free resolution of B-modules as well. By
definition Tor? (B/n, S/I) is the homology group of the complex obtained
from (1.5) by applying B/n ®p —. If this is isomorphic to (1.4) then there is
no homology, because (1.4) was a resolution. The claim now follows from
the Local Criterion for Flatness, Theorem 1.2.3. O

Remark 1.2.5. Of course, to check for the vanishing of the first Tor only, it
would be sufficient if the complex (1.5) was specializing to (1.4) in the first
four terms only. But if this is the case, then one can see inductively that this
must also hold for all other terms of the resolution. Hence the requirement
in Lemma 1.2.4 is not unnecessarily strong.

1.2.2 Perfect Ideals and Modules

We start with an algebraic notion of height, dimension and codimension.

Definition 1.2.6. Let R be a commutative Noetherian ring. For a prime
ideal P C R, the height is defined as the supremum of the lengths of strictly
descending chains of prime ideals ); from P:

height P=sup{r e N: P2 Q12 Q22 ---2Q, 2 0}. (1.6)
If I C Ris an arbitrary ideal, its height is
height I = inf{height P : P D I prime }. (1.7)

The dimension of R is the supremum of the heights of all its maximal ideals.
For an R-module M we let dim M be the dimension of R/ Ann M. We define
the codimension of an ideal I by

codim/ = dim R — dim R/I.

It follows directly from the definition that we have an inequality
height I < codim I (1.8)

for all ideals I C R.

Krull’s Principal Ideal Theorem (see e.g. [22, Theorem 10.2] !) asserts
that the height of an ideal I C R is bounded from above by its number of
generators.

n [22], the height of an ideal is referred to as codimension.
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The “Converse of the Principal Ideal Theorem” (see e.g. [22], Corollary
10.5) on the other hand assures that for any given ideal I of height c we can
find a sequence of elements x1, ..., 2. € I such that forall 0 < i < c one has
height(z1, ..., x;) = i.

To construct such a sequence, one has to choose the z; successively such
that z;,1 is not contained in the union of minimal primes over (z1,...,z;).
Recall from primary decomposition that for a given finite module M over
a Noetherian ring R, the set of zero divisors on M is given by the union of
associated primes | Jp¢ o 37 P, and that all primes minimal over Ann M are
contained in Ass M (see e.g. [22, Theorem 3.1]).

Thus if we let M = R/{(x1,...,x;) and choose z;11 to be a nonzerodivi-
sor on M, then this is in general a stronger condition on x;;; than just not
being contained in the primes minimal over (z,...,z;). There is a name
for sequences of nonzerodivisors:

Definition 1.2.7. Let R be a commutative Noetherian ring and M an R-
module. An element z € R which is not a zero divisor on M is called a regu-
lar element on M. A sequence of elements z1, ..., x, € Ris a reqular sequence
on M if for all 0 < i < r the element z;4; is regular on M/(z1,...,z;)M
and M # (zy,...,z,) M.

Clearly, the maximal length of a regular sequence in I on R is bounded
by the height of I. But, in general, this number can be strictly smaller and,
hence, has a name of its own.

Definition 1.2.8. Let I be an ideal in a commutative Noetherian ring R and
M a finitely generated R-module. The grade of I on M is the number

grade(I, M) :=sup{r € N: 3(x1,...,2,) € I regular sequence on M }.

By what has been said above for M = R, one has
grade(I, R) < height I. (1.9)

The great advantage of the notion of grade is the following: If one wants
to compute the height of a given ideal I, one could start with a prime P
minimal over I and successively choose ()1 C P minimal over (0), then
()2 C P minimal over ()1 and so on. One eventually ends up with a max-
imal chain of prime ideals in P. But the length of this chain need not be
equal to height 1.

For the computation of grade(I, R), on the other hand, any maximal
regular sequence in I on R coming from a successive choice of elements z;
already has length grade(I, R). The next theorem assures that this is even
true for arbitrary modules M over R.

Theorem 1.2.9 ([10], Theorem 1.2.5). Let R be a commutative Noetherian ring,
I anideal in R, and M an R-module. If x = (x1,...,x,) is a regular sequence in
I on M, then there is a natural isomorphism

Homp(R/I, M/xM) = Extr(R/I, M),
and for all 0 < i < r, the modules Ext’R(R/ I, M) are zero. In particular,

grade(I, M) = min{r € N: ExtR(R/I, M) # 0},
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and any reqular sequence in I on M can be extended to a maximal reqular sequence
of length grade(I, M).
Using the description of grade in terms of Ext, one can extend this no-

tion to arbitrary modules.

Definition 1.2.10. Let M be a module over a commutative Noetherian ring
R. The grade of M is grade M = min{r € N : Extz(M, R) # 0}.

Since the Ext-modules over Noetherian rings can be computed from a
projective resolution of the first factor, the lengths of such resolutions come
into play for the computation of grade.

Definition 1.2.11. Let R be a commutative Noetherian ring and M an R-
module. The projective dimension of M is the minimal length of a projective
resolution

0 M Py Py e P, 0

of M over R. If no finite projective resolution of M over R exists, we write
projdim M = oo.

Clearly we have an inequality
grade M < projdim M. (1.10)

For the case of equality there is a special name.
Definition 1.2.12. A module M over a commutative Noetherian ring R is
perfect if

projdim M = grade M.

Anideal I is perfect if R/I is a perfect module over R.

1.2.3 Cohen-Macaulay rings

Definition 1.2.13. Let (R, m) be a commutative Noetherian local ring and
M a finitely generated R-module. The depth of M is defined as

depth M := grade(m, M).

In case depth M = dim M we say that M is Cohen-Macaulay. The ring R
is Cohen-Macaulay if it is Cohen-Macaulay as a module over itself. An
arbitrary commutative Noetherian ring S is called Cohen-Macaulay if for
all prime ideals P C S, the localized ring Sp is Cohen-Macaulay.

From (1.9), we obtain an inequality
depth R < dim R — dim R/m = dim R (1.11)

because dim R/m = 0.
The power series ring C{z1, ..., z,} and the polynomial ring C[z1, ..., zy,]
are both Cohen-Macaulay. Even more: They are reqular:

Definition 1.2.14. A commutative Noetherian local ring (R, m) is called reg-
ular if its maximal ideal m can be generated by a regular sequence on R.
Again, an arbitrary commutative Noetherian ring S is regular if all of its
localizations at prime ideals are regular.
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In particular, every regular local ring is Cohen-Macaulay. Gathering the
inequalities (1.8) and (1.9), we obtain

grade(I, R) < height I < codim I.

The next theorem tells us why we should care about working in Cohen-
Macaulay rings: In this case the inequalities become equalities.

Theorem 1.2.15 ([10], Theorem 2.1.2). Let (R, m) be a commutative Noetherian
local ring and M a Cohen-Macaulay R-module.

i) One has an equality
grade(I, M) = dim M — dim M /IM
forall ideals I C M.

ii) A sequence x = (x1,...,x,) of elements in R is a reqular sequence on M if
and only if dim M /xM = dim M — r.

We finally describe the connection to the preceeding section by exhibit-
ing the interplay of perfect ideals and Cohen-Macaulay rings. The follow-
ing formula is well known (see e.g. [22] or [10]) and will be useful later
on.

Theorem 1.2.16 (Auslander Buchsbaum Formula). Let (R, m) be a Noetherian
local ring and M a finitely generated R-module with projdim M < oo. One has
an equality

depth M + projdim M = depth R.

Now we have the following theorem.

Theorem 1.2.17 ([10],Theorem 2.1.5). Let R be a Cohen-Macaulay ring and M
a finitely generated R-module with projdim M < oo

i) If M is perfect, then it is Cohen-Macaulay.

i1) The converse holds when R is local.

Proof. In case R is a local ring and M = R/I,i.e. if I C R is a perfect ideal,
the assertions follow from the Auslander Buchsbaum Formula 1.2.16. One
has

depth R/I = depth R — projdim R/I
dim R — grade(, R)

= dim R — codim [

= dimR/I

IN

by (1.10) and Theorem 1.2.15 i). Now if I is perfect, then projdim R/I =
grade(I, R) and hence depth R/I = dim R/I. On the other hand, provided
the latter equality, we may deduce perfectness of I.

For a full proof see [10, Theorem 2.1.5]. O
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1.2.4 The Koszul Complex

We first define the Koszul complex. Let R be a commutative ring and
Z1,...,Tn € R be arbitrary elements. We can consider x = (z1,...,%y)
as an element of the free module R". For any p € Ny, we define 2

p p+1
x/\:/\R"—> /\R", W XAw.

From this, we build the Koszul cocomplex in x over R:

K*'x): 0—=A'R" X AR XA o XA APRY 5
(1.12)
The group of p-cochains is thus given by K, (x) = A" R".
This is a complex of free modules. The Koszul complex in x on R is de-
fined by dualizing K*(x):

Ka(x): 0<— (A°R")Y <~ (A'RMYVE— ... < X (A" R")Y <—0.

The notation x" is motivated from the fact that x € R™ can be considered as
a homomorphism R — R", 1 — x. We find this as the first nontrivial map
in (1.12). In this sense x" is the natural extension of the map dual to x to
the exterior powers.

On the other hand, given a homomorphism

U:R"— R, e+,

we will also speak of the Koszul complex associated to ¥ and just write ¥
for all the maps x".

Using the duality (A” R")Y =2 AP(RY)™ in (A.5) from the appendix, and
identifying R with RY in the canonical way, we obtain the final definition
of the Koszul complex:

Ke(x): 0—— A°RP < AN'Rr X X AR . (1.13)

Definition 1.2.18. For a module M over R we define the Koszul complex
and the Koszul cocomplex in x on M as

Ko(x; M) :=Ko(x) ®g M and K°*(x; M) :=K*(x) @z M. (1.14)

Recall that for a splitting /' = P @ (@ of a free module into two free parts
P and @ we obtain a decomposition of the exterior algebra:

n P q
ANF= & APor/\Q (1.15)

ptg=n

We use this to show the following:

?See the appendix A.1 for a definition of the exterior powers A\” R" and exterior multi-
plication A
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Lemma 1.2.19. For any two sets x = (x1,...,zm) andy = (y1,...,Yn) Of
elements in R there is a natural description

KT(XaY) = @ KP(X) ® Kq(y)
p+q=r

which identifies Kq(x,y) with the total complex of the double complex C), =
AP R™ @ N\? R™ with the boundary maps

¥y i Cpg—= Cpgo1, w@n— (—1)PwyY(n),
x" 1 Cpyg = Cp14, wenx’(w)@n.

Proof. Direct computation. O

This can be used to build the Koszul complex inductively on the num-
ber of elements ;. The basic building block of this iteration is the Koszul
complex in one element x = (1), which is just

Ko(x): 0~——A"R' <2 A'R'<——0.

For any given R-module M, the homology of the Koszul complex K(x1; M)
in x1 on M is

Hy(K(zx1;M)) = M/xM
Hi(K(z1;M)) = 0:p 2
H;(K(z1;M)) = 0 forallj#0,1.

We see that 27 is a nonzerodivisor on M if and only if all homology groups
of the associated Koszul complex vanish outside degree zero. This fact gen-
eralizes:

Lemma 1.2.20. Let R be a commutative ring, x1,...,z, € R, and M an R-
module. If x = (x1,...,xy) is a reqular sequence on M, then the Koszul complex
Ko (x; M) in x on M has the homology groups

M/(x1,...,2n)M ifp=0

H,(x; M) = .
»l ) {0 otherwise

A special case deserves attention:

Corollary 1.2.21. In case M = R in Lemma 1.2.20 and a for a reqular sequence
x = (x1,...,2,) on R, the Koszul complex gives a free resolution of the quotient

R/(x).

Proof. (of Lemma 1.2.20). We do induction on the number of elements n =
#x. If n = 1, this is just the definition of a nonzerodivisor on M. So sup-
pose we did already prove the claim for the Koszul complex in n elements
and we are given a further element y € R. Consider the Koszul complex
Ke(z1,...,2,,y) in x and y and its decomposition according to Lemma
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1.2.19 as the total complex of the double complex

0 0 . (1.16)

0~ AN"R"o N R <~ A"R"®@ AN'R!<—0

xV xV

0<— AN RO N R'<“— A R"@ A'R' <—0

xV xV

\
0<—A' RN R <L AN'BR"o A' Rt <—0

\% 2

X

0~— AN RO N RV AN"R" @ A'R'<—0

X

0 0

We obtain K. (x, y; M) from (1.16) by tensoring with M. Observe that both
columns of (1.16) are canonically isomorphic to K, (x) since A" R! =~ A\ R! =
R.

By the induction hypothesis, (z1, ..., z,) is a regular M-sequence and,
hence, the columns of (1.16) tensored with M are exact. The homology of
the associated total complex in degree zero is obvious and anyway inde-
pendent of whether or not (x1,...,2,,y) is a regular sequence. In degree
one the homology is zero if and only if y is a regular element on M /xM.
For all higher degrees, the assertion follows from a simple diagram chase
using the exactness of the columns. O

There is a converse of Lemma 1.2.20. We cite it for sake of completeness,
but we shall not need it.

Theorem 1.2.22 ([22], Theorem 17.4). Let M be an R-moduleand I = (x4, ..., x,)
a finitely generated ideal. One has

grade(I, M) =r — j,

where
j=max{i € N: H;(K¢(z; M)) # 0}.

1.2.5 Dimension of Base and Fiber

We gather some theorems and lemmas concerning the interplay of the pre-
ceeding sections with deformation theory. The main source is [22].
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Theorem 1.2.23 ([22], Theorem 10.10). Let (B,n) — (R, m) be a homomor-
phism of local rings. Then

dim R < dim B + dim R/nR.

If R is flat as a B-module, then equality holds.

The converse of the second statement is in general false. However, there
are certain conditions, which allow its deduction (cf. [22, Theorem 18.16]):

Theorem 1.2.24. Let (B,n) — (R, m) be a homomorphism of local rings where
(B, n) is reqular and (R, m) is Cohen-Macaulay. Then R is flat over B if and only
if

dim R = dim B + dim R/nR.

Proof. One direction directly follows from 1.2.23. For the other one let u =
(u1,...,u,) be a regular B-sequence generating n. By abuse of notation,
we also write u; for their images in R. According to the local criterion for
flatness 1.2.3 for R to be flat over B, it is sufficient to show

Tor? (B/n, R) = 0.

This can be computed from a free resolution of B/n over B. According to
Lemma 1.2.20, such a resolution is given by the Koszul complex K, (u). But
tensoring with R gives

Torf(B/n, R) = H;(Ke(u; R)).

Now if dim R/nR = dim R — dim B = dim R —r, then according to Theorem
1.2.15,u = (uy, ..., u,) is a regular sequence on R and, hence, all homology
groups H;(K.(u; R)) vanish in degree # 0 due to Lemma 1.2.20. O

The next lemma assures that flatness behaves well under taking hyper-
plane sections.

Lemma 1.2.25. Let (B,n) — (R, m) be a homomorphism of Noetherian local
rings, and suppose that M is an R-module which is flat over B. For any nonzero-
divisor x € mon M /nM, also M /xM is a flat B-module.

Proof. This follows directly from the long exact sequence of Tor. Consider
the short exact sequence

0 M—">M M/xM —=0.
Applying — ®p B/n, we obtain an exact sequence
Tor? (M, B/n) —— Tor® (M /xM, B/n) — M /aM —2> M/nM .
Now, by assumption on M, Tork (M, B/n) vanishes. On the other hand the
kernel of multiplication by z is trivial because = was a nonzerodivisor on

M/unM. Thus the assertion follows from the Local Criterion for Flatness,
Theorem 1.2.3. O
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1.3 Determinantal Deformations

The condition on the codimension in the definition of determinantal sin-
gularities 1.1.1 is natural in the following sense. It is a fact known as the
generalized principal ideal theorem, proved by Eagon and Northcott [18, The-
orem 3], that for any ideal I generated by the ¢t-minors of an (m x n)-matrix
A with entries in a commutative Noetherian ring R, the height of I in R is
bounded from above by the number (m — ¢t + 1)(n — ¢t + 1). Since this is
also the codimension of the generic determinantal variety M}, ,, it is also
the expected codimension of its preimage under the map given by A. The
definition of a determinantal singularity makes sure that this bound is at-
tained.

In this section we will develop the theory of determinantal deformations
of a given determinantal singularity (Xo,0) C (CV,0). As it turns out, the
only requirement on (Xg, 0) for the deformation theory to be well behaved
is to have expected codimension. As a guiding example, we first recall the
case of a complete intersection singularity.

1.3.1 Deformations of Complete Intersections

Let (Xo,0) C (CV,0) be a determinantal singularity of type (d,1,1). This
means the ideal I of (Xp,0) in Oy is generated by d elements fi,..., f4,
and codim I = codim(Xp,0) = d. In view of Lemma 1.2.4, a first step to
understanding deformations of (Xy, 0) is to know a free resolution of Ox,, o
over Oy.

Since Oy is Cohen-Macaulay, Theorem 1.2.15 asserts thatf = (f1, ..., f4)
is a regular sequence on Oy. Therefore, a free resolution is given by the
Koszul complex

0<—0x,0<—K.(f)

according to Lemma 1.2.20. Because the length of this free resolution is d,
we may deduce that Ox,  is a Cohen-Macaulay Oy-module by using the
Auslander-Buchsbaum Formula.

Now suppose we are given another analytic algebra (B, n) and we want
to deform (Xp,0) over (B,n). We need to give the ideal I in the ring S :=
On&c B for the total space (X, 0) of the deformation in (CV, 0) x Spec B. In
order for Ox g = 5/ I to specialize to Ox, o = On/I there have to be lifts
F, € I, which reduce to f; modulo nS. The next theorem says that any ideal
of the form [ = (F}, ..., Fy) already defines a flat family.

Theorem 1.3.1. Let I C Op be a complete intersection ideal generated by the
elements of a reqular sequence f = (f1,..., fq). If (B,n) is any Noetherian local
C-algebra and F; elements in S := On&cB reducing to F; g B/n = f; for
i=1,...,d then S/(Fi,..., Fy) is flat over B.

Proof. We first prove the theorem in the case B = C{u} = Oy for some
U = uy,...,u, Inthis case, S = C{z,u} = On4 is Cohen-Macaulay and
flat as a B-algebra. One has

dim S = dim S/nS + dim B = dim Oy + dim B
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according to Theorem 1.2.23. Let J := (Fi,..., Fy). For the extension of
rings S/I over B, we can say

dim S/J < dimOp/I + dim B = dim Oy + dim B — d = dim S — d.

We see that J is an ideal of codimension d generated by d elements in the
Cohen-Macaulay ring S and, hence, a complete intersection as well. It fol-
lows that the Koszul complex in (F1, ..., F.) over S gives a free resolution
of J as an S-module. It obviously specializes to the Koszul complex in the
fi and, hence, flatness follows from Lemma 1.2.4.

For a general analytic algebra B = O},/T for some ideal T, let F; €
C{z,u} be any lifts of the F; € On&®cB under the canonical projection
ON®cO) — On®cB. From the above said, it follows that the family de-
fined by these F, over Oy, is flat. To show flatness of S /J over B, we may
now use the fact that base-change preserves flatness, since

S/J = Onyi/(Fy,..., Fa) ®o, B.
]

From the perspective of determinantal singularities, Theorem 1.3.1 can
be rephrased as:

For a determinantal singularity of type (d, 1,1) any family coming from a pertur-
bation of the defining matrix is flat.

The proof consisted of two essential steps: First, the reduction to defor-
mations over analytic algebras B = Oy, and secondly, the exploitation of
expected codimension to give a free resolution of Ox o spezializing to a free
resolution of Ox, . We aim to show that this pattern works for determi-
nantal singularities of arbitrary type.

Theorem 1.3.2. Let (Xo,0) C (CV,0) be a determinantal singularity of type
(m,n,t) given by a matrix A € Mat(m,n; Oy), and let (B, n) be any local C-
algebra. Set S := On&cB, and let A € Mat(m,n; S) be any matrix such that
A ®p B/n= A. Then S/(A) is flat over B.

We postpone the proof of Theorem 1.3.2.

Definition 1.3.3. Deformations of a determinantal singularity as in Theo-
rem 1.3.2 are called determinantal deformations.

Remark 1.3.4. One can consider a determinantal deformation also as an un-
folding of maps. Namely, if A € Mat(m,n; Oy) is as in Theorem 1.3.2, then

A : (CY,0) x Spec B — (Mat(m,n; C),0)

is a family of maps parametrized by Spec B. Here, Spec B can be a formal
scheme in case B was an Artinian algebra or if B = Oy, for some space
(Y,p), then Spec B = (Y, p).

Families of maps are naturally well behaved. The hard part is to estab-
lish flatness of the induced family of preimages A ! (M, ,,,0) = Spec B for
a given analytic set (M}, ,,,0) C (Mat(m,n;C),0).

m,n?

The first step to understand a special determinantal singularity (Xy,0)
of type (m, n,t) is to understand the generic singularity (M, ,,0) C (Mat(m,n; C),0).
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In some sense, one could see this already in the case where (X, 0) is a com-
plete intersection singularity given by a matrix

A:(al ad)T.

Here the generic “singularity” is a (smooth) point V' = {0} € C°. If y1, ..., yq
are the coordinates on C%, then the ideal J = (y1,...,y4) defining {0}
is generated by the regular sequence (yi,...,y4) and a free resolution of
Oy, = Og4/J is given by the Koszul complex. The free resolution of Ox, (,
the quotient by the ideal of 1-minors of A, is then inherited from the reso-
lution of Oy by substituting the entries a; of A for the variables y;.

This phenomenon that a special determinantal singularity (Xo,0) C
(CN,0) given by a matrix A € Mat(m,n; Oy ) inherits a free resolution of its
local ring Ox, 0 as an Ox-module from its generic singularity (M}, ,,,0) C
(Mat(m,n; C),0) holds in general, as we shall see now. It is the key ingre-
dient for the existence of determinantal deformations.

1.3.2 Inheritance of Projective Resolutions

We start by observing that the term “Koszul complex” itself is merely a
name for an algorithm or pattern for how to construct a complex for a given
set of c elements in a ring. In [19], Eagon and Northcott extract and describe
this fact in their notion of a universal complex on ¢ parameters. Apparently,
being algebraists, they seem to be targeted on the greatest possible gen-
erality of their results and thus work over Z instead of any field. For us,
however, it is more convenient to work over a field k£ (Q or C will do) be-
cause the description of projective resolutions of the generic determinantal
ideals is easier in this case. For example, we will be able to use the results
by Lascoux [49] on free resolutions of the ideals defining the generic deter-
minantal varieties M, ..
We will reformulate the definitions and their theorem in this sense.

Definition 1.3.5 ([19]). Let k[Y] = k[Y1,...,Y}] be a polynomial ring over a
field k. A complex

K. (Y1,...,Y,): 0 Ko K Ky

of projective k[Y]-modules is called a universal projective complex on p param-
eters over k.

Given any universal projective complex on p parameters Ko(Y1,...,Y})
over a field k£ and p elements a1, ..., q, in a k-algebra R, we obtain a new
complex of projective R-modules as follows. There is a unique homomor-
phism ¢ : k[Y] — R sending 1 to 1 and Y; to a;, which makes R into a
k[Y]-module. Set

Ke(at,...,ap; R) == Ke(Y1,...,Y)) @iy R (1.17)
Each term of this complex is naturally a projective R-module. We write

M(a; R) := coker(Ki(a; R) — Ko(a; R)), (1.18)
I(a; R) = AnngM/(a; R), (1.19)
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for the natural augmentation module and its annihilator.

Theorem 1.3.6 ([19],Proposition 4). Let k be a field, I C k[Y] = k[Y1,...,Y)]
a proper ideal, and

0<— k[Y]/I Ko K . K, 0 (1.20)

a projective resolution of k[Y'| /I over k[Y'] of minimal length, i.e. n = pd(k[Y]/I).
If R is any Noetherian k-algebra and a1, ..., a, € R, then

grade(I(a; R), R) < 1;
and if equality holds, then
0<—R/I(a;R) <— Ko(a; R) <— -+ <— K,(a; R) =—0

is a projective resolution of R/I(a; R). In particular I(a; R) is a perfect ideal.

Remark 1.3.7. In [19], the authors formulate this result for ideals I in the ring
Z]Y], for which Z[Y]/I is a torsion-free Z-module. They show that in this
case, the resolution (1.20) is a generically acyclic complex K. But the only step
in the proof of Theorem 1.3.6 where they really use this fact is when they
deduce that for any ring R, the complex

K®zR

is again exact. If we work over a field k and take the tensor product with a
k-algebra R, then this is a trivial fact, since R is naturally flat as a k-module.

Remark 1.3.8. Theorem 1.3.6 also holds if we work over C and replace k[Y]
by the ring of convergent power series C{Y'}. In this case, we have to
restrict to R being another analytic algebra for the ring homomorphism
C{Y} — R to make sense.

Theorem 1.3.9. Let f : (C?,0) — (CP,0) be a holomorphic map and (V,0) C
(CP,0) a germ defined by an ideal (hy, ..., hy) such that Oy is Cohen-Macaulay.
If the preimage (Xo,0) := f~1(V,0) C (CY,0) has expected codimension

codim(Xjp, 0) = codim(V,0),
then for any local C-algebra (B, n) and unfolding F' of f over B, the ring
O,&¢B/(F*hy,...,F*h,)
is a flat B-module.

(Xo,0) (X,0) (V,0)

| l |

(C%,0) — (CY,0) x Spec B ——= (CP,0)

l |

{0} Spec B

In other words, if we let (X,0) := F~Y(V,0) C (C%,0) x Spec B, then the family
given by the projection (X,0) — Spec B is a deformation of (X, 0).
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Proof. Again, we first prove the statement for B = O, for some k. Since
both O, and Oy are Cohen-Macaulay, the Auslander Buchsbaum formula
gives

pdp, Ov,o = codim(V,0) =: c,

and by assumption, this coincides with codim (X, 0). We want to show that
also the total space (X, 0) has expected codimension. Let S = O, be the
local ring of the ambient space (C%,0) x (C*,0) of (X,0) and J C S its
defining ideal. Due to Theorem 1.2.23, we conclude

dimOx g <dimOp +dimOx,0 =k +qg—c=dimS —c.
Since S is Cohen-Macaulay, we deduce from Theorem 1.2.15
codim J = height J = grade(J, Og).

But J is nothing but I(£; O,4) for the complex K, coming from a minimal
free resolution of Oy . Because (V,0) was assumed to be Cohen-Macaulay,
the length p of the free resolution K, is equal to ¢ = codim(V,0). From
Theorem 1.3.6, it follows that Ke(F'; O,1) gives a free resolution of Ox g
over Oy .

Now, flatness of Ox y over Oy, follows from Theorem 1.2.24. Alterna-
tively, one could argue that K,(f;O,) is a free resolution of Ox, ¢ over O,
and that the resolution K, (F; (’),;) specializes to it. In this case, flatness fol-
lows from Lemma 1.2.4.

For general B = O /T, we conclude as in the proof of Theorem 1.3.1,

using a lift and the flatness of base change. ]

Remark 1.3.10. From the proof of Theorem 1.3.9 we see that for the preimage
(X0,0) = f~1(V,0) of a Cohen-Macaulay germ (V,0), not only every per-
turbation of f induces a well behaved deformation of (X, 0), but (X, 0)
inherits a free resolution of Ox, o from a free resolution of Oyy. Moreover,
this free resolution is preserved under deformations. This is why we need
to have a good understanding of the generic determinantal varieties.

1.3.3 The Generic Determinantal Singularities

We start by observing that all the ideals defining the varieties ann are
homogeneous polynomial ideals. We will therefore in this section consider
graded resolutions. They coincide with minimal resolutions when seen as
analytic ideals in O,;,.,,. As usual for a graded ring

S =P S,

deZ

we will denote the degree d part by S4;. Any module M over S will be
assumed to be graded as well, i.e. M = @ ,., My, and multiplication by
elements of S has to be graded in the sense that degrees add up:

Sy X My — Mg C M.
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A homomorphism of graded modules ¢ : M — N preserves degrees. For
any graded module M, we denote by M (d) the same module with its grad-
ing shifted by d, i.e.

(M(d))e = Mo (1.21)

For details on graded resolutions and their parallelism to minimal resolu-
tions over local rings, see e.g. [22] or [10].

Consider X = M7, for m < n, i.e. the variety cut out by the maximal
minors of the matrix

Y1 0 Yin
Y = : : € Mat(m,n; Opy.p). (1.22)

Ym,1 - Ymn

Let R = Cly] := Cly1,1,---+Ymp) and I = (Y™) C R. A minimal graded
resolution of R/I is given by the Eagon-Northcott complex first described
by Eagon and Northcott in [18]. We will reproduce the exposition of its
construction from [22, Appendix A2.6]. The Eagon-Northcott complex is
constructed for arbitrary rings R and homomorphisms ¢ : R* — R™. But
the reader may keep in mind the case R = Cly| and ¢ the homomorphism

represented by the matrix Y in the following.

Let ¢ : R® — R™ be a homomorphism of free modules over a ring R.

Letz = (x1,..., %) be the canonical generators of the free module R and
set S = R[z1,...,%y]. We consider S as a graded R-algebra with its natural
grading by degree in z.

There is a canonical map of S-modules induced by ¢:

(I)ERH®RS(—1)—)S, €j®1'_>zyi,j'$j-
%

Here the e; are the standard generators of R". We may identify R"®rS(—1)
with S(—1)". Also, we have

P . P

AS@ = S@p-d)#) = Sp-d o \R. (1.23)

Consider the Koszul complex associated to ¢ on S:
0=—A"S(=1)" <= A'S(-1)" =— - =— A" S(~1)" =—0.
Using (1.23), we obtain
0~ S<2 SN R"~——  ~— S(—n) @ A"R"~—0.
(1.24)

This can be viewed as a complex of graded, free R-modules. We now dual-
ize over R applying Hompg(—, R). To fix notation we let

S* := Homp(S, R), S} = Homp(Sy,R). (1.25)
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The S give a natural grading on S*. Also, although a priori being only an
R-module, S* has a natural structure as an S-module via

(s,0) > s-p:=po(arrs-a).
Note, however, that the grading is in a sense reversed, i.e. we have
1Sy x SE— S,

Identifying Hompg(A? R™, R) with A" P R" using the canonical orientation
of A" R™in (A.9) as usual, the dualized Koszul complex takes the form

0

5% @ \" R™ S*—DQA"TRY—— ..

=S (—n+ 1)@ N R —— S*(—n) @ \' R 0

(1.26)
Now for d € Ny, consider the degree d part, a so called strand, of the com-
plex:

0—=Si@N'R"—=S; o N 'R ——= S ,@ N" *R"—— -

S;o N R ——= S5 N RT 0
(1.27)
Note that, since S} = 0 for all £ < 0, this complex ends prematurely if

d < n. Something similar happens for the degree e part of (1.24):

()(756(;{’56_1@/\1}%

(1.28)

e S ONTIR T ~—— Sy @ A°R"<—0

For e = n—m—d we now define a “splice map” ¢ from the right end of (1.27)
to the degree e part of the right end of (1.28) as follows. We can identify

n—d n—d n—d
S;® /\ R* = Homgp(R,R)® \ R*= /\ R

and
n—m—d n—m—d m n—m—d

S )\ R"=zre N\ R"=AR"® A R

Now e : A" “R" = A™ R™ @ \" ™ % R" is given by the contraction with
o™ ('see Appendix A.1, equation (A.13) for a definition).



1.3. Determinantal Deformations 23

One can check that the splice map ¢ is indeed compatible with the other
differentials. Thus we obtain a family of complexes

0 Sie \'RM S N TR —— - (1.29)
SER@ N IR — e Sy ANV R
= On—m—d—1 @ /\1 R" Sp—m—q ———=0
foralld € N.
Definition 1.3.11. The Eagon-Northcott complex is defined to be (1.29) for
d=n—m.

The family of complexes for d < n — m consists of the Buchsbaum-Rim
complexes.

For d = n —m, i.e. if (1.29) is the Eagon-Northcott complex, the splice
map takes the following form:

m
5:/\R" — R, er— o'k,

where K = (1,...,m) is the only possible ordered multiindex of degree m.
Thus, the image of ¢ is the ideal generated by the maximal minors of the
matrix representing ¢. Also, the target of ¢ is the last nonzero term in the
complex.

Theorem 1.3.12. In case R = Cly|, and o represented by Y as in 1.22, the Eagon-
Northcott gives a free graded resolution of R/(Y"\™). Also the Buchsbaum-Rim
complexes are exact except at their right end and, hence, describe a free resolution

of their final cokernel.

Proof. See [18] for the Eagon-Northcott complex. Both cases including the
Buchsbaum-Rim complex are treated in [22, Theorem A2.10]°. Another con-
struction of the Eagon-Northcott complex is described in [12]. O

Corollary 1.3.13. For all n > m > 0, the variety M;}, C Mat(m,n;C) is
Cohen-Macaulay at the origin.

Proof. This follows directly from the Auslander-Buchsbaum formula 1.2.16
and the fact that the length of the Eagon-Northcott complex is equal to the
codimension: n — m + 1. O

Remark 1.3.14. We include the Buchsbaum-Rim complexes in Theorem (1.3.12),
because of the following fact. Let d = n — m — 1. Then (1.29) ends with

s SR AT RS s Sy AR 2 5.

Thus the first Buchsbaum-Rim complex gives a free resolution of the mod-
ule presented by ¢.

? The proof in [22] is formulated for more general situations. But historically, the exact-
ness of the Eagon-Northcott complex was proved for this case first, while the general case
was deduced using generically acyclic complexes as introduced above.
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Giving resolutions of the rings of the M, , for t < min{m,n}, i.e. the
case of non-maximal minors, has taken much longer. Lascoux was the first
one to construct them over rings R which contain the rationals, Q, in [49].
Working over Q was necessary for him, since he heavily used representa-
tion theory and Schur functors. His ideas were then picked up and people
tried to carry over his results to the integers. For example, in [2] the case of
(m — 1)-minors of m X n-matrices is treated.

It should be pointed out, however, that despite the fact that Lascoux
was the first to give explicit resolutions, Hochster and Eagon proved the
following theorem already seven years earlier in [46].

Theorem 1.3.15 ([46], Corollary 4). Let Y be as in (1.22) and R = K[y] =
K((yi,;)i,;) for a Noetherian domain K. The ideal (Y"\') C R is perfect of grade
(m—t+1)(n—t+1)forall 0 <t < min{m,n}.

In particular, if K is a field, (M}, ,,,0) C (Mat(m,n; C), 0) is Cohen-Macaulay.

In the proof the authors show that the length of a minimal free resolu-
tion must be equal to (m +t —1)(n+t — 1). However, they do not construct
it.

We are now in the position to prove Theorem 1.3.2.

Proof. (of Theorem 1.3.2) From Theorem 1.3.15 we know that every generic
determinantal singularity (M}, ,,0) C (Mat(m,n; C), 0) is Cohen-Macaulay.
Hence, Theorem 1.3.9 is applicable and the result follows. ]

Finally we may furnish an explicit corollary out of what has already
been hinted in Remark 1.3.10.

Corollary 1.3.16. Let (X0,0) C (CV,0) be a determinantal singularity of type
(m,n,t) given by a matrix A € Mat(m,n; C). Then a minimal free resolution of
Ox,,0 as an O n-module is given by substituting the entries a; j of A for the y; ; in
a minimal graded resolution of O M, .0 S an O,.n-module.

Proof. This directly follows from Theorem 1.3.6 and the fact that (M}, ,,,0)
is Cohen-Macaulay 1.3.15. Also, one uses that minimal graded resolutions
over C[y] give minimal free resolutions over C{y}. O

1.4 Versal Families

Any matrix A € Mat(m, n; On) defining a determinantal singularity (X, 0) C
(CN,0) can be regarded as a map germ

A (CN,0) = (Mat(m,n;C),0)

and determinantal deformations of (X, 0) are precisely those coming from
a perturbation of A. Hence, the deformation theory of (Xy,0) is closely
related to unfoldings of the map A.

In this section we will first develop a construction of semi-universal un-
foldings of map germs into the space of matrices. Then we will discuss its
implications for the determinantal deformations of a determinantal singu-
larity and finally compare the determinantal deformations with the semi-
universal deformation of the underlying space germ.
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1.4.1 Versal Unfoldings of Map Germs into the Space of Matrices

The first step in the development of the theory of versal unfoldings is an
adequate notion of equivalence of maps. What we will present now is ba-
sically Ky -equivalence - an idea originally suggested by James Damon. In
his book [16] he treats a more general case and we will reformulate many
of his results there explicitly for our purposes. In this process we are, of
course, able to drastically simplify the exposition.

Since we are dealing with maps to the space of matrices Mat(m, n; C)
and we are doing geometry, we might prefer to work independently of any
chosen basis or local coordinates. This suggests the following definition.

Definition 1.4.1. Two map germs A, Ay : (CN,0) — (Mat(m,n;C), P)
are called equivalent if there is a germ of an analytic diffeomorphism @ :
(CN,0) — (CN,0) at 0 and two germs

F:(CY,0) = GL(m; Oy), G:(CY,0) = GL(n;Op)

such that
Ay =F - (®*Ay) -G

The reader may note the compatibility with the definition of equivalence of
determinantal singularities 1.1.4. Note that we do not require that 0 € CV
is mapped to the zero matrix. For determinantal singularities the notion
of minimality allowed us to reduce to this case. But for reasons that will
become appearent later, it will be more convenient to consider this more
general setup in the context of map germs. If we forget about the matrix
structure of the target space, we can, however, assume that P is just the
origin of some C? again.

Definition 1.4.2. An unfolding of a map germ f : (C,0) — (CP,0) over a
local C-algebra (B, n) is a commutative diagram

(CN,0) (1.30)

(id,O)l \

(CN,0) x Spec B o (CP,0) x Spec B

\ im

Spec B

where 7, is the projection to the second factor.

If B = O, for some g, then Spec B stands for (C?,0) and F is called an
unfolding of f on q parameters.

If (B, n) is Artinian, then F is called an infinitesimal unfolding of f.

If furthermore n? = 0, then F is called a first order unfolding of f.

Remark 1.4.3. The commutativity of the lower triangle of (1.30) implies that
F corresponds to a morphism of B-algebras. Geometrically this means that,
if we interpret F' as a function on two arguments (z,u) € C x Spec B, then
F(z,u) = (F(x, u),u) € CP x Spec B for some F(z,u), which takes values
in CP. In other words F € (Oy&¢B)P. Since F is compeletely determined
by commutativity over B and F, we will, by abuse of notation, also write
Fe (O N®(CB )P.
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For any map ¥ : Spec B’ — Spec B of local C-algebras and F' an unfold-
ing of f over B, we obtain an induced unfolding F' = U*F via ¥

F/

(CN,0) Xgpec B Spec B — (CV,0) x Spec B il (CP,0) (1.31)

| l

Spec B’ Spec B

over Spec B’. In terms of functions this means
Fl(z,0) = (V*F)™(z,v) = F(z,¥(v)).

Remark 1.4.4. If we want to classify unfoldings of maps, it is no restriction
to consider only unfoldings with smooth base (C*,0), i.e. over power series
rings Oy,. If B is any analytic algebra, then it is of the form O}, /J for some
ideal J C 0. Now, if F € (On®cB)P is an unfolding of F' : (CN,0) —
(CP,0), we can consider any lift

F' S (0N®cok)p

of F. This is an unfolding of F over O and F is induced from F’ via the
natural map Oy, — B.

Definition 1.4.5. Let A : (CV,0) — (Mat(m, n; C), P) be a given map germ.
Two unfoldings

A1, Ay : (CV,0) x Spec B — (Mat(m,n; C),0) x Spec B
of A over B are called equivalent if there is an unfolding of the identity
@ : (CV,0) x Spec B — (CV,0) x Spec B, ®| (e~ 0)xqoy = (v 0y
and two unfoldings of map germs

F € GL(m; Ox&c¢B), FepC=1,
G € GL(n; Ony®cB), GepC=1,
such that
Ay =F-(d*A)) - G!

as unfoldings over B.
A unfolding A of A over B is trivial, if A is equivalent to the unfolding
given by A®c1p.

Definition 1.4.6. For a given A : (CV,0) — (Mat(m,n;C), P) let Inf(A) be
the space of equivalence classes of unfoldings of A over Cl[e]/e?.

Remark 1.4.7. Inf(A) is what Damon calls the extended tangent space to A in
Mat(m,n; Oy) in [16].
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Lemma 1.4.8. The space Inf(A) for a given A : (CV,0) — (Mat(m,n; C), P) is
canonically isomorphic to the O y-module

0A
a’L'i ’

Mat(m, n; (’)N)/< i=1,... ,N> + (im(g)) (1.32)

where im(g) is the image of the map

g : Mat(m,m; Oy)xMat(n,n; On) — Mat(m,n; Oy), (F,G)— F-A+A-G.

Proof. The algebra B := Cl¢]/e? has a natural splitting as C @ ¢ - C, which
induces an isomorphism

V&cClel/e? =V @e-V
for any C-vector space V. An unfolding A of A over B is, hence, given by
A=Ay®e- A € Mat(m,n; Oy)&cB

with 4¢ = A. From this we see that A is trivial if and only if A; =0.
Suppose A is equivalent to the trivial unfolding. Then there exist

o = id(CNp +e- (I)l(g) S O%@CB
F = 1m+6'F1(g) S Mat(m, m; ON)®(CB
G=1,+¢- Gl(g) € Mat(n,n; ON)®(CB
such that )
A=Ay+cecA ZF-(‘I)*(A—F&“-O)) ~G_1.

Performing the Taylor expansion for the entries of A = Ay and G~ 1, we
obtain for the right hand side

N
0Ay .
(lm +e- Fl) . (AO o] id((cN70) +e - Z (I)Zl 81’0 o ld((CNp)) . (ln — & Gl)
=1 ¢

N 04
= Ap+e- (Fl‘Ao-f— (Z(I)Zl 8330> —AU'G1>7
i=1 ’

where ®! is the i-th component of ®;. It follows that A; € Mat(m,n; Oy) is
a trivial unfolding if and only if it is zero in the quotient (1.32). O

Lemma 1.4.8 gives the set Inf(A) of a given map germ A : (CV,0) —
(Mat(m, n; C), P) the nice structure of a finitely generated Oxy-module. By
definition it covers all equivalence classes of unfoldings over C[e] /2. If s :=
dimc Inf(A) < oo, we can choose elements Gi,...,G, € Mat(m,n; Oy),
which reduce to a C-basis of Inf(A). From this we built the unfolding

A=A+ u G (1.33)
i=1

over B := Cluy, ..., us]/(u1,. .., us)? with coordinates u, . . . , u.



28 Chapter 1. Deformations of Determinantal Singularities

Letn = (uy,...,u,) be the maximal ideal. The tangent space to (Spec B, 0)
at0Ois
0.Tc~ = Home (n/n?,C) = (n/n?)Y.

There is a canonical isomorphism 1 : Tspec B0 = Inf (A) given by

Vg Y oluw)- G (1.34)

=1

This generalizes to arbitrary local C-algebras (B’,1’) and unfoldings A of
A over B'. Let vy,...,v,; be a minimal set of generators of n’/n2. If p €
Tspec B',0, then we have

: OA
TViper > ou)- 5. ©p B/n € Inf(A). (1.35)
i=1 ¢

This homomorphism of vector spaces V¥ is called the determinantal Kodaira-
Spencer map of the unfolding.

In case 02 = 0 in B, i.e. if A is a first order unfolding, the dual map
of Lo W: Tspec B',0 — Tspec B,0 uniquely determines a homomorphism of
algebras @ : B — B'. It is now easy to see that we necessarily have

A=AcpB,

i.e. that A can be written as an unfolding of A induced from A via ®.

In other words, the unfolding given by (1.33) is a universal object in
the sense that any other first order unfolding can be obtained from it in an
essentially unique way. The following definition is the generalization of
this idea.

Definition 1.4.9. Let A : (CV,0) — (Mat(m,n; Oy), P) be a map germ.
An unfolding A of A over (CF,0) is called a versal unfolding of A if any
other unfolding A’ over some complex space germ (Y,0) is equivalent to
an unfolding induced from A via some map ¥ : (Y,0) — (C,0).

An unfolding A of A is called infinitesimally versal if any first order un-
folding of A can be obtained from A via some homomorphism ¥* : O}, —
Cle]/€2.

Moreover, an infinitesimally versal unfolding A is semi-universal if the
dimension k of the base is equal to dimc Inf(A).

Theorem 1.4.10. Let A : (CV,0) — (Mat(m,n;C),0) be a holomorphic map
germ with k := dimc Inf(A) < oo, and suppose Gy, . ..,G, € Mat(m,n; Oy)
reduce to a C-basis of Inf(A). Then the unfolding of A over (C*,0) given by

K
A=A+ ZUZ -Gy € Mat(m,n; ON&cOy),
i=1
where the u; are the coordinates of (C,0), is semi-universal.
The key idea for the proof is extracted in the following reduction lemma.

Lemma 1.4.11. Let A : (CV,0) — (Mat(m,n;C), P) be a holomorphic map
germ and suppose A € Mat(m,n; Ony1) is a 1-parameter unfolding of A with
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unfolding parameter v. If there exists a vector field § € Ten+1 g with dv(§) = 1
and matrices

F € Mat(m,m; On4+1), G € Mat(n,n; Ony1)

such that
E(A)=F-A+A -G,

then A is trivial.

Proof. Associated to ¢ there is a holomorphic flow
®:UxD—CNH

defined on some open neighborhood U < CM*! of the origin and some
open disk D C C (cf. Theorem A.4.1). As usual, let (z, v) be the coordinates
of CN*1 = C¥ x C. Denote the second argument of ® by ¢. By the assump-
tion dv(§) = 1 we have ®((z,v),t) = (x,v + t). In particular if we restrict
the first argument of ® to the z-plane CV x {0}, then

d:(UNCY x{0}) x D —CN*!

is a holomorphic diffeomorphism onto its image W C CN*! preserving

t = v. We will use this as our new coordinate system (z,v) of CN*1 on W

around the origin. In these coordinates £ = % is the constant vector field.
Now consider the complex ordinary differential equation given by

{ddtM(m,t) = F(z,t) - M(x,t) + M(z,t) - G(x,1) (1.36)

M(z,0) = Mo(x)
for a function M on W taking values in Mat(m,n;C). According to A.4.5

there exist solution operators L(x,t) € GL(m;C) and R(z,t) € GL(n;C) for
1.36 describing the solution as

M(z,t) = L(z,t) - Mo(x) - R(z,1t)

on some neighborhood of the origin.
But, since the solution of 1.36 is unique and A(x,t) is a solution with
A(z,0) = A(z), in the new coordinates we find

A(z,t) = L(z,t) - A(z) - G(x, t).
By the definition of triviality this finishes the proof. O

Proof. (of Theorem 1.4.10). Let Ac Mat(m, n; On@cB) be any other unfold-
ing of A over some base Spec B.

We will first prove the theorem for the case B = O, for some r € N
and then the general case will follow as usual. Let v = (vy,...,v,) be the
coordinates of (C”,0). Then A is of the form

r
A—FZ’UT ~Hj
j=1
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for some matrices H; € Mat(m,n; Oy®cO;). We will write Oy, for
C{z,u}, On4r for C{z,v} and Opn 4, for C{z, k,v}. Consider the “com-
posite unfolding” given by

A=A+ (ZuZG1> + (Zvj Hz)
i=1 j=1

in Mat(m, n; On4x+r) and its associated space of relative infinitesimal unfold-

ing

0A

Inf™(A) := Mat(m, n; Onprir)/ <(‘3a:

>+<F-A+A-G>. (1.37)
Here (0.A/0x) denotes the submodule generated by all partial derivatives
with respect to the z;, and (F' - A + A - G) is the submodule generated by
left- and right-multiplication with square matrices /' and G in Oy 4, as
usual.

Clearly Inf"(A)/(u,v) = Inf(A) and the G; give a C-basis of it. By
the Weierstrass Finiteness Theorem it follows that Inf™!(A) is a finite O, ;-
module and the (G;)%_; generate Inf™!(A) over O,,. We deduce that there
is an expression

A é al DA
= > aiwv) Gi+ ) bi(zuw) o+

dvr i=1 =1 Lj
F(z,u,v)- A+ A-G(z,u,v)
in Mat(m,n; Onyxyr) for some a = (ai,...,ax), b = (b1,...,bn), F €

Mat(m, m; Ontx+r), and G € Mat(n, n; Onypir ). If we let

o & 0 X d
fzavr_zai'am_;bj'%’

i=1

then we can rewrite this expression as
EA)=F - A+A-G

with dv,.(§) = 1. It follows from Lemma 1.4.11 that A regarded as an un-
folding of Al(,,—o} by v over (C, 0) is trivial.

We may therefore change coordinates on (CN+#+7=1 0) x (C,0) in such
a way that v, is preserved and the new ones agree with the old ones on
(CN+r4r=1 0)x {0} = {v, = 0}. If we let p, be the projection to (CNT++7=1 ()
in these new coordinates, then

"4 = p*A"Ur:O
By induction on r we finally obtain a morphism
p: (CNTRIT0) — (CNF#,0)

such that
A=p*Aly—0y =p"A
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and hence A = Alfu=o} is induced from A.

For arbitrary B = O, /T the result follows by taking a lift A’ of the
unfolding to O, and finding a morphism ¥ : (C",0) — (C*,0) such that
A’ = U*A. If we let 1 : Spec B — (C",0) be the (scheme-theoretic) inclu-
sion, then

A=U"ARp, B=(Vo)"A.

1.4.2 Versal Determinantal Deformations

If A € Mat(m,n; Oy) describes a determinantal singularity (Xo,0) of type
(m,n,t) and k := dimc Inf(A) < oo so that a semi-universal unfolding A
of A exists, then clearly A also covers all determinantal deformations of
(X0, 0). More precisely, if we let

(Xo,0)— (X,0)—— (CV,0) x (C*,0) (1.38)

L

{0}(—> (CH7 0)

be deformation of (X, 0) defined by the ideal (A"") C Op 4, then for any
other germ (Y, 0) and determinantal deformation of (Xo, 0) over Oy, there
is a morphism ® : O, — Oy, through which the deformation of (Y,0) is
obtained as a pullback of (1.38). In other words: (1.38) is a versal determinan-
tal deformation of (Xo,0). But it is not clear that for all nontrivial unfoldings
of A also the space germ (X, 0) is deformed in a nontrivial way. What one
would like to have is a semi-universal determinantal deformation. We give a
precise meaning to these notions.

Definition 1.4.12. Let (X,0) C (CV,0) be a determinantal singularity of
type (m,n,t) given by a matrix A € Mat(m,n; On). A determinantal de-
formation of (Xo,0) over an analytic algebra B given by a matrix A €
Mat(m, n; On@c B) is called versal determinantal deformation of (X, 0) if any
other deformation of the space germ (X, 0) coming from an unfolding of A
is equivalent to a deformation obtained from the one given by A via pull-
back.

A versal determinantal deformation is called semi-universal if the dimen-
sion of the tangent space of the base B at 0 is minimal among all versal
determinantal deformations.

As we already saw in the development of semi-universal unfoldings of
map germs, the tangent space of the base of a versal unfolding encodes all
first order unfoldings. Requiring the tangent space of the base of a semi-
universal determinantal deformation to have minimal dimension, is there-
fore equivalent to saying that its elements uniquely represent all first order
deformations up to equivalence. It follows that, if the deformation over B
is semi-universal, then for any other determinantal deformation of (X, 0)
over some base (.5,0) and the corresponding map V¥ : (S,0) — Spec B the
differential d¥ is uniquely determined.

But it seems to be difficult to get a control over this minimality. We do
not have an analogue of the space Inf(A), with which we could begin to
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build a semi-universal deformation of (Xy,0) by first classifying the first
order determinantal deformations.

What we can do, however, is to compare versal determinantal deforma-
tions of (X, 0) with its semi-universal deformation as a space germ - if they
exist. Recall the following fundamental Theorem by Grauert:

Theorem 1.4.13 ([32]). Let (Xo,0) C (CV,0) bea singularity with dime Ty, o <
oc. Then there exists a semi-universal * analytic deformation

(XOvO)C (X7O)C ((CNao) X (870)

L kA

{0}—=(5,0)

of (Xo, 0) over some analytic base (S, 0).

Here, in the context of deformations of space germs, the term versal
means what it should: Any other deformation (X’,0) — (57,0) of (Xo,0)
as a space germ is equivalent to one obtained from the versal one via pull-
back ¥ : (57,0) — (S5,0). The interesting part is the minimality condition
in the definition of semi-universality. If (Xy,0) C (CV,0) is defined by the
ideal I C Oy, then the T}(O’O is defined as

T}%,O := Homo, (I, 0x,0)/Tcw o- (1.39)

Here Homp,, (I, Ox, o) is the stalk of the normal bundle of (Xo,0) in (CV,0)
at the origin, and the action by elements £ € Tix ( is given by

§: 1= 0Oxp0, fr=2&(f)+1

A direct calculation shows that if (X, 0) is smooth at 0, then T)1<0,0 = 0.
Consequently, the coherent analytic sheaf associated to T)l(m0 is supported
in the singular locus of (X, 0) and in particular the requirement dim¢ T)l(o,o
in the statement of Theorem 1.4.13 is fulfilled for all isolated singularities.
The dimension

7 :=dim¢ T)IQ)’O

is called the Tjurina number of the singularity (Xo, 0).

The space T}%’O is the equivalent object - in the realm of deformations
of space germs - of the space Inf(A) in the following sense: It classifies all
first order deformations of (Xy,0), i.e. deformations over C[e]/e2, up to
equivalence. For a more detailed treatment of the T, ,, the reader may
consult e.g. [7], [64], [38] or also the original article by Schlessinger [63].

Definition 1.4.14. A versal deformation of an arbitrary singularity (X, 0) C
(CN,0) as a space germ over a base (S, 0) is semi-universal if dimc T)l(o,o is
equal to the dimension of the tangent space of (.5, 0) at 0.

Clearly, the tangent space of the base of a semi-universal deformation is
minimal among all versal deformations of the given singularity.

* In [32] Grauert speaks of a “versal deformation”. However, this translates to the more
common notion of a semi-universal deformation, which we shall adapt here.
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From the definitions of semi-universal unfoldings of map germs A :
(CN,0) — (Mat(m,n; C),0) to the space of matrices and semi-universal de-
formations of space germs it follows that if we have a determinantal singu-
larity (Xo,0) C (CV,0) of type (m,n,t) given by A with  := dim¢ Inf(A4) <
oo and also 7 := dimg T, , < 00 so that the semi-universal unfolding of A
and the semi-universal deformation of (Xy,0) both exist, then we have a
comparison map

¢ : (C*,0) — (S,0), (1.40)

where (5,0) is the base of a semi-universal deformation of (Xy,0). In the
following we will discuss this map with the view towards the question,
whether or not a semi-universal determinantal deformation can be con-
structed.

The idea for the proof of Theorem 1.4.13 by Grauert is to use the tech-
niques developed by Schlessinger in [63], from which one obtains the ex-
istence of a formal semi-universal deformation in the setup of Theorem
1.4.13. By the latter we mean a deformation over a formal scheme asso-
ciated to an algebra of the form Cl[[u1, ..., u]]/T, where C[[u]] denotes the
ring of formal power series. Grauert proved that if such a formal semi-
universal deformation exists, then it exists already in the rings of conver-
gent power series and therefore enjoys all the functorial properties pro-
vided by the theory developed by Schlessinger plus a concrete geometric
realisation.

The application of Schlessingers approach to determinantal deforma-
tions has been pursued by M. Schaps in [62]. She gives a criterion for a
determinantal singularity (Xo,0) C (CV,0) to have a semi-universal de-
terminantal deformation. However, large parts of [62] are devoted to the
exposition of examples, in which these criteria are not met.

Example 1.4.15. i) Let (Xo,0) C (C3,0) of type (2,2,2) be given by the

matrix
A= <:C y) .
z T

The ideal I of (X, 0) is thus generated by the equation f = 22 —yz and
we recognize the well-known A; surface singularity. A basis of Inf(A)

is given by
1 0
b %)

and hence if we let u be the deformation parameter in the semi-universal
unfolding of A, then the induced deformation of the space germ (X, 0)

comes from a perturbation of f by —u?.

The semi-universal deformation of (Xj, 0) as a space germ on the other
hand is given by the perturbation of f by a constant v. It follows that
the comparison map (1.40) takes the form

d:(C,0) = (C,0), u—v=r1’

In other words: The base of the semi-universal unfolding of Aisa2:1
cover of the base of the semi-universal deformation of (X, 0).

ii) (Pinkham, [58]) Let (X,0) C (C?,0) be the cone over the rational nor-
mal curve of degree 4. As a determinantal singularity it is given by the
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iif)

iv)

2 x 2-minors of the matrix
a xT xT T
A— (T1 T2 T3 Ta)
T2 I3 T4 I5

One easily checks that the following matrices give a basis for Inf(A)

00 0O 0 0 0O 00 00

100 0/7 \0O 100/ \0O O0T1FP00
and hence dimc Inf(A) = 3. Let u1,u2 and u3 be the deformation pa-
rameters corresponding to these matrices.

In [58] Pinkham shows explicitly that the semi-universal deformation
of (Xp,0) as a space germ has a base (S,0) C (C%,0) of the following
form. Let vy,...,vs be the coordinates of C*. Then (S,0) consists of
two components: The plane H = {vy = 0} and the line L = {v; =
vy = vy = 0}. Furthermore, the comparison map ® : (C3,0) — (S5,0)
takes (C3,0) isomorphically to (H,0). In this case the determinantal
deformations of (X, 0) coming from A embed as a component of the
base of the semi-universal deformation.

The deformation of (Xy,0) by v, along the line L can be described as
follows. Its total space over (L,0) = (C, 0) is given by the 2 x 2-minors
of the matrix

T T2 X3 — V4
B = xI9 T3 Ty
T3 — V4 T4 T5

Note that despite being described by the minors of a matrix, (X, 0)
does not become a determinantal singularity via B: It does not have
expected codimension. However, the induced deformation from the
perturbation by v, is apparently flat. The reason behind this is that B
is a symmetric matrix, and in the appropriate deformation theory for
this setup (Xo,0) does have the correct codimension.

Consider the A; threefold singularity in (C*,0) as a determinantal sin-
gularity of type (2, 2, 2) via the matrix

A:(j g))

There are no nontrivial determinantal deformations of this singularity.
For the space germ on the other hand we have Ty, , = C so that the
comparison map takes the form

o : {pt} — (C,0).

This example is taken from Schaps [62]. It also appears in [13] and was
recently picked up by Friihbis-Kriiger in [24], where the computations
for the comparison map & are carried out explicitly.
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Let (Xo,0) C (C*,0) be the union of the four coordinate axis. This is a
determinantal singularity via any matrix

<$1 a-xT3 Brxg -1y )

0 To T3 Ty

for general values «, 3,7 € C. Using row and column operations and
local coordinate changes, one can always bring this matrix to the form

s (:1:1 0 z3 7’~x4>
0 T2 I3 Xq

with 7/ ¢ {0,1}. One can show that the following matrices give a C-
basis of Inf(A):

0 00O 0100 0010
1 000/ \0OO0OOGO/ \O0OO0O0O0)’
0 0 01 0 0 0 a4
0 00 0)° 000 0/
Hence, the base of the semi-universal unfolding of A is (C%,0). Let

u1, ..., us be the standard coordinates of this space corresponding to
the five matrices above.

Computations of Rim” and independently of Buchweitz [13] have shown
that the base (.5, 0) of the semi-universal deformation of (X, 0) is iso-
morphic to the cone of the Segre embedding of P! x P? into P and thus
also of dimension 5. Consider the comparison map

®: (C°,0) — (S,0).

It is easy to see that the perturbation by us alone does not change the
ideal generated by the 2-minors of A in O4: This is a non-trivial defor-
mation of the map germ A which induces a trivial deformation of the
underlying space germ! Accordingly, as the computations by Friihbis-
Kriiger show, @ is a contraction of the us-axis, i.e. the set

C:={(ut,...,u5) €C°:uy = -+ = ug = 0}

is mapped to the point 0 € S, but outside C' the map @ is a local diffeo-
morphism.

It is evident from this list of examples that there is no general pattern
of how the comparison map ® behaves. It neither needs to be injective nor
surjective. The last example even shows that ® can have non-finite fibers.

One could hope that in a semi-universal unfolding of the map A the pa-
rameters, which lead to trivial deformations of (X, 0) can be singled out
on an infinitesimal level: If v € T« (0) = Inf(A) is any element of the tan-
gent space of the base of the semi-universal unfolding, then one could ask
whether the induced infinitesimal deformation of (Xy,0) given by d®(v)
is zero. The candidate for the tangent space of a semi-universal determi-
nantal deformation of (X, 0) would be the quotient Inf(A4)/ker d®. How-
ever, Example 1.4.15 i) also shows that it is pointless to try to construct

5The computations are attributed to Rim in [62] without further reference
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a semi-universal determinantal deformation of (Xy,0) from this quotient,
since d®| is the zero map.

We conclude this section by sketching a possible step towards a con-
struction of a semi-universal determinantal deformation. However, the au-
thor can not precisely estimate the benefits of it.

Let (X(,0) C (CV,0) be a determinantal singularity of type (m,n,t)
given by A € Mat(m,n; On). We define

Inf;(A) := Inf(A) ®o, Ox,.0- (1.41)

The following theorem shows that if we start to build a determinantal
deformation of (X, 0) from the infinitesimal ones described by this space,
then we indeed obtain a versal determinantal deformation.

Theorem 1.4.16. Let (Xo,0) be as above with v := dimc Inf;(A) < oo and let
(G;)]_, € Mat(m,n; On) be matrices, which reduce to a C-basis of Inf;(A). The
determinantal deformation of (Xo, 0) given by

vy
A=A+ u-G (1.42)
=1

over O, = C{u} is a versal determinantal deformation of (Xo,0).

Remark 1.4.17. There is no guarantee for any minimality of this deforma-
tion. Note, however, that dimc Inf;(A) might be finite also in cases where
dimc Inf(A) is not. Thus dimc Inf(A4) < oo need not be a necessary criterion
for a versal determinantal deformation of (X, 0) to exist.

The proof of Theorem 1.4.16 is straightforward given the proof of Theo-
rem 1.4.10. It also uses a reduction lemma similar to Lemma 1.4.11.

Lemma 1.4.18. Suppose (Xo,0) C (CV,0) is described by the ideal I = (f1,..., fn) C
Oy andthat Fy, ..., F, € Oy®cO; = O are power series such that F;(z,0) =
fi(z). Let u be the additional coordinate, i.e. the variable of O;. Consider the fam-

ily (X,0) C (CN,0) x (C,0) over (C,0) defined by the F;. If there exists a vector
field § € T+ g with du(§) = 1 such that

f(Fl) S (Fl, .. .,Fn>,

then there is a commutative diagram

(X,0) =~ (X0,0) x (C,0)

N

(C,0)

and the family (X, 0) is trivial.

Proof. Suppose such a vector field § € Teni1 exists. Let @ : (CN,0) x
(C,0) — (CN*1.0) be the flow of £ associating to any point (x, v) the point
in CV*! reached by traveling for time v starting from (z,0) € CN*! =
CN x C. Because du(¢) = 1 the map ® commutes with u, i.e. u(®(z,v)) = v,
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and since the differential of ® at the origin is the identity, ¢ is a germ of a
diffeomorphism. We may, therefore, after a change of coordinates, which
preserves u = v, assume that ¢ = %.

By assumption we find matrices A € Mat(n, n; On41) such that
OF; -
§(F) = 2 Hwu) = > i@, u)Fy(z, ).
j=1

Along a flow line through a fixed € CVT! this is a linear differential

equation on F' = (F1 e Fn)T which, by the general theory on those
equations, has a unique solution operator U,(u). By this we mean a matrix
U, € GL(n; O1) such that

F(z,u) =Ug(u) - F(z,0)

for v small enough. The claim of the lemma follows directly from the ob-
servation that U depends holomorphically on x. O

Proof. (of Theorem 1.4.16). The proof is very similar to the proof of Theorem
1.4.10 and we will make use of the notation there.

Suppose A € Mat(m, n; Onyy4k) is a k-parameter unfolding of A with
unfolding parameters v = (v1,...,v;). We will show that on the level of
analytic space germs the deformations by v are trivial.

We define the space of relative infinitesimal deformations as

Infi(A) := Inf™(A) /(A Mat(m, n; Onqyi1)-

Just as in the proof of Theorem 1.4.10 we obtain a vector field

0 0 0
52 a’UT _zZ:alﬁuz_ZJ:bjax GT([:N—Q—;H—l’O

J

such that
¢(A) = F(z,u,v)- A— A-G(z,u,v) + H

with the difference that now we also have a term H, which is a matrix with
entries in (AN).

Consider now A" as a vector with (') - () components in On.4.41.
For any two ordered multiindices I and .J we write (-)}'; for the function
on Mat(m, n; C) associating the minor of rows in I and columns in J to a
matrix A. Along £ we find

o(- At
(A = > @@4) - E(Aij)

ig 3%,;‘
O0)1a
= ZW(A)-(F-A+A-G+H)M.

.3
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RYAY
The terms 86(,;7:;7(,4) can be computed using row- or column expansion of
determinants:
o()7! 0 ifig¢g Torj¢.J
41’.] (A) = +q AAL—1 ) (1.43)

where in the second case i is the p-th entry of the ordered multiindex I and
j is the ¢-th of J.

With this at hand we can exand the first two summands on the right
hand side:

201 )
2 gy, WA = ) DTG gy Zk:Fi"“'Aka

i iel,jed
= D 1P D (DIARG gy - Ar
kel Jjed
= > Fu=D AN ey
kael

and similarly for the term involving G. The resulting expressions clearly
are in (A") and so is

> OOLs 4. 11,

8 ..
ig Y

Hence, Lemma 1.4.18 is applicable and the deformation by vy, is trivial. The
proof is now concluded as for Theorem 1.4.10. O

1.4.3 Complete Intersections and Cohen-Macaulay Schemes of Codi-
mension 2

After what has been said in the previous section about the (im-)possibility
to construct semi-universal determinantal deformations, we would like to
single out two important classes of determinantal singularities, for which
the notions of a semi-universal unfolding of the defining matrix considered
as a map germ and the semi-universal deformation of the underlying space
germ coincide.

The first class consists of the complete intersection singularities. If (X, 0) C
(CN,0) is a complete intersection given by a matrix A € Mat(1,d; Oy), then
clearly every deformation of (Xy, 0) is determinantal. A direct computation
shows that there is a canonical isomorphism

Inf(A) = T, o (1.44)

Thus a semi-universal unfolding of A exists if and only if the semi-universal
deformation of (Xy,0) exists; and this is the case if and only if (Xj,0)
has an isolated singularity at the origin. It is well known (see e.g. [57])
that a semi-universal deformation of (X, 0) can be constructed from a C-
basis of the space T)l(m0 in the same way that we constructed the semi-
universal unfolding of map germs in 1.4.10. Consequently for complete
intersections the base of a semi-universal deformation is smooth of dimen-
sion 7 = dimc¢ T)l(o,o' It follows from (1.44) that the comparison map ¢
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between the base (C*, 0) of the semi-universal unfolding of A and the base
(C7,0) of the semi-universal deformation of (X, 0) has a differential of full
rank at the origin we deduce:

Theorem 1.4.19. For an isolated determinantal singularity (Xo,0) C (CN,0) of
type (1,d, 1) the comparison map ® from the base of a semi-universal unfolding of
the defining matrix A to the base of a semi-universal deformation of (Xo,0) is an
isomorphism.

The second class of singularities which we would like to consider are
singularities (Xo,0) C (CY,0), which are Cohen-Macaulay and of codi-
mension 2. As a consequence of the Hilbert Burch Theorem below, they are
determinantal singularities in a canonical way. For them the semi-universal
unfolding of the defining matrix A and the semi-universal deformation of
the space germ (X, 0) also coincide. This was found by M. Schaps and
published in an article [61] preceeding [62].

Theorem 1.4.20 (Hilbert-Burch). Let I C O be an ideal of codimension 2 such
that O /I is Cohen-Macaulay. Then the minimal resolution of On /I as an On-
module takes the form

/ A

0<—On/I On Ot Ok 0 (1.45)

for some matrix A € Mat(t + 1,t; On) and I = (A as ideals in Oy.
Conversely suppose A € Mat(t + 1,t; On) is any matrix such that the ideal
I := (A™) has codimension 2. If we let

f=01 - b1),

where §; is (—1)* times the determinant of A after deleting the i-th row, then (1.45)
gives a minimal free resolution of On /1.

Proof. We show the second part. By assumption (Xj,0) is a determinantal
singularity of type (¢,t + 1,¢). In this case the Eagon-Northcott complex
(1.29) for the generic determinantal Singularity (M, ,,0) takes the form

0— >S5t @ ATLRH 2o 5r @ APRH L 5o AP REL ).

According to Corollary 1.3.16, we only need to substitute O for R and the
matrix A for ¢ to obtain a resolution of Ox, g as an On-module. The result
is exactly (1.45).

For the other direction see e.g. [22] or also [7]. O

Schaps made use of this fact to prove the following theorem.

Theorem 1.4.21 (Schaps, [61]). Any deformation of a Cohen-Macaulay codimen-
sion 2 singularity is determinantal.

Along the same lines one can prove:

Lemma 1.4.22 (Frithbis-Kriiger, [23]). For any Cohen-Macaulay codimension 2
singularity (Xo,0) given by a matrix A € Mat(t,t + 1; On) one has a canonical
isomorphism

Inf(A) = Tk, o
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Just like for the isolated complete intersection singularities one can show:

Theorem 1.4.23. Let (X,,0) C (CV,0) be a Cohen-Macaulay codimension 2 sin-
gularity of type (t,t+1,t) with defining matrix A as in the Hilbert-Burch Theorem
1.4.20. If Inf(A) is of finite dimension so that the semi-universal unfolding of A
exists, then the comparison map ® from the base of the semi-universal unfolding of
A to the base of the semi-universal deformation of (X, 0) is an isomorphism.

Note that in this theorem the singularity does not need to be isolated.

Proof. This follows from the fact that the semi-universal deformation of
(X0, 0) is smooth of dimension 7 = dim¢ T}(m0 in the same way as for com-
plete intersection singularities. In [61] M. Schaps announces to give a proof
for this fact in a subsequent paper. However it seems that this paper did
not appear. For a construction of the semi-universal deformation see e.g.
[57]. O

For the author the Cohen-Macaulay codimension 2 case was the start-
ing point of his investigations in the field of determinantal singularities and
a good part of the research exhibited in this thesis was done for isolated
Cohen-Macaulay codimension 2 singularities. The fact that they are de-
terminantal in a canonical way and that any deformation is determinantal
makes a comparison of analytic and topological invariants, like the Tjurina
number and the vanishing Euler-characteristic of the singularity (which we
will define later), more reasonable. The definition of the Tjurina number of
an isolated singularity does not require any determinantal structure what-
soever, while the vanishing Euler-characteristic - as we will define it - de-
pends on the choice of a matrix describing a given singularity.
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Chapter 2

Topological Invariants of
Singularities

This chapter is devoted to the development of the notion of Milnor fibers.
We first recall the classical definitions and theorems concerning topological
invariants of isolated complete intersection singularities (ICIS). Essentially,
the material can also be found in the standard sources such as [53], [5], [6],
and [31]. We reproduce the existence and uniqueness of Milnor fibers for
ICIS as a motivation for our considerations for determinantal singularities.
Then we state the main results concerning Milnor and Tjurina number from
[53], [70], [35], [34], and [35].

For determinantal singularities, which are not always smoothable, we
develop the notion of a stabilization. After some preparations, we recover
the notion of an essentially isolated determinantal singularity (EIDS) as de-
fined in [20]; and prove the existence and uniqueness of a determinantal
Milnor fiber for this class of singularities.

Finally, we reprove a formula for the computation of the vanishing Euler
characteristic in terms of polar multiplicities for isolated determinantal sin-
gularities, which admit a determinantal smoothing. This was already done
in [8] and [59], but during the writing of this thesis, the author pointed out
a mistake in a result, which was used in [8]; and this made it necessary to
find a new proof. The one presented here is due to the author. However in
the same time the authors of [8] independently came up with an erratum,
which turned out to use similar methods. For a third proof, the reader may
consult [59].

2.1 Smoothings, Milnor Fibers and Topology

As stated above, the results of this section are not new. It is collected and
reformulated in a concise way from the mentioned standard sources.

Suppose we are given a singularity (Xo,0) C (CV,0) and we want to
study its change in topology under deformation. The first thing to do is to
single out a concrete neighborhood of 0 € X, which we want to observe.
Clearly, the result should only depend on the germ and not on the chosen
representative. All this is contained in the notion of a Milnor ball, which we
will introduce now.

There exists a complex analytic Whitney stratification of X, coming
from a strictly ascending chain of analytic subspaces

{O}CXéO)C~--CXéd):X0
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of Xy at0, see e.g. [40], [45]. In this setting the strata are, of course, given by

the sets S; := X, éi) \ X éi_l). For the definition of Whitney stratifications see
the Appendix A.3. We will usually assume that the stratification is minimal
in the sense that the singular locus Sing X, éi) is equal to Xéiil)
contained in it for all i > 0.

and not only

Lemma 2.1.1. There is an ¢ > 0 such that the sphere S C C of radius &' 2
around the origin intersects all strata X(()l) of X transversally for all e > ¢’ > 0.

The proof is standard and using the Curve Selection Lemma as it can be
found in [53]. Although the statement there is formulated for algebraic sets,
the proof is known to carry over to real analytic sets as well.

Proof. Let
p:CN SR, 2z |z)?

be the squared distance function from the origin. We show that p does not
have critical points on any of the strata of the given Whitney stratification.
Set

— D\ x@ . 9, — 0;
K; = {m e Xy, '\X, :dp=0in m'Qﬁ(é"“)\Xé“ }
Clearly, K; is a closed analytic subset of Xé”l) and K; \ X(()i) satisfies the
conditions of the Curve Selection Lemma. Suppose 0 € K. Then according
to the Curve Selection Lemma there is a real analytic curve

v1]0,8) = Ki, 4(0)=0, ~(t) €K\ X vt>o.

Along this curve we find

pr(t)) = / dp(y(r)) - () dr = 0

since by assumption dp(y(7)) = O forall 7 > 0. K C Xéo) be the critical

locus of p on Xéo). This contradicts the choice of ~.
Since there are only finitely many K; and p is bounded from below on

each of them, there is a minimal € > 0 for which the assertion follows. [

Definition 2.1.2. For any ¢ as in Lemma 2.1.1 the ball B; of radius % around
the origin is called a Milnor ball for (X, 0). The space X( N 0B is called the
link of the singularity (Xo,0)

Corollary 2.1.3. For ¢ as in Lemma 2.1.1 the space X = B. N X is contractible,
i.e. the map
Xo— Xo, +—0

is homotopic to the identity on X,.

Proof. This is an easy consequence of Thom’s First Isotopy Lemma A.3.2.
Lemma 2.1.1 shows that the squared distance function from the origin p is
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a stratified submersion on X \ {0}. Consequently we have a homeomor-
phism

X\ {0} —= XN OB. x (0,¢]

T

(0,¢e].

Thus we may write each point z € X, \ {0} as x = (y, 7) with y in the link
and 7 € (0,¢]. A homotopy of the point map to the identity can now be
constructed as follows:

H:Y()X[O,l] — Yo,

(.) (y,t-7) ift#0andz = (y,7) € Xo\ {0},
’ 0 otherwise '

Because 0 is an isolated zero of p on C¥, this map is continuous. O

Itis appearent from Lemma 2.1.1 and Corollary 2.1.3 that a Milnor ball B for
(Xo,0) can be chosen arbitrarily small without changing the space Xo N B
up to homeomorphism. Therefore XyN B depends indeed only on the germ
(Xo,0) and not on a chosen representative X, or on B.

Now let

(Xo,0)—— (X,0)——— (CN,0) x (Ck,0)

Lk X

{0} (¥,0)~———(C*,0)

be a flat family over a germ (Y,0) with central fiber 771({0}) N (X,0) =
(X0,0) C (CV,0). For chosen representatives Xy < X — Y in open sets
U x D ¢ CN x C* we say that the family is a smoothing of the singularity
(Xo,0), if there are points u € Y arbitrary close to 0 such that the fiber
Y, = 71 ({u}) is smooth. It is easy to see that the property of a deformation

to be a smoothing does not depend on the chosen representatives.
We can choose a Milnor ball B € U C CV for X,. Then the space

Yo =XoNB
is compact and since X is closed in U x D the restriction
m: XN(BxD)—D

is proper. In this case B x D is called a Milnor tube for the deformation
Xo = X 5 Y.

If w € Y is a point with smooth fiber X, then the Milnor fiber is sup-
posed to be the space

X, = X, N B x {u}.

However, in general this notion is not yet well behaved. To make a Mil-
nor fiber an invariant of the given singularity, we need make further as-
sumptions which can differ depending on whether or not the singularity is
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isolated, whether it admits a versal deformation, whether it is equidimen-
sional and so on.

2.1.1 Milnor Fibers of Isolated Singularities

In this section we shall restrict ourselves to equidimensional isolated sin-
gularities (Xo,0) C (C¥,0), which admit a smoothing over some (CF,0).
This is to avoid unnecessary technicalities arising from deformations over
germs (Y,0), which are singular themselves. We saw such a deformation
in Example 1.4.15 ii). But even in this case the definition of Milnor fibers
for isolated singularities could be reduced to smoothings over (C¥, 0) as we
will sketch in the end of this section.

Lemma 2.1.4. Let (X,0) C (CV,0) be an isolated singularity and Xog — X
C* a deformation of (Xo,0). Again let p be the squared distance function from the
origin in CN and B = {p = €} a Milnor ball for (Xo,0). There exists > 0 and
an open ball D in C* around the origin such that

(pm) s (p e —me+m) x D)NX — (e —ne+1) x D
is a trivial fiber bundle.

Proof. This is almost a direct consequence of Thom'’s First Isotopy Lemma
A.3.2. We first show that at each point p € 90X C X the space X must also
be smooth.

Let f; € On be holomorphic functions defining X in a neighborhood U
of B around the origin in CV and F; lifts of the f; to holomorphic functions
on U x D C CV x C* in the ideal sheaf of the total space X. Since the
deformation of (Xj, 0) is flat, also the induced deformation of (X, p) at p is
flat and hence

dimOx ), =dimOx,, + k

by Theorem 1.2.23. Therefore X is smooth at p if the jacobian matrix

(BF BF)

ox ou

has rank N — dim(Xy, p) at p. But from the equations defining (Xo,p) we
see

or  or o .
rank <‘963 %:) = rank (W) + k=N —dim(Xo,p) + k

since at p the derivatives 0F/0x and 0 f/0x coincide and X is smooth at p.

Now that we can assume X to be smooth at all points of 0X o, we con-
sider the map (p,7) as above. Clearly it is a submersion at all points of
09X . We can use the compactness of 09X to construct a neighborhood as in
the statement, on which (p, ) is a proper submersion. Now the statement
follows from Thom’s First Isotopy Lemma. ]

The control on the boundary X in the deformation of a singularity
provided by Lemma 2.1.4 is a first ingredient to a well defined Milnor fiber
for isolated singularities. The second one is a good control on the singular
fibers in a deformation.
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Definition 2.1.5. Let (X(,0) < (X,0) — (C*,0) be a deformation of a
singularity (Xo,0) C (CV,0). The germ in ((Ck, 0) coming from the set

A = {u € C*: X, is singular}
is called the discriminant of the deformation.

In general this set can be very badly behaved. However, we have:

Lemma 2.1.6. If (X¢,0) C (CV,0) as in Definition 2.1.5 is an isolated singular-
ity, then the discriminant (A, 0) is a closed analytic set.

Proof. Let S = {x € X : X, is singular at 2} C X be the relative singular
locus of the deformation. Clearly S is a closed analytic set since it has a
description as the vanishing locus of certain minors of the jacobian of the
equations defining (X,0). Moreover, the projection v : (5,0) — (Y,0) is
finite. To see this, observe that Og is a finite Onx-module and Xy N S is
just a point. Hence, dim¢ Og/(u) < oo and we can apply the Weierstrass
Finiteness Theorem to deduce that Og is a finite Oy,g-module. Now A =
Suppoy’ , Os,0 is closed analytic and we’re done. O

Putting this together with the third ingredient - the existence of a semi-
universal deformation - we obtain the following theorem:

Theorem 2.1.7. Let (Xo,0) C (CV,0) be an isolated complete intersection singu-
larity giver by a matrix A € Mat(1, c; On) and A € Mat(1, c; On ) the matrix
describing the semi-universal unfolding of A over (C*,0). Let B x D C CN x C*
be a Milnor tube for the induced versal determinantal deformation of (Xo,0) and
A C D the discriminant. The complement of A is nonempty and if D is chosen
small enough, then for all points u € D \ A the fibers X, are diffeomorphic.

Recall from Theorem 1.4.19 that, if they exist, the semi-universal unfolding
of A and the semi-universal deformation of (X, 0) agree. But existence is
clear from Theorem 1.4.13, because (X, 0) was assumed to be an isolated
singularity.

Proof. We first show that (A,0) is a proper subset of (C*,0). To this end
consider the deformation over (C¢,0) given by

A=A+Y

where Y = (y1,...,y.) € Mat(1,¢; O.) is the matrix, whose entries are just
the coordinate functions of C°. The induced deformation of (X, 0) can, of
course, be understood as taking fibers of arbitrary points y € Mat(1,¢;C)
under the map A. Thus any representative X C CV¢ of the total space
of the induced deformation of (Xj,0) is canonically isomorphic to an open
set U C CV. According to Sard’s Theorem [60] for any such representative
there is a dense set 2 C C° of points ¢ € €2, such that X, is smooth.

Because the unfolding over (C*,0) is semi-universal, we get a map @ :
(C¢,0) — (C*,0) such that A is equivalent to A o (idcwy, ®). Hence there
must be smooth fibers X,, for u arbitrary close to 0 in C*, too; and (A, 0) C
(C*,0) is a proper subset.

Choose a Milnor ball B for the given representative Xy of (X, 0). we
show that there exists a neighborhood D of the origin in C* such that over
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the complement U := D \ A of A in D the projection
7. U)NXNBxD—U

is a fiber bundle.

For the boundary this is just Lemma 2.1.4 for some open ball D C C*.
Now if ¢ € D\ A is arbitrary and X, the smooth fiber over v, then the
total space X must be smooth at all points p € X, for the same reasons
as in the proof of Lemma 2.1.4. In particular, if the coordinates of C" are
U1, ..., Uy, then the functions u; — u;(¢) are a submersion on X at all points
of X, and a submersion on the boundary X at all points in X . In other
words: If we regard the manifold with boundary X, as a stratified space,
then the projection 7 is a stratified submersion along the compact set X.
Since the condition to be a submersion is open and X, is compact, there
exists a neighborhood of the form W x D’ ¢ CV x C* of X, in X such
that 7 is a submersion on X N W x D and we can again apply Thom’s First
Isotopy Lemma.

Now the claim follows, since the complex analytic set A has real codi-
mension at least 2 in D and hence its complement U is connected: All the
tibers of a fiber bundle over a connected space are diffeomorphic. ]

Definition 2.1.8. The space X, foru € D \ A as in Theorem 2.1.7 is called
the Milnor fiber of the isolated complete intersection singularity (X, 0).

Example 2.1.9. We give two examples to illustrate the difficulties beyond
isolated complete intersection singularities.

a) Consider the A;-line singularity Xo = {zy = 0} C C3, where the coor-
dinates of C? are (w,y, z). Clearly the singular locus of X is the whole
z-axis. For different £ € N the deformations over C[u| are given by the
equation

:ch—u-zk—u2:0.

We shall see in the next section that if we chose a Milnor ball B for X
centered at the origin, then for different % the fibers X, over u # 0in
these families are not diffeomorphic. From this we see that for non-
isolated singularities we have to specify the deformation we're inter-
ested in.

b) Let (X,0) C (C®,0) be the singularity of the generic determinantal va-
riety M3, at the origin given by the 2 x 2-minors of the matrix

Ty z
u v ow)/)

This is an isolated singularity. We know from Theorem 1.4.21 that any
deformation of (Xy,0) is determinantal. But there are only trivial de-
terminantal deformations, since any perturbation of the matrix can be
absorbed into an analytic change of coordinates. Therefore (X, 0) does
not have a Milnor fiber at all. This is an example of a rigid singularity.

One can try to define the Milnor fiber for arbitrary isolated singulari-
ties. Given the existence of a semi-universal deformation one can show the
following.
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Theorem 2.1.10. Let (Xo,0) C (CV,0) be an isolated singularity and (Y, 0) the
base of a semi-universal deformation of (Xo,0) in the sense of Grauert, Theorem
1.4.13. Then for each of the components of (Y,0) there is at most one Milnor fiber
of (Xo,0) up to diffeomorphism. In particular, the number of Milnor fibers of an
isolated singularity is finite.

The proof of Theorem 2.1.10 proceeds as the proof of Theorem 2.1.7,
but for every one of the finitely many components of the base (Y, 0) seper-
ately. In Pinkham’s example, Example 1.4.15 i7), this would work directly,
since both components are smooth when considered for themself. But in
the example by Rim, Example 1.4.15 iv), the base is irreducible and singu-
lar. Consequently the total space X of any deformation, being a subspace
of CV x (Y,0), might not be smooth at points in X, and we might not be
able to apply the arguments above directly.

One way to make our machinery work is to reduce to a flat family over
a smooth base by pulling back the deformation over (Y,0) to a resolution
p: (Y,E) = (¥,0) in the sense of Hironaka [43], [44]. Another way is
to use Whitney stratifications of the total space (X, 0) and the base (Y,0)
compatible with the projection 7 and a chosen Milnor ball.

The second approach also allows one to define an analogue of the Mil-
nor fiber for any given deformation over (C, 0) of a singularity (Xy, 0) with
arbitrary singular locus. This was done for example by Lé in [50]. He proves
the following fibration theorem, which we will need in Chapter 4, when we
define Milnor fibers for nonisolated singularities.

Theorem 2.1.11. (L¢, [50]) Let X C U C C¥ be an analytic subset of an open
set U of CN. Let f : X — C be an analytic function. Let x € X and suppose that
f(x) = 0. Then if ¢ > 0 is small enough and n > 0, € > n, then the mapping
induced by f:

U.,:B-NnXnNf YD, \{0}) = D,\ {0}

- where B. is the closed real ball in CN of center x and radius € > 0, D, is the
open disc of C centered at 0 and with radius n > 0, is a topological fibration.

Note that in this theorem the fibers of V. , are not necessarily smooth.
It applies in our setting above if we take f to be the projection 7 of a given
deformation. In this case we may replace B, by a Milnor tube.

2.1.2 Homology Groups of Milnor Fibers

We gather the important theorems concerning the topology of smooth Mil-
nor fibers. The first one is a rather general statement about the intersection
of complex analytic submanifolds of CV.

Theorem 2.1.12 (Lefschetz Hyperplane Theorem). Let B C CV be a ball and
X C C¥ be a locally closed holomorphic embedding of a complex manifold X of
complex dimension d such that X := X N B is compact and 0X = 0BN X isa
transversal intersection. Then

Hp(X)=0 forallk>d

and
Hi(X,0X)=0 forall0<k<d.
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For a proof see e.g. [52]. It uses Morse theory and the Levy form of the
squared distance function to a point in C*V to bound the index on critical
points. The next theorem marks the starting point of the investigation of
the topology of Milnor fibers.

Theorem 2.1.13 (Milnor, [54]). Let (X¢,0) C (C*,0) be an isolated hypersur-
face singularity given by a holomorphic map germ f : (C"*1 0) — (C,0). Then
the Milnor fiber X, of (Xo,0) is homotopic to a bouquet of spheres of real dimen-
sion n = dim(Xo, 0). The number of these spheres, i.e. the middle Betti number of

X, is equal to
. af of
= —_— ... 2.1
19 dlm(C ON/ <(9.ZU1 ) ) 8xn+1 > ) ( )

the Milnor number of (Xo, 0).

The formula (2.1) for the computation of the middle Betti number of the
Milnor fiber is a remarkable connection between topological invariants of
the Milnor fiber and analytic invariants of the singularity itself. However, a
priori the Milnor algebra

of of
M;:=0 ...
f N/ <3x1’ ’ 8xn+1> ’
comes from the map f and not a from the singularity (Xo,0). In fact it is the
space of infinitesimal unfoldings of the map germ f up to R-equivalence,
see e.g. [5]. From the definition of the Ty, , we see that in this case

of of >

Bz1’ " Oxnit

T)l(o,(] = ON/ <fa
and therefore we have a natural inequality
> T (2.2)

of the Milnor- and the Tjurina number.

Example 2.1.14. Consider the Aj-surface singularity (Xy,0) given by the
equation
f:$-y—zk+1:0

in (C3,0). The Milnor algebra is easily computed to be

My = C{a,y, 2}/ (@,y, 2F)

and hence ;¢ = k. Because f is a quasihomogeneous polynomial, the Euler
relation' gives
of of of
2 1)-f = 1)z == )y == 4+2.2. 2L
(k+1)-f=(k+1) 2 o +(k+1)-y ay+ 25
and we see that f is already contained in the ideal generated by the partial
derivatives of f. We deduce T)lco,o = Myand 7 = p.

!For a definition of quasihomogeneity and the Euler relation see e.g. [38]
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A Milnor ball B for this singularity can be chosen to be of arbitrary size
- another consequence of quasihomogeneity. For a small © € C the space
X, = BN{f =u} C C3is smooth and homotopic to a bouquet of k spheres
of real dimension 2.

From this we see that also the smooth fibers in Example 2.1.9 i) had
different homotopy type for different k: For fixed k one can show that they
are diffeomorphic to X, from this example.

Milnor’s result was generalized to isolated complete intersection singu-
larities by Hamm, Lé and Greuel.

Theorem 2.1.15 (Hamm, [39]). Let (Xo,0) C (CV,0) be an isolated complete
intersection singularity of codimension d defined by

f = (fla"- 7fd) : ((CNao) - (Cdao)
Then the Milnor fiber of (X, 0) is homotopic to a bouquet of spheres of real dimen-
sion N — d = dim(Xo, 0).

The number p( f) of such spheres can be computed by the so called Lé-
Greuel formula, see [70] and [35]. The key observation leading to this formula
is that if (X, 0) C (CV,0) is an isolated complete intersection singularity of
codimension d defined by

f=0 - fa),
then, if we replace f by a general C-linear combination of the f;, also (X{,,0) =
{fi=---= fi-1 =0}isanICIS given by [’ := (f1,..., fa—1). Now if we let
oh ... Oh
6961 aLL‘N
D=1 :
Ofa ... Ofa
8951 8mN

be the jacobian of f and I C Oy the ideal defined by the maximal minors
of D and (f’), then Lé proved in [70]:

u(f) + u(f') = dime On /1. 2.3)

This gives a way to compute the middle Betti number of any ICIS induc-
tively. In particular, this can easily be done for any explicit singularity with
the help of a computer algebra system. A similar formula was found by
Greuel in [35] by quite different methods using relative holomorphic de
Rham Cohomology.

There is a more structural reason behind the formula (2.2), as one can
guess from Example 2.1.14. The quasihomogeneity of a singularity implies
the equality of Milnor- and Tjurina number for isolated complete intersec-
tion singularities - another result by Greuel:

Theorem 2.1.16 ([36]). Let (Xo,0) C (CV,0) be an ICIS of dimension n > 1

with Milnor number p = b, (X)) and Tjurina number T = dimc T}(mo. We have
W=

If the equations describing (X, 0) are quasihomogeneous, then equality holds.
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There was little insight to what happens beyond isolated complete inter-
section singularities. However, there is one specific estimate on the possible
degrees of nonzero reduced homology groups of Milnor fibers of smooth-
able isolated singularities. We shall not actually need it in what follows, but
it played an important role in the development of the research carried out
for this thesis. Therefore we state it here.

Theorem 2.1.17 (Greuel, Steenbrink [34]). Let (Xo,0) C (CV,0) be an equidi-
mensional isolated singularity of codimension c, which admits a smoothing with
Milnor fiber X .. Then

Hp(X,)=0 forallk <N —2c.

Note that the codimension of a singularity is bounded from below by its
embedding dimension. In the same article Greuel and Steenbrink also show:

Theorem 2.1.18 (Greuel, Steenbrink [34]). Let X, be the Milnor fiber of a smooth-
ing of a normal isolated singularity; then by (X;) = 0.

Being Cohen-Macaulay, determinantal singularities of dimension > 2
fall into this category. However, the statement of Theorem 2.1.18 is about
the Betti-number only. It remains an open question, whether there are
smoothable determinantal singularities, for which the first homology group
of the Milnor fiber is torsion.

2.2 The Milnor Fiber of a Determinantal Singularity

In this section we develop the notion of a determinantal Milnor fiber. While
the ideas were present in the literature as for example in [20], [8], [59], [9],
[17], it is - to the knowledge of the author - the first attempt to explic-
itly prove the existence and uniqueness of the determinantal Milnor fiber
in this generality, using the versal determinantal deformation from Ky-
equivalence developed in the previous chapter.

There were three ingredients to the uniqueness of the Milnor fiber for
isolated complete intersection singularities: The good behavior of the bound-
ary under deformations, the analyticity of the discriminant and the exis-
tence of a semi-universal deformation with a smooth base. For a determi-
nantal singularity (Xo,0) given by a matrix A € Mat(m, n; CY) the semi-
universal deformation might in general have a base with several compo-
nents as Pinkham’s example shows. But the determinantal deformations
coming from A and, in case dimc Inf(A) < oo, or probably more general
dimc Inf;(A) < oo, a versal determinantal deformation of (X, 0) give a dis-
tinct choice of deformations of (Xp,0). Moreover, we can always assume
that the base of such a deformation is smooth. We may therefore in a first
attempt make the following definition.

Definition 2.2.1. Let A € Mat(m, n; On) describe an isolated determinantal
singularity (X, 0) of type (m, n, t) with a versal determinantal deformation
over (C7,0) given by A € Mat(m,n; On4,). If A is a smoothing of (Xj, 0),
we define the determinantal Milnor fiber of (Xo,0) to be the Milnor fiber of
the versal determinantal deformation.
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The following examples point out the problems with this definition.

Example 2.2.2. We first give an example of an isolated determinantal singu-
larity, which is not smoothable.

i) (Friihbis-Kriiger, Neumer [25]) For k > 2 let (Xo,0) C (CS,0) be defined
by the 2-minors of the matrix

Ty v
2w z+uf)”

A versal determinantal deformation over C{t,...,tx_2} is given by
perturbation with

00 0 00 0
t0'<0 0 u0>+"'+t’f‘2'<o 0 uH)'

Thus, for fixed t = (%o, ..., tx—2) we will find a polynomial z + P;(u) =

x4 uF + 3721, - u' in the lower right corner. If ¢ is general, we will
assume P;(u) to have k distinct roots uy, ..., u;, and at each of these

roots we can do an analytic change of coordinates and replace u by
@ = x + P;(u). But in this coordinate system the fiber X; over ¢ just
looks like the singularity from example 2.1.9 defined by

T oy v
z w u)’

Thus for general ¢ there will always be at least £ singular points on
each fiber X; and the versal determinantal deformation of (X,0) is
not a smoothing.

ii) Consider the determinantal singularity (X, 0) C (C7,0) of type (2, 3, 2)
given by the matrix

A= (T T2 T3
= 2 2 2 _ .2
T4 Ty xgt+axy+T;—T

The singular locus of (Xj,0) is a whole curve given by the equation
22 — 22 = 0 in the (76, z7)-plane, so (Xy,0) is not an isolated singu-
larity. However, direct computations using Singular show that the di-
mension dimg Inf(A) is equal to 3 and in particular finite. Thus (X, 0)

admits a versal determinantal unfolding given by perturbations with

the matrices
1 00 010 0 0O
00 0/’ 0 0 0)’ 0 0 1/)°

The singularity in the first example did not admit a smoothing. But the
remaining singularities for a generic perturbation were rigid, i.e. they did
not admit any nontrivial deformations. Therefore, despite being singular,
there is hope that the generic fiber in the versal determinantal deformation
of (Xo,0) is a unique topological space up to homeomorphism.

It is reasonable to assume that the same holds for the second example.
Again, if we let A be a matrix defining the semi-universal unfolding of
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A and u a generic point in the base close to 0, then the fiber X,, = BN
A7 1(M2273) for a chosen Milnor ball B will be singular. Butif p € X, is a
singular point in the interior of X, then locally at p the space X, looks like
a product

(Xu,p) = (C,0) x (¥p,0),

where (Yp, 0) is the rigid singularity in (C%, 0) from Example 2.1.9, ii). In the
following we will show that the notion of a Milnor fiber for determinantal
singularities can be extended to such cases.

2.2.1 Deformations to Stabilizations

In [71] S. Trivedi deals with holomorphic mappings f : M — N between
complex manifolds. Given a countable collection of submanifolds (24 )aen, o C
N (e.g. a stratification of N), one can ask for f to be transversal to all 3,
along a given subset K C M.

Definition 2.2.3. A differentiable map f : M — N between smooth man-
ifolds is transversal to a given submanifold ¥ C N at a point p € M if
either dim M < codimy ¥ and f(p) ¢ %, or, in case dim M > codimy ¥ and
f(p) € ¥, we have

df|p(TpM) + Tf(p)E = Tf(p)N. (2.4)

In this case we write f M, X. If f is transversal to X for all points in a given
subset K C M, we write [ hg X.

Here df|, is the differential of f at p. This definition carries over to holo-
morphic maps between complex manifolds in the obvious way. We have
the following theorem by S. Trivedi:

Theorem 2.2.4 ([71],Theorem 2.1 and Theorem 3.1). Let M be a Stein mani-
fold, N be an Oka manifold and (¥,)aen a countable collection of complex sub-
manifolds in N. Then the set

{f : M — N holomorphic : f thy ¥, Va €N}

is dense in the weak topology on the set of holomorphic maps between M and
N. Moreover, if the X, give a Whitney (a)-regular stratification of the space
Uaen Xa € N and K C M is any compact subset, then the set

{f : M — N holomorphic : f hg ¥, Va e N}

is open.

In our setting M will be an open neighborhood U of the origin in C
and f will be a representative of a map germ A defining a determinantal
singularity (Xo,0). For a chosen Milnor ball B C U the theorem states that
there are other matrices A’ close to A such that A’ g M}, , \ M/} for
all ¢t and that once such a map has been found, it is stable. This stability
then carries over to the preimage A’~* (M}, ,,)N B and we obtain our Milnor
fiber. In this sense we shall use Theorem 2.2.4 as a replacement of Sard’s
Theorem for determinantal singularities. For the rest of this section we will
work on making Theorem 2.2.4 available in our setting of unfoldings of
maps to Mat(m, n; C).
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In his proof of Theorem 2.2.4 S. Trivedi gives an explicit construction of
a deformation F' : M x (C*,0) — N of a given map f : M — N such that
there exist parameters u € CF arbitrary close to 0 with F,, : M — N,z ~
F(x,u) transversal. Since we will not need the Whitney topology and only
work with representatives of complex space germes, it is this construction,
which we may extract from Theorem 2.2.4. S. Trivedi attributes the idea to
R. Abraham [1].

Lemma 2.2.5. Suppose A : U C CV — Mat(m,n;C) is a holomorphic map.
Consider the unfolding of A over C™"™ = Mat(m, n; C) given by

A=A+Y

where Y = (y; ;) is the matrix, whose entries are the variables y; ; of Oy, Let
K C U be a compact subset of U Then the set of points y € C™" for which the
map A, = A(-,y) : U — Mat(m, n; C) fulfills

Ay mK Mﬁn,n \ M’II’:VLT’}L
forall 0 <t < min{m,n}, is dense.

For a proof see e.g. the proof of [71, Lemma 2.2].

We need some preparations to link the space Inf(A4) to transversality.

Theorem 2.2.6. A : (CV,0) — (Mat(m, n; C), P) a holomorphic map germ. The
following are equivalent:

i) Inf(A) = 0.

i) The map A is transversal to all strata (M}, ,,\ M,ﬁ;,%)?;ig{m’"} of the canonical
Whitney stratification of Mat(m, n; C) at 0.

The next theorem reveals the connection with smoothness.

Theorem 2.2.7. Let A : (CV,0) — (Mat(m,n;C), P) be a holomorphic map
germand 0 < t < min{m,n} bearbitrary. Suppose that (Xo,0) := (A~*(M}, ,,),0)
has expected codimension (m —t +1) - (n —t + 1). If (Xo, 0) is smooth at p then
rank P = ¢t — 1 and A is transversal to all strata (M3, ,, \ M,f{,})?i%{m’"} at 0. In
particular Inf(A) = 0.

We see that if (X(,0) = (A_l(Mﬁm), 0) has expected codimension, then
smoothness of (X, 0) is a sufficient, but in general not a necessary condition
for transversality of A at p.

In order to prepare for the proofs of Theorem 2.2.6 and Theorem 2.2.7,
we first shift our attention to the stratification (M}, ,, \ M, t—Lymintm.n} - f

m,n

Mat(m,n;C). Suppose P € M}l \ M/, , is a matrix of rank . We first
change coordinates on Mat(m, n; C) so that

(1 0
(i)
This can be done by left- and right-multiplication with suitable invertible

matrices F' € GL(m,C) and G € GL(n,C). In particular this operation
preserves all the strata of Mat(m, n; C).
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Now we may again change coordinates in a non-linear way as follows.
Let U C Mat(t,t; C) be a neighborhood of the origin such that the matrix
exponential

1
exp : U — Mat(t,t;C), Aw— Z EAk
k=0 "

is a holomorphic diffeomorphism onto its image. If we let X € U and
Y € Mat(t,n — t;C),Z € Mat(m — t,t;C),W € Mat(m — t,n — t;C) be
arbitrary, we can write each matrix () close to P as

_ [(exp(X) Y .
QX,)Y,Z, W)= ( 7 Z-exp(X)~Y+W> € Mat(m,n;C)

In these coordinates given by the entries of X,Y, Z and W around P the
stratum M1\ M . appears as {W = 0}.

What about the other strata? Consider the ideal (Q(X,Y, Z, W)") in
the local ring Ocmn p of Mat(m, n;C) at M. As a consequence of Corollary
A.1.2 this ideal does not change if we multiply ) from the left or from the
right by invertible matrices /' € GL(m; Ocmn p) and G € GL(n; Ocmn p)
respectively:

Q™) ={(F-Q-G)™).

Hence if we decompose

Q:(Z-ext)t(—X) 1,3_t>‘<exp(§X) I/(I)/><10t exp(if_(t)'y> (2.5)

we see that .
<Q/\s> _ <<exp(§X) V?/) > _ <W/\(S_t)>.

This immediately implies the following Lemma.

Lemma 2.2.8. If P € M/} \ M. . isamatrix of rank t, then for s > t+1 locally
at P the analytic varieties My, ,, at P are isomorphic to the products

= (Cm.ni(mit).(nitko) X ( ) M#"L*t,nfta 0) > (Mglft,nfta 0)) .

We are now in the position to proof Theorem 2.2.6.

Proof. (of Theorem 2.2.6) We first show i) = i). Let p = 0 € C be the origin.
We use the coordinates above around P = A(p) and write X = X o A4,
Y =Y o A and so on for the composition of A with the local coordinate
matrices introduced above.

Let ¢ be the rank of P. Being transversal implies that A does not meet
strata of codimension > N, so we can assume codim MEFL\ M = (m —
t)-(n—t) < Nand A th, ML\ MY, . In the introduced coordinates we
see from Lemma 2.2.8 that this is the case if and only if W o A : (CV,p) —
(Mat(m — t,n — t;C),0) is a submersion at p. It follows at once that A is
also transversal to all strata M3, ,, \ M3} in a neighborhood of p for all
t+1<s<min{m,n}.
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We have to show Inf(A4) = 0. So let H € Mat(m, n; Ocn ;) be arbitrary.
Write

_ (Hin Hip (X Y
H_<H271 H272> and A_<Z Z.e X . Y+W
with the usual block sizes as above. We need to show that H reduces to the
zero matrix in Mat(m, n; Ocw ). This is done in two steps.
As usual let (F'- A + A - G) denote the submodule of Mat(m,n; Ocw ;)

generated by left and right-multiplication of A with square matrices F' and
G. From the decomposition of A into A = L - A" - R as in (2.5) we see that

(F-A+A-G)=(F-AR+ LA -G).

Direct computation yields

X X
/ _ € Y r € O
AR—(O W) and LA—(Z W)
Using this, we can reduce any given H to

Hiyy Hip\ 1 (Hype ™ 0\, 1., (eXHi1 0
<H2,1 H2,2> 2 0 0 AR+ 2LA 0 0
0 0 ,
+ ((HQJ — %ZB_XHLl)B_X 0> AR
B_X(HLQ — %HLle_XY))

0
/
Y (O ;

0 0
+ (0 H272 — (H271€_XY + ZG_XHLQ + Ze_XHl,le_XY)> ’

Note that during this reduction process we only used matrices F and G
with lower right block being zero. For the remaining block we find

0 0\ ,p (0 O
(0 )= (o pw)

(0 0\ [0 0
(5 ¢)= (0 we):

For the second step observe that the same reduction process to an (m —
t) x (n —t)-matrix can be done with the differential dA. Modulo (FA+ AG)
we obtain

and

aa= (" 0
N0 AW — (dZe XY + Ze X dY + Ze X (deX)e XY) )

Denote the lower right entry by Q. Regarding W = W o A as a C(m—9) (1)

valued function, we see that W o A being a submersion at the point p = 0
means nothing else but that

dW‘p :p.TcN — P-Tc(mft)-(nft)

has full rank. This property is measured modulo m, the maximal ideal
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of Ocw , at p. But since Y and Z have entries in m, also Q|, : p. Ty —
P.T(m—t)(n—1) has full rank (m —t) - (n —t) and, hence,

Q: 0Py, — ol ey
gives an epimorphism of free modules by Nakayama’s Lemma. Putting

these two steps together, we see that every H can first be reduced to an
(m —t) x (n — t)-matrix and then successively to zero by Q.

For the other direction i) = i) we use Lemma 2.2.5. Let A be the un-
folding of A over (C™",0) with a dense set of parameters u € C™" with
transversal fibers from Lemma 2.2.5.

Since by assumption Inf(A) = 0, every unfolding of A is trivial and
hence there exist matrices F' € GL(m; Ontmn), G € GL(n; Onimn) and a
germ of an analytic diffeomorphism

(@, idgmn) : (CV,0) x (C™",0) — (CV,0) x (C™™,0)

such that A(z,y) = F(z,y) - (Ao ®(x,y)) - G(z,y).

But left- and right multiplication by invertible matrices preserves the
stratification of Mat(m,n;C) and hence for any y € C™" the map A, is
transversal to the canonical stratification at 0 if and only if A o ®(-,y) is
transversal. Clearly, transversality is independent of the composition with
the diffeomorphism ®(-,y). If we now choose a closed ball B around the
origin of CV and a polydisc D C C™™ in the deformation base such that a
representative of A is defined on some open neighborhood of B x D, then
we can choose y € D such that A, is transversal at all points p € B x {y}
and deduce that also A must have been. ]

Proof. (of Theorem 2.2.7). Letr = rank P be the rank of P = A(0). Clearly,
if t <r, then (A~1(M},,),0) = 0, so we can assume ¢ > r. We may change
coordinates on the target space as above and thus decompose the map A
into the block matrices:

X oA e Mat(r,r;C) Y oAeMat(r,n—r;C)
ZoAeMat(m—r,r,C) WoAeMat(m—r,n—r;C).

As already described in Lemma (2.2.8) we have

Xo=A" My, ) = (WoA)"H (M)

m—r,n—r

and the equations defining V are the entries of the matrix (W o A) =",

According to the jacobian criterion (X, 0) is smooth at 0 if and only if
the jacobi matrix

d(W o AN = (d(W 0 A)) - (d()" " |woa)

has rank codim(V,0) at 0. Now (W o A)(0) is the zero matrix and hence all
its entries lay in the maximal ideal m of the ring On. It follows from the
expression for the differential of minors (1.43) that for ¢ — r # 1 the second
differential d(-)"~"|wo.4 always has rank zero at 0. In this case the germ
(X0, 0) cannot be smooth, because the rank of d(WW o A) at 0 is bounded
from above by the rank of d(-)"™"|woa.
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Hence ¢t — r = 1, or equivalently: rank P = ¢t — 1. The condition (W o
A)T" =W o A = 0 gives exactly

ci=(m—t+1)(n—t+1)

equations. This number agrees with the codimension of (Xj,0) and hence
(Xo,0) is a complete intersection and smooth if and only if d(W o A)(0) has
rank c. But this is equivalent to the condition on A to be transversal to all
Mg, ,, atp.

The assertion about Inf(A) now follows from Theorem 2.2.6 O

Unlike a singularity a Milnor fiber is not a space germ anymore. It is not
a local, but a global object. In the following we therefore need to shift our
point of view and take a global perspective on what we encountered only
in the local setting before. One instance of this shift to a global viewpoint
is the following. Given A : (CV,0) — (Mat(m,n;C),0) we can choose
representatives
A : U — Mat(m,n;C)

of A onsome openset U C CV. On U the map A induces a coherent analytic
sheaves Zn f(A) associated to the presentation

Mat(m, n; O(U)) @ Mat(m,n; O(U)) & Ten (U)  —  Mat(m,n; O(U)),
(F,G,§) — F-A+A-G+¢(A).

By O(U) we mean the holomorphic functions on U ¢ CV and T~ (U)
are, of course, the holomorphic sections in the tangent bundle over U. The
germs of those sheaves on any point p € U are

Inf(A), = Inf(A: (CVN,p) — (Mat(m,n;C), A(p)).

The obvious analogue can be constructed for any unfolding A of A over
(Ck,0) and we obtain a coherent analytic sheaf Zn f™!(A) on an open set
U x D for some D C C*.

This enables us to link the condition dim¢ Inf(A) < oo to a more com-
mon notion in the context of determinantal singularities.

Definition 2.2.9 ([20]). Let (Xy,0) C (C",0) be a determinantal singularity
of type (m, n,t) given by a matrix A € Mat(m,n; On). Then (Xo, 0) is called
an essentially isolated determinantal singularities (EIDS), if the map

A:(CY,0) = (Mat(m,n; C),0)

is transversal to all strata M, ,,\ M3, of Mat(m, n; C) in a punctured neigh-
borhood of the origin.

Corollary 2.2.10. A determinantal singularity (X, 0) as in Definition 2.2.9 is
an EIDS if and only if dimc Inf(A) < oco. In particular the matrix A defining an
EIDS admits a semi-universal unfolding and, hence, the singularity (X, 0) has a
versal determinantal deformation.

Proof. The condition dim¢ Inf(A) < oo is equivalent to Zn f(A) being sup-
ported only at the origin for any representative of A which is defined on
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a sufficiently small open neighborhood of the origin. Given the two theo-
rems above, Theorem 2.2.6 and Theorem 2.2.7, we see that dim¢ Inf(A) < oo
if and only if the map A is transversal to all strata M, ,, \ M;";;,} in a punc-

tured neighborhood of the origin. O

2.2.2 Stabilizations in the Versal Determinantal Unfolding

We now start to prove the existence and uniqueness of the Milnor fiber for
an EIDS. First, we give an analogue of 2.1.4.

Lemma 2.2.11. Let U C C¥ be an open domain containing the origin and A :
U — Mat(m,n;C) be a representative of a holomorphic map germ defining an
EIDS (Xo,0) = A~Y(ML, ,),0) € (CN,0), and let A be a representative of
a semi-universal unfolding of A over some open polydisc D C C*. Denote the
projection to C* by w.

Choose a Milnor ball B = {p = e} for (Xo,0) in U and let X = A~1 (M}, ) C
U x D be a representative of the total space of the deformation. There exist n > 0
and an open polydisc D' C D around the origin in C* such that the map

(p,u): X Np (e =me+n)Nu (D)= D'

is a topological fiber bundle.

Proof. For any point p € X, we have Znf(A), = 0 and hence the induced
deformation of (Xo,p) is trivial. In particular, for any ¢ = 1,...,x there
exist matrices F; € Mat(m, m, O¢n+x ,,) and G; € Mat(n,n, Ocn+x ,,) and a
vector field &; € Ten+x , with du;(§) = 1 and du;(§) = 0 for all j # i, such
that

&G(A)=F,-A+A -G,

All involved elements are defined on some open neighborhood W x D’ of
p. Since 90X is compact, we can cover it by finitely many of these neigh-

borhoods:
M

OYO - U Wea X D&.
a=1
Taking the minimum of all the radii of the D/,, we may assume that all D/,
are the same D’. We denote the union of this cover by W x D'.
Now we choose a C™ partition of unity (., W, x D’) subordinate to
this cover and glue the local holomorphic sections to differentiable sections
of the respective vector bundles:

M
E E Z Pa - Fia c Mat(m,m;cm(W, C))a

a=1

M
éi — Zgoa . GZOC & Mat(n,n,Coo(Wy C))a

a=1
~ M
fi = Z Pa - fla S COO(W, T(CN+H).
a=1

Clearly for all A € C we have

ANG(A)=XN-F-A+X-A-G,
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Note that due to the complex structure on the tangent bundle T~ , ¢, mul-
tiplication with complex scalars still makes sense. We can now proceed as
in the proof of Theorem 1.4.10 for the 2« different C*°-vector fields & and
V-1-&.

Consider the real- and imaginary parts of the coordinates (, u) of CV x
C* as real coordinates and let 7 = Su, be the last one of them. We write
(x,q, ) for this coordinate system, where @ consists of all remaining real
and imaginary parts of the complex coordinates u.

Since 90X is compact, after possibly shrinking W again, there exists a
C*>-flow

O : W x (—,6) = CN x C*

of the vector field \/—1 - éﬁ and we can do a differentiable change of coor-
dinates on W, which preserves 7 = Ju,, such that in the new coordinates
x = %. Along the flow lines there exist C*-solution operators P and @
for the differential equation

AA—F A+A-G
dr
depending smoothly on the initial condition, i.e. the starting point p € 9X,
such that
A(:Ua u, 7-) = P(CL‘, u, 7-) ’ A(:Ua u, 0) ’ Q('Ia U, T)

on some open neighborhood W x D’ of X . Consequently locally around
0X the space X is a product in the direction of 7.

We proceed with the next vector field as usual and eventually end up
with an isomorphism

XNW = (XonW) x D' (2.6)

of Whitney stratified spaces. Note that the stratification is not necessarily
complex analytic anymore, although the central fiber Xy N W is canonically
stratified by the strata A~'(M}, ,, \ M3, 1) according to Theorem 2.2.6.

It remains to show that also the squared distance function p locally de-
fines a fibration on this space. But this is easy given the fact that p was a
stratified submersion on X around 9X,. From (2.6) it is clear that (p,u)
defines a proper stratified submersion on X in a neighborhood of 0Xo. We
can now apply Thom’s First Isotopy Lemma A.3.2 to finish the proof. [

Since not all determinantal singularities are smoothable, as we saw in
Example 2.2.2, the classical discriminant is not the right object to work with.
With a view towards Theorem 2.2.6, we give the following definition.

Definition 2.2.12. Suppose A : (CV,0) — (Mat(m,n;C), P) is a holomor-
phic map germ and A € Oy an unfolding of A over (C*,0). Let

Inf*(A) = Mat(m,n; Onx)/ <%: +F-A+A- G> 2.7)

be the relative infinitesimal deformations of A. The germ

(Adet, 0) = Suppp, Inf™(A) c (CF,0)
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is called the determinantal discriminant of the deformation.

The Weierstrass Finiteness Theorem implies that, if A defines an EIDS, i.e.
if dimc Inf(A) < oo, then the determinantal discriminant is closed analytic.

For complete intersection singularities the classical discriminant was a
proper subset of the base of a versal deformation because of Sard’s Theo-
rem. In our case of determinantal singularities we can use Theorem 2.2.6
and the density of transversal maps 2.2.4 to obtain a “generic” and “stable”
fiber.

Theorem 2.2.13. Let (Xo,0) be an EIDS of type (m,n,t) given by a matrix A €
Mat(m,n; On). Let (Aget,0) C (C¥,0) be the determinantal discriminant in
the versal determinantal deformation of (Xo,0) coming from the semi-universal
unfolding A of A. Suppose 0 € B C CV is a Milnor ball for (X,0). For any
open polydisc D C C* the complement U = D \ Aget is nonempty and we can
choose D small enough such that for all w € U = D \ Agey the fibers

X,.=Bn A;l(M;;m)

are isomorphic as Whitney stratified spaces.
IfN < (m—t+2)-(n—t+2), then X, is smooth. Otherwise let r € N
be the smallest number such that N > (m —r)-(n—r). Forr < s < t set

Y(j) = BN A (MEEY). Then these sets form a Whitney stratification of X,

X, =XV oxt 5 o x0

u =

)

and locally around a point p € Yq(f) \ YS_I we find analytic isomorphisms

(Xu,p) ~ ((CN—(m—s)(n—s)7 0) > (Mt—s—H 0).

Note the shift of indices: Y,l(f) \ ij_l) is the set of points, on which A, has
rank exactly s while M, ,, are the matrices of rank < .

Definition 2.2.14. The space X, as in Theorem 2.2.13 is called the deter-
minantal Milnor fiber of the singularity (Xo,0). An unfolding of A like A
above is called a stabilization of A, if there are points u arbitrary close to
0 in the base of the unfolding, for which A, is transverse to all strata of
Mat(m, n; C).

Proof. The fact that (Aget,0) C (C*,0) is a proper subset follows directly
from Theorem 2.2.6 and Lemma 2.2.5: There exists a stabilization of A and
hence these must also appear in the semi-universal unfolding. For any set
of representatives of the semi-universal unfolding A of A we then have
Inf(A,), = 0atall points p € X, for u & Aget.

Since the determinantal discriminant (Aget, 0) € (C*,0) is closed ana-
lytic, it is of real codimension > 2 and hence the space U is connected. To
prove uniqueness of X, it is therefore sufficient to show that the restriction
of the projection

m: XNBxU—=U

is a fiber bundle over U.
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To see this we may proceed as in the proof of Lemma 2.2.11 and con-
struct local holomorphic vector fields &' and matrices F* and G, only this
time on a neighborhood W x D" of the whole space X,. We may assume
that the polydisc D" around u in C* is chosen small enough such that D" is
contained in the polydisc D’ around the origin from Lemma 2.2.11, so that
we have a well behaved fibration along the boundary. Now glueing these
local sections to a partition of unity, we obtain a local fibration over D" with
the whole space X, as fiber.

Another consequence of Znf(A,), = 0 for all points p € X, is that
A, thg My, \ an}} for all s. In particular, A, does not meet any strata of
codimension > N. Therefore, if N < (m —t+2)-(m —t+2), then X, is the
preimage of a smooth manifold M}, ,, \ M/, , under a transversal map A,
and hence smooth itself.

For the other case, let p € YELS) \Yis_l) for somer < s < tand P =
A, (p) € Mat(m,n;C). As we saw in the outlines preceeding Lemma 2.2.8,
we can choose local coordinates (X, Y, Z, W) on the target space and then

W-A, is a submersion at p. Hence, the stratum YLS) has dimension N —(m—
s)-(n —s). The higher-dimensional strata appear as preimages of My, .,
under the submersion W o A,. Since the preimage of a Whitney regular
stratification under a submersion is again Whitney regular, they connect

to Yq(f) in a Whitney regular way forming the germ of a fiber bundle over
()
X, - O

u

Definition 2.2.15. We call the space X, as in Theorem 2.2.13 the determinan-
tal Milnor fiber of the singularity (X, 0). The Betti numbers

bi(Xo, 0) = rank Hz(yu)

of X, are called the Betti numbers of (Xy,0). Generators of the homol-
ogy groups He(X,) are vanishing cycles, and the difference of the Euler-
characteristics

v(Xo,0) := (=100 (((X,) = x(Xp)) = (~1) 00 (x(X,) - 1)
is the vanishing Euler-characteristic of the singularity (X, 0).

Remark 2.2.16. The idea to use transversality theorems to obtain a “generic”
and “stable” fiber of a given determinantal singularity is not new. In fact W.
Ebeling and S.M. Gusein-Zade gave the idea of an “essential determinantal
smoothing”, which in our case is the determinantal Milnor fiber, in their
article [20]. However, their arguments were only sketched and not prop-
erly put into context in the theory of versal unfoldings. A more detailed
treatment is given by J.J. Nufio-Ballesteros, B. Oréfice-Okamoto and J.N.
Tomazella in [8], where the authors also take a generic constant perturba-
tion of the defining matrix, to define what we call the determinantal Milnor
fiber. But again, the theory of unfoldings and its associated analytic invari-
ants are not presented. The consequent development of the space Inf(A)
and semi-universal unfoldings enable us to present the results of this sec-
tion in this generality.
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Remark 2.2.17. Also, the authors in [8] only treat the smoothable case and
make further assumptions in their definition of isolated determinantal sin-
gularities (IDS). For them an IDS (X, 0) of type (m, n,t) given by A has to
fulfill

e (Xp,0)isanisolated singularity, which admits a determinantal smooth-
ing,

e rank A(x) =t — 1 for all z € X in a punctured neighborhood of the
origin.

Due to Theorem 2.2.7 it is possible to omit the second requirement since it
follows from the first one.

Remark 2.2.18. In view of the section on versal determinantal deformations,
we would like to point out that all results in this section can be reformulated
using Inf;(A) instead of Inf(A) and adapting the proofs in a similar way as
one obtains the proof of Theorem 1.4.16 from the one of Theorem 1.4.10.

2.3 The Euler-characteristic of smooth Milnor fibers

We give an overview on different results concerning the vanishing Euler-
characteristic of determinantal singularities. As a new contribution to the
field we reprove Theorem 2.3.10 using methods from stratified Morse the-
ory. For an alternative proof using methods similar to those exhibited in
[6], see [59].

There are at least three methods to compute the Euler characteristic of a
determinantal Milnor fiber of a smoothable determinantal singularity. Two
of them can effectively be implemented in computer algebra systems to ac-
tually perform the computation for any explicitly given singularity.

For the author it was the results by ]J. Damon and B. Pike in their ar-
ticle [17], which marked the starting point of this work. They developed
an algorithm for the computation of the vanishing Euler characteristic and
applied it to certain members of the list of simple isolated Cohen-Macaulay
codimension 2 singularities from A. Frithbis-Kriiger and A. Neumer in [25].
This lead to conjectures concerning the vanishing Euler characteristic of the
Milnor fibers in discrete families of simple singularities.

They observed a rather unexpected behaviour for the threefold singu-
larities. Due to the Theorem by Greuel and Steenbrink 2.1.17, dimension 3
and codimension 2 leaves two Betti-numbers b, and b3 to contribute to the
vanishing Euler-characteristic. At that point it seems to have been a usual
assumption that Cohen-Macaulay codimension 2 singularities behave like
isolated complete intersection singularities, i.e. that only the middle Betti-
number, b3 in this case, is nonzero. However, this could not possibly be the
case as the following example shows.

Example 2.3.1. i) Consider the so called A singularity in (C%,0) of type
(2,3,2) given by the matrix
r vy
z w z)’
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According to the computations in [17] the vanishing Euler-characteristic
of this singularity is

I/(X(],O) =—-1= b3 - b2

and hence b, must be nonzero.

ii) The singularity above can be seen as a member of a whole family.
Namely for k € N the I, singularity is described by the matrix

T v Y

z y—wh x)’
For k = 1 we can bring this matrix to the form of the AJ singular-
ity by a linear change of coordinates in (C°,0). The vanishing Euler-

characteristic seems not to depend on & since, according to [17], for the
first few values k = 2,...,4 it was always equal to —1 again.

2.3.1 Indices of 1-forms on Determinantal Singularities

Some years before, W. Ebeling and S.M. Gusein-Zade published a series of
papers including [20], in which they related the vanishing Euler character-
istic of an EIDS to indices of 1-forms. In the case of isolated smoothable
determinantal singularities they obtain the following formula ([20, Section

3]):
indpr(w; Xo,0) = indraa(w; Xo,0) + (=)0 ((X,) —1).  (28)

Here (Xo,0) C (CV,0) is an isolated determinantal singularity and w the
germ of a continous complex 1-form on (Xj, 0) with no zero on the regular
part Xo \ {0} in a neighborhood of the origin.

The radial index ind,aq(w; Xo,0) of the 1-form w on (X, 0) is defined as
the sum of indices on X, \ {0} of a generic perturbation @ of w, which
coincides with w in a neighborhood of the boundary 0Xy = 0B N X for a
Milnor ball B. For the definition of the index see e.g. [54].

On the other hand, the Poincaré-Hopf index indpy (w; Xo, 0) needs the Mil-
nor fiber X, for its definition. Again let & be a perturbation of w, which
coincides with w on a neighborhood of 0X,. This index is then defined as
the number of indices of & on the interior of X,,.

A special case, in which the formula (2.8) can be applied, is whenw = d f
for a holomorphic function f : (Xo,0) — (C,0). If the differential d f has no
singular point on X \ {0} in a neighborhood of the origin, then (Y;,0) =
{f = 0} N (Xo,0) is an isolated singularity of dimension dim(Xp,0) — 1
and the perturbation of f by a constant v gives a smoothing of (Y, 0) with
Milnor fiber

Y,={f=v}NnXyNB,

where B is a Milnor ball for (X, 0) and (Y5, 0) at the same time and v € C is
chosen sufficiently close to 0. In a preceeding paper the authors prove the
following.

Theorem 2.3.2 ([21], Theorem 3). In the above setup one has

indraa(df; Xo,0) = (=)WMD (V) — 1),
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In fact the theorem holds for arbitrary equidimensional complex space germs
(Xo,0) with an isolated singularity at 0.

If f =1 € Home(CV,C) = (CY)Y is a general linear form, then the
differential di is regular on the interior of X \ {0} and has only isolated
critical points on the interior of all smooth fibers X, for a given determi-
nantal smoothing of (X, 0). Therefore the formula (2.8) and Theorem 2.3.2
are applicable — even without a perturbation to @. The Milnor fiber Y, of
[ on (X, 0) is also known as the complex link of the singularity (Xo,0), see
e.g. [31].

Comparing the results we see the following:

indpp; (dZ; Xo,0) = (—1)3mE00 (X)) — x (V). (2.9)

Apparently the Poincaré-Hopf index measures the difference of the Euler-
characteristics of the Milnor fiber X,, of (Xp,0) and its complex link Y, =
Xo N {l = v}. Now observe that, since Y, is a smooth manifold with
boundary, it is, for u small enough, diffeomorphic to the hyperplane sec-
tion X, N {l = v} by Ehresmann’s Fibration Theorem. Thus we are in fact
dealing with the difference of Euler-characteristics of the Milnor fiber X,
and a smooth hyperplane section thereof.

A geometric interpretation of this fact can be found in [8] and also in
[59]. Roughly speaking, the machinery works as follows. The function !
has only isolated non-degenerate critical points on the interior of X, i.e. it
is a complex Morse function. Then the real part Rl is a real Morse function,
whose index is always exactly n := dimc¢ X, at the same critical points.
Since each one of these points contributes with index 1 to the Poincaré-Hopf
index, the number of critical points is equal to e := indpy(dl; Xo,0). Thus
we obtain X, from Y, = X, N{l = v} by attaching e cells of real dimension
n. The formula (2.9) now easily follows from the long exact sequence of the
pair (X4, Yy,).

But there is one detail that has been forgotten in these outlines: The
space X, is a smooth manifold with boundary. Hence, applying classical
Morse theory to the function Rl on X, does not work directly. One has to
switch to stratified Morse theory as for example exhibited by Goresky and
MacPherson in [31]. This means, we also have to take into account critical
points of R on the boundary 0X,,.

In [8] the authors work with open Milnor balls and, hence, with open
Milnor fibers without boundary. Unfortunately they based there original
results on a theorem that apparently turned out to be false. In the following
we will describe a way to make the Morse theoretic arguments work in our
setting with closed Milnor balls. During the prepraration of this work, the
authors of [8] independently came up with an erratum, which uses quite
similar methods also based on stratified Morse theory.

2.3.2 Polar Varieties and the Scanning Process

Of course, for the machinery sketched above to work, the smoothing of
(Xo,0), the linear form [ and the Milnor ball B have to be chosen in a com-
patible way. This leads us to the realm of polar curves and multiplicities.
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Definition 2.3.3. Let M be a manifold of real dimensionn and f : M — R
a C*°-function on M. For another function g : M — R the polar locus of g
with respect to f is defined as

D(g, f) = {w € M\ Crit(f) : dg(x) € (df(2))z C 2.0L,}.

The notion of polar locus carries over in the obvious way to Whitney strati-
fied spaces and the analytic category. In the latter case, - denotes the analytic
closure.

Given this definition one can use Bertini-Sard type methods to prove
the following lemma.

Lemma 2.34. Let (X(,0) C (CV,0) be an equidimensional singularity of pure
dimension n with a strictly descending sequence of analytic subspaces

X0 2x% 2 x{V > {0}

giving rise to a complex analytic Whitney stratification with strata Xéz) \ Xél_l).
Let (Xo,0) = (X,0) =% (C,0) be a smoothing of (Xo,0) and (X,0) C (CV,0)x
(C,0) the total space. Denote by u the projection to the deformation base and let
p be the projection to (CN,0). There exists a dense set ) of linear forms | on CN
with complement of measure zero such that

i) the closure of the polar locus I'(p*l, u) C X \ Xy is either empty or a branched
covering over (C,0) via u.

ii) the linear form [ does not have any critical points on (Xo,0) in the Whitney
stratified sense.

Proof. We first show i) and define

M = {(z,]) € X\ X x (CN)V: 2.Tx C kerp*l} C X x (CM)V.

Since u is a submersion on X'\ X, the space X \ X is a complex submanifold
of CN*1. At each point z € X \ Xy the natural pairing p*(CV)V x z.Tx — C
induces a surjection (CV)¥ — (kerdu)V. From this it is easy to see that
M* := M\ (M N Xj) is a complex manifold of dimension

n+1+N—-n=N-+1.

Let Iy € (CY)Y be a regular value of p restricted to M*. Either C' :=
p 1 ({lo}) N M is empty, or it consists of analytic curves, which are smooth
outside points in Xj. Right now we are only interested in the polar locus
outside X, so no harm is done if we replace C' by C'\ Xy. Now C' = I'(ly, u)
is the polar locus and clearly the restriction of u to C' gives a branched cov-
ering over (C,0).

The set of such regular values of p|y;~ in (CV)V is a first candidate for ().

To show ii) we proceed in a similar way. Let X(()i) \ X(()i_l) be one of the
strata of X with its reduced structure as a complex manifold. The set

MO = {(,1) e X'\ X§V % (CN)V - 2Ty C kerl)
0
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is a proper complex analytic subset of X(()i) x (CN)V and over all points
x outside Xéifl) it is a smooth manifold of dimension N. Again let p :
Xéi) x (CM)V — (CN)Y be the second projection. For a regular value !
X\ X6 the preimage K = p~*({l}) C X(()i) \Xéifl) is smooth of
dimension 0. In particular all the points belonging to K are isolated and

of pl

K c X" is complex analytic.

Now if 0 was in the closure of K, then there would be a real analytic
curve vy : [0,e) — K with v(0) = 0and ~(t) € K C Xé’) forall ¢ > 0. But
this would contradict the fact that K consists only of isolated points.

Since this holds for all of the finitely many strata, we may replace €2 by
the intersection of all the regular values for all constructions in this proof at
once. ]

Definition 2.3.5. The multiplicity of the branched covering u : I'(lp, u) in
the setting of Lemma 2.3.4 is the polar multiplicity of Iy on the given smooth-

ing.
Remark 2.3.6. The definitions of polar multiplicities we give here might
seem quite unusual. In fact there is a more general notion of polar varieties

and their multiplicities. It has recently seen a lot of interest in the context of
determinantal singularities, see e.g. [28], [29], [27].

In view of Lemma 1.2.25, we also want to make sure that a linear form
[ can be chosen in such a way that any deformation of (Xj,0) induces a
deformation of (Xy,0) N {l = 0}, i.e. the induced family is indeed flat.

Lemma 2.3.7. Let Ox, 0 = On/I be an analytic quotient of On. If Ox, o not
Artinian, then the set of zero divisors on Ox, o in (CN)V has measure zero.

Proof. Let m be the maximal ideal of Ox, o and

R = gry, OXo,O = (’)XO,O/m@ @md/md“
deN

the associated graded ring (see e.g. [22]). Since any nonzerodivisor on R is
automatically a nonzerodivisor on Oy, o, and R is Artinian if and only if
Ox, 0 is, it is sufficient to show the existence of (2 for R.

But this is clear since, unless R is Artinian, for all d € N the set

Qg = {l e (CM)Y : md/md+! N mt1 /m?? is injective }

is a proper open algebraic set in (C)V and therefore in particular dense
with complement of measure zero. But then also the intersection 2 =
MNaen 24 has a complement of measure zero. For any [ € € also the multi-
plication by / on R must be injective and such an / can not be a zerodivisor
on O Xo,0- ]

Given a smoothing (X, 0) — (X,0) — (C,0) of a determinantal sin-
gularity (X(,0) C (C¥,0) of dimension d, we can choose a linear form
I, € (CN)V satisfying all the requirements of Lemma 2.3.4 and Lemma 2.3.7.
After a linear change of coordinates we may assume that | = x is just the
last coordinate. Thus we obtain a second isolated determinantal singularity
(Yy,0) € (CN=1,0) from the intersection Yyt = Xo N {l; = 0}.
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We can proceed inductively and define hyperplanes [, ..., [; until we
finally end up with the analytic point-scheme Y = Xo N {ly =lp = -+ =
g = 0}. We also set Y = Xj. Having done this, we can choose a Milnor
ball B for all singularities at once and deform by u just as much that for all
induced deformations of the Y| the intersection Yj N OB stays transversal.

Now consider the function /; on X,. If 0 is not a regular value of [y,
then we can replace [y by [; — ¢ for some regular value c close to 0. In this
situation Y, = X, N {l; = 0} is a smooth manifold with boundary, the
Milnor fiber of (Y, 0). Again, we can proceed inductively and we obtain a
chain of Milnor fibers

—d _ —d—1 e
Y,CcY, c--CY,CX,

The topology of YZ is simple: It is just a collection of smooth points, whose
number is equal to the multiplicity e of the singularity (Xo,0) at 0. This
follows from the flatness of the induced deformation of (Y, 0) guaranteed
by Lemma 2.3.7 and Lemma 1.2.25. In particular

X(Yo) =e.

At this point the hope is that we can rebuild the Milnor fiber X, step-

wise from V" as follows. We obtain Y ' from Y by attaching m cells of
dimension 1 where m; is the polar multiplicity of /; on the smoothing of

(Y¢=1,0). This allows us to compute the Euler-characteristic of VZ_l:

—d_1>

x(Y, )=—-mi+e

We may now proceed inductively and finally recover the Euler-characteristic
of X, from the polar multiplicities and the multiplicity e of (Xo, 0) at 0. But
for this to work we have to prove that, in fact, the polar multiplicity alone
determines, which cells are attached.

Instead of the real part %l; we will consider |I;|> as a Morse function on

?L_l. The particular problem with this does not lay in the interior of Xu,

and the Y, where |I;|? has critical points precisely at the critical points of [,
but at their boundaries: We have to show that they can be neglected. To do
so, we first prove a technical lemma. It is inspired by the work of Y. Yomdin
[47] and his “lemma on grad h; and grad hy”.

Lemma 2.3.8. Let (X,0) C (CV,0) be a germ of a complex space, X a represen-
tative and
(0}cxWcx®c...cxM=x

a strictly ascending chain of analytic subspaces, which give rise to a complex
analytic Whitney stratification as usual. Suppose we’re given two real analytic
functions g,h : X — Rsq taking values only in the nonnegative real num-
bers with g(0) = h(0) = 0. Then there exists a neighborhood U of the origin
in CV, such that both f and g have no critical points on X N U in the Whit-
ney stratified sense outside {f = 0} and {g = 0} respectively. Furthermore, if
ze(XNU)\ ({f =0}U{g=0})isapoint, o) = X\ XC~1) the stratum
containing x and dg and dh are linearly dependent in ac.Qle over R, say

dg(z) = A-dh(z) in .04,
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then X\ > 0.

Proof. Consider X and its Whitney stratification with its reduced structure.
The existence of a neighborhood U of the origin, such that neither f nor g
have a critical point on X N U outside their zero set, follows just like the
existence of Milnor balls.

For 0 < i <rweset

K% = {2z e £ . dg(z) and dh(z) linearly dependent over R in 2. Q%0 1,

where we consider dg and dh as real analytic sections in the cotangent bun-
dle of £

We would like to single out those points = in K?), for which we have
dg(z) = X\ - dh(z) for some A < 0in R. To do so, let 7 : ¥ — X be the
generalized Nash-blowup of X along its cotangent sheaf Q% . For the
definition of generalized Nash-blowups see the appendix, Definition A.2.5.
Let K C Y be the analytic closure of K in Y. Clearly, B 1z =
K@, Now let g be any real analytic metric on the Nash bundle @) over Y.
We set

EY = {y e RO\ 71 (XOD) : g(7.(dg), 7u(dR)) < 0}

Here, 7, : Qﬁgm — 7@ is the Nash homomorphism. The set K (f) is real
semi-analytic and its semi-analytic closure K in Y suffices K" 020 =
K",

Suppose there is a point y € K" such that 7(y) = 0. Then according to
the Curve Selection Lemma there exists a real analytic curve

v:i[0,e) > KV, 4(0) =y

such that v(¢) € K forall t > 0.
We can integrate dg and dh along . For ¢t > 0 we find

g((t)) = /0 dg(1(t)) - 4(r) dr (2.10)

and the density dg(~(¢)) - 4(7) is real analytic. Hence, there exists a nonzero
initial term a - t" for some n € N. The coefficient a must be > 0, since, if
it wasn’t, then for 7 small enough, the integrand would be negative and,
hence, also g(~(t)) for some small ¢. The same holds for the function h and
the coefficient of the initial term of dh(v(t)).

By construction, dg and dh are linearly dependent along v for ¢ > 0, i.e.
we have dg(t) = A(t)-dh(t) in W*le(i) with A\(¢) < Oforallt > 0. Now along
7 the coefficient A = A(t) is a quotient of real analytic functions

Depending on the order in ¢ of numerator and denominator either A(t) or
1/A(t) exists as an analytic function in t at ¢ = 0. But then this function must
have a positive leading coefficient contradicting the assumption A(¢) < 0 for
allt > 0.
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We deduce that such a point y € Y n 771({0}) can not exist. Conse-
quently 0 € X can not be in the image W(F@). Since 7 : Y — X is an
isomorphism outside X *~1), the result follows. O

The generalized Nash-blowup in the preceeding proof was necessary in
order for the real analytic metric to exist. There is no canonical way to put
a metric on the fibers of the coherent sheaf le(i) and we need to replace it
by a vector bundle.

When we encounter functions g and h as in Lemma 2.3.8 in the follow-
ing, we will say that the (real) differentials dg and dh “point in the same
direction”. This notion originally comes from the gradients and not from
differentials, but we shall adapt it here since mathematically the formula-
tions in terms of gradients and differentials are equivalent.

Theorem 2.3.9. Let (Xp,0) C (CN,0),1 € (CN) and (Xp,0) — (X,0) —
(C,0) beas in Lemma 2.3.4, and Lemma 2.3.7. We set (Yp,0) = (Xo,0)N{l = 0}.
Let my be the polar multiplicity of | on the given smoothing. The Milnor fiber X,
of (Xo,0) is obtained from the Milnor fiber Y ,, of (Yo,0) by attaching myg cells of
dimension n = dim(Xy, 0).

Proof. As usual let p(z) = |z|2. We set ¢(x) = |I|%. According to Lemma
2.3.8, there exists a neighborhood U of the origin, on which dp and dg point
in the same direction on all points of (XoNU)\ ({p = 0} U{¢g = 0}). Choose
a Milnor ball B for (Xy,0) and (Yp, 0), which is properly contained in U.

We would like to deform by u, but there are certain further restrictions
on the choice of this parameter. Let K C 9X be the set of critical points of
g on the boundary of X outside 9Y. Clearly, K is a compact subset of CN.
We can choose a real analytic metric g on the real vector bundle Q| 0%y
From this we obtain an expression

on 0Xy. Along K the function \(z) is just the coefficient of the linear de-
pendence dg(z) = A(z) - dp(z). According to Lemma 2.3.8, the function
A(z) is positive on K and, hence, bounded from below away from zero on
a neighborhood V' of the compact set K in the representative Xj.

A perturbation by v induces a family of diffeomorphisms

(I)u : (Xo,aY()) — (Xu,afu)

depending smoothly on u. So does A\(®,(x)) as a function of u. We choose
u small enough such that A is still bounded away from zero on the open set
V' = ®,(V) C X, and such that outside V' the differentials dg and dp stay
linearly independent.

Consider q as a function on X,. By construction, the intersection {I =
0} N 0X, was transversal and for u small enough, this will be preserved. If
{l = 0} N X, is not a smooth manifold with boundary, we may replace [ by
[ — ¢ for some constant ¢ € C close to zero. A direct calculation shows that
on the interior of X,, the real valued function ¢ has nondegenerate criti-
cal points of index n precisely at the critical points of the complex valued
function .
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On the boundary X, we only know that the critical points of ¢ are
contained in V’. We may approximate ¢ by a Morse function ¢ on both,
the interior and the boundary of X,,. On the interior, this does not change
the number of critical points or their indices. On the boundary the criti-
cal points (p;)™, of ¢ also only appear in V'. If we now use ¢ as a Morse
function on the manifold with boundary X, then the following happens.

At each critical point = of ¢ in the interior of X, we attach a cell of real
dimension 7.

For a critical point y of § on the boundary X, the homotopy type does
not change due to Theorem A.3.6, because we have a linear dependence
dg(y) = X - dp(y) for some X > 0 and, hence, “the gradient of § is pointing
outwards”. O

Theorem 2.3.10. Let (X(,0) C (CV,0) be a smoothable isolated determinantal
singularity of dimension d and type (m,n, t) given by a matrix A € Mat(m,n; On)
such that dimc Inf(A) < oo. Then the vanishing Euler-characteristic of (Xo,0)
can be computed as

d
v(Xo,0) = (1) <e + Z(—l)" : m) : (2.11)

where e is the multiplicity of (X, 0) at 0 and the m; are the polar multiplicities of
successive general hyperplane sections of (X, 0).

Proof. This directly follows from what has been said before Lemma 2.3.8
and Theorem 2.3.9. O

Remark 2.3.11. Note that the polar multiplicities are purely algebraic objects.
This enables us to use Theorem 2.3.10 to effectively compute the vanishing
Euler-characteristic for any smoothing of an isolated determinantal singu-
larity with the help of computer algebra systems like Singular.

Remark 2.3.12. In [20], the authors work out formulas for the vanishing Eu-
ler characteristic for arbitrary EIDS, i.e. also those, which are not smooth-
able. Using methods of stratified Morse theory, it should be possible to
give the analogous theorems in terms of polar multiplicities, i.e. to extend
Theorem 2.3.10 in a generalized way also to these cases.
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Chapter 3

Tjurina Transformations

This chapter summarizes and extends the results from [26]. They are new
and were obtained in a joint work by A. Friihbis-Kriiger and the author. The
simple isolated Cohen-Macaulay codimension 2 singularities - especially
the threefolds - were the main ground for development and verification of
hypotheses. We will therefore mainly be concerned with singularities that
fall into the same category concerning their describing matrices. Most of the
stated theorems, however, are valid not only for simple singularities. The
key tool for the topological considerations is the Tjurina modification, an
idea that has been around for many years. But it seems that [26] is the first
account of its systematic usage for the explicit computation of vanishing
cycles.

What we today call Tjurina modifications is a blowup construction, which
was first used by G. Tjurina in [69] in her studies of rational triple point
singularities, where she applied it to determinantal surface singularities of
type (2,3,2). Later, also D. van Straten used them in his PhD-thesis [68].
The Tjurina modification has a natural generalization to determinantal sin-
gularities, which was already used by W. Ebeling and S.M. Gusein-Zade
in [20]. But they applied it only to the remaining singularities in determi-
nantal Milnor fibers, not to the original singularities themselves. Another
recent instance of the usage of Tjurina modifications can be found in [28]
by T. Gaffney and A. Rangachev.

We apply Tjurina modifications to the total space of determinantal de-
formations. As we will see below, under certain conditions, deformation
and modification are compatible and we can reduce questions about the
vanishing topology of a determinantal singularity (Xo, 0) to questions about
isolated complete intersection singularities - a world which is understood
much better.

This compatibility must have been observed already by other mathe-
maticians since traces of it can be found in the literature concerning the si-
multaneous resolution of surface singularities and cones over rational nor-
mal curves. Nevertheless, it seems that a systematic study of this interplay
as we present it here for determinantal singularities has not been done be-
fore.

The construction of the Tjurina modification has also been carried out
recently by H. Moller Pedersen in [55]. He uses a slightly different defini-
tion and applies it to determinantal singularities of type (d, d, d) to construct
resolutions.
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3.1 Tjurina Modification

3.1.1 ...for the Generic Determinantal Varieties

Definition 3.1.1. Lett < m < nbe positive integersand Y = (y; ;j)o<i<m,0<j<n
the generic matrix with entries y; ; over the ring C[y]. The Tjurina modifica-
tion of the generic determinantal variety M, , C Mat(m, n; C) is defined
as the generalized Nash-blowup of M/, , along the coherent sheaf G pre-
sented by the matrix Y|y . The strict transform of M}, , is called the
Tjurina transform and denoted by W, C M}, x Grass(t — 1,m).

The transpose Tjurina modification is the modification coming from the
generalized Nash-blowup of the sheaf presented by Y|, .- the transpose

of Y restricted to M, .

The Tjurina modification for the generic determinantal varieties has an
easy explicit description. Consider the following commutative diagram.

W}, . Mat(m, n;C) x Grass(t — 1,m) (3.1)
i
M}, Mat(m, n;C) - - — - — —  Grass(t — 1,m)

Here, I is the map induced from the first projection to Mat(m, n; C), L is the
rational map taking a point A € M}, , to span A (cf. (A.24) in the appendix)
and L is its natural prolongation over the blowup.

The locus on which L is not defined is precisely M/ . In the defini-
tion of the generalized Nash blowup A.2.5 we find equations (A.26), which
have to vanish on W/, , on each of the standard charts U of Mat(m, n; C) x
Grass(t — 1,m):

0l - A=0¢€ 0,.,[Z] (3.2)

Lemma 3.1.2. Let W/, C Mat(m, n; C) x Grass(t—1,m) be the Tjurina trans-
form of MY, ,, as in (3.1).

i) I is a isomorphism over M}, , \ ML L.

ii) The equations (3.2) already determine W, . in each chart. If T — Grass(t —
1,m) is the tautological bundle over Grass(t—1,m), then W, . is canonically
isomorphic to the total space of @;._, T. In particular, I1 is a resolution of the
singularities of M}, ,

iii) For all 0 < r < t and each point A € M}, , \ M} we find the fiber
O 1({A}) = Grass(t —r,m —r +1).

Proof. Part i) directly follows from the definition A.2.5 and the properties
of the generalized Nash-blowup, Lemma A.2.7.

To see ii) first observe that each column of A gives one copy of T in the
description of the tautological bundle over Grass(t — 1,m), Lemma A.2.4.
Thus the space W' defined by these equations is smooth and irreducible
and contains W, ,,. On the other hand

FL(an,n \ MrtnirlL) cW'c Wrtn,n
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and M}, \ ML} is an open dense subset of M, , since M,  isirreducible.
We deduce that W' = W}, .

For part i) let W := spanA C C™ be the r-dimensional subspace
spanned by A. Then as above (A,p) € W}, , if and only if span A is con-

tained in the linear subspace represented by p and hence

I '{A}) = {(WcVvcC":dimV=t-1}
~ oycV' cC™ ™ dimV =t —r}
= Grass(t—r,m—r+1)

by passing to C™ /W = C™~"+1, O

3.1.2 ...for Determinantal Singularities

In Chapter 1 we saw that every determinantal singularity (Xo,0) C (CV,0)
of type (m, n, t) inherits a free resolution of Ox, o over Oy from the graded
free resolution associated to the generic determinantal variety M}, , via the
defining matrix A. The Tjurina modification of (X, 0) is also defined as the

4

“modification inherited from M}, "

Definition 3.1.3. The Tjurina modification of (X, 0) is defined by the fol-
lowing commutative diagram:

Xo X, , Wi — Win : (3.3)

T

Xo M}, - 7 > Grass(t — 1,m)

Usually we will consider the Tjurina transform of (X, 0) asa germ in (CV, 0) x
Grass(t — 1, m) along the compact subset £ := {0} x Grass(t — 1, m) and de-
note it by (Yp, E). The natural projection (Y, E) — (Xo,0) will be denoted
by 70-

It is clear that mp : (Yo, E) — (Xo,0) is an isomorphism outside the set
A=Y (ML) € Xo. From Corollary 2.2.7 we obtain the following result:

,n

Lemma 3.1.4. Let (Xo,0) C (CV,0) be an isolated determinantal singularity of
type (m, n,t) defined by A € Mat(m,n; On) and (Yo, E) its Tjurina transform.
Then

70 - (Y[),E) — (X(),O)

is an isomorphism over X \ {0}.

Proof. Let X be a representative and p € Xy \ {0} an arbitrary point. Since
(X0, p) has expected codimension under the map

A: (CY,p) = (Mat(m,n;C), A(p))

and X is smooth at p, we deduce from 2.2.7, that rank A(p) = t — 1, so
p & A~1(M]}). Now the claim follows from the fact that the Tjurina modi-
fication of the generic determinantal variety M, ,, is an isomorphism away
from M!} Lemma 3.1.2 7). O

m,n’
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The given definition of the Tjurina transform has the advantage that we
can easily give explicit equations. We describe them in the next lemma.

Lemma 3.1.5. Let I C {1,...,m} be an ordered multiindex of order #1 =t — 1
and Uy the standard chart of the Grassmannian Grass(t — 1, m). The equations
for the Tjurina transform (Yo, E) C (CV,0) x Grass(t — 1,m) in this chart are
given by

0l A=0eMat(m—t+1,n;Ox[Z]),

where ©! is the standard representative matrix and Z! the standard affine coordi-
nates for this chart as defined in (A.14) and (A.18).

Proof. It is clear from the construction of the fiber product that these equa-
tions have to vanish on (Y, £/). We have to show that also the equations
defining (Xy,0) in CV are already contained in the ideal generated by the
entries of ©7 - A.

But if we let J C {1,...,m} be the multiindex complementary to I,
L=(1,...,m—t+1)and K = (1,...,n), then from the definition of © we
have

@I'AIO = ®£7I'A[7K:A]7K.

From this we see that the rows of A in J can be expressed by the t—1 rows in
I modulo (67 - A). Consequently, all -minors of A considered as elements
in On[Z!] are already contained in (67 - A). O

In the definition of the Tjurina transform of a determinantal singularity,
we do not blow up the rational map

LoA: Xy--»Grass(t —1,m).

Therefore in general the Tjurina transform (Yp, E) has a decomposition

Yo = Yo\ Xo xazg, , Wi U Xo Xare,, Woin (34)

m,n>

where the space Yj \ X x M, Wﬁ{% is the strict transform ' of X, under
the blowup of L o A. In parﬁcular it has the same dimension as (X, 0)
along E.

To clearify what we mean by this, we define the dimension of a germ
germ (Y, E) along a compact set E as

dim(Y, F) =sup dim(Y,p). (3.5)
peEE

Corollary 3.1.6. The Tjurina transform (Yo, E) is a local complete intersection if
and only if

dim(Xo X pze, Wiha, B) < dim(Xo,0). (3.6)
If (X0, 0) is an isolated singularity, then
Xo %atg, , Wi = {0} x Grass(t — 1,m) (3.7)
and (3.6) becomes
N>n-(m—t+1). (3.8)

! In fact in [55], and [28] the Tjurina transform is defined to be this strict transform.
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Proof. The ambient space of (Yp, E') has dimension
N +dimGrass(t—1,m) =N+ (t—1)- (m—t+1).

Let p € CV x Grass(t — 1,m) be an arbitrary point in F and X x Uy a chart
containing it. According to Lemma 3.1.5, there are n - (m — t + 1) equations
defining (Yp, p). Therefore the expected dimension of (Y, p) as a complete
intersection would be

N+({t—-1)-(m—t+1)—n-(m—t+1)=N—-(n—t+1)-(m—t+1).

But this is equal to the dimension of (X, 0). From the decomposition (3.4)
we see that

dim(Yp, p) = max{dim(Xo,0), dim(Xo xpz, Wiip)}.

Thus if (3.6) holds, then (Y, p) has codimension N — (n—t+1)(m—t+1)ina
Cohen-Macaulay ring and its ideal is generated by the same number of ele-
ments. According to Theorem 1.2.15 (Yj, p) must be a complete intersection
at p.

If (Xo,0) has an isolated singularity, then according to Corollary 2.2.7
A(p) ¢ M/} forall p € Xo \ {0}. On the other hand due to the minimality
condition on A we may assume that all entries a; ; € m - the maximal ideal
of On. Hence A(0) = 0 and with the given equations for the Tjurina trans-
form from Lemma 3.1.5 we find no conditions on the affine coordinates of
Grass(t —1,m) in each chart in the fiber over 0. Putting this together, we ob-
tain (3.7). The inequality (3.6) is now a simple consequence from counting
dimensions. ]

3.1.3 ...in Family

Definition 3.1.7. Let (Xo,0) C (CV,0) be a determinantal singularity of
type (m, n, t) given by a matrix A € Mat(m,n; Oy) and (Xg,0) < (X,0)
(Ck,0) be a determinantal deformation described by A € Mat(m, n; On y)-
The Tjurina modification in family is defined by the following commutative
diagram:

t t t
Xo Xags, W o= X s W, —= Wi,

”Oi ﬂl Hl \
Xo© X A M, - - > Grass(t — 1,m)
{0}¢ c*

(3.9)
We usually think of the space X x . W/  sitting over X as a germ in
(CN,0)x Grass(t—1,m) x (C*,0) along the set {0} x Grass(t—1,m)x {0} 2 F
and denote it by (Y, E).
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By the same reasoning as in the preceeding section for the determinantal
singularities, the equations for (Y, E) in the chart CV x U; are given by

el.A=0 (3.10)

For u € C* we denote the fibers over it by X, and Y,, := 7~ !(X,,) respec-
tively. The restriction of 7 to Y,, will be named m,. In the whole setup of
Definition 3.1.7, we consider representatives and we may choose a Milnor
Ball B for (Xy,0) and a neighborhood D C CF of the origin compatible with
the choice of B and the given deformation.

Lemma 3.1.8. Consider the Tjurina modification in family as in (3.9).

i) If X, is a determinantal Milnor fiber over some u € D, then
Tu Yy — Xu

is a resolution of the singularities of X,. If X, is smooth, then m, is an
isomorphism.

ii) If (Yo, E) is a local complete intersection, then the family
uor: (Y,E)— (C*0) (3.11)

is flat at all points p € E.

Proof. Part i) directly follows from the description of the singularities of a
determinantal Milnor fiber in Theorem 2.2.13 and the fact that Tjurina mod-
ification gives a resolution of the singularities of the generic determinantal
varieties, Lemma 3.1.2.

For part ii) we only need Theorem 1.3.1, because the equations given
by ©f - A can be regarded as perturbations of the equations ©7 - A in all
charts. O

The direction in which we want to go from here is already revealed in
the formulation of Lemma 3.1.8. We would like to study the Tjurina modifi-
cation in family for stabilizations of determinantal singularities. If the Tju-
rina transform (Y, F) is a local complete intersection, then we can study
the vanishing cycles in the induced deformation of (Yp, p) at points p € E,
which occur as we pass to a deformed fiber Y. Then we use the map 7, to
compare Y, with X, our object of interest.

Remark 3.1.9. For Cohen-Macaulay codimension 2 singularities (i.e. deter-
minantal singularities of type (t,t + 1,t), cf. Theorem 1.4.20), the Tjurina
transform takes a particularly simple form. The Grassmannian in question
is always

Grass(t — 1,t) = Grass(t — 1,t)¥ = Grass(1,t) = P!~ 1.

If welet s = (s; : -+ : s;) be the homogeneous coordinates of P!~! and
A a matrix defining a deformation of a Cohen-Macaulay codimension 2
singularity (X, 0), then the equations for the Tjurina modification in family
are

(31 e st) -A=0. (3.12)
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3.2 Topology of Simple ICMC2 Singularities

As remarked earlier, the starting point of the research carried out for this
thesis was the observations by J. Damon and B. Pike in [17] concerning
the vanishing Euler-characteristic of simple Cohen-Macaulay codimension
2 threefold singularities. These were classified by A. Friithbis-Krtiger and
A. Neumer in [25]. Simple isolated Cohen-Macaulay codimension 2 singu-
larities occur in dimensions from 0 to 4.

For fat point singularities, topological questions are rather trivial. The
topology of curves could be treated already using methods which were
not specific to determinantal singularities, see [14], and [37]. In dimen-
sion 2, there is always only one Betti number of the determinantal Milnor
fiber, which contributes to the vanishing Euler-characteristic due to Theo-
rem 2.1.18. This Betti number can therefore be determined using Theorem
2.3.10.

It is dimension 3, where for the first time we do have two Betti numbers
besides by, namely b3 and b2, which can be nonzero. ]J. Damon and B. Pike
showed with their computation of the vanishing Euler-characteristic that
among the singularities listed in [25], see also Table 3.1, there are members,
for which by must be nonzero and others, for which b3 is not zero. However,
they were unable to determine them individually. The starting point of
this work was, to compute those numbers and explain their behaviour and
growth within the discrete families of singularities listed in Table 3.1.

This task could finally be achieved in [26], where, together with A.
Friihbis-Kriiger, we announced the outcomes of those computations. The
methods developed for this purpose can, of course, be applied to more gen-
eral singularities, i.e. being simple is not a requirement of the involved
theorems. Nevertheless, the conditions in the formulated theorems would
seem rather unmotivated and restrictive if one did not have in mind the
original lists of simple singularities from the classification. In this chapter,
we therefore carry them along to explain, in which sense the exhibited the-
ory is natural. The results in the individual dimensions are then presented
in the order in which they were found. For fourfolds we only give an idea,
how it should be possible to generalize the methods to non-smoothable sin-
gularities.

First of all, the simple Cohen-Macaulay codimension 2 singularities con-
sidered in [25] are always isolated. Since the type of a Cohen-Macaulay
codimension 2 singularity is always (¢,¢ + 1,t) for some ¢t € N, we know
from Corollary 3.1.6 and Remark 3.1.9 that if (X,0) C (CV,0) is isolated,
then

B =" ({0}) = {0} x P!

is the exceptional set of the Tjurina transform (Y, E'). A simple computa-
tion shows that (Yp, E) is a local complete intersection if and only if N >
t+1,ie dim(Xp,0) =N -2>¢t—1.

Isolated simple Cohen-Macaulay codimension 2 singularities, which are
not complete intersections, occur only as determinantal singularities of type
(2,3,2), as shown in [25]. Their classification proceeds by roaming through
the space of jets of defining matrices and demarcating those leading to non-
simple singularities.
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For any integer r the r- jet of a holomorphic function f € Oy can be
defined as the equivalence class

JTf=f+mt e Oy/mT! (3.13)

where m is the maximal ideal of Op. In particular we have d f(0) # 0 if and
only if j'f # 0. This notion carries over to matrices A € Mat(m,n; Oy) in
the obvious way.

We can use the jets to classify matrices A defining a determinantal sin-
gularity (Xo,0). Suppose there is one entry a; ; with nonzero 1-jet. Without
loss of generality we may assume (7,j) = (1,1). After a change of coordi-
nates on the ambient space (CV,0), we may assume that a;; = 1 is the
first coordinate. Using row and column operations, we can eliminate all
occurences of terms involving x; in the first row and the first column and
thus bring A to the form

r1  ai2 - Q1p
a]271 * PN *
Am,1 % ek

where neither of the a; 1 nor of the a; ; involves z; at all. If now any of the
entries a; j outside the first column has a 1-jet, which is linealy independent
of j 1a171 = 1, we can add ) times the i-th row to the first for a sufficiently
general A € C and replace the coordinate z1 by 1 — X - a; ;. Then without
loss of generality we can assume that it is the entry a; o, whos 1-jet is inde-
pendent of x1. Now we can repeat the procedure: After another change of
coordinates in (C",0), which can be chosen to preserve x1, we can assume
a12 = x2 and then use column operations on A to eliminate any further
occurence of x5 among the a; ; for j > 2. Note, however, that if we tried to
eliminate x5 also from the other entries of the second column, we would in
general ruin the elimination of x;-terms in the first column. Hence this re-
duction is a privilege of the first step only. If we continue looking for 1-jets
of entries outside the first two columns, which are linearly independent of
x1 and x2, we eventually end up with a matrix

r1 X2 - XTg Ald+1l v Al
a2’1 B3 “ee *k *k e k
, (3.14)
am71 * “ee * * . e *

where d is the maximal number of linearly independent 1-jets in the first
row and for all the entries a;; in the last n — d columns we can assume
jlam' =0,1i.e. aij € m2.

As it turns out in [25], for all simple ICMC2 singularities of dimension
> 1 and those cases bounding the simple ones in the classification, the
defining matrices A € Mat(2,3; Oy) are all equivalent to matrices, whos
1-jet takes the following form

(””1 T2 "”3> (3.15)
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For all such singularities, the Tjurina modification is particularly well be-
haved.

Lemma 3.2.1 ([26]). Let (Xo,0) C (CV,0) be an isolated determinantal singu-
larity of type (2,3, 2) and of dimension > 0. Then the Tjurina transform (Y, E)
has at most isolated singularities, iff the defining matrix A for (Xo, 0) is equivalent
to a matrix of the form (3.15).

Proof. Tjurina modification is an isomorphism outside the singular locus,
which implies that the singular locus of Yj is contained in E = 7, ' ({0}) =
P!, Because E is irreducible, the singular locus of Y, is either a finite number
of points or the whole P*.
From the type of the singularity we deduce that (Yp, E) is a local complete
intersection.

We first show that (Y), E) has isolated singularities if the defining matrix
is of the form (3.15). Consider the second chart Uy of P! = Grass(1,2)".
The local equations for (Yp, E) are

@). (T F2 T3 _
(1z)<a 5 C) 0.

where a,b,c € m are arbitrary entries in the maximal ideal. The jacobian
matrix of these three defining equations takes the form

da da da
Mot w oh
/29 ADge 14 )0

Clearly, the first minor of this matrix is a unit in O¢n ¢ o, the local ring at
the origin of this chart. Hence Sing(Yp, £) can not be the whole exceptional
set E = {0} x P! and must therefore consist of finitely many points.

On the other hand, suppose that the defining matrix A of (X, 0) can
not be brought to the form (3.15). Then according to the normal form (3.14),
we can assume that the entries of the last column of A are all in m?. But
then one row of the jacobian has all entries in m and hence also all all the
maximal minors of the jacobian will be in m. Since the vanishing locus of
m = (z) on (Yp, E) is exactly the exceptional set E = {0} x P!, it must
therefore consist of singular points of Y; in this case. O

Lemma 3.2.2. Let (Xo,0) C (CV,0) be an isolated determinantal singularity of
type (m,n,t) and
7o - (Y[),E) — (XQ,O)

the projection of the Tjurina modification of (Xo,0). Then for a suffiently small
representative E is a deformation retract of Yy.

Proof. Since (X, 0) is an isolated singularity, the variety £ = {0} x Grass(t—
1,m) is closed and projective, hence compact. It follows from [51], that E is
a Euclidean Neighborhood Retract of an open neighborhood U of E in Y.
But outside E the map g is an isomorphism, so 7o(U) C Xy is open. We
may replace Xy by Xo N 7mo(U) and Y; by ﬂ'al(Xo). O

For ICMC?2 singularities of type (¢, %41, ¢) this means that the homotopy
type of Yy is completely determined by the exceptional set E 2 P*~! of the
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Tjurina transform. In particular we find

Z if0<i<2(t—1)iseven

) (3.17)
0 otherwise

H;(Yp) = H;(P' 1) = {

For the statement of the next theorem compare with Theorem 2.2.13 and
Corollary 3.1.6.

Theorem 3.2.3. Let (Xo,0) C (CV,0) be an ICMC2 singularity of type (t,t +

1,t) fort + 1 < N < 6, so that the Tjurina transform (Yo, E) is a local complete

intersection and (Xo,0) has a determinantal smoothing. Let d = N — 2 be the

dimension of (Xo,0). Suppose the singular set ¥. C E of (Yp, E) consists only of

isolated points and let F, be the Milnor fiber of the isolated singularity (Yo, q).
There is a long exact sequence

0 Hys1 (PY) —> @, e, Ha(Fy) —> Ha(X,) —~  (318)

——— Hy(P" 1) 0
——— Hy(Pt1) 0 Hy(X,) —=0

and X, is connected.

Note that the way in which (3.18) is presented is probably a bit misleading.
We attempt to make a general statement, but in fact the condition ¢t + 1 <
N < 6 narrows the possible configurations drastically. As it turns out, we
can observe very different outcomes for the topology of X, depending for
different choices of ¢ and N within these ranges. This will be discussed
below in further sections.

Proof. Choose a Milnor ball B for (Xo,0) and let Xy — X s Cbea
smoothing. For some disc D C C around the origin, over which the smooth-
ing is well behaved for the chosen Milnor ball, we consider the Milnor tube
B x D C CN x C and its preimage

T=7nYBxD)cCNxP!xC

We set Y =Y N T and denote the fiber over u by Y,,.

At all singular point ¢ € E of Yy, we can choose Milnor balls B, for
the singularities (Y, ¢), which are disjoint from the boundary Y = 0X.
Since the underlying family for (Xo, 0) is a smoothing, the projection

Tu: Yy — Xu

is an isomorphism for small © # 0 by Lemma 3.1.8, the induced deforma-
tions of all singularities (Y, ¢) are smoothings as well.

Now the (Yp, ¢) are isolated complete intersection singularities and hence
their Milnor fiber is known due to Theorem 2.1.13, Theorem 2.1.15, and the
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Lé-Greuel formula (2.3). Outside the singular points we have a smooth
manifold with boundary

Zy:=Yo\ | J(Yon By,
peEL

where as usual © denotes the interior. The boundary of Z, decomposes as

0Zy = N ZyU P Zy = 0Yy U U an NYy.
pEXL

We may now choose u small enough such that the associated deformation of
Zy is trivial in the differentiable category and for all singularities (Yp, ¢) we
pass to a Milnor fiber F}, := B, NY . From the pair of spaces (Y, J ges Fa)
we obtain a long exact sequence

(3.19)
F,) as follows. By excision we have

v By HilFy) — Hi(Yu) — Hi(Yu, Upex Fy

We can compute the terms H; (Y,
isomorphisms

peEX

Vu, | F)) = Hi(Zu,022.) = Hi(Zo,0220) = Hi(Yo, By N Yp) = Hi(Y)
peEX

for all ¢ > 0. The last step is explained as follows. The spaces B, N Y; are
contractible according to their conical structure and the properties of the
Milnor ball and hence H;(B, N Yy) = 0 for all i > 0. Thus the isomorphism
follows from the long exact sequence of the pair (Y, B, N Yp).

Since according to Lemma 3.2.2 Y; is homotopy equivalent to the excep-
tional set £ = P'~1, we can replace any occurence of H;(Y,, Upes Fy) in
(3.19) by H;(Pt~1). If we also take into account the isomorphism Y, & X,
and the result by Hamm on the F,;, we obtain (3.18). O

The following example illustrates how one can use the exact sequence
(3.18) to compute the Betti numbers of the Milnor fiber X, of a determinan-
tal singularity.

Example 3.2.4. Let us consider the ICMC2 singularity (Xo,0) C (C?,0) given
by the 3-minors of the matrix

T Y z 0
A=ly—v z—w 0 U
Yy+z r+u r—u v

Let (s1 : s2 : s3) be the projective coordinates of P? = Grass(2, 3). Then we
obtain Yo C C5 x P? as the zero locus of the equations

x Y z 0
(81 59 83) Yy—v z—w 0 u | =0. (3.20)
y+z Tz+u T—u v

The Tjurina transform Yj is still singular at 10 distinct points in {0} x P? C
C5 x P2 But there we only find 3-dimensional A; singularities embedded
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in higher dimensional space. Thus compared to the singularity (X, 0), the
situation became much simpler. Consider e.g. the singularity at the point
p = (0,(1 : 0 : 0)) in the chart s; # 0: The first three lines of the system
(3.20) define a smooth variety H of dimension 4 around p. Inside H the
equation
sgl) -u+s§1) =0
in the last line provides the A; singularity.
Consider the deformation with a parameter € given by the matrix

T Y z 3e
A=|y—v z—v 3¢ U
y+z r+u r—u v

Let X C C5 x C be the total space of the deformation

X0*>X

|k

{0} —~C

The Tjurina modification in family in C® x C x P? is now described by the
equations
(81 S92 83) -A=0

As a direct computation shows, all fibers of this family except the one over
¢ = 0 are smooth. The long exact sequence (3.18) splits into several parts:

0 —— Hy(P?) —— D ex H3(Fy) — H3(Xy) — H3(P?) (3.21)
OHHQ(YU) —>H2(]P’2) —0 (3.22)

Concerning (3.21): Recall from (3.17) that the homology of P? vanishes in
odd degrees and we therefore have a zero on the right. Now it is well
known that H3(F,) = Z for the Milnor fiber Fj, of an A;-threefold singu-
larity. Since there are 10 of them we obtain a short exact sequence

0 Z 710 H3(X,) —=0

and hence b3(X,) = 9. A closer observation with explicit coordinates in
fact shows that H3(X,,) does not have torsion.

From the other two equations (3.22) and (3.23) we directly obtain iso-
morphisms

Hy(X,) =27, Hi(X,)=0.
In total we find
9 ifi=3
bi(X0,0) =<1 ifi=0,2

0 otherwise
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for the Betti numbers of the Milnor fiber of the original determinantal sin-
gularity (Xo,0).

Depending on the choices of N and ¢ in Theorem 3.2.3 we can observe
very different behaviour. However, in all cases we will recognize phenom-
ena, which could already be observed in the above example.

3.2.1 Betti Numbers for the Threefolds

Theorem 3.2.5. Let (Xo,0) C (C5,0) be an ICMC2 singularity of type (3,4, 3)
such that the Tjurina transform (Yy, E) has only isolated singularities (Yp, q) at
points ¢ € E. If we let b3(q) be the middle Betti number of the ICIS (Yo, q) at g,
then the Betti numbers of (Xo,0) are

(ZqESing(Yo,E) b3(Q)> -1 ifi=3

0 otherwise

All homology groups are torsion free.

Proof. Directly along the lines of example 3.2.4. It remains to show that
H3(Xo,0) is free in general. But this can be seen from the attachment pro-
cess leading to Theorem 2.3.10: We obtain the Milnor fiber X, from a generic
hyperplane section H N X, of it, by attaching cells of real dimension 3. The
corresponding part from the long exact sequence of the pair (X,, H N X,,)
is

00— Hg(yu) — Hg(yu, HnN Yu) — HQ(H N Yu) ,

since the dimension of H N X,) is 2 and hence its third homology group is
zero due to the Lefschetz Hyperplane Theorem. Now the relative homology
group H3(X,, H N X,) is just Z", where r is the number of attached cells.

Being a submodule of a torsion free module, H3(X,) can not have torsion
itself. O

Theorem 3.2.6. Let (X,0) C (C5,0) be an ICMC2 singularity of type (2,3,2)
such that the Tjurina transform (Yy, E) has only isolated singularities (Yp, q) at
points ¢ € E. If we let b3(q) be the middle Betti number of the ICIS (Yo, q) at g,
then the Betti numbers of (Xo,0) are

ZqESing(YO,E) bS(Q) ifi=3

bi(X0,0) =<1 ifi =0,2
0 otherwise

All homology groups are torsion free.

Proof. The proof is the same as for Theorem 3.2.5, only that the term Hy(PY)
appearing in (3.18) is zero. O

We used this theorem to compute the homology groups of all simple
ICMC2 threefold singularities. In the following table we do not only list
the Betti numbers of the Milnor fibers, but also the types of the singularities
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appearing in the Tjurina transform (we adapt the classical names by Arnold
[4]), and the Tjurina number

7 = dim¢ T)l(mo

of (Xo,0). Recall that, as a consequence of Schaps result, Theorem 1.4.21
and the description of the infinitesimal deformation space in Lemma 1.4.22,
this number is equal to dimc Inf(A) for the presentation matrix A of the
singularity.

4 T sing. in Yp by bs
(i i ;) 1 - 1 0
(i 3, xk+lz+ y? k4+2 | A 1 I
(i lyv ry? Jrzxkl) k+2 | Dy 1 k
<:5 gf z? —T— y4> 8 Lg 1 6
<Z}3 g; 23 —iﬂ:y‘?’) 9 E; 1 7
<Zj g, 23 i y5> 10 Ex 1 8
(Z] g’ Yy f&) 2k—-1 | - 1 0

(Z 121/) y""’i#) k2| A 1| k-1
(I; 3} Yv —T— q)k> 2k Ay 1 1
(w +oF oy oz ) 2% +1 | Ay 1 )
z w  Yv
(wj;UQ ’i yin’“> k+3 | Ag 1 E—1

(f 5) y> :Er v3> 7 Az 1 2

(U2J;wk 3) UQiyz> k+l4+1| Ap 1, Ay | 1 | E+1—2
(v2 J; wk Z ;v> k+4 | Ay, A 1 )

(wtwk 3) yinz> k142 | Ap 1, Ay | 1 | E+1—2
(wv :_ vF g} " _Lf_ U"‘) 2k+1 | Ay, Ay 1 9
<wv :_ vk 3} yxv> 2k+2 | Ay, A4 1 9
<wv : o Z} y2 f_ U3> 8 A, As 1 3
(U,}zv g; y? f_ U3> 9 Ay, A 1 3
<w2 j V3 v 2 N Ug) 9 | Ay Ay ] A
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TABLE 3.1: Homology of Milnor fibers of simple ICMC2
threefold singularities

The classification of simple ICMC2 singularities provided a further set
of examples, for which these computations could be done. The result is the

following table.

A T | sing. in Yy by | b3

(2 o s y4) 11| Xy 1|9
(Z Z a3 er y6> 121 Jio 1|10
(w —|Z— v2 Q?j} . f_ v3> 8 | Dy 11 4
(w J; V3 i )2 f_ v4> 9 | As 11 3
(i i/; v? + ;3 T Z3> 11| T333 1|8
(; {Z 3+ ;2 + 23>2 13 | T533 1|8
(; 3) v+ ;3 + Z2> 17 | Ura 1|12
(; g} v? + ;4 + 22) 12 | Xo 119
<3ZU z{i vz —fz;vj— Uw> 10| De 116
(j«" i vaiv;) 9 | As 1|3

2There is a typesetting error in this matrix in [25]. The right-hand lower entry here is the

correct one.
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3
(Z v rtv 2) 15 | Xo 119
r w Yy +yz+z
zZ oy T+ v?
) D 1| 4
<x w vy—i—yz—l—zd) 8 4

TABLE 3.2: Homology of Milnor fibers for the bounding
non-simple threefold singularities

3.2.2 Decomposition of Infinitesimal Deformations

For simple ICMC?2 singularities (Xo,0) C (C®,0) there are only simple hy-
persurface singularities occuring in the Tjurina transform (Y, E). There
is a reason behind this, which becomes appearent if one considers the in-
finitesimal deformations of (Xj,0), i.e. the space T}(m0 =~ Inf(A), and the
induced infinitesimal deformations for the isolated singularities (Y5, ¢) in
the Tjurina transform.

In this section we aim to prove the following theorem:

Theorem 3.2.7. Let N > 3 and (X,0) C (CV,0) be an ICMC2 singularity of
type (2,3, 3) such that the Tjurina transform (Yy, E) has at most isolated singu-
larities (cf. Lemma 3.2.1). Furthermore let Xo — X — C7 be a semi-universal
deformation of X in the sense of Grauerts Theorem 1.4.13. There is a decomposi-
tion
Thoo =2 H' (Y0, T) e P T, (3.24)
q€Sing(Yo,E)

where Ty, denotes the tangent sheaf Homo, (94, Oy,) of (Yo, E). In particular,
the induced family (Yo, q) — (Y, q) — C7 is again versal for each of the arising
singularities.

We first discuss some implications of this theorem with a view towards
the question, to which extend there are analogues of Milnor’s formula in
Theorem 2.1.13, the inequality ;» > 7, (2.2), and Theorem 2.1.16 for the com-
putations of the Betti numbers of the Milnor fiber.

Corollary 3.2.8. Let (X, 0) be as in Theorem 3.2.7 and of dimension 3. If all the
isolated singularities (Yo, p) in the Tjurina transform are quasihomogeneous, then
we have an equality

T = h' (Yo, Ty,) + b3(Xo,0),

where T = dim¢ Ty, is the Tjurina number.
Xo,0

Proof. From Theorem 2.1.16 it follows that the local Milnor numbers of the
ICIS (Y, p) in the Tjurina transform are all equal to the local Tjurina num-
bers 7(Yp, p). The formula is now deduced from the decomposition (3.24)
and Theorem 3.2.6. O

For simple ICMC2 threefold singularities, the versality of the induced
deformations for all (Yp, p) explains, why we only find simple singularities
in the Tjurina transform. As one can observe from the Table 3.1, they are
all hypersurfaces and therefore members of the original classification by
Arnold [4]. Since all these singularities are quasihomogeneous, Corollary
3.2.8 holds in particular for all singularities in Table 3.1.
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Remark 3.2.9. There are families in Table 3.1, for which the term h!(Yp, Ty,)
grows linearly with k. For example the seventh entry, the so called II; fam-
ily, as well as the 17th and 18th entry. The deformation parameters corre-
sponding to the term H'(Yp, Ty,) in the decomposition (3.24) of the T
are not reflected in the vanishing topology of the singularity at all. This
phenomenon is contrary to anything that could be observed for isolated
complete intersection singularities before.

We prepare for the proof of Theorem 3.2.7. As usual letz = (z1,...,zy)
be the affine coordinates of CV at 0 and s = (s1 : s2) the homogeneous
coordinates of P1. The space of embedded first order deformations for the
Tjurina transform ¢ : (Y, E) < C° x P! can be described as follows (see e.g.
[64], [41]). Let Z be the ideal sheaf defining (Yp, E) in (C° x P!, E). We take
global sections of the normal bundle

Ny, = H(Yy, Homo(Z, Oy,))

and divide by those deformations coming from global sections of the tan-
gent bundle H%(Yy, *Tcsyp1). The resulting quotient will be denoted by

N’ := Ny, /H(Yy, " Tcs o p1 ). (3.25)

Note that the global section functor takes coherent sheaves to finitely gen-
erated C{z}-modules. In fact N’ is naturally a C{z}-module with support
in the point 0 and hence a finite dimensional vector space over C. To see
this, observe that outside the singular locus 0 € X (and outside £ C Y
respectively), the space Y is described as a graph over X, and we therefore
have a natural splitting of the normal bundle

NYO = NXO D TIP’1|Y0'

Because the tangent bundle of P! is globally generated, the second sum-
mand is killed when forming the quotient N’. But the first summand can-
cels on the smooth locus anyway.

It is clear from the construction that every deformation of (Xy,0) in-
duces a deformation of (Yp, P! x {0}). Let (Xj, 0) be given by the matrix

_[*T1 T2 I3 .
A= (a b C) S Mat(Z,S,C{xl,...,xN})_

and let
Hy =s1-a+s2-x1, Hy=s1-b+sy-xa, Hs=s1-c+s2-23 € C{z}[s1,s2]

be the three equations defining the Tjurina transform Yj in C° x P!, which
are homogeneous in s. On the level of equations there is a map

{Perturbations of A} A {Perturbations of H} (3.26)
1:1 1:1

Mat (2, 3; C{z}) ((C{z}s1,52)%) () »

(2,3) o
Ei,j —e;s;
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where the e; denote the generators of the free module on the right hand side
and Ei(;?s) denote the r x s matrices possessing only one non-zero entry of
value 1 at position i, j. The lower index (1) signifies that we only consider
the homogeneous part of degree 1 in s.

Lemma 3.2.10. The map A induces an isomorphism of first order deformations of
(Xo,0) and (Yo, E), i.e. an isomorphism of C{x }-modules

A:Th o — N

Proof. We have already obtained the isomorphism A between Mat(2, 3; C{z})
and (C{z}[s1, 32])?1). From the description of the T)l(o,o in Lemma 1.4.22 and
the definition of N/ we know the relations on both sides. It hence remains
to prove that the modules

0A
= ( — F-A+A-G
K < 8x> +( + )
from the description of Inf(A) = T}(mo and (Jg + I H)(l) are isomorphic.
Here Iy = (Hy, Ho, H3)C{z}? and Jy is generated by the columns of the
Jacobian matrix of the H; defining Y.

By construction of H, we see immediately

(3A) - O0H

8.701- N 83:,»’

(2,2) ~ 0H
AER? . A) = 5,0

Sj

and ;
A(A . Ei(,j7 )) = Hiej.

This provides a 1 : 1 correspondence of the generators of these two modules
and hence proves the claim about the cokernels:

0 K Mat (2, 3; C{z}) Tx,0 0
Al AJ{E i
0—— (Ju + In)q H(C{Q}[Shsﬂ)a) N’ 0

O]

There is a splitting of the module N’ coming from the local-to-global
spectral sequence of the exact sequence of sheaves

0—— Ty, — t*Tp1 5 Ny, Ty, 0, (3.27)

which can be explicitly described as follows.
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We first split the exact sequence (3.27) into short exact sequences

0——> Ty, — " Tpryes — =K ——=0 . (3.28)

0 K — Ny, — T} —0

The long exact sequences in cohomology both have to finish after the degree
one terms, because the underlying scheme is covered by two affine charts.

Let again Z be the ideal sheaf of (Yp,P!). If we tensor the short exact
sequence

0——=Z7 —— Opiycs Oy, 0

with the locally free sheaf Tp1, s and take the long exact sequence in coho-
mology, we see that
HY (Yy, " Tp1 cs) = 0.

Looking at the first long exact sequence in cohomology of (3.28), we deduce
that
coker (H"(Yy, t*Tp1xcs) — H(Yp, K)) = H' (Yo, Ty,)) (3.29)

and
H'(Yy,K) =0. (3.30)

Combining these results with the second long exact sequence of (3.28) and
recalling that N’ = Ny, /H°(Yp, t*Tp1 4 c5), we obtain a short exact sequence

O—>H1(YO,TYO) —>N’—>HO(YE),T31/O) —0,

the middle term of which is a finite dimensional vector space over C. Any
choice of a splitting gives us

N' = H' (Yo, Ty,) & HO (Yo, T¥,). (331)

The sheaf underlying the right hand side summand is supported only in the
singular points and hence affine. Thus if we let ¥(Y}) be the set of singular
points of Yy we can rewrite (3.31) as

N =H'(Y,Ty)e P T, (3.32)
peX(Yo)

which is the same as (3.24), given the identification T}((),O >~ N’ from Lemma
3.2.10.

In particular for any ¢ € 3(Yy) we get a surjective map from T}(mo onto
Ty, , by the composition

Tk, 0= N' = H' (Yo, Ty,) ® EB Ty, p — Ty, o0
pGE(Yo)

where the last map is the projection to the summand for ¢. This proves
Theorem 3.2.7.

Note that the induced local deformations for the isolated singularities
of Yy do not need to be semi-universal, i.e. 7 might not be minimal.
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3.2.3 The surface case

We state the analogue of Theorem 3.2.6 for surfaces.

Theorem 3.2.11. Let (Xo,0) C (C*,0) be an ICMC2 singularity of type (2,3, 2)
such that the Tjurina transform (Yo, E) has only isolated singularities (Yo, q) at
points g € E. If we let by(q) be the middle Betti number of the ICIS (Yy, q) at g,
then the Betti numbers of (Xo,0) are

(ZqESing(Yo,E) bQ(Q)) +1 ifi=2
bi(X0,0) =<1 fi=0

0 otherwise

All homology groups are torsion free and there is a splitting of the second homology
group

Hy(X,) = P HF)| oz, (3.33)
q€Sing(Yo,E)

where F, is the Milnor fiber of the singularity (Yy, q).

In particular H;(X,) is zero, not just of rank zero. This is stronger then the
result by Greuel and Steenbrink on normal surface singularities [34].

Proof. The long exact sequence (3.18) splits into
0 —— Dyesing(vo.z) H2(Fy) — Ha(Xu) — Hy(PH) —=0

and

according to (3.17). The desired splitting exists, because Hy(P!) = Z is
torsion free. This concludes the proof. O

For the ICMC2 surface singularities of type (3,4, 3), we obtain a surpris-
ing corollary.

Corollary 3.2.12. There are no ICMC2 surface singularities of type (3, 4, 3), which
have only isolated singularities in the Tjurina transform.

Proof. Suppose this was the case. Then we would find the following part of
the long exact sequence (3.18):

0——s H4(IF’2) — H3<Yu) —0.

But according to the Lefschetz Hyperplane Theorem, X,, can not have a
nonzero fourth homology group. O

Also for surfaces we can discuss the decomposition of Ty, , in the Tju-
rina modification form Theorem 3.2.7.

Corollary 3.2.13. Let (Xy,0) C (C*,0) be as in Theorem 3.2.7 and of dimension
2. If all the isolated singularities in the Tjurina transform are quasihomogeneous,
then

7 = h (Yo, Ty, ) + b2(Xo,0) — 1.
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Proof. This is basically the same as in the proof of Corollary 3.2.8, only that

this time we have a correction term —1 from the decomposition of Hy(X,)
in (3.33). O

Remark 3.2.14. In [24], A. Friihbis-Krtiger uses Corollary 3.2.13 for ICMC2
surface singularities with isolated singularities in the Tjurina transform, to
prove a conjecture by Wahl [72] in this special case. The conjecture says
that for a non-Gorenstein surface singularity (Xo,0) C (C?%,0) we have an
inequality

b2(Xo0,0) =p>7-1,

with equality if and only if (Xo, 0) is quasihomogeneous.

In the proof, A. Frithbis-Kriiger shows that for ICMC2 surface singulari-
ties with isolated singularities in the Tjurina transform the space H'(Yy, Ty, )
in the decomposition (3.24) always has dimension 2 for quasihomogeneous
singularities. This is contrary to what we observed for the threefolds in
Remark 3.2.9. For surfaces, there seems to be a much stricter correspon-
dence between the degrees of freedom for deformation in a semi-universal
deformation of the singularity and its vanishing topology. In the case of
nonisolated singularities in the Tjurina transform, however, the conjecture
is still open.

3.2.4 Topology of Space Curves

ICMC2 singularities of dimension 1, which meet the requirements of Theo-
rem 3.2.3 are space curves, i.e. curve singularities in (C3,0). Independently
of the development of the methods exhibited here, J. Kass worked out the
Tjurina modification in this case for the simple singularities from the list
in [25]. He gave a talk about his results in Hannover in June 2014, but, as
of this writing, did not yet publish on the subject. We will formulate the
analogue of Theorem 3.2.3 for space curves.

Theorem 3.2.15. Let (Xo,0) C (C3,0) be an ICMC?2 singularity of type (2,3, 2)
such that the Tjurina transform (Yy, E) has only isolated singularities (Yp, q) at
points g € E. If we let by(q) be the middle Betti number of the ICIS (Yy, q) at g,
then the Betti numbers of (Xo, 0) are

(quSing(YmE) bl(Q)) -1 ifi=2
bi(X0,0) = 41 ifi=0
0 otherwise

All homology groups are torsion free.
After all that has been said in the previous sections, the proof is left to
the reader.

3.2.5 Simple Fourfold Singularities

For ICMC2 singularities dimension 4 is special, because according to Theo-
rem 2.2.13 the singularities will not be smoothable anymore. Nevertheless
we can apply the machinery provided above, to ask about the topology of
the determinantal Milnor fiber.
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We start by observing that Theorem 3.2.3 is still true, if we replace X,
by Y, in (3.18). This means, we can use it to compute the homology groups
of the Tjurina transform Y, of the determinantal Milnor fiber X,,.

If (X, 0) C (C®,0) is of type (2, 3,2), we obtain

_ 69qESing(YO,E) H4(Fq) ifi =4
Hi(Yy) =1 Z ifq=2 (3.34)

0 otherwise

The problem for the fourfolds is, that the Tjurina transform on the determi-
nantal Milnor fiber
T - ?5 — Yg

is not an isomorphism anymore, but a resolution of singularities. Recall
from Example 2.2.2 i) the singularity (Xo, 0) C (C®,0) defined by the matrix

zZ w r+u
for some k € N. Direct computations show that the Tjurina transform

(Yo, E) C (C*,0) x P! is smooth. Now consider the stabilization of A given
by the perturbation with the matrix

000
o (o 0 1)
In this dimension, the degeneracy locus of A defined by (A"!) is a complete

intersection:
<AM> = (z,y, 2,0, w, uk>

Any determinantal deformation of (X, 0) therefore also leads to a defor-
mation of the degeneracy locus. In this case, the perturbation by ¢ results
in k distinct smooth points py, ..., px € X5, over which s is not an isomor-
phism anymore.

We know from Theorem 2.2.13 and Lemma 3.1.8 what happens over
these points: We find the resolution of singularities from the generic deter-
minantal varieties. Thus over every point p; there is an exceptional set

E; =P! x {pz} C?(;

sitting over it. In this particular example one can see that if we consider the
exceptional set £ C Y as the preimage of the fat point scheme defined by
(AM), then the embedded deformation of E in Y; induced from the pertur-
bation of A by § splits E into the E; above. From this, it is easy to see that
the fundamental cycles of these E; in homology are all homologous to the
generator of Hy(Y).

Now for fixed § # 0 let (B;)¥_, be Milnor balls for the singularities
(X5, p;). If we now consider the long exact sequence of the pair (Y5, Ule 75 H(Bin
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X)), we obtain

i 7z ifi=0,
Hy(Ys, |y (BinX5)) = 2 ifi=3,
=1 0 otherwise

But these groups are canonically isomorphic to the reduced homology groups
of X, since all the B; N X 5 are contractible. We therefore obtain

7 if1 =0,
H,(Xs5) =<2z ifi=3, . (3.35)
0 otherwise

It should be possible to obtain a general result for the topology of the de-
terminantal Milnor fibers of ICMC2 fourfold singularities along these lines.
The difficulty is to show that the exceptional sets over the isolated singular-
ities in X 5 are homologous to the generator of the second homology group
of the Tjurina transform in general.






95

Chapter 4

Line Singularities in the
Tjurina Transform

The results presented in this chapter are the exclusive work of the author.
In large parts it coincides with the article [73]. Central to our considerations
is the theory of vanishing cycles for nonisolated singularities as developed
by Lg, Siersma, Tibdr, Yomdin and others. Using the original fibration theo-
rem by Milnor [53] and Hamm [39], we generalize results from D. Siersma
[66] about hypersurfaces to complete intersections. Then we pick up the
considerations by D. Siersma and M. Tibdr in [67] concerning the vanish-
ing topology of projective hypersurfaces with nonisolated singularities and
apply it to isolated Cohen-Macaulay codimension 2 (ICMC2) singularities
with nonisolated singularities in the Tjurina transform.

4.1 Characteristic Vanishing Cycles

In the computations of the homology groups of Milnor fibers of smooth-
able ICMC2 singularities in the preceeding chapter we can observe, how
the cycles of the Tjurina transform (Yp, F) = P!~! contribute in (3.18). In
some cases they “survive” and in other cases they lead to relations among
the local vanishing cycles of the singularities (Y, ¢) in the Tjurina trans-
form, depending on the degree of the homology group in question and the
dimension of (X, 0).

Suppose (Xp,0) is a smoothable ICMC2 singularity of type (2, 3, 2), for
which the Tjurina transform is smooth. Then the Milnor fiber is diffeomor-
phic to (Yp, E), because the deformation of (Yy, E) induced from a smooth-
ing of (X, 0) is trivial in the differentiable category. Consequently if we
let

L:X,— P s spand,(x),
be the regular map on the Milnor fiber given by the deformed matrix A,,
then a generator of Hy(X,) is given by the fundamental class of a differen-
tiable section [ : P! — X, of L, i.e. a map [ such that L o [ = Idp:.

In general the existence of such a section is hard to prove. But from the
proof of the Theorems 3.2.6 and 3.2.11 it is evident that the generator of the
second summand of the splitting (3.33), or just the generator of the second
homology group in Theorem 3.2.6, “is coming from” the exceptional set. To
make this more precise, we give the following definition.

Let (Xo,0) C (CV,0) be a determinantal singularity of type (m,n,t)
given by a matrix A and
Ay,:B— My,
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the fiber of a a stabilization A of A defined on some Milnor ball B ¢ C¥
for (Xo,0). Because A, is transverse to all the strata My, ,, of Mat(m,n; C),
the Tjurina transform Y,, C B x Grass(t — 1,m) of X,, = A;l(Mﬁun) isa
smooth compact manifold with corners (recall that Y is isomorphic to X,
in case (X, 0) is smoothable). By abuse of notation, let

L:Y, C B x Grass(t — 1,m) — Grass(t — 1,m)

be the projection to the Grassmannian. Consider the image G C H*(Y,,) of
the induced map

L*: H*(Grass(t — 1,m)) — H*(Y )

in cohomology.

Definition 4.1.1. A cycle [o] € Hl(Y,) is said to be horizontal if the cap
product g N [o] is zero for all g € G = L*(H*(Grass(t — 1,m))). We write

o] € G*.

All other cycles in Ho(Y,,) are called vertical or characteristic vanishing cycles
of (Xo,0). We also say they are sitting over the Grassmannian.

Corollary 4.1.2. Let X, be the Milnor fiber of an ICMC2 singularity (Xo,0) C
(C™*2,0) of dimension n = 2 or 3 and of type (2, 3,2) with only isolated singu-
larities in the Tjurina transform. Then the homology of X, splits into

Ho(X,)=GtaZ

where the second summand lives in degree 2, and the cap product with L* (H?(P'))
gives a perfect pairing with H*(P') = Z.

4.1.1 Main Theorem for Line Singularities in the Tjurina Trans-
form

The main goal of this section is to extend Theorem 3.2.6, Theorem 3.2.11 and
Corollary 4.1.2 to the case of arbitrary ICMC2 singularities of type (2, 3, 2)
and dimension 2 or 3, i.e. we also allow nonisolated singularities in the
Tjurina transform.

Theorem 4.1.3. Let X, be the Milnor fiber of an ICMC2 singularity (Xo,0) C
(C™*2,0) of dimension n = 2 or 3 and type (2,3,2) given by a matrix A €
Mat(2,3; On). Let A € Mat(2,3; On41) be a stabilization of A in the parameter
u. For u # 0 let

L:X,—P, z spanA,(z).

The Milnor fiber X, has H1(X,,) = 0 and the homology of X, splits into
Ho(X,) = (I"H*PY) " & Z.

The cap product with L*(H?(P')) gives a perfect pairing of the vertical cycles with
H%(PY) 2 Z. If n = 3, then Hy(X,) = Z consists of the vertical cycles only.

Since for any given example the Euler characteristic v(Xy,0) can be
computed with Theorem 2.3.10, we obtain the following corollary.
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Corollary 4.1.4. Let X, be the Milnor fiber of an ICMC2 threefold singularity of
type (2,3,2). The Betti numbers of X,, can be computed as

1 ifi =0,2
bi(X0,0) = ¢ v(Xp,0) =1 ifi=3
0 otherwise

4.1.2 An Example and Outline of the Proof

To illustrate the ideas of the proof of Theorem 4.1.3, we give an example
of an ICMC2 threefold singularity with non-isolated singular locus in the
Tjurina transform.

Example 4.1.5. Let (Xo,0) C (C®,0) be given by the matrix

v x
w Y (4.1)
—2zy v? 4+ w?+ 22

and consider the smoothing obtained by perturbing the lower left entry
with a constant §. We denote the homogeneous coordinates of P! by (s :
s2). Then the equations for the Tjurina transform (Yy, V') C (C® x P!, {0} x
P!) and its deformation by ¢ are

v x 5
w Y : ( 1) =0. (4.2)
—2zy — 8 0?4 w? 4 22

Let us look at the first chart {s; # 0}. We write s = s3/s; for the corre-
sponding standard affine coordinate. The equations from the first two rows
read

V=—5-T, W=—5"Y.

Substituting this in the equation from the last row, we obtain a hypersurface
h=s 2245 y? =22y +s- 2%,

which is perturbed by a constant §. We can interpret this as a quadratic
form @ in (z,y, z) parametrized by s and write it in the standard matrix
form:

s3

-1 0
h:Qs(ﬂU,y,z):(x Yy z) -1 s 0
0 0 s

=4.

IS NSRS

Any quadratic form should of course be diagonalized. To do this, we intro-
duce new coordinates

~ 1 =1l 9

gl =11 L o

4 V2 V2 Sk
z 0 0 1/ \=z
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in which our hypersurface equation takes the form
s2+1 0 0

h=Qu .5 =F § 2)-| 0 =10
0 0 s

N

=45 (43)

[SIENS!

This is a family of A;-surface singularities, which degenerates as s ap-
proaches one of the seven values

s € V1U{0}.

Now it is clear that in this chart the Tjurina transform Y is singular along
the whole exceptional set V, the s-axis in this chart.

Let L : C° x P! — P! be the standard projection, i.e. in this chart the pro-
jection to the s-axis. If we restrict h to a general transversal slice to V' given
by the hypersurface {L = c} for a general ¢ € C, we obtain the transversal
singularity denoted by Y{:

hip—eg = (@ + 1)+ (P = 1)§* +c7* =6

and a smoothing induced by the perturbation with the constant ¢. This
transversal singularity is isolated and of type A;.
For ¢ # 0 we see a vanishing cycle [¢] in the Milnor fiber

Y ={n=0n{L=c}

of the transversal singularity. It lives in the second homology group H(Y;")
and can be represented by a 2-sphere. This is a candidate for further contri-
butions of the second homology group of

Y; C C° x P,

the fiber over ¢ in the given deformation and, hence, for the Milnor fiber X,
of (Xo,0). Whether or not [o] is nonzero as an element of H(Y;) depends
on the inclusion

v ;.

To shed some light on this question, let us observe the behaviour close to
the degeneracy points

K= {(f,g,z,s):i:gzgzo,se{’/Iu{o}}.

The analytic type of the singularity h at either of these points is what D.
Siersma calls the D.-singularity, a.k.a. the Whitney umbrella. For any p € K
we can choose a Milnor ball B = B(p) for the singularity of ~ around p
and a value ¢ € C for the transversal singularity sufficiently close to s(p)
such that the intersection B with the hyperplane {L = c} is nonempty. D.
Siersma shows in [65, Proposition 3.8]:

For the Do, singularity of dimension n the pair of Milnor fibers (Ys N B, Y{" N B)
is homotopy equivalent to the pair of spheres

(Sn’ Snfl)
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FIGURE 4.1: The Tjurina transform with non-isolated sin-
gularities.

where S"~1 < S™ is the standard equatorial embedding.

Let W C C be the complement of some small discs around the special
points in K C C. Then for 6 > 0 small enough

L:YsnL7Y(W) =W (4.4)

is a fiber bundle with fiber Y{". This means we can freely move the equator
of all the vanishing cycles coming from the seven D, points and connect
all half spheres globally. The affine part of Y; is therefore homotopic to a
bouquet of spheres:

Vs\{s1=01=283v...v§? (4.5)

2:7—1 times

with each of their equators being homologous to the vanishing cycle S? of
any of the transversal Milnor fibers.

To complete the picture, let us look at the other chart {s; # 0}. We
denote the corresponding affine coordinate of P! by t = s1/s2. Again the
equations for the first two rows of the matrix allow us to substitute in the
equation of the third row and we obtain the perturbation of a hypersurface
equation:

hi=v24w? =263 vw4 22 =6t

Regarding this as a quadratic form Q; in (v,w, z) parametrized by ¢ and
diagonalizing as before, we obtain

1+t 0 0
(@ w z)-| 0 1-¢20
0 0 1

=0-t.

wm R =

We do recover the six degeneracy values for ¢ of the quadratic form at the
six roots of unity. However, @); does not degenerate at the point (0,00) €
C® x P!, the origin in this chart. Hence, we can make an analytic change of
coordinates around this point such that the local equation A for Y at (0, c0)
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is just an A, singularity:
h=a2%4+y*+2%: (C*0) = (C,0).

But note that we do not perturb by a constant, but by ¢ - . This means the
transversal slice over {t = 0} does not deform! We have

Y0 :=Yyn{t=0} =Y;n{t =0}

The set Y is what we call an axis of the deformation. The point (0, 0), in
which the axis intersects the exceptional set V/, is called the axis point.

Being a representative of the germ of an isolated singularity, Y. is a
contractible fiber in the family given by L : Y5 — P! If welet L=*(D) > Y
be the preimage of a sufficiently small disk D C P! around oo, then we can
assume that L=!(D) is also contractible. We compute the Mayer-Vietoris
sequence for the two patches L=1 (W) and L~1(D).

The intersection L~1(W N D) is homotopic to a fiber bundle over the
circle S* with fiber Y}, which in turn is homotopic to a 2-sphere S?. The
topology of L1 (W N D) is thus determined by the Wang sequence of the
tibration and we get

H3(L"Y(WnND))=0, Hy(L Y (WnD))=17/27, (4.6)
H(L7*WnD)=2, Hy(L Y(WnD))=Z27. 4.7)

The second homology group is generated by the transversal vanishing cycle
in Y{" and the first one by a continous section of the projection to S*.

Putting all this together, we obtain the following exact sequence for the
Hs-term:

00— 71 —— H3(Ys) )27 0.

We may deduce that b3(Y;) = 13. But from this it is not clear whether or not
there is a further torsion part in H3(Y;). For the second homology group the
connecting homomorphism in the long exact sequence is an isomorphism:

0 —— Hy(Ys) — H{ (L'(WN D)) ——=0.

The generator therefore is the difference of two relative cycles for the pairs
(L=Y(D),L=*(WnD))and (L~Y(W), L=*(WnD)), whose common bound-
ary is the fundamental class [I] of a section [ : S* = 9D C P! — Y of L.
We can construct the generator of H(Y;) by extending / to both D and W
as a section of L. Away from the special points, i.e. where L is a fiber bun-
dle, this section exists and is unique up to homotopy by general obstruction
theory and the connectivity of the base and fiber. At the D.,-points we can
change coordinates and reduce to the normal form

s-x? oyt 42 =4
Here [ can be extended by

s (s,x,y,2) = (s,0,0, \/5)
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It is evident that
H*(PY) x Hy(Y;) = Z, (w,[o]) — L*wN o]

is a perfect pairing of free Z-modules.

Since the deformation we started with was a smoothing of (X, 0), the
spaces Y; and X; are naturally isomorphic and we are done with the deter-
mination of the homology groups of the Milnor fiber of (X, 0).

We will now outline the proof of the main Theorem 4.1.3 using this ex-
ample. It is widely inspired by the work of D. Siersma and M. Tibdr on the
vanishing topology of projective hypersurfaces [67], in the way we piece
together the global picture from local computations and the role played by
the axis point.

Step I: Study line singularities, which are local complete intersections. In general
the singular locus V = {0} x P! of the Tjurina transform Y, C C® x P! will
consist of a Zariski open set U, over which the projection L to P! is the germ
of a submersion along the exceptional set, i.e. it locally induces the structure
of a fiber bundle with fiber Y{, the transversal singularity. Its Milnor fiber
Y{" is well defined up to diffeomorphism. This is done in section 4.2.4.

Then we will treat the special points, i.e. the complement of U. In the
above example we saw that the vanishing cycle [o] of the transversal sin-
gularity became homologous to zero in the local Milnor fibers of the Dy,
singularities. But in the general case of arbitrary line singularities which
are complete intersections, there is no reason for this to hold. Consider for
example the F; A3 singularity from De Jongs list [48]:

f=z2+y?2 =2 (zz+9%).

He shows that its Milnor fiber F is homotopy equivalent to S'. If we find
such a singularity in the Tjurina transform of an ICMC2 surface singularity
or a double suspension of it in the Tjurina transform of a threefold, then
there are cycles of the transversal Milnor fiber F™, which are not homolo-
gous to zero in F.

It turns out that the important property we need is the fact that any van-
ishing cycle of degree (n—1) of the Milnor fiber F’ of a complete intersection
line singularity can be represented by a cycle in the transversal Milnor fiber
F™. This is done in section 4.2.5, where we give a description of how the lo-
cal Milnor fiber of those singularities is connected to its transversal Milnor
fiber (Corollary 4.2.9 and Theorem 4.2.11 for the threefolds and respectively
4.2.10 and 4.2.13 for the surface case).

Step II: The role of the axis point. In section 4.3.1 we show that for deforma-
tions of an ICMC2 singularity (X, 0) of dimension n and its Tjurina trans-
form (Yp, V) coming from a perturbation of the defining matrix A with a
general constant matrix B of rank 1, a generic rank 1 perturbation, we always
have an axis Y! and an axis point (0, 00) € V. For the fiber Y; of the Tjurina
transform in such a deformation, the connectivity of local Milnor fibers F of
complete intersection line singularities with their transversal Milnor fibers
F™ will imply that all homology of degree n — 1 of Y5 \ Y. is concentrated
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in the transversal Milnor fiber YJ". When gluing in the fiber Y." of L over
00, all the cycles in Y collapse.

Step III: Putting together the global picture. In the last part, section 4.3.3, we
use Mayer-Vietoris arguments to compute the homology groups of Y; for a
general rank 1 perturbation (Theorem 4.3.4): While the vanishing cycles of
Y and, hence, also all (n — 1)-cycles of the local Milnor fibers of the special
points are homologous to zero in Y3, adding Y to Y \ Y will also give
rise to a new 2-cycle sitting over P! in the sense of Definition 4.1.1. This
finally leads to the proof of Theorem 4.1.3, in which we pass from a general
rank 1 perturbation, for which neither Y5 nor X are necessarily smooth, to
a smoothing of (X, 0).

4.2 Line Singularities in the Tjurina Transform

4.21 Complete Intersection Line Singularities

Definition 4.2.1. A singularity (Yp,0) C (CV,0) is called a line singularity if
the singular locus V = Sing(Yp) is the germ of a line in C* at 0.

Curves cannot have line singularities unless they are a multiple line them-
selves. In this section, we will therefore always assume n = dim(Yp,0) > 2.

Let (Yp,0) C (CV,0) be a line singularity, which is a complete intersec-
tion of codimension d given by the equations f; = --- = f4 = 0. For line
singularities there is in general no unique smoothing, as we saw in Example
2.1.9. For hypersurfaces one can, however, consider the “perturbation by a
generic constant” and use the Fibration Theorem by Lé, Theorem 2.1.11.

For complete intersections, there is a well-known trick to reduce to a
constant perturbation of one holomorphic function on a controlled ambient
space, see e.g. [39]. Let

f:(CN,0) = (€40,

be the map defining the line singularity (Yp,0) and 0 € U C C¥ a neighbor-
hood of the origin on which all the f; are defined. Consider the map

Pf:U\Yy =P o (fi(x): - fala))

and choose a regular value p € P?~! for Pf. After a change of coordinates
of P4~1, which corresponds to a new C-linear combination of the generators
fi, we can assume that p = (1: 0 : --- : 0). Then the closure of its preimage
inU Cc CV is given by

Y'={zeU: fo(z) == fa(xr) = 0}. (4.8)
Lemma 4.2.2. The singular locus of Y* is contained in the singular locus of Y.

Proof. (cf. [39, Lemma 1.1 or Lemma 2.2]) Outside Yj the space Y* is already
smooth. If Y* had a singular point p € Y;, this means that the jacobian
of (f2,..., fa) would not have full rank at p. But then also the jacobian of
(f1, fa2,. .., fa) could not have full rank and thus p would be a singular point
of Yj as well. ]
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We rename the first function f; to f. Without loss of generality we can
assume that the singular line (V,0) = (Sing(Y),0) is just the germ of the
first coordinate axis of CV. This will be the standard situation, from which
we will proceed for this section:

f:(Y*,0)C(CN,0) = (C,0), Yo:=Y*n{f=0} (4.9)
Sing(Y™*,0) C Sing(Yp,0) = {z2 =--- =2zn = 0},0). (4.10)

Since we are primarily interested in topological questions about the sin-
gularity, we will use Whitney stratifications to provide the setup for appli-
cations of the first Thom isotopy Lemma. We may assume that Y* admits a
Whitney stratification by the strata

(Y \ Yo, Yo \ V, V' \ {0}, {0}) (4.11)

sufficiently close to the origin. The last stratum {0} might, however, be
optional.

If we apply Lé’s Fibration Theorem 2.1.11 in this setting for some suffi-
ciently small Milnor ball B, we obtain a smooth fiber

E,=Bnf'{u)ny*

for u € C sufficiently close to 0. This is what we refer to as the Milnor fiber
of the complete intersection line singularity (Yp, 0).

4.2.2 The Polar Curve

Besides the Whitney stratification there is one more thing we need to take
into account. Let
L:(CN—>(C,((L'1,...,$N) — X1

be the projection to the first coordinate axis. Consider the polar locus of f
with respect to L on Y*

L(f,L)={x € Y*\ Yy :dL(x),df(x) are linearly dependent in z.Q},. },
(4.12)
where * denotes the closure. The polar locus can be very nasty. However,
for most choices of the projection L we get reasonable control over I'(f, L)
in the usual way.

Lemma 4.2.3. For a = (ag,...,an) let
N
L,:CN >, (x1,...,ZN) Hxl—Zai-xi
=2

be the projection bent by a. There exists a dense set Q C CN~! of values for a such
that for a € Q the polar locus I'(f, L,) C Y* is either empty or an analytic curve,
which is smooth outside Y.

Proof. This is a Bertini-type theorem. Consider the following incidence
space

N*:={(z,a) € Y*xCN!: dL,(z),df(z) are linearly dependent in x.Q}. }.
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It comes along with the two natural projections

N*
RN
Y* CN_I.

Over Y*\ Y the function f has a full rank differential on Ty« and, therefore,
N*\ pri*(Yp) is a smooth manifold of complex dimension

dim N* = dimY* + (N —1) — (dimY* — 1) = N.

Let a be a regular value of the projection pry restricted to N* \ pr L(vp). Tts
preimage
pry ({a}) € Y* x {a}
is either empty or an analytic curve which is smooth outside Yy x {a}. O
We will, in the following, assume that L, has been chosen according to
lemma 4.2.3. Then we readjust the coordinate system of CV in a way that

L, = L = z is just the first coordinate function, i.e. the projection to the
first axis.

Corollary 4.2.4. Passing to a smaller representative of Yy if necessary, we can
furthermore assume that the polar curve meets Y, only at points in V.
4.2.3 The Choice of a Milnor Ball

Let p : CV — R be the squared distance function from the origin and set
B. := {p < ¢}. For sufficiently small £ > 0 we may assume that

e p is a Whitney stratified submersion on Y* N B, with respect to the
standard stratification (4.11).

e (cf. [39, Korollar 3.2]) the function
arg f: Y*\ Yy — S?

has a differential, which is linearly independent from dp over R in the
real cotangent bundle 7*Y™* of Y* along B. N (Y* \ Yj).

o the function f has no critical points on B. N Y* away from Yj.

e the polar curve I is either empty or, if it intersects B. NV, it does so
only at the origin.

4.2.4 The Milnor Fiber in the Product Case
In this section we will treat the case that
(Y*\ Yo, Yo\ V,V)
is already a Whitney stratification of Y* at 0 and the polar curve I'(f, L) is
empty.

Thom’s first isotopy Lemma yields that Y; is a product over V, that is

(Yo,0) = (Y x V,0), (4.13)
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where (Y{,0) is the germ of the transversal singularity. This is an isolated
singularity obtained from Yj by intersecting it with a hyperplane in general
position, i.e. transversal to all strata at 0. Lemma 4.2.3 and Corollary 4.2.4
show us how to choose the equation for such a hyperplane.

We will show that the product structure (4.13) also holds for the Milnor
fiber. To do so, it is more convenient to have a polydisc rather than a Milnor
ball. Assume that the projection L = z; to the first axis is general and let

be the squared distance from V. According to [30, Lemma 2.3], the map
(L,q): Yo\V =V xR

is a submersion on a neighborhood U of the origin. We may choose «, 3 €
R small enough such that the polydisc

Aap = {q<?}n{|L| < B}
is contained in U.

Theorem 4.2.5. In the above setup for fixed o and [3 there exists a § > 0 such that
the map
(f,L): Y*NAusN f1(Ds) — Ds x Dg (4.14)

is a fiber bundle away from Yo =Y* N {f = 0}.

Definition 4.2.6. The fiber of (4.14) over a general point is called the transver-
sal Milnor fiber and denoted by F™.

Clearly for fixed § > 0 we have F = F" x Dj.

Proof. (of Theorem 4.2.5) Since (L, ) was a submersion on Yy N A,p, the
horizontal part of the boundary

(Yo N Aup) :=YoN{g =} N{|L| < B}

is a fiber bundle over the closed disc Dg. Because it is compact, this prop-
erty is preserved under small perturbations of f. Hence, we can assume
that

(£,L) : Y0 fH(Ds) N {g =’} N L7 (Dg) = D5 x Dg

is a fiber bundle.

The absence of the polar curve assures that away from Y, we also find
no critical points of (f, L) in the interior of Y* N A,g. Therefore (4.14) is
a proper submersion away from Y, and, hence, a fiber bundle by Ehres-
mann’s Fibration Theorem. O

4.2.5 The Milnor Fiber at a Special Point

We now treat the general case; i.e. we have a Whitney stratification of Y* C
CN by the strata
(Y*\ Yo, Yo \ V.V \ {0}, {0})
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and a possibly nonempty polar curve I' C Y*, which meets ¥ at {0}. By
passing to smaller representatives, if necessary, we can always reduce to
this setup.

Let B be a Milnor ball for Y; at 0. When we investigate the topology
at the special points in the setting of the Tjurina modification of an ICMC2
singularity, it is the part of the boundary ¥ = Yy N 9B, which is close to V,
along which Yj connects to the remaining space. Therefore we will study
mainly two objects in this section: The topology of the second boundary

0o F C OF,

which is the part of the boundary of the Milnor fiber F' close to V, and the
relative homology groups H,(F, 02 F'), which determine how F'is connected
to 0o F'. The precise definition of the second boundary 0> F' is given below.

The Second Boundary

In this section we will denote the boundaries of the spaces in question by
Y =Y*NOB, T:=YyNndB, S:=VNIB.

Along the points of S we find the product situation of the preceding section
for Yy. Thus, Theorem 4.2.5 is applicable along the whole circle. However,
we do need the slight modification to change L to

L:B—C, zw—+/p(x)- exp(v/—1-argL),

with p = |L|? + ¢ the squared distance from the origin. The function L is
not holomorphic, but approximates L as a differentiable function close to
S. Repeating the arguments in the setup and proof of Theorem 4.2.5 along
the compact manifold S we obtain:

Corollary 4.2.7. There exist o > 0, and § > 0 sufficiently small with respect to o
such that
(f,argL) : ¥*N{qg < a?}n f1(Ds) — Ds x S* (4.15)

is a smooth fiber bundle away from { f = 0}.

It is easy to see that the fiber of this fiber bundle is canonically diffeo-
morphic to the transversal Milnor fiber F".

Definition 4.2.8. For o and 4 as in Corollary 4.2.7 the space
OF =Y N{g<a®}n{f =46}

is called the second boundary of the Milnor fiber ' and the monodromy T,
from the fibration
arg L : OoF — S1 (4.16)

the vertical monodromy.

The topology of 02 F is completely determined by the topology of F'"
and the Wang sequence of (4.16). The transversal Milnor fiber F comes
from an ICIS of dimension n — 1, so it is (n — 2)-connected. For n > 3 the
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Wang sequence splits into two parts:

T,_1—1

0 ——> H,(0oF) — H, (F"Y "~ H, (F") —= H, 1(3F) —=0
(4.17)
and
0 —— Hy (8o F) —= Ho(F™) 2oL Ho(FM) —— Hy(8F) —=0,
(4.18)

where T, is the monodromy operator of (4.16). Clearly, To — 1 in (4.18) is
the zero map. Thus, we proved the following:

Corollary 4.2.9. Let n = dim(Yy, 0) > 3. The homology groups of O F' have the
following properties:

1. Hy,(02F) is a free subgroup oan,l(Fm).

2. Every cycle in H,,_1(02F) can be represented by a cycle in H,,_1(F™).

3. Hi(0:2F) is free abelian of rank 1 and generated by a section of arg L.

4. 99 F is connected.

5. All other homology groups are zero.

If n = dim(Yp,0) = 2, the terms H,,_1(02F) from (4.17) and H;(02F)

from (4.18) come together. But the kernel of Ty — 1 is still free of rank 1 and
hence there is a (non-canonical) splitting

Hy(0oF) 2 H] & Z = coker(Ty — 1) @ ker(Tp — 1). (4.19)

We call H] = coker T} — 1 the transversal or horizontal and the other sum-
mand Z = ker Ty — 1 the vertical cycles of the second boundary 0> F.

Corollary 4.2.10. The homology groups of the second boundary O F of the Milnor
fiber F of a complete intersection line singularity (Yp,0) of dimension 2 have the
following properties:

1. H(0oF) is a free subgroup of Hy(F™).
2. Every cyclein Hy(92F) can be represented by a transversal cycle in Hy (F™).

3. Hi(0:F) splits into transversal and vertical cycles (4.19) and a generator of
the latter is given by the fundamental class of a section of arg L.

4. 99 F is connected.

5. All other homology groups are zero.

Connectivity with the Second Boundary

Having described the topology of the second boundary, we now turn to the
question how it connects with the Milnor fiber. We will first treat the case
n = dim(Yp,0) > 3 and modify the arguments for the surface case in the
next section.
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Theorem 4.2.11. Let n = dim Yy > 3. Then we have

0 2<qg<n
Hq(F, GQF) = Hq_1<82F) q= 2 (420)
0 0<¢g<1

where the isomorphisms are induced from the long exact sequence of the pair of
spaces (F, 0o F).

The proof of Theorem 4.2.11 follows closely the ideas of Dirk Siersma
in his paper [66]. He proved the theorem in the case of hypersurfaces with
possibly even more complicated singular locus as the corollary of Lemma
3.8, his “second variation sequence” . It picks up the idea of the original
fibration by Milnor and Hamm

arg f: 2*\ X — S1 (4.21)

where, as before, ¥* = Y* N 0B with X being the boundary of Y;. Hamm
shows in [39, Satz 1.6], that this is a C'"*°-fiber bundle with open fibers.
Moreover, he proves that for § > 0 sufficiently small, (4.21) is in fact fiber-
wise diffeomorphic to

L =anynBos (4.22)

The proof proceeds by construction of an outward pointing vector field on
Y™\ Yy, whose flow takes {|f| = 0} N Y™* N B fiberwise onto X* \ {|f| > d}.
For two chosen single fibers we can then establish an isomorphism.

Unlike in the case of an ICIS it is not so easy to see that, if we pass to the
closure in B, we still get a fibration.

Lemma 4.2.12. For sufficiently small § > 0 the map
§:{|f\:5}my*m3—>51 (4.23)

is a C*° fiber bundle with closed fibers

F={f=6}nY"NB.

Proof. By choice of the Milnor ball there are no critical points of f on (Y* \
Yy) N B. Hence, we only have to check that f/|d| is a submersion at the
boundary

{Ifl=oynxn.

This can be achieved by first using the Curve Selection Lemma to show that
f has no critical points on ¥* \ ¥ on a neighborhood U of ¥. In a second
step we can exploit the compactness of ¥: For sufficiently small ¢ the set
{|f] <} N E* will be contained in U. O

To create the setup to prove Theorem 4.2.11, we first choose o > 0 such that

!There is a typo in [66]: The third case in the mentioned corollary is 2 < ¢ < n — 1.
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e all requirements of Corollary 4.2.7 are fulfilled so that we will have a
fibration of the second boundary.

o the space
N, :=Y*N{g <a?}

has § = V N X as a strong deformation retract in X*.
After that we choose § > 0 sufficiently small with respect to o such that

e again the assumptions of Corollary 4.2.7 are met.
e Lemma 4.2.12 holds and we get a Milnor fibration by f.

e we have ¥ as a strong deformation retract of the space
Vs =2 0{|f] < 0}
and the retraction takes the subset 0N, N X<; into itself.

This last space now decomposes as
Eg(g = (ES(S N (Z* \Na)) U (2§5 N Na) =Ty UT5.

The attentive reader may recognize 75 from Corollary 4.2.7. The other part,
T1, has a natural structure as a trivial disc bundle over X as in the case of
isolated singularities since ¥ \ N, was compact and smooth.

Now we can decompose the space ¥* as

502 (2N {|f] < U N{If| =6}
>~ (N<s)U(Y*NBNfY(IDs))

according to Hamm’s computations where the second part is a smooth fiber
bundle over the circle by Lemma 4.2.12.

Proof. (of Theorem 4.2.11) Consider the triple of spaces (X*, F U T3, T5). We
have the following isomorphisms for the relative homology groups.

Hq(E*,FUTg) = Hq(E*,FUTQUTl) (4.24)
~ [H,(Y*NBN f Y0Ds), F U (X* N f~1(dDs)\1.25)
= Hy(F x[0,1],0(F x [0,1])) (4.26)

Il

H, 1(F,0F)® H\(I,0I) = H, \(F,0F)  (4.27)

for ¢ > 0 and Hy(X*, F U T) = 0. The first line (4.24) holds because T}
retracts onto the part of the boundary of F outside NV,. By excision we get
(4.25), and (4.26) comes from the fibration (Lemma 4.2.12). We deduce (4.27)
from the Kiinneth formula. Furthermore,

H (%, Ty) = Hy(X* N,NX) (4.28)
~ H,(3*,5) (4.29)

because by assumption 75 retracts onto N, N X, which in turn retracts onto
S =V N X. Finally, by excision we deduce

Hq(FUTQ,TQ) = Hq(F,aQF). (4.30)
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With these identifications the long exact sequence from the triple reads

ce— q+12 FUTQ)HH(FUTQ,TQ)HH(E Tg)

R

J(F,0 H,(F,0,F) Hy(S%,8) — -
(4.31)
Recall that according to the Lefschetz Hyperplane Theorem 2.1.12, the rel-
ative homology groups H,(F, OF') vanish for ¢ < n. Thus we find isomor-
phisms

Hy(F,0,F) = H,(X*,5)  forq<n. (4.32)

To determine the connectivity of the pair (F, 92 F), we are therefore left with
the computation of the relative homology groups H,(¥~*, S).

The rest of the proof will split into three cases. In any of these we will
show that from the long exact sequence in homology of the pair (¥*, S) we
get

HQ(E*NS) =

for 2
{O or2<qg<n (4.33)

H, 1(S)=Z for0<qg<2

Case I: Y* is smooth.

This has been done by Dirk Siersma in [66]. The pair (X*, S) isjust ($?*~1, S1)
with the usual equatorial embedding. Clearly (4.33) holds and (4.20) fol-
lows for the case 0 < ¢ < n,q # 2. For ¢ = 2 consider the following
commutative diagram

Hy(F,00F) —= Ho(F U Ty, Ty) —= Hy(X*, Ty) —— Hy(S*,S)  (4.34)

S I T

Hy(0oF) Hy(T») H\(T3) Hy(9)

All horizontal maps are isomorphisms. In the lower row they are induced
by the inclusion 0 F' — T and the retraction of 75 onto S. The vertical map

on the left clearly is an isomorphism, too. This concludes the proof in case
I

Case 1I: Y* has an isolated singular point at the origin.

In this case ¥* is a smooth compact manifold. Let £* be the Milnor fiber
of the isolated complete intersection singularity (Y*,0). The dimension of
F*is n + 1 and according to Theorem 2.1.15 it is homotopic to a bouquet
of (n+1)-dimensional spheres. The Lefschetz Hyperplane Theorem asserts
that one can obtain F'* from ¥* by attaching cells of dimension > n+1. Then
clearly ¥* must be (n — 1)-connected and (4.33) follows from the long exact
sequence of the pair (¥*, S). The proof is finished with the same arguments
as in case L.

Case III: Y* is also singular along V.

Here S denotes the singular part of the boundary X* of Y*. For «a suffi-
ciently small the pair (¥*, S) is homotopic to the pair (X*, N, ). Let again F*

be the Milnor fiber in a smoothing of Y* and consider the triple (F*, 0F*, 0, F™).
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By excision we clearly have isomorphisms
Hy(¥*,5) =2 Hy(X*, No) = Hy(OF*, 0o F™)
for all g. The long exact sequence for the triple reads
> Hy 1 (F*,0F*) —— Hy(OF*, 0o F*) —— Hy(F*,0oF*) —— - -

and for ¢ + 1 < n + 1 = dim F* the terms H,(F™, 0F*) vanish. Thus for
all 0 < ¢ < n we have isomorphisms

Hy(F,0,F) = H,(S*,5) = Hy(OF*,0,F*) = H,(F* 0,F*).  (4.35)

The claim now follows by induction on the codimension of Y*. For 0 < ¢ <
n,q # 2 the right hand term of (4.35) is zero and in case ¢ = 2 we can extend
the diagram (4.34) by one more column to obtain

Hy(F,05F) = .- —= Hy(X*,§) — = Hy(F*,0,F) (4.36)

L, L 5

Hy(0F) — Hi(S) ——> H1(8:F")

4
IR

The Surface Case

We already saw in Section 4.2.5, Corollary 4.2.10 that surfaces need special
treatment. The reason for this is that the horizontal and the vertical cycles of
the second boundary 0> F' do not live in distinct homology groups anymore.
In view of its applications for ICMC2 singularities in the next section we
will formulate a different connectivity result for the pair (F,02F) in the
casen = 2.

Theorem 4.2.13. Let (Yy,0) C (CV,0) be a complete intersection line singularity
of dimension n = 2. Recall the (non-canonical) decomposition

into horizontal and vertical cycles (4.19) for the second boundary 02 F of the Milnor
fiber F of Yo. With these identifications the natural map 1, : H1(02F) — Hi(F)
is surjective and factors via

L1

H & Hy(F) (4.37)

~N

Hi
In other words: The vertical cycles are homologous to zero in ' while every

remaining 1-cycle of ' comes from a cycle in 0> F'.

Proof. We can literally copy the setup and the beginning of the proof of The-
orem 4.2.11 up to the point where we deduce the isomorphisms (4.32). From
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this point onwards the proof of Theorem 4.2.13 becomes an investigation of
the following part of the long exact sequence from the pair (F, 02 F)

Hy(F,0oF) — H{(0oF) — H{(F) —— H(F,0oF) —=0

(the space 0> F is connected, as can be seen from the Wang sequence; this
gives the zero on the right).

Letl: S' — OyF be a section of arg L representing the homology class
[l] of the generator of the vertical cycles in H;(0>F'). Consider the commu-
tative diagram

Hy(F,0oF) —=> Hy(F UTy, Ty) — Hy (3%, Ty) —— Hy(X*,S)  (4.38)

i N T

H1(0:F) = Hy(T3) — Hy(Ty) ——— H;(S)

where the column maps are the natural ones from the corresponding pairs
of spaces. Contrary to the higher dimensions the map « coming from the in-
clusion 0o F' — T5 is not necessarily an isomorphism anymore. But clearly,
it maps [{] into the homology class of the generator of H;(S) = Z.

The factorization (4.37) would follow from ¢ on the right being surjec-
tive. Surjecitivity of ¢; in (4.37) directly follows from H; (F, 0o F') being zero.

Case I: Y is smooth (cf. [66]).
The pair (£*, S) is nothing but a pair of spheres (5°, S) with the standard
equatorial embedding. Clearly ¢ in (4.38) is surjective and from (4.32) we
get

H\(F,0,F) = H{(S°,58") = 0.

Case 1I: Y* has an isolated singularity at the origin.

The Milnor fiber F'* of Y* is a bouquet of spheres of dimension 3 and the
pair (F*,0F*) is 2-connected. We consider a smoothing of (Y*,0) compati-
ble with the constructions made for (Yp,0). The term

H\(F,0oF) = H(X",S) = H(OF*, 02 F")
appears in the long exact sequence of the triple (F*,0F*, 02 F™):
. HHQ(F*,(?F*) *>H1(8F*,82F*) *>H1(F*,82F*) —_—

The term on the left is zero because of the connectivity of the pair (F*, 0F*).
The one on the right also appears in the long exact sequence of the pair
(F *, 82F *)2

H\(F*) — H\(F*, 0,F*) — Hy(8,F*) —— Ho(F*) .

Since 0 F™* is clearly connected, the map ¢; is injective. On the other hand
H(F*) = 0, so we deduce H;(F*,0;F*) = 0. Tracing this back we have
shown H;(F,02F) = 0 as desired.

The space ¥* = OF* is 1-connected, for if it wasn’t, according to the
connectivity with its boundary due to the Lefschetz Hyperplane Theorem,
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F* couldn’t be a bouquet of 3-spheres. This shows surjectivity of § in (4.38).

Case III: Y* is singular along V.

For the surjectivity of ¢ in (4.38) we apply the same argument as in the high-
erdimensional case. From the long exact sequence of the triple (F*, 0F™, 0o F™),
the connectivity of (F*,0F*) and Theorem 4.2.13, we deduce surjectivity of
the natural map

Hy(S*,8) = Hy(OF*,0,F*) — Ho(F*,0oF*) = Hy(0oF).

Thereby we can extend the diagram (4.38) to the right by the column

Hy(F,05F) == - —= Hy(S*,§) — Hy(F*,0oF*) . (439)
i bk
Hy(0oF) s — =5 Hy(S) ——— H{(0:F%)

Furthermore, we get
H(F,0oF) =2 H\(X*,S) =2 Hi(F*,0oF") =0

from the connectivity of (F*, 02 F™). O

4.3 Application to Determinantal Singularities

Let (Xo,0) C (C™"20) be an ICMC2 singularity of Cohen-Macaulay type
t = 2 described by the matrix

= <a1,1 a a1,3> 7
a1 G2 G23
so that the Tjurina transform (Yp, {0} x P!)  (C""2 x P1, {0} x P!) is given
by the equations

(o fo f3) = (s1 s2)- <a1,1 a2 a1,3> —o.

a1 Q22 Q23

Assume that Yj is singular along the exceptional set V' = {0} x P1. We may
choose a Whitney stratification for Y, by strata

Yo \V.V\{p1,....on} {p1,..., DN })-

The first part of this section is devoted to creating a setup, in which the
conditions for the methods and results of section 2 are met.

First we construct the space Y* globally by the same arguments. Let
Xo C U C C"*2 be a representative of (X, 0) in some open neighborhood
U of the origin and Y C U x P! its Tjurina transform. Consider

Pf:UxP'\Yy— P (2,8) — (fi(z,s): fala,s) : f3(z, ).
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This is a well defined map, even though the f; are not functions. Choose a
regular value z € P? and define

Y*:=Pf-1({z}) c U x P.

After a change of coordinates of P? sending 2 to (0 : 0 : 1), which naturally
translates to row operations on A, we can assume that Y* is given by the
equations f; = f» = 0 and that

Yo={f=0}nY*cCy"
is the zero locus of f := f3 € HO(U x P1,0(1)).

Next we define the polar curve. Let L : Y* C C"*2 x P! — P! be the
projection to P! and 2 € P! a regular value of L on Yy \ V. We may, after a
change of coordinates, which corresponds to a canonical column operation
on A, assume that z = (0 : 1) = oco. In the chart {s; # 0} we can do the
same as in Lemma 4.2.3 in the whole chart at once to obtain a bending of
L, which is sufficiently general for our needs. Any chosen bending in this
chart will not alter the fiber of L over oco.

Observe that on the overlap {s; # 0} N {s2 # 0} the polar loci with
respect to L of the functions f/s; and f/sy = f/s1 - s1/s2 coincide. We can
express L as sz/s1. Then, because

df:d(f .Sz)ZSz.df+f.d82

S1 S2 81 S1 52 52 51

clearly

r = {x ceY*\Y: dsi(:v) and d?(w) are linearly dependent in 1 *}
2 1

= {x eY*\Yy: dsi(m) and dzl(l‘) are linearly dependend in Q3. }
1 1

After possibly repeating the bending process of L on the other chart, we
have a well defined global polar curve I' C Y*, which is smooth outside Y)
and meets Y{ only at finitely many points along V. We add those points to
the zero-dimensional stratum of the Whitney stratification of Y.

4.3.1 The Generic Rank 1 Perturbation and the Axis

Since f = a1 3 - 51 + az3 - s2 is a section of O(1) and not a function on Y,
we can not globally perturb by a constant, but we have to choose another
section b = by - 51 + by - 55 € HO(C"? x P!, O(1)) and consider

F=6-b=0

in C"*2 x P! x C. Thus there will always be one point in V, the zero locus
of b, at which we will perturb the local equation of f by zero. This point is
called the axis point of the deformation. It is unavoidable, but we can choose
its position by the parameters (b; : ba).
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Let us assume that after a change of coordinates the point (0,00) :=
(0,(0 : 1)) € V is not in the stratum {p1,...,pn} of Yy and consider the
deformation, which has (0, 00) as the axis point. For the original ICMC2
singularity (Xo,0) this means we consider the deformation given by the

perturbation
ai1 ar2 ai3 0 0 1
<a2,1 ag 2 a273> -0 <0 0 0> ' (4.40)
This gives the equations for the total space Y ¢ C"*2 x P! x C of the defor-
mation of Y in the obvious way.

Note that, due to the generality assumptions in the choices of Y* and
the axis point, this is a generic rank 1 perturbation. Every perturbation of A
by a constant matrix B of rank 1 can be brought to this form using row and
column operationson A — 0 - B.

In the chart {s; # 0} we now have a deformation of Yj given by the
perturbation of

si Y \{s1 #0} = C (4.41)
1
by J. At the axis point (0, co) on the other hand, we find
L 0,00+ (€0 (4.42)
2

perturbed by § - s where s = s1/s3 is the local coordinate of P! at co.

4.3.2 Y; at the Axis Point

By assumption the axis point (0, co) of the generic rank 1 deformation was
in general position along V. This means, if we let g = % be the local equa-
tion (4.42) for Yp in Y* at the axis point, we find ourselves in the setup of
Theorem 4.2.5.

Let s = s1/s9 and 1, ..., 2,42 be local coordinates in this chart such
that the point (0, c0) is the origin and choose «, 3 > 0 as in Theorem 4.2.5.
Then for § small enough the map

G = (g, S) YN Aa,@ ﬂg_l(D(;) — Ds x Dg

is a fiber bundle away from Yy = G~1({0} x Dp).

The Milnor fiber of g at 0 is the preimage of a line {¢'} x Dg 0 < ¢’ < 4,
under this map. It inherits its product structure from the fibration by s.
To obtain the deformed fiber Y of the generic rank 1 deformation of Y at
(0,00) , we have to take a bent line

W ={(0-y,y) 1y € Dg} C Ds x Dg.
Now Y5 N A, = G71(W). We deduce the following lemma:

Lemma 4.3.1. Let g : Y* — C be the local equation for Yy at the axis point
(0,00) € V, s a local coordinate for V at (0,00) with s(0,00) = 0 and A,g a
chosen polydisc in the sense of Theorem 4.2.5. Then for § > 0 sufficiently small
with respect to o and [ the space

YsNAg =Y " NApN{g=s-6}
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FIGURE 4.2: The fiber of the generic rank 1 perturbation at
the axis point.

is the fiber over ¢ of the generic rank 1 perturbation (4.42) close to the axis point.
The map
L:YsNAup — P!

is a fibration over a punctured neighborhood D of 0o € PL. The central fiber
Y = Vs N Aus N{L =00} =YyNAuN{L= o0},

however, does not change as we pass from Yy to Ys. Consequently Ys may retain a
singular point at (0, 00). If this happens, it is at most an ICIS.

Definition 4.3.2. The space Y is called the axis of the deformation.
Corollary 4.3.3. The space Y5 N Ayp as in Lemma 4.3.1 is contractible.

Proof. The central fiber Y is a euclidean neighborhood retract of some
open neighborhood U in Y5 N A, 4. Clearly the fiber bundle (Y5 N A,p) \ Y
can be retracted onto U and successively onto Y. Being the representa-
tive of a germ of an isolated singularity in a Milnor ball, Y1 is contractible.
Concatenation of these two contractions establishes the claim. O

4.3.3 The Global Picture in the Generic Rank 1 Perturbation

After we already have a description of what happens at the axis point (0, co)
in a generic rank 1 peturbation, let us now compute the topology of Y5 in the
other chart. To create a global setup, first choose Milnor balls B; of radius
e for all special points {p,...,pn} of Yj. Let B, be a Milnor ball of radius
¢/2 around p; and set

N
B=|]JB, B =B
; =1

We now choose a > 0 sufficiently small such that

e all the local theory (Theorem 4.2.11 for threefolds or Theorem 4.2.13
in the surface case) works at the special points p;,
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e Theorem 4.2.5 holds along the set
V'i=V\ (B'U{(0,00)}),
i.e. for § > 0 small enough the map
L:Y;n{g<a®}nL ' (V) =V (4.43)
is a fiber bundle over V' with fiber F.

Note that for the last requirement we can use Lemma 4.3.1 to achieve this
behaviour in a neighborhood of the axis point. After that we're left with a
compact subset of V, along which the existence of a global minimal o > 0
can certainly be assured.

Now we choose 6 > 0 small enough with respect to all prior choices
such that all the local theory developed above works at once along all points
of the compact set V.

We can now piece together the topology of Y5 from the topology of the
several known patches. We regard the axis point (0, c0) as a further special
point pp in the Whitney stratification of ¥j. Let A be the chosen polydisc
around pg and set

U:=Ysn(BUAd), W:=Y;n{g<a?}InL (V). (4.44)

Furthermore let 0> F; be the second boundary of the local Milnor fiber of
(Yo, pi) atp; for i > 0. In case i = 0, i.e. at the axis point, we just set

hFy:=YsN{qg<a?*}n L YODg)

where Dj is the chosen disc around co € P'. We easily verify that the
inclusion
O F; — (U N W)Z

induces a homology equivalence

N N
H,(UNW) @Hq((UﬁW)i) o @Hq(aQFi) (4.45)
=0 =0

where (UNW); is the component of UNW close to p;. Forg = 1and i > 0 let
[l;] be the generator of H;(02F;) — respectively the generator of the vertical
part in case n = 2 —represented by a section /; : S L' 0y F; of arg L in (4.16),
cf. Corollary 4.2.9 and 4.2.10.

The homology groups of W itself are determined by the structure of
W as a fiber bundle over V' (4.43). Since V' has the homotopy type of
a finite bouquet of circles around the points p1,...,py, we can basically
repeat the arguments leading to Corollary 4.2.9 and 4.2.10. In particular we
can assume

7N ifn=3

, 446
H{ o7V ifn=2 (4.46)

Ho(W) =17, Hi (W)= {

where H] is the quotient of H;(Y;") by the monodromies around all loops
in the base V’. In both cases Z" is generated by the [/;]. We can view the
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latter as sections of the generators of H;(V’).

Theorem 4.3.4. Let Y be the fiber over § # 0 in the genereric rank 1 perturbation
of the Tjurina transform (Yp, V) C (C"*2x P! {0} xP!) of an ICMC2 singularity
(X0,0) C (C™*2,0) of dimension n = 2 or 3 and type (2,3,2). Let L : Y5 — P!
be the projection to P! and G C H*(Ys) the image of L* : H*(P') — H*(Yj).
Then Y5 has a trivial first homology group and the total homology of Y5 splits into

Ho(Y;) =G aZ

where G+ = {[0] € Ho(Y;5) : gN[o] =0 Vg € G} are the horizontal cycles of
Ys. The cap product with L*(H?(P')) gives a perfect pairing of the vertical cycles
Ho(Y3)/G+ = Zwith H*(PY). If n = 3, then Hy(X.) = Z consists of the vertical
cycles only.

Proof. Consider the Mayer-Vietoris sequence for Y; for the choice (4.44) of
the two patches U and W. First of all, the tail gives a short exact sequence

0——=Ho(UNW)——=Ho(U) ® Hy(W) —— Ho(Ys) —=0

0 s ZN-H

7Nt g7 VA 0

and Y; is clearly connected. The first homology group H;(Y;) appears in
the exact sequence

Hy(UNW) —+ Hy(U) & Hy (W) —> Hi(¥;) —>0 (4.47)
We proceed with the proof for the case n = 3. From Theorem 4.2.11 we

know that H,(U) = 0. On the generators chosen above, the map ¢; to the
second summand is given by the matrix

110 0

Lo (4.48)
y .

10 - 0 1

and is, therefore, clearly surjective. Thus H;(Y;) = 0.

Proceeding along the Mayer-Vietoris sequence to the left, we see in (4.49)
that Hy(Y;) must be nonzero because clearly the kernel of (4.48) is free of
rank 1.

Ho(U) & Ha(W) 2 Hy(Ys) —2 Hy(UNW) —% Hy(U) & Hi (W) .
(4.49)
But kg is, in fact, the zero map. To see this, observe the following. Every
homology class [0] € H>(U) can be represented as a sum of 2-cycles in the
boundaries

N
o= 0i, [oi]€ Hy(0F,)
=1

as a consequence of Theorem 4.2.11. Corollary 4.2.9 then tells us that [o;]
even comes from a cycle in a transversal Milnor fiber [0;] € Hy(F") close to
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pi. The same holds for any [¢] € H2(W) and any other chosen transversal
Milnor fiber over a point in V.

Mapping any [o] € Hy(U) @ Ha(W) into Hy(Ys), therefore, makes it
homologous to a cycle in a transversal Milnor fiber arbitrary close to Y,
the fiber of L over the axis point. Here it collapses, because Y; N A was
contractible by Corollary 4.3.3.

Consequently Hy(Ys) = kert;. We construct a generator for Ha(Y5) as
follows. Over V' U {oo} there exists a continous section

12V = Ysn L7 Y (V)

of L because L gives Y5 N L™ (V') the structure of a fiber bundle with 1-
connected fiber Y{" over a base, which is homotopic to a bouquet of 1-
spheres. We can extend [ over oo because we only glue in a contractible
fiber. Let D = P!\ (V' U {o0}) be the closure of the complement of the do-
main of definition of [. Then the fundamental class of the image of [ defines
a unique relative cycle

[l] € Hy(Ys, L™1(D)).

Consider the following commutative diagram

Hy(L (D)) — Ha(Ys) —= Ha(Y5, L~ (D)) — Hi(L~1(D)) .

|1 ) |1

Hy(PY) Hy(P!, D)

(4.50)
The image of [I] in Hy(L~*(D)) is zero by Theorem 4.2.11: At each special
point p; the component of the boundary of [/] in the local Milnor fiber is
homologous to the generator of Hy(02F) = Hy(F, J2F). On the other hand
the map on the left into H5(Yj) is the zero map by the previous arguments:
All 2-cycles of the local Milnor fibers become homologous to zero in Y5. A
generator [o] of Hy(Y5) is therefore given as a preimage of /] under .
The map L. on the right is an isomorphism and, hence, on the left L,
maps [o] to the fundamental class of P!. This concludes the proof for the
threefolds.

If n = 2, we need to modify the arguments above. First we show surjec-
tivity of ¢1 in (4.47). Recall that we can split

N N
Hi(UNW) =@ Hi(0:.F) = P (H{ (0.F}) © Z)
i=0 =0

into its horizontal and vertical part, where H{ (92 F;) is the cokernel of H; (Fm)
by the vertical monodromy at p;.

We can restrict the first component of 1; mapping into H; (U) = @f\i L Hi(F;)
to the summand @f\i 1 Hi1(02F;) and the second component of 1; mapping
into Hy (W) to H(92Fp) & ZNTL. Both restrictions themselves are surjective
by Theorem 4.2.13 and (4.46), hence, ¢; is, as well. This makes sure that the
first homology group of Y vanishes.
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On the vertical cycles ZN¥*+! of Hy(U N W) the map 1 again takes the
same form as in (4.48) and consequently we can choose a splitting

Hy(Ys) = Hy(Ys) @ Z

of the second homology group of Y5 with the second summand mapping
to the kernel of +; on the vertical cycles. We can construct a generator [o] of
the quotient Hy(Ys)/H)(Y5) = Z similar to the threefold case. Start with a
continous section

L:V'U{oo} = Y

of L : Y5 — P!, For surfaces the relative homology class [I] € Ha(Ys, L~(D))
is not unique, but depends on the choice of . Nevertheless, any preimage
[0] € Ha(Ys) under the map  in (4.50) generates the quotient Hy(Y5)/H5(Ys)
Z and the composite map L, o 7 is an isomorphism when restricted to the
second summand of the splitting Hs(Y5) = H)(Ys) @ Z.

Hence, [0] is mapped to the fundamental class of P! again by L.. All
other cycles in Hy(Y5s) can be represented as sitting in the preimage of discs
or paths in P! and are, therefore, mapped to zero by L.. This concludes the
proof for n = 2. O

We can now prove the main theorem of this paper.

Proof. (of Theorem 4.1.3) Consider a deformation of (Xy,0) with two pa-
rameters (9,e) where the first one, J, is for a generic rank 1 perturbation
and the second one, ¢, is for a smoothing. For the Tjurina transform Yj g
over X, the fiber over (4, 0) for § # 0 small enough, the homology groups
are described by Theorem 4.3.4. However, according to Lemma 4.3.1 there
might still be an ICIS of Y; at the axis point.

In case Y; is smooth, its diffeomorphism type does not change as we
pass to a smooth fiber Y; . for §,e # 0. If it was not, its topology changes at
most at the axis point (0, co) where it is the smoothing of an ICIS.

This means that, in the notation above, the local Milnor fiber Y5 . N A of
(Y50, (0,00)) is (n — 1)-connected. Hence, all (n — 1)-cycles in Y;" appearing
in the proof of Theorem 4.3.4 close to Y (i.e. representable by cycles in
Y5 N A) still become homologous to zero in Y; . and we can literally repeat
all the arguments. The theorem then follows from the isomorphism Y;. =
X5 O

4.4 Concluding Remarks

The results presented in this thesis are merely a glimpse of what there might
be to discover concerning the vanishing topology of determinantal singu-
larities. Perhaps the most remarkable phenomenon is the existence of char-
acteristic vanishing cycles, Definition 4.1.1, in the Milnor fiber.

For smoothable isolated determinantal singularities of type (2, 3,2) we
saw that if there are vanishing cycles outside the middle degree, then they
are indeed characteristic. It would be interesting to explore, whether this
is always the case. Certainly, the methods of Chapter 4 are also applicable
to singularities of type (2,2 + k,2) for all £ > 0. For other shapes of the
describing matrix, we saw in Example 3.2.4 and Theorem 3.2.5 that in case
of isolated singularities in the Tjurina transform, we can also observe the
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characteristic cycles below the middle degree in the homology of the Mil-
nor fiber. We give a further example with nonisolated singularities in the
Tjurina transform for this matrix size.

Example 4.4.1. Consider the threefold singularity (Xo,0) C (C?,0) defined
by a generic embedding

A: C® — Mat(4,5;C)

of a 5-dimensional subspace into Mat(4, 5; C). The Tjurina transform now
decomposes as

¥o = Z(Xo \ {0 U ({0} x B*) € C° x P,

where L(X \ {0}) is the strict transform of Xy and {0} x P3 is an additional
component. The locus
S = %o 0 ({0} x P,

where they meet, is a smooth projective hypersurface of degree 5, so we
encounter “plane singularities” in the Tjurina transform in the sense that
the singular locus itself has dimension two!

Nevertheless, the induced families in the Tjurina transform coming from
determinantal deformations of (Xo,0) are flat. Experimental computations
show that the fiber Y5 over § # 0 for a generic rank 2 perturbation is al-
ready smooth and hence diffeomorphic to the Milnor fiber X.. The axis
of such a deformation is a whole projective line H C P? and the fiber
YoN L7Y(H) = Ys N L™Y(H) of L sits over it. This means that the fun-
damental class of H = P! is also passed on to X. and then sitting over
the corresponding cycle in P3. Yet, to develop a complete description of
the topology of X. in the spirit of Chapter 4, we would need to deal with
singular loci of dimension 2 and their interplay with the topology of S and
the axis — a task which is far more evolved than what has been done in this
chapter.

The characteristic cycles exhibit at most an indirect interplay with the
infinitesimal deformations encoded in the T)l(o,o or Inf(A) as can be seen
from Table 3.1 and Remark 3.2.9. In the case of nonisolated singularities
in the Tjurina transform, an analogue of Theorem 3.2.7 is not yet formu-
lated. To address questions of the form s vs. 7 for general determinantal
singularities beyond Cohen-Macaulay codimension 2, one would also need
to develop a deeper understanding of the existence of semi-universal de-
terminantal deformations. To this end, one could for example pick up the
approach by M. Schaps in [62].

Also, it would be interesting to know, what happens for determinantal
singularities defined by non-maximal minors concerning their vanishing
topology and infinitesimal deformations. Are there examples of singular-
ities, for which the spaces Inf(A) and Inf;(A) do not agree? Do they also
have characteristic vanishing cycles?

Another path that can be pursued is given by the non-smoothable EIDS
as for example the ICMC2 fourfolds and EIDS with non-isolated singulari-
ties, cf. Example 2.2.2 i7). As remarked at the end of Chapter 2, it should be
possible to create an algorithm for the computation of the vanishing Euler-
characteristic of these singularities in terms of polar multiplicities. This
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could provide a further testing ground for hypotheses on their topological
behaviour and reveal insights for new conjectures, just like the results by J.
Damon and B. Pike did for the work done in this thesis.
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Appendix A

Background and Notations

A.1 The Exterior Algebra

The exterior algebra of vector spaces, vector bundles and modules should
be known to mathematicians. Nevertheless, we briefly recall definitions
of the exterior algebra, exterior multiplication, dualities and orientations
and induced maps in the exterior powers for a homomorphism of mod-
ules, to introduce and fix the notation for this thesis. For a more thorough
treatment, the reader may consult any standard textbook on commutative
algebra, e.g. [22].

A.1.1 Exterior Powers and Multiplication

Let M be a module over a commutative ring R. One can define the tensor
algebra of M over R as

oo

T(M)=ROMo&(MopM)®(MorMorM)o--- =M. (A1)
r=0

This is a non-commutative graded algebra with multiplication given by the
tensor product and grading by r. Consider the graded subalgebra K of
T (M) generated by the expressions

vRW+wRu, v,we M.

We define the exterior algebra of M to be

\M :=T(M)/K, /,\ M = M®P/K,, (A.2)

where K, is the graded part of K in degree p of T'(M). We also say that
AP M is the p-th exterior power of M. Note that by this definition A\’ M = R
for all modules M.

For the residue class of an element a; ® az ® - - ® a, € M®P we write
ai Nag A -+ ANa, € AP M. The multiplication on T'(M) induces a graded
multiplication on the exterior algebra, which we shall also denote by A :
N’ M x NTM — \PT9 M given by

Ai(ar A Nap, bt Ao Abg)rsar A= Aay Aby A=+ Abg.  (A3)

This multiplication is skew-commutative, i.e. forw € AP M andn € A" M
we have
wAn=(—=1)PInpAw. (A4)
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A.1.2 Dualities of Exterior Algebras

If M is finitely generated over R by elements ey, ..., e, € M, then
{eil/\---/\eip 0< < -"<ip§7"}

generate AP M. In particular AP M = 0 for all p > r. To abbreviate the
notation, we shall write
er =ey N Nej,

where I = (i1,...,4p), 0 < i3 <--- < i, < risan ordered multiindex. We
shall write I C {1,...,r} to indicate the range out of which the ordered ele-
ments iy, of I are chosen. By #I = p we indicate the order of the multiindex,
i.e. the length of the sequence 0 < i; < --- < i, < r of the elements in 1.

It is now easy to see that, if M/ = R" is a module freely generated by
elements ey, ..., e, then for all 0 < p < r the module A" R" is also free of
rank (2), and a set of free generators is given by (er);c(i,....,}-

Moreover if we let £1,...,6, € (R")Y be the dual basis of (R")" =
Hompg(R", R), then the natural pairing

(RT)V QR = R, & ®ej—¢ei(ej) =0
extends to a pairing of exterior powers given by

p
NE) @ NR >R, e;@er 61,

In this formula we generalize the Kronecker delta ¢; ; in the sense that for
the ordered multiindices 67 ; = 1if I = J and 67 ; = 0 otherwise. Clearly,
this pairing is non-degenerate, and thus we have canonical isomorphisms

p P P

(AR = NR) = \(RY)" (A.5)

But there is another duality for exterior powers of free modules, which

we shall exhibit now. Observe that, if R" is freely generated by ey, ..., e,,
then .

NR =R-exA--Ne, =R (A.6)

is free of rank 1. A generator v of A\" R is also called an orientation of the
free module R". Now for any 0 < p < r also exterior multiplication

p T—p T
N AR e \NR - AR (A7)

induces a nondegenerate pairing with

+1 ifs i VO<k<pO<I<r-—
6]/\6]2{ IZk#ﬂ =P =7 p. (A8)

0 otherwise

Thus (A.8) together with (A.5) and the choice of an orientation v € A" R"
gives isomorphisms

p r—p
(AR = AR (A.9)
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forall0 <p <r.

A.1.3 Induced Maps on the Exterior Powers

Let us suppose the ring R is Noetherian so that for a finitely generated
module M we can find a finite presentation

A

0 M R R?

for some matrix A € Mat(r, s; R). Then we have isomorphisms

P p p—1
A\M= AR /(AN N\ R, (A.10)

where (A A A\P7! R") is the submodule generated by the products of the
columns of A with elements of A*~! R".

Suppose ¢ : M — N is a map of finitely generated R-modules. Then
there is a map

P P
" N\M = \N,
which is uniquely determined by requiring
PP (1 A Awp) = p(o1) A A p(up).

Choosing generators for M and N is equivalent to a choice of presentations

0 Ky R M 0.
Tt
v

0 Ky R? N 0

The homomorphism ¢ : R" — R® is a lift of . Since the underlying mod-
ules are free, we can write down a representing matrix A € Mat(s, r; R) for
é.

Just like ¢ completely determines ¢, also the morphism ¢"? is deter-
mined by ¢"? : AP R" — AP R®. It is a well known fact that the module
NP R is freely generated by the e; for I C {1,...,r} varying over all or-
dered multiindices as above. Hence, we find a representing matrix A"? of
¢"P. Direct computation shows that the entries of this matrix are

A;\f] =det Ar s,

where Aj ; is the submatrix obtained from A by taking only the rows in I
and columns in J. From this we may directly deduce the following lemma.

Lemma A.1.1. Suppose we are given two successive maps of R-modules

Rt_éRsiRr

determined by matrices A and B. Then for the matrices representing the induced
maps on the exterior powers we find

(A-B)" = AP . B (A.11)
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or in other words
(A-B)h = > A% B (A.12)
JC(1,...,s)

In particular we see that, if p > min{r, s, ¢}, then (A - B)"? = 0. The follow-
ing corollary is immediate.

Corollary A.1.2. Let S € GL(m; R) be an invertible matrix with inverse S~1.
Then forall 0 < t < malso S™ : A\' R — \' Ris invertible with inverse (S~).

A little more subtle is another map "\ derived from "¢ for a homo-
morphism ¢ : R — R*, which we shall call contraction by ¢"\%:

P p—d d
o NRT— N\ R @ \ R (A.13)

Ifer = e, A--- Aey, generate AP R" and f; = f;, A--- A f;, generate N\ R
as usual, it can be defined via

PMler) = ) > (—1)" i) fr @ ey

JCL#J=d Kc{l,. s} #K=d

The sign (—1)7<! for two ordered multiindices I, J C {1,...,r} is defined

as
d

(_1>JCI — H (_1)min{l€Noijk:il}—k'
k=1

This of course induces a corresponding map on finitely generated modules.

A.2 Grassmannians and Generalized Nash-Blowups

Just like the exterior algebra, Grassmannians are standard objects. But since
notations and viewpoints differ throughout the literature, we include an ac-
count on them. Afterwards we define generalized Nash-blowups for coher-
ent sheaves. Also this idea is not new, but needs to be carried out explicitely.

A.2.1 Grassmannians

Definition A.2.1. For two positive integes 0 < r < s the Grassmannian
Grass(r, s) is the set

Grass(r, s) = {V C C? linear subspace : dimV =r}.

A standard example for a Grassmannian is projective space P" = Grass(1, n+
1). There is a way to give all Grassmannians the structure of a projective
complex manifold similar to the standard affine charts of P".

Any r-dimensional subspace V' C C?® can be represented by an r x s-
matrix A of rank r, whose columns span V. Right-multiplication by invert-
ible matrices S € GL(s;C) do not change the span:

span A = span(A-S) =V.
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On the other hand any other matrix A’, whose columns span a given sub-
space V' can be obtained from A by right-multiplication with some S. Thus
we can identify

Grass(r, s) = (Mat(s,r;C) \ Mg,)/ GL(r, C),

where as usual M, = {A € Mat(s,r;C) : tank A < r}.

For a given matrix A being of rank r means that at least one of the maxi-
mal minors of A does not vanish. This will give the conditions determining
the charts of the standard cover: Let I C {1,..., s} be an ordered multiin-
dex with #I = rand J C {1,..., s} the ordered multiindex complementary
to I, i.e. J contains exactly those elements of {1,..., s}, which are not con-
tained in /. We also set K = (1,...,r), the only ordered multiindex of order
#K = rin r elements.

On the open set Uy = {A € Mat(s,r;C) : A} # 0} we can bring all
matrices to a unique normal form, by multiplying from the right with A;}(

Incase I = (1,...,r), the result would be
1 0 . 0
0 1
: " . 0
_ 0 . 0 1
=T Z7{+1,1 Zr1+1,2 e ZTI+1,T ' (A19)
Zf+2,1 Z£+2,2 :
: Zi—l,r
Zs{l T Zg,r—l Zs[r

In general, the entries of the submatrix Z! := Z; x = (zjl )il kek give the
standard coordinates on U;. In particular

dim Grass(r,s) =7+ (s —r). (A.15)

For any ordered multiindex I C {1,...,s} and any chart U; of Grass(r, s)
we call Z! as in (A.14) the standard representative matrix for the chart Uy;.
The map

Mat(r, s;C) \ M”, — Mat <(S> 1 c) \ {0}, A AN (A.16)
’ r
induces a well defined map
Grass(r, s) — ]P’<:)_1,

the so called Pliicker embedding.

Definition A.2.2. The tautological bundle over Grass(r, s) is

T ={(v,V) € C° x Grass(r,s) :v e V}.
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Let F' = C®x Grass(r, s) be the trivial bundle. There is a short exact sequence
of vector bundles

0 T F Q 0 (A.17)

and @ is the tautological quotient bundle. The whole sequence (A.17) is re-
ferred to as the tautological sequence over Grass(r, s).

Note that () is always globally generated: If we let
e1,...,es € H'(Grass(r, s), F)

be the global sections coming from the standard basis of C?, then by con-
struction the residue classes [e;] € HY(Grass(r, s), Q) span all fibers of Q.
If we dualize (A.17), we obtain a short exact sequence

0 T FY QY 0.
Now FV = F is self-dual in a canonical way and we obtain a map
D : Grass(r, s) — Grass(s —r,s), V=Vt =ker((C*)" = VV).
It is now not difficult to see the following.

Lemma A.2.3. The map D is an isomorphism of complex manifolds. In particu-
lar the tautological sequence over Grass(s — r, s) is isomorphic to the dual of the
tautological sequence over Grass(r, s).

In this sense we will also say that Grass(s — 7, s) is the dual Grassmannian of
Grass(r, s) and write Grass(s—r, r) = Grass(r, s)¥. Since duality is symmet-
ric, the same holds the other way around. From Lemma (A.2.3) it is clear
that the standard coordinates of Grass(r, s) should induce another collec-
tion of standard coordinates on Grass(r, s)" = Grass(s — r,s). We will de-
scribe these coordinates now and refer to them as the standard coordinates of
the dual Grassmannian Grass(r, ).

If we consider Grass(s — r, s) as Grass(r, s)", then we mean the the set
of (s — r)-planes in (C*)¥, we can represent every W € Grass(s — r, s) by a
matrix B € Mat(s — r, s), the rows of which span W, with two matrices B
and B’ being equivalent, if there is an invertible matrix S € GL(s — r;C)
such that B’ = S - B.

Given two spaces V' C C* of dimension  and W C (C*)" of dimension
s — r represented by matrices A € Mat(s,r;C) and B € Mat(s — r,s;C)
respectively, we have

DV)=W & B-A=0. (A.18)

For an ordered multiindex I C {1, ..., s} with #I = r let V; be the open
set of Mat(s,s — r;C), on which the maximal minor with column indices
not in I does not vanish. If I = (1,...,r), then we can normalize to the
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following form:

I
Ty Ty i, -1 0 0
I I . : . :
T T . : 0 -1 . :
o= "1 722 (A.19)
: .. . I : e
I. . , . :CL},_LT : . .0
Ls—pr1 " Ls—p2 Ls—pp 0 T 0 -1

For arbitrary I C {1,...,s} with #I = r letagain J = {1,...,s} \ I be the
ordered multiindex complementary to / and K = (1,...,s — r). Then the
submatrix @ﬁ(, ;of © isequal to —1,_, and the other submatrix X' := @k I
gives the coordinates (xiz) keK,icl-

Now consider the charts U; of Grass(r,s) and V; of Grass(r,s)Y. Let
J C {1,...,s} be the ordered multiindex complementary to I as above.
From (A.18) we have

ol.gl = @kl —EK = X! — 7! =0 e Mat(s —r,r;C).
In other words coordinates in the block matrices
X'=0 ;=8 =2" (A.20)

are equal. From this we see that the standard coordinates (xil) on the chart

Ur of Grass(r, s) can be identified with the standard coordinates (zjlk) on
the chart V; of Grass(r, s)¥ via In the (k,[)-th entry of this resulting matrix
we find

I I _ I I
xk,’ik — Zj[,l =0 = xkyik = zjl,l’ (A21)

where ij, denotes the k-th entry of the ordered multiindex I and j; the I-th
entry of its complementary index J.

We extract the consequences of these observations for the tautological
bundle in a lemma.

Lemma A.2.4. Let (Ur)rcqa,... s}, 41— e the standard cover of Grass(r, s), =1

as in (A.14) and © as in (A.18) with the canonical identification of the coordinate
functions (A.21).
For any I the tautological bundle T' over Uy takes the form

Ty, = {(p,v) € Ur x C*: ©(p) - v =0}. (A.22)

If we let J be the ordered multiindex complementary to I we can decompose v into
vr and vj. Expanding the defining equations for T'|;, we obtain

vy =X"(p)-vr

and hence the components of vy give a local trivialization of T on Uy.

A.2.2 Generalized Nash-blowups

Let (X, p) be the germ of a complex space, X a representative of (X, p) and
G a coherent sheaf on X. By definition we can find a presentation

0<—Gp~— 0%, <" 0%, (A.23)
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of the stalk G, of G at p with some matrix A € Mat(s,t; Ox ;). Let
r=min{t € N: (A") # (0)} — 1

be the maximal rank of A at p. and U = X \ V((A"")) the set of points
x € X, where rank A(xz) = r. Clearly U is analytic, open and nonempty. On
U we can define the map

Vg : U — Grass(r,s), x+ spanA(z). (A.24)

LetI'(U, ¥g) C X x Grass(r, s) be the graph of Ug and 7 : X x Grass(r,s) —
X the projection to X.

Definition A.2.5. The generalized Nash-blowup of X along G at pis defined
as
Y =T(U,¥g) C X x Grass(r, s).

The set E := 7 1(X \ U) is called the exceptional set of the blowup. By
(Y, 7= 1({p}) and (E,7—({p})) we denote the germs of Y and E along the
compact set 71 ({p}) C {p} x Grass(r, s).

Clearly, the germs (Y, 7 '({p}) and (E,7 ({p})) are independent of
the representative X of (X, p).

In the coordinates of the Grassmannian introduced above we can give
equations for Y C (X,p) x Grass(r,s) in (’)Xyp®<c(’)grass(r,s). For an or-
dered multiindex I C {1,...,s}, #I = r and the chart (X,p) x Us of
(X,p) x Grass(r,s) we could built the composite matrix (Z/|4). Now a
point (z, W) € X x Grass(r,s) is in Y if and only if span A C W, so the
equations

(E14)" " =0 (A.25)

have to hold along Y. On the other hand using the duality in Lemma A.2.3
and the explicit description of the tautological bundle, we can also require

oel.A=o0. (A.26)

It should be pointed out that these equations do not necessarily generate
the ideal of Y in the respective chart. To obtain it in general, one needs to
saturate with respect to A/I\Q:

(O A) : (A7) C Ox,p[2"]. (A.27)

The same holds for the other choice of the equations. However, in both
cases the equations (A.25) and (A.26) are contained in the respective ideals
defining Y.

Let @ be the tautological quotient bundle from Grass(r, s) over
(Y, 7= 1({p})). It is a locally free coherent sheaf on Y, which is globally
generated by [eq], ..., [es] as above. Denote by ,(Q) the pushforward to X.
Since 7 is proper, 7.() is a coherent sheaf of O x-modules. In particular the
stalk (7.Q), is a finitely generated Ox ,-module. We claim that there is a
natural map
T 0 Gp = (1:Q)p (A.28)
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on the stalks of G and .. induced from the following map of free modules:
0: 0%, = (mQ)p, (v1,...,0s5) = Zvi - leg].
i=1

To see this, assume (ay,...,as)” is a column of the matrix A. Let U; be
one of the standard charts of (X,p) x Grass(r,s). We may assume I =
(1,...,7). Let 2! be as in (A.14). Since the equations (A.25) vanish on Y NU/,

the element p(ay, ..., as)" € Oy, is in the span of =l e ola,...,a)T €
HO((X,p) x Uy, T) is a section in the tautological bundle. Hence by the
definition of the tautological quotient bundle, [p(a1,...,as)T] = [0] € Q in

all charts. Thus 7, in (A.28) is well defined.

Definition A.2.6. The bundle Q over the Nash-blowup (Y, 7~!({p}) of (X, p)
along G is the Nash bundle of the blowup. We call 7, in (A.28) the Nash ho-
momorphism.

From the above said and the explicit coordinates given, it is now not diffi-
cult to deduce the following lemma.

Lemma A.2.7. Let (Y, 71 ({p})) C (X,p)x Grass(r, s) be the generalized Nash-
blowup of (X, p) along G and Q the Nash bundle over (Y, 71 ({p}). Over U =
{rank A = r} C X the projection 7 : Y — X is an isomorphism and so is
Tx 2 Gg — (mQ)g forall g € U.

Remark A.2.8. The main application of the generalized Nash-blowup is to
replace a coherent sheaf by a vector bundle. In case A = (ay,...,a,)! isa
r x 1-matrix, we obtain the classical blowup of the ideal (a1, ..., a;).

A.3 Whitney Stratifications and Morse Theory

In this section we will give the definitions and main results concerning
Whitney stratifications and Stratified Morse Theory as it can be found in
[31]. Not only the results but also the exhibition of the subject can be found
there. We include it in order to provide enough background for the reader
to follow the outlines in this thesis, especially Chapter 2. In the end we
proof a Corollary concerning Morse functions on manifolds with bound-
ary.

The reader is assumed to be familiar with classical Morse theory (cf.
[52]). That is, if we for example write “for some small € > 0” at some
point, we assume the reader to recognize the precise conditions for “small”
from the context. Having done this, we apply the theory to manifolds with
boundary.

A.3.1 Whitey stratified Sets and Thom’s First Isotopy Lemma
We give the definition of a Whitney stratification from [31].

Definition A.3.1 ([31]). Let X be a closed subset of a smooth manifold M
and suppose that
x=Js

iel
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is a locally finite decomposition of Z into pairwise disjoint subsets .S;, called
strata, such that each S, is a locally closed submanifold of M and the bound-
ary

0S; = E\ S, C M

is again a union of strata of lower dimension.

The stratification is said to satisfy Whitney’s conditions A and B, if the
following holds. Suppose y,, is a sequence in S; converging to a point p €
S; C 05; and z, a sequence in S; converging to the same point. Fix a
local coordinate system of M around p and let /,, be the secant line from z,
to y,. Suppose [, converges to a limit line [ € Grassg(1, dim M) in the real
Grassmannian and the sequence of tangent spaces T}, S; C Ty, M converges
to a limit 7' € Grassg(dim S;, dim M ). Then the Whitney conditions are:

A The tangent space of S; at the limit point 7},S; is contained in 7.

B Also the limit line [ is contained in 7T'.

By definition a function f : X — R on a Whitney stratified space X is
smooth at a point p € X, if for some embedding of a neighborhood U C X
as a Whitney stratified subspace of RY, f can be given as the restriction of
a smooth function on R¥ to U.

We now describe Thom'’s First Isotopy Lemma as stated in [31]. Let
X C M be a Whitney stratified set. A smooth function f : M — R" is
called a stratified submersion if the restrition of f to all strata S; of X is a
submersion.

Theorem A.3.2 (Thom's First Isotopy Lemma, [31]). Let f : X — R" bea
proper stratified submersion on a Whitney stratified set X. Then there is a stratum
preserving homeomorphism,

h:X R x fA{oh)NnX

which is smooth on each stratum and commutes with the projection to R". In
particular the fibers of f|x are homeomorphic by a stratum preserving homeomor-
phism.

A.3.2 Stratified Morse Theory

Definition A.3.3 ([31]). Let X be a Whitney stratified spaceand f : X —+ R
a proper smooth function. We say that f is a Morse function on X, if the
following holds:

i) All critical values of the restriction of f to a stratum X(9 of X are dis-
tinct.

ii) At each critical point p € »@ ¢ X of f, the Hessian of f on X is
nondegenerate at p.

iii) The differential df(p) does not annihilate any limit of tangent spaces
of strata () with p € T,
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The Morse data of a Morse function f on X at a critical pointp € () ¢ X
is defined as follows. For ¢ € Rlet X<, = {x € X : f(z) < ¢}. Choose some
local embedding (X, p) < (R, 0) as a Whitney stratified subspace and let
D be a small ball around p in RY. If p € X is a critical point of f and
v = f(p) its critical value, then for some small € > 0, the space

A=X_yeND\ XeyeND

is attached to X<,_. as we cross the value v. The glueing of A happens
along the locus

B=X,_.ND={zxeX: f(zx)=v—e}nD.

Now the Morse data is given by the pair of spaces (A, B) up to homotopy
equivalence. It measures the change in topology of X<, as c crosses v.
We have the following two theorems from [31].

Theorem A.3.4 (Stratified Morse Theory Part A,[31]). As c varies within the
open interval between two adjacent critical values, the topological type of X<,
remains constant.

This is, of course, merely a consequence of Thom’s First Isotopy Lemma
A.3.2. The interesting part for Morse theory is the following.

Theorem A.3.5 (Stratified Morse Theory Part B,[31]). Let f be a Morse func-
tion on a Whitney stratified space X. Then, Morse data measuring the change in
the topological type of X<. as c crosses the critical value v of the critical point p, is
the product of the normal Morse data at p and the tangential Morse data at p.

The normal and tangential Morse data mentioned in Theorem A.3.5 are
defined as follows. For the tangential Morse data we just consider the
Morse data of f restricted to the stratum (), in which the critical point
p lives.

For the normal Morse data we choose some embedding (X, p) — (R, 0)
and take a hyperplane slice N (p) through p transversal and of complemen-
tary dimension to ¥(*). Let D C N(p) be a small disc centered around p. The
normal Morse data of f at p is defined as the pair of spaces (4, B), where

A=Dn{zeX:v—e< f(zx)<v+e}

and
B=Dn{reX: f(x)=v—¢}

for some small ¢ > 0. Again, (A, B) is only considered up to homotopy
equivalence.

We would like to apply Stratified Morse Theory to manifolds with bound-
ary. Let M be a differentiable manifold of real dimension m with boundary
OM. We will always assume that there exists a small extension M’ of M
beyond the boundary 0M so that every point p € OM has a coordinate
neighborhood in M’ with coordinates 1, ..., z,, such that z1(p) = -+ =
xm(p) = 0, M is given by {z,, = 0} and M = {z,, < 0}. We will con-
sider M as a stratified space with strata M as one stratum and the interior
M \ OM as the other.
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Let p € OM be a critical point of a Morse function f on the Whitney
stratified space M. By Definition A.3.3 p cannot be a critical point on some
extension M’ of M at p since this would violate iii). So p is a critical point
of f restricted to OM.

In a coordinate system as above on M’ we use the classical Morse Lemma

to change the coordinates z1, ..., 2,,—1 in a way that
A m—1

) 2 2

floar = x — —Zmi + Z x;.
i=1 i=A+1

Here, X is the Morse index of f|sas at p. Outside OM we may have a differ-

ence
A m—1
g=f— <—Zx?+ Z xf)
i=1

1=A+1

Now clearly
Jg

0T,

(p) = ;;;(p) =a#0

since f does not have a critical point at p on M’. We say that “the gradient
of f points outwards” if a is positive. Otherwise we say that “the gradient
of f points inwards”. We again change coordinates on M’ replacing ., by
gifa > 0, or, in case a < 0, by —g. Note that with this choice we still have
OM = {z,, =0} and M = {z,, < 0}. In this coordinate system the function
f finally takes the form

A m—1
f:—Zx%+ Z x%:l:xm.
i=1

1=A+1

Theorem A.3.6. Let p € OM be a critical point with Morse index X of the Morse
function f on the manifold with boundary M. If the gradient of f is pointing
outwards, then the Morse data of f at p is given by its tangential and normal parts

(A,B) = (DY 81 x ([-1,0],{~1})
= (D% [0,1],D* x {=1} U SM ! x [-1,0))
= ({pt} {pth).
If the gradient of f is pointing inwards, the Morse data is

(A7B) = (DA>S>\_1) X ([_170]79)
= (D" x[-1,0],8* ! x [-1,0]) = (D*, $*1).

Consequently, as c crosses the critical value v, the topological type of M« does not
change in the first case and in the second a cell of real dimension \ is attached.

Here, D* denotes the closed ball of radius 1 in R* and S*~! the sphere of
dimension A — 1.

Proof. In the coordinate system introduced above the tangential Morse data
comes from the classical Morse data of the function f|s5;. The results can
be found in [52]. For the computation of the normal Morse data we may
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restrict f totheset {z; = --- = z,,—1 = 0}. The result follows from Theorem
A.3.5. O

A4 Complex Ordinary Differential Equations

While the basic theory of ordinary differential equations is contained in any
undergraduate textbook on analysis, there seems to be no good reference
for holomorphic or complex differential equations and the holomorphicity of
their solutions. Hence we include them in this appendix. A good source for
the non-holomorphic theory of the differential equations considered here is
[56] from which we also adapt the exposition and formulation of the prob-
lems.

An ordinary differential equation is of the form

{ Zdt(g)(t): TLop(u(t),lt) tl<e (A.29)

where the function v : (—¢,e) C R — V takes values in a Banach space
V. The Picard Lindel6f Theorem assures existence and uniqueness of the
solution under the assumption that I’ is Lipschitz-continuous in the first
argument.

We are often confronted with the situation that we have an equation of
this form, only that ¢ is a complex parameter, u takes values in a Hilbert
space H, and F is holomorphic function in both variables. This we call a
complex ordinary differential equation (cODE).

In the real differentiable case it is a subtle amendment that the solution
u of (A.29) depends smoothly on the initial condition v. We are interested
more generally in the case where the right hand sides of (A.29) depend
holomorphically on finitely many complex parameters .

Theorem A.4.1. Suppose W C C*, B ¢ C¥ and D C C are open sets and
F:WxBxD—=CN, v:W-=>BccV

are holomorphic functions. Consider the differential equation

{;tu(x,t) = F(z,u(t),t)

A.30
u(z,0) =ov(z) ( )

foru : W x D — CN. Then, for each xzg € W and ty € D there are open
neighborhoods W' and D' respectively and a unique solution

w: W' x D' —CN
of (A.30) depending holomorphically on both variables.

Corollary A.4.2. Incase F : W C CN — C is a holomorphic vector field on
CN, the flow ® associated to F is holomorphic.

Proof. Just let v(z) = x be the dependence on the initial condition. O

For the proof of Theorem (A.4.1) we merely have to go through the stan-
dard proof of the Picard-Lindelof Theorem as for example in [56] and make
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sure that it translates well to the realm of holomorphic functions. In fact
the holomorphic dependence of the solutions on parameters of the equa-
tion becomes even easier compared to the smooth case. This is due to the
following well known theorem.

Theorem A.4.3. Let f, : U C CV — C be a sequence of holomorphic functions
which converge uniformly to a function f : U — C on every compact subset
K C U. Then the limit f is also holomorphic.

For the sake of completeness, we include a proof.

Proof. We use the Cauchy Integral Formula in several variables. Let z =
(21,...,2n) beapointin U and A; a polydisc of polyradius ¢ = (e1,...,en)
around z in U. Then, since all the f,, are holomorphic we have

fol&1,-- - €N)
' (2) = dén - - -dEr.
f (Z) \/|§121:€1 ~/|£NZN|=€N (51 - Zl) e (éN - ZN) §N 61

If we let n — oo, we can, because of the compact domain of integration and
uniform convergence of the f;,, take the limit below the integral on the right
hand side. Thus

= f(£17---,§N)
f(Z) - /|f1zl=s1 /|§NZN|=€N (51 — Zl) ce (fN _ ZN) dén dé1

and the right hand side depends holomorphically on all the z;. O

Proof. (of Theorem A.4.1). Given zy € W and ¢y € D, we construct a zeroth
and a first approximation to the solution by setting

t
uO(z,t) = v(z), uV(z,t)=v()+ [ Fz,v(z),7)dr
to

forz € W Cc Wandt € D' C D some neighborhoods of zy and ty. Observe
that the integral is defined via the choice of a path v in D’ from ¢, to ¢. Since
the integrand depends holomorphically on 7, the result only depends on
the homotopy class of the path 7. In order to have a well defined integral
we therefore assume D’ to be star-shaped around ¢, in what follows.

The function u(!) : W x D — CV takes values in CV. We would like to
iterate the process and define

t
u(”+1)($,t) =v(x) ‘|‘/ F(ﬂfvu(n)(%T)’T) dr.

to

But for this to work, (™ has to actually take values in B, where F' is de-
fined.

To this end choose a neighborhood B’ C B of v(x( with compact closure
B'. Due to the continuity of v we may then choose a neighborhood W/ c W
of z such that W' C v~1(B’) and also w compact. Furthermore we take a
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disc D’ ¢ D around ¢ty and define

F .
C = maX{H(;L(:L‘,u,t)H : (z,u,t) €W x B’ x D/}
K = max{||F(z,v(z),t||: (z,t) e W x D'}
§ = inf{llu—ov(®)|:uecdB ,zecW}

Since v(W') is properly contained in B’, we clearly have § > 0.

We now want to show that we can choose the radius ¢ > 0 of the disc
D' so small that the iteration process for u("*1)(z,t) works for all (z,t) €
W' x D'. The definition of u(*) and u(!) immediately implies

M (z,8) —u D@, )| < K- (x,t) e W x D'.

Hence, if we choose € < %, then certainly u) takes values only in B’ when
restricted to W' x D’.
Now suppose u¥) (z,t) € B’ forall k < nand (z,t) € W' x D'.

[u™H ) (2, 8) — ™ (2, )| < e C - ul™ (2, ) — V() (A.31)

and, hence, iteratively

n+1) _ 1 .
[a® e t) — (o)l € g K
If we choose € so small that the right hand side is smaller than ¢ (which
certainly implies the previous assumption K - ¢ < §, as well), then all the
u(™) will take values in B’ only.

Several things have shown up at this point. First of all, the iteration
gives a contraction from the set

{u:W'x D' — B’}
to itself, which due to the Banach Fixed Point Theorem has a unique fixed
point u solving the integral equation
t

u(z,t) =v(x) + t F(z,u(z,7),7)dT.

Second, the sequence of functions (u(™(z, 1)), _
W' x D' because of the estimate

y converge uniformly on

(-

K.
1—¢e-C ©

™ (2, t) — ul™ (2, 1) <
for any n > m and all the u(¥) are holomorphic in = and ¢. From Theorem
A.4.3 we deduce that also the limit u : W’ x D" — B’ is holomorphic. This

finishes the proof.
O

We now formulate some consequences for linear cODEs which we will
need.



138 Appendix A. Background and Notations

A linear complex differential equation depending on a parameter = €

CF is of the form
{;m@w = F(z,t) - u(, 1)

A.32
u(zx,0) = up(x) ( )

where u takes values in C™ and A : W x D ¢ C¥ x C — Mat(m,m;C) and
ug : W — C™ are holomorphic functions.

Theorem A.4.4. A linear cODE as above admits a unique solution operator
U:W' x D" — GL(m,C)

such that for any given ug the solution is of the form
u(z,t) = U(z,t) - up(x).

Moreover U is holomorphic in x and t and satisfies

d
EU(Q}, t) = F(z,t)U(z,1).

Proof. This follows directly from Theorem A .4.1 and the superposition prin-
ciple for linear differential equations. We construct the i-th column of U (x, t)
as the solutions of the cODE

u(z,0) =e ’

where ¢; is the i-th vector of the standard basis of CV. ]

A special variant of linear cODEs is the following one for matrices:

{$M%ﬂ = F(x,1) - A(z, 1) + A(z, 1) - G(x, 1) (A33)

A(z,0) = Ay(z)

where the function A takes values in the space Mat(m,n;C) and F'(z,t) €
Mat(m;C), G(z,t) € Mat(n; C) depend holomorphically on z and ¢.

Corollary A.4.5. For a matrix cODE as above there exist unique solution oper-
ators U(z,t) € GL(m;C) and V(x,t) € GL(n;C) such that for any Ag(z) the
solution is given by

A(z,t) =U(z,t) - Ao(z) - V(z,1).

Proof. We obtain U(z,t) as the solution operator of the linear cODE given
by F(z,t) as in (A.32). For the operator V (z,t) we take the transpose of the
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solution operator of equation (A.32) with G (z,t) in place of F(z,t).

d—iU(:c,t) “Ao(z) - V(z,t)

— (;tU(;c,t)) <Ap(z) - V(z,t) + Uz, t) - Ao(z) - ((ftV(w,t)>

= F(z,t) - U(z,t)- Ao(x) - V(z,t) + Uz, t) - Ag(x) - (GT(2,t) - VI (2,1))
= F(z,t)- Az, t) + Az, t) - G(z,t)

T

This solution is unique because (A.33) is in particular a linear cODE if we
consider A as a vector. O
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