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Abstract

Clouds are an important but not sufficiently understood part of the climate system. In this

thesis, clouds are investigated with a novel particle-based modeling approach. This so-called

Lagrangian cloud model (LCM) simulates cloud microphysics by so-called super-droplets,

each representing a certain number of identical droplets. The thesis covers validations,

further developments, and applications of this modeling approach.

The first study investigates the production and the effect of spurious supersaturations in

LCMs. Using an idealized advection experiment, it is shown that the production of spurious

supersaturations in LCMs is identical to Eulerian cloud models. Their effect, however, is

mitigated by the explicit representation of activation available in LCMs. Moreover, an

analytic expression for the production of spurious supersaturations is derived, revealing

under which conditions the production of spurious supersaturations is the strongest.

In the second study, all three currently available LCM collection algorithms are evaluated

in idealized box-simulations. The results are compared against analytical solutions and other

references derived from high-resolution spectral-bin models. Various parameters that steer

the fidelity of these algorithms are identified. The value of the weighting factor, i.e., the

number of real droplets represented by each super-droplet, is identified as a crucial parameter

for the performance of the collection algorithms.

The subject of the third study is the initiation of rain in a shallow cumulus cloud. By

tracking of individual super-droplets throughout their lifetime, the circumstances which

lead to the initiation of rapid collectional growth are identified. The study focusses on two

processes: spectral broadening by differential diffusional growth and small-scale turbulence

effects on the collection kernel. The latter effect increases the precipitation significantly.

However, the time necessary for the initiation of rain did not differ significantly for both

processes. Idealized box-simulations show that for an already broad spectrum, as present

in the investigated cloud, the acceleration of the precipitation process by the additional

consideration of small-scale turbulence effects is negligible.

The final study identifies the limits of traditional Köhler theory, which becomes a weak

concept for the activation of large aerosols. By making use of the explicit representation of

the activation process available in LCMs, the aerosol size at which collection can contribute

to the mass growth leading to activation is determined. Wetted aerosols with a dry radius

of 0.1µm are already involved in collisions, but wetted aerosols with a dry radius of 1.0µm

or more are only activated if collections contribute to the mass growth. This is in contrast

to traditional Köhler theory, which assumes diffusional growth as the process responsible

for activation.

Keywords: clouds, modeling, aerosols





Kurzzusammenfassung

Wolken sind ein wichtiger, aber nicht ausreichend verstandener Teil des Klimasystems. In

dieser Arbeit werden Wolken mit einem neuen partikelbasierten Modellierungsansatz, einem

sogennanten Lagrangian cloud model (LCM), untersucht. Hierbei werden sogenannte Su-

pertropfen verwenden, die jeweils eine bestimmte Anzahl identischer Tropfen repräsentieren.

Die Arbeit behandelt die Validation, Weiterentwicklung und Anwendungen des LCMs.

Die erste Studie untersucht die Produktion und die Wirkung von falsch bestimmten

Übersättigungen in LCMs. Durch ein idealisiertes Advektionsexperiment wird gezeigt,

dass die Produktion von falschen Übersättigungen in LCMs und traditionellen Eulerschen

Wolkenmodellen identisch ist. Ihre Wirkung wird jedoch durch die explizite Darstellung der

Aktivierung in LCMs abgemildert. Darüber hinaus wird ein analytischer Ausdruck für die

Produktion dieser falsch bestimmten Übersättigungen hergeleitet. Dieser zeigt allgemein,

unter welchen Bedingungen die Produktion von falschen Übersättigungen am stärksten ist.

In der zweiten Studie werden alle drei derzeit verfügbaren LCM-Kollisions-Algorithmen

in idealisierten Box-Simulationen untersucht. Die Ergebnisse werden mit analytischen Lösun-

gen und anderen Referenzen verglichen. Verschiedene numerische Parameter werden identi-

fiziert, die die Qualität dieser Algorithmen steuern. Der Wert des sogenannten Wichtungs-

faktors (die Anzahl der realen Tropfen, die durch einen Supertropfen dargestellt werden)

wird als ein entscheidender Parameter identifiziert.

Das Thema der dritten Studie ist die Initiierung von Regen in einer flachen Cumu-

luswolke. Durch die Verfolgung einzelner Supertropfen werden die Umstände identifiziert,

die zur Einleitung der Produktion von Niederschlag führen. Die Studie konzentriert sich

auf zwei Prozesse: die Verbreiterung des Tropfenspektrums durch differenzielles Diffusions-

wachstum und den Einfluss kleinräumiger Turbulenz auf den Kollisionskernel. Der letz-

tere Prozess erhöht den Niederschlag deutlich. Allerdings unterscheidet sich die für die

Initiierung von Regen benötigte Zeit für beide Prozesse nicht erheblich. Idealisierte Box-

Simulationen zeigen, dass für ein bereits breites Spektrum, wie in der untersuchten Cumulus-

wolke, die Beschleunigung des Niederschlagsprozesses durch die zusätzliche Berücksichtigung

von kleinräumige Turbulenz vernachlässigbar ist.

Die letzte Studie betrachtet die Grenzen der Köhler Theorie. Durch die Verwendung

der expliziten Darstellung des Aktivierungsprozesses, wird analysiert, wie stark Kollisionen

zum Wachstum beitragen, das letztendlich zur Aktivierung führt. Hydrierte Aerosole mit

einem trockenen Radius von 0,1µm können bereits an Kollisionen beteiligt sein. Ab einem

trockenen Radius von 1,0µm sind Kollisionen sogar der einzige Prozess, der zur Aktivierung

führt. Dies widerspricht der traditionellen Köhler-Theorie, in welcher ausschließlich Diffu-

sionswachstum als Wachstumsprozess für die Aktivierung angenommen wird.

Schlagwörter: Wolken, Modellierung, Aerosole
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Chapter 1

Introduction
Looking from space, the Earth does not appear as the entirely blue planet as it is usually

referred to (Fig. 1.1). In fact, about 70 % of the Earth’s surface is covered with clouds (e.g.,

Stubenrauch et al., 2013). Since clouds reflect visible sunlight efficiently, they are perceived

as white. This ability makes clouds a crucial part of the Earth’s radiation budget by reducing

the net energy which is introduced into the climate system by the Sun. Moreover, the spatial

distribution of clouds reveals their importance in the Earth’s hydrological cycle: clouds are

a necessary prerequisite for precipitation responsible for the green of the tropical rain forests

and the vegetation of the mid-latitudes, while deserts are associated with the absence of

clouds, rain, and plants, which makes them appear in yellow tones.

Of course, the underlying physical processes are more sophisticated but this superficial

examination shows already that clouds are a major constituent of the Earth’s climate system.

Nonetheless, there are many unknowns and uncertainties regarding the climatic effects of

clouds but also the physics of clouds itself (e.g., Boucher et al., 2013). Reducing this lack

of knowledge with a novel particle-based cloud modeling approach, a so-called Lagrangian

cloud model (LCM), as well as the model’s further development and validation are the

general objectives of this thesis. The remainder of this chapter will motivate the applied

modeling approach, how it relates to other cloud models, and introduce the topics continued

within this thesis.

Fig. 1.1: A true-color image of the Earth recorded by NASA’s MODIS (Moderate Resolution

Imaging Spectroradiometer) onboard the Terra satellite (image credit: NASA Goddard

Space Flight Center, 2002).

9



10 1 Introduction

1.1 Numerical Simulations as a Scientific Tool

In physical science, which has been traditionally divided in experiment and theory, a third

branch has been developed in parallel to the advancement of modern computers: computa-

tional physics addresses problems with numerical models (e.g., Landau et al., 2008). The

considered problems are usually too complex for analytic solutions, and numerical models

are the only way to approach them on a theoretical basis, i.e., quantitative descriptions

derived in the branch of theory from which the models are usually created. Especially in at-

mospheric sciences, numerical models are ubiquitous since the considered problems typically

include processes on a wide range of spatial and temporal scales, making simple solutions

nearly impossible.

These simulations are frequently considered as a numerical or computational experi-

ment. This analogy is true in a way that a model offers a controlled environment in which

parameters can be varied systematically. For most questions considered in atmospheric sci-

ence, this capability is especially important since experiments are only possible for a very

limited number of problems and observations have to cope with the given environmental

state, which cannot be influenced or, if possible, its manipulation would raise significant

ethical concerns (e.g., Scott, 2012). Moreover, models offer a wealth of information, which

is usually not available from experiments or observations. Accordingly, simulations might

identify processes, which have not been recognized from experiments or observations, but

they can be used for their validation afterward (e.g., Heus et al., 2009).

However, a model does not necessarily represent the reality. Therefore, results gained

from a numerical model should always be handled with care. There are two main sources of

error which need to be considered (Stevens et al., 2001): Depending on which processes have

been included, neglected, or simplified, a model can be arbitrary false, or, in other words,

represent a physical system that does not agree with reality. Even a hypothetical model,

which includes all processes, might still produce results that are corrupted by the numerical

methods and their inherent limitations used for computing them. Both restrictions are not

necessarily a result of a carelessly designed model but are deliberately condoned to facilitate

computability. Accordingly, for any simulation, it needs to be reflected on: Does the model

consider all relevant processes? How much do the applied numerical methods falsify the

results? And finally, is it possible to transfer the results to reality?

The following section will introduce the basic equations used to describe cloud micro-

physics. Then, the typical simplifications necessary to implement these processes in tradi-

tionally applied Eulerian cloud models are presented. Finally, the novel LCM approach will

be introduced. LCMs are, for the most part, constructed from these basic equations in order

to represent cloud physics more accurately than other approaches by avoiding unnecessary

simplifications. But how much better are LCMs actually? This question will be addressed

in two studies of this thesis (Chapter 3 and 4).
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1.2 The Microphysical Modeling of Clouds

This thesis will focus on warm clouds, i.e., clouds in which no ice is present. The following

section will introduce the basic equations necessary to describe the microphysics of warm

clouds. The three main processes are: (i) activation of aerosols, (ii) diffusional growth, and

(iii) collision followed by the coalescence of droplets (jointly termed collection), which will

be further described in the following paragraphs. Collisional breakup, which becomes the

increasingly probable result of collisions involving a droplet larger than 300µm in radius,

as well as the spontaneous breakup of unstable droplets larger than 2500µm will not be

covered (see, e.g., Johnson, 1982a; Low and List, 1982).

As illustrated in Fig. 1.2, the processes (i) to (iii) are closely related to the size of the

involved particles: Aerosols (radius r . 0.1µm) need to be activated to enable unhindered

diffusional growth to cloud droplets. These can eventually develop to rain drops that grow

predominantly by collection. In this context, the term rain drop does not refer to drops larger

than 250µm in radius, as it is defined by the American Meteorological Society (2017), but

to exactly those particles that grow by collection as it is usually done in a cloud modeling

context (e.g., Kessler, 1969; Khairoutdinov and Kogan, 2000; Seifert and Beheng, 2001).

Accordingly, the differentiation between cloud and rain drops is associated with a radius

between 15 and 50µm, the so-called condensation-coalescence bottleneck at which neither

diffusional nor collectional growth are effective (e.g., Wang and Grabowski, 2009). How

droplets bridge this bottleneck is still an open question in cloud physics and also addressed

in one study presented in this thesis (Chapter 5).

Fig. 1.2: The names and typical radii of particles involved in warm cloud microphysics (black

font), as well as the associated physical processes of activation, diffusion, and collection

(white font) and the size ranges affected by them (blue: diffusion, red: collection).
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1.2.1 Basic Equations for Warm Cloud Microphysics

Activation describes the transition of an aerosol to a cloud droplet. This transition is

driven by the diffusion of water molecules to the aerosol, but it is significantly affected by

the physicochemical properties of the aerosol and the curvature of the resulting solution

droplet. These effects change the particle’s equilibrium supersaturation, i.e., the necessary

ambient supersaturation in which the particle neither grows by condensation nor shrinks by

evaporation.1 From a molecular point of view, these effects influence the balance between the

perpetual fluxes of water molecules from and to the solution droplet, where any imbalance

results in a change in particle size. The particle’s curvature results in a strong increase of the

equilibrium supersaturation toward small radii, actually inhibiting the generation of droplets

by the spontaneous clustering of water molecules (under typical atmospheric conditions).

The strong curvature at small radii reduces the number of neighboring water molecules that

populate the droplet’s surface. This reduces the strength of the bonds which usually prevent

individual molecules from leaving the droplet. Accordingly, the flux of molecules from the

droplet increases at small radii, which needs to be counteracted by a stronger flux from

the environment, i.e., a higher ambient supersaturation (e.g., Bohren and Albrecht, 1998,

Chap. 5.10). The fact that water droplets are observed in the Earth’s atmosphere is related

to aerosols, which act as condensation nuclei facilitating the clustering of the first water

molecules. Inside a solution droplet, the molecules of that aerosols reduce the concentration

of water molecules and hence the flow of water molecules from the solution droplet (e.g.,

Bohren and Albrecht, 1998, Chap. 5.8). This so-called solute effect increases at smaller radii,

i.e., in more concentrated solutions, enabling the stable existence of wetted aerosols (also

called haze particles) in subsaturated environments (supersaturation S < 0 %). Combining

the curvature and the solute effect results in a so-called Köhler curve (Köhler, 1936), which

states a solution droplet’s equilibrium saturation as a function of its radius r:

Seq = exp

(
A

r
− B

r3 − r3s

)
− 1 ≈ A

r
− B

r3
, (1.1)

where the dry radius of the aerosol is termed rs. Curvature is considered by the coefficient

A = 2σ/(ρlRvT ), depending on the surface tension σ, the liquid water mass density ρl, the

specific gas constant of water vapor Rv, and the absolute temperature T . The physicochem-

ical properties of the solute aerosol are considered by B = b · r3s = iΦsρsMl/(ρlMs) · r3s . The

van ’t Hoff factor i describes in how many atoms or molecules a molecule of the dry aerosol

might dissociate in solution (e.g., NaCl → Na+ + Cl−, which yields a van ’t Hoff factor

of 2), while the molar osmotic coefficient Φs considers the deviation from that ideal state

by accounting for the molecules that remain bonded in a concentrated solution. Further-

more, ρs is the aerosol mass density, and Ml and Ms term the molar masses of water and

1If not explicitly stated otherwise, the term supersaturation will refer to the relative supersaturation

S = (qv − qs)/qs, where qv and qs are the water vapor mixing ratio and the saturation water vapor mixing

ratio, respectively.
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aerosol, respectively. Note that Eq. (1.1) is only valid for fully soluble aerosols; expressions

accounting for (partially) insoluble aerosols exists as well (e.g., Pruppacher and Klett, 1997,

Chap. 6.6).

Figure 1.3 shows a typical Köhler curve with the isolated contributions of the curvature

and solute effect. It can easily be recognized that the solute effect dominates at the smallest

radii and the curvature effect influences slightly larger radii, while both effects vanish for

r → ∞. As a result of both effects, a maximum equilibrium supersaturation arises, which

is called the critical supersaturation

Scrit = max (Seq) = Seq(rcrit) =

√
4A3

27B
, (1.2)

which is located at the critical radius

rcrit =

√
3B

A
. (1.3)

Activation marks the growth of a wetted aerosols across this critical radius for which an

ambient supersaturation of more than Scrit is necessary. Only activated aerosols can be

considered as potential cloud droplets, since for these an increase in radius is associated with

a decrease in Seq enabling unhindered diffusional growth, which is the central element of the

so-called Köhler theory (Köhler, 1936). Accordingly, activation is crucial for determining

the number of cloud droplets and subsequent effects on the size of droplets, the production of

rain, and radiative properties of clouds, which will be covered in more detail in the following

Section 1.3.

Equation (1.1) only indicates if diffusional growth is possible (S > Seq) or not (S ≤ Seq).
To understand the temporal dimension of this process, the transport of water molecules to

the particle’s surface by diffusion needs to be examined. Departing from Fick’s laws of

diffusion (Fick, 1855), it can be shown that the radius of a droplet changes by

r
dr

dt
=

S − Seq
Fk + FD

, (1.4)

where the coefficients FD = ρlRvT/(Des) and Fk = [L/(RvT ) − 1]Lρl/(kT ) combine pa-

rameters arising from the diffusion of water molecules and thermal conduction, respectively.

D is the molecular diffusion coefficient, es the saturation vapor pressure, L the latent heat

of evaporation, and k the thermal conductivity of air.

Note that Eq. (1.4) can be applied for condensation and evaporation of aerosols, cloud

droplets, and even rain drops. For this, however, certain parameters need to be adapted.

For the diffusional growth of very small aerosols, the transport of water vapor and heat can-

not be treated by the concept of continuum mechanics. Instead, gas kinetic effects need to

be considered, which slow down diffusional growth by an increase in the coefficients Fk and

FD (e.g., Rogers and Yau, 1989, Chap. 7). For sufficiently large particles, the equilibrium

supersaturation approaches zero, and the term Seq is frequently neglected. For droplets that

exhibit a significant fall speed, i.e., rain drops, the evaporation can be substantially accel-

erated by the so-called ventilation effect, which increases the diffusion of water molecules
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Fig. 1.3: Equilibrium supersaturation calculated from the Köhler curve (black) as well as

from the individual contributions of the solute (red) and curvature (blue) effect for a sodium

chloride aerosol of 0.01µm in dry radius (iΦs = 2, ρs = 2165.0 kg m−3, Ms = 58.0 g mol−1,

T = 293.15 K).

from the droplet. This is usually taken into account by an empirical relationship multiplied

to the right-hand side of Eq. (1.4) (e.g., Rogers and Yau, 1989, Chap. 7).

The motion of a (sufficiently large) atmospheric particle can be described by considering

the drag of the surrounding fluid and gravitational acceleration (e.g., Shaw, 2003). This

yields for a droplet moving in parallel to the gravity vector (for simplicity’s sake):

dU

dt
=

1

τp
(w − U)− g, (1.5)

where U is the droplet’s velocity, w the velocity of the surrounding air, and g the gravita-

tional acceleration. The particle’s inertial response time is given by

τp =
9νρa
2r2ρl

, (1.6)

following Stokes (1851) law for the drag force, where ν is the kinematic viscosity of air, and

ρa the mass density of dry air. For w = 0 and t → ∞, Eq. (1.5) approaches the so-called

terminal fall speed U∞. For droplets larger than 30µm in radius, τp has to be adopted

to consider the increased drag resulting from stronger friction due to the development of a

turbulent boundary layer surrounding the droplet and the flattening of the droplet’s shape,

which leads to a stronger dynamical pressure opposing its fall (Rogers and Yau, 1989,

Chap. 8). This results in a continuously slower increase of U∞ toward larger radii, limiting

it to about 9 m s−1 (at surface conditions) before the droplet finally becomes unstable and

breaks up into smaller ones (at ∼ 1 cm radius).
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Collectional growth is, if only two droplets are considered, a relatively simple process:

the masses of the coalescing droplets, m and n, will add up to the mass o of the newly

formed particle:

o = m+ n. (1.7)

However, this is a stochastic process, which takes place with a certain probability (e.g.,

Gillespie, 1972):

p(m,n) = K(m,n)
∆t

∆V
, (1.8)

where ∆t is the time permitted for collection and ∆V is the volume in which these two

droplets are located. Physics that control the actual collision and coalescence of the two

droplets are introduced by the so-called collection kernel

K(R, r) = π(R+ r)2︸ ︷︷ ︸
(i)

· |U∞(R)− U∞(r)|︸ ︷︷ ︸
(ii)

·E(R, r)︸ ︷︷ ︸
(iii)

. (1.9)

The main driver of K are the differential fall speeds of the colliding droplets given in term

(ii): one droplet needs to fall faster than the second to pass it. This is, however, not

sufficient to cause a collision. For that, the horizontal distance between the droplets needs

to be sufficiently small, which is described by their collection cross section in term (i). The

product of the terms (i) and (ii) results in the volume swept out by the larger droplet per

unit time (in a system following the smaller droplet). A collection kernel reduced to these

two terms is usually named geometrical. Hydrodynamic interactions between the colliding

droplets are introduced by term (iii), which is the dimensionless collection efficiency, which

is determined as the ratio of the actual (measured or simulated) collection kernel to the

geometrical kernel.

The collection efficiency can be separated into the collision and the coalescence efficiency:

E = Ecoll · Ecoal. The collision efficiency considers, e.g., if very small droplets follow the

streamlines around a larger collector droplet, which might prevent collision that are possible

in the geometrical kernel (Ecoll < 1), or if more droplets are captured within the wake of a

very large collector drop than geometrically possible (Ecoll > 1) (e.g., Klett and Davis, 1973).

The coalescence efficiency considers that a small droplet might bounce off a significantly

larger one if a strong layer of air prevents contact (Ecoal < 1) (e.g., Whelpdale and List,

1971).

Now, the effect of collection on an ensemble of droplets shall be quantified. For that, it

is advantageous to describe the ensemble of droplets by a density distribution function f(m)

(frequently called droplet size distribution and abbreviated as DSD), where f(m) ·dm states

the number concentration of droplets within the infinitesimal mass interval dm surrounding

the droplet mass m. For an infinite ensemble of droplets, which covers all realizations of

the stochastic collection process described by Eq. (1.7) and (1.8), the temporal change of
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the DSD can be described by the deterministic Smoluchowski (1916) equation (also called

the stochastic or kinetic collection equation):

df(m)

dt
=

1

2

∫ m

0
K(m− n, n)f(m− n)f(n)dn−

∫ ∞

0
K(m,n)f(m)f(n)dn, (1.10)

which is budgeting the loss and gain of droplets with the mass m. The first term on the

right-hand side describes the increase in the number concentration of droplets with the mass

m by the coalescence of droplet pairs which mass adds up to m. The factor of 1/2 prevents

double-counting of these pairs. The second term describes the loss of droplets with the mass

m by any collection that adds mass to them.

The collection probability defined in Eq. (1.8) is still an inherent part of the Smolu-

chowski equation and appears as

p(m,n) = K(m,n)f(n)dn ·∆t = K(m,n)
∆t

∆V
·A(n), (1.11)

where A(n) states the number of droplets with mass n in the volume ∆V . Accordingly, the

collection probability accounts now for the larger number of potential collection partners.

1.2.2 Numerical Cloud Models

This section describes how the above-introduced basic equations of warm cloud microphysics

are implemented into numerical Eulerian and Lagrangian cloud models, and which simpli-

fications and numerical errors are typically associated with them.

The fundamental idea of Eulerian models is to represent physical quantities on a grid,

i.e., only at certain points of the simulated domain. The values in-between the grid points

are considered by assuming that the value at each grid point represents the volume-average

of the grid-box surrounding it (Schumann, 1975). This approach is not only applied to cloud

microphysical quantities but also to (most) dynamical models, which solve the Navier-Stokes

equations to model the flow of air, as well as the transport of temperature and humidity.

Two types of Eulerian cloud microphysical models are usually distinguished: spectral-bin

models, which resolve the DSD explicitly by adjacent intervals (so-called bins), and bulk

models, which only resolve (a comparably small amount of) integral quantities of the DSD

by approximating it with idealized distributions (see illustration in Fig. 1.4).

In contrast to Eulerian cloud models, LCMs represent cloud microphysics by individu-

ally simulated particles. About 100 × 106 particles are necessary to simulate all droplets

in about 1 m3 explicitly, which is actually done in ultra-high-resolution direct numerical

simulations of the turbulent mixing in clouds (e.g., Kumar et al., 2014). But computational

restrictions do not allow the simulation of larger domains. To simulate whole clouds or

even larger systems, the concept of super-droplets has been introduced: the super-droplet

represents an ensemble of identical droplets or aerosols by only one simulated particle [the

term super-droplet has been phrased by Shima et al. (2009)]. The number of droplets or

aerosols within this ensemble is expressed as a feature of the super-droplet and is termed
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Spectral-Bin
Bulk

Lagrangian
Reality

log(r)

DSD

Fig. 1.4: Illustration of the representation of an arbitrary droplet size distribution (DSD,

gray) by bins in a spectral-bin model (red), two idealized distributions for cloud and rain

drops in a bulk model (blue), or by super-droplets in a Lagrangian cloud model (green).

the weighting factor, which has to be considered in the computation of cloud microphysics.2

As illustrated in Fig. 1.4, each super-droplet can be considered as a delta function located at

a given radius, and the function’s integral represents the weighting factor (or other integral

quantities of the super-droplet). Note that only cloud microphysics are Lagrangian, while

dynamics, temperature, and humidity are still treated Eulerian. The interplay of these

different approaches is investigated in Chapter 3.

In contrast to Eulerian cloud models, which have been developed since the 1960s (e.g.,

Kovetz and Olund, 1969; Kessler, 1969) and continuously improved since then, LCMs are a

relatively new approach, which development started about ten years ago (Andrejczuk et al.,

2008; Shima et al., 2009; Sölch and Kärcher, 2010; Riechelmann et al., 2012; Naumann

and Seifert, 2015). LCMs and Eulerian spectral-bin models, which need to resolve the

droplet spectrum explicitly, usually demand large computational resources, which restrict

their application to research. The comparably simple Eulerian bulk models, however, are

also applied in operational numerical weather prediction models (e.g., Dipankar et al., 2015).

Spectral-Bin Models

Spectral-bin models represent cloud microphysics by resolving the spatiotemporal evolution

of the entire DSD. Since the DSD f is a function of mass, but also space and time (which

2The terms super-droplet, simulated particle (SIP), and computational particle as well as weighting factor

and multiplicity are used synonymously in the literature.
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are not denoted for clarity), the total differential in Eq. (1.10) can be split into its partial

derivatives (considering only motions in the direction of gravity):

∂f(m)

∂t︸ ︷︷ ︸
(i)

=− ∂

∂z
· {[w − U∞(m)] f(m)}

︸ ︷︷ ︸
(ii)

− ∂

∂m

[
dm

dt
f(m)

]

︸ ︷︷ ︸
(iii)

+
1

2

∫ m

0
K(m− n, n)f(m− n)f(n)dn−

∫ ∞

0
K(m,n)f(m)f(n)dn

︸ ︷︷ ︸
(iv)

. (1.12)

This equation is the basis of all spectral-bin models. It relates the temporal change of f in

term (i) to the advection by air speed (w) and sedimentation (U∞) [term (ii)], as well as to

the advection in the mass space by diffusion [via dm/dt = 4πr2 · ρl · dr/dt with dr/dt from

Eq. (1.4)] [term (iii)], and to collection as described by the Smoluchowski equation (term

iv).

Besides the prerequisite of a sufficiently large ensemble of droplets to ensure the applica-

bility of the Smoluchowski equation, Eq. (1.12) is an adequate representation of the physics

described in the last section. However, its numerical solution is the source of substantial

errors which will be outlined below. To solve Eq. (1.12) numerically, the finite-differences

method is applied. Accordingly, f divided in several adjacent intervals, so-called bins. The

partial derivatives in term (ii) and (iii) as well as the integrals in term (iv) are then converted

into finite differences and summations, respectively. Various numerical methodologies have

been developed for the solution (e.g., Berry and Reinhardt, 1974; Tzivion et al., 1987; Bott,

1998; Wang et al., 2007), but are all potentially prone typical errors associated with finite-

differences method: numerical diffusion and dispersion in the physical but more importantly

the radius space, which is known to artificially increase spectral broadening and therefore

the production of rain (e.g., Khain et al., 2000).

Moreover, the accurate representation of the activation process is challenging in spectral-

bin models. Although the consideration of solution and curvature effects on diffusional

growth is possible in Eq. (1.12), it would require the simultaneous tracking of aerosol mass

as another dimension of f , increasing the computational demands significantly (e.g., Lebo

and Seinfeld, 2011). Therefore, the majority of spectral-bin models relies on a bulk pa-

rameterization of the activation process, which is usually similar to that parameterization

originally created by Twomey (1959). Accordingly, these parameterizations are frequently

termed Twomey-type parameterizations and they predict the number of activated cloud

droplets at a given supersaturation:

N = N0S
k, (1.13)

where N0 and k are parameters depending on the aerosol distribution, and S is the super-

saturation, which is usually limited to a maximum value (S ≤ Smax) at which all potentially

cloud-active aerosols are activated. If Eq. (1.13) predicts an increase in the number concen-
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tration of cloud droplets, the newly nucleated particles are then added to the smallest bin

or to a bin which corresponds to their size at activation (e.g., Flossmann et al., 1985).

Bulk Models

In contrast to spectral-bin models, bulk models do not resolve the DSD explicitly. The

DSD is typically divided into the species of cloud and rain drops, making use that these

are either primarily affected by diffusion or collection, respectively. Each species is then

described by an idealized (exponential, gamma, or lognormal) distribution. For these, the

temporal change of bulk quantities as mass (one-moment schemes), or additionally number

concentration (two-moment schemes) and radar reflectivity (three-moment schemes) are

calculated from spectral-bin simulations (e.g., Khairoutdinov and Kogan, 2000) or analytical

solutions (e.g., Seifert and Beheng, 2001). Easily imaginable, the validity of these models

depends significantly on the assumed distributions and further assumptions that have been

made during their derivation. Naumann and Seifert (2016), for instance, have shown that

certain parametric assumptions made for these distributions are not universal; they vary for

different cloud types and even for clouds of the same type.

Activation and diffusional growth are treated highly simplified in bulk models. Since

the prognostic consideration of supersaturation, condensation, and evaporation results in a

restriction of the model timestep (Árnason and Brown, 1971), many models just diagnose

cloud water by a so-called saturation adjustment scheme to avoid this restriction. This

scheme immediately condenses all supersaturations to cloud droplets, i.e., a grid-box is

either subsaturated or saturated but never supersaturated (Sommeria and Deardorff, 1977).

Moreover, the number of cloud droplets is often prescribed as a model parameter and not

variably determined by an activation scheme (e.g., Heus et al., 2010).

If a model explicitly predicts supersaturation, activation can be based upon a parameter-

ization of the above-introduced Twomey-type. The impact of condensation and evaporation

on the cloud water mixing ratio are then considered by an integral expression of Eq. (1.4)

(e.g., Khairoutdinov and Kogan, 2000):

dqc
dt

=

∫ ∞

0
4πr2

ρl
ρa

dr

dt
f(r)dr = 4π

ρl
ρa

S

Fk + FD
·
∫ ∞

0
rf(r)dr. (1.14)

The last integral represents the product of droplet number concentration and arithmetic

mean radius, which, however, depends on the assumed shape of the DSD f .

For the treatment of collectional growth, the following interactions of cloud and rain

drops are considered: autoconversion (coalescence of cloud droplets forming rain drops),

accretion (rain drops collecting cloud droplets), and self-collection (coalescence of drops

that remain in their category). Quantitative descriptions of these processes are derived from

spectral-bin simulations or from theory. Due to the large variety of different expressions,

the interested reader is referred to the original literature (e.g., Khairoutdinov and Kogan,

2000; Seifert and Beheng, 2001; Milbrandt and Yau, 2005; Morrison and Gettelman, 2008).
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Lagrangian Cloud Models

Lagrangian cloud models enable, due to their natural dipiction of cloud microphysics by

individual particles, an accurate representation of many physical processes. Activation

and diffusional growth are considered straightforward by the integration of Eq. (1.4), which

avoids any errors due to numerical diffusion or dispersion as usually observed in Eulerian

spectral-bin models. Moreover, the simulation of individual particles enables a simple way

of assigning each particle a specific aerosol mass or even chemical species. This allows to

consider activation without parameterizations (Andrejczuk et al., 2008; Grabowski et al.,

2011; Hoffmann et al., 2015), which will be also done in two studies of this thesis (Chapter 3

and 6).

Similarly, the representation of collection is close to the fundamentals of stochastic col-

lectional growth introduced in Eq. (1.7) and (1.8). If the droplets represented by the two

super-droplets m and n collide, their individual masses will add up and result in new droplets

of the mass

mo = mm +mn. (1.15)

The number of new droplets with the mass mo, i.e., the weighting factor of newly produced

super-droplet o, is calculated as

Ao = Am

[
K(mm,mn)

∆t

∆V
·An

]
, (1.16)

and needs to be subtracted from the weighting factors of the older super-droplets m and n:

Âm = Am −Ao, (1.17)

Ân = An −Ao, (1.18)

where the (̂..) marks the variable after collection. The bracketed part of Eq. (1.16) represents

the collection probability that one droplet of super-droplet m collects any droplet of super-

droplet n, which yields the total number of collections when multiplied with the weighting

factor of super-droplet m. For the limit Am, An → 1, Eq. (1.16) approaches the collection

probability given in Eq. (1.8) proving the equivalence of collections in the LCM and the

stochastic collectional growth described above. Accordingly, LCMs have the potential to

be applied to smaller droplet ensembles for which the Smoluchowski equation is not valid

anymore. In this case, however, Eq. (1.16) needs to be treated stochastically.

This hypothetical collection algorithm would produce Np(Np − 1)/2 new super-droplets

per timestep, where Np is the number of super-droplets at that timestep, resulting in an

exponential increase of super-droplets, which makes the LCM computationally unfeasible

after some iterations. Therefore, three different approaches have been developed so far to

keep the number of simulated super-droplets within a reasonable range. The validation of

these approaches is a part of this thesis and will be presented in Chapter 4.
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1.3 State of the Art: Modeling of Aerosol-Cloud Interactions

The previous overview on numerical cloud models touched already some topics that will be

continued within this thesis. All studies are related to the interaction of aerosols, clouds,

dynamics, precipitation, and radiation (Andreae and Rosenfeld, 2008; Boucher et al., 2013;

Rosenfeld et al., 2014; Wendisch et al., 2016). Process-level understanding of the respective

interactions is necessary for a reduction in the large uncertainty in the understanding and

modeling of the Earth’s climate.

Special attention will be drawn to the differences and advantages that the applied LCM

will bring to the investigation of these topics. Due to their formulation, LCMs avoid most

parameterizations and many numerical errors typical for Eulerian cloud models. Therefore,

LCMs promise a very accurate representation of cloud microphysics. Moreover, the un-

complicated consideration of aerosols in this approach makes LCMs a powerful tool for the

investigation of the interactions mentioned above. On the other hand, LCMs are a relatively

new approach, which implies that they have not been validated extensively and some nu-

merical errors or specific characteristics might not have been discovered so far. Accordingly,

this thesis will cover studies of both types: applications of the LCM as well as studies which

investigate the fidelity of this new approach.

Aerosols are a crucial element of the Earth’s climate since they, as soon as they are

activated, determine the number and the size of cloud droplets. This microphysical effect of

aerosols on clouds is the basis of many subsequent interactions between clouds, dynamics,

precipitation, and radiation. The two most fundamental interactions are the cloud albedo

(Twomey, 1977) and the cloud lifetime effect (Albrecht, 1989). These effects can be easily

understood if the cloud height and liquid water content are assumed to be unaffected by

the number of aerosols: Twomey (1977) argued that clouds reflect more shortwave radia-

tion in more aerosol-laden environments, i.e., if the cloud consists of a higher amount of

accordingly smaller cloud droplets. Since these reflect more shortwave radiation due to their

larger integral surface, an increase in the droplet concentration can be related to a higher

cloud optical thickness and accordingly an increase in cloud albedo. Moreover, these smaller

droplets exhibit lower fall speeds and, accordingly, cause a delayed or even inhibited initi-

ation of the precipitation process, i.e., intense collections. Accordingly, the affected clouds

do not dissolve by precipitation, which ultimately increases their individual lifetime and the

overall cloud cover, with commensurate effects on the radiation budget (Albrecht, 1989).

The cloud height and liquid water content are, however, also subject to further aerosol-

cloud interactions. The entrainment-evaporation effect (Wang et al., 2003; Jiang et al.,

2006), for instance, decreases cloud lifetime by stronger entrainment and subsequent dilution

due to the accelerated evaporative cooling caused by the larger integral droplet surface

in aerosol-laden environments. Similarly, clouds in an aerosol-laden environment can be

invigorated due to an accelerated release of latent heat, resulting in deeper, optically thicker
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clouds (e.g., Koren et al., 2014). On the other hand, Wyszogrodzki et al. (2013) found that

accelerated precipitation, as it can be the case in pristine (less aerosol-laden) environments,

increases the cloud’s buoyancy by removing a part of the liquid water from the cloud, which

also results in deeper clouds. Admittedly, this compilation of interactions resulting from

changes in the microphysical properties of clouds is not complete. However, it shows already

that the interaction of aerosols and clouds is rather complicated: some interactions increase

a certain parameter (precipitation, radiation), while others do the opposite, resulting in

buffered system with a non-monotonic behavior (Stevens and Feingold, 2009; Dagan et al.,

2016).

Activation is crucial for all of these effects since it translates the aerosol concentration

into the cloud droplet concentration. But activation cannot be considered as a simple

linear relationship, which relates an increase of aerosols into a proportional increase of

cloud droplets. In fact, a larger number of cloud droplets results in lower supersaturations,

and lower supersaturations result in less activation (e.g., Twomey, 1959). This non-linear

behavior makes the numerical modeling of activation crucial to understand the interaction

of aerosols and clouds, but the modeling of activation itself is potentially prone to errors.

The representation of aerosol activation by a parameterization has distinctive weaknesses

but also the supersaturation, the main driver of activation, can be spuriously determined.

Both sources of potential errors will be described in the following paragraphs.

Spuriously determined supersaturations are a long recognized problem in Eulerian sim-

ulations of clouds (e.g., Grabowski, 1989). Two potential sources of this error have been

identified. First, most models diagnose the supersaturation from the prognostic variables

describing temperature and humidity. Their advection might be affected by numerical er-

rors, which cause the fields to be in physical disagreement regarding the supersaturation,

although the individual fields might appear acceptable. Several approaches have been pro-

posed to mitigate this error, which are primarily based on the improvement of the advection

schemes (e.g., Grabowski and Smolarkiewicz, 1990; Margolin et al., 1997). Alternatively,

Grabowski and Morrison (2008) proposed to change the quantities which are advected.

Instead of advecting temperature and humidity, they decided to advect the absolute su-

persaturation Sabs = qv − qs = S · qs directly. This procedure resulted in a sufficiently

smooth distribution of the supersaturation. However, these approaches only mitigate the

spurious supersaturations originating from a second mechanism responsible for their pro-

duction. Stevens et al. (1996) have shown that spurious supersaturations originate from

the inability of Eulerian models to represent the boundary between cloudy (supersaturated)

and cloud-free (subsaturated) regions in-between grid points, i.e., on the subgrid-scale. This

results in the production of spurious sub- and supersaturations when the cloud moves across

the numerical grid (see Fig. 2 in Stevens et al., 1996). Regardless of their origin, spurious

supersaturations might result in the activation of aerosols, with commensurate impacts on

the cloud’s microphysical properties and further parameters. Since the calculation of super-
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saturations in LCMs is also based on Eulerian quantities, spurious supersaturations are a

potential problem in LCMs, too. But how much do spurious supersaturations affect LCMs?

This question will be answered in the study presented in Chapter 3. Additionally, this study

will analyze further the general production of spurious supersaturation, answering: What

parameters determine the production and strength of spurious supersaturations in general?

What are the weaknesses of the widely applied Twomey-type activation parameteriza-

tion (Twomey, 1959)? In this parameterization, new cloud droplets are created immediately

after the supersaturation increases to a new maximum. The time necessary for a wetted

aerosol to grow beyond its critical radius for activation is neglected. Accordingly, the largest

aerosols, which need the longest time for activation, might not be activated in reality if the

supersaturation is only present for a limited period of time. As pointed out by Chuang et al.

(1997), this assumption overestimates the number of activated cloud droplets determined by

such a parameterization. Using the explicit representation of activation available in LCMs,

Hoffmann et al. (2015) showed that the activation of larger aerosols can be significantly

reduced if they have been entrained into a highly turbulent environment where supersatu-

rations only exist for a short period of time, while smaller aerosols, which need a shorter

time for activation but higher supersaturations, are affected less. Accordingly, activation

parameterizations neglect processes which influence aerosols before activation. But does this

matter? What is the effect of aerosols which might not activate in reality but are assumed

to do so in Twomey-type activation parameterization? Nenes et al. (2001) analyzed if these

aerosols have a significant impact on cloud optical properties. They found that the wetted

aerosols which do not activate due to their long activation time can still be considered as

regular cloud droplets regarding their effect on optical properties although they are formally

inactivated. This relates to the typical size of these particles, which critical radius for ac-

tivation is usually larger than 1µm. Accordingly, some sufficiently large wetted aerosols

might also take part in collisions with other particles. How large must an aerosol be that its

activation is affected by collection? Does collectional growth contribute significantly to the

mass growth leading to activation? And how much does it contribute to the number of acti-

vations? These questions are related to the distinction between aerosols and cloud droplets,

for which Köhler theory is usually applied. For which aerosol size becomes traditional Köhler

theory, and accordingly activation, inapplicable to distinguish if a particle is still an aerosol

or already a cloud droplet? Using collection as a criterion for this distinction, the study

presented in Chapter 6 will discuss the applicability of traditional Köhler theory.

As pointed out above, precipitation or the inhibition of precipitation are also crucial for

the interaction of clouds, dynamics, and radiation. Additionally, precipitation is a major

sink for aerosols, reducing the number of aerosols by the coalescence of droplets as well

as the total aerosol mass if large droplets precipitate from the atmosphere (e.g., Hudson,

1993). However, if the numerical implementation of the collection process is leading to

a false development of the droplet spectrum, the development of clouds might be wrong,
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too. Spectral-bin models, for instance, suffer from artificial spectral broadening (e.g., Khain

et al., 2000), which results in an acceleration of precipitation, and many efforts have been

made to reduce this error by the development of sophisticated numerical schemes (e.g., Bott,

1998; Wang et al., 2007). LCMs, on the other hand, are a relatively new approach and the

different numerical approaches for computing collection have not been rigorously evaluated

so far. Accordingly, two fundamental questions need to be asked: Do LCMs represent the

collection process correctly? Which is the best approach to treat collection in LCMs? To

answer these questions, Chapter 4 will present a first study in which all three available

collection algorithms by (i) Andrejczuk et al. (2010), (ii) Riechelmann et al. (2012), and

(iii) Shima et al. (2009) and Sölch and Kärcher (2010) are compared against analytical

solutions of the collection process (Golovin, 1963) as well as spectral-bin reference solutions

(Wang et al., 2007).

A correct representation of collection is essential for a cloud microphysical model. But

even the physics of the initiation of the precipitation process itself have not been under-

stood completely (Beard and Ochs, 1993). Especially the bridging of the above-mentioned

condensation-coalescence bottleneck, i.e., the spectral range between 15 and 50µm radius

in which neither diffusional nor collectional growth are effective, demands further research.

And several processes have been proposed to be responsible for bridging this condensation-

coalescence bottleneck, which will be introduced in the following.

Diffusional growth can be significantly accelerated by inhomogeneous mixing (Baker

and Latham, 1979). Depending on the timescales of evaporation and turbulent mixing, the

droplets within a parcel consisting of saturated cloudy and subsaturated cloud-free air can

experience two fundamentally different scenarios. If the turbulent mixing of air is faster

than the evaporation, all droplet will experience the same subsaturation and evaporate

until saturation is reached (homogeneous mixing). This will result in generally smaller

droplets but keeps the droplet number concentration constant. If, however, the turbulent

mixing is significantly slower than the evaporation, the droplets which are located in the

saturated cloudy air are going to maintain their initial size, while only the droplets that have

been moved into the subsaturated air are going to evaporate (completely) until the former

subsaturated air is saturated (inhomogeneous mixing). The latter process will conserve the

mean droplet radius but decreases the droplet number concentration. The accelerating effect

of inhomogeneous mixing on diffusional growth will then result from the smaller amount

of water vapor competitors if the parcel of air continues to move upward. Inhomogeneous

mixing, however, cannot be resolved in current cloud models since the underlying dynamics

model usually exhibits a too coarse resolution (∼ 20 m), and the relevant lengthscales of

inhomogeneous mixing, which need to be resolved, are at about 10 cm (Lehmann et al.,

2009). Possibilities for a parameterization of this effect for LCMs will be discussed in the

outlook (Chapter 7).
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Collectional growth itself can also be intensified to bridge the condensation-coalescence

bottleneck, too. Giant and ultra-giant aerosols, if present in the aerosol spectrum, can

exhibit a wet radius of more than 20µm which can easily trigger collisions and initiate

rain (Johnson, 1982b). In contrast to this exogenous theory, clouds are able to intensify

collections on their own, i.e., in the absence of giant and ultra-giant aerosols. First, there

is spectral broadening. Looking at Eq. (1.9), it can be easily understood that the collec-

tion kernel K approaches zero if the colliding droplets are of a similar size. And indeed,

diffusional growth tends to decrease an initial difference in droplet size if the considered

droplets experience the same supersaturations. Lasher-Trapp et al. (2005) proposed that

droplets colliding at a certain location might have experienced different supersaturation his-

tories within the highly turbulent environment of a cloud, resulting in dissimilar diffusional

growth and, accordingly, different droplet sizes. On the other hand, turbulence itself in-

creases the collection kernel K directly by small-scale effects like the clustering of droplets,

turbulence-induced relative velocities, and changes in the collision efficiency (e.g., Devenish

et al., 2012, and references therein). It is unknown so far which process dominates the

initiation of rain. By tracking the history of individual super-droplets, LCMs provide a new

way to answer this question. Similar tracking approaches have been applied already (e.g.,

Lasher-Trapp et al., 2005; Cooper et al., 2013), but only LCMs allow this kind of analysis

in a two-way coupled model. Therefore, the following question will be addressed in Chap-

ter 5: Which process is more important for the initiation of precipitation in shallow cumuli:

spectral broadening by differential diffusional growth or small-scale turbulence effects on the

collection kernel?

1.4 Structure of the Thesis

The main part of this thesis will consist of four studies in which the applied LCM is validated,

further developed, and applied to answer the questions derived above. Their contents will

be briefly summarized now.

The first study (Chapter 3) will investigate the production and the effect of spurious

supersaturations in LCMs repeating an idealized advection experiment originally developed

by Stevens et al. (1996). An analytic expression for the production of spurious super-

saturations will be derived, revealing under which conditions the production of spurious

supersaturations is the strongest. The second study (Chapter 4) will validate all currently

available collection algorithms applied in LCMs using idealized box-simulations. This study

will (i) show how the different approaches compare to established references, (ii) identify

parameters which steer the fidelity of these approaches, and (iii) discuss methods for their

improvement. The third study (Chapter 5) will investigate which process is more relevant

to the initiation of precipitation: spectral broadening or small-scale turbulence effects on

the collection kernel. By using a unique feature of LCMs, the tracking of super-droplets, the

circumstances are identified under which the collectional growth leading to precipitation is
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triggered. The final study (Chapter 6) will identify the limits of traditional Köhler theory.

By making use of the explicit representation of the activation process available in LCMs, this

study will investigate for which aerosol size the mass growth leading to activation switches

from diffusion, as assumed in traditional Köhler theory, to collection, which is not part of

Köhler theory but will take place if the aerosols become large enough.

Before advancing to these studies, the next Chapter 2 will present the applied model

PALM (Raasch and Schröter, 2001; Maronga et al., 2015) in more detail. Afterward, the

four studies mentioned above will follow in Chapter 3 to 6. Finally, concluding remarks and

an outlook will be given in Chapter 7.
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Methods

The studies in Chapter 3 and 4 investigate general aspects of the LCM approach using

simplified models exclusively developed for that purpose. The studies presented in Chap-

ter 5 and 6 have been carried out using the model PALM (Raasch and Schröter, 2001;

Riechelmann et al., 2012; Maronga et al., 2015). In this chapter, PALM’s large-eddy sim-

ulation (LES) model and the coupled LCM will be described.1 The LES model is used for

the simulation of dynamics and the transport of temperature and water vapor. The LCM

is responsible for the representation of liquid water physics. The description of the LES

model will be reduced to the basic principles, governing equations, the subgrid-scale model,

and the applied numerical methods. The reader is referred to Maronga et al. (2015) for

a recent, more comprehensive description of PALM’s LES model. The description of the

LCM will cover the newest developments of it, including all model equations, parameteriza-

tions, parameters, and, where the explicit mentioning of values and equations is unsuitable,

references to the original literature.

2.1 The Large-Eddy Simulation Model

The basic concept of LES is the separation of scales by a filter operation. This filter sep-

arates the prognostic quantities describing the flow into an explicitly resolved part and a

parameterized unresolved part, which is only considered by its impact on the resolved scales.

The resolved scales typically exhibit complex flow patterns, which makes their explicit sim-

ulation essential. On the other hand, the unresolved scales contain significantly less energy

and their flow is assumed to be sufficiently described by isotropic, homogeneous turbulence,

which effect can be easily parameterized.

Following this concept, an arbitrary prognostic variable a can be separated into a resolved

and an unresolved part:

a = a+ a′′, (2.1)

where (..) indicates the resolved or filtered part and (..)′′ the unresolved or the so-called

subfilter part. In PALM’s LES (and many other applied LES models), the filtering is carried

out implicitly by the discretization of the model equations on a numerical grid (Schumann,

1975). This implicit filter is assumed to have the same properties as a volume-average

carried out over the grid-box surrounding each grid point. Accordingly, the subfilter scales

are also termed subgrid scales (SGS).

1References to the applied revisions of PALM will be given in the respective studies.
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Since the filter operation removes the SGS part of the prognostic variable, individual

variables in the model equations can be replaced by the filtered variable:

a = a+ a′′ = a+ a′′ = a, (2.2)

i.e., a′′ = 0. Only in the case of a product of two prognostic quantities, the contribution of

the SGS needs to be considered:

ab = (a+ a′′)(b+ b′′)

= a b+ a b′′ + a′′ b+ a′′b′′

= a b+ a′′b′′. (2.3)

Note that the latter equality includes special properties of the applied filter (Schumann,

1975), which are not universal. For more details on the separation of scales, the specific

properties of the filter operation, and the filtering of the model equations, the interested

reader is referred to relevant textbooks (e.g., Fröhlich, 2006; Sagaut, 2006).

2.1.1 Governing Equations

PALM’s LES model is based on the filtered, incompressible, Boussinesq-approximated Navier-

Stokes equations for momentum as well as transport equations for potential temperature

and water vapor mixing ratio in the Cartesian coordinates (xi) = (x, y, z). Note that the

following equations are all filtered, and the (..) will be omitted for visual clarity where it is

possible. Moreover, Einstein notation is used, where δij indicates the Kronecker delta and

εijk the Levi-Civita tensor.

The Navier-Stokes equations for momentum (ui) = (u, v, w), the transport of potential

temperature θ, and the transport of water vapor mixing ratio qv are given by

∂ui
∂t

=− ∂uj ui
∂xj

− ∂

∂xj

(
u′′ju

′′
i −

1

3
u′′ku

′′
k δij

)

+ g
θv − 〈θv〉h

θv0
δi3 − εijkfjuk + εi3kf3ug,k −

1

ρa

∂

∂xi

(
p∗ + ρa ·

1

3
u′′ku

′′
k

)
, (2.4)

∂θ

∂t
=− ∂uj θ

∂xj
−
∂u′′j θ

′′

∂xj
+

[
∂θ

∂t

]

cond

, (2.5)

and

∂qv
∂t

=− ∂uj qv
∂xj

−
∂u′′j q

′′
v

∂xj
+

[
∂qv
∂t

]

cond

, (2.6)

respectively. Here, g denotes the gravitational acceleration, (fi) = (0, 2Ω cos (ϕ), 2Ω sin (ϕ))

the three-dimensional Coriolis parameter calculated from the geographical latitude ϕ and

the Earth’s angular velocity Ω. θv is the virtual potential temperature, θv0 a reference

virtual potential temperature (usually determined from the initial profiles of θv), and ρa the

mass density of dry air. 〈..〉h represents a horizontal average.
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In Eq. (2.4) to (2.6), the first term on the right-hand side indicates the advection of the

respective resolved quantity, and the second term denotes the divergence of the respective

SGS flux, which are parameterized in the SGS model. In Eq. (2.4), the following four terms

denote, from left to right, the acceleration of air by buoyancy, the Coriolis force, the large-

scale pressure gradient force expressed by the geostrophic wind ug,k, and the small-scale

pressure gradient force, which is a quantity diagnosed to ensure incompressibility of the

flow:

∂ui
∂xi

= 0. (2.7)

Note that guaranteeing the incompressibility of the flow is crucial since the governing equa-

tions describe an incompressible fluid but do not maintain it (e.g., Heinze et al., 2016a). In

Eq. (2.5) and (2.6), [∂θ/∂t]cond and [∂qv/∂t]cond denote sink/source terms due to condensa-

tion/evaporation, which are calculated in the LCM.

The virtual potential temperature (also termed density potential temperature) is given

by

θv = θ

[
1 +

(
Rv
Ra
− 1

)
qv − ql

]
, (2.8)

where Rv and Ra term the specific gas constants of water vapor and dry air, respectively.

The liquid water mixing ratio ql is calculated within the LCM. It represents the frictional

drag of droplets affecting the air’s buoyancy, which is proportional to their total weight

(e.g., Bannon, 2002).

Note that the diagonal elements of the SGS momentum flux u′′i u
′′
j have been subtracted

from the second term on the right-hand side of Eq. (2.4), and have been added to the sixth

term, which results in the so-called modified pressure:

π∗ = p∗ + ρa ·
1

3
u′′ku

′′
k. (2.9)

This is necessary since the (required) incompressibility of the flow does not allow the appli-

cation of the SGS model to the diagonal elements of u′′i u
′′
j (e.g., Fröhlich, 2006, Chap. 6.2.2).

Accordingly, u′′ku
′′
k is a part of the modified pressure π∗. π∗ is determined such that the small-

scale pressure gradient −1/ρa · ∂π∗/∂xi in Eq. (2.4) removes any non-incompressibility of

the flow field ui during the time ∆t, i.e., the model timestep. These assumptions result in

the following Poisson equation for π∗ (e.g., Patrinos and Kistler, 1977):

∂2π∗

∂x2i
=
ρa
∆t

∂ui
∂xi

. (2.10)

2.1.2 Subgrid-Scale Model

The SGS model is based on the 1.5-order approach by Deardorff (1980) with modifications by

Moeng and Wyngaard (1988). It relates the SGS fluxes not only to the resolved quantities

but solves also an additional prognostic equation for the SGS turbulence kinetic energy

(TKE) e = u′′i u
′′
i /2 for an improved determination of the SGS eddy diffusivities.
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All SGS fluxes are assumed to be proportional to the gradient of the resolved-scale

quantities (or in the case of momentum to the deformation):

u′′ju
′′
i −

1

3
u′′ku

′′
k δij = −Km

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.11)

θ′′u′′j = −Kh
∂θ

∂xj
, (2.12)

q′′vu
′′
j = −Kh

∂qv
∂xj

. (2.13)

Accordingly, the turbulence represented by the SGS fluxes behaves like molecular diffusion

by counteracting gradients in the fields of ui, θ, and qv. Here, Km and Kh are the SGS

eddy diffusivities of momentum and heat, respectively:

Km = 0.1 · l√e, (2.14)

Kh =

(
1 + 2

l

∆

)
Km. (2.15)

The eddy diffusivities are directly linked to decisive features of the SGS turbulence by

estimating the speed and the maximum diameter of the involved eddies. These are are

given by
√
e and the characteristic grid spacing ∆ = 3

√
∆x∆y∆z, respectively, where ∆x,

∆y, and ∆z are the grid spacings in the x, y, and z directions. Due to a stable stratification

(∂θv/∂z > 0) or the proximity of a surface (distance z), the maximum diameter of the SGS

eddies can be decreased. Therefore, their typical lengthscale is determined as

l =





min

[
1.8 z,∆, 0.76

√
e
(

g
θv0

∂θv
∂z

)−1/2]
for ∂θv

∂z > 0,

min (1.8 z,∆) for ∂θv
∂z ≤ 0.

(2.16)

The prognostic equation for e is given by:

∂e

∂t
= −∂uje

∂xj
−
∂u′′j e

′′

∂xj
− 1

ρa

∂u′′j p
∗′′

∂xj
− u′′ju′′i

∂ui
∂xj

+ g
w′′θ′′v
θv0

− ε. (2.17)

Here, the temporal change of e (on the left-hand side) is related to (on the right-hand side,

from left to right) the resolved advection, the divergence of SGS flux of e, the divergence

of SGS pressure fluctuations, the production of e by shear, as well as by buoyancy. And,

finally, e is reduced by the kinetic energy dissipation rate ε. Again, the solution of this

equation needs several additional parameterizations for closure, for which gradients of the

resolved variables are used:

u′′j e
′′ +

1

ρa
u′′j p
∗′′ = −2

(
Km

∂e

∂xj

)
. (2.18)

Following Stull (1988, Chap. 4.4.5), the SGS buoyancy flux w′′θ′′v can be related to its

individual components by:

w′′θ′′v =

[
1 +

(
Rv
Ra
− 1

)
qv − ql

]
· w′′θ′′ +

[(
Rv
Ra
− 1

)
θ

]
· w′′q′′v − θ · w′′q′′l , (2.19)
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where θ′′w′′ and q′′vw
′′ are given by Eq. (2.12) and (2.13), and

q′′l w
′′ = −Kh

∂ql
∂z

, (2.20)

which is calculated from the ql field of the LCM. The kinetic energy dissipation rate is

parameterized as

ε =

(
0.19 + 0.74

l

∆

)
e3/2

l
, (2.21)

representing that ε ∼ e3/2 (Kolmogorov, 1941).

2.1.3 Numerics

For the numerical solution of the prognostic equations (2.4), (2.5), (2.6), and (2.17), the

finite-difference method is used to discretize partial derivatives in space (∂/∂xi). For the

advection of momentum [Eq. (2.4)] a fifth-order advection scheme is applied (Wicker and

Skamarock, 2002). Although this scheme could be also used for scalars [Eq. (2.5), (2.6),

and (2.17)], a monotonic and conservative advection scheme by Chlond (1994) is applied

to prevent spurious oscillations in the vicinity of sharp gradients, e.g., the cloud edge (e.g.,

Grabowski and Smolarkiewicz, 1990). Other partial derivatives in space are discretized by

centered, second-order difference quotients.

The temporal integration of all prognostic equations [Eq. (2.4), (2.5), (2.6), and (2.17)]

is carried out by a third-order, three-step, low-storage Runge-Kutta scheme (Williamson,

1980). Note that the LCM is calculated before the LES timestep, but the impact of evapora-

tion and condensation by [∂θ/∂t]cond and [∂qv/∂t]cond are considered after the completion of

the full LES Runge-Kutta timestep by updating θ and qv according to the changes calculated

in the LCM.

For guaranteeing the incompressibility of the flow, the prognostic equations for momen-

tum are solved using a simple sequential splitting approach. First, a provisional field for

ui is calculated including all but the last term on Eq. (2.4)’s right-hand side, i.e., without

−1/ρa · ∂π∗/∂xi. Second, using this provisional of ui, the modified pressure π∗ is calcu-

lated from the Poisson equation (2.10), which is transformed into the Fourier space, where

a numerically simple tridiagonal matrix is solved (Schumann and Sweet, 1988). Finally,

the last term of Eq. (2.4), −1/ρa · ∂π∗/∂xi, is integrated in time using a first-order Euler

forward step. The resulting change ∆ui is added to the provisional flow field ui, making it

incompressible. Note that this procedure is carried out at each sub-step of the Runge-Kutta

scheme.

Since the production and depletion of supersaturations is explicitly resolved due to the

coupling with the LCM, the phase relaxation timescale has to be considered as a timestep

criterion to prevent numerical instabilities (Árnason and Brown, 1971):

∆t < ∆tphase = 2 τphase ≈ 2 (4πDNr)−1, (2.22)
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where D is the molecular diffusion coefficient [see Eq. (2.44) below], N the cloud droplet

concentration, and r the arithmetic mean droplet radius. For the investigated clouds,

min (∆tphase) has always been smaller than other timestep criterions [the so-called CFL cri-

terion (Courant et al., 1928) and the diffusion criterion (e.g., Jacobson, 2005, Chap. 6.4.4.1)],

and has been fulfilled by setting an appropriate constant timestep (for typical values of τphase

see, e.g., Tab. 1 in Grabowski and Wang, 2013).

2.2 The Lagrangian Cloud Model

The basic idea of all LCMs is the representation of an ensemble of identical droplets or

aerosols by one simulated particle, called super-droplet (Shima et al., 2009). The number of

particles represented by this super-droplet is called the weighting factor and is denoted by

An, where n terms the n-th super-droplet located in a certain reference volume. As in all

other current LCMs, this reference volume ∆V is identical to the volume of the underlying

grid-box of the coupled dynamics model.

In addition to the weighting factor, a super-droplet has several more features. Most

relevant to cloud-physical applications are the wet radius rn and the dry radius of the

aerosol rs,n. For the following, it is helpful to define the water mass mn = 4/3πρl · r3n and

the dry aerosol mass ms,n = 4/3πρs · r3s,n of each particle represented by the super-droplet,

as well as the total water mass of a super-droplet Mn = An · mn and total dry aerosol

mass Ms,n = An ·ms,n, where ρl and ρs are the mass densities of water and the dry aerosol,

respectively. Accordingly, the liquid water mixing ratio of a grid-box with Np super-droplets

can be calculated as follows:

ql =
1

ρa∆V

Np∑

n=1

An ·
4

3
πρl · r3n =

1

ρa∆V

Np∑

n=1

An ·mn =
1

ρa∆V

Np∑

n=1

Mn. (2.23)

Note for the following description that physical constants and other constant parameters are

summarized in Tab. 2.1, and will be used without further explanations. If unambiguously

possible, the indices of super-droplets will be omitted for clarity. Empirical relationships

have been rewritten to be used with SI units. The reader is referred to Section 4.2 in

Maronga et al. (2015) for details on the LCM’s implementation (storing of Lagrangian

particles, optimization of the code, parallelization), and to Riechelmann et al. (2012) for

the original implementation of this LCM into PALM.

2.2.1 Transport and Sedimentation

The location (Xi) = (X,Y, Z) of a super-droplet in Cartesian coordinates is calculated from

integrating its velocity (Ui) = (U, V,W ) with a first-order Euler forward step:

dXi

dt
= Ui. (2.24)
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Tab. 2.1: Physical constants and parameters (with default values) as used in the LCM.

notation description value unit

i van ’t Hoff factor (NaCl) 2.0

cp heat capacity of dry air at constant pressure 1005.0 J kg−1 K−1

L latent heat of evaporation 2.5× 106 J kg−1

Ms molecular weight of aerosol (NaCl) 58.44 kg mol−1

Ml molecular weight of water 18.01528 kg mol−1

Rv specific gas constant of water vapor 461.51 J kg−1 K−1

Ra specific gas constant of dry air 287.0 J kg−1 K−1

ρa mass density of dry air 1.0 kg m−3

ρl mass density of liquid water 1000.0 kg m−3

ρs mass density of the dry aerosol (NaCl) 2165.0 kg m−3

ν kinematic viscosity of air 1.461× 10−5 m2 s−1

The super-droplet velocity is given by

Ui = ui + ũi + δi3U∞(r), (2.25)

which considers (i) the LES resolved-scale velocities ui, which are linearly interpolated from

the eight adjacent grid points to the super-droplet location, (ii) a stochastic velocity com-

ponent ũi, which considers the effect of the unresolved SGS velocities, and (iii) the droplet

terminal fall speed U∞(r). Note that the prognostic determination of Ui similar to Eq. (1.5)

would be possible but demands a (computationally infeasible) short model timestep to

resolve the particle inertial response accurately.2 On the other hand, the physical interpre-

tation of a short inertial response time is that the droplets follow closely the streamlines as

expressed by Eq. (2.25) (Naiman et al., 2011).

The terminal fall speed is calculated from an empirical relationship [in units of m s−1,

Eq. (2) in Rogers et al. (1993)]:

U∞(r) =





8000 · r [1− exp (−24000 · r)] for r ≤ 372.5µm,

9.65− 10.43 exp (−1200 · r) for r > 372.5µm.
(2.26)

The stochastic velocity ũi consist of its value at the last timestep and a random term, which

are weighted by the Lagrangian autocorrelation coefficient RL (Sölch and Kärcher, 2010):

ũi(t) = RL · ũi(t−∆t) +
√

1−R2
L ·
(√

e · ζ
)
, (2.27)

where the Lagrangian autocorrelation coefficient is given by

RL = exp (−∆t/τL), (2.28)

2For a particle of 1µm, 10µm, 100µm radius, the inertial response time is about 10−5 s, 10−3 s, 10−1 s

following Eq. (1.6).
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based on the Lagrangian fluid timescale

τL = Km/e. (2.29)

The weighting by RL ensures that ũi is not completely independent from the last timestep.

The super-droplets can continue SGS motions for several timesteps depending on the prop-

erties of the flow (especially in the case of weak turbulence). The random term
√
e · ζ is

designed to have the same velocity variance as the SGS eddies within the LES [cf. Eq. (2.14)],

which is achieved by multiplying the normal-distributed random number ζ (with zero mean

and unity standard deviation) with
√
e.

2.2.2 Diffusional Growth

The diffusional growth of each super-droplet is calculated from

r
dr

dt
=
S −A/r + b r3s/r

3

Fk + FD
· fv(r), (2.30)

where fv is the ventilation coefficient described further below. Equation (2.30) is integrated

using a fourth-order Rosenbrock method (Grabowski et al., 2011). This is necessary, since

Eq. (2.30) is a so-called stiff differential equation, which numerical solution demands very

short timesteps at small radii for an acceptable accuracy, while larger timesteps can be used

at larger radii to save computational resources. The Rosenbrock method adjusts its internal

timesteps according to those needs.

A simplified solution to Eq. (2.30) is also available. For that it is assumed that −A/r+

b r3s/r
3 = 0 and that the ventilation coefficient fv is constant in time. Accordingly, an

analytic solution is possible and yields for an integration time step of ∆t:

r(t+ ∆t) =
√
r(t)2 + 2∆t · S/(Fk + FD) · fv(r(t)). (2.31)

The resulting change in radius by diffusion, calculated from either Eq. (2.30) or (2.31),

is then used to determine the change in the LES quantities water vapor mixing ratio,

[
∂qv
∂t

]

cond

= − 1

ρa ∆V

Np∑

n=1

An ·
4

3
πρl ·

dr3n
dt

= − 1

ρa ∆V

Np∑

n=1

An ·
4

3
πρl ·

r̂n
3 − r3n
∆t

, (2.32)

and potential temperature,
[
∂θ

∂t

]

cond

= − L

Πcp

[
∂qv
∂t

]

cond

. (2.33)

from the radius change of all super-droplets within a grid-box. (̂..) marks the radius after

the calculation of diffusion for a timestep of the length ∆t. The Exner function relates

absolute temperature T to potential temperature θ:

Π =
T

θ
=

(
p

p0

)Ra/cp

, (2.34)
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where p is the hydrostatic pressure and p0 = 1000 hPa a reference pressure.

The supersaturation is directly calculated from the LES variables qv and T = Π · θ
without interpolation by

S =
ea
es
− 1, (2.35)

where the water vapor pressure is calculated from

ea =
qv p

qv +Ra/Rv
, (2.36)

and the saturation water vapor pressure is determined from an empirical relationship [in

units of Pa, Eq. (10) in Bolton (1980)]:

es = 611.2 exp

(
17.67

T − 273.15

T − 29.65

)
. (2.37)

The parameters A and b in Eq. (2.30) consider the effects of surface tension and the

chemical properties of the aerosol on the particle’s equilibrium supersaturation and are

calculated as

A =
2σ

ρlRvT
, (2.38)

b =
iρsMl

ρlMs
. (2.39)

Compared to Eq. (1.1), the molar osmotic coefficient Φs has been neglected since a highly

diluted solution droplet is assumed in the LCM, for which Φs ≈ 1. The coefficients in the

denominator of Eq. (2.30) reflect the influence of thermal conduction and the diffusion of

water vapor, and are expressed as

Fk =

(
L

RvT
− 1

)
Lρl
kT

, (2.40)

FD =
ρlRvT

Des
. (2.41)

Three empirical relationships are used to consider the temperature-dependence of the surface

tension of water σ [in units of N m−1, Eq. (5.120) in Straka (2009)],

σ = 7.61× 10−2 − 1.55× 10−4 · (T − 273.15), (2.42)

the thermal conductivity of air k [in units of J m−1 s−1 K−1, linear fit of Tab. 7.1 in Rogers

and Yau (1989)],

k = 2.27011× 10−2 + 7.94048× 10−5 · T, (2.43)

and the molecular diffusion coefficient of water vapor in air D [in units of m−2 s−1, Eq. (5.2)

in Straka (2009)],

D = 2.11× 10−5 ·
(

T

273.15

)1.94

· 101325

p
. (2.44)
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The ventilation coefficient, necessary for representing the accelerated evaporation of

large droplets, is also given by an empirical relationship (Chap. 7 of Rogers and Yau, 1989).

Depending on the particle Reynolds number Re = 2 r U∞(r)/ν, the dimensionless ventilation

coefficient is calculated as

fv(r) =





1.00 + 0.09Re for Re ≤ 2.5,

0.78 + 0.28
√
Re for Re > 2.5.

(2.45)

2.2.3 Collection

Collection follows the all-or-nothing algorithm, which is evaluated in Chapter 4 and is

based on the ideas of Shima et al. (2009) and Sölch and Kärcher (2010). It has been

implemented into PALM’s LCM for the study presented in Chapter 5 since it results in a

better representation of the collection process than the previous average-impact algorithm

by Riechelmann et al. (2012, 2015). As in all other collection algorithms, collisions among

all Np super-droplets within a grid-box are considered.

The basic idea of the all-or-nothing approach is that each droplet of the super-droplet

with the smaller weighting factor collects one droplet of the super-droplet with the larger

weighting factor. Accordingly, no new super-droplets need to be produced and the produc-

tion of super-droplets with negative weighting factors is also prohibited. For the following, it

is assumed that all super-droplets are sorted by their weighting factor sucht that An > An+1

(the case of An = An+1 will be discussed further below). For all super-droplet combinations

with 1 ≤ n < m ≤ Np, the probability that one droplet of super-droplet m collects an

arbitrary droplet of super-droplet n is given by

pmn = K(rm, rn)
∆t

∆V
·An. (2.46)

Since pmn is usually smaller than one, collections only occur if pmn > ξ, where ξ is a random

number uniformly chosen from the interval [0, 1]. This probabilistic approach ensures that

the number of collections calculated in the model is identical to the number of collections

resulting from Eq. (2.46) if averaged over a sufficiently long time period. (Approaches to

consider pmn > 1 are described in Chapter 4 but are not yet implemented into PALM. For

current simulations and the applied relatively short timesteps, the case pmn > 1 has not

been observed.)

If the collection takes place, each droplet of super-droplet m will collect one droplet of

super-droplet n with commensurate changes in the individual droplet water mass, aerosol

mass, and weighting factor (the (̂..) marks the variable after collection):

m̂m = mm +mn and m̂n = mn, (2.47)

m̂s,m = ms,m +ms,n and m̂s,n = ms,n, (2.48)

Âm = Am and Ân = An −Am. (2.49)
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Note that the change in aerosol mass has been added for the study presented in Chapter 6,

in which the effect of collision and coalescence on the activation of aerosols will be studied.

If An = An+1, the above-described algorithm would result in a super-droplet with a zero

weighting factor, i.e., in deleting one super-droplet. To avoid this reduction in the super-

droplet number, it is assumed that 1/2 of the droplets of super-droplet n collide with 1/2

of the droplets of super-droplet n+ 1 and vice versa. Accordingly, the collection probability

for each of these interactions is given by pn,n+1/2. Since both collections must take place

at the same time, the collection probability of the whole interaction yields 4× (pn,n+1/2)2.

If p2n,n+1 > ξ, then

m̂n = m̂n+1 = mn +mn+1, (2.50)

m̂s,n = m̂s,n+1 = ms,n +ms,n+1, (2.51)

Ân = Ân+1 = An/2. (2.52)

Similarly, collections among the droplets represented by the same super-droplet are treated.

This is only possible if K(rn, rn) > 0, as it is the case if small-scale turbulence effects on the

collection kernel are considered. In this case, it is assumed that the first 1/2 of the droplets

collides with the second 1/2 of the droplets of the same super-droplet. Accordingly, the

collection probability for this interaction is given by 2× pnn/2. If pnn > ξ, then

m̂n = 2mn, (2.53)

m̂s,n = 2ms,n, (2.54)

Ân = An/2. (2.55)

Note that the algorithm’s implementation follows Eq. (2.47) to (2.55), updating the

super-droplet properties after every individual interaction. For a better overview of the

collection process in the LCM, these inter interactions can be summarized in the following

prognostic equations for the weighting factor An, the total super-droplet water mass Mn =

An ·mn, and the total super-droplet aerosol mass Ms,n = An ·ms,n (for An > An+1):

dAn
dt

∆t = −An
2
P(pnn/2) −

Np∑

m=n+1

Am P(pmn), (2.56)

dMn

dt
∆t =

n−1∑

m=1

Anmm P(pnm) −
Np∑

m=n+1

Ammn P(pmn), (2.57)

dMs,n

dt
∆t =

n−1∑

m=1

Anms,m P(pnm) −
Np∑

m=n+1

Amms,n P(pmn), (2.58)

with the binary probability function

P(p) =





0 for p ≤ ξ,

1 for p > ξ.
(2.59)
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Two different collection kernels are implemented. One is based on the traditional hy-

drodynamic kernel by Hall (1980), the other includes small-scale effects of turbulence on

the collection process by parameterizations derived by Ayala et al. (2008) and Wang and

Grabowski (2009). The hydrodynamical kernel is identical to Eq. (1.9):

K(rn, rm) = π(rn + rm)2 · |U∞(rn)− U∞(rm)| · E(rn, rm), (2.60)

using the terminal fall speeds as given in Eq. (2.26). For the collection efficiency E, the

coalescence efficiency is assumed to be unity and the collision efficiency is based on tabulated

values by Hall (1980, Tab. 1). The second kernel can be considered as a generalized version of

the hydrodynamical kernel (e.g., Ayala et al., 2008; Wang and Grabowski, 2009; Grabowski

and Wang, 2013):

K(rn, rm) = π(rn + rm)2 · 2〈|wnm|〉 · gnm · ηnmE(rn, rm). (2.61)

In comparison to the hydrodynamical kernel, three new terms are introduced. The term

〈|wnm|〉 represents the average relative velocity of droplet n toward dropletm, which includes

turbulent motions in addition to the relative velocity caused by differential sedimentation.

Accordingly, 〈|wnm|〉 enables the collision of droplets of the same size. The second term

gnm is the radial distribution function, which considers the clustering of droplets in cer-

tain regions of the turbulent flow field. Locally, this increases the collection probability

by a potentially higher number of collection partners. The last term ηnm is an enhance-

ment factor for the collision efficiency, which includes effects of turbulence on the colliding

droplets’ hydrodynamical interactions. In the absence of turbulence, the first term reduces

to 〈|wnm|〉 = |U∞(rn) − U∞(rm)|/2, and gnm and ηnm to unity, proving the equivalence of

both collection kernels.

To avoid a detailed and lengthy description of the parameterization of 〈|wnm|〉 and gnm,

the interested reader is referred to Ayala et al. (2008, pages 36 – 39) where all necessary

equations are summarized. For ηnm, tabulated values are stated in Wang and Grabowski

(2009, Tab. 1). Note that all these parameterizations depend on the droplet radii rn and

rm, and additionally on the kinetic energy dissipation rate ε as a measure of turbulence,

which is computed in the LES SGS model (Riechelmann et al., 2012). As stated in Ayala

et al. (2008), term 〈|wnm|〉 and gnm depend additionally on the Taylor-microscale Reynolds

number Reλ = 〈u′〉2
√

15/(εν). Since the total velocity variance 〈u′〉2 cannot be determined

locally in the applied model, it is estimated from an empirical relationship based on the

kinetic energy dissipation rate [in units of m s−1, using values of Wang and Grabowski

(2009)]:

〈u′〉 = 2.02 ·
( ε

0.04

)1/3
. (2.62)
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2.2.4 Initialization of Aerosols

Two approaches for initializing the aerosol spectrum have been implemented. In both

approaches, the spectrum is approximated by a sum of up to three log-normal distributions

(e.g., Jaenicke, 1993):

df(rs)

dr
=

3∑

i=1

ni

rs
√

2π log (σi)
exp

[
− log (rs/Ri)

2 log (σi)
2

]
, (2.63)

where ni, σi, and Ri are parameters of the log-normal distributions, which have to be set

by the user [see, e.g., Tab. 2 of Jaenicke (1993)].

In the first approach, df(rs)/dr is represented by Np logarithmically spaced bins, one for

each super-droplet in the considered grid-box. These bins are arranged between a chosen

minimum and maximum aerosol radius (rbins,min and rbins,max, respectively). The boundaries of

the bins are calculated from

rbins,n = exp


log

(
rbins,min

)
+

log
(
rbins,max

)
− log

(
rbins,min

)

Np
· (n− 1)


, (2.64)

where n results in the left boundary and n + 1 in the right boundary of the bin belonging

to super-droplet n. The resulting dry aerosol radius is calculated as the geometric mean of

the left and right boundary,

rs,n =
√
rbins,n · rbins,n+1, (2.65)

the bin width is given by

∆rs,n = rbins,n+1 − rbins,n , (2.66)

and the initial weighting factor is then determined as

An = ∆V ·∆rs,n ·
df(rs,n)

dr
. (2.67)

The second approach is probabilistic and based on a random function which follows

Eq. (2.63) to pick a value for rs,n:

rs,n = N−1cdf (ξ), (2.68)

where ξ is a random number uniformly chosen from the interval [0, 1] and N−1cdf the inverse

function of the cumulative distribution function (CDF) of Eq. (2.63) (e.g., Devroye, 1986).

N−1cdf is determined numerically by calculating the CDF of Eq. (2.63) for 1000 logarithmically

spaced bins between the values rbins,min and rbins,max using Eq. (2.64). Since the resulting lookup

table is only temporary, the high number of bins does not pose a memory issue. The lookup

table relates values in the range of 0 to 1 to dry aerosol radii. From this table, the dry aerosol

radius closest to the random number ξ is then selected to be rs,n. The initial weighting factor

is identical for each super-droplet and given by

An = ∆V
3∑

i=1

ni

/
Np. (2.69)
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For both approaches, the initial wet radius is computed using Eq. (14) in Khvorostyanov

and Curry (2007), which is an approximation for the equilibrium radius for a given dry

aerosol radius and a given supersaturation:

rn =
b1/3rs,n

(−S)1/3

[
1 +

(
A

3b1/3rs,n

)
(−S)−2/3

]−1
. (2.70)

Since this equation is only valid for S < −5 %, higher supersaturations are limited to this

value. This initialization is carried out since the Rosenbrock method solving Eq. (2.30)

requires a large (and under certain conditions a computationally infeasible) amount of in-

ternal timesteps if the particle radius deviates significantly from the equilibrium radius,

which typically occurs during initialization. Afterward, the LES quantities qv and θ are

adopted following Eq. (2.32) and (2.33) considering the initial changes in the wet radii rn.

The subsequent decrease in the supersaturation results in evaporation, but its has been

found that this deviation from equilibrium has a negligible effect on the numerical solution

of Eq. (2.30), allowing a rapid integration right from the start.
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ABSTRACT

This study analyzes the production and the effect of spurious cloud edge supersaturations in Lagrangian
cloudmodels (LCMs), which simulate droplets and aerosols explicitly as Lagrangian particles. By applying an
idealized one-dimensional setup, it is shown that the production of spurious cloud edge supersaturations in
LCMs and Eulerian cloud models is identical. In LCMs, however, the effect of spurious supersaturations on
the number of activated/deactivated particles is decreased due to (i) a physically more appropriate repre-
sentation of the activation process, and (ii) the LCM’s ability to represent the distribution of liquid water on
the subgrid scale. Additionally, an analytic solution for the production of spurious supersaturations in both
Lagrangian and Eulerian cloud models is derived, enabling the identification of the upper limit of spurious
supersaturations and the conditions under which they occur.

1. Introduction

Spurious cloud edge supersaturations are atypical
peaks of supersaturation at the interface of numerically
simulated clouds. Primarily caused by the inability of
Eulerian models to track the cloud edge along the nu-
merical grid (Stevens et al. 1996), spurious cloud edge
supersaturations are still an inherent problem of today’s
simulations, and their implications for interpreting nu-
merical studies have been investigated intensely. For
example, spurious supersaturations might cause false
activation or deactivation of droplets, and accordingly
alter the microphysical properties of simulated clouds
(Stevens et al. 1996). Although many approaches for
mitigating this problem have been supposed (e.g.,
Grabowski and Smolarkiewicz 1990; Margolin et al.
1997; Grabowski and Morrison 2008; Thouron et al.
2012), a real solution [i.e., the detailed tracking of the
subgrid-scale (SGS) position of the cloud’s boundary]
was computationally infeasible due to the complex
geometric structure of the cloud interface (Margolin
et al. 1997). Nowadays, an increasing number of so-
called Lagrangian cloud models (LCMs) is used

(Andrejczuk et al. 2008; Shima et al. 2009; Sölch and
Kärcher 2010; Riechelmann et al. 2012), which simulate
cloud droplets explicitly as Lagrangian particles. These
particles are not restricted to a numerical grid, and
hence contain some information on the SGS location of
the cloud boundary. However, the thermodynamic fields
of water vapor and temperature are still represented by
Eulerian fields (usually computed by a high-resolution
large-eddy simulation). Using this partial Lagrangian
approach, it has been suggested that the production of
cloud edge supersaturations might be reduced (e.g.,
Andrejczuk et al. 2008; Arabas and Shima 2013;
Hoffmann et al. 2015), although a detailed study on this
topic has not been published so far. Moreover, the im-
plementation of approaches for mitigating spurious
cloud edge supersaturations, which have been developed
exclusively for Eulerian models, is not straightfor-
ward. Therefore, this paper will analyze and quantify
the production of spurious cloud edge supersatura-
tions in LCMs (without any additional approaches for
their mitigation) by repeating a one-dimensional nu-
merical experiment by Stevens et al. (1996), origi-
nally developed for Eulerian models, to identify the
main differences between these two cloud modeling
approaches.
The paper is structured as follows. Section 2 in-

troduces the theoretical background on the production
of spurious cloud edge supersaturations. Moreover, an
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Meteorology and Climatology, Leibniz Universität Hannover,
Herrenhäuser Straße 2, 30419 Hannover, Germany.
E-mail: hoffmann@muk.uni-hannover.de

JANUARY 2016 HOF FMANN 107

DOI: 10.1175/MWR-D-15-0234.1

! 2016 American Meteorological Society

42 3 Spurious Cloud Edge Supersaturations



analytical description for the production of spurious
supersaturations is derived, from which conditions are
identified in which an intense production of spurious
supersaturations could occur. In section 3, the idealized
one-dimensional numerical study is presented, and ef-
fects of spurious cloud edge supersaturations are iden-
tified within the LCM framework. Section 4 concludes
this paper.

2. Spurious cloud edge supersaturations

Before understanding the production of spurious
cloud edge supersaturations, it is necessary to un-
derstand how Lagrangian and Eulerian cloud models
represent a cloud.
Like Eulerian cloud models, LCMs represent the

thermodynamic fields of water vapor and temperature
on a numerical grid. In doing so, the values defined at
each grid point are volume-averaged quantities, which
are determined from a box surrounding each grid point
(Schumann 1975). Accordingly, these values should not
be interpreted as the actual physical state at that specific
gridpoint’s location. In Eulerian cloud models, this
procedure applies also to the liquid water (or any other
quantities describing the liquid phase). Thus, the exact
location of the cloud edge in between two grid points is
unknown. In an LCM, however, the liquid water is
represented by individual particles (droplets and wetted
aerosols), which are not restricted to a numerical grid.
Their locations are derived for every particle in-
dividually as it is done for many other particle features
(e.g., the particle radius), which is determined by solving
the diffusional growth equation for each particle
separately.
Of course, it is computationally infeasible to represent

all droplets inside a cloud by Lagrangian particles.
Therefore, all LCMs use the so-called superdroplet ap-
proach [initially developed by Shima et al. (2009)], in
which every simulated particle represents an ensemble
of identical real particles. The number of real particles
represented by a superdroplet, the so-called weighting
factor, is another important feature of each particle,
which has to be considered for the physical correct
representation of cloud microphysical processes (con-
densation/evaporation, collision, and coalescence). The
reader is referred to Andrejczuk et al. (2008, 2010),
Shima et al. (2009), and Riechelmann et al. (2012) for
more details on individual (warm cloud) LCMs.
Since Eulerian and Lagrangian cloud models repre-

sent water vapor and temperature on a numerical grid as
volume-averaged quantities, the temporal change in su-
persaturation, and hence the production of spurious super-
saturations, should be the same in both approaches if the

same grid spacing is applied. Therefore, the explana-
tion of spurious supersaturations by Stevens et al.
(1996), originally developed for Eulerian cloud
models, should also be applicable for LCMs, and will
be summarized in section 2b. An analytic solution to
this problem will be derived thereafter. The in-
teraction of spurious supersaturations and liquid wa-
ter, which is the main difference between Eulerian and
Lagrangian cloud models, will be addressed in section
3. Note that minor differences in the production of
spurious supersaturations occur when interpolated
instead of volume-averaged values are used (as it is
frequently done in some LCMs). These differences are
addressed in this study’s appendix.

a. The production of spurious cloud edge
supersaturations

Stevens et al. (1996) explained the production of
spurious cloud edge supersaturations in Eulerianmodels
by investigating the steady isobaric advection of a cloud
from one grid point to the next initially noncloud grid
point (see their Fig. 2). Since water vapor, temperature,
and accordingly supersaturation are represented as
volume-averaged quantities, the quantities defined at
the initially noncloud grid point increase linearly from
noncloud values to in-cloud values due to advection. In
reality, these values do not change this way; they are a
result of the averaging applied to the temporally
changing fractions of noncloudy and cloudy volumes of
air within this grid box. This yields the following analytic
description of the advection tendency [see Stevens et al.
(1996)]:

dC
dt

!!!!
adv

5
Ccl 2Cen

tadv
, (1)

where C represents water vapor, temperature, or
supersaturation (if the change in temperature is
small) at the initially noncloud grid point. The in-
dices ‘‘en’’ and ‘‘cl’’ denote the initial environmental
(noncloud) or cloudy (in cloud) values ofC at the two
considered grid points. The so-called advection time
scale,

t
adv

5
D
u
, (2)

is a measure of the time needed for crossing the distance
between the two grid points (i.e., the grid spacing D)
applying a constant advection velocity for u.
If advection were the only tendency affecting C,

droplets at the noncloud grid point would experience a
subsaturated environment with Sen at t5 0, which
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linearly increases to a (super) saturated in-cloud value of
Scl at t5 tadv. Because of these experienced subsatura-
tions, droplets will evaporate, creating an additional
source for water vapor and a sink for heat. For the su-
persaturation S, this effect can be described by (e.g.,
Rogers and Yau 1989, chapter 7)

dS

dt

!!!!
phase

52
S

tphase
, (3)

where

t
phase

’ (4pD
y
hriN)21 (4)

is the so-called phase relaxation time scale that depends
on themicrophysical properties of the droplet ensemble,
namely, the average droplet radius hri and number
concentrationN, as well as the diffusivity of water vapor
in air Dy.
By combining the tendencies (1) and (3), the total

change in supersaturation at the initially noncloud grid
point is given by

dS

dt
5

S
cl
2 S

en

t
adv

2
S

t
phase

. (5)

This differential equation clarifies the production of
spurious supersaturations: as long as S is negative,
evaporation tends to deplete the initial subsaturation
(2S/tphase . 0) in addition to the positive advection
tendency. Accordingly, saturation will be reached at
t, tadv, to which advection keeps contributing as a
positive source until t5 tadv. This results in spurious
supersaturations, which are higher than the supersatu-
rations that were initially present inside the cloud.
As stated above, this study analyzes the production of

spurious supersaturations using volume-averaged values
of water vapor, temperature, and supersaturation. Some
LCMs, however, use interpolation to derive the super-
saturation at the particle’s individual location from the
surrounding grid points. This does not change the gen-
eral production of spurious supersaturations due to
initial subsaturations fundamentally, since these sub-
saturations occur using volume-averaged as well as
interpolated values. Interpolation, however, might re-
duce initial subsaturations and therefore spurious su-
persaturations, which is analyzed in more detail in the
appendix.

b. An analytic description of spurious
supersaturations

To understand the effect of spurious supersaturations,
it is necessary to understand what are the upper limits of

spurious supersaturations, how long they persist, and
under which conditions their production is amplified. To
answer these questions, an analytic solution to the first-
order linear ordinary differential equation (5) is derived.
For this, the assumption of a constant tphase is made,
which is a simplification because tphase is very long at
t5 0 (because hri is very small) and decreases to its in-
cloud value at t5 tadv. Additionally, tphase changes due
to evaporation and condensation or coalescence.
With this restriction, (5) can be rearranged and solved

as a standard integral with the initial value of
S(t5 0)5 Sen, which yields

S(t)5 (S
cl
2 S

en
)
t
phase

tadv

2

"
(Scl 2 Sen)

tphase
t
adv

2 Sen

#
exp

 

2
t

t
phase

!

, (6)

for 0# t# tadv. Since (6) is monotonically increasing,
the highest supersaturation is reached at t5 tadv. This
yields the following expression for the highest super-
saturation (with Scl 5 0 for simplicity):

max(S)5 S(tadv)

52S
en

"
t
phase

tadv
2

$t
phase

tadv
1 1

%
exp

 
2

tadv
tphase

!#
.

(7)

In Fig. 1,2max(S)/Sen is plotted as a function of tadv and
tphase. This distribution shows clearly that an upper limit
of max(S) exists. Its value of approximately 20:3Sen is
only a function of the subsaturation at the grid point to

FIG. 1. The normalized supersaturation [2max(S)/Sen] as
a function of the advection time scale tadv and the phase relaxation
time scale tphase. The values are calculated from the analytic
solution (7).
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which the cloud is advected. It will be produced for all
values of tadv, and accordingly for all grid spacings, if a
critical ratio of tphase/tadv ’ 0:55 is present. This is un-
derstandable from a physical point of view: the pro-
duction of spurious supersaturations will be only efficient
for similar values of tphase and tadv, since for any other
combination of these time scales either evaporation will
be too slow to produce significant supersaturations
(tadv ! tphase), or supersaturations will be depleted too
quickly (tadv " tphase).
Accordingly, (7) shows that stronger spurious super-

saturations at smaller grid spacings, as reported by
Grabowski (1989) and Stevens et al. (1996), must be
understood rather a result of approaching the critical
ratio of tphase to tadv than a result of small grid spacings
alone. It must be assumed that a further reduction in grid
spacing will lead to a lesser production of spurious su-
persaturations due to an increase in the ratio of tphase to
tadv. Additionally, one can easily imagine that an in-
creasingly resolved cloud edge will result in higher
values of tphase, since the number and size of particles
should decrease at a high-resolution representation of
the cloud edge. Accordingly, reducing the grid spacing
should be the method of choice to avoid spurious
supersaturations.
However, the effect of spurious supersaturations is

not a result of the value of S alone, it also depends on the
time during which these supersaturations are present.
The time at which S becomes larger than zero, tS.0, can
be derived from (6) by setting S5 0 and assuming
Scl 5 0:

t
S.0

5 t
phase

ln

 
11

tadv
tphase

!
. (8)

Accordingly, the fraction of time in which spurious su-
persaturations are present can be expressed by

Dt
S.0

t
adv

5
tadv 2 t

S.0

t
adv

, (9)

which approaches zero for tadv approaching zero, and
unity for tadv approaching infinity. This is expected from
(5), in which either the evaporation term or the advec-
tion term might be neglected in these limits. Again, a
small grid spacing, resulting in short tadv, is an appro-
priate way for controlling the effect of spurious super-
saturations by minimizing the time in which they are
present.

c. Relevant time scales

Besides tadv and tphase, two other time scales are of
particular importance for the interaction of spurious

supersaturations with individually simulated droplets
and aerosols: the well-known evaporation time scale,
which is a measure of the time needed for a particle to
evaporate completely, and the less-recognized activa-
tion time scale, which estimates the time needed to
grow beyond the particle’s activation radius. Both time
scales are explicitly resolved in an LCM due to the di-
rect application of the diffusional growth equation for
each simulated particle (e.g., Rogers and Yau 1989,
chapter 7):

r
dr

dt
5

$
S2

A

r
1

Br3N
r3

%&
(F

k
1F

D
) , (10)

with the droplet’s radius r, the supersaturation S, and
the two coefficients Fk 5 [Ly/(RyT)2 1]Lyrl/(Tk) and
FD 5 rlRyT/(Dyes), which primarily depend on the
conduction of heat in air, k, and the molecular dif-
fusivity of water vapor in air, Dy. Köhler theory,
which is necessary for understanding activation/
deactivation of droplets, is introduced by the co-
efficients A5 2s/(rlRyT), which is dominated by the
surface tension of water s, and B5 nrsMl/(rlMs),
which describes the chemical properties of the solute
aerosol by the van’t Hoff factor n, the density of the
aerosol rs, and the molecular weight of the aerosol
Ms. The radius of the dry aerosol is denoted by rN ; Ly

is the latent heat of vaporization, Ry the specific gas
constant of water vapor, T the sensible temperature,
rl the density of water, es the saturation water vapor
pressure, and Ml the molecular weight of water.
The evaporation time scale can be analytically

derived from (10) by neglecting Köhler theory
(2A/r1Br3N/r

3 5 0), which is a reasonable assumption
for large particles. Integration yields the time needed for
complete evaporation:

t
evap

52
r2(F

k
1F

D
)

2S
. (11)

Accordingly, for short tevap, spuriously experi-
enced subsaturations might evaporate some droplets
completely.
The second time scale is associated with the activation

of particles, for which Köhler theory is essential. This
makes an analytic solution for (10) impossible. Numer-
ically calculated values of tact measuring the time
needed for a wetted aerosol to grow beyond its critical
radius rcrit 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Br3N/A

p
are given in Fig. 2 as a function of

rN and S. In general, tact depends also on the initial ra-
dius of the wetted aerosol. This dependence is not rep-
resented; tact is calculated from the wetted aerosol’s
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equilibrium radius at S525%. Figure 2 shows well-
known features of Köhler theory. For decreasing rN , the
critical supersaturation Scrit 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A3/(27Br3N)

p
increases

and allows activation in sufficiently supersaturated en-
vironments only. Accordingly, tact cannot be de-
termined for S, Scrit (white areas). For larger rN , the
critical radius rcrit increases and accordingly the time
needed for activation. Of course, this activation time
(for a specific rN) decreases as the experienced super-
saturation increases.
The explicit consideration of the activation time scale

is only possible for individual particles, which is the case
for LCMs. Accordingly, many activation parameteriza-
tions used in Eulerian models neglect this time scale and
are only based on the supersaturation [e.g., the classic
approach by Twomey (1959)]. Thus, the explicit repre-
sentation of the activation process in LCMs adds a new
variable, which has to be considered for understanding
the effect of spurious cloud edge supersaturations.
Spurious supersaturations will not increase the number
of activated particles immediately; instead, spurious
supersaturations have to persist for a sufficient period of
time. Accordingly, activation is only possible if tact is
very short in comparison to the time in which spurious
supersaturations are present. Note that the activation
time scale is only a valid concept for small aerosols.
Giant and ultragiant aerosols (rN . 1mm) might act as
cloud droplets (i.e., they are able to collide and coalesce
with other droplets efficiently) without being activated.
For small aerosols, however, the experience of sufficient
supersaturations longer than tact is necessary for allow-
ing unhindered diffusional growth toward larger cloud

droplets with higher probabilities to collide and co-
alesce. Further impacts of the activation time scale on
the activation of aerosols within the LCM framework
are discussed in Grabowski et al. (2011) and Hoffmann
et al. (2015).

d. Other processes causing spurious supersaturations

Grabowski (1989) explained the production of spuri-
ous cloud edge supersaturations by numerical artifacts
caused by the (necessary) application of approximated
formulations of the partial differential equations de-
scribing the transport of water vapor and temperature.
As a result, these fields are not in physical consonance,
resulting in wiggles of supersaturations at the cloud
edge. This error could by prohibited by ensuring the
monotonicity of supersaturation (e.g., Grabowski and
Smolarkiewicz 1990; Grabowski and Morrison 2008),
but this approach will only weaken those spurious su-
persaturations caused by the inappropriate representa-
tion of clouds on a numerical grid (Stevens et al. 1996).
This type of spurious supersaturations will not be
considered here.

3. The effect of spurious cloud edge
supersaturations

a. Setup

For identifying the differences between LCMs and
Eulerian cloud models regarding the effects of spurious
cloud edge supersaturations on the liquid phase, the
above-mentioned numerical experiment of Stevens
et al. (1996) for Eulerian models is repeated using an
LCM. A cloud edge is advected from one grid point to
the next grid point, parallel to the x axis using a constant
velocity u and a grid spacing of D. Contrary to Stevens
et al. (1996), nonconservative variables to describe wa-
ter vapor and temperature are used, which is typical in
all current LCMs. According to Stevens et al. (1996), the
temporal change in volume-averaged water vapor spe-
cific humidity q and potential temperature u due to ad-
vection at the initially noncloud grid point is given by

C
adv

(t)5C
en
1 (C

cl
2C

en
)

t

tadv
, (12)

within the time interval of 0# t# tadv and C 2 fq, ug.
This is a valid representation of the advection process in
cloud models, which usually apply a time step that is
much shorter than tadv to resolve the condensational
process correctly (e.g., Árnason and Brown 1971). Ac-
cordingly, the gradual increase of advected quantities, as
it is represented by (12), is also found using numerical
advection. However, the analytic description used for

FIG. 2. The activation time scale tact as a function of dry aerosol
radius rN and supersaturation S. For values of S,Scrit (white
areas), tact does not exist.
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this study avoids the numerical schemes’ inherent errors,
which are not in the focus of this study (see section 2d).
Because of the utilization of the LCM, more changes

in the simulation’s setup are necessary. Instead of two
grid points, two three-dimensional grid boxes are sim-
ulated in which the simulated Lagrangian particles are
distributed. At the center of each grid box, the Eulerian
quantities q and u are defined. An analytic solution for
the temporal change in each particle’s location is used:

X
n
(t)5X0

n 1D3
t

tadv
, (13)

assuming that every particle moves with a constant ve-
locity of u5 dXn/dt along the x axis, starting from the
particle’s initial locationX0

n . The index n denotes the nth
simulated particle. The identity u5D/tadv is used to
write (13) as a function of the dimensionless time scale
t/tadv.
The release/depletion of water vapor and heat due to

evaporation/condensation is determined by the tempo-
ral change in each particle’s radius and is summed over
all particles currently located in the noncloud grid box
(e.g., Andrejczuk et al. 2008; Shima et al. 2009;
Riechelmann et al. 2012):
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(21) for C5 q ,
L

y
/(Pc

p
) for C5 u , (14)

where r0 represents the density of air,NP the number of
superdroplets in the considered grid box, An the nth
superdroplet’s weighting factor (i.e., the number of real
particles represented by one superdroplet),P the Exner
function, and cp the specific heat of dry air at constant
pressure. These phase changes are considered in addi-
tion to the analytical description of advection (Cadv):

C(t)5Cadv(t)1
ðt

0

dCphase(t
0)

dt0
dt0 , (15)

where the integral is evaluated using a first-order Euler
method with a maximum time step of 0.1 s, which is
sufficient for simulations with tphase . 0:07 s, as applied
here (e.g., Árnason and Brown 1971). (For tadv 5 1 s a
time step of 0.01 s is used to analyze a larger number of
time steps per simulation.)
The change of particle radius [i.e., the stiff differential

equation (10)], is solved using a fourth-order Rose-
nbrock method (Press et al. 1996; Grabowski et al. 2011)
with the same time step as used for solving the integral in
(15), assuming constant supersaturation S during the
time step. It is assumed that the supersaturation S, which
is computed from q and u, is distributed uniformly within
each grid box (the impact of interpolating S on each
particle’s position, as is done in some LCMs, is discussed
in the appendix). All droplets/aerosols are represented
by approximately 125 randomly distributed super-
droplets per grid box as typically applied in recent LCM
simulations (e.g., Hoffmann et al. 2015).
In all simulations, a monodisperse aerosol spectrum

is prescribed. The aerosols have a dry radius of
rN 5 100 nm and consist of sodium chloride (NaCl), re-
sulting in a critical radius of rcrit ’ 1:9mm and a critical

supersaturation of Scrit ’ 0:041%. Initially, 50% of all in-
cloud particles are activated. The initial radius of all
activated droplets is set to either 5, 10, or 15mm and the
particle concentration is set to values between 0.7 and
20 000 cm23 to examine a wide range of initial values for
tinitevap and tinitphase (which are summarized in Table 1). The
(unrealistic) initialization of the simulation with a
monodisperse droplet spectrum does not affect the
generality of the results. As the analytic solution derived
in section 2b shows, the production of spurious super-
saturation depends on tphase and, therefore, only on bulk
properties of the droplet spectrum (i.e., particle con-
centration and mean radius) and not on a detailed de-
scription of the droplet spectrum. Besides diffusional
growth, no othermicrophysical processes are considered
(i.e., the droplets change radius by condensation or
evaporation only). The neglected process of collision
and coalescence could result in a slight increase in tphase
during the simulation because it decreases the number
of particles stronger than it increases the mean radius.
However, these changes can be neglected in compari-
son to the much stronger changes in tphase due to
condensation.

TABLE 1. Microphysical initialization parameters (i.e., droplet
radius r and particle concentration N) with corresponding tinitphase

and tinitevap. Note that tinitevap is computed for S525%.

tinitphase (s)

0.07 0.66 6.61 66.13 661.27

tinitevap (s) r (mm) N (cm23)

2.8 5 20 000 2000 200 20 2
11.3 10 10 000 1000 100 10 1
25.4 15 6666.7 666.7 66.7 6.7 0.7
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The initial values of qcl, ucl, qen, and uen are chosen to
create a saturated environment within the cloud of
Scl 5 0% (ucl 5 286:54K, qcl 5 7:53 g kg21) and a sub-
saturated environment of Sen 525% (uen 5 286:30K,
qen 5 7:03 g kg21) outside the cloud for a pressure of
p5 946 hPa based on the parameters given by Stevens
et al. (1996) (see their Table 1). The advection velocity u
is set to values between 0.001 and 1m s21, and the grid
spacing is set to D5 1m.
Before advection starts, all particles are allowed to

adapt to their environment for a time period of 180 s, in
which changes in q and u due to evaporation or con-
densation are neglected. This allows unactivated parti-
cles to shrink or grow to their equilibrium radius,
whereas activated droplets inside the saturated envi-
ronment of the cloud keep their initial radius. This
spinup phase is not analyzed in the following. Note that

this spinup phase might be too short for larger aerosols,
which demand a longer time to adapt to their equilib-
rium radius (e.g., Mordy 1959).

b. Numerical results

For comparison with Stevens et al. (1996), time series
of potential temperature u, supersaturation S, and
fraction of activated particles Nact/N are displayed in
Figs. 3a–c. Additionally, the radius r of a droplet moving
with the cloud edge is displayed in Fig. 3d. For the
presented results, a simulation with a particle concen-
tration of 100 cm23 and an initial radius of 10mm has
been chosen, resulting in initial values of tinitphase 5 6:61 s
and tinitevap 5 11:3 s (see Table 1).
At t/tadv 5 0, u and S are identical to the initial values

uen and Sen and increase toward their respective in-cloud
values of ucl and Scl during the simulation. A linear

FIG. 3. (a) Potential temperature, (b) supersaturation, (c) fraction of activated particles, and (d) radius of a droplet
at the cloud edge as a function of normalized time (t/tadv) for advection time scales of 1 s (continuous), 10 s (long
dashed), 100 s (short dashed), and 1000 s (long–short dashed). The blue line represents the respective in-cloud values.
The displayed simulations have been carried out for activated droplets with an initial radius of 10mm and a particle
concentration of 100 cm23 (tinitphase 5 6:61 s, tinitevap 5 11:3 s).
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increase is clearly visible for short tadv, which indicates
that advection is the dominating source for changing
u and S temporally. For long tadv, evaporative cooling,
the release of water vapor, and the resulting increase
in supersaturation change the course of u and S sig-
nificantly. As a result, the supersaturation reaches
values of S5 Scl 5 0 earlier than t/tadv 5 1, and the
subsequent excess of supersaturation (S. 0) is de-
pleted by condensation. This behavior is identical to
Stevens et al. (1996), since both types of models, Eu-
lerian and Lagrangian, treat the thermodynamic fields
of u, q, and accordingly S as volume-averaged
quantities.
For tadv # 10 s the fraction of activated particles

(Fig. 3c) increases almost linearly to the in-cloud value
of 50%, indicating the growing fraction of in-cloud
particles in the noncloud grid box. The small variations
of Nact/N are caused by the random distribution of
droplets, resulting in minor increases or decreases in the
number of superdroplets within each grid box during
advection. For tadv $ 100 s, a steep increase of Nact/N to
almost 100% is visible due to the spurious activation of
particles. Stevens et al. (1996) reported this steep in-
crease already for short tadv. Indeed, for all simulated
tadv, the supersaturation exceeds the critical value for
activation in the LCM (Scrit 5 0:041%, see Fig. 3b and
also Fig. 4a), but the time in which these supersatura-
tions are present is too short to allow activation. This is
confirmed by the activation time scale tact . 1:8 s for
S, 1:0% and rN 5 100 nm (see Fig. 2). Since this time
scale was not considered in the simulations of Stevens
et al. (1996), activation was also possible for tact . tadv

explaining the strong increase in Nact/N already for
short tadv in their results.
A quantity only available from LCMs is displayed in

Fig. 3d: the radius of a droplet moving almost with the
cloud edge (which is located atD3 t/tadv). For short tadv,
the radius keeps its initial value, but increasingly evap-
orates as tadv becomes longer. For tadv $ 100 s, the
droplet deactivates (i.e., it evaporates to a radius smaller
than the critical radius). This corresponds to the evap-
oration time scale of tevap 5 11:3 s for a droplet of
r5 10mm and S5Sen. Spurious supersaturations enable
the particle to grow again and to reactivate, but the
droplet does not reach its initial radius again.
For comparison with the above-derived analytical

solution (see section 2b), Fig. 4 displays the numerically
derived values of maximum supersaturation [max(S),
Fig. 4a] and the fraction of time in which supersatura-
tions are present (DtS.0/tadv, Fig. 4b). The highest values
of max(S) are produced for similar values of tinitphase and
tadv, as implied by the analytical solution. Furthermore,
the analytic solution predicts correctly that the fraction
of time in which supersaturations are present, DtS.0/tadv,
decreases for declining tadv. Accordingly, the analytical
solution predicts the qualitative change to the analyzed
quantities correctly. However, the numerically derived
values are either too low [max(S)] or too high
(DtS.0/tadv) [entering the corresponding values of tinitphase

and tadv into (7) or (9), respectively]. This difference is
caused by the change in tphase during advection, which is
resolved in the numerical simulations but neglected for
the analytical solution. In the numerical simulations,
tphase decreases from a very larger value to tinitphase during

FIG. 4. (a) The maximum supersaturation and (b) the fraction of time in which supersaturations are present as
a function of the advection time scale tadv for different values of the initial phase relaxation time scale tinitphase. The
initial radius of all activated particles is set to 10mm (tinitevap 5 11:3 s).
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advection. Accordingly, the use of a larger, effective
value of tphase should result in a better quantitative
agreement of the analytical solution and numerical
results.
Similar to Stevens et al. (1996), Fig. 5 shows the

fraction of activated particles at the end of the simula-
tion [Nact(tadv)/N] as a function of tadv for several values
of tinitphase and tinitevap, and also the values derived by Stevens
et al. (1996) for an Eulerian model (see their Fig. 4),
which enables a direct comparison of Eulerian and La-
grangian cloud models. If there were no spurious su-
persaturations or no effect of spurious supersaturations
on the simulated particles, Nact/N would remain at its
initial value of 50%. This is only the case for very short
tadv in which activation or deactivation is simply not
possible because of the restricted amount of time, al-
though spurious supersaturations are present as shown
in Fig. 4a. Spurious activation and deactivation become
more obvious for larger values of tadv. For high spuri-
ous supersaturations, Nact/N increases because of the

additional activation of cloud droplets. On the other
hand, if particles experience spurious subsaturations
for a long time and the spurious supersaturations are too
small to enable significant reactivation, Nact/N de-
creases. This is the case for relatively high values of tphase
(see Fig. 4b); and this process is even accelerated if
relatively low values of tevap are applied.
The comparison with the results of Stevens et al.

(1996) shows a qualitative agreement for large values of
tadv. In both models, the decrease in Nact/N, caused by
the complete evaporation of droplets and their sub-
sequent deactivation, is well captured. The quantitative
disagreement is generated by different parameters of
tphase and tevap. Contrary to Stevens et al. (1996), the
LCM results converge for small tadv. The reason for this
is, as discussed above, the physically more appropriate
representation of the activation process available in
LCMs, which allows activation only after a sufficient
amount of time.
Besides the better representation of the activation

process, LCMs enable the spatial representation of liq-
uid water on the SGS. Figure 6 shows the normalized
location Xcl/D of the cloud edge as a function of nor-
malized time t/tadv. This location is derived from the
rightmost activated particle. For short tadv, Xcl/D agrees
well with the analytical solution Xcl 5D3 t/tadv. For
longer tadv $ 100 s, the cloud edge increasingly evaporates

FIG. 5. The fraction of activated particles at the end of the sim-
ulation as a function of the advection time scale tadv for different
initial phase relaxation time scales tinitphase (colors) and different
initial evaporation time scales tinitevap (dash patterns). Red dots
indicate the solution derived by Stevens et al. (1996) for
Eulerian models.

FIG. 6. Normalized location of the cloud edge (Xcl/D) as a func-
tion of normalized time (t/tadv) for different advection time scales
tadv (dash patterns). Note that a forward (backward) motion of the
cloud edge is indicated byXcl/D going up (down) in this figure. The
figure displays results from the same simulation displayed in Fig. 3
(with tinitphase 5 6:61 s, tinitevap 5 11:3 s).
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and is shifted backward. However, when spurious su-
persaturations become significant, the cloud edge
spuriously moves forward to Xcl/D5 1 at t/tadv , 1. Ac-
cordingly, the cloud edge is moving faster than the ad-
vection velocity. This is a result of the Eulerian
supersaturation, which is experienced by all particles
within a grid box, resulting in spurious condensational
growth everywhere inside the grid box.
However, not all particles have the same ability to

react to spurious supersaturations. The LCM represents
liquid water as individual particles and is therefore able
to represent the spatial structure of the cloud edge on
the SGS. Accordingly, it is possible that initial in-cloud
particles cover one part of the grid box and initial non-
cloud particles cover the remainder of the same grid box.
In-cloud particles are usually larger and, accordingly,
deplete more water vapor per time interval by offering a
larger surface than noncloud particles. This results in a
lower value of tphase for in-cloud particles in comparison
to the cloud environment, in which the value of tphase
approaches infinity. This SGS distribution of tphase is
captured by an LCM but not by an Eulerian cloud
model, which inherently assumes a uniform distribution
of liquid water within each grid box and, accordingly, a
uniform distribution of tphase.
Figure 7 displays the temporal change in liquid water

dql/dt3 tadv as a function of the normalized time for
particles initially located inside (red) or outside the

cloud (blue). Note that dql/dt is multiplied by a factor of
tadv to make the area below or above the curve pro-
portional the total amount of evaporated or condensed
water. Figure 7 confirms clearly that spurious supersat-
urations are caused by the evaporation of cloud parti-
cles, which evaporate and release significant amounts of
water vapor until saturation is reached. The noncloud
particles are not able to evaporate any water, since the
subsaturation does not decrease below Sen, to which
these particles have already adopted their radius. When
the grid box becomes supersaturated, the in-cloud par-
ticles are also the primary source for condensing the
excess of water vapor because of their smaller tphase; the
condensation of water vapor to noncloud particles is at
least a factor of 3 smaller. Note that the condensational
growth of the noncloud particles begins a little bit earlier
than for the in-cloud particles and even before the grid
box is saturated. This is caused by the solution effect,
which is explicitly considered in the diffusional growth
equation. All in all, the explicitly resolved SGS distri-
bution of tphase makes the in-cloud particles more ca-
pable of removing spurious supersaturations, which they
have produced before. Accordingly, water is not spuri-
ously moved to other particles, and the SGS cloud edge
is maintained as long as tadv is small enough.

4. Conclusions

The main objective of this paper was to identify dif-
ferences in the production of spurious cloud edge su-
persaturations and their effects on clouds using newly
developed Lagrangian cloud models (LCMs) in com-
parison to well-established Eulerian cloud models. A
numerical experiment by Stevens et al. (1996), originally
developed for explaining spurious supersaturations in
Eulerian models, is repeated using an LCM. It is shown
that the production of spurious supersaturations is the
same in both modeling approaches, since both ap-
proaches are based on the inappropriate representation
of water vapor, temperature, and supersaturation by
volume-averaged quantities on a numerical grid.
Applicable for both cloud-modeling approaches, an

analytic solution for the temporal development of su-
persaturation has been derived and favorable conditions
for producing spurious supersaturations are identified. If
the ratio of the phase relaxation time scale tphase to the
advection time scale tadv is approximately 0.55, the
production of spurious supersaturations will be stron-
gest. The resulting maximum supersaturations are ap-
proximately 20:3 Sen, where Sen is the subsaturation of
the grid point to which the cloud is advected. It should
be emphasized that the strongest production of spurious
supersaturation does not (directly) depend on the grid

FIG. 7. Temporal change in liquid water (tadv 3dql/dt) as
a function of normalized time (t/tadv) for different advection time
scales tadv (dash patterns) and particles originally located inside
(red) or outside the cloud (blue). The figure displays results from
the same simulation displayed in Fig. 3 (with tinitphase 5 6:61 s,
tinitevap 5 11:3 s).
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spacing. Even at small grid spacings a significant pro-
duction of spurious supersaturations will be possible if
tphase/tadv ’ 0:55. Accordingly, even direct numerical
simulations (DNS), typically applying resolutions of
O(1)mm, might suffer from spurious supersaturations
under certain conditions, at least theoretically. This is in
agreement with Grabowski (1989) and Stevens et al.
(1996), who reported increasing spurious supersatura-
tions for smaller grid spacings. But it is expected that a
high-resolution representation of the cloud edge will not
only result in smaller values of tadv but also in larger
values of tphase. Accordingly, the ratio of tphase to tadv
should always increase and move away from the critical
value (if it has been passed before); and a reduction in
grid spacing is a reasonable option for decreasing spu-
rious supersaturations.
Since the production of spurious supersaturations is the

same in both Eulerian and Lagrangian cloud models, the
only difference regarding spurious supersaturations is
caused by the specific way these models interact with
supersaturations. Two main differences are identified
from the numerical experiments. First, LCMs treat the
activation of aerosols and the diffusional growth of
droplets as a continuous process. Accordingly, particles
need a certain time to grow beyond their activation
(critical) radius, whereas Eulerian cloud models treat
activation as an instantaneous process that depends only
on supersaturation. Accordingly, in LCMs, spurious su-
persaturations have to persist for a certain period of time
to change the microphysical properties of clouds. Second,
LCMs are able to represent liquid water on the subgrid
scale because of the utilization of individually simulated
particles. This allows spurious supersaturations to be
depleted by the particles that have produced them, con-
serving the cloud edge during its transit across the nu-
merical grid. This is not possible in Eulerian models,
which represent liquid water as a volume-averaged
quantity.
The above-described effects of spurious supersatura-

tions in LCMs decrease significantly for smaller grid
spacings. Therefore, reducing the grid spacing should

be the first choice to avoid any effects of spurious su-
persaturations. For LCMs, this procedure is especially
appropriate if computational resources are consid-
ered. In typical simulations (e.g., Hoffmann et al.
2015), the computational resources, which are con-
sumed for treating billions of Lagrangian particles,
demand at least 90% of the applied computing time,
where the remainder is used, among other things, for
solving the Eulerian equations for velocity and sca-
lars. Accordingly, a reduction in the grid spacing,
which primarily affects the time needed for solving the
Eulerian equations, will not significantly affect the
total computing time (if the number of simulated
particles is kept constant).
All in all, a sufficient reduction in grid spacing will

decrease spurious supersaturations and their effects on
simulated clouds in both Eulerian and Lagrangian cloud
models. Since spurious supersaturations cannot be fully
averted, LCMswill especially benefit from this approach
because they explicitly resolve the activation of aerosols,
which adds a new time scale that will buffer the effect of
spurious supersaturations.
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APPENDIX

Impact of Interpolation

In some LCMs (e.g., Riechelmann et al. 2012), the
quantities determining the supersaturation are linearly
interpolated on each particle’s position. Accordingly,
the spatiotemporal distribution of q and u in between the
grid points changes to
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Assuming that the supersaturation S obeys the
same distribution as q and u (which is a reasonable
assumption for small changes in u), the spatiotemporally

averaged supersaturation experienced by all parti-
cles that are advected into the noncloud grid box
yields
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This expression shows clearly that the experienced sub-
saturation, which causes the droplets to evaporate spu-
riously, is decreased by a factor of 6 if interpolation is
used. This decreases the main stimulus for producing
spurious supersaturations and, therefore, spurious su-
persaturations itself. Note that the upper limit of the
spatial integral is set to D3 t/tadv to integrate the super-
saturation up to the rightmost initial in-cloud particle.
Please note that interpolation could allow evaporation

for some particles within an otherwise volume-averaged
(super) saturated grid box. Since release/depletion of
water vapor is computed for all particles within that grid
box [see (14)], the evaporation of these particles might be
an additional source of spurious supersaturations in
LCMs, which is not considered in this study and demands
further research.
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Chapter 4

Collection/Aggregation Algorithms

in Lagrangian Cloud Microphysical

Models: Rigorous Evaluation in

Box Model Simulations
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Abstract. Recently, several Lagrangian microphysical models have been developed which use a1

large number of (computational) particles to represent a cloud. In particular, the collision process2

leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently in3

various models. Three existing implementations are reviewed and extended, and their performance is4

evaluated by a comparison with well established analytical and bin model solutions. In this first step5

of rigorous evaluation, box model simulations with collection/aggregation being the only process6

considered have been performed for the three well-known kernels of Golovin, Long and Hall.7

Besides numerical parameters like the time step and the number of simulation particles (SIPs)8

used, the details of how the initial SIP ensemble is created from a prescribed analytically defined9

size distribution is crucial for the performance of the algorithms. Using a constant weight technique10

as done in previous studies greatly underestimates the quality of the algorithms. Using better initial-11

isation techniques considerably reduces the number of required SIPs to obtain realistic results. From12

the box model results recommendations for the collection/aggregation implementation in higher di-13

mensional model setups are derived. Suitable algorithms are equally relevant to treating the warm14

rain process and aggregation in cirrus.15

1 Introduction16

The collection of cloud droplets or the aggregation of ice crystals are important processes in liquid17

and ice clouds. By changing the size, number, and in the case of ice the shape of hydrometeors,18

collection and aggregation affect the microphysical behaviour of clouds and thereby their role in the19

climate system.20

The warm rain process (i.e. the production of precipitation in clouds in the absence of ice) de-21

pends essentially on the collision and subsequent coalescence of cloud droplets. At its initial stage,22

however, condensational growth governs the activation of aerosols and the following growth of cloud23

1
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droplets, which might initiate the collection process if they become sufficiently large. Then, collec-24

tion produces drizzle or raindrops, which are able to precipitate from the cloud, affecting lifetime25

and organisation of clouds (e.g. Albrecht, 1989; Xue et al., 2008).26

In ice clouds, sedimentation, deposition growth and in particular radiative properties depend on27

the ice crystals’ habits (Sölch and Kärcher, 2011, and references therein). Ice aggregates scatter28

more strongly shortwave radiation than pure ice crystals of the same mass. Recent simulation results29

suggest that contrail-cirrus and natural cirrus can be strongly interwoven. In the mixing area with30

ice crystals of both origins being present, a prominent bimodal spectrum occurs and enhances the31

probability of collisions (Unterstrasser et al., 2016).32

The temporal change of an infinite system of droplets by collision and subsequent coalescence33

(or any other particles) is described by the stochastic collection equation (SCE), also known as34

kinetic collection equation, coagulation equation, Smoluchowksi or population balance equation35

(e.g. Wang et al., 2007). It yields:36

∂fm(m,t)

∂t
=

1

2

m∫

0

K(m′,m−m′)fm(m′, t)fm(m−m′, t) dm′

−
∞∫

0

K(m,m′)fm(m,t)fm(m′, t) dm′, (1)37

where fm(m)dm is the number concentration within an infinitesimal interval around the mass m.38

The first term (gain term) accounts for the coalescence of two smaller droplets forming a new39

droplet with mass m, the second term (loss term) accounts for the coalescence of m-droplets with40

any other droplets forming a larger droplet. The collection kernel K(m,m′) describes the rate by41

which an m-droplet-m′-droplet-collection occurs. Due to the symmetry of the collection kernel42

(K(m,m′) =K(m′,m)) the first term of the right-hand side can also be written as
∫m/2

0
K(m′,m−43

m′)fm(m′, t)fm(m−m′, t) dm′.44

For several kernel functions (mostly of polynomial form) analytic solutions exist for specific initial45

distributions (Golovin, 1963; Berry, 1967; Scott, 1968). The Golovin kernel (sum of masses) is given46

by47

K(m,m′) = b (m+m′). (2)48

Solutions for more realistic kernels (Long, 1974; Hall, 1980; Wang et al., 2006) and arbitrary initial49

distribution can be obtained with various numerical methods mainly using a bin representation of the50

droplet size distribution (Berry and Reinhardt, 1974; Tzivion et al., 1987; Bott, 1998; Simmel et al.,51

2002; Wang et al., 2007). The hydrodynamic kernel is defined as52

K(r,r′) = π(r+ r′)2 |wsed(r)−wsed(r
′)|Ec(r,r

′), (3)53

based on the radius r and the sedimentation velocity wsed. Parametrisations of the collection ef-54

ficiency Ec are given, e.g. by Long (1974) or Hall (1980). In the above formula, the differen-55
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tial sedimentation is the driver of collections. No same-size collisions can occur, i.e. K(r,r) = 0.56

More sophisticated expressions for K(r,r′) have been derived to include turbulence enhancement57

of the collisional growth, which also allow same-size collisions (K(r,r)> 0) (e.g. Ayala et al., 2008;58

Grabowski and Wang, 2013; Chen et al., 2016).59

Solving (1) demands simplifications in the representation of the droplet spectrum for which sev-60

eral numerical models have been developed. Spectral-bin models (e.g. Khain et al., 2000) repre-61

sent the spectrum by dividing it into several intervals, so-called bins. This approach enables the62

prediction of the temporal development of the droplet number concentration in each bin by using63

the method of finite-differences (e.g. Bott, 1998). The accuracy of these models is primarily deter-64

mined by the number of used bins (usually on the order of 100), which makes them computationally65

challenging and prohibits their use in day-to-day applications like numerical weather prediction.66

Less challenging but less accurate, cloud microphysical bulk models compute the temporal change67

of integral quantities of the droplet spectrum (e.g. Kessler, 1969; Khairoutdinov and Kogan, 2000;68

Seifert and Beheng, 2001). These are usually equations for the temporal evolution of bulk mass69

(so-called one-moment schemes), and additionally number concentration (two-moment schemes) or70

radar reflectivity (three-moment schemes), which describe the change of the entities of cloud droplets71

and rain drops (in the case of warm clouds). The separation radius between cloud droplets and rain72

drops depends on the details of the bulk scheme, but generally cloud droplets (up to 20 to 40µm in73

radius) are assumed to have negligible sedimentation fall velocities, while larger drops, frequently74

subsumed as rain drops, have a sufficient sedimentation velocity to cause collision/coalescence. The75

interactions of cloud and rain drops are therefore described in terms of self-collection (coalescence76

of cloud (rain) drops resulting in cloud (rain) drops), autoconversion (coalescence of cloud droplets77

resulting in rain drops) and accretion (collection of cloud droplets by rain drops). A third alternative78

for computing cloud microphysics has been developed in the recent years: Lagrangian cloud mod-79

els (LCMs). These models represent cloud microphysics on the basis of individual computational80

particles (SIPs). Similar to spectral-bin models, LCMs enable the detailed representation of droplet81

spectra.82

Due to their specific construction, LCMs offer a variety of advantages in comparison to spectral-83

bin and bulk cloud models. Their representation of aerosol activation and subsequent diffusional84

growth follows closely fundamental equations and avoids therefore the possible perils of parametri-85

sations (e.g. Andrejczuk et al., 2008; Hoffmann, 2016). The same applies for the representation86

of collection or aggregation, which is based on the interaction of individual SIPs. Accordingly,87

LCMs approximate pure stochastic growth (e.g. Gillespie, 1975), which is the correct description88

of collection/aggregation within a limited system of interacting particles and results in the SCE,89

which is used as the basis for spectral-bin and bulk models, if the system becomes infinite (e.g.90

Bayewitz et al., 1974). Moreover, LCMs do not apply the finite-differences method to compute mi-91

crophysics. Accordingly, LCMs are not prone to numerical diffusion and dispersion, and do not92
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suffer from the numerical broadening of a droplet spectrum, which can affect spectral-bin cloud93

models (Khain et al., 2000). The effect of sedimentation is incorporated in a straightforward man-94

ner in the transport equation of the SIPs and avoids numerical artefacts (Wacker and Seifert, 2001).95

Finally, LCMs enable new ways of analysis by the tracking of individual SIPs. They can be used to96

reveal the origins of droplets, as well as conditions associated with their growth (e.g. Hoffmann et al.,97

2015; Naumann and Seifert, 2016). The largest disadvantage of LCMs, so far, might be their relative98

novelty due to their higher computational demand. Many aspects of this approach have not been99

validated adequately or can be improved. For the process of collection/aggregation, this study will100

offer a first rigorous evaluation of the available numerical approaches.101

To our knowledge, five fully coupled LCMs for warm clouds exist, which are described in Andrejczuk et al.102

(2008), Shima et al. (2009), Riechelmann et al. (2012), Arabas et al. (2015) and Naumann and Seifert103

(2015) and have been extended or applied in various problems (e.g. Andrejczuk et al., 2010; Arabas and Shima,104

2013; Lee et al., 2014; Hoffmann et al., 2015). For ice clouds, three models exist (Paoli et al., 2004;105

Shirgaonkar and Lele, 2006; Sölch and Kärcher, 2010) which have been applied to natural cirrus106

(Sölch and Kärcher, 2011) and, in particular, to contrails (e.g. Paoli et al., 2013; Unterstrasser, 2014;107

Unterstrasser and Görsch, 2014). In the context of ice clouds and warm clouds, different names108

are used for processes that are similar, in particular in terms of their numerical treatment (depo-109

sition/sublimation vs. condensation/evaporation, collection vs. aggregation). Conceptually similar110

are particle based approaches in aerosol physics (Riemer et al., 2009; Maisels et al., 2004) which111

account for coagulation of aerosols (DeVille et al., 2011; Kolodko and Sabelfeld, 2003).112

So far, no consistent terminology has been used in the latter publications. Various names have113

been used for the same things by various authors. We point out that super droplet, computational114

droplet and simulation particle (SIP) all have the same meaning and refer to a bunch of identical real115

cloud droplets (or ice crystals) represented by one Lagrangian particle. The number of real droplets116

represented in a SIP is denoted as weighting factor or multiplicity. Moreover, Lagrangian approaches117

in cloud physics have been named Lagrangian Cloud Model (LCM), super droplet method (SDM)118

or particle based method. In this paper, we use the terms SIP, weighting factor νsim and LCM. Here119

droplet refers to either real droplets or ice crystals. If we say in the following, that "SIP i is larger120

than SIP j", this means that the droplets represented in SIP i are larger than those in SIP j. Such a121

statement it is not related to the weighting factor of the SIPs.122

Usually, only the liquid water or the ice of a cloud are described with a Lagrangian representation,123

whereas all other physical quantities (like velocity, temperature and water vapour concentration) are124

described in Eulerian space (see also discussion in Hoffmann, 2016). SIPs have discrete positions125

xp = (xp,yp, zp) within a grid box. The position is regularly updated obeying the transport equation126

∂xp/∂t= u. Microphysical processes like sedimentation and droplet growth are treated individually127

for each SIP. Interpolation methods can be used to evaluate the Eulerian fields at the specific SIP128

positions. This implicitly assumes that all νsim droplets of the SIPs are located at the same position.129
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On the other hand, the droplets of a SIP are assumed to be well-mixed in the grid box in the LCM130

treatment of collection and sometimes condensation. Then, the number concentration represented by131

a single SIP, e. g., is given by νsim/∆V , where ∆V is the volume of the grid box.132

Lists of used symbols and abbreviation are given in Tables 1 and 2.133

2 Description of the various collection/aggregation implementations134

We use the terminology of Berry (1967), where flnr and glnr denote the number and mass density135

function with respect to the logarithm of droplet radius lnr. The relations glnr(r) =mflnr(r) and136

flnr(r) = 3mfm(m) hold. The latter designates the number density function with respect to mass137

and obeys the transformation property of distributions: fy(y)dy = fx(x(y))dx. For consistency with138

previous studies, glnr is used for plotting purposes, whereas fm and gm are more relevant in the139

following analytical derivations.140

The moments of order k of the mass distribution fm (= number density function with respect to141

mass) are defined as:142

λk(t) =

∫
mkfm(m,t)dm. (4)143

The low order moments represent the number concentration (DNC = λ0) and the mass concentra-144

tion (LWC = λ1). The analogous extensive properties λk(t)∆V are the total droplet number N ,145

total droplet mass M and radar reflectivity (Z = λ2 ∆V ). For a given SIP ensemble, the moments146

can be computed by147

λk,SIP (t) =

(
NSIP∑

i=0

νiµi
k

)/
∆V , (5)148

where µi is the single droplet mass of SIP i and NSIP is the number of SIPs inside a grid box. For149

reasons of consistency with Wang et al. (2007), we translate the SIP ensemble into a mass distribu-150

tion gm in bin representation and then compute the moments with the formula151

λk,BIN (t) =

NBIN∑

i=0

gm(mi, t)(m̃bb,l)
k−1 ln10

3κ
(6)152

(cf. with their equation 48).153

The initialisation is successful for a given parameter set, if the moments of the SIP ensemble154

λk,SIP are close to the analytical values λk,anal. For an exponential distribution (as used in this155

study), the probability density function (PDF) reads as156

fm(m) =
N

∆V m̄
exp

(
−m

m̄

)
, (7)157

the moments are given analytically by158

λk,anal(t) = (k− 1)! N m̄k/∆V, (8)159
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Table 1. List of symbols.

Symbol Value/Unit Meaning

fm, f̃m kg−1 m−3, 1 (normalised) droplet number concentration per mass interval

gm,glnr m−3, kg m−3 droplet mass concentration per mass interval/per logarithmic radius interval

m, m′ kg mass of a single real droplet

mbb kg bin boundaries of the bin grid

m̄= λ1/λ0 =M/N kg mean mass of all droplets

nbin,l 1 droplet number in bin l

r, r′ m droplet radius

rlb m threshold radius in νrandom,lb-init

rcritmin m lower cut-off radius in singleSIP-init

wsed m s−1 sedimentation velocity

DNC = λ0 m−3 droplet number concentration

Ec 1 collection/aggregation efficiency

K m3 s−1 collection/aggregation kernel

LWC = λ1 kg m−3 droplet mass concentration, liquid water content

Mbin,l kg total droplet mass in bin l

NSIP 1 number of SIPs

NBIN 1 number of bins

αlow,αmed,αhigh 1 parameters of the νrandom-init method.

∆t s time step

∆V m3 grid box volume

η 1 parameter in RMA algorithm and singleSIP-init method

κ 1 number of bins per mass decade

λk kgk m−3 moments of the order k

µ kg single droplet mass of a SIP

νcritmax 1 maximum number of droplets represented by a SIP

νcritmin 1 minimum number of droplets represented by a SIP

ν 1 number of droplets represented by a SIP

ξ 1 splitting parameter of AON algorithm

χ= µ ν, χ̃= χ/M kg, 1 total droplet mass of a SIP

N = λ0∆V 1 total droplet number

M= λ1∆V kg total droplet mass

Z = λ2 ∆V kg2 second moment of droplet mass distribution (radar reflectivity)
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Table 2. List of abbreviations.

AON All-Or-Nothing algorithm AIM Average Impact algorithm

DSD droplet size distribution LCM Lagrangian Cloud Model

PDF probability density function RMA Remapping algorithm

OTF Update on the fly RedLim Reduction Limiter

SIP simulation particle

where k! is the factorial of k and m̄=M/N the mean mass (Rade and Westergren, 2000).160

Throughout this study, the initial parameters of the droplet size distribution (DSD) are DNC0 =161

2.97× 108 m−3 and LWC0 = 10−3 kg m−3 (implying a mean radius of 9.3µm) as in Wang et al.162

(2007). The higher moments are λ2,anal = 6.74×10−15 kg2m−3 and λ3,anal = 6.81×10−26 kg3m−3.163

2.1 Initialisation164

In our test cases, all microphysical processes except collection are neglected and an exponential DSD165

is initialised. In the results section, we will demonstrate that the outcome of the various collection166

algorithms critically depends on how this initial, analytically defined, continuous DSD is translated167

into a discrete ensemble of SIPs. Hence, the SIP initialisation is described in some detail.168

2.1.1 SingleSIP-init and MultiSIP-init169

First, the mass distribution is discretized on a logarithmic scale. The boundaries of bin l are given170

by mbb,l =mlow10
l/κ and mbb,l+1, where mlow is the minimum droplet mass considered. The171

bin centre is computed using the arithmetic mean m̄bb,l = 0.5 (mbb,l+1 +mbb,l). The bin size is172

∆mbb,l = (mbb,l+1−mbb,l). The mass increases tenfold every κ bins. Several previous studies used173

the parameter s with mbb,l+1/mbb,l = 21/s to characterise the bin resolution. The parameters s and174

κ are related via s= κ log10(2)≈ 0.3κ.175

For each bin, the droplet number is approximated by νb = fm(m̄bb,l)∆mbb,l∆V and one SIP with176

weighting factor νsim = νb and droplet mass µsim = m̄bb,l is created, if νb is greater than a lower177

cut-off threshold νcritmin. No SIP is created if νb < νcritmin. Moreover, no SIPs are created from178

bins with radius r < rcritmin. We will refer to this as deterministic singleSIP-init. In its probabilistic179

version, the mass µsim is randomly chosen within each bin l and νsim = fm(µsim)∆mbb,l∆V is180

adapted accordingly. By default, rcritmin = 0.6µm and νcritmin = η× νmax, which is determined181

from the maximal weighting factor within the entire SIP ensemble νmax and the prescribed ratio182

of the minimal to the maximal weighting factor η = 10−9. For larger rcritmin it is advantageous to183

initialise one additional "residual" SIP that contains the sum of all neglected contributions.184

Following Unterstrasser and Sölch (2014, see their Appendix A), we introduce the multiSIP-init185

technique. It is similar to the singleSIP-init technique, except that we additionally introduce an upper186
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Table 3. Number of SIPs for the probabilistic singleSIP-init method (and variants like the MultiSIP-init) as a

function of κ. The given values are averages over 50 realisations and rounded to the nearest integer. SUPP refers

to the supplement of this paper.

κ

5 10 20 40 60 100 200 400

init method NSIP Fig.

singleSIP 24 49 98 197 296 494 988 1976 10, 12, 14, 18

multiSIP 256 517 775 1295 19

singleSIP; rcritmin = 1.6µm 74 149 223 372 19

singleSIP; rcritmin = 3.0µm 58 116 173 228 SUPP

singleSIP; rcritmin = 5.0µm 45 89 113 221 SUPP

singleSIP; tinit = 10min 58 114 227 339 565 SUPP

singleSIP; tinit = 20min 72 142 284 426 709 21

singleSIP; tinit = 30min 89 176 352 527 878 SUPP

threshold νcritmax. If νb > νcritmax is fulfilled for a specific bin, then this bin is divided into κsub =187

⌈νb/νcritmax⌉ sub-bins and a SIP is created for each sub-bin. The multiSIP-init technique gives a188

good trade-off between resolving low concentrations at the DSD tails and high concentrations of the189

most abundant droplet masses. By default, νcritmax = 0.1 νmax.190

So far, we introduced initialisation techniques with a strict lower threshold νcritmin with no SIPs191

created in bins with νb < νcritmin. We can relax this condition by introducing—what we call—192

a weak threshold. This means, that in such low contribution bin (with νb < νcritmin) we create a193

SIP with the probability pcreate = νb/νcritmin and weighting factor νsim = νcritmin. Having many194

realisations of initial SIP ensembles, the expectation value of the droplet number represented by195

such SIPs, νcritmin · pcreate +0 · (1− pcreate), equals the analytically prescribed value νb. Using a196

strict threshold the droplet number would be simply 0 in those low contribution bins. In a related197

problem, such a probabilistic approach has been shown to strongly leverage the sensitivity of ice198

crystal nucleation on the numerical parameter νcritmin. This led to a substantial reduction of the199

number of SIPs that are required for converging simulation results (Unterstrasser and Sölch, 2014).200

Using the probabilistic version and a weak lower threshold is particularly important if different201

realisations of SIP ensembles of the same analytic DSD should be created. The number of SIPs202

NSIP depends on κ, νcritmin, νcritmax and the parameters of the prescribed distribution.203

Moreover, the singleSIP-init is used in a hybrid version, where different κ-values are used in204

specified radius ranges.205

Table 3 lists the resulting number of SIPs for the range of κ-values used in simulations with the206

probabilistic singleSIP-init and variants of it.207
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2.1.2 νconst-init and νdraw-init208

The accumulated PDF F (m) is given by
∫m

0
f̃m(m′)dm′ with the normalised PDF f̃m = fm/λ0.209

First, the size NSIP of the SIP ensemble that should approximate the initial DSD is specified. For210

each SIP, its mass µi is reasonably picked by211

µi = F−1(rand()), (9)212

where rand() generates uniformly distributed random numbers ∈ [0,1]. In case of the νconst-init,213

the weighting factors of all SIPs are equally νi = νconst =N/NSIP . This init method reproduces214

SIP ensembles similar to the ones in Shima et al. (2009) or Hoffmann et al. (2015). As a variety of215

the νconst-init method, the weighting factors νi in the νdraw-init method are simply perturbed by216

νi = 2 rand()νconst.217

For the case of an exponential distribution, the following holds for the SIPs i= 1,NSIP :218

µi =−m̄ log(rand()). (10)219

In the literature, this approach is known as inverse transform sampling. A proof of correctness can220

be found in classical textbooks, e.g. Devroye (1986, their section II.2).221

2.1.3 νrandom-init222

The third approach allows specifing the spectrum of weighting factors that should be covered by223

the SIP ensemble. Similar to the νdraw-init method, the weighting factors are randomly determined.224

Whereas the latter method produced a SIP ensemble with weighting factors uniformly distributed225

in ν, the νrandom-init produces weighting factors uniformly distributed in log(ν) and covering the226

range [N 10αlow , N 10αhigh ]. The eventual number of SIPs depends most sensitively on the param-227

eter αhigh, which controls how big the portion of a single SIP can be.228

SIPs with weighting factors νi =N 10(αlow+(αhigh−αlow)·rand()) are created, until
∑NSIP

j=1 νj ex-229

ceeds N . The weighting factor of the last SIP is corrected such that
∑NSIP

j=1 νj =N holds. Now the230

mass µi of each SIP is determined by the following technique: The first SIP represents the smallest231

droplets and covers the mass interval [0,m1], whereas the last SIP represents the largest droplets in232

the interval [mNSIP−1,∞]. The SIPs i in between cover the adjacent mass intervals [mi−1,mi]. The233

boundaries are implicitly determined by
∫mi

0
fm(m′)dm′ ∆V =

∑i
j=1 νj . The total mass contained234

in each SIP is given by χi =
∫mi

mi−1
fm(m′)m′dm′ ∆V and the single droplet mass by µi = χi/νi.235

For the case of an exponential distribution, the following holds for the interval boundaries and the236

SIPs i= 1,NSIP :237

mi =−m̄ log

(
N −∑i

j=0 νj

N

)
(11)238

and239

µi =

(
mi−1 − m̄

exp(mi−1/m̄)
− mi − m̄

exp(mi/m̄)

)N
νi

. (12)240
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The above formulas, which involve several differences of similarly valued terms, must be carefully241

implemented such that numerical cancellation errors are kept tolerable.242

Experimenting with the SIP-init procedure, several optimisations have been incorporated. First,243

the ν-spectrum is split into two intervals [N 10αlow , N 10αmed ] and [N 10αmed , N 10αhigh ]. We244

alternately pick random values from the two intervals. Without this correction, it happened that245

several consecutive SIPs with small weights and hence nearly identical droplet masses are created,246

which increases the SIP number without any benefits.247

Going through the list of SIPs, the droplet masses increase and hence the individual SIPs contain248

gradually increasing fractions of the total grid box mass. This can lead to a rather coarse repre-249

sentation of the right tail of the DSD. Two options to improve this have been implemented. In the250

νrandom,rs-option, the νi-values are reduced by some factor, that increases, as
∑i

j=1 νj approaches251

N . In the νrandom,lb-option, ν-values are randomly picked up to a certain radius threshold rlb. Above252

this threshold, SIPs are created with the singleSIP-method with linearly spaced bins.253

2.1.4 Comparison254

Figure 1 shows the weighting factors and other properties of the initial SIP ensemble, which may255

affect the performance of the algorithms. Each column shows one class of initialisation techniques.256

For a certain realisation, the first row shows the weighting factors νi of all SIPs as a function of257

their represented droplet radius ri. Each dot shows the (νi, ri)-pair of one SIP. For the singleSIP-258

init, the dots are homogeneously distributed along the horizontal axis, as one SIP is created from259

each bin (with exponentially increasing bin sizes). The according ν-values relate directly to the260

prescribed DSD. The higher fm∆m, the more droplets are represented in a SIP. No SIPs smaller than261

rcritmin = 0.6µm are initialised and the ν-values range over nine orders of magnitude consistent262

with η = 10−9. The MultiSIP-init introduces an upper bound of νcritmax = 2.6 · 106 for ν. This263

threshold is effective over a certain radius range where the SIPs, compared to the singleSIP-init,264

have lower ν-values and are also more densely distributed along the horizontal axis. For the νconst-265

init, all SIPs use ν = νconst, whereas for the νdraw-init the ν-values scatter around this value. For266

νconst and νdraw, the ν-values are chosen independently of the given DSD contrary to the latter267

techniques. However, for both techniques, the density of the dots along the r-axis is correlated to268

fm∆m.269

The νrandom-init technique randomly picks ν-values which are distributed over a larger range270

compared to the νdraw-init. In fact, they are uniformly distributed in log(ν). The range of possi-271

ble ν-values can be adjusted and is chosen similar to the singleSIP/multiSIP by setting αhigh =272

−2,αmed =−3 and αlow =−7, which is the default in all simulations presented here. The present273

method is more flexible compared to the singleSIP-approach as the occurrence of certain ν-values274

is not limited to a certain radius range. In the singleSIP-init, the smallest ν-values occur only at275

the left and right tail of the DSD, whereas in the νrandom-approach the smallest ν-values (down to276
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Figure 1. Characteristics of the various SIP initialisation methods (as given on top of each panel): Weighting

factors νi(ri) of an initial SIP ensemble, the mean weighting factors ν̄(r), the occurrence frequency of the

νi-values and the resulting mass density distributions glnrare displayed (Row 1 to 4). Row 1 displays data of

a single realisation, whereas rows 2 to 4 show averages over 50 SIP ensembles. The bottom row shows the

moments λ0, λ1, λ2 and λ3 normalised by the respective analytical value. Every symbol depicts the value of

a single realisation. The nearly horizontal line connects the mean values over all realisations. In the displayed

examples, κ= 10 in the singleSIP-init, κ= 10, νcritmax ≈ 2.6 · 106 in the multiSIP-init, NSIP = 80 in the

νconst, νdraw-init and (αhigh,αmed,αlow) = (−2,−3,−7) in the νrandom-inits. In top right panel, the dashed

horizontal lines indicate the values of N 10αlow ,N 10αmed and N 10αhigh and the dashed vertical line the

threshold radius rlb. 11
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N 10αlow ) can appear over the whole radius range. The horizontal lines in the top right panel indicate277

the values of N 10αlow ,N 10αmed and N 10αhigh and the vertical line the threshold radius rlb.278

The second row shows average ν-value of all SIPs in a certain size bin. All init techniques are279

probabilistic and the average is taken over 50 independent realisations of SIP ensembles. Not sur-280

prisingly, the average ν of the νdraw-method is identical to νconst. Moreover, also for the νrandom-281

init the average ν-value is constant over a large radius range. Only in the right tail, the ν-values drop282

as intended. The third row shows the occurrence frequency of weighting factors.283

To display DSDs represented by a SIP ensemble, a SIP ensemble must be converted back into284

a bin representation. For this, we establish a grid with resolution κplot = 4, count each SIP in its285

respective bin, i.e. SIP i with mbb,l < µi ≤mbb,l+1 contributes to bin l via Mbin,l =Mbin,l+µi×νi286

and nbin,l = nbin,l+νi. We note that all displayed DSDs in this study will use κ= 4, irrespective of287

the κ-value chosen in the initialisation. The fourth row shows such DSDs, again as an average over288

50 SIP ensemble realisations. We find that any init technique is, in general, successful in producing289

a meaningful SIP ensemble as the "back"-translated DSD matches the originally prescribed DSD290

(black). Hence, the moments λk,SIP match the analytical values λk,anal for 0≤ k ≤ 3, as shown in291

the fifth row. Nevertheless for the νconst- and νdraw-init, the spread between individual realisations292

can be large and they deviate substantially from the analytical reference. The singleSIP/multiSIP-init293

and νrandom-init, on the other hand, guarantee that each individual realisation is fairly close to the294

reference. In the results section, the presented simulations mostly use the probabilistic singleSIP-295

initialisation. Table 3 shows lists the number of SIPs for several init methods and parameter con-296

figurations. The right most column indicates in which figure the simulations using the specific init297

method are displayed.298

2.2 Description of Hypothetical algorithm299

First, we present a hypothetical algorithm for the treatment of collection/aggregation in an LCM,300

which would probably yield excellent results. However, it is prohibitively expensive in terms of301

computing power and memory, as NSIP increases drastically over time until the state is reached302

where each SIP represents exactly one real droplet. Nevertheless, the presentation of this algorithm303

is useful for introducing several concepts which will partly occur in the subsequently described304

"real-world" algorithms.305

Whereas condensation/deposition and sedimentation may be computed using interpolated quanti-306

ties which implicitly assumes that all droplets of a SIP are located at the same point, the numerical307

treatment of collection usually assumes that the droplets of a SIP are spatially uniformly distributed,308

i.e. well-mixed within the grid box. An approach, where the vertical SIP position is retained in the309

collection algorithm and larger droplets overtaking smaller droplets is explicitly modelled, is de-310

scribed in Sölch and Kärcher (2010) and not treated here.311
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Following Gillespie (1972) and Shima et al. (2009), the probability Pij that one droplet with mass312

mi collides with one droplet with mass mj inside a small volume δV within a short time interval δt313

is given by:314

Pij =Kij δt δV
−1, (13)315

where Kij =K(mi,mj).316

For SIPs i and j containing νi and νj real droplets in a grid box with volume ∆V , on average317

νcoll = Pij νi νj collections between droplets from SIP i and SIP j occur. The average rate of such318

i− j-collections (i 6= j) to occur is:319

∂νcoll(i, j)

∂t
= νi Kij νj∆V −1 =: νioij =:Oij . (14)320

So-called self-collections, collisions of the droplets belonging to the same SIP (i= j), are described321

by:322

∂νcoll(i, i)

∂t
= 2 ·

(νi
2
Kii

νi
2
∆V −1

)
=

1

2
νi Kii νi∆V −1 =: νioii =:Oii, (15)323

assuming that the SIP is split into two portions, each containing one half of the droplets of the original324

SIP. The factor of 2 originates from the collections of each half, which have to be added to gain the325

total number of self-collections for SIP i. Accordingly, the diagonal elements of the matrices oij and326

Oij differ from the off-diagonal elements by an additional factor of 0.5. In terms of concentrations327

(represented by SIPs in a grid box with volume ∆V ), we can write328

∂ncoll(i, j)

∂t
=Kij ni nj (16)329

for collections between different SIPs and330

∂ncoll(i, i)

∂t
=

1

2
Kii n

2
i (17)331

for self-collections.332

In the hypothetical algorithm, the weighting factor of SIP i is reduced due to collections with all333

other SIPs and self-collections and reads as334

∂νi
∂t

=−
NSIP∑

j=1

∂νcoll(i, j)

∂t
=−

NSIP∑

j=1

Oij . (18)335

The droplet mass µi in SIP i is unchanged.336

For each i− j-combination, a new SIP k is generated:337

∂νk
∂t

=Oij and µk = µi +µj (19)338

To avoid double counting only combinations with i ≥ j are considered.339
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The rate equations for the weighting factors can be numerically solved by a simple Euler forward340

step. The weighting factor of existing SIPs is reduced by341

ν∆i :=




NSIP∑

j=1

Oij


∆t (20)342

leading to343

ν∗i = νi − ν∆i , (21)344

or, equivalently,345

ν∗i = νi


1−∆t

NSIP∑

j=1

oij


 . (22)346

For new SIPs k we have347

νk = 0+Oij ·∆t. (23)348

Per construction the algorithm is mass-conserving subject to rounding errors.349

In each time step, NSIP,add =NSIP (NSIP − 1)/2 new SIPs are produced and the new number350

of SIPs is NSIP
∗ =NSIP +NSIP,add. After nt time steps, the number of SIPs would be of order351

(NSIP,0)
nt which is not feasible.352

In the following subsections, algorithms are presented that include various approaches to keep the353

number of SIPs in an acceptable range.354

In the following the various algorithms are described and pseudo-code of the implementations355

is given. For the sake of readability, the pseudo-code examples show easy-to-understand imple-356

mentations. The actual codes of the algorithms are, however, optimised in terms of computational357

efficiency. The style conventions for the pseudo-code examples are as follows: Commands of the358

algorithms are written in upright font with keywords in boldface. Comments appear in italic font359

(explanations are embraced by {} and headings of code blocks are in boldface).360

2.3 Description of the Remapping (RMA) algorithm361

First, the remapping algorithm is described as its concept follows closely the hypothetical algo-362

rithm introduced in the latter section. The RMA algorithm is based on ideas of Andrejczuk et al.363

(2010). We call their approach ’remapping algorithm’ as NSIP is kept reasonably low by switch-364

ing between a SIP representation and a bin representation in every time step. A temporary bin grid365

with a pre-defined κ is established which stores the total number nbin,∗ and total mass Mbin,∗ of all366

contributions belonging to a specific bin. The bin boundaries are given by mbb,∗.367

Instead of creating a new SIP k (with number νk obtained by Eq. 19 and mass µk = µi +µj)368

from each i− j-combination, the according contribution is stored on a temporary bin grid. More369
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Algorithm 1 Pseudo-code of the Remapping algorithm (RMA); style conventions are explained at

the end of Section 2.2

1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: κ,η,∆t

3: for l = 1 to lmax do {Create temporary bin}

4: mbin,l =mbin,low10
l/κ

5: end for

6: TIME ITERATION

7: while t<Tsim do

8: LOSS BLOCK {Compute reduced bin contribution of existing SIPs}

9: for i= 1 to NSIP do

10: Calculate ν∗
i according to Eq. 22

11: Select bin l with mbb,l < µi ≤mbb,l+1

12: nbin,l = nbin,l + ν∗
i

13: Mbin,l =Mbin,l + ν∗
i ·µi

14: end for

15: GAIN BLOCK {Compute bin contribution of coalescing droplets}

16: k = 0

17: for all i < j ≤NSIP do

18: k = k+1

19: Compute νk according to Eq. 23

20: µk = µi +µj

21: Select bin l with mbb,l < µk ≤mbb,l+1

22: nbin,l = nbin,l + νk

23: Mbin,l =Mbin,l + νk ·µk

24: end for

25: CREATE BLOCK {Replace SIPs}

26: Delete all SIPs

27: i= 0

28: for all l with Mbin,l >Mcritmin = ηλ1 do {use Mcritmin as a weak threshold value}

29: i= i+1

30: Generate SIP i with νnew
i = nbin,l and µi =Mbin,l/nbin,l

31: end for

32: NSIP = i

33: t= t+∆t

34: end while

35: EXTENSIONS

36: Self-collections for a kernel with K(m,m) 6= 0 can be easily incorporated in the algorithm by changing

the condition in line 17 to i≤ j ≤NSIP .
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Figure 2. Treatment of a collection between two SIPs in the Remapping Algorithm (RMA), Average Impact

Algorithm (AIM) and All-Or-Nothing Algorithm (AON).

explicitly, this means that the droplet number nbin,l of bin l with mbb,l < µk ≤mbb,l+1 is increased370

by νk. Similarly, the total mass Mbin,l of that bin is increased by µk νk. Similarly, the reduced371

contributions ν∗i from the existing SIPs with droplet mass µi are added to their respective bins.372

Figure 2 illustrates how a collection process between two SIPs is treated in RMA. In this example,373

νk = 2 droplets are produced by collection which have a droplet mass of µk = µi+µj = 15. Instead374

of creating a new SIP k (as in the hypothetical algorithm), the contribution k is recorded in the bin375

grid. The droplet number n in bin l3 is increased by νk = 2 and the according total mass Ml3 by376

νkµk = 30. The remaining contribution of SIP i falls into bin l1 and nl1 and Ml1 are increased by377

ν∗i = νi − νk = 2 and µiν
∗
i = 12, respectively. The operation for SIP j is analogous.378

At the end of each time step after treating all possible i− j-combinations, a SIP ensemble is379

created from the bin data with νi = nbin,l and µi =Mbin,l/nbin,l, which resembles a deterministic380

singleSIP-init with the resolution κ.381

Optionally, a lower threshold νmin,RMA can be introduced, such that SIP i is created only if382

nbin,l > νmin,RMA holds. However, this may destroy the property of mass conservation which can383

be remedied by the following.384

We pick up the concept of a weak threshold introduced earlier and adjust it such that on average the385

total mass is conserved (instead of total number as before). We introduce the threshold Mcritmin =386

ηλ1. The parameter η is set to 10−8, which implies that each SIP contains at least a fraction of387

10−8 of the total mass in a grid box. If Mbin,l >Mcritmin, a SIP is created representing νi = nbin,l388

drops with single mass µi =Mbin,l/nbin,l. If Mbin,l <Mcritmin, a SIP is created with probability389

pcreate =Mbin,l/Mcritmin. In this case the SIP represents νi =Mcritmin/µi droplets with single390

mass µi =Mbin,l/nbin,l. Pseudo-code of the algorithm is given in algorithm 1.391
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Time steps typically used in previous collection/aggregation tests are around ∆t= 0.1 to 10s392

depending inter alia on the used kernel. From Eq. 22 follows that the time step in RMA must satisfy393

∆t <

NSIP∑

j=1

oij . (24)394

Otherwise, negative ν-values can occur which would inevitably lead to a crash of the simulation. In395

mature clouds, the Long and Hall kernel attain large values which required tiny time steps of 10−4 s396

and smaller in the first test simulations. To be of any practical relevance, RMA had to be modified397

in order to be able to run simulations with suitable time steps.398

Hence, several extensions to RMA allowing larger time steps are proposed in the following.399

1. Default version: Use the algorithm as outlined in Algorithm 1 (i.e. do not change anything).400

Negative ν∗i -values obtained by Eq. 21 are acceptable, as long as nbin,l, from which the SIPs401

are created at the end of the time iteration, is non-negative for all l. This means that an existing402

SIP i (which falls into bin l) can lose more droplets (ν∆i ) than it actually possesses (νi) as long403

as the gain in bin l (from all suitable SIP combinations) compensates this deficit. We will later404

see that this approach works well for the Golovin kernel, however fails for the Long and Hall405

kernel.406

2. Clipping: Simply ignore bins with negative nbin,l and do not create SIPs from those bins.407

This approach destroys the property of mass conservation and is not pursued here.408

3. Adaptive time stepping: Instead of reducing the general time step, only the treatment of SIPs409

with ν∗i < 0 is sub-cycled. For each such SIP i, Eq. 21 is iterated η̃i times with time step410

∆tSIP =∆t/η̃i. Note that even though the computation of Eq. 21 and Oij involves the ν-411

evaluation of all SIPs, only νi is updated in the subcycling steps and not the whole system of412

fully coupled equations is solved for a smaller time step. For sufficiently large η̃i, ν∗i,subcycl is413

positive, as ν∆i,subcycl < νi as desired. Basically, we now assume that all collections involving414

SIP i are equally reduced by a factor of ηi = ν∆i,subcycl/ν
∆
i compared to the default time step.415

In the GAIN block of the algorithm (as termed in Alg. 1), all computations use the default416

time step and no sub-cycling is applied. To be consistent with the reduction in the LOSS417

block, Eq. 23 is replaced by νk = ηiOij∆t.418

4. Reduction Limiter (abbr. as RedLim) The effect of an adaptively reduced time step can be419

reached with simpler and cheaper means. We introduce a threshold parameter 0< γ̃ < 1.0420

similar to the approach in Andrejczuk et al. (2012). Again, we focus on SIPs with ν∗i < 0 and421

simply set the new weight of SIP i to ν∗i,RedLim = γ̃νi. As above, all contributions involving422

SIP i have to be re-scaled, now with γi = (νi − ν∗i,RedLim)/ν∆i .423

5. Update on the fly (abbr. as OTF) Another option to eliminate negative νi-values is to do an424

"update on the fly". In this case, the algorithm is not separated in a LOSS and GAIN block.425
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Instead, the i− j-combinations are processed one after another. After each collection process,426

as exemplified in Fig. 2, the weighting factors νi and νj of the two involved SIPs are reduced427

by νk, i.e. the number of droplets that were collected. Subsequent evaluations of Eq. 23 then428

use updated ν-values. Compared to the default version, it now matters in which order the i−j-429

combinations are processed, e.g. if you deal first with combinations of the smallest SIPs or of430

the largest SIPs.431

2.4 Description of Average Impact (AIM) algorithm432

Algorithm 2 Pseudo-code of the average impact algorithm (AIM); style conventions are explained

at the end of Section 2.2

1: INIT BLOCK + SIP SORTING

2: Given: Ensemble of SIPs; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Sort SIPs by droplet mass}

6: Apply (adaptive) sorting algorithm, such that µj ≥ µi for j > i

7: {Compute total mass χi of each SIP}

8: χi = νi µi

9: for i= 1 to NSIP do

10: {Compute reduction of weighting factor due to number loss to all larger SIPs}

11: νnew
i = νi

(
1−∆t

∑NSIP
j=i+1 oij

)

12: {Compute mass transfer; mass gain from all smaller SIPs and mass loss to all larger SIPs}

13: χnew
i = χi +∆t

(∑i−1
j=1χjoij −χi

∑NSIP
j=i+1 oij

)

14: end for

15: νi = νnew
i

16: µi = χnew
i /νnew

i

17: t= t+∆t

18: end while

19: EXTENSIONS

20: {Self-collections for a kernel with Kii 6= 0 can be incorporated simply by starting the summation in line 11

from j = i (see also Eq. (27) in the text).}

The average impact algorithm by Riechelmann et al. (2012) and further developed in Maronga et al.433

(2015) predicts the temporal change of the weighting factor, νi, and the total mass of all droplets434

represented by each SIP, χi = νiµi. In this algorithm, two fundamental interactions of droplets are435

considered (see also Fig. 7 in Maronga et al., 2015). First, the coalescence of two SIPs of different436

size. It is assumed that the larger SIP collects a certain amount of the droplets represented by the437

smaller SIP, which is then equally distributed among the droplets of the larger SIP. As a consequence,438

the total mass and the weighting factor of the smaller SIP decrease, while the total mass of the larger439
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Figure 3. top: (ri,νi)-evolution of selected SIPs for the AIM algorithm. The black line shows the initial distri-

bution. Each coloured line connects the data points that depict the (ri,νi)-pair of an individual SIP every 200s.

bottom: The ratios ϕr and ϕν are defined as ri(t= 3600s)/ri(t= 0s) and νi(t= 3600s)/νi(t= 0s). ϕr (red

curve) and (ϕν)
−1 (black curve) for all SIPs are shown as a function of their initial radius ri(t= 0s).

An example simulation with Long kernel, singleSIP-init, ∆t= 10s, κ= 40 and NSIP = 197 is displayed.

SIP increases accordingly. Fig. 2 illustrates how a collection between two SIPs is treated. SIP j is440

assumed to represent larger droplets than SIP i, i.e. µj > µi. As in the RMA example before, we441

say that νk = 2 droplets are collected. Then SIP i loses two droplets to SIP j, i.e. νi is reduced by 2442

and a mass of µiνk is transferred to SIP j where it is distributed among the existing νj = 8 droplets.443

Unlike to RMA, where droplets with mass µj +µi = 15 are produced, AIM predicts a droplet mass444

of µj+µiνk/νi = 10.5 in SIP j. Usually, νk/νi << 1 and hence the name "average impact" for this445

algorithm.446

Moreover, same-size collisions are considered in each SIP. This decreases the weighting factor of447

each SIP but not its total mass. Accordingly, the radius of the SIP increases.448

Both processes are represented in the following two equations which are solved for all colliding449

SIPs (assuming that µ0 ≤ µ1 ≤ . . .≤ µNSIP
):450

dνi
dt

=−Kii
1

2

νiνi
∆V

−
NSIP∑

j=i+1

Kijνiνj∆V −1 (25)451
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and452

dχi

dt
=

i−1∑

j=1

µjKijνiνj∆V −1 −µi

NSIP∑

j=i+1

Kijνiνj∆V −1. (26)453

The first term on the right-hand-side of Eq. 25 describes the decrease of ν due to same-size col-454

lections, the second term the decrease of ν due to collection by larger SIPs. The first term on the455

right-hand-side of Eq. 26 describes the gain in total mass due to collections with smaller SIPs, while456

the second term describes the loss of total mass due to collection by larger SIPs.457

Using a Euler forward method for time integration the above equations read as:458

νnewi = νi

(
1−

∑NSIP

j=i
oij∆t

)
(27)459

and460

χnew
i = χi

(
1−

∑NSIP

j=i+1
oij∆t

)
+
∑i−1

j=1
χjoij∆t. (28)461

Finally, the single droplet mass µi of each SIP is updated: µnew
i = χnew

i /νnewi . Pseudo-code of the462

algorithm is given in algorithm 2.463

Figure 3 illustrates how the AIM algorithm works for an example simulation with the Long kernel464

and singleSIP-init. The top panel shows the (ri,νi)-evolution of selected SIPs. The black line shows465

the initial distribution. Each coloured line connects the data points that depict the (ri,νi)-pair of an466

individual SIP every 200s. Clearly, νi of any SIP decreases over time, however the decrease is much467

smaller for the largest SIPs and becomes zero for the largest SIP. The majority of SIPs starting from468

the smallest radii show an opposite behaviour as their evolution is dominated by a strong νi-decrease469

at nearly constant ri. In contrast, the evolution of the two largest SIPs is dominated by a strong ri-470

increase for constant νi. The SIPs next to the largest SIPs undergo a transition; in the beginning, they471

primarily grow in size, towards the end the decrease of νi is dominant.472

The ratio ϕr is defined as ri(t= 3600s)/ri(t= 0s) and, analogously, ϕν = νi(t= 3600s)/νi(t=473

0s). We find ϕr ≥ 1 and ϕν ≤ 1. The bottom panel of Figure 3 shows the ratios ϕr (red curve) and474

(ϕν)
−1 (black curve) for all SIPs of the simulation. Both ratios are smooth functions of the initial475

ri, which is plotted on the x-axis. By construction, the number of SIPs remains constant over the476

course of a simulation. Hence, the number of SIPs per radius or mass interval decreases, when the477

DSD broadens over time. In our example, the SIP resolution becomes coarser, particularly in the478

large droplet tail.479

Negative values of νnewi and χnew
i may occur. However, this case never occurred in our manifold480

tests of the algorithm. The behaviour appears more benign than in RMA. Moreover, we found that481

the algorithm preserved the initial size-sortedness of the SIP ensemble. However, for an arbitrary482

kernel function and initial SIP ensemble, this is not guaranteed and we recommend to use adaptive483

sorting algorithms that benefit from partially pre-sorted data sets (Estivill-Castro and Wood, 1992).484

Adaptive sorting is also advantageous, when AIM is employed in real world applications, where485

sedimentation, advection and condensation changes the SIP ensemble in each individual grid box.486
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Figure 4. As in Fig. 3, for the AON algorithm.

2.5 Description of the All-Or-Nothing (AON) algorithm487

The All-Or-Nothing (AON) algorithm is based on the ideas of Sölch and Kärcher (2010) and488

Shima et al. (2009). Fig. 2 illustrates how a collection between two SIPs is treated. SIP i is assumed489

to represent fewer droplets than SIP j, i.e. νi < νj . Each real droplet in SIP i collects one real droplet490

from SIP j . Hence, SIP i contains νi = 4 droplets, now with mass µi+µj = 15. SIP j now contains491

νj−νi = 8−4 = 4 droplets with mass µj = 9. Following Eq. 23, only νk = 2 pairs of droplets would,492

however, merge in reality. The idea behind this probabilistic AON algorithm is that such a collection493

event is realised only under certain circumstances in the model, namely such that the expectation494

values of collection events in the model and in the real world are the same. This is achieved if a495

collection event occurs with probability496

pcrit = νk/νi (29)497

in the model. Then, the average number of collections in the model,498

ν̄k = pcritνi = (νk/νi)νi, (30)499

is equal to νk as in the real world. A collection event between two SIPs occurs, if pcrit >rand(). The500

function rand() provides uniformly distributed random numbers ∈ [0,1]. Noticeably, no operation on501

a specific SIP pair is performed if pcrit <rand().502

The treatment of the special case νk/νi > 1 needs some clarification. This case is regularly en-503

countered when the singleSIP-init is used, where SIPs with large droplets and small νi collect small504
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Algorithm 3 Pseudo-code of the all-or-nothing algorithm (AON); style conventions are explained at

the end of Section 2.2; rand() generates uniformly distributed random numbers ∈ [0,1].

1: INIT BLOCK

2: Given: Ensemble of SIPs; Specify: ∆t

3: TIME ITERATION

4: while t<Tsim do

5: {Check each i− j-combination for a possible collection event}

6: for all i < j ≤NSIP do

7: Compute νk according to Eq. 19

8: νnew =min(νi,νj)

9: pcrit = νk/νnew

10: {Update SIP properties on the fly}

11: if pcrit > 1 then

12: MULTIPLE COLLECTION

13: {can occur when νi and νj differ strongly and be regarded as special case; see text

for further explanation}

14: assume νi < νj , otherwise swap i and j in the following lines

15: {pcrit > 1 is equivalent to νk > νi}

16: {transfer νk droplets with µj from SIP j to SIP i, allow multiple collections in SIP i,

i.e. one droplet of SIP i collects more than one droplet of SIP j.}

17: SIP i collects νk droplets from SIP j and distributes them on νi droplets: µi =

(νi µi + νk µj)/νi

18: SIP j loses νk droplets to SIP i: νj = νj − νk

19: else if pcrit >rand() then

20: RANDOM SINGLE COLLECTION

21: assume νi < νj , otherwise swap i and j in the following lines

22: {transfer νi droplets with µj from SIP j to SIP i}

23: SIP i collects νi droplets from SIP j: µi = µi +µj

24: SIP j loses νi droplets to SIP i: νj = νj − νi

25: end if

26: end for

27: t= t+∆t

28: end while

29: EXTENSIONS

30: {Self-collections for a kernel with K(m,m) 6= 0 can be treated in the following way: }

31: {Insert the following loop before line 6 or after line 26.}

32: for i= 1 to NSIP do

33: pcrit = νk/νi

34: if 2 pcrit >rand() then

35: {every two (identical) droplets coalesce}

36: νi = νi/2

37: µi = 2 µi

38: end if

39: end for
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droplets from a SIP with large νj . The large difference in droplet masses µ lead to large kernel505

values and high νk with νi < νk < νj . By the way, the case of νk being even larger than νj is not506

considered, as it occurs only with unrealistically large time steps. If pcrit > 1, we allow multiple507

collections, as each droplet in SIP i is allowed to collect more than one droplet from SIP j. In total,508

SIP i collects νk droplets from SIP j and distributes them on νi droplets. A total mass of νkµj is509

transferred from SIP j to SIP i and the droplet mass in SIPs i becomes µnew
i = (νi µi + νk µj)/νi.510

The number of droplets in SIP j is reduced by νk and νnewj = νj − νk. Sticking to the example in511

Fig. 2 and assuming νk = 5, each of the νi = 4 droplets would collect νk/νi = 1.25 droplets. The512

properties of SIP i and SIP j are then: νi = 4, µi = 17.25, νj = 3 and µj = 9.513

Another special case appears if both SIPs have the same weighting factor which regularly occurs514

when the νconst-init is used. After a collection event, SIP j would carry νj−νi = 0 droplets, whereas515

SIP i would still represent νi droplets. In this case, half of the droplets from SIP i coalesce with half516

of the droplets from SIP j and vice versa. Accordingly, both SIPs carry νnewj = νnewi = 0.5× νi517

droplets with mass µi +µj . Without this correction, zero-ν SIPs would accumulate over time and518

reduce the effective number of SIPs causing a poorer sampling. Instead of this equal splitting, one519

can also assign unequal shares ξ νi and (1−ξ)νi to the two SIPs (with ξ being some random number).520

Moreover, self-collections can be considered for kernels with Kii > 0. If 2 pcrit >rand(), self-521

collections occur between the droplets in a SIP (note the factor 2 due to symmetry reasons). Then522

every two droplets within a SIP coalesce, implying νi = νi/2 and µi = 2 µi.523

So far, we explained how a single i−j-combination is treated in AON. In every time step, the full524

algorithm simply checks each i− j-combination for a possible collection event. To avoid double-525

counting only combinations with i < j and self-collections with i= j are considered. Pseudo-code526

of the algorithm is given in Algorithm 3. The SIP properties are updated on the fly. If a certain SIP is527

involved in a collection event in the model and changes its properties, all subsequent combinations528

with this SIP take into account the updated SIP properties. Similar to the update on the fly version529

of RMA, results may depend on the order in which the i− j-combinations are processed.530

For most i−j-combinations, pcrit is small and usually only a limited number of collection events531

occurs in the model and AON may suffer from an insufficient sampling of the droplet space. Ac-532

tual collections are a rare event in this algorithm. In our standard setup, < 1% of all possible col-533

lections occur in the model until rain is initiated by very few lucky SIPs (similar to lucky drops,534

e.g. Kostinski and Shaw (2005)). Indeed, Shima et al. (2009) reported convergence of AON only535

for tremendously many SIPs (on the order of 105 to 106 in a box). We will later see that conver-536

gence is possible with as few as O(102) SIPs, if the SIPs are suitably initialised. Hence, it will537

be demonstrated that AON is a viable option in 2D/3D cloud simulations, as already implied in538

Arabas and Shima (2013).539

As for AIM in Fig. 3, Fig. 4 (top) shows the (ri,νi)-evolution of selected SIPs for AON. The540

picture looks more chaotic than for AIM, as each individual SIP has its own independent history due541
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to the probabilistic nature of AON. For the initially smallest SIP, only νi changes for most of the542

time, as only collections occur where the partner SIPs have smaller weighting factors ν. Towards543

the end, the still very small SIP is at least once involved in a collection with a very large SIP that544

has a larger ν. Hence, ri of this SIP increases substantially. In contrast to the smallest SIP, other545

initially small SIPs i with similar properties are never part of a collection with νi < νj . Hence, their546

radii ri remain small over the total period and νi is the only property that changes. The bottom panel547

summarises the overall changes in νi (black) and ri (red) for all SIPs of the simulation. Unlike to548

AIM, where only the initially largest SIPs grow, SIPs from both ends of the spectrum grow in AON.549

Those SIPs have small ν-values in common and in each collection their mass is updated to mi+mj .550

The SIPs with initially large ν-values lie in the radius range [2µm,15µm] and keep their initial radii551

(at least in the singleSIP-init used here). The reductions in νi scatter around ∼ 103 for most SIPs and552

fall off to 1 for the largest SIPs.553

For the generation of the random numbers, the well-proven (L’Ecuyer and Simard, 2007) Mersenne554

Twister algorithm by Matsumoto and Nishimura (1998) is used. AON simulations may be acceler-555

ated if random numbers are computed once a priori. However, this requires saving millions of random556

numbers for every realisation. An AON simulation with 1000 time steps and 200 SIPs, for instance,557

implies 200× 100 potential collections during one time step and in total 2 · 107 random numbers.558

Using random numbers with a smaller cycle length deteriorated the simulation results in several tests559

and is not recommended.560

The current implementation differs slightly from the version in Shima et al. (2009). Due to an561

unfavourable SIP initialisation similar to the νconst-technique, Shima et al. (2009) deal with large562

NSIP -values in their simulations, where it becomes prohibitive to evaluate all NSIP (NSIP − 1)563

SIP-combinations. Hence, they resort to ⌊NSIP /2⌋ randomly picked i−j-combinations, where each564

SIP appears exactly in one pair (if NSIP is odd, one SIP is ignored). As only a subset of all possible565

combinations are numerically evaluated, the extent of collisions is underestimated. To compensate566

for this, the probability pcrit is up-scaled with a scaling factor NSIP (NSIP − 1)/(2 ⌊NSIP /2⌋) to567

guarantee an expectation value as desired.568

Moreover, in Shima’s formulation the weighting factors are considered to be integer numbers. In569

contrast, we use real numbers ν which can even attain values below 1.0. This has several computa-570

tional advantages: 1. better sampling of the DSD, in particular at the tails, 2. simpler AON imple-571

mentation with fewer arithmetic and rounding operations, and 3. more flexibility, e.g. SIP splitting572

with real-valued ξ in the case of identical weighting factors.573

Sölch and Kärcher (2010) makes use of the vertical position of the SIPs and explicitly calculates574

whether or not a larger droplet overtakes a smaller droplet within a time step. This approach will be575

thoroughly analysed in a follow-up study.576

In RMA and AIM, SIPs with negative weights may be generated depending, e.g. on the condition577

∆t
∑NSIP

j=1 oij > 1 in RMA. By construction, this cannot happen in AON and the latter condition578
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implies that
∑

j=1 pcrit,ij of SIP i is greater than unity. Then, this SIP is likely to be involved in579

several collections (for j with pcrit,ij < 1) or is involved in one or several multiple collections (for580

j with pcrit,ij > 1).581

3 Box model results582

In this section, box model simulations of the three algorithms introduced in the latter section are583

presented, starting with the results of the Remapping (RMA) Algorithm, then those of the Average584

Impact (AIM) and finally the All-or-Nothing (AON) algorithm. The results of each algorithm are585

tested for three different collection kernels (Golovin, Long and Hall). As default, probabilistic SIP586

initialisation methods are used. For each parameter setting, simulations are performed for 50 differ-587

ent realisations. Simulations with the Golovin kernel are compared against the analytical solution588

given by Golovin (1963). Consistent with many previous studies we choose b= 1.5 m3 kg−1 s−1.589

Simulations with the Long and Hall kernel are compared against high-resolution benchmark simu-590

lations obtained by the spectral-bin model approaches of Wang et al. (2007) and Bott (1998). The591

volume of the box is assumed to be ∆V = 1m3.592

In all simulations, collision/coalescence is the only process considered in order to enable a rig-593

orous evaluation of the algorithms. The evaluation is based on the comparison of mass density dis-594

tributions, and the temporal development of 0th, 2nd, and 3rd moment of the droplet distributions.595

The 1st moment is not shown since the mass is conserved in all algorithms per construction. The596

supplement (abbreviated as SUPP in the following) contains a large collection of figures that sys-597

tematically reports all sensitivity tests that have been performed. The behaviour of the second and598

third moment is similar and the λ3-evolution is shown only in SUPP. Later it will be mentioned that599

Hall kernel simulations are not as challenging as Long kernel simulations from a numerical point of600

view. Hence, simulation with the Hall kernel are only shortly discussed in the manuscript and figures601

are shown in SUPP.602

3.1 Performance of Remapping (RMA) Algorithm603

Figure 5 compares DSDs of the RMA algorithm and the analytical reference solution for the Golovin604

kernel. Each panel displays DSDs from t= 0 to 60min every 10min. The upper left panel shows an605

excellent agreement of RMA with the reference solution and proves at least a correct implementa-606

tion. Figure 6 compares the temporal evolution of the moments. Moreover, the first row shows the607

number of SIPs used in RMA. Except for the case with a very coarse grid (κ= 5) with fewer than 40608

SIPs in the end, the regular RMA results shown in the left column agree perfectly with the reference609

solution irrespective of the chosen κ (≥ 10) and minimum weak threshold η ranging from 10−5 to610

10−8. The number of non-zero bins increases as the DSD broadens over time. In the last step of the611

time iteration, SIPs are created from such bins. Hence, their number increases over time. Using a612
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Figure 5. Mass density distributions obtained by the RMA algorithm for the Golovin kernel from t= 0 to

60min every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the

solid curves the RMA simulation results (ensemble averages over 50 realisations). The parameter settings are

singleSIP-init with weak threshold η = 10−8, κ= 60 and ∆t= 1s. The following versions of the RMA al-

gorithm are depicted (clockwise from top left): regular version, version with Reduction Limiter, version with

update on the fly OTFl and OTFs (starting with combinations of the largest or smallest droplets, respectively).

strict threshold, the total mass is not conserved; the larger η is, the more mass is lost (see SUPP).613

Hence, using a weak threshold or some other measure (e.g. creation of a residual SIP containing614

contributions of all neglected bins) to avoid this is highly recommended.615

Next, RMA simulations with the Long kernel are discussed. As already mentioned, the default616

RMA version would require tiny time steps which would rule out RMA from any practical ap-617

plication. Both approaches introduced before, "Update on the fly" (OTF) and "Reduction Limiter"618

(RedLim), succeed in eliminating negative νi-values and in finishing the simulation within a rea-619

sonable time. However, the results are not as desired. Fig. 7 shows the DSDs for a simulation with620

Reduction Limiter γ̃ = 0.1, weak threshold η = 10−8,κ= 20 and ∆t= 0.1s. Whereas the algorithm621

is capable of realistically reducing the number of the smaller droplets, strong oscillations appear in622

the intermediate radius range [100µm,200µm] (see right panel). If we average over 50 realisations623

(as usually, left panel) or use a coarse grain visualisation (as usually with κplot = 4, middle panel),624

the oscillations are smoothed out (or better say masked). Nevertheless, the formation of the rain625

mode is impeded; probably the mass flux across the problematic radius range is too slow, which is626
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Figure 6. SIP number and moments λ0 and λ2 as a function of time obtained by the RMA algorithm for the

Golovin kernel. The black diamonds show the reference solution. The curves depict the RMA results (ensemble

averages over 50 realisations). The default settings are: Probabilistic singleSIP-init with weak threshold η and

∆t= 1s. Left column: regular RMA version for various κ-values (see legend in the middle) and threshold

η = 10−8, 10−7, 10−6, 10−5 (solid, dotted, dashed, dash-dotted ; shown only for κ= 40). Middle column: as

in left column, but RedLim version. Right column: version with update on the fly. (solid lines OTFs and dotted

lines OTFl). The colours define κ as in the two other columns, but only κ= 10 and 60-cases are shown.
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Figure 7. Mass density distributions obtained by the RMA algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the simulation results of the RMA algorithm with Reduction Limiter (γ̃ = 0.1), weak threshold η = 10−8,

∆t= 0.1s and κ= 40. The left panel shows the average over 50 realisations and the middle panel one specific

realisation. For both, the bin resolution of the visualisation is by default κplot = 4. The right panel shows again

the specific realisation (only t= 20min and 40min), but for κplot = κ.

a direct consequence of applying the Reduction Limiter (mostly SIPs in this part of the spectrum627

obtain negative weights and have to be corrected).628

We tested the algorithm for many parameter settings varying all of the aforementioned parame-629

ters, ∆t ∈ [0.01s,1s],κ ∈ [5,100], γ̃ ∈ [0,1] and η ∈ [10−15,10−5]. Figure 8 shows the evolution of630

moment 0 and 2 for various ∆t-values (at κ= 10, left column) and κ-values (at ∆t= 0.1s right631

column). Obviously, the simulation results are nearly insensitive to the bin resolution (as long as632

κ≥ 10), however the higher moment does not come close to the reference value. The effect of a633

∆t-variation is more substantial. Descreasing ∆t, the total droplet numbers become smaller and the634

λ2-values become larger, both leading to a better agreement. Despite using already a very small635

time step of 0.01s in the end (we will later see that AIM and AON produce reasonable results for636

∆t= 10s), the agreement with the reference solution is still not perfect.637

Hence, our RMA implementation is not capable of producing reasonable results for the Long638

kernel. It is not clear whether the oscillations are inherent to the original RMA algorithm or caused639

by the introduction of the Reduction Limiter. The latter might introduce discontinuities which could640

trigger instabilities.641

At least, the Golovin RMA simulations with Reduction Limiter do not show any signs of instabil-642

ity and agree well with the reference. However, this is not surprising. Clearly, the RedLim correction643

is only performed for SIPs, where negative weights are predicted. In Golovin simulations this hap-644

pens less frequently than in Long simulations. Only in the very end, the abundance of the largest645

droplets is underestimated (see top right panel in Figure 5) and the increase of the higher moment646

levels off slightly (middle column of Fig. 6). Bascially, the application of the Redlim correction,647
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Figure 8. SIP number and moments λ0 and λ2 as a function of time obtained by the RMA algorithm for the

Long kernel. The black diamonds show the reference solution. The curves depict the RMA results (ensemble

averages over 50 realisations). The default settings are: RedLim version with γ̃ = 0.1, singleSIP-init with weak

threshold η = 10−8, κ= 10,∆t= 1s and rcritmin = 5.0µm. The left column shows a variation of ∆t (see

legend), the right one a variation of κ (see legend) .
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which re-scales ν∆i , can be interpreted as an artificial reduction of the time increment (see Eq. 20)648

and hence slows down the growth of all corrected SIPs.649

Another RMA variant uses update on the fly which also effectively eliminates negative weights.650

Such Golovin RMA simulations can be close to the reference, however the results depend on the651

order in which the SIP combinations are processed. If collections between the smallest SIPs are652

treated first within each time iteration (OTFs), then the growth of the largest droplets is too slow653

(see bottom left panel in Figure 5). Starting the processing with collections between the largest SIPs654

(OTFl), the DSDs are as desired (see bottom right panel in Figure 5) and the moments agree perfectly655

with the reference if κ is sufficiently large (see right column of Fig. 6). The update on the fly has656

the strongest impact on those SIPs where the regular version would predict negative weights. With657

OTF, the weights of such SIPs strongly decrease during one time iteration and hence the continuous658

evaluations of the Oij-values depends on the order in which the SIP combinations are processed.659

Long kernel simulations with OTFl yield results qualitatively similar to the RedLim version (see660

SUPP) and spurious oscillations still appear in the DSDs.661

Note that the Golovin simulations used rcritmin = 1.6µm, whereas the Long simulations used662

rcritmin = 5.0µm (note the truncated left tail in the DSDs in Figure 7). A higher rcritmin-value663

reduces the SIP number and the computational effort and made simulations with small time steps664

possible at all. The simulated λ-values are insensitive to the choice of rcritmin (see SUPP).665

We conclude that for time steps feasible in operational terms, none of the tested RMA implemen-666

tations is capable of producing reasonable results with the Long kernel. Andrejczuk et al. (2010)667

introduced and evaluated the RMA algorithm and applied it in a simulation of boundary layer stra-668

tocumulus. Our findings are seemingly in conflict with the conclusions of their evaluation exercises.669

What both studies have in common is a similar trend for a κ-variation. In their Fig. 13, simulations670

for κ ranging roughly from 4 to 30 are depicted. The simulations with many bins show oscilla-671

tions, whereas the coarsest simulation has no oscillations, but is clearly far from the real solution672

(largest droplets around 40µm compared to 500µm in the reference simulation). In their Fig. 14,673

they presented a detailed sensitivity test only for a κ= 4 simulation, which downplays the sever-674

ity of the oscillation issue. Moreover, their simulations ran up to 2000s compared to 3600s in this675

study and many other studies (e.g. Bott, 1998; Wang et al., 2007). Hence, they missed the regime676

where the effect of the oscillations is strongest. Despite our extensive tests we cannot exclude that677

in Andrejczuk et al. (2010) an RMA implementation was used where oscillations are less cumber-678

some; however, the study missed to demonstrate this for a conclusive test case and we come to the679

conclusion that the evaluation exercises were incomplete and not suited to reveal the deficiencies680

faced here.681

RMA simulations with the Hall kernel are similarly corrupted by oscillations and do not produce682

useful simulations either (not shown).683
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Figure 9. Mass density distributions obtained by the AIM algorithm for the Golovin kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AIM simulation results (ensemble averages over 50 realisations). The parameter settings are: probabilistic

singleSIP-init with weak threshold η = 10−9, ∆t= 1s and κ= 40 (left) or κ= 200 (right).

Figure 10. Moments λ0 and λ2 as a function of time obtained by the AIM algorithm for the Golovin kernel. The

black diamonds show the reference solution. The curves depict the AIM results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 1s. Left

column: default simulation (red), larger time step (∆t= 10s, blue) and more SIPs (κ= 200, brown). Right

column: νconst-init (red) and νdraw-init (blue) with NSIP = 160. In all panels, the curves are on top of each

other.

3.2 Performance of Average Impact (AIM) Algorithm684
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Figure 11. Mass density distributions obtained by the AIM algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AIM simulation results (ensemble averages over 50 realisations). The default settings are: probabilistic

singleSIP-init with weak threshold η = 10−9, κ= 40, ∆t= 1s (left panel); ∆t increased to 20s (middle

panel); νconst-init technique with NSIP = 160 (right panel).

Fig. 9 displays DSDs obtained by AIM for the Golovin kernel. Compared to the reference, the685

droplets pile up at too small radii and the algorithm is not capable of reproducing the continuous686

shift to larger sizes, even if a fine grid with κ= 200 (right) instead of κ= 40 (left) is used. For both687

κ-values, the increase of the higher moments proceeds at a too low rate (see Fig. 10), whereas the688

decrease in droplet number matches the analytical evolution. AIM is a very robust algorithm in the689

sense that the results are fairly insensitive to most numerical parameter variations as demonstrated for690

κ and ∆t in the left column of Fig. 10. Most simulations converge to—what we call—the best AIM691

solution, which is, however, not identical to the correct solution. The results deteriorate slightly if the692

initial SIP ensemble is generated with the νconst-init or νdraw-init instead of with the singleSIP-init693

(right column of Fig. 10).694

The algorithm performs, in general, better for the Long and Hall kernel as is detailed in the follow-695

ing. Fig. 11 displays DSDs obtained by AIM for the Long kernel. Generally, the results are in good696

agreement with the reference solution, as long as the SIP ensemble is initialised with the singleSIP-697

init method (left and middle column). Towards the end of the simulated period (magenta and cyan698

lines), the removal of small droplets is a bit underestimated and too many small droplets are present.699

For t= 30 and 40min, the large droplet mode is too weak as not enough large droplets have formed.700

At that stage, the droplets grow rapidly by collection and the AIM results lag behind. Although the701

offset is less than five minutes, it might become crucial in simulations of short-lived clouds. Also702

the evolution of the moments (see Fig. 12) confirms this, as the onset of the rapid changes at around703

t= 30min is only slightly retarded if parameters are suitably chosen. Towards the end, the AIM re-704

sults get again very close to the reference solution. The left column of Fig. 12 shows the dependence705

on the time step. For time steps ∆t≤ 20s all results are similar to the best AIM solution which is706
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Figure 12. Moments λ0 and λ2 as a function of time obtained by the AIM algorithm for the Long kernel. The

black diamonds show the reference solution. The curves depict the AIM results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 10s. The

left column shows a variation of ∆t (see legend) and the middle column a variation of κ (see legend). The

right column displays simulations with various initialisation techniques: the νconst-init (solid) and νdraw-init

(dotted) with various NSIP -values (see legend) as well as the νrandom,rs-init (green dashed) and νrandom,lb-

init (green dash-dotted).

close to the reference. Time steps of 50s and more do not produce good enough results. Moreover,707

AIM is fairly insensitive to the choice of κ, rcritmin and νcritmin. Simulations with κ ranging from708

10 to 100 yield similar results (see middle column). Only, for a very coarse resolution (κ= 5) with709

25 SIPs, the decrease in droplet number is too small. Increasing the lower cutoff radius rcritmin from710

0.6µm to 5µm, the r < 5µm-part of the DSD is represented by a single SIP and NSIP is reduced711

by 60% (see Table 3). The predicted moments are unaffected by this variation (see SUPP). Those712

small-ri SIPs are not relevant for the AIM performance. They simply carry too small fractions of the713

total grid box mass to be important. Their status will not change over time as already illustrated in714

Fig. 3. Similarly, a variation of νcritmin or the switch to a strict threshold νcritmin has no effect (see715

SUPP).716
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Now we draw the attention to the importance of the SIP-init method. The right panel of Fig. 11717

shows the DSDs when the SIPs are initialised with the νconst-init method. The algorithm completely718

fails and no droplets larger than 70µm occur after 60 minutes. Consequently, the moments are far off719

from the reference solution (solid lines in the right column of Fig. 12). Switching to the νdraw-init720

method (dotted lines) or using many more SIPs (up to 1600) improves the results, yet they are still721

useless. This clearly demonstrates how crucial the initial characteristics of the SIP ensemble are.722

Initialising the SIPs with an appropriate technique like the singleSIP-init, useful results are obtained723

with as few as 50 SIPs. Using the νconst-init or νdraw-init, on the other hand, solutions are still724

useless, even though the number of SIPs and the computation time are factor 30 and 900 higher,725

respectively.726

The νrandom-simulations give another example of the importance of the init method. Even though727

both techniques, νrandom,rs (dashed line) and νrandom,lb (dash-dotted line), are similar in design728

and differ only in the creation of the largest SIPs (see Fig. 1), the outcome of the simulations is quite729

different. For the νrandom,lb-init, the solution matches the best AIM solution, whereas for νrandom,rs730

the moment λ2 stagnates at a too low level. The latter test pinpoints the main weakness of the AIM731

which is also reflected in its name (average impact). The initial weighting factors of those initially732

largest SIPs (in relation to ν of the remaining SIPs) controls how strong this growth is and how the733

large droplet mode emerges.734

All quantities shown in Fig. 10 and 12 are averages over 50 realisations of the initial SIP ensem-735

ble. All individual realisations yield basically identical simulation results and it would have been736

sufficient to carry out and display simulations of a single realisation.737

Next, simulations with the Hall kernel are shortly discussed (figures are only shown in the supple-738

ment). Compared to the Long simulations, the reference solution reveals that small droplets are much739

more abundant, as the collection of small droplets proceeds at a lower rate. This makes the simula-740

tion less challenging from a numerical point of view and AIM DSDs come closer to the reference741

than in the Long simulations. Consequently, the AIM moments agree very well with the reference.742

For ∆t≤ 20s and κ≥ 20, all solutions are similar to the best AIM solution.743

3.3 Performance of All-Or-Nothing (AON) Algorithm744

Fig. 13 shows the AON results for the Golovin kernel. An excellent agreement with the reference745

solution is found which proves at least the correct implementation of AON. Switching to a version746

without multiple collections (i.e. SIP i collects at most νi droplets in every time step) does not affect747

the solution as cases with pcrit > 1⇔ νk > νi occur rarely. The AON moments closely follow the748

reference solution, even when the time step is increased from 1s to 10s or fewer SIPs are used by749

decreasing κ from 40 to 10 (left column of Fig. 14). Unlike to AIM, AON is successful, even when750

the initial SIP ensemble is created with the νconst-init or νdraw-init (right column of Fig. 14).751
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Figure 13. Mass density distributions obtained by the AON algorithm for the Golovin kernel from t= 0 to

60min every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the

solid curves the AON simulation results (ensemble averages over 50 realisations). The default settings are:

probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40, ∆t= 1s. The left panel shows results of

the regular algorithm and the right panel those of a version disregarding multiple collections.

Figure 14. Moments λ0 and λ2 as a function of time obtained by the AON algorithm for the Golovin kernel. The

black diamonds show the reference solution. The curves depict the AON results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 1s. Left

column: default simulation (red), larger time step (∆t= 20s, blue) and fewer SIPs (κ= 10, brown). Right

column: νconst-init (brown) and νdraw-init (blue).
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Figure 15. Mass density distributions obtained by the AON algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AON simulation results. The top row shows two specific realisations (each ∗-symbol depict a non-zero g-

value). Rows 2 and 3 show averages over 50 and 500 realisations: The left column uses the format as all DSD

plots before. The right column depicts the final DSD at t= 60min together For each bin, the interquartile range

is determined and depicted by diamonds and a dashed bar. If there is only one (or none) diamond in a bin, the

25th (and the 75th) percentile is/are too small to be visible. The settings are: probabilistic singleSIP-init with

η = 10−9, κ= 40 and ∆t= 20s.
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Figure 16. Moments λ0 and λ2 as a function of time obtained by the AON algorithm for the Long kernel.

Each realisation was initialised with a different SIP ensemble (probabilistic singleSIP, red) or all realisations

started with the same SIP ensemble (deterministic singleSIP, blue). In both cases, the curves show an average

over 50 realisations with the vertical bars indicating the interquartile range. The crosses show the minimum and

maximum values and the circle the median value. The parameter settings are ∆t= 20 and κ= 40.

Fig. 15 displays DSDs of an AON simulation for the Long kernel. The simulations exhibit large752

differences between individual realisations which deserves a closer inspection. The top row show753

DSDs of two specific realisations. The ∗-symbol depicts the g-value for each bin. Those symbols are754

connected by default. An interruption of the connecting line indicates one or more empty bins (g = 0)755

where no SIPs exist in this specific radius interval. This occurs frequently due to the broadening756

of the DSD. The solutions are full of spikes and irregularly over- and undershoot the reference757

solution, particularly in the large droplet mode. The small droplet mode is underestimated in the758

first realisation and overestimated in the second realisation, for instance. The advantages of AON759

become apparent when the DSDs are averaged over many realisations as shown in rows 2 and 3. Then760

the DSDs come close to the reference solution (left column) and the interquartile range indicates761

the broad envelope the individual realisations span around the reference solution (right column).762

Whereas the average over 50 realisations still has some fluctuations (row 2), the average over 500763

realisations produces a smooth solution (row 3).764

There are two sources that are potentially responsible for the large ensemble spread: the proba-765

bilistic SIP initialisation and the probabilistic AON approach. In a sensitivity test, 50 realisations are766
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Figure 17. Mass density distributions obtained by the AON algorithm for the Long kernel from t= 0 to 60min

every 10min (from black to cyan, see legend). The dotted curves show the reference solution, the solid curves

the AON simulation results (ensemble averages over 50 realisations). The default settings are: probabilistic

singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 1s. The left panel shows results of the regular

algorithm, the middle panel those of a version disregarding multiple collections at ∆t= 10s and the right panel

results for νconst-init with NSIP = 160.

computed, all using the same SIP initialisation obtained by a deterministic singleSIPinit. Figure 16767

compares those simulations to regular simulations with differing SIP initialisations. In both cases,768

we find a substantial ensemble spread. Starting with identical SIP initialisations the spread in terms769

of interquartile range is, however, somewhat smaller suggesting that both sources contribute to the770

ensemble spread.771

Fig. 17 shows AON results with 50 realisations and probabilistic initialisation which gives a good772

trade-off between computational cost and representativeness. Clearly, AON DSDs are less smooth773

than those of AIM. Column 1 shows a default simulation with singleSIP-init and shows very good774

agreement with the reference solution. Disenabling multiple collections (column 2), far too few small775

droplets become collected and their abundance is substantially overestimated. As a consequence, the776

mass transfer from small to large droplets is slowed down and the large droplet mode is under-777

estimated. Using the νconst-init, the large droplet mode is not well matched and results are again778

useless.779

Fig. 18 shows the temporal evolution of moments λ0 and λ2 for a large variety of sensitivity tests.780

Column 1 shows a variation of ∆t for the singleSIP-init. The larger ∆t is chosen, the more often781

combinations with pcrit > 1 occur and the more crucial it becomes to consider multiple collections.782

Even for the smallest time step considered, the version without multiple collections does not col-783

lect enough small droplets and hence overestimates droplet number. With the regular AON version784

considering multiple collections, reasonable results are obtained for time steps ∆t≤ 20s. Column 2785

shows a variation of κ for singleSIP-init. Whereas the higher moments perfectly match the reference,786

the droplet number shows a non-negligible dependence on κ. For κ < 100, droplet number decrease787
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Figure 18. Moments λ0 and λ2 as a function of time obtained by the AON algorithm for the Long kernel. The

black diamonds show the reference solution. The curves depict the AON results (averages over 50 realisations).

The default settings are: probabilistic singleSIP-init with weak threshold η = 10−9, κ= 40 and ∆t= 10s.

The left column shows a variation of ∆t (see legend) for the regular AON version (solid) and for a version

disregarding multiple collections (dotted, only cases with ∆t≤ 20s are displayed). The middle column shows

a variation of κ (see legend). The right column displays simulations with various initialisation techniques: the

νconst-init (solid) and νdraw-init (dotted) with various NSIP -values (see legend) as well as the νrandom,rs-init

(green dashed) and νrandom,lb-init (green dash-dotted).

is faster, the finer the resolution is. For κ≥ 100, a variation of κ has no effect, hence convergence788

is reached. However, those simulations underestimate the droplet number. Best results are obtained789

for an intermediate resolution of κ= 40. Using the MultiSIP-init, the simulations show the same790

undesired behaviour (see left panel of Figure 19). Hence, increasing the SIP concentration in the791

middle part of the initial DSD has no positive effect despite using around 160% more SIPs (see792

NSIP -values listed in the figure’s legend). In another experiment, a hybrid singleSIP-init was used.793

Below r = 16µm SIPs are initialised as usually with the prescribed κ. Above this radius, a high res-794

olution with κ= 100 is always used irrespective of the chosen κ. Clearly, more SIPs are initialised795

with this hybrid version relative to the original version (see NSIP -values listed in the figure legend).796

The middle panel of Figure 19 shows the droplet number evolution for the original singleSIP-init797
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Figure 19. Droplet number as a function of time obtained by the AON algorithm for the Long kernel. The

black symbols show the moments of the reference solution. In each panel, the dotted curves depict the results

with the regular singleSIP-init as already shown in column 2 of Fig. 18. The solid curves depict results with a

modified initialisation: the right panel shows results with the MultiSIP-init, the middle column with the hybrid

init and the right column with the singleSIP-init with rcritmin = 1.6µm. Each panel shows results for various

κ-values (see corresponding legend). The hybrid version uses κ= 100 for radii above 15µm and κ as labeled

for radii below 15µm. The MultiSIP-init and hybrid version use more SIPs than the regular SingleSIP-init. An

rcritmin-increase leads to a NSIP -reduction. See listed NSIP -values in the plots for a comparison.

and the new hybrid version. The sensitivity to κ is basically suppressed when the hybrid version798

is used. This implies that the AON algorithm is more or less insensitive to the resolution in radius799

range r < 16µm, however, it is sensitive to the SIP resolution in the right tail. For example, the800

κ= 5-simulation with the hybrid version and 87 SIPs performs better than the κ= 20-simulation801

with the regular init and 98 SIPs.802

In the conventional version, SIPs are initialised down to a radius of 0.6µm (as can be seen in803

the top left panel of Fig. 1). Another variation of the singleSIP-init is shown in the right panel of804

Figure 19 where this lower cut-off radius is raised to 1.6µm and around 25% fewer SIPs are used to805

describe the DSD. The simulation results are basically identical to the conventional init version and806

suggest that those initially small-ri, small-νi SIPs are not relevant for the performance of AON.807

Further tests with the singleSIP-init include a variation of the threshold parameter η and a switch808

from weak thresholds to strict thresholds. Moreover, we investigated the implications of update-on-809

the-fly of the SIP properties. The singleSIP-init produces an initially radius-sorted SIP ensemble and810

looping over the i-j combinations in the algorithm starts with combinations of the smallest droplets,811

which may introduce a bias. We reversed the order (i.e. started with largest droplet combinations) or812

randomly rearranged the order of the SIP combinations. None of those variations had a significant813

effect on the ensemble-averaged results (see SUPP). The latter insensitivity is in contrast to the RMA814
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behaviour. The reason for this is the comparably small number of SIP combinations that actually815

result in collections, as well as probabilistic determination of these combinations. This prevents any816

pronounced bias due to size-sorting. Moreover, AON does not preserve the size-sortedness of the817

SIP list (cf. Fig. 4).818

Finally, the AON performance for other SIP initialisations is discussed (right column of Fig. 18).819

As already demonstrated in Fig. 17, AON is not able to produce a realistic large droplet mode, if820

a moderate number of SIPs is initialised with the νconst-technique. Hence, the higher moments are821

underestimated and droplet number is overestimated. Increasing the number of SIPs up to 1600,822

the solutions get closer to the reference, yet the agreement is still not satisfactory. The performance823

for the νdraw-init is similar. Keeping in mind the previous sensitivity studies (hybrid singleSIP-init,824

MultiSIP-init), it is apparent that the νconst-init and νdraw-init suffer from an undersampling of825

the initially largest droplets. Due to its simplicity, using constant weights for initialisation has been826

a common approach in previous 3D-LCM cloud simulations (Shima et al., 2009; Hoffmann et al.,827

2015). Hence, we tested AON extensions aiming at a better performance for such equal weights828

initialisations.829

Let us consider the possible weighting factors the SIPs can attain in the course of a simulation. In830

the beginning, all SIPs have ν = νinit. After a collection event, for both involved SIPs ν = νinit/2. If831

such a ν = νinit/2-SIP collects a ν = νinit-SIP, both SIPs carry νinit/2 droplets. Subsequent collec-832

tions can generate SIPs with weighting factors νinit/4, 3νinit/4 and so on. It may be advantageous,833

if AON generates a broader spectrum of possible ν-values and produces SIPs with smaller weights834

more efficiently. So far, the equal splitting approach with ξ = 0.5 in a collection event of two equal-ν835

SIPs has been used. In sensitivity tests, a random number for ξ is drawn in each collection event,836

either from a uniform distribution ξ ∈ [0,1] or from a log-uniform distribution ξ ∈ [10−10,100]. En-837

hancing the spread of ν-values, more collection events occur in the algorithm, as pcrit is larger838

when small-ν SIPs are involved. Once most SIPs were part of a collection event, the first option839

with ξ ∈ [0,1] produces a distribution of ν-values that is similar to the initial ν-distribution of the840

νdraw-init technique and further equal weights combinations are unlikely to occur. Hence, the new841

version does not improve the simulation results, as the outcome for the νdraw-init and the standard842

νconst-init are similar (see SUPP). Other variations produce smaller weights with ξ = 10−10 rand()843

or ξ = 10−10 rand()2 , yet without any noticeable improvement in the simulation results (see SUPP).844

To complete the analysis for the Long kernel, the right column of Fig. 18 shows simulation results845

for νrandom,lb and νrandom,rs. In short, AON can cope with those initialisations and produces useful846

results.847

As already noted in the AIM section, Hall simulations are not as challenging as Long simulations848

from a numerical point of view. As the collection of small droplets proceeds at a lower rate for the849

Hall kernel, disenabling multiple collections in the AON simulations does not deteriorate the results850
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as much as in the Long simulations (see SUPP). Besides this, simulations with the Hall kernel lead851

to similar conclusions as for the Long simulations and are therefore not discussed in more detail.852

4 Discussion853

The presented box model simulations can be regarded as a first evaluation step of collection/aggregation854

algorithms in LCMs. The final goal is the evaluation in (multi-dimensional) applications of LCMs855

with full microphysics. In order to isolate the effect of collection, other microphysical processes856

like droplet formation and diffusional droplet growth have been switched off and all box model857

simulations started with a prescribed SIP ensemble following a specific exponential distribution. In858

section 4.1 the performance of the different algorithms is compared and we summarise the findings859

from section 3. Section 4.2 discusses implications of our results and provides further insights.860

4.1 Summarising comparison of the algorithms’ performance861

The initialisation techniques for the SIP population generation are mostly probabilistic and by de-862

fault, each simulation was performed for 50 different realisations. For RMA and AIM, we found the863

ensemble spread to be small and a single realisation is as good as the ensemble mean. The AON al-864

gorithm is inherently probabilistic and we highlighted the substantial ensemble spread. Reasonable865

results are only obtained only by averaging over many realisations. One may argue that this precludes866

the usage of AON in real-world applications as it is not feasible to run 50 realisations in each grid867

box of a 2D/3D model simulation. However, we are not that pessimistic. In such simulations, many868

grid boxes have similar atmospheric conditions and averaging will occur across such grid boxes. We869

made a similar experience in simulations of contrail-cirrus, where we tested the NSIP -sensitivity of870

the deposition/sublimation process (see section 3.1 in Unterstrasser and Sölch, 2014). We found that871

very few SIPs per grid box sufficed to reach convergence even though the few SIPs in a single grid872

box could not realistically represent a smooth DSD and reasonable DSDs could only be obtained by873

averaging over several grid boxes.874

RMA simulations for the Long kernel require around a factor 1000 smaller time steps than the875

respective AON and AIM simulations (∆t= 0.01s versus 10s). Using the Long kernel, rapid col-876

lection growth occurs in a certain size range. In RMA, this puts a strong constraint on the time step877

(see Eq. 24). In AON the inclusion of multiple collections allows simulating the rapid growth without878

the need to reduce the time step. Without multiple collections, the AON requirements on ∆t would879

be similar to RMA. AIM seems to be unaffected by rapid collections resulting in negative weight-880

ing factors as observed in RMA. The reason for this might origin from AIM’s typical behavior. If881

large and therefore most effectively collecting SIPs are produced at all, they will exhibit very small882

weighting factors. This property reduces the potentially hazardous impact of multiple collections at883

larger time steps in the tested setups. However, this might not be a universal feature of AIM.884
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If the initial SIP ensemble is created with the SingleSIP-init, 50 to 100 SIPs are needed for con-885

vergence in any of the three algorithms. This value is similar to the number of bins used in traditional886

algorithms for spectral-bin models (Bott, 1998; Wang et al., 2007).887

For a given NSIP , the number of floating point operations performed in one time iteration is888

roughly similar for all three algorithms but depends ultimately on details of the implementations.889

The RMA RedLim variant is, e.g., more demanding than its OTF counterpart. In the AON algorithm,890

the generation of the random numbers needs a non-negligible share of the computing time.891

The time complexity of all presented algorithms is O(N2
SIP ) as computations are carried out892

for all pairwise combinations of SIPs. A linear sampling approach as introduced by Shima et al.893

(2009), which processes only NSIP /2 SIP pairs, has complexity O(NSIP ) and can be applied in894

the RMA or AON algorithm. However, more SIPs may be required to reach convergence and in895

full microphysical models this may slow down the calculation of all other microphysical processes896

(which have usually linear time complexity).897

All in all, the time step ∆t, which controls the number of iterations, is the most critical parameter898

for the computing time.899

4.2 Implications and further insights900

In this section, we provide further insight and discuss the implications from the box model tests.901

Since our results have been gained with typical assumptions for warm clouds, we discuss their rep-902

resentativeness for ice clouds.903

The evaluation of different initialisation methods showed that the performance of the collec-904

tion/aggregation approaches depends essentially on the way the SIPs are initialised, a problem which905

is inherently absent in spectral-bin models. Their initialisation resembles the singleSIP technique906

used here, i.e. the number concentration (the weighting factor) within a bin (for a certain mass range907

represented by one SIP) is directly prescribed. However, LCMs exhibit a larger variety of how an908

initial droplet spectrum can be translated into the SIP space. The study showed that the singleSIP is909

advantageous for the correct representation of the collisional growth, since they initialise large SIPs910

with small weighting factors, which are responsible for the strongest radius growth. On the other911

hand, the νconst initialisation technique, in which all SIPs have the same weighting factor initially912

as it is done in many current (multi-dimensional) applications of LCMs, impedes significantly the913

correct representation of collisional growth.914

In this idealised study, we were able to control (to a certain extent) the representation of droplet915

spectra by various initialisation methods. In more-dimensional simulations with full microphysics,916

however, this is not straightforward nor has it been intended. So far, convergence tests in "real-917

world" LCM applications simply included variations of the SIP number and have not focused on918

more detailed characteristics of the SIP ensemble (i.e. the properties that have been discussed in919

Fig. 1). Droplet formation and diffusional droplet growth, which usually create the spectrum from920
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Figure 20. Normalised SIP mass χ̃i as a function of the initial SIP radius ri. χ̃i is defined as = χi/M=

(νiµi)/M, i.e. the total droplet mass in a SIP is normalised by the total mass within the grid box. χ̃init denotes

χ̃i of the initial SIP ensemble. χ̃max denotes the maximum χ̃i-value each SIP attains over the course of a

simulation. The left/right panel shows AIM/AON simulations with κ= 20 or 100 (see legend). Both algorithms

use the singleSIP-init and ∆t= 10s. The plots show results from a single realisation.

which collisions are triggered, should be implemented such that "good" SIP ensembles are gener-921

ated or evolve before collection becomes important. Here, good refers to a SIP ensemble for which922

the collection/aggregation algorithm performs well. For instance, the basic idea of the νrandom-923

initialisation technique (weighting factors are uniformly distributed in log (ν)) might also improve924

multi-dimensional simulations.925

Generally, the performance of the algorithms is better when the SIP ensemble features a broad926

range of weighting factors. One viable option to achieve this is the introduction of a SIP splitting927

technique (Unterstrasser and Sölch, 2014). How this may improve the performance of the collec-928

tion/aggregation algorithms is outlined next.929

Mass fractions represented by individual SIPs, χ̃i, are analysed. χ̃i is defined as χi/M, i.e. the930

total droplet mass in a SIP χi is normalised by the total mass within the grid box M. Figure 20 shows931

the initial χ̃i-values of all SIPs as a function of their initial radius ri. Results are shown for AIM and932

AON with the singleSIP-init method and two bin resolutions κ= 20 and 100. This corresponds to933

99 and 493 SIPs for the specific realisation depicted here. The two rows show the same data, using934

a logarithmic (top row) or linear y-scale (bottom). The log scale version highlights that χ̃i-values935

spread over many orders of magnitudes. Mainly, the parameter νcritmin controls the minimum value936

of χi. The heaviest SIPs carry initially up to 6.5% (κ= 20) or 1.2% (κ= 100) of the total mass937

M (see bottom row). Clearly, the values of the κ= 20-simulation are larger, as the total mass is938
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Figure 21. Moments λ0 and λ2 as a function of time obtained for the Long kernel by AIM (left) and AON

(right). The black symbols depict the moments of the reference solution. The simulations are initialised with

Wang’s solution after 20 minutes (solid lines) using the singleSIP-init with various κ-values (see legend). The

default AON and AIM simulations initialised at t= 0, which have been shown before in Figs. 12 and 18, are

depicted by dotted lines.

distributed over fewer SIPs. For each SIP, χ̃i is tracked over time and the maximum value, χ̃i,max(t),939

is recorded (red and brown curves in the graphs). Characteristically of AIM, only the largest SIPs940

grow substantially and collect mass from other SIPs. Hence, only χi of those SIPs increases. By the941

way, this also illustrates that the χi-values of the smallest SIPs are so small that all those SIPs can be942

merged into a single SIP without changing the AIM outcome (see rcritmin-variation before). Using943

the fine resolution (κ= 100), heavy SIPs (i.e. those with largest χ̃i) carry up to 10% of the total944

grid box mass at some point in time. In the κ= 20-simulation, this ratio can be higher than 50%,945

meaning that one specific SIP accumulated more than 50% of the total grid box mass at some time.946

Hence, the grid box mass is distributed fairly unevenly over the SIP ensemble. Astonishingly, this947

has no effect on the performance of AIM as the predicted λk,SIP -values for both AIM simulations948

are basically identical (see middle column of Fig. 12). In the AON simulations, we similarly find949

that the grid box mass is unevenly distributed over the SIP ensemble. Different to AIM, also many950

initially small SIPs and a few initially medium-sized SIPs carry a relevant portion of the grid box951

mass at some time. The algorithms may converge better if those heavy SIPs are split into several952

SIPs during the simulation.953
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In all simulations so far, the mean radius of the initial DSD was 9.3µm. Then the abundance of954

droplets larger than around 10µm drops strongly, which poses a challenge to representing this part955

of the droplet spectrum in SIP space. In a sensitivity test, we start with more "mature" DSDs. The956

simulations are initialised with the reference solution from Wang et al. (2007) after tinit = 10, 20957

or 30 minutes (cf. red, green and blue solid curves in previous plots of mass density distributions)958

using the singleSIP-init. Fig. 21 shows λ0 and λ2 of the DSD for AIM and AON for tinit = 20min959

and the default tinit = 0min (cases tinit = 10 and 30min are shown in SUPP). The initial DSD is960

broader for a later initialisation time and hence more SIPs are initialised for a given κ (see Table 3961

for the resulting NSIP -values). This implies in particular that the spectrum above 10−20µm is sam-962

pled with more SIPs. For both algorithms, the simulation results are close to the reference solution.963

Compared to the default tinit = 0-case, a much weaker κ-dependence of the AON predicted droplet964

number is apparent and the AIM results do not lag behind. Even though this sensitivity test cannot965

be repeated for other init methods (as they require an analytical description of the initial DSD), the966

singleSIP-init simulations already indicate that the SIP initialisation is not as crucial when a later ini-967

tialisation time is chosen and that our default setup with a narrow DSD may overrate the importance968

of the SIP initialisation. What are the implications of this for simulations with full microphysics?969

Clearly, the tinit = 20min and 30min-case oversimplify the problem, as such DSDs cannot be pro-970

duced by diffusional growth only. The tinit = 10min-DSD, on the other hand, is still close to the971

tinit = 0min-DSD and may be produced by diffusional growth. RMA simulations with non-zero972

tinit again show spurious oscillations and fail to predict the higher moments correctly (see SUPP).973

In multi-dimensional models, collection/aggregation might be further influenced by the movement974

of SIPs due to sedimentation or flow dynamics. For instance, sedimentation removes the largest SIPs975

with the potentially smallest weighting factors, while turbulent mixing may add SIPs with their initial976

weighting factor into matured grid boxes, where collection has already decreased the weighting977

factors of the older SIPs. Indeed, the additional variability in more-dimensional simulations might978

compensate for the missing variability in the weighting factors usually present in simulations using979

the νconst-initialisation technique.980

It is not clear which findings of our evaluation efforts are the most relevant aspects that control the981

performance of collection/aggregation algorithms in more complex LCM simulations. Nevertheless,982

the idealised box simulations are an essential prerequisite towards more comprehensive evaluations983

as they disclosed the potential importance of the SIP initialisation (an aspect that is inherently absent984

in spectral bin models). All in all, we can state that the behaviour of Lagrangian collection algorithms985

in more complex simulations demands further investigation. Nevertheless, we have already learned986

a lot from the box model simulations. A summary will be given in the concluding section.987

Besides the academic Golovin kernel, our simulations used the hydrodynamic kernel with collec-988

tion efficiencies that are usually employed for warm clouds (Long and Hall). We found that Hall sim-989

ulations are not as challenging as Long simulations from a numerical point of view. For ice clouds,990
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usually a constant aggregation efficiency Ea (the analogon to collection efficiency Ec) is chosen,991

partly due to the lack of better estimates (Connolly et al., 2012). AON simulations with Ea = 0.2992

indicated that using a constant efficiency makes the computational problem less challenging, e.g. we993

find a smaller sensitivity to κ compared to the Long simulations shown in Fig. 18 (see SUPP). Hence,994

the presented algorithms can be equally employed for aggregation. Certainly, the assumption of995

spherical particles used here is overly simplistic for ice cloud, in particular, if aggregates form. How-996

ever, including mass-area relationships (e.g. Mitchell, 1996; Schmitt and Heymsfield, 2010) in the997

kernel expression and using parameterisations of ice crystal fall speed (e.g. Heymsfield and Westbrook,998

2010) should not change the nature of the problem.999

5 Conclusions1000

In the recent past, Lagrangian cloud models (LCMs), which use a large number of simulation par-1001

ticles (SIPs, also called super droplets in the literature) to represent a cloud, have been developed1002

and become more and more popular. Each SIP represents a certain number of real droplets; this1003

number is termed the weighting factor (or multiplicity) of a SIP. In particular, the collision process1004

leading to coalescence of cloud droplets or aggregation of ice crystals is implemented differently1005

in the various models described in the literature. The present study evaluates the performance of1006

three different collection algorithms in a box model framework. All microphysical processes ex-1007

cept collection/aggregation are neglected and an exponential droplet mass distribution is used for1008

initialisation. The box model simulation results are compared to analytical solutions (in the case1009

of the Golovin kernel) and to a reference solution obtained from a spectral bin model approach by1010

Wang et al. (2007) (in the case of the Long or Hall kernel).1011

LCMs exhibit a large variety of how an initial droplet spectrum can be translated into the SIP space1012

and various initialisation methods are thoroughly explained. The performance of the algorithms de-1013

pends crucially on details of the SIP initialisation and various characteristics of the initialised SIP1014

ensemble (an issue that is inherently absent in spectral bin models and has not been paid much1015

attention in previous LCM studies).1016

The Remapping Algorithm (based on ideas of Andrejczuk et al., 2010) produces perfect solu-1017

tions in simulations with the Golovin kernel, however shows a poor performance when we switch1018

to the Long kernel. Spurious oscillations occur in the intermediate radius range [100µm,200µm]1019

which impedes the development of a realistic rain mode. Only for unfeasibly small time steps of1020

0.01s, the simulation results get close to the reference solution. The evaluation exercises presented1021

in Andrejczuk et al. (2010) were not suited to reveal these shortcomings or downplayed its severity.1022

Based on our extensive tests, we cannot recommend the algorithm at its present state for further1023

LCM applications, unless some mechanism to eliminate those oscillations is developped.1024
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The Average Impact (AIM) algorithm (based on ideas of Riechelmann et al., 2012) can produce1025

very good results, however, appears to be inflexible inasmuch as only the initially largest SIPs are1026

allowed to grow in radius space. The performance depends on details of the SIP initialisation much1027

more than, e.g. on the time step or the SIP number.1028

The probabilistic All-or-Nothing (AON) algorithm (based on ideas of Shima et al., 2009; Sölch and Kärcher,1029

2010) yields the best results and is the only algorithm that can cope with all tested kernels. Unlike1030

to AIM, in AON it is not pre-determined which SIPs will eventually contribute to the large droplet1031

mode. By design, any SIP can become significant at some point and the algorithm can cope with SIP1032

initialisations that guarantee a broad spectrum of weighting factors. If an equal weights initialisation1033

is used, tremendously many SIPs are necessary for AON convergence as reported by Shima et al.1034

(2009).1035

Many current (multi-dimensional) applications of LCMs use such SIP ensembles with a narrow1036

spectrum of weighting factors causing a poor performance of the collection/aggregation algorithms.1037

This should be clearly avoided in order to have collection/aggregation algorithms to work properly1038

and/or efficiently. The time step and the bin resolution κ (used in the singleSIP-init) have values1039

similar to those used in traditional spectral-bin models and hence the computational efforts of both1040

approaches for the collection/aggregation treatment are in the same range. The presented box model1041

simulations are a first step towards a rigourous evaluation of collection/aggregation algorithms in1042

more complex LCM applications (multidimensional domain, full microphysics).1043
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ABSTRACT

The mechanism of raindrop formation in a shallow cumulus cloud is investi-

gated using a Lagrangian cloud model (LCM). The analysis is focused on how

and under which conditions a cloud droplet grows to a raindrop by tracking

the history of individual Lagrangian droplets. It is found that the rapid colli-

sional growth, leading to raindrop formation, is triggered when single droplets

with a radius of 20 µm appear in the region near the cloud top, characterized

by a large liquid water content, strong turbulence, large mean droplet size, a

broad droplet size distribution (DSD), and high supersaturations. Raindrop

formation can always occur in time in the presence of turbulence-induced

collision enhancement (TICE), unaffected by the broadening of DSD, but it is

severely delayed without the broadening of DSD in the absence of TICE. The

reason leading to the difference is clarified by the additional analysis of ideal-

ized box-simulations of the collisional growth process for different DSDs in

varied turbulent environments. Furthermore, it is found that TICE does not

accelerate the timing of the raindrop formation for individual droplets, but it

enhances the collisional growth rate significantly afterwards by providing a

greater number of large droplets for collision. Higher droplet concentrations

increase the time for raindrop formation, decrease precipitation, but intensify

the effect of TICE.
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1. Introduction31

Raindrop formation in warm clouds is a key question in cloud physics, which has been inves-32

tigated extensively (e.g., Beard and Ochs III 1993; Devenish et al. 2012; Grabowski and Wang33

2013). Nonetheless, many critical questions still remain unanswered with regard to the mech-34

anisms leading to raindrop formation. It has been difficult in particular to explain the growth35

of cloud droplets in the radius range of 15− 40 µm for which neither diffusional (or condensa-36

tional) growth nor growth by collision and coalescence is effective, the so-called condensation-37

coalescence bottleneck. Several mechanisms have been proposed to overcome this bottleneck,38

such as the broadening of the drop size distribution (DSD), turbulence-induced collision enhance-39

ment (TICE), and the presence of giant aerosol particles, for instance. However, it is not yet clearly40

understood under which conditions these processes contribute to the raindrop formation.41

All mechanisms for the initiation of rain, as mentioned above, propose methods to increase42

the collection kernel K, which determines the collection rate of two droplets in a unit volume.43

Traditionally, the gravitational collection kernel between two droplets with the radii R and r is44

used as45

K(R,r) = π(R+ r)2 |v(R)− v(r)|E(R,r), (1)

where v is the terminal fall velocity of a droplet and E is the collection efficiency. To initiate rain,46

K must become sufficiently large.47

As a mechanism to increase K, we can consider the fact that droplets may experience different48

histories of supersaturation in the turbulent environment of a cloud, and the strength of diffusional49

growth differs accordingly. Shear and evaporative cooling following the entrainment of dry air50

produces strong turbulence in cumulus clouds (e.g., Shaw 2003). The mixing of these droplets51

can lead to a broadening of the DSD (Cooper 1989; Blyth 1993; Lasher-Trapp et al. 2005), which52

3
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increases K by increasing the difference of terminal velocities in (1). The variability of supersat-53

uration is caused by fluctuations in the concentration, size, and vertical velocity of droplets, and54

the entrainment of environmental dry air (e.g., Politovich and Cooper 1988). In-cloud nucleation55

can also contribute to the broadening of DSD (Pinsky and Khain 2002), although it might play a56

minor role in highly diluted shallow cumulus clouds as studied here.57

Many recent studies have investigated the impact of small-scale turbulence on K (e.g., Pinsky58

and Khain 2002; Ayala et al. 2008; Franklin 2008; Wang and Grabowski 2009). Turbulence-59

induced collision enhancement (TICE) increases K by intensifying the relative velocity of droplets,60

causing local clustering of droplets, and the fortification of the collision efficiency. More sophisti-61

cated formulations of K have been developed that take into account TICE, usually as a function of62

the dissipation rate ε . Wang and Grabowski (2009) showed that TICE can reduce the rain initiation63

time by 15 % to 40 %.64

One can also expect from (1) that the presence of large particles increases K simply by having65

a high terminal velocity. Accordingly, giant aerosols, which can be a part of the natural aerosol66

size distribution, are suggested to initiate rain if they are present in a cloud (Johnson 1982; Lasher-67

Trapp et al. 2001; Jensen and Lee 2008).68

Probably the most appropriate way to understand the mechanism of raindrop formation is to69

follow the growth of individual Lagrangian droplets, and to investigate how and under which con-70

ditions they grow to raindrops. For this purpose, Lasher-Trapp et al. (2005) and Cooper et al.71

(2013) calculated the trajectories of fluid parcels with explicit microphysics of condensation and72

collision/coalescence in the flow fields of a large-eddy simulation (LES) with a simple bulk pa-73

rameterization of cloud microphysics. In this method, however, there was no direct feedback of74

the analyzed parcels to the underlying dynamical model.75
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Recently, Lagrangian cloud models (LCMs) have been developed in which the cloud micro-76

physics of Lagrangian droplets and cloud dynamics are two-way coupled (e.g., Andrejczuk et al.77

2008, 2010; Shima et al. 2009; Sölch and Kärcher 2010; Riechelmann et al. 2012; Naumann and78

Seifert 2015). In these models, the flow field is simulated by an LES model, and the droplets are79

represented by Lagrangian particles, which experience cloud microphysics while interacting with80

the surrounding air. That is, latent heating and changes in water vapor as a result of condensation81

and evaporation, as well as changes in buoyancy due to the weight of the droplets.82

A recently developed LCM is used for this study to clarify the mechanism of raindrop formation83

in a shallow cumulus cloud (Riechelmann et al. 2012; Lee et al. 2014; Hoffmann et al. 2015). For84

the present simulation, the applied LCM has been improved, especially the collision algorithm,85

which will be discussed in the next section. We also utilize the capability of the LCM that allows us86

to investigate the formation of raindrops directly by tracking the history of individual Lagrangian87

droplets.88

We will focus on the respective roles of two inherent mechanisms of raindrop formation: the89

broadening of DSDs and TICE. For the investigation of TICE effects, we perform the LCM with90

two different collection kernels by either including the effects of TICE or neglecting them. For91

the investigation of the effect of the DSD broadening, the results are compared with a simulation92

in which the diffusional growth is calculated by an adiabatic parcel model, which inhibits the93

broadening of DSD by entrainment and mixing. Simulations are also carried out with different94

initial cloud condensation nuclei (CCN) concentrations. Finally, we clarify the respective roles95

of the broadening of DSD and TICE by carrying out idealized box-simulations, in which only96

collisional growth is calculated for different initial DSDs and turbulence intensities.97
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2. Model and simulation setup98

The LCM used in this study is coupled to the LES model PALM (Raasch and Schröter 2001;99

Maronga et al. 2015). The LES model solves the non-hydrostatic incompressible Boussinesq-100

approximated Navier-Stokes equations, and equations for water vapor mixing ratio, potential tem-101

perature, and sub-grid scale turbulent kinetic energy. The LCM calculates the motion and mi-102

crophysics of Lagrangian droplets. One can refer to Riechelmann et al. (2012) for the original103

description of this model. For the present study, the model has been improved in various aspects,104

including a refined collection algorithm. The basic framework of the model is described below.105

In order to handle the extremely large number of droplets in a cloud, the concept of a super-106

droplet is introduced. (The term super-droplet has been coined by Shima et al. (2009).) Each107

super-droplet represents a large number of real droplets of identical features, e.g., their radius.108

The number of real droplets belonging to a super-droplet of radius rn is called the weighting factor109

An, and the total mass of a super-droplet Mn is then calculated by110

Mn = An ·
4
3

πρlr3
n, (2)

where ρl is the density of liquid water. In the present model, An differs for each super-droplet, and111

changes with time as a result of collision and coalescence. The liquid water mixing ratio ql for a112

given LES grid box of the volume ∆V is then calculated by113

ql =
1

ρ0∆V

Np

∑
n=1

Mn, (3)

where ρ0 is the density of dry air and Np is the number of super-droplets in that grid box.114

a. Advection and sedimentation115

The velocity of each super-droplet is determined by116

Ui = ui + ũi−δi3v(r). (4)
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The LES resolved-scale velocity at the particle’s location ui is determined from a linear interpola-117

tion of the velocities at the 8 adjacent grid points of each particle. A stochastic turbulent velocity118

component ũi is computed from the LES sub-grid scale turbulent kinetic energy, following Sölch119

and Kärcher (2010), which was absent in the old version of the model. The terminal velocity v(r)120

is given by an empirical relationship depending on the droplet radius r (Rogers et al. 1993):121

v(r) =





a1 r [1− exp(−b1 r)], for r ≤ r0

a2−a3 exp(−b2 r), for r > r0,

(5)

with r0 = 372.5 µm, a1 = 8000s−1, a2 = 9.65m s−1, a3 = 10.43m s−1, b1 = 24000m−1, and122

b2 = 1200m−1.123

b. Diffusional growth and the release/depletion of water vapor and heat124

The diffusional growth of each super-droplet is calculated from125

rn
drn

dt
=

S
Fk +FD

f (rn), (6)

where S is the supersaturation. The two coefficients in the denominator are given by Fk =126

(Lv/(RvT )−1) ·Lvρl/(T k) and FD = ρlRvT/(Dves), where k is the thermal conductivity of air, Lv127

is the latent heat required to convert liquid to vapor, Dv is the molecular diffusivity of water vapor128

in air, es is the vapor pressure at saturation, and Rv is the individual gas constant for water vapor.129

The term f (rn) describes the increased evaporation of falling droplets, the so-called ventilation130

effect. Its parameterization is primarily based on the droplet radius rn (see Rogers and Yau 1989).131

The temporal change of ql due to condensation/evaporation is then calculated as132

[
dql

dt

]

cond
=

1
ρ0 ∆V

NP

∑
n=1

An ·
4
3

πρl ·
dr3

n
dt

, (7)
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and it determines the sink/source for water vapor mixing ratio q and potential temperature θ in the133

LES model as134

[
dq
dt

]

cond
=−

[
dql

dt

]

cond
, (8)

and135

[
dθ
dt

]

cond
=

Lv

Πcp

[
dql

dt

]

cond
, (9)

respectively, where Π is the Exner function and cp is the specific heat capacity of air at constant136

pressure.137

For the calculation of the supersaturation S in (6), the value of the LES grid box, in which the138

super-droplet is currently located, is used instead of a linearly interpolated value as done in the139

previous versions of our LCM. This is necessary to maintain consistency with the sink/source140

terms for water vapor mixing ratio q and potential temperature θ due to condensation/evaporation141

in the LES model, which are calculated by the diffusional growth of all super-droplets inside a142

grid box without considering their exact locations, as shown in (7) (see also Hoffmann 2016).143

c. Collisional growth144

In order to calculate the droplet growth by collision/coalescence, a statistical approach is used145

in which the growth of a super-droplet is calculated from the droplet spectrum resulting from all146

super-droplets currently located in the same LES grid box. The collisional growth is then described147

in terms of the modification of the weighting factor (An) and the total mass (Mn) of each super-148

droplet, which also results in the modification of the droplet radius (rn). While maintaining this149

general concept, we improved the collision algorithm for the present work by modifying the old150

collision algorithm (see Riechelmann et al. 2015) with ideas of Shima et al. (2009) and Sölch and151

Kärcher (2010), as discussed below.152
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The collision and subsequent coalescence of a super-droplet pair with An > Am is realized as153

the collection by Am droplets of the super-droplet n. The total mass of these collected droplets,154

Am ·Mn/An, is added to the droplets of super-droplet m, increasing Mm. Am remains unchanged, but155

rm is increased after the collection. On the other hand, rn of the collected super-droplet remains156

unchanged, but Mn and An decrease. In addition, so-called internal collections are considered,157

i.e., collections of droplets belonging to the same super-droplet. These interactions do not change158

Mn but they decrease An and accordingly increase rn. This yields the following description of the159

temporal change of An (assuming that the particles are sorted that An > Am for m > n):160

dAn

dt
δ t =−1

2
(An−1)P [K(rn, rn)An δ t/∆V ]−

Np

∑
m=n+1

Am P [K(rm, rn)Anδ t/∆V ] . (10)

The first term on the right-hand-side describes the decrease of the droplet number due to internal161

collections; the second term denotes the loss of droplets due to coalescence with droplets repre-162

sented by a super-droplet with a smaller weighting factor. The probabilistic binary function P[ϕ]163

determines if a collection takes place based on its argument, the collection probability ϕ:164

P[ϕ] =





0 if ϕ ≤ ξ ,

1 if ϕ > ξ ,

(11)

where ξ is a random number uniformly chosen from the interval [0,1]. The change of the total165

mass of a super-droplet is then calculated by166

dMn

dt
δ t =

n−1

∑
m=1

An
Mm

Am
P [K(rn, rm)Amδ t/∆V ]−

Np

∑
m=n+1

Am
Mn

An
P [K(rm, rn)Anδ t/∆V ] . (12)

The first term on the right-hand-side denotes the gain of mass due to the collection with super-167

droplets of a larger weighting factor, and the second term denotes the loss of mass due to the168

collection of droplets belonging to a super-droplet with a smaller weighting factor.169

The new collision algorithm is different from the old collision algorithm in two important as-170

pects. They are aimed to rectify the problem of the old algorithm, associated with the difficulty171
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of the correct representation of the stochastic collisional growth process, which produces a small172

number of very large droplets.173

First, the super-droplet with the smaller weighting factor collects droplets from the super-droplet174

with the larger weighting factor. In the old algorithm, the super-droplet with the larger radius col-175

lected droplets from the super-droplet with the smaller radius. Consider the case of the largest176

super-droplet. The weighting factor of the largest super-droplet did not decrease in the old algo-177

rithm since it grew by collecting mass from smaller super-droplets without being collected at any178

time. Accordingly, the largest super-droplet always represented a large number of real droplets,179

and the collected mass from smaller super-droplets was equally distributed over these. As a result,180

the radius growth of the largest super-droplet was too slow. In the new collision algorithm, how-181

ever, the largest super-droplets tend to have the smallest weighting factors, because they are more182

likely to collect other super-droplets.183

Second, the collection is now treated as a binary (0-1) process, in which either all droplets of184

the collecting super-droplet coalesce with the same number of droplets from the collected super-185

droplet or not do [see Eq. (11)]. In this way the radius growth of a super-droplet by collision186

and coalescence resembles the growth of two real droplets coalescing; that is, one droplet col-187

lects a complete other droplet, contrary to a fraction of it as in the old algorithm with continuous188

collection probability. As the number of super-droplets becomes large, the new algorithm tends189

to produce the size distribution of super-droplets corresponding to the size distribution of real190

droplets, while the old algorithm tended to produce a more uniform growth of super-droplets.191

In that sense, the old and new algorithms approximate either continuous or stochastic collisional192

growth, respectively (Telford 1955).193

Both changes are already in use in the collision algorithms by Shima et al. (2009) and Sölch194

and Kärcher (2010). One can refer to Unterstrasser et al. (2016) for more details on this so-195
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called all-or-nothing type collection algorithm and a comparison with other Lagrangian collection196

algorithms, including our old algorithm, and a spectral-bin model.197

d. Simulation setup198

A shallow cumulus cloud is triggered by a two-dimensional rising bubble of warm air, which199

is homogeneous in the third spatial direction. The bubble is prescribed by an initial potential200

temperature difference θ ∗ given by201

θ ∗ = θ ∗0 exp

{
−1

2

[(
y− yc

ay

)2

+

(
z− zc

az

)2
]}

, (13)

where yc = 1920m and zc = 150m mark the center of the bubble, ay = 200m and az = 170m the202

radius of the bubble and θ ∗0 = 0.4K the maximum temperature difference. The model domain is203

1920×5760×3840m3 along the x-, y- and z-directions with an isotropic grid spacing of 20m. Pe-204

riodic boundary conditions are applied laterally, and Dirichlet and Neumann boundary conditions205

are applied at the bottom and top, respectively. The initial profiles of potential temperature and206

water vapor mixing ratio are derived from the LES intercomparsion of shallow cumulus convection207

by vanZanten et al. (2011), and are shown in Fig. 1. They represent the average thermodynamic208

state of a cumulus-topped boundary layer as observed during the Rain in Cumulus over the Ocean209

(RICO) field campaign (Rauber et al. 2007). Furthermore, no background winds, no large-scale210

subsidence, and no surface fluxes are applied. Note that the cloud motion is mainly driven by211

the latent heating of condensation, once the cloud reaches the lifting condensation level (LCL).212

Therefore, the cloud motion is not sensitive to the initial distribution of θ ∗, as long as the initial213

buoyancy is strong enough to reach the LCL, and the size of the initial bubble is much smaller214

than the cloud size.215
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Super-droplets are released 5 minutes after the start of the simulation randomly all over the216

model domain up to a height of 2800m, using a random generator for the spatial placement of217

each super-droplet. This delayed release of particles is necessary to avoid false divergences in the218

super-droplet field during the initial rise of the bubble of warm air, which are induced by the linear219

interpolation of the LES resolved-scale velocities on the particle location under strong vertical220

acceleration. Note that no cloud physical effects are missed due to the delayed introduction of221

super-droplets because the bubble of warm air does not reach its LCL at t = 5min.222

The average distance between super-droplets is initially 3.4m, yielding a total number of223

7.9×108 super-droplets and about 200 super-droplets per grid box, which is on the edge of com-224

putational feasibility and larger than the super-droplet concentrations usually reported as sufficient225

for the correct representation of cloud physics (e.g., Riechelmann et al. 2012; Arabas and Shima226

2013). Using an average value of An,init = 0.8× 109, 2.8× 109, and 6.0× 109, droplet number227

concentrations of approximately 20cm−3, 70cm−3, and 150cm−3 are simulated. Unless stated228

otherwise, the results from the 70cm−3 simulations are used for analysis. The initial weighting229

factor of each particle has been perturbed by a random factor chosen uniformly from the interval230

[0,2]. This approach allows a better representation of the collisional growth process for a given231

number of super-droplets by improving the statistics of the largest droplets, which preferentially232

grow from the super-droplets with the smallest weighting factors (Unterstrasser et al. 2016). The233

radius of all super-droplets is initially given by r = 0.01 µm, and the particles are not allowed to234

evaporate any smaller. A time step of ∆t = 0.2s is used in both LCM and LES.235

In order to clarify the role of cloud microphysics in raindrop formation, two simulations are236

carried out for each droplet concentration with different collection kernels K. The first simulation237

uses the traditional formulation of K by Hall (1980), which considers only gravitational collision238

and coalescence, and the second simulation includes TICE by parameterizations of particle rel-239
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ative velocities and clustering (Ayala et al. 2008) and enhanced collision efficiencies (Wang and240

Grabowski 2009) to the Hall (1980) kernel. In the latter case, the enhancement of the collection241

kernel by turbulence is parameterized as a function of the dissipation rate ε , which is calculated242

from the LES subgrid-scale model (Riechelmann et al. 2012). The coalescence efficiency has been243

assumed as unity.1 These simulations are called GRAV and TURB, respectively. Furthermore,244

with the aim to investigate the effect of DSD broadening, additional calculations are carried out,245

in which the diffusional growth is calculated by an adiabatic parcel model (APM, see Appendix A246

for a description of the APM).247

3. Results248

a. Evolution of a cumulus cloud and raindrop formation249

Figure 2 shows cross-sections of the liquid water mixing ratio ql at t = 12, 18, 24, and 30min250

in the case of TURB. Overlapped are the trajectories of 10 Lagrangian droplets that grow to the251

largest raindrops during the evolution of the cloud (t < 35min) within ±50m of the cross-section252

(hereafter super-droplets are called droplets for convenience). The cloud base height is about253

600m with an absolute temperature of 293.3K, and the maximum vertical velocity rarely exceeds254

4ms−1 (not shown).255

During the initial updraft stage (t = 12min), droplets already exist inside the cloud. As the cloud256

is developed further (t = 18min), most droplets tend to be located in the region with large ql near257

the cloud top, and raindrops (r > 40 µm) appear there at t = 24min. Here we refer to raindrops258

for droplets of r > 40 µm, similar to many bulk cloud microphysical models, which represents259

the transition from cloud droplets to raindrops induced by the dominance of collisional growth260

1The Weber number has been calculated for all collections and is generally smaller than 0.1 during the initial collisions and the triggering of

the rapid collisional growth, which validates the assumption of a unity coalescence efficiency (e.g., Beard and Ochs 1984).
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(e.g., Kessler 1969; Berry and Reinhardt 1974; Kogan 2013), although the term raindrop is often261

referred to drops larger than 250 µm in radius in other definitions. Once raindrops are formed262

(t > 24min), they settle down gravitationally with radii up to 500 µm (not visible from Fig. 2).263

Formation of raindrops near the cloud top of shallow cumuli is in agreement with the observation264

of shallow cumuli during RICO (Small and Chuang 2008). For example, Fig. 3 in Small and265

Chuang (2008) showed that raindrops larger than r = 100 µm only appear near the cloud top,266

although the frequency distributions of smaller droplets (r < 20 µm) have the similar shape near267

the cloud top and at the mid-cloud level.268

Figure 3 shows the cross-sections of re f f , σr, ε , and S soon after the raindrop formation (t =269

24min) for the same cloud as displayed in Fig. 2. Here re f f is the effective radius of droplets, and270

σ2
r is the variance of r in a grid box, which represents the width of the DSD. Values of S outside271

the cloud are not displayed to increase clarity. Large values of ql , ε , and S appear near the cloud272

top but away from the cloud edge. On the other hand, large values of σr appear near the cloud273

edge, indicating the broadening of DSD initiated by the entrainment of dry air and subsequent274

mixing. Values of re f f tend to increase with height. Furthermore, Fig. 2 and 3 also reveal the275

strong fluctuation of these values under the influence of turbulent mixing not only at the cloud276

edge but also in the cloud core.277

In order to examine the variability of these quantities, we calculated the probability density278

functions (PDFs) of ql , re f f , σr, σr/re f f , ε , and S at t = 24min from both GRAV and TURB279

(Fig. 4). Calculations are made for the data in the whole cloud and at the locations of potential280

raindrops, separately. Here we use the term potential raindrops for the Lagrangian super-droplets281

whose maximum size during the evolution of the cloud until t = 35min belongs to the largest 50282

raindrops. Potential raindrops that enter the cloud after t = 12min are filtered out in order to focus283

on droplets with similar entrainment times. Sensitivity to the sampling size and to the filtering284
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is discussed in Appendix B. The cloud is defined as the region where ql > 1.0× 10−2 gkg−1.285

The distributions of ql and ε within the cloud indicate an intermittent nature in which very large286

values are concentrated within small regions, while most other regions are filled with small values.287

The large variability of S within the cloud, as observed in Fig. 3d and 4e, provides the favorable288

condition for the broadening of DSD by droplets following different trajectories with different289

supersaturation histories to the point of observation, as suggested by Baker et al. (1980), Cooper290

(1989), Blyth (1993), and Lasher-Trapp et al. (2005). The PDF of σr indicates that potential291

raindrops exist less frequently in regions with σr < 3 µm and more frequently in regions with292

σr > 7 µm, resulting in a generally larger mean value of σr for potential raindrops. The fact that293

a large portion of the region within the cloud is subsaturated (S < 0) also reveals how much the294

cloud is affected by the entrainment of dry environmental air (Fig. 4e).295

Figure 4 shows the strong tendency of preferential concentration of potential raindrops in the296

region of high ql , re f f , σr, ε , and S, which is in agreement with observations (Small and Chuang297

2008; Gerber et al. 2008; Arabas et al. 2009) and with other simulation results (Cooper et al. 2013;298

Khain et al. 2013). In particular, Small and Chuang (2008) and Arabas et al. (2009) found that299

raindrops are located in the regions that have a DSD shifted to larger sizes, and in the regions300

that have experienced strong entrainment. It means that raindrops are likely to form in the regions301

where the conditions are favorable to collisional growth, such as a large liquid water mixing ratio302

(ql), strong turbulence (ε), a large effective radius (re f f ), a broad DSD (σr), and high supersatura-303

tions (S). Most potential raindrops are located within supersaturated regions (S > 0) in particular.304

One can also infer from Fig. 4d that σr/re f f is primarily about 0.6 in the whole cloud, and it is305

much smaller at the locations of potential raindrops (about 0.3 and 0.2 for GRAV and TURB,306

respectively).307
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Furthermore, the PDFs at the locations of potential raindrops are different between GRAV and308

TURB, although the PDFs sampled for the whole cloud are virtually the same. The tendency309

of raindrop formation in the regions of high ql , re f f , ε , and S are stronger in TURB, while the310

tendency of raindrop formation in the regions of high σr is stronger in GRAV. It suggests the311

possibility that the broadening of DSD plays a more important role in GRAV than in TURB for312

the formation of raindrops, while the large values of ql , re f f , ε , and S play more important roles313

in TURB, which will be discussed further in the next section.314

b. The route to raindrop formation315

Figure 5 shows the time series of the ensemble average of various quantities following potential316

raindrops, such as R, σr, ql , ε , re f f , N, Z, dRC/dt and dRD/dt, for GRAV and TURB. R and Z are317

the radius and height of potential raindrops, N is the droplet concentration, dRD/dt and dRC/dt are318

diffusional and collisional radius growth rates, respectively. Here it is important to note that R, Z,319

dRD/dt, and dRC/dt represent the mean values of potential raindrops themselves, ε represents the320

value of the grid boxes in which potential raindrops are located, and ql , σr, re f f , and N represent321

the statistics derived from all super-droplets within the grid boxes in which the potential raindrops322

are located. Also shown are the time series from the APM for both cases of GRAV and TURB323

(dashed lines).324

The most remarkable result is that raindrops (r > 40 µm) are formed in TURB in both cases of325

LCM and APM, unaffected by the broadening of DSD. Note that σr increases substantially in the326

LCM before the onset of the raindrop formation (t = 24min), while σr remains very small in the327

APM. In this case, one can argue that raindrops can be formed only if re f f becomes sufficiently328

large, as suggested by Khain et al. (2013), and the broadening of DSD does not play an important329

role in the raindrop formation.330
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On the other hand, in the case of GRAV, raindrops are severely delayed in the APM, even though331

ql and re f f are larger than in the LCM. It indicates clearly that raindrop formation in time requires332

the broadening of DSD, which may be produced by entrainment and mixing, if TICE is absent.333

The fact that ql and re f f calculated by the LCM are smaller than the predictions by the APM also334

confirms the effect of entrainment (Fig. 5c and e).335

At about t = 21min, the rapid increase of dRC/dt appears in both GRAV and TURB, followed336

by the rapid increase of R. We can regard this time as the triggering of the rapid collisional growth337

TC leading to precipitation. The rapid collisional growth can also be identified by the decrease of338

N after TC in Fig. 5f. The decrease of N from the APM for TURB becomes very large because of339

the stronger collection in undiluted cloud air, which is also reflected by the rapid increases of σr340

(Fig. 5b and f). R grows to the size of raindrops (r = 40 µm) at about t = 24min, soon after TC.341

The fact that R reaches about 20 µm at t = TC confirms the consensus in the raindrop formation342

process that the collisional growth can become significant only after some droplets reach a radius343

of r = 20 µm or so (Rogers and Yau 1989). Meanwhile, re f f = 16 µm at t = TC, which is somewhat344

larger than the observational evidence that the rapid formation of raindrops in convective clouds345

begins when re f f exceeds about 11 - 15 µm (e.g., Freud and Rosenfeld 2012; Khain et al. 2013).346

Another remarkable feature of the results is that the effect of TICE hardly affects TC, but newin-347

creases dRC/dt significantly afterwards (t > 25min). Meanwhile, the larger dRC/dt after TC under348

the influence of TICE leads to earlier and stronger precipitation (see also Fig. 6d and 8a), which is349

consistent with previous simulations using Eulerian cloud models (Pinsky and Khain 2002; Wang350

and Grabowski 2009; Seifert et al. 2010; Wyszogrodzki et al. 2013; Grabowski et al. 2015).351

The value of ε is slightly larger in TURB, which may reflect the fact that potential raindrops352

are located preferentially in highly turbulent regions (see Fig. 4d). Similarly, Z becomes slightly353

larger in TURB after TC, probably because the regions with the maximum ε are located closer354
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to the cloud top (Fig. 3). It should be mentioned that no significant difference between GRAV355

and TURB exists in the vertical distributions of the cloud as expected from Fig. 4. Soon after the356

onset of raindrop formation, ql , σr, ε , and re f f decrease following potential raindrops that settle357

gravitationally. The decrease starts earlier in TURB, in which the raindrops become larger and358

precipitation starts earlier, in agreement with Wyszogrodzki et al. (2013) and Grabowski et al.359

(2015) who reported an increased offloading of droplets when TICE is considered.360

In order to understand the route to raindrop formation more clearly, we divide the time series361

of ql in Fig. 5c, i.e., the liquid water mixing ratio of the grid boxes in which the tracked poten-362

tial raindrops are located, according to four different droplet size ranges; that are ql(r < 10 µm),363

ql(10 µm < r < 20 µm), ql(20 µm < r < 40 µm), and ql(r > 40 µm) displayed in Fig. 6. The364

magnitude of ql(r < 10 µm) shows a rapid increase to a sharp peak near t = 11min, due to365

diffusional growth during the initial updraft, and then decreases rapidly as droplets grow to the366

range of larger droplets ql(10 µm < r < 20 µm). ql(r < 10 µm) is maintained at a certain level367

thereafter, reflecting the contribution from the introduction of new droplets through entrainment368

and the presence of other droplets having experienced strong evaporation. Figure 6 also shows369

that ql(10 µm < r < 20 µm) and ql(20 µm < r < 40 µm) appear at t = 10 and 15min, respec-370

tively, but both start to decrease as the droplets are coalesced to larger droplets. The production of371

ql(r > 40 µm) starts to appear at t = 21min, and it becomes much larger in TURB after t = 25min,372

which is also confirmed by larger dRC/dt in Fig. 5h. This, however, is not only a direct result of373

TICE on the collection kernel, which affects droplets up to a radius of 100 µm, but rather the effect374

of the increased number of large droplets produced in TICE that are able to coalesce, as expected375

from the larger amount of ql(20 µm < r < 40 µm).376

The variation of droplets with different sizes can also be shown by the droplet spectra of the377

whole cloud at t = 12, 18, 24, and 30min, represented by the mass density distribution (Fig. 7).378
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The difference between GRAV and TURB appears mainly in the range r > 20 µm, in which the379

collisional growth becomes important, except at t = 30min. At t = 30min, the droplet concen-380

tration decreases for r < 40 µm, which is a result of the collection by the settling raindrops. This381

decrease is larger in TURB, where precipitation is stronger. Note that the mass density of droplets382

larger than r = 20 µm is slightly larger in TURB at t = 18min, while ql(20 µm < r < 40 µm) at383

the locations of potential raindrops is slightly larger in GRAV (Fig. 6c). This contradiction can be384

explained by the fact that potential raindrops in GRAV are preferentially located in the region with385

larger ql(20 µm < r < 40 µm), or equivalently with larger σr as observed in Fig. 4c.386

c. Sensitivity to CCN concentration387

In order to investigate how the route to raindrop formation, discussed in the previous section,388

is affected by the CCN concentration, we repeated the simulation with two other initial droplet389

concentrations N0 = 20 and 150cm−3 in addition to the previously presented simulation with390

N0 = 70cm−3. Figure 8 compares time series of the mass of precipitable water (the mass of all391

raindrops with r > 40 µm), R, Z, and ε for the CCN concentrations of N0 = 20, 70, 150cm−3 and392

for GRAV and TURB.393

For N0 = 150cm−3, precipitation is almost inhibited since a too large number of droplets com-394

petes for the available moisture. This delays the diffusional growth and results in smaller droplets.395

The delayed raindrop formation also keeps Z higher in the end of the cloud life cycle, since grav-396

itational settling is reduced. Due to increased dissipation rates at higher CCN concentrations397

(Fig. 8d), the effect of TICE becomes stronger, which increases the difference between TURB398

and GRAV in agreement with previous studies (Seifert et al. 2010; Benmoshe et al. 2012; Wys-399

zogrodzki et al. 2013; Grabowski et al. 2015; Lee et al. 2015), while this difference almost vanishes400

for low CCN concentrations. It suggests that, as the diffusional growth becomes sufficiently strong401
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at small N0, the mechanisms to help initiate collisions, such as the broadening of DSD and TICE,402

are less important.403

d. Dependence of raindrop formation on the width of the DSD404

Figure 5 shows clearly that the broadening of DSD is necessary to trigger precipitation in GRAV405

but it is not the case in TURB. In order to understand the reason for the different dependence of406

DSD broadening and TICE on ε , we calculate the time τR required by a super-droplet to reach407

the size of raindrop (r = 40 µm) by calculating the collisional growth of different log-normally408

distributed droplet spectra for different ε in a simple box-model. The DSD is always initialized409

with ql = 1.0gkg−1 but with a wide range of σr and re f f of the initial DSD, resulting in about410

17,500 individual simulations to reach statistical convergence. The collisional growth algorithm411

is the same as used in the LCM, and each DSD is represented by 200 super-droplets. Note that τR412

is closely related to the timing of the triggering of the rapid collisional growth TC defined above,413

although they can be different sometimes. For example, TC may be the same for TURB and GRAV414

from the LCM (Fig. 8b), while τR tends to be smaller for TURB as we will show here.415

Figure 9 compares the variation of τR with σr and re f f under different ε (ε = 0 and 100cm2 s−3).416

The difference of τR between ε = 0 and 100cm2 s−3 is small at large σr. However, τR in-417

creases much faster with decreasing σr at ε = 0cm2 s−3 than at ε = 100cm2 s−3. It makes418

τR(ε = 0cm2 s−3) much larger than τR(ε = 100cm2 s−3) as σr approaches zero.419

Accordingly, Fig. 9 explains why the triggering of precipitation is difficult at small σr in GRAV.420

If a few droplets grow by collection initially, the presence of larger droplets generated by these421

collections enhances the collision rate further. If the number of large droplets produced by initial422

collection becomes sufficiently large, it triggers the rapid collisional growth resulting in precipi-423

tation by this positive feedback, once the largest droplets reach a critical size (r = 20 µm). The424
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time scale to trigger this positive feedback is characterized by τR. τR can be short under a favorable425

condition for collision with increased K, provided either by TICE or by a broad DSD. On the other426

hand, τR can be longer than the typical lifetime of a cloud, and thus prohibiting precipitation, if427

the DSD is too narrow or TICE is too weak.428

The fact that τR is not sensitive to ε at large σr explains why TC is not significantly affected by429

TICE, as shown in Fig. 5a. In other words, rapid collisional growth can be triggered at about the430

same time in both GRAV and TURB, as long as there exists a region with sufficiently large σr. On431

the other hand, in the case of TURB, the rapid collisional growth can be triggered in a region with432

small σr as well. It leads to a much larger amount of precipitation in TURB, as shown in Fig. 6d433

and 8a.434

Regarding the APM simulations presented in Section 3b, it is worthwhile to mention that Fig. 9435

implies that, if the APM starts with a sufficiently large σr, it can trigger the raindrop formation in436

time even without TICE. The assumption of a large initial σr means, however, that the broadening437

of DSD is implicitly included from the start.438

4. Conclusion and discussion439

The present paper applied a recently developed Lagrangian cloud model (LCM) to clarify the440

mechanism of raindrop formation in warm clouds, which remains a key question in cloud physics.441

By taking advantage of the LCM, we investigated the formation of raindrops directly by tracking442

the history of Lagrangian droplets for the first time. The present work focuses on clarifying the443

respective roles of two different mechanisms of raindrop formation; that is, the broadening of the444

droplet size distribution (DSD), which might be induced by the mixing of droplets that have expe-445

rienced different supersaturation histories, and turbulence-induced collision enhancement (TICE).446

For this purpose, we compared the LCM results with two different collection kernels, with and447
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without turbulence effects (TURB and GRAV, respectively), and also compared the results of the448

LCM with those from an adiabatic parcel model (APM), in which the broadening of the DSD due449

to entrainment and mixing was absent.450

It is found that the rapid collisional growth, leading to the raindrop formation, is triggered when451

droplets with the radius r = 20 µm appear in the region near the cloud top, characterized by a452

large liquid water mixing ratio, large mean droplet size, strong turbulence, a broad DSD, and high453

supersaturations. The most important result is that raindrop formation can always occur in time in454

TURB, unaffected by the broadening of DSD, but it is severely delayed without the broadening of455

DSD in GRAV, or equivalently when the dissipation rate is assumed to be zero. The reason leading456

to the difference is clarified from idealized box-simulations of the collisional growth process for457

different DSDs. By analyzing the time to produce a raindrop τR (R > 40 µm), we have found that458

τR is small in both GRAV and TURB at large σr, but τR increases rapidly as σr goes to zero in459

GRAV, where σ2
r is the variance of r. The importance of the broadening of DSD in the raindrop460

formation in GRAV is also supported by the fact that the generation of raindrops is preferentially461

concentrated in the region of higher σr more strongly in GRAV.462

It is also found that, under the influence of TICE, the timing of the triggering the rapid collisional463

growth TC is not significantly accelerated, but the collisional growth rate becomes much larger after464

TC. It implies that the rapid collisional growth can be triggered at about the same time in GRAV465

and TURB, as long as there exists a region with sufficiently large σr. On the other hand, in the466

case of TURB, the rapid collisional growth can be triggered in a region with small σr as well,467

which leads to a much larger amount of precipitation in TURB. Simulations with different CCN468

concentrations show that higher droplet concentrations increase the time for raindrop formation,469

decrease precipitation, but intensify the effect of TICE in agreement with previous studies.470
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Furthermore, the results demonstrate how significantly entrainment and mixing affect the sim-471

ulated cloud; especially strong turbulence as a result of evaporative cooling as well as the large472

variability of the supersaturation within the cloud, including subsaturated regions, are necessary473

for TICE and the broadening of the DSD, respectively. It is important to note, however, that both474

TICE and DSD broadening are fundamentally linked to turbulence, ranging from convection and475

entrainment to small-scale turbulence on the droplet-scale. The present results suggest though, if476

turbulence within the cloud is sufficiently strong, the rapid collisional growth leading to precipita-477

tion is triggered regardless of the broadening of DSD. On the other hand, the broadening of DSD478

can play an important role in a weakly turbulent cloud. The intensity of turbulence varies widely479

depending on the cloud type; for example, dissipation rates of 1 - 10cm2 s−3 have been observed in480

stratocumulus, 10 - 100cm2 s−3 in shallow convective clouds, and values as large as 1000cm2 s−3
481

in deep convective clouds (e.g., Pruppacher and Klett 1997; Siebert et al. 2006; Shupe et al. 2012).482

Meanwhile, the uncertainty of the existing collection kernels is still large, not only in the collec-483

tion kernel including turbulence effects but also in the gravitational collection kernel itself (Klett484

and Davis 1973; Khain et al. 2007). Furthermore, the present simulation assumes homogeneous485

mixing within the grid, similar to many other cloud models. However, inhomogeneous mixing486

can make the DSD broadening larger than in the present simulations (Lasher-Trapp et al. 2005).487

Moreover, our idealized box-simulations indicate that raindrop formation can be substantially af-488

fected by the underlying aerosol distribution. For example, the aerosol mass will affect the height489

of droplet activation (e.g., Hoffmann et al. 2015) and therefore create an initial width of the DSD490

even in the absence of additional broadening by entrainment and mixing. Therefore, the relative491

importance of two mechanisms to raindrop formation, TICE and the broadening of DSD, may492

depend on the uncertainties in the collection kernel, the effect of inhomogeneous mixing, and in-493

fluence of the aerosol distribution. Moreover, the presence of giant aerosols in the atmosphere can494
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certainly help to accelerate the raindrop formation by enhancing the collision rate, too. Therefore,495

it is important to investigate the role of aerosol size distributions on the raindrop formation in a496

future study.497
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APPENDIX A508

a. The adiabatic parcel model509

In this study, an adiabatic parcel model (APM) is used to calculate adiabatic values of quan-510

tities along the trajectories of individual particles that have been calculated and tracked in the511

Lagrangian cloud model (LCM). The APM is based on the prognostic equations for the evolution512

of the supersaturation,513

dS
dt

=

(
gLv

cpRvT 2 −
g

RaT

)
dZ
dt
−
(

1
q
− L2

v
cpRvT 2

)[
dql

dt

]

cond
, (A1)
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and potential temperature,514

dθ
dt

=
Lv

Πcp

[
dql

dt

]

cond
, (A2)

in an adiabatically lifted parcel (e.g., Korolev and Mazin 2003). These equations are driven by515

the vertical motion of the parcel, dZ/dt, and the condensation or evaporation of liquid water,516

[dql/dt]cond . Here, g is the acceleration by gravity and Ra is the individual gas constant of dry air.517

Furthermore, changes in the water vapor mixing ratio are directly linked to changes in the liquid518

water mixing ratio q:519

[
dq
dt

]

cond
=−

[
dql

dt

]

cond
, (A3)

which are calculated as in the LCM by the diffusional growth equation (6), using the adiabatic520

supersaturation and temperature from (A1) and (A2), respectively. The adiabatic parcel is as-521

sumed to have the same properties as one grid cell in the LCM simulations, i.e., a volume of522

20×20×20m3 and 200 super-droplets from which the cloud microphysics are calculated by (6)523

for diffusional and (10) – (12) for collisional growth.524

The most important information taken from the tracked particles is their height Z. Furthermore,525

S, θ , and q of (A1) - (A3) are initialized by their respective values of the particle trajectory as526

soon as the particle is moved into a supersaturated grid cell. The adiabatic DSD is disturbed to527

produce a small, but finite width of DSD (σr = 0.05 µm), as soon as the droplets grow larger than528

r = 10 µm. Equations (A1) - (A3) are then integrated using the same time step as the LCM. In529

the case of TURB, the dissipation rate is also taken from the tracked droplets’ trajectories to steer530

turbulence-enhanced collisions.531

Note that the dynamics of the APM are driven by the LCM, but thermodynamics and cloud532

microphysics are independent. In that sense, the chosen approach resembles the piggybacking533

method of Grabowski (2015), which allows a direct assessment of the APM cloud microphysics534
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driven by the same dynamics as simulated in the LCM, i.e., in the identical dynamical framework535

without affecting it.536

APPENDIX B537

a. Sensitivity to the sampling of potential raindrops538

The analysis of this study is based on following individual potential raindrops, which are defined539

as the Lagrangian super-droplets whose maximum size during the evolution of the cloud belongs540

to the largest 50 droplets. The sampling is based on the fact that only 251 and 2982 super-droplets541

in GRAV and TURB, respectively, grow larger than 250 µm in radius during this period, and from542

these super-droplets only 51 and 211 super-droplets are entrained into the cloud before t = 12min.543

Therefore, we chose the largest 50 super-droplets for both GRAV and TURB for analysis. The544

growth of super-droplets that are entrained after t = 12min starts later, and therefore shifts the545

starting point of the time series to the later time. These super-droplets are therefore filtered out in546

Fig. 5 in order to focus on the distinct features of droplets with similar entrainment times.547

Nonetheless, it is necessary to examine how the time series are modified if all super-droplets548

are considered without filtering. Figure B1 compares the time series of R, σr, re f f , dRC/dt and549

dRD/dt corresponding to Fig. 5 from the data with with different sampling sizes (the largest 25, 50,550

100, and 200 super-droplets entrained before t = 12min) and different entrainment times [12min<551

t < 16min (entrmid), 16min < t (entrend)]. The time series show that they are insensitive to the552

sampling size, and thus indicating the robustness of the results shown in Fig. 5.553

Meanwhile, the super-droplets that are entrained to the cloud later delay the growth of R, σr,554

re f f , dRC/dt and dRD/dt, since the starting time of the droplet growth is shifted to a later time.555

However, the timing of the rapid collisional growth TC is only slightly delayed (≈ 2min), much556
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smaller than the difference in the starting time of diffusional growth, and the differences in the557

variables almost disappear at t = 27min. The main reason is that the start of the collisional growth558

of the super-droplets entrained earlier (t < 12min) already increased the values of σr and re f f559

inside the cloud, which provides the favorable background condition for the collisional growth of560

the super-droplets entrained later (t > 12min). It is also found that the rapid collisional growth is561

triggered when R reaches 20 µm, regardless of entrainment times.562
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FIG. 1: Initial profiles of (a) potential temperature θ and (b) water vapor mixing ratio q.
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FIG. 2: Evolution of liquid water mixing ratio at a vertical cross-section at t = 12, 18, 24, and
30min, overlapped with 10 Lagrangian droplets that grow to the largest raindrops during the evolu-
tion of the cloud until t = 35min within±50m of the cross-section. The color of a droplet changes
according to its size (blue: r < 10 µm, yellow: 10 µm < r < 20 µm, orange: 20 µm < r < 40 µm,
red: 40 µm < r < 100 µm, violet: r > 100 µm).
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FIG. 3: Other variables at t = 24min of the cross-section displayed in Fig. 2 (TURB): (a) re f f ,
(b) σr, (c) ε , (d) S.
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FIG. 4: Probability density functions (PDFs) of variables at t = 24min in the whole cloud (solid
line) and at the locations of potential raindrops (dashed line) (red: GRAV, blue: TURB):(a) ql , (b)
re f f , (c) σr, (d) σr/re f f , (e) S, (f) ε .
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FIG. 5: Time series of the ensemble average of physical variables following potential raindrops
(red: GRAV, blue: TURB; solid line: LCM, dotted line: APM, green vertical line: t = TC): (a) R,
(b) σr, (c) ql , (d) ε , (e) re f f , (f) N, (g) Z, (h) dRC/dt and dRD/dt.
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FIG. 5 (cont.)
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FIG. 6: Time series of the ensemble average of ql according to different size ranges following
potential raindrops (red: GRAV, blue: TURB, green vertical lines: t = TC): (a) r < 10 µm, (b)
10 µm < r < 20 µm, (b) 20 µm < r < 40 µm, (d) r > 40 µm.
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FIG. 7: Mass density distributions of droplets at t = 12, 18, 24, and 30min (solid: GRAV, dashed:
TURB).
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FIG. 8: Times series of variables from different initial droplet concentrations: (a) the mass of pre-
cipitable water (r > 40 µm), (b) R, (c) Z, and (d) ε (solid: GRAV, dotted: TURB) (blue: 20cm−3,
green: 70cm−3, red: 150cm−3).
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FIG. 9: The variation of the time to reach raindrops τR from box-simulations of the collisional
growth process starting from different log-normally shaped droplet size distributions with different
σr and re f f : (a) GRAV (ε = 0cm2 s−3), (b) TURB (ε = 100cm2 s−3), (c) the variation of τR with
σr for re f f = 14 µm.
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Fig. B1: Time series of the ensemble average of physical variables following potential raindrops in
TURB with different sampling sizes and without filtering (black: 25, blue: 50, green: 100, yellow:
200, red: entrained between 12 and 16min (entrmid), purple: entrained after 16min (entrend)): (a)
R, (b) σr, (c) re f f , (d) dRC/dt and dRD/dt.
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Abstract. Activation is necessary to form a cloud droplet from an aerosol, and it occurs as soon as a wetted aerosol grows1

beyond its critical radius. Traditional Köhler theory assumes that this growth is driven by the diffusion of water vapor. However,2

if the wetted aerosols are large enough, the coalescence of two or more particles is an additional process for accumulating3

sufficient water for activation. This transition from diffusional to collectional growth marks the limit of traditional Köhler4

theory and it is studied using a Lagrangian cloud model in which aerosols and cloud droplets are represented by individually5

simulated particles within large-eddy simulations of shallow cumuli. It is shown that the activation of aerosols larger than6

0.1µm in dry radius can be affected by collision and coalescence, and its contribution increases with a power-law relation7

toward larger radii and becomes the only process for the activation of aerosols larger than 0.4− 0.8µm depending on aerosol8

concentration. Due to the natural scarcity of the affected aerosols, the amount of aerosols that are activated by collection is9

small with a maximum of 1 in 10000 activations. The fraction increases as the aerosol concentration increases, but decreases10

again as the number of aerosols becomes too high and the particles too small to cause collections. Moreover, activation by11

collection is found to affect primarily aerosols that have been entrained above the cloud base.12

1 Introduction13

Activation is necessary for the formation of droplets from aerosols. Accordingly, activation controls the number and size of14

cloud droplets and hence so-called aerosol-cloud interactions, e.g., cloud albedo (Twomey, 1974) or cloud lifetime (Albrecht,15

1989). In contrast to cloud droplets, which behave like bulk water, the understanding of unactivated aerosols and their activa-16

tion depends fundamentally on the aerosol’s physicochemical properties, which cause the so-called solute and curvature effects17

(Köhler, 1936). These effects enable, on the one hand, the stable existence of haze particles (also termed wetted aerosols) in18

subsaturated environments and inhibit, on the other hand, diffusional growth if the supersaturation does not exceed a certain19

threshold. This so-called critical supersaturation is associated with a critical radius, to which a wetted aerosol must grow to be20

considered as activated. Small aerosols activate almost immediately when the supersaturation exceeds the critical supersatura-21

tion, as it is assumed in many parameterizations of the activation process (e.g., Twomey, 1959). For larger aerosols, however,22

the critical radius becomes so large that the time needed for activation can be substantially increased (or even prevented un-23

der certain conditions) due to the kinetically limited transport of water vapor to the particle’s surface (Chuang et al., 1997).24

Therefore, Köhler activation theory is usually considered a weak concept for these particles. But where are the limits of Köhler25

1
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activation theory located? An upper limit of the applicability of Köhler activation theory can be identified by the switch from26

predominantly diffusional to collectional (collision followed by coalescence) mass growth if the involved particles become27

large enough. Indeed, inactivated aerosols triggering collisions is closely related to the impact of giant and ultra-giant aerosols28

(dry radius > 1µm) on clouds, which are able to initiate precipitation due to their large wet radii (> 20µm) (e.g., Johnson,29

1982). Recent studies indicate that collection might even affect smaller particles: by considering the effects of turbulence, the30

collection kernel for the interaction of small particles can be significantly increased (e.g., Devenish et al., 2012). Accordingly,31

the main questions of this study are: Where are the limits of traditional Köhler theory? At which aerosol size will collection32

dominate the activation process? And how much does collectional activation contribute to the activation of aerosols? To an-33

swer these questions, theoretical arguments and large-eddy simulations (LES) with particle-based cloud physics are applied.34

Particle-based cloud physics, so-called Lagrangian cloud models (LCMs), are especially suitable for this study because they35

explicitly resolve the activation process and do not rely on a parameterization of it (e.g., Andrejczuk et al., 2008; Hoffmann36

et al., 2015; Hoffmann, 2016). Therefore, the results will give insights on the physical processes usually not covered (or missed)37

by those activation parameterizations typically implemented in other cloud models.38

This paper is designed as follows. The subsequent Section 2 will illuminate how collections can cause (or even inhibit)39

activation by simple theoretical arguments. In Section 3, the LES-LCM simulation setup is introduced. Results will be presented40

in the Sections 4 and 5, where the former section exemplifies the applied methodology used to untangle diffusional from41

collectional activation and the latter section presents the results from a shallow cumulus test case. The study is summarized and42

discussed in Section 6. Appendix A introduces the governing equations of the applied LCM and necessary extensions carried43

out for this study.44

2 Theoretical considerations45

In this section, the general effects of coalescence on the activation of aerosols will be addressed. To simplify the argumentation46

in this part of the study, it is assumed that collections take place regardless of the physics that enable or inhibit them in reality.47

We consider one particle which grows by coalescing with other particles. Accordingly, the particle’s water mass after n48

collections is given by49

mn =m0 +
n∑

i=1

mi =m0 +n · 〈m〉, (1)50

where m0 terms the particle’s initial water mass and mi (i > 0) the mass of water added by each collection. The second equals51

sign introduces the assumption of a monodisperse ensemble of collected particles.52

Based on Köhler theory, it can be shown that the critical radius for activation is given by53

rcrit =

√
3
b ·ms

A
, (2)54

where ms is the dry aerosol mass. Curvature effects are considered by A= 2σ/(ρlRvT ), depending on the surface tension of55

water σ, mass density of water ρl, specific gas constant of water vapor Rv, and temperature T . The physicochemical aerosol56

2
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Figure 1. Change of particle radius (black line) and critical radius (colored lines) as a function of the number of collections for the growth

scenarios A (negligible increase of aerosol mass, blue line) and B (aerosol mass increases proportional to the number of collections, red

lines) as well as initially inactivated (continuous lines) and activated particles (dashed line). The initial wet particle radius and the wet radii

of the collected particles are assumed to be 6µm. The initial dry aerosol mass (sodium chloride) is 2.2× 10−16 kg (0.29µm dry radius)

(continuous lines) and 4.4× 10−17 kg (0.17µm dry radius) (dashed line). For scenario B, the collected particles contain 2.2× 10−16 kg dry

aerosol mass (0.29µm dry radius).

properties responsible for the solute effect are represented by b= 3νsρsµl/(4πρlµs), with the van’t Hoff factor νs, the mass57

density of the aerosol ρs, and the molecular masses of water µl and aerosol µs, respectively. Accordingly, the critical mass for58

activation after n collections yields59

mcrit,n =
4
3
πρl · r3crit,n =

4
3
πρl ·

[
3
b

A
·
(
ms,0 +

n∑

i=1

ms,i

)]3/2

, (3)60

where ms,0 terms the initial aerosol mass and ms,i (i > 0) the aerosol mass added by each collection. Approximating the61

summation in (3) demands further assumptions on the distribution of aerosol mass within the particle spectrum. Two scenarios62

are defined. Scenario A: the collected particles contain a negligible amount of aerosols. Accordingly, the aerosol mass does63

not change (
∑n

i=1ms,i = 0). Scenario B: each particle contains the same mass of aerosol. Correspondingly, the aerosol mass64

increases proportionally to the number of collections (
∑n

i=1ms,i = n · 〈ms〉).65

In Fig. 1, the evolving particle radius and critical radius are displayed as a function of the number of collections (details on66

the particle properties are given in the figure’s caption). The simultaneous examination of particle radius and critical radius67

reveals if a particle is activated (particle radius larger than critical radius) or deactivated (particle radius smaller than critical68

3
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radius). For scenario A, the initially inactivated particle (black line) grows faster than the critical radius (blue line), and the69

aerosol activates after 3 collections. For scenario B, an initially inactivated particle (continuous red line) and an initially70

activated particle (dashed red line) are examined. Since the critical radius for activation increases faster than the particle radius,71

activation is inhibited or the deactivation of previously activated particle is caused.72

These considerations suggest that only the collection of particles with a large amount of water and a comparably small73

amount of aerosol mass (i.e., highly dilute solution droplets) might lead to activation (as shown in scenario A). This, however,74

indicates that the collected particles are probably activated already. Therefore, the process of collectional activation will not in-75

crease the total number of activated aerosols since one ore more already activated aerosols need to be collected (or annihilated)76

in the process of collectional activation. By contrast, the collection of particles with a comparably large amount of aerosol77

(i.e., less dilute solutions, as shown in scenario B) might inhibit activation since the increase of the critical radius exceeds the78

increase of the wet radius.79

The following part of the study is investigating how coalescence is able to cause aerosol activation in shallow cumulus clouds80

using a detailed cloud model considering diffusional growth as well as detailed physics of collision and coalescence.81

3 Simulation setup82

The following results are derived from LES simulations applying an LCM for representing cloud microphysics. The LCM is83

based on a recently developed approach which simulates individual particles that represent an ensemble of identical particles84

and maintains, as an inherent part of this approach, the identity of droplets and their aerosols throughout the simulation (An-85

drejczuk et al., 2008; Shima et al., 2009; Sölch and Kärcher, 2010; Riechelmann et al., 2012; Naumann and Seifert, 2015). A86

summary of the governing equations and the extensions carried out for this study to treat aerosol mass change during collision87

and coalescence is given in the Appendix A. The underlying dynamics model, the LES model PALM (Maronga et al., 2015),88

solves the non-hydrostatic incompressible Boussinesq-approximated Navier-Stokes equations, and prognostic equations for89

water vapor mixing ratio, potential temperature, and subgrid-scale turbulence kinetic energy. For scalars, a monotonic advec-90

tion scheme (Chlond, 1994) is applied to avoid spurious oscillations at the cloud edge (e.g., Grabowski and Smolarkiewicz,91

1990).92

The initial profiles and other forcings of the simulation follow the shallow trade wind cumuli intercomparison case by93

Siebesma et al. (2003), which itself is based on the measurement campaign BOMEX (Holland and Rasmusson, 1973). A94

cyclic model domain of 3.2× 3.2× 3.2km3 is simulated. (In comparison to Siebesma et al. (2003), the horizontal extent has95

been halved in each direction due to limited computational resources.) The grid spacing is 20m isotropically. Depending on96

the prescribed aerosol concentration, a constant time step of ∆t= 0.2− 0.5s had to be used for the correct representation of97

condensation and evaporation, but it is also applied to all other processes. The first 1.5 hours of simulated time are regarded as98

model spin-up; only the following four hours are analyzed.99

The simulated particles, called super-droplets following the terminology of Shima et al. (2009), are released at the beginning100

of the simulation, and are randomly distributed within the model domain up to a height of 2800m. The average distance between101

4
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Figure 2. The number density distribution of dry aerosol radii for different aerosol concentrations (line brightness).

the super-droplets is 4.3m, yielding a total number of about 360× 106 simulated particles and about 100 super-droplets per102

grid box. Initial weighting factors, i.e., the number of real particles represented by each super-droplet, are 8× 109, 48× 109,103

160×109, 320×109, and 640×109, representing aerosol concentrations of 100, 600, 2000, 4000, and 8000cm−3, respectively.104

These result in average droplet concentrations of 48, 220, 550, 750, and 1000cm−3, respectively.105

The dry aerosol radius is assigned to each super-droplet using a random generator which obeys a typical maritime aerosol106

distribution represented by the sum of three lognormal distributions (Jaenicke, 1993) (Fig. 2). However, only aerosols larger107

than 0.005µm are initialized since smaller aerosols do not activate in the current setup. The different aerosol concentrations108

are created by scaling the weighting factor of each simulated particle to attain the desired concentration. The aerosols are109

assumed to consist of sodium chloride (NaCl, mass density ρs = 2165kgm−3, van’t Hoff factor νs = 2, molecular weight µs =110

58.44gmol−1). The initial wet radius of each super-droplet is set to its approximate equilibrium radius depending on aerosol111

mass and ambient supersaturation (Eq. (14) in Khvorostyanov and Curry, 2007). The applied collection kernel includes effects112

of turbulence, which have been shown to increase the collection probability of small particles significantly (e.g., Devenish113

et al., 2012). See Appendix A for more details.114

4 Methodology115

In this section, the applied methodology for untangling the contributions of diffusion and collection to the activation of aerosols116

is introduced. An aerosol becomes activated when it grows beyond its critical radius (r > rcrit). This process can be driven by the117

diffusion of water vapor or by accumulating liquid water due to collection or by a combination of both. To enable unhindered118

5
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Figure 3. Time series of a particle which is activated by collection. Panel (a) shows its radius (black) and critical radius (red) and panel (b)

depicts the ambient supersaturation experienced by that particle (black) and its critical supersaturation (red).

diffusional growth after activation, the activated particle is required to be located in a volume of air which exceeds the critical119

supersaturation at the moment of activation (S > Scrit at r = rcrit). This is always fulfilled in the case of diffusional growth, but120

it is checked additionally in the case of collectional activation to ensure equivalence of collectional and diffusional activation.121

To decide if an activation is primarily driven by diffusion or collection, all simulated particles have been tracked throughout122

the simulation and their mass growth has been integrated from their minimum mass before activation, min(m), to the critical123

activation mass, mcrit:124

∆m|diff =

mcrit∫

min(m)

dm|diff, (4)125

∆m|coll =

mcrit∫

min(m)

dm|coll, (5)126

where dm|diff and dm|coll are directly derived from the LCM’s model equations (A2) and (A5) – (A6), respectively. Note the127

following procedures for determining min(m), ∆m|diff, and ∆m|coll during the simulation: (i) If a particle shrinks below128

min(m) before activation, ∆m|diff and ∆m|coll are set to zero and are re-calculated starting from this new minimum mass.129

(ii) If a particle becomes deactivated, i.e., evaporates smaller than its critical radius after being activated, the current mass is130

considered the new min(m) and ∆m|diff and ∆m|coll are set to zero. (iii) If a collection does not result in an activation and131

the particle evaporates back to its equilibrium radius afterwards, ∆m|diff will be negative and ∆m|coll positive. To avoid the132

potentially incorrect classification of a following activation, ∆m|diff and ∆m|coll are set to zero if ∆m|diff becomes negative133

and the current mass is considered as min(m).134

The following two processes are considered a collectional activation if the collectional mass growth exceeds the diffusional135

(dm|coll > dm|diff): first, the coalescence of two inactivated aerosols resulting directly or after some diffusional growth in an136

6
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Figure 4. Vertical profiles of the collectional activation rate (a), the maximum diffusion radius (b), and the supersaturation (c) for the analyzed

aerosol concentrations (line brightness).

activation; second, the coalescence of an inactivated aerosol with an activated aerosol resulting in an inactivated aerosol, which137

activates after some diffusional growth. If the latter process results directly in an activated aerosol, this collection is only138

considered a collectional activation if the wet radius of initially activated particle is smaller than the critical radius of the139

newly formed activated particle. The latter restriction ensures that the coalescence of both particles is necessary to aggregate140

the required amount of water for activation and excludes scavenging by large activated particles collecting smaller ones while141

precipitating. Note that only collections of the first type are able to increase the number of activated aerosols, while the second142

type might have no or a negative impact on the total number of activated aerosols as discussed in Section 2.143

To exemplify this methodology, Fig. 3 shows, for an aerosol selected from the LCM simulations discussed below, the time144

series of its radius and critical radius (panel a) and the ambient supersaturation and critical supersaturation (panel b). Note that145

this aerosol is actually one super-droplet, representing a larger ensemble of identical aerosols, which is, however, interpreted as146

one aerosol here. The initial dry radius of the aerosol is 0.27µm. On its way to activation, the particle experiences diffusional147

growth, which can be easily identified by the continuous change of radius. One collection event, characterized by a distinct148

increase in radius, is visible at 6220s simulated time. At this point in time, the inactivated aerosol (wet radius 3.1µm) coalesces149

with an activated particle (wet radius 7.8µm, aerosol dry radius 0.13µm), but the product of coalescence (wet radius 7.9µm,150

aerosol dry radius 0.28µm) remains inactivated. Due to the increased amount of aerosol mass, the critical radius (and to a lesser151

extent the critical supersaturation) increases (decreases) after the coalescence. Afterwards, the particle grows by diffusion and152

exceeds the critical radius at 6253s simulated time, which can be identified as the time of activation. All in all, this activation153

is considered a collectional activation since dm|coll = 1.9× 10−12 kg> dm|diff = 6.2× 10−13 kg.154

5 Results155

The last section showed that collection can contribute significantly to the mass growth leading to the activation of a single156

aerosol. But how does collection contribute to the activation of aerosols in general? Figure 4 shows the vertical profiles of157

(a) the collectional activation rate, i.e., the number of aerosols activated by collection per unit volume and unit time, (b) the158
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Figure 5. The collectional fraction of all activations as a function of the aerosol concentration.

maximum diffusion radius, i.e., the maximum critical radius of aerosols exclusively activated by diffusion at a certain height,159

and (c) the supersaturation. Profiles (a) and (c) are conditionally averaged over all supersaturated grid cells. Only data of the160

last 4 simulated hours is considered. Values above the average cloud top height (at 1500m) are not displayed due to insufficient161

statistics.162

The maximum diffusion radius (Fig. 4 b) increases (neglecting outliers) monotonically with height reaching maxima between163

40µm and 9µm for aerosol concentrations of 100cm−3 to 8000cm−3, respectively. The supersaturation (Fig. 4 c) exhibits164

a distinct peak at the cloud base and relaxes toward its equilibrium value determined by the number of activated aerosols165

and vertical velocity above (e.g., Rogers and Yau, 1989, Chap. 7). Due to the larger number of water vapor absorbers, the166

supersaturation as well as the maximum diffusion radius are generally smaller in the more aerosol-laden simulations.167

The collectional activation rate (Fig. 4 a) increases almost linearly with height. This increase can be related to the longer168

lasting diffusional growth resulting in potentially larger particles at higher levels, which increases the collection kernel and169

therefore the collection probability. The slope is larger in aerosol-laden environments, where more aerosols are available170

for activation. Additionally, the height above cloud base where the collectional activation starts increases with the aerosol171

concentration since the average particle radius is too small to enable collisions at lower levels. Accordingly, the collectional172

activation rate in the 8000cm−3 simulation exhibits smaller to similar values than in the 4000cm−3 simulation although the173

slope in the 8000cm−3 simulation is larger. Note that the general shape of the collectional activation rate differs significantly174

from the typical profile of diffusional activation, which exhibits as a distinct peak at cloud base where the majority of aerosols175

activates by diffusion (not shown, see, e.g., Slawinska et al., 2012; Hoffmann et al., 2015).176
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Figure 6. The collectional (red lines) and diffusional (blue lines) fraction of activations as a function of the dry aerosol radius (lower abscissa)

and critical radius (at cloud base temperature of 294.5K, upper abscissa) for the analyzed aerosol concentrations (line brightness).

Generally, the contribution of collectional activation to the number of activated aerosols is significantly smaller than the177

contribution of diffusional activation (Fig. 5): only 1 activation in 10000 to 35000 is caused by collection, with a greater178

contribution of collectional activation in moderately aerosol-laden environments up to 4000cm−3. As it will be outlined below,179

this increase can be attributed to a shift of collectional activation to smaller, but more numerous aerosols. For 8000cm−3,180

however, the fraction decreases again since the particles are too small to trigger a larger amount of collisions.181

Figure 6 shows the collectional and diffusional fraction of activations as a function of the dry aerosol radius on the lower182

abscissa and the corresponding critical radius (calculated for the cloud base temperature of approximately 294.5K) on the183

upper abscissa. As expected, diffusional activation is the dominant process for small aerosols (dry radius < 0.1µm) as long184

as the dry aerosol radius is not too small and the corresponding critical supersaturation not too high to inhibit activation.185

Accordingly, the left boundary of diffusional activation is shifted toward larger radii as the maximum supersaturations decrease186

in more aerosol-laden environments (see Fig. 4 c). For aerosols larger than 0.1µm, collectional activation becomes increasingly187

important affecting aerosols in the range of 0.16− 2.5µm, 0.13− 0.65µm, 0.11− 0.46µm, 0.092− 0.33µm, 0.11− 0.28µm188

for aerosol concentrations of 100, 600, 2000, 4000, and 8000cm−3, respectively. Larger aerosols do not activate at all.189

The collectional fraction of activations increases following a power-law relation toward larger radii, reflecting the higher190

collision probability of larger particles. The collectional fraction reaches up to 100% for the 100, 600, and 2000cm−3 simula-191
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Figure 7. Panel (a) displays the number of collected activated (red lines) and inactivated aerosols (blue lines) necessary to cause collectional

activation as a function of the dry aerosol radius for the analyzed aerosol concentrations (brightness). The data has been binned; each bin

contains at least 3% of all registered collectional activations. Panel (b) shows the effective activation ratio (i.e., the net increase in the number

of newly activated aerosols per collectional activation) as a function of aerosol concentration.

tions at about 0.83, 0.54, and 0.42µm dry aerosol radius, respectively, indicating a significant effect of collectional activation192

on this part of the aerosol spectrum. For higher aerosol concentrations, collectional activation does not dominate, but still con-193

tributes noteworthy with fractions up to 20% and 10% for aerosol concentrations of 4000 and 8000cm−3, respectively. The194

dry aerosol radius at which activation reaches 100% can be clearly assigned to the maximum radii that can be produced by195

diffusion. To create any larger particles, existing particles need to be merged. Accordingly, to activate aerosols with a larger196

critical radius, collection must be inherently involved. For the 100cm−3 simulation, the largest radii produced by diffusion are197

about 40µm (neglecting the outliers in Fig. 4 b), corresponding to a dry aerosol radius of 0.76µm, which is close to the dry198

aerosols exhibiting a 100% collectional fraction of activations. A similar agreement can be found for the simulations initialized199

with aerosol concentrations of 600 and 2000cm−3.200

In general, the range of aerosols affected by collectional activation shifts toward smaller radii as the aerosols concentration201

increases. This is primarily a result of the decreasing maximum radii that can be reached by diffusion alone (Fig. 4 b). Addi-202

tionally, the supersaturation decreases too (Fig. 4 c), which decelerates diffusional activation and therefore favors collectional203

activation. Since small aerosols are significantly more abundant than larger ones (Fig. 2), the number of aerosols that are po-204

tentially activated by collection increases as a result of this shift, resulting in the larger collectional fraction of all activations205

shown in Fig. 5.206

In Section 2, it has been argued that the collection of particles with a large fraction of liquid water (and accordingly less207

aerosol) are more beneficial to collectional activation than particles with a large amount of aerosol mass. Figure 7 a displays the208

average number of collisions that take place during a collectional activation, separated into collected activated and collected209

inactivated particles. Accordingly, their sum yields the total number of collected particles necessary for a collectional activation.210
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Figure 8. Collectional fraction of (a) the mass growth leading to collectional activation, and (b) the average entrainment height as a function

of the dry aerosol radius for the analyzed aerosol concentrations (brightness). The data has been binned; each bin contains at least 3% of all

registered collectional activations.

For dry aerosol radii up to 0.3− 0.5µm (depending on aerosol concentration), only one collection (activated plus inactivated)211

is necessary to cause activation, while for larger aerosols more collections are needed. For the aerosols activated by only one212

collision, about 40% of all events involve two inactivated aerosols and 60% an inactivated as well as one activated aerosol,213

indicating the beneficial effect of highly dilute solution droplets to collectional activation as discussed above.214

Accordingly, a substantial number of activated aerosols are annihilated during collectional activation. To quantify the influ-215

ence of collectional activation on the number of activated aerosols, the effective activation ratio is defined: the net increase in216

the number of newly activated aerosols per collectional activation. Figure 7 b displays the effective activation ratio calculated217

from all registered collectional activations. For an aerosol concentration of 100cm−3, where a large portion of aerosols needs218

multiple collections for activations, the effective activation ratio is −1.2, i.e., more activated aerosols are annihilated than pro-219

duced. But already for an aerosol concentration of 600cm−3 and more, the effective activation ratio becomes positive and is220

approximately constant at 0.4, indicating that per collectional activation an average number of 0.4 new activated aerosols are221

produced. This ratio has to be considered in the interpretation of Fig. 5, indicating that the net effect of collectional activation222

is actually smaller (or even negative).223

Although activation is dominated by collectional mass growth for larger aerosols, the growth by diffusion is still essential to224

create sufficiently large particles to trigger collisions. Figure 8 a depicts the collectional fraction of mass growth needed to grow225

beyond the critical mass for activation (for aerosols activated by collection). Note that the diffusional fraction of mass growth226

is the remaining fraction. For the smallest affected aerosols (∼ 0.1µm), the collectional fraction of mass growth is about 75%227

and decreases slightly to 65% for aerosols of ∼ 0.4µm, indicating that a large contribution of diffusional growth is necessary228

to produce sufficient large particles that are able to collide. The slight decrease toward larger radii is in agreement with the229

decrease in the number of activated aerosols collected during the activation process (Fig. 7 a): collection is only possible for230
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the smallest aerosols if they encounter a substantially larger activated particle, which results in a larger collectional fraction231

of mass growth and a larger number of collected activated aerosols. For aerosols larger than 1µm, the collectional fraction232

increases rapidly to 97%, which can be attributed to the large critical radii which can be only exceeded by the collection of233

multiple droplets.234

Figure 8 b displays the mean entrainment height of the particles involved in each collectional activation. Despite the largest235

particles (> 0.6µm) in the most pristine case (100cm−3), all collectional activations involve particles that have entered the236

cloud well above the cloud base, which is located at 500−600m. Accordingly, these particles miss the typical supersaturation237

maximum located at cloud base (see Fig. 4 c), where a majority of these aerosols normally activates. Indeed, entrainment above238

cloud base is generally favorable for collectional activation since these aerosols are mixed into an environment where larger239

particles exist, triggering collisions among them more easily. For aerosols larger than 0.6µm, the average entrainment height240

is located closer to the cloud base. Since multiple collections are necessary for their activation (see Fig. 7 a), the lower average241

entrainment height is more representative for the average entrainment height of all particles inside the cloud, which is the cloud242

base (e.g., Hoffmann et al., 2015).243

6 Summary and discussion244

The influence of collision and coalescence on the activation of aerosols has been studied using theoretical arguments and large-245

eddy simulations (LES) with a coupled Lagrangian cloud model (LCM). The presented theory has shown that an unactivated246

aerosol can be activated by the collection of particles with a comparably small amount of aerosol mass (i.e., particles consisting247

almost entirely of water), while the collection of large amounts of additional aerosol mass inhibits activation or even causes the248

deactivation of previously activated aerosols. The LCM simulations of shallow trade wind cumuli indicated that collectional249

activation becomes possible for aerosols larger than approximately 0.1µm in dry radius, and its contribution increases with a250

power-law relation toward larger aerosols. In pristine conditions, collection is the only process for the activation of aerosols251

larger than 0.83µm in dry radius at an aerosol concentration of 100cm−3. This boundary is shifted to smaller radii in more252

polluted environments (down to 0.42µm at 2000cm−3). The highest contribution of collectional activation to the total number253

of activated aerosols is found at an aerosol concentration of 4000cm−3, where 1 in 10000 activations is caused by collec-254

tion. If the aerosol concentration becomes higher and hence the particles too small, collectional activation is inhibited and its255

contribution decreases again. Collectional activation frequently involves the collection of already activated aerosols reducing256

the net increase of newly activated aerosols per collectional activation to 0.4, while the remainder (0.6 activated aerosols) is257

annihilated during the activation process. Moreover, collectional activation affects predominantly particles that have been en-258

trained above cloud base, i.e., activates aerosols that have not been able to activate by diffusion at cloud base, where the largest259

supersaturations occur. Finally, it has been shown that the collectional activation rate increases almost linear with height, while260

the slope and the height, from which collectional activation starts, increase with the aerosol concentration.261

In conclusion, this study revealed collision and coalescence as an additional process for the activation of aerosols. This262

process is not covered by commonly applied activation parameterizations (e.g., Twomey, 1959). But does this matter? First263
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of all, with a maximum of 1 in 10000 activations, collectional activation can be safely neglected. But one can also argue264

that collectional activation is already (but implicitly) covered by standard cloud models: Activation parameterizations usually265

activate aerosols as soon as the critical supersaturation is exceeded, i.e., they neglect kinetic effects inhibiting the immediate266

activation of large aerosols, which need a certain time to grow beyond their critical radius. As pointed out by Chuang et al.267

(1997), this might overestimate the number of activated aerosols (or cloud droplets) since a certain fraction of the larger268

aerosols is falsely treated as activated (or as cloud droplets). However, following the argumentation of Nenes et al. (2001),269

these particles might act, due to their large wet radii, as regular cloud droplets although they are not formally activated, and the270

estimated droplet number concentration is not influenced by this shortcoming of the activation parameterization. And indeed,271

this study showed that a certain fraction of these formally inactivated particles are able to collide and coalesce, i.e., act as272

regular cloud droplets. Similarly, in standard cloud models, these falsely activated cloud droplets will experience the model’s273

representation of collision and coalescence that might ultimately result in an implicit realization of collectional activation.274

Accordingly, collectional activation is not of particular importance for determining the number of cloud droplets, but it275

indicates clearly the limits of Köhler activation theory. Without ambiguity, diffusion-based Köhler theory is only applicable276

to aerosols smaller than 0.1µm in dry radius, while an increasing fraction of aerosols activates by collection at larger radii.277

Ultimately, the activation of aerosols larger than about 1.0µm is entirely caused by collection (if it takes place at all). Therefore,278

the range between approximately 0.1µm and 1.0µm should be considered as a transition zone between (i) typical aerosols that279

need to experience sufficiently strong supersaturations to grow beyond the critical radius and (ii) so-called giant and ultra-280

giant aerosols with sufficiently large wet radii to act like cloud droplets by triggering collision and coalescence without being281

formally activated (e.g., Johnson, 1982).282

Finally, potential sources of uncertainty within this study shall be mentioned. First, the accuracy of the applied collection283

kernel is limited. The widely-used collision efficiencies of Hall (1980) for small particles (. 20µm) are slightly higher than284

other estimates (e.g., Böhm, 1992). An effect of this uncertainty is the collectional activation of aerosols that are too small285

to collide physically. Accordingly, collectional activation shall affect slightly larger radii than evaluated here. Further note286

that additional simulations neglecting turbulence effects on the collection kernel (not shown) have exhibited a similar spectral287

distribution of collectional activation, but indicated a smaller contribution to the total number of activated aerosols. Second,288

the initialized aerosol distribution is always maritime, i.e., it includes a large fraction of large aerosols which are not part of289

continental air masses (e.g., Jaenicke, 1993) but are primarily affected by collectional activation as shown here. Accordingly,290

the collectional fraction of activations might be lower in environments which exhibit a smaller fraction of aerosols in the291

affected size range. Third, not all aerosols consist of (highly hygroscopic) sodium chloride although the size range affected by292

collectional activation is usually assumed to consists of sea salt (Jaenicke, 1993). Aerosols with a lower hygroscopicity would293

exhibit a smaller solution effect which is equivalent to a smaller dry radius of the sodium chloride aerosols examined here,294

i.e., the wet radius of these aerosols would be smaller and they would less likely cause collisions. Again, the range of aerosols295

affected by collectional activation would be shifted to larger radii.296
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Appendix A: The Lagrangian cloud model297

In this section, the basic framework of the Lagrangian cloud model (LCM) applied in this study as well as the extensions298

made to treat aerosol mass during collision and coalescence are described. One can refer to Riechelmann et al. (2012) for the299

original description, Hoffmann et al. (2015) for the consideration of aerosols during diffusional growth, and Hoffmann et al.300

(2017, in review) for the most recent description of the LCM. This LCM, as all other available particle-based cloud physical301

models (Andrejczuk et al., 2008; Shima et al., 2009; Sölch and Kärcher, 2010; Naumann and Seifert, 2015), are based on the302

so-called super-droplet approach in which each simulated particle represents an ensemble of identical, real particles, growing303

continuously from an aerosol to a cloud droplet. The number of particles within this ensemble, the so-called weighting factor,304

is a unique feature of each particle, which is considered for a physical appropriate representation of cloud microphysics within305

the super-droplet approach.306

The transport of a simulated particle is described by307

dXi

dt
= ui + ũi− δi3ws, (A1)308

whereXi is the particle location and ui is the LES resolved-scale velocity at the particle location determined from interpolating309

linearly between the 8 adjacent grid points of the LES. A turbulent velocity component ũi is computed from a stochastic model310

based on the LES sub-grid scale turbulence kinetic energy (Sölch and Kärcher, 2010). The sedimentation velocity ws is given311

by an empirical relationship (Rogers et al., 1993). Equation (A1) is solved using a first-order Euler method.312

As described in Hoffmann et al. (2015), the diffusional growth of each simulated particle is calculated from313

r
dr
dt

=
S−A/r+ b ·ms/r

3

Fk +FD
· f(r,ws), (A2)314

where r is the particle’s radius and S terms the supersaturation within the grid box, in which the particle is located. Curvature315

and solution effects are considered by the the terms −A/r and b ·ms/r
3, respectively. The factor f parameterizes the so-called316

ventilation effect (Rogers and Yau, 1989). The coefficients Fk = (Lv/(RvT )−1) ·Lvρl/(Tk) and FD = ρlRvT/(Dves) repre-317

sent the effects of thermal conduction and diffusion of water vapor between the particle and the surrounding air, respectively.318

Here, k is the coefficient of thermal conductivity in air, Dv is the molecular diffusivity of water vapor in air, Lv is the latent319

heat of vaporization, and es is the saturation vapor pressure. Equation (A2) is solved using a fourth-order Rosenbrock method.320

Collision and coalescence are calculated from a statistical approach in which collections are calculated from the particle size321

distribution resulting from all super-droplets currently located within a grid box (Riechelmann et al., 2012). These interactions322

affect the weighting factorAn (i.e., the number of all particles represented by one super-droplet), the total water mass of a super-323

droplet Mn =An ·mn (where mn is the mass of one particle represented by super-droplet n), and also the dry aerosol mass324

Ms,n =An·ms,n (wherems,n is the dry aerosol mass of one particle represented by super-droplet n), which has been introduced325

for this study. The algorithm follows the all-or-nothing principle, which has been rigorously evaluated by Unterstrasser et al.326

(2016, in review) and has been recently implemented into this LCM by Hoffmann et al. (2017, in review).327

It is assumed that the super-droplet with the smaller weighting factor (index n) collects An particles from the super-droplet328

with the larger weighting factor (index m), with commensurate changes in Mm, Mn, Ms,m, and Ms,n. Since the weighting329
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factor of the collecting super-droplet n does not change during this process, its wet radius330

rn =
(

Mn
4
3πρlAn

)1/3

(A3)331

and the dry aerosol radius332

rs,n =
(

Ms,n
4
3πρsAn

)1/3

(A4)333

increase. Additionally, same-size collections of the particles belonging to the same super-droplet are considered. These inter-334

actions do not change Mn and Ms,n, but they decrease An and accordingly increase rn and rs,n.335

These two processes yield in the following description for the temporal change of An (assuming that the simulated particles336

are sorted such that An >An+1):337

dAn

dt
δt=−1

2
(An− 1)Pnn −

Np∑

m=n+1

AmPmn. (A5)338

The first term on the right-hand-side denotes the loss of An due to same-size collections; the second term the loss of An due339

to collisions with particles of a smaller weighting factor. The total water mass and the total aerosol mass of a super-droplet340

change according to341

dMn

dt
δt=

n−1∑

m=1

AnmmPnm −
Np∑

m=n+1

AmmnPmn, (A6)342

and343

dMs,n

dt
δt=

n−1∑

m=1

Anms,mPnm −
Np∑

m=n+1

Amms,nPmn, (A7)344

respectively. In both equations, the first term on the right-hand-side denotes the increase of Mn or Ms,n by the collection of345

water or dry aerosol mass from super-droplets with a larger weighting factor, while the second term describes the loss of these346

quantities to super-droplets with a smaller weighting factor. The function Pmn controls if a collection takes place:347

Pmn := P (ϕmn) =





0 for ϕmn ≤ ξ,

1 for ϕmn > ξ,
(A8)348

where ξ is a random number uniformly chosen from the interval [0,1] and349

ϕmn =K(rm, rn, ε)Anδt/∆V (A9)350

is the probability that a particle with the radius rm collects one of An particles with the radius rn within a volume ∆V during351

the (collection) time step δt. The collection kernel K is calculated from the traditional collision efficiencies as given by Hall352

(1980), and includes turbulence effects by an enhancement factor for the collision efficiencies by Wang and Grabowski (2009)353
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and a parameterization of particle relative velocities and changes in the particle radial distribution based on Ayala et al. (2008).354

These turbulence effects on K are steered by the dissipation rate ε calculated by the LES subgrid-scale model. The equations355

(A5) – (A7) are solved using a first-order Euler method.356
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Chapter 7

Concluding Remarks

This last chapter will summarize the most important results of the studies carried out for

this thesis. Based on this, an outlook will state opportunities for the further development of

the Lagrangian cloud model (LCM) and starting points for future applications continuing

the research presented before.

7.1 Summary and Main Conclusions

The predominating subject of this thesis has been a novel approach for the modeling of

cloud microphysics: the LCM. In this model, aerosols and cloud droplets are simulated by

individual particles. Due to limited computational resources, not all atmospheric particles

are explicitly resolved. The LCM simulates so-called super-droplets, which represent an

ensemble of identical atmospheric particles. The number of represented real particles is

termed weighting factor and considered in the calculation of cloud microphysics.

The introduction has been used to introduce the LCM and point out differences and

possible advantages in comparison to traditional Eulerian cloud models. Afterward, the

studies of this thesis have been motivated from the general topic of aerosol-cloud interactions,

focussing on the potential advantages arising from the application of an LCM. Then, the

model PALM (Raasch and Schröter, 2001; Maronga et al., 2015) has been introduced, giving

a detailed description of the most recent version of the LCM, as well as a condensed overview

of the coupled large-eddy simulation (LES) model, which is used to simulate the dynamics.

The first two studies (Chapter 3 and 4) can be attributed to the validation of LCMs.

The first study investigated the production and the effects of spurious cloud edge supersat-

urations in LCMs. This error is well known for traditional Eulerian cloud models, resulting

from their inability to represent the movement of the cloud edge across the numerical grid.

By repeating an idealized advection problem by Stevens et al. (1996), it has been shown

that the production of spurious cloud edge supersaturations in LCMs is identical to Eulerian

models since both are based on a Eulerian representation of the transport of temperature

and humidity, which are used to predict the supersaturation. However, LCMs might be

superior to Eulerian cloud models regarding the effect of spurious supersaturations on the

activation of aerosols. Due to the explicit representation of the activation process in LCMs,

which demands a certain time to activate an aerosol, the effect of high-frequent spurious

supersaturations can be buffered. Finally, an analytic description for the development of

spurious supersaturations has been derived, which revealed the general dependence of spu-
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rious supersaturations on two timescales: the ratio of the grid spacing to the wind speed

(τadv) and the phase relaxation timescale (τphase). The production of spurious supersat-

urations has been found to be strongest at a critical ratio of τphase/τadv ≈ 0.55. This

ratio might be used as a criterion to chose an appropriate grid spacing to mitigate spurious

supersaturations in future studies.

The second study validated three basic types of collection algorithms that are currently

used in LCMs: (i) the so-called remapping algorithm by Andrejczuk et al. (2010), (ii) the

average-impact algorithm by Riechelmann et al. (2012), and (iii) the all-or-nothing algo-

rithm developed in parallel by Shima et al. (2009) and Sölch and Kärcher (2010). Although

some of these collection algorithms have been validated individually, this study presented

the first intercomparison of all algorithms using a series of idealized box-simulations with

different collection kernels for which either analytical solutions (Golovin, 1963) or high-

resolution spectral-bin reference simulations exist (Wang et al., 2007). The initialization

of weighting factors has been discovered as a crucial parameter for the performance of the

average-impact and the all-or-nothing algorithms, a problem which is inherently absent

in traditional Eulerian spectral-bin models. The remapping algorithm, however, has been

found to produce spurious oscillations, which hamper the production of rain. All in all, the

all-or-nothing algorithm has been identified as the best approach available yet, although

some improvements might still be necessary.

The all-or-nothing algorithm has been implemented into PALM’s LCM for the study

on the initiation of rain (Chapter 5) since the former average-impact algorithm spuriously

suppressed the collectional growth process. Individual super-droplets have been tracked

throughout their lifetime to identify the main processes responsible for the bridging of the

so-called condensation-coalescence bottleneck, which impedes the production of rain. This

study has been focused on two processes: spectral broadening due to differential diffusional

growth (e.g., Lasher-Trapp et al., 2005) and the effects of small-scale turbulence on the col-

lection kernel (e.g., Devenish et al., 2012). Three-dimensional LCM simulations of a shallow

cumulus cloud with and without the consideration of small-scale turbulence effects on the

collection kernel have been carried out. It has been shown that the latter effect increases

the precipitation significantly by allowing much more droplets to pass the condensation-

coalescence bottleneck than spectral broadening alone. However, the time necessary for the

initiation of rain did not differ significantly for simulations with or without the effects of

small-scale turbulence on the collection kernel. Idealized box-simulations showed that the

effects of small-scale turbulence on the collection kernel accelerate the initiation of rain if

the droplet spectrum is narrow, but the acceleration becomes insignificant if the droplet

spectrum is broad in advance, as it was the case in the simulated shallow cumulus cloud.

The all-or-nothing collection algorithm has been also extended to consider changes in the

aerosol mass due to collection for the last study of this thesis (Chapter 6). In this study, the

effect of collision and coalescence on the activation of aerosols has been investigated, making
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use of the LCM’s explicit representation of the activation process. Traditional Köhler (1936)

theory can be used to distinguish between inactivated aerosols and activated cloud droplets.

However, sufficiently large but still inactivated aerosols might behave like droplets. It has

been found that wetted aerosol growing from a dry aerosol of 0.1µm in radius can be

large enough to take part in collisions. Furthermore, the resulting mass growth leading

to activation can be larger than the contribution by diffusion. These so-called collectional

activations have been found to activate an increasing fraction of aerosols toward larger dry

radii, being the only process for the activation of aerosols with a dry radius of 1.0µm or

more. Due to the increasing fraction of collectional activations, Köhler theory cannot be

unambiguously applied to aerosols larger than 0.1µm in dry radius.

All in all, one can conclude that the novel LCM approach enables new perspectives

on cloud physics. It is novel in a sense that this approach still needs serious validations

to reveal characteristics or potential numerical errors that are already known for Eulerian

cloud models that have been applied for more than half a century. By providing two studies

on this issue (Chapter 3 and 4), this thesis contributed to the reduction of this lack of

knowledge, making LCMs a better tool for future applications. Moreover, the LCM enabled

new perspectives and new insights by explicitly resolving processes which are usually not

covered by the parameterizations used in other models (Chapter 6) or by following individual

super-droplets to investigate the circumstances responsible for their growth (Chapter 5).

These features of the LCM will certainly motivate new studies or the revisiting of old topics

in the future. Some possibilities will be outlined in the following outlook.

7.2 Outlook

Although some results presented in Chapter 5 have already been compared to observations,

a necessary next step for the validation of LCMs must be a detailed and comprehensive

comparison with observational data. A promising way to design such a study is to simulate

real meteorological conditions by using measurements or the data of numerical weather

prediction models to derive initial and boundary conditions to steer the LES and accordingly

the LCM (Neggers et al., 2012; Gustafson and Vogelmann, 2015; Heinze et al., 2016b). By

deriving the same quantities from the simulations as available from measurements carried

out during the simulated time period, a comprehensive comparison of simulated and real

clouds will be possible. A comparison of measurements of the cloud optical thickness can

be used to determine if the response to changes in the aerosol concentration is accurately

represented in the model. Measurements of the radar reflectivity can be used to prove the

fidelity of the collection algorithm.

Generally, the tracking of super-droplets allows detailed investigations of aerosol sources

and the routes they take to enter a cloud. The simulations presented in Chapter 5 already

revealed that the largest droplets in shallow cumuli grow from particles that enter the cloud

through its base. Similarly, Hoffmann et al. (2015) used the tracking of super-droplets to
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quantify the aerosol entrainment in shallow cumuli: 70 % of all droplets grow from aerosols

that have been entrained from the cloud base and 30 % from lateral entrainment. An

extension of this work to stratocumulus is, however, not straightforward. For these clouds,

aerosols originate from the sub-cloud layer below but also from the free troposphere above

(e.g., Kazil et al., 2011). Since the latter cloud-top entrainment process affects only a small

spatial domain in the vertical (∼ 10 m), its numerical representation in LES is largely taken

over by the subgrid-scale (SGS) model, which typically results in an overestimation of the

entrainment rate (e.g., Stevens et al., 2005). Since LES is also used as the underlying

dynamical model for LCMs, some of these errors will affect future LCM studies. However,

some of these SGS processes might be successfully parameterized in the LCM framework,

improving the ability to simulate stratocumulus.

One of these processes is the SGS variability of supersaturations experienced by super-

droplets during diffusional growth. These supersaturations can vary significantly in space

and time during the inhomogeneous mixing of cloudy and cloud-free air (Baker and Latham,

1979; Lehmann et al., 2009). Currently, all super-droplets inside a grid-box experience

the same supersaturation, which corresponds to the process of homogeneous mixing. The

basis for a parameterization of inhomogeneous mixing can be the computationally simple

explicit mixing parcel model by Krueger et al. (1997), which has been shown to reproduce

the inhomogeneous mixing of cloudy and cloud-free air very accurately with a comparably

small amount of computing efforts.

Besides the need to consider inhomogeneous mixing for an improved representation of

cloud-top entrainment in stratocumulus, the parameterization of inhomogeneous mixing is

also a necessary prerequisite to deepen the investigation on the initiation of rain presented

in Chapter 5. How does the impact of inhomogeneous mixing on diffusional growth (e.g.,

Baker and Latham, 1979) compare to the above-investigated effects? Furthermore, LCMs

offer the perfect framework to investigate the impact of giant and ultra-giant aerosols on

the initiation of rain (e.g., Johnson, 1982b), by simply adding some super-droplets with the

desired properties to the simulations. Combining all these effects in one model is necessary

for a comprehensive process-level understanding of the precipitation process.

Although this thesis showed that collection can be successfully represented in the LCM

framework, an unfavorable distribution of weighting factors might corrupt the reproduc-

tion of the collectional growth process (Chapter 4). Accordingly, the further development

of LCM collection algorithms to cope with these unfavorable conditions is necessary. As

hypothesized in Chapter 4, a splitting algorithm might be able to improve the statistics

of the largest droplets and hence the representation of collection. This splitting algorithm

divides one super-droplet into several with accordingly smaller weighting factors if the cir-

cumstances make this necessary. This algorithm has already been developed for PALM’s

LCM by J. Schwenkel, F. Hoffmann, and S. Raasch on the basis of Unterstrasser and Sölch

(2014), and the results are promising. In addition to the splitting algorithm, a counteracting
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merging algorithm, which unites several super-droplets into one, has also been developed.

By reducing the number of super-droplets, it improves the LCM’s computational perfor-

mance. A publication on these new developments will follow soon. This splitting algorithm

might also be used as a basis to consider collisional breakup, where large droplets split into

several new droplets after the collision with another droplet (e.g., Johnson, 1982a; Low and

List, 1982).

For the application of the LCMs to deeper clouds, a next step must be the introduction

of ice-phase cloud microphysics. Although LCMs with exclusively ice microphysics exist (see

Sölch and Kärcher, 2010), the coupling with a liquid phase LCM has not been carried out so

far and might be troublesome due to the necessary consideration of mixed-phase processes.

Many of these processes are too complex to be described by basic equations (e.g., the Hallett-

Mossop process). Accordingly, their introduction might repeal one important property and

advantage of LCMs: the avoidance of parameterizations for basic microphysical processes.
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