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Zusammenfassung 
 

Sulfotransferasen (SOTs) (EC 2.8.2.-) katalysieren den Transfer eines Sulfonatrestes vom 

Donor 3‘-Phosphoadenosin 5‘-phosphosulfat (PAPS) zu Hydroxylgruppen verschiedener 

Stoffe. In Arabidopsis thaliana benutzen drei SOTs, AtSOT16, AtSOT17 und AtSOT18, 

desulfo-(ds) Glucosinolate (Gls) als Substrate. Im Vorfeld wurde gezeigt, dass AtSOT16 

indolische ds-Gls präferiert, während AtSOT17 und AtSOT18 aliphatische Gls bevorzugen. 

In dieser Arbeit wurde untersucht, ob es möglich ist die Substratspezifitäten von ds-Gls im 

kürzlich sequenzierten Brassica napus Genom vorherzusagen. Insgesamt wurden in B. napus 

71 vermeintliche SOTs identifiziert und elf davon wurden suggeriert ds-Gl SOTs zu sein. Neben 

den AtSOT16-18 Homologen, haben phylogenetische Analysen eine neue ds-Gl SOT 

Subfamilie offenbart, welche nicht in A. thaliana präsent ist. In vitro Charakterisierungen haben 

gezeigt, dass drei der fünf rekombinant exprimierten und aufgereinigten BnSOTs ähnliche 

Substratspezifitäten wie ihre A. thaliana Homologe haben. Zwei der getesteten Proteine, welche 

als SOT18 Homologe identifiziert wurden, zeigten keinerlei Aktivität.  

Um ein besseres Verständnis über ds-Gl SOT Katalyse und Substratbindung zu erhalten, 

wurden hochauflösende Kristallstrukturen von AtSOT18 mit 3‘-Phosphoadenosin 5‘-phosphat 

(PAP) alleine und zusammen mit Sinigrin im aktiven Zentrum gelöst. Residuen im aktiven 

Zentrum, welche essentiell für die Substratbindung und Katalyse sind, wurden identifiziert und 

ihre individuellen Aufgaben durch Mutationsstudien analysiert. Mit Hilfe der neuen 

strukturellen Erkenntnisse, kann die Inaktivität der BnSOT18 Homologe, durch natürliche 

Variationen von katalytischen und PAP-bindenden Residuen, erklärt werden. Des Weiteren 

wurde die PAP Inhibition durch die Anwendung eines zweidimensionalen nichtlinearen Models 

kinetischer Daten untersucht. Insgesamt wurde eine hohe Konservierung gängiger 

Eigenschaften zwischen Säugertier-SOTs und pflanzlichen SOTs offenbart.      

 

 

Schlagwörter: Arabidopsis thaliana, Brassica napus, Glucosinolate, Inhibition, Katalyse, 

Proteinstruktur, Sequenzanalyse, Substratspezifität, Sulfotransferase
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Abstract 
 

Sulfotransferases (SOTs) (EC 2.8.2.-) catalyse the transfer of a sulfate moiety from the donor 

3’-phosphoadenosine 5’-phosphosulfate (PAPS) to hydroxyl groups of various compounds. In 

Arabidopsis thaliana, three SOTs, AtSOT16, AtSOT17 and AtSOT18, use desulfo-(ds) 

glucosinolates (Gls) as substrates. Previously, it was shown that AtSOT16 prefers indolic ds-

Gls, while AtSOT17 and AtSOT18 prefer aliphatic ds-Gls. 

In this work, it was investigated, if it is possible to predict ds-Gl SOT substrate specificities in 

the recently sequenced Brassica napus genome. In total, 71 putative SOTs were identified in 

B. napus and eleven were suggested to be ds-Gl SOTs. Besides the homologs of AtSOT16-18, 

phylogenetic analysis revealed a new subfamily of ds-Gl SOTs, which is not present in A. 

thaliana. In vitro characterization showed that three of the five recombinantly expressed and 

purified BnSOTs showed similar substrate specificities as their A. thaliana homologs. Two of 

the tested proteins that were predicted to be SOT18 homologs did not show any activity. 

In order to gain a better understanding of ds-Gl SOT catalysis and substrate binding, high-

resolution crystal structures of AtSOT18 with 3’-phoshpoadenosine 5’-phosphate (PAP) alone 

and together with sinigrin in the active site were solved. The active site residues essential for 

substrate binding and catalysis were identified and their individual roles were confirmed by 

mutational studies. With the help of the new structural insights, the inactivity of the BnSOT18 

homologs could be explained, due to natural variations of the catalytic and PAPS-binding 

residues. Furthermore, PAP inhibition was studied by applying a two-dimensional non-linear 

model of kinetical data. Overall, a high conservation of common features between mammalian 

and plant SOTs was revealed.  

 

 

Keywords: Arabidopsis thaliana, Brassica napus, catalysis, glucosinolate, inhibition, protein 

structure, sequence analysis, substrate specificity, sulfotransferase
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The economic relevance of Brassica napus and its large genome 
 

Brassica napus, called rapeseed or oilseed rape, is the world’s third largest source of vegetable 

oil after palm oil and soybean (United States Department of Agriculture, 2016). Rapeseed is 

used for animal feeds, edible vegetable oils and biodiesel. The world production has been 

constantly increasing and reached more than 70 million tons of commodity in the year 2014 

(http://faostat3.fao.org, accessed 16.03.2016) (Fig. 1). Germany is the world’s fourth biggest 

producer after Canada, China, and India, with more than 6 million tons produced. The 

increasing importance of rapeseed in Germany becomes clear when comparing the usage of 

arable land from 1961 to 2014 (Fig. 2). While the used area for rye, potatoes and sugar beet has 

declined, it has constantly risen for maize and wheat. Interestingly, the agricultural crop land 

for B. napus has been comparably low, until it drastically increased from the mid-1980s to the 

mid-2000s. 

 

 

Fig. 1. Rapeseed production of the world’s top five producing countries in 2014. Data from the Food and Agriculture 
Organization of the United Nations, Statistic Division, accessed 16.03.2016. 
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Fig. 2. Arable land used for different crops in Germany from 1961 to 2014. Data from the Food and Agriculture Organization 
of the United Nations, Statistic Division, accessed 16.03.2016. 

 

The sudden increase in B. napus production in the 1980s is the result of the introduction of so 

called 00 or “double low” cultivars. Before that, B. napus contained high concentrations of the 

antinutritional glucosinolates (Gls) and toxic erucic acid, which made the rapeseed oil and cake 

less valuable as animal feed and unfeasible for human consumption. The oil of modern B. napus 

cultivars contains less than 30 µmol g-1 Gls and less than 2% erucic acid and therefore is safe 

to consume (Canola Council of Canada, 1990).  

Another factor for the rising demand of B. napus, is the increasing usage of biodiesel. In Europe, 

it is the main oil source for the production of biodiesel, which emphasizes its importance also 

in respect to future renewable energy supply. In 2014, 30 billion liters of biodiesel were 

produced worldwide, with the United States of America being the main producer with 16% of 

the global total, followed by Brazil and Germany both with 11%. In Europe, the biodiesel 

production has increased by 9% in 2014 relative to 2013 (REN21, 2015). 

In order to cover the future demand of rapeseed, it is necessary to conduct further research in 

increasing its production, for which a deeper understanding of its biology is fundamental. A 

major difficulty in B. napus research is its big genome. The 1130-Mb genome is the result of 

an allopolyploidization event of the ancestors B. oleracea (2n = 2 x 9 = 18, genome CC) and B. 

rapa (2n = 2 x 10 = 20, genome AA), and has been sequenced in 2014 (Chalhoub et al., 2014). 

The impact of the polyploidization on the physiology is poorly understood and therefore it is 
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questionable to what degree findings from related plants, such as Arabidopsis thaliana, can be 

transferred to B. napus. 

 

Connection between primary and secondary sulfur metabolism  
 

An important characteristic of B. napus is its high sulfur requirement. It needs with 30-50 kg 

ha-1 about twice as much sulfur as wheat (Bloem et al., 2012). Sulfur plays a crucial role in 

plant stress resistance, and its deficiency can lead to reduced crop quality and yield (Scherer, 

2001). Therefore, it is necessary to have a detailed understanding of the role of sulfur and the 

sulfur-containing compounds in B. napus, especially the secondary sulfur metabolism, where 

sulfotransferases (SOTs) play a key role in the formation of sulfur containing secondary 

metabolites. 

Sulfur is taken up as sulfate from the soil by sulfate transporters (Fig. 3). Sulfate transporters 

are membrane proteins, which are divided into four different groups depending on their 

localization and affinity to sulfate (Takahashi et al., 2011). After the uptake, sulfate is activated 

by complexion with adenosine triphosphate (ATP) to adenosine phosphosulfate (APS) by ATP 

sulfurylase. The APS is then either further reduced to sulfide and incorporated in cysteine in 

the primary sulfur metabolism, or phosphorylated to 3’-phosphoadenosine 5’-phosphosulfate 

(PAPS) in the secondary sulfur metabolism. The PAPS can then be used as a substrate by SOTs 

for the sulfation of various compounds (Abuelsoud et al., 2016). Hence, SOTs are the 

connecting link between the sulfur metabolism and numerous other physiological functions and 

pathways. Various SOT substrates have been identified (Fig. 3), but many more can be 

expected. Identification of further substrates would give valuable insights, not only in the sulfur 

metabolism directly, but also in connected pathways and the functionality of sulfation. 
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Fig. 3. Schematic overview of plant sulfur metabolism, modified from Abuelsoud et al. (2016). Sulfate is taken up by SULTRs 

and complexed to ATP to form APS. APS can either be reduced to sulfite as part of the primary sulfur metabolism (red box), 

or phosphorylated to PAPS as part of the secondary sulfur metabolism (green box). Cosubstrates and products are not displayed. 

Abbreviations: ATPS, ATP sulfurylase; APR, APS reductase; APK, APS kinase; SiR, sulfite reductase; OASTL, O-

acetylserine thiol lyase; Cys, cysteine; ABA; abscisic acid; GCL, Glutamate cysteine lyase; γ-EC, γ-glutamyl cysteine; GSH, 

reduced glutathione; ROS, reactive oxygen species; GSSG, glutathione disulfide; GSHS, GSH synthetase; GR, glutathione 

reductase; GPX, glutathione peroxidase; PAP, 5´-phosphoadenosine phosphate; SOT, sulfotransferase, AMP, adenosine 

monophosphate. 

 

Glucosinolates 
 

Gls (S-glucopyranosyl thiohydroxymates) are one of the best studied secondary plant 

metabolites, mainly found in Brassicaceae, including A. thaliana and the economically relevant 

crops B. napus, B. rapa and B. oleracea. To date, there are almost 200 different Gls (Fig. 4) 

described. Gls consist of a sulfated isothiocyanate group, which is conjugated to thioglucose, 
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and a further R-group (Clarke, 2010). Depending on their precursor amino acid, Gls can be 

divided into three groups: aliphatic Gls derive from either alanine, leucine, isoleucine, valine 

or methionine, while indolic Gls derive from tryptophan and aromatic from either phenylalanine 

or tyrosine (Ishida et al., 2014). 

 

 

Fig. 4. General Gl structure. A thioglucose moiety is linked via a sulfur atom to a (Z)-N-hydroxyimino sulfate ester with a 
variable R group, which is derived from a precursor amino acid. 

 

Gls and their breakdown products were suggested to have functions in numerous plant 

processes, such as sulfur storage, water transport, heat tolerance, stomatal regulation, apoptosis, 

growth inhibition, and signalling (Bones et al., 2015). However, what is most studied are their 

roles in plant defence against biotic stress, as part of the Gl-myrosinase system. After 

biosynthesis, Gls are stored in the vacuole, hardly hydrolyzed and biologically inactive. 

However, after cell disruption, Gls are hydrolyzed by cytoplasm-localized β-thioglucosidases, 

also called myrosinases (Bones and Rossiter, 2006). The Gl breakdown products, mainly 

isothiocyanates, but also nitriles, epithionitriles and thiocyanates are the biological active 

compounds (Fig. 6). In numerous studies they were shown to be involved in plant defense 

against insects, pathogens and herbivores (Manici et al., 1999; Rask et al., 2000; Tierens et al., 

2001; Agrawal and Kurashige, 2003; Hopkins et al., 2009).  



  CHAPTER 1 

7 

 

Fig. 5. The Gl breakdown products isothiocyanate, epithionitrile, nitrile, thiocyanate, and goitrin (Ishida et al., 2014). 

Despite their functions in plant defence and stress response, Gls and their breakdown products 

have gained much attention due to their cancer chemopreventive properties, especially the 

isothiocyanate sulforaphane, which is found in high concentrations in broccoli. Sulforaphane is 

involved in multiple anticarcinogenic mechanisms against several kinds of cancer (Kaufman-

Szymczyk et al., 2015). On the other hand, there are antinutritious Gls, such as goitrin, which 

causes goiter in animals (Stoewsand, 1995). Due to the contrary properties in the wide variety 

of Gls, the breeding towards enhanced Gl profiles of Brassicaceae is of great interest.  

 

The glucosinolate biosynthesis can be divided in three stages 
 

Gl biosynthesis, which partly takes place in the cytosol and partly in the chloroplast, can 

generally be divided into three stages. In the first stage, the precursor amino acid can be 

elongated by the addition of further methylene groups to the side chain. This only occurs in the 

biosynthesis of aliphatic or aromatic Gls (Sønderby et al., 2010). For chain elongation, the 

precursor amino acids are deaminated by branched-chain amino acid aminotransferases 

(BCAT) (Schuster et al., 2006). The elongation of the resulting 2-oxo acids is then catalyzed 

by methylthioalkylmalate synthases (Kroymann et al., 2001), isopropylmalate isomerases 

(Knill et al., 2009) and isopropylmalate dehydrogenases (He et al., 2009). After a cycle of 
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elongation steps, the 2-oxo acids are turned into the corresponding precursor amino acids by 

BCAT (Knill et al., 2008). 

In the second stage the core Gl is formed. The precursor amino acids are converted to aldoximes 

by cytochromes P450 and then activated through oxidation by CYP83 (Sønderby et al., 2010). 

Afterwards, the activated aldoximes are turned into thiohydroxymates by conjugation to a sulfur 

donor, followed by the C-S lyase (SUR1) reaction (Mikkelsen et al., 2004). The 

thiohydroximates are then S-glucosylated by S-glucosyltransferases to form desulfated-(ds) Gls 

(Grubb et al., 2004). In the final step of core-Gl biosynthesis, the ds-Gls are sulfated by ds-Gl 

SOTs (Fig. 6).  

 

Fig. 6. SOT catalyzed reaction. The red colored sulfate moiety (RSO3-) is transferred from PAPS to the hydroxyl group of the 

example substrate the desulfated Gl sinigrin.  

In the third stage of Gl biosynthesis, the side chains of core Gls undergo further modifications, 

such as oxygenation, hydroxylation, alkenylation, benzoylation, and methoxylation, which 

results in the great variety of Gls (Ishida et al., 2014).  

As a secondary metabolite model, Gls also offer a good opportunity to research the influence 

of SOT specificity on the outcome of complex secondary metabolite biosynthesis. A better 

understanding of ds-Gl SOT specificity on a molecular level, could enable its sequence-based 

prediction and maybe even manipulation, not only for the model plant A. thaliana, but also for 

other crops such as B. napus. 
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The sulfotransferase enzyme family 
 

Eukaryotic SOTs (EC 2.8.2.-) catalyze the transfer of a sulfate group from the universal donor 

PAPS to hydroxyl or primary amine groups of various compounds (Fig. 4). Only some bacterial 

PAPS-independent SOTs catalyze the sulfo transfer from phenolic sulfate esters to another 

phenol. These SOTs neither share other common eukaryotic SOT characteristics regarding 

sequence, structure and mechanism (Malojcić et al., 2008; Malojcić and Glockshuber, 2010). 

Therefore, this section will focus on eukaryotic PAPS-dependent SOTs. 

SOTs can generally be divided in two groups: soluble SOTs, which accept small organic 

molecules as substrates, such as xenobiotics, steroids and flavonoids; and membrane associated 

SOTs, which sulfate proteins, peptides and glycosaminoglycans. The soluble SOTs have four 

conserved characteristic regions (region I - IV) (Varin et al., 1992), that are mainly involved in 

PAPS binding (Chapman et al., 2004).  

Eukaryotic soluble SOTs share a common spherical α/β fold with four or five central β-sheets 

surrounded by several α-helices. While the PAPS-binding site is conserved, there are variations 

in the acceptor binding site, which is gated by two or three flexible loops (Chapman et al., 2004; 

Tibbs et al., 2015). These loops were recently reported to have a major impact on substrate 

selectivity (Rohn et al., 2012; Rakers et al., 2016). In mammals, the short dimerization motif 

KxxxTVxxxE is suggested to be responsible for the formation of SOT homodimers 

(Petrotchenko et al., 1999), while plant SOTs are expected to be monomers (Klein and 

Papenbrock, 2004; Smith et al., 2004). 

Eukaryotic soluble SOTs are proposed to follow a sequential mechanism, however it is still 

unclear whether the binding of substrates follows a specific or random order (Chapman et al., 

2004; Tibbs et al., 2015). A highly conserved histidine at the beginning of region II and a lysine 

in region I have fundamental functions in catalysis. It is suggested that the histidine may abstract 

a proton from the hydroxyl group of the respective substrate, allowing the substrate to attack 

the PAPS sulfur atom. A shift of the conserved lysine may then complete the sulfate dissociation 

from the 5’-phosphoadenosine phosphate (PAP) (Fig. 7). Whether the in-line attack of the 

nucleophile follows a SN1 or SN2 mechanism is still a matter of debate. While kinetic isotope 

effect studies on a human estrogen SOT designated a SN1-like mechanism (Hoff et al., 2006), 

structural analysis of a mouse catecholamine SOT with PAPS and substrate bound indicated a 

SN2-like in-line displacement mechanism (Teramoto et al., 2009).  
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Fig. 7. The highly conserved histidine and lysine in the active site are proposed to play a crucial part in sulfation catalysis 

(Chapman et al., 2004). 

Another SOT characteristic is the inhibition by the co-product PAP. There have been several 

mechanisms suggested to explain PAP-inhibition, such as allosteric regulation (Zhang et al., 

1998), binding of multiple substrates in the active-site cavity (Gamage et al., 2003), dead-end 

complex formation (Gamage et al., 2005; Sun and Leyh, 2010; Gulcan and Duffel, 2011) and 

gating (Lu et al., 2008). However, the most detailed study to date on SOT mechanism and PAP-

inhibition states that PAP-inhibition is caused by the formation of a dead-end complex, with 

PAP-release being the rate limiting step (Wang et al., 2014). 

 

The broad variety of sulfotransferases and substrates 
 

The wide range of sulfated compounds also leads to a wide range of SOT functions, such as 

cell communication, growth and development, and defence (Negishi et al., 2001). Generally, 

sulfation results in a higher polarity of the substrate, and therefore a better solubility and 

alteration of its target affinity (Kotov et al., 1999; Cook et al., 2009). The best studied SOT 

family is from humans, where they are mainly involved in homeostatic control of several 

hydrophobic signalling molecules, such as estrogens, and detoxification (Tibbs et al., 2015).  

In the plant model organism A. thaliana, 18 soluble SOTs, including one pseudo-gene, have 

been identified and were numbered AtSOT1 to AtSOT18 (Klein and Papenbrock, 2004). Based 

on BLAST results, three more sequences were assumed to be putative SOTs (AtSOT19 – 

AtSOT21) (Klein and Papenbrock, 2008), but the sequences do not show any other SOT 

characteristics and are therefore questionable to encode those. Additionally, a Golgi-membrane 
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localized tyrosylprotein SOT has been identified and characterized, which interestingly does 

not show sequence similarities to any other SOTs (Komori et al., 2009). 

The identified SOTs also cover a wide variety of substrates (Fig. 3), including signalling 

molecules, such as brassinosteroids (Marsolais et al., 2007) and hydroxyjasmonate (Gidda et 

al., 2003), but also ds-Gls (Fig. 4) (Piotrowski et al., 2004), flavonoids (Gidda and Varin, 2006) 

and proteins (Komori et al., 2009). While some AtSOTs are highly specific, others use 

numerous compounds as substrates, including a variety of xenobiotics, such as bacterial-

produced toxin cycloheximide, hinting towards a general detoxification function (Chen et al., 

2015).  

AtSOT16, AtSOT17 and AtSOT18 were identified as ds-Gl SOTs, catalyzing the last step of 

Gl core biosynthesis (Fig. 6) (Piotrowski et al., 2004). Detailed analysis of substrate 

specificities revealed that AtSOT16 highly prefers indolic Gls as substrates, while AtSOT17 

and AtSOT18 prefer aliphatic Gls (Klein et al., 2006; Klein and Papenbrock, 2009). It was also 

shown that mutation of one or two amino acids in AtSOT18 can lead to dramatic changes in 

activity (Klein et al., 2006) and substrate specificity (Luczak et al., 2013). 

It still remains unclear why some SOTs are highly specific, while others accept numerous 

compounds. It is also not understood how a SOT distinguishes between the large amounts of 

possible substrates. In order to address questions about substrate specificity, ds-Gl SOTs are 

particularly interesting, because they only accept ds-Gls as substrates, but distinguish very 

specifically in between those. 

 

Is it possible to predict ds-Gl SOT specificity? 
 

Generally, it is possible to identify SOTs by their amino acid sequence, either by four conserved 

regions (regions I – IV), including a highly conserved histidine at the beginning of region II, or 

by one of the seven Pfam SOT domains (Hirschmann et al., 2014). Several studies have tried 

to predict substrate preferences by primary sequence analysis, but failed to order SOTs 

according to their substrate specificities. In A. thaliana, the only exception were the three Gl-

SOTs, SOT16, SOT17 and SOT18, which were constantly found in a separate branch of 

phylogenetic trees (Klein and Papenbrock, 2004; Hernàndez-Sebastiá et al., 2008; Klein and 

Papenbrock, 2008; Labonne et al., 2009; Hashiguchi et al., 2013). But how reliable are 

sequence-based predictions of ds-Gl SOTs? Are they strong enough for identification of ds-Gl 
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SOTs in other plant species, such as B. napus? Is it even possible to distinguish between the 

three ds-Gl SOTs, SOT16, SOT17 and SOT18, just by analysis of the primary structure? These 

questions shall be addressed by identification and characterization of B. napus ds-Gl SOTs.  

In order to understand how the ds-Gl SOTs’ specificity is encoded in the primary structure, one 

has to understand how the substrate selectivity is controlled on a molecular level. The 

determination of three dimensional structures is a powerful tool for these kind of investigations. 

Previously, the structure of AtSOT12 has been solved, but only incompletely and without any 

bound ligands (Smith et al., 2004). A structure with bound substrates and/or products could 

give further insights on what part of the protein is involved in substrate binding, selectivity and 

catalysis. Furthermore, it could show how conserved plant SOTs are among the SOT enzyme 

family. Most eukaryotic SOT characteristics were determined by analysis of mammalian or 

insect SOTs. The structure of AtSOT12 could already demonstrate that plant SOTs also have 

the common overall structure, but failed to confirm other characteristics, such as the functions 

of the conserved regions, mechanism, catalytic residues, inhibition and substrate specificity. 

Therefore, the structure of AtSOT18 with bound product sinigrin and co-product PAP was 

solved and analysed. Furthermore, catalytic residues were identified, inhibition studies were 

performed and a molecular mechanism controlling substrate selectivity was suggested. 
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Aims of this thesis 
 

- Revision of the current state of knowledge of plant SOTs 

- Identification of all putative SOTs in the economically relevant crop plant B. napus 

- Characterization of B. napus ds-Gl SOTs for confirmation of phylogenetic analysis and 

test for possible SOT knowledge transfer from A. thaliana to other Brassicaceae  

- Crystallization and determination of the three-dimensional molecular structure of 

AtSOT18, in order to address substrate specificity of ds-Gl SOTs 

- Investigation of AtSOT18 mutants activity for deeper understanding of the catalytic 

mechanism, PAP-inhibition and structural conservation of plant SOTs 
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Fig. S1. Phylogenetic tree of all B. napus ds-Gl SOT candidates and A. thaliana SOTs, after MUSCLE alignment on amino 

acid level, based on the Maximum likelihood method and Jones–Taylor–Thornton model with gamma distribution, including 

1000 bootstrap values. The tree is unrooted. 
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Fig. S2. Phylogenetic tree of all B. napus, A. thaliana, B. rapa, and B. oleracea ds-Gl SOT candidates, after MUSCLE 

alignment on amino acid level, based on the Maximum likelihood method and Jones–Taylor–Thornton model with gamma 

distribution, including 1000 bootstrap values. The tree is unrooted.
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Abstract 

Sulfotransferases (SOTs) catalyze the transfer of a sulfate group from 3´-phosphoadenosine 5´-

phosphosulfate (PAPS) to secondary metabolites in the cytosol or peptides in the Golgi 

apparatus. Twenty-two SOT sequences were identified in Arabidopsis thaliana (L.) Heynh. 

Three of those participate in stress response to herbivores, pathogens and abiotic stress by 

anticipation in glucosinolate (Gl) formation. The transfer mechanism of SOTs is not conserved 

throughout all members of the SOT family, but most SOTs from eukaryotic organisms follow 

an ordered sequential or random sequential Bi Bi catalytic mechanism. To explain the 

differences in substrate specificity of desulfo (ds)-Gl SOTs and get an insight into the reaction 

mechanism of plant SOTs, we determined high-resolution crystal structures of the ds-Gl SOT 

AtSOT18 ecotype “Col-0” in complex with 3’-phosphoadenosine 5’-phosphate (PAP) alone 

and together with the Gl sinigrin in the active site. The new structural data were supplemented 

by mutagenesis studies, a two-dimensional substrate-inhibitor titration of enzymatic activity 

and conformational dynamics analysis. The overall structure of AtSOT18 shows high similarity 

to mammalian SOTs, which illustrates the high evolutionary conservation of this 

multifunctional enzyme family. We identified the essential residues for substrate binding and 

catalysis and demonstrated that the catalytic mechanism is conserved between human and plant 

enzymes. The structural basis for the functional divergence of SOTs is provided by the fine-

tuned conformational control of the unique residues in the individual enzymes. The obtained 

kinetic data imply that turnover time of AtSOT18 reaction is close to 4 seconds and that the 

sulfate group of PAPS does not contribute significantly to the binding energy of the donor. The 

residues in the active site and the adjacent regions do not provide the selectivity source for the 

ds-Gl SOT proteins. Instead, the non-conserved residues of the three functional loops are most 

likely to be responsible for substrate selectivity. 
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Introduction 

Members of the sulfotransferase (SOT) (EC 2.8.2.-) protein family, which can be found in all 

organisms analyzed so far, catalyze the transfer of a sulfate group from the co-substrate 3’-

phosphoadenosine 5’-phosphosulfate (PAPS) to a hydroxyl group of different kinds of 

substrates. In plants the sulfated compounds act as hormones, as secondary metabolites in stress 

defense and they probably serve as a sulfur reservoir (Klein and Papenbrock, 2004; Hirschmann 

et al., 2014). Of special interest is the role of SOTs in the sulfation of desulfo-glucosinolates 

(ds-Gl) (Fig. 1), as they are important secondary metabolites involved in defense against 

herbivores and pathogens in the order Brassicales (Rausch and Wachter, 2005). 

 

 

Fig. 1. AtSOT18 catalyzed reaction. The red coloured sulfate moiety (RSO3-) is transferred from PAPS to the hydroxyl group 

of the ds-Gl sinigrin. 

 

For humans, Gl degradation products play a role as flavor compounds from numerous cabbage, 

radish and mustard species. As an example, allyl isothiocyanate accounts for the spiciness of 

horse radish and mustard (Clarke, 2010). Of high interest for the search of new medical 

compounds is the anticancerogenic activity of Gls (Faulkner et al., 1998; Gupta et al., 2014). 

Sulforaphan from broccoli and cabbage (1-isothiocyanato-4-methylsulfinyl-butan Gl) has been 

reported to inhibit phase I cytochrome P450 enzymes (Gross-Steinmeyer et al., 2005), to induce 

phase II detoxification enzymes (Fahey and Talalay, 1999), to cause cell cycle arrest (Wang et 

al., 2004), to be anti-inflammatory (Konwinski et al., 2004) and to inhibit angiogenesis (Bertl 
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et al., 2006). However, Gl degradation products also have negative characteristics, e.g. 

goitrogenicity (Laurberg et al., 2002), and can be toxic to humans (Cartea and Velasco, 2008). 

In Arabidopsis thaliana the three ds-Gl SOTs AtSOT16, AtSOT17 and AtSOT18 exclusively 

catalyze the transfer of a sulfate group to different ds-Gls (Piotrowski et al., 2004; Hirai et al., 

2005; Klein et al., 2006). All three enzymes are localized in the cytoplasm and their expression 

pattern in several tested conditions is similar (Klein et al., 2006). These three AtSOTs share at 

least 72% sequence identity on amino acid level, but they differ remarkably in their catalytic 

activities. In vitro enzyme assays revealed a preference of AtSOT16 for the indolic ds-Gl indol-

3-yl-methyl Gl (I3M), AtSOT17 showed an increased specific activity with long-chained ds-

Gls derived from methionine and AtSOT18 preferred the long-chained ds-Gls, 7-

methylthioheptyl Gl and 8-methylthiooctyl Gl (8MTO), also derived from methionine (Klein 

and Papenbrock, 2009). Although the substrate specificity of ds-Gl SOTs is well known, its 

molecular basis is not understood. In previous studies we could show that the mutation of a 

single amino acid in AtSOT18 leads to dramatic changes in activity (Klein et al., 2006). 

Furthermore, we could demonstrate that AtSOT18s from different ecotypes vary in their 

substrate specificities (Luczak et al., 2013). These findings indicate a major function of 

AtSOT18 in Gl biosynthesis, hence further analysis on a molecular level is necessary 

Most SOTs can easily be identified by four conserved regions (I – IV) (Varin et al., 1992) (Fig. 

3), including a highly conserved catalytic histidine at the beginning of region II (Kakuta et al., 

1997). For plant SOTs the functions of these regions have not yet been identified, but have been 

suggested to be involved in PAPS binding (Hirschmann et al., 2014). So far, SOT structures 

from Mus musculus, Homo sapiens and several prokaryotes have been published (Chapman et 

al., 2004; Tibbs et al., 2015). Furthermore, the apo-form structure of A. thaliana SOT12 has 

been resolved (Smith et al., 2004). Structurally, all soluble SOT enzymes share a common fold 

consisting of four central β-strands surrounded by α-helices (Chapman et al., 2004). Three 

flexible loops, gating the substrate binding site were reported to influence substrate specificity 

(Tibbs et al., 2015). The conformational properties of these loops in the apo-state of AtSOT12 

remain unclear, due to the lack of their structural information (Smith et al., 2004). It was 

proposed that human SOTs are dimeric units, because of a short and strictly conserved 

dimerization domain (Petrotchenko et al., 2001).  

In order to be able to modulate the sulfation system, it is necessary to understand the exact SOT 

reaction mechanism, which is still under debate. Eukaryotic soluble SOTs follow a sequential 

mechanism, in either a specific or independent order (Tibbs et al., 2015), while eukaryotic 
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membrane-associated (Chapman et al., 2004) and bacterial SOTs (Malojčić et al., 2014) studied 

so far, follow a ping-pong mechanism. Also for the well-studied human SOTs the order of the 

nucleophilic substitution is not determined. Kinetic isotope effect studies indicated an SN1-like 

mechanism (Hoff et al., 2006), but crystal structures with PAPS and substrate suggest an SN2-

like inline displacement mechanism (Teramoto et al., 2009).  

In addition to the basic characterization of the two-substrate reaction mechanism of ds-Gl SOTs, 

which is interesting from a biochemical point of view, a better understanding of the reaction 

mechanism and the substrate specificity might contribute to develop strategies for manipulating 

and optimizing the Gl content and composition of crop plants in the Brassicaceae family. Then 

the medicinal and biotechnological potential of Gl-containing plants as nutraceuticals, and as 

source of anticancerogenic and antimicrobial compounds could be fully exploited. 

A related interesting question concerns regulatory aspects. In former studies we could show, 

that high concentrations of substrates (ds-Gl and PAPS) led to an inhibition of enzyme activity 

(unpublished results). Furthermore, investigating the effects of higher co-substrate PAPS and 

co-product 3’-phosphoadenosine 5’-phosphate (PAP) concentrations could lead to a better 

understanding of the regulation of the enzyme activity.   

The aim of this study was to gain deeper insights into (1) amino acids, that are responsible for 

the substrate specificity of ds-Gl SOTs and (2) the reaction mechanism of ds-Gl SOTs. To 

address these questions, the enzyme was crystallized in a binary complex with PAP and a 

ternary complex with PAP and sinigrin. To gain insights into the reaction mechanism and 

kinetics of AtSOT18, its inhibition/activation by PAP and PAPS was studied using two-

dimensional fit of enzymatic titration data. Furthermore, catalytic residues were identified 

based on our structural information and mutated to alanine. The respective mutants did not 

show any activity, which indicates their significance in catalysis. Analysis of the substrate 

binding site indicated that ds-Gl SOT specificity is controlled outside of the active center, most 

likely by the interplay of three functional loops shaping the binding pocket. 
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Results 

Structure of AtSOT18  

 In order to address ds-Gl SOT specificity and catalysis, the structure of AtSOT18 with the 

product Gl sinigrin alone and together with the co-product PAP, was solved (Fig. 2). The overall 

structure of AtSOT18 matches with previously described mammalian ones (Chapman et al., 

2004; Tibbs et al., 2015). The globular enzyme consists of four central β-strands forming the 

characteristic backbone, surrounded by 21 α-helical turns and two additional smaller β-strands 

(Fig. 2, Fig. 3). Also the three typical flexible loops, including loop 1, which is only found in 

human SOT1 subfamily proteins, gating the sinigrin binding site could be identified. The highly 

conserved His155 is localized in the catalytic center right in between the bound PAP and 

sinigrin (Fig. 5). 
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Fig. 2. Overall view of AtSOT18 from two perspectives bound with sinigrin (magenta sticks) and PAP (cyan sticks). 

Indicated are the four conserved regions (region I: blue; region II: yellow; region III: magenta: region IV: cyan), the three 

flexible loop regions (grey), the catalytic residues (red) and proline 136 (orange). 
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Fig. 3. AtSOT18 amino acid sequence. Conserved regions as defined by (Varin et al., 1992) (region I: blue; region II: yellow; 

region III: magenta: region IV: cyan), catalytic residues (red), PAP binding residues (cyan arrows), sinigrin binding residues 

(magenta arrows). 

 

According to DALI (Holm and Rosenstrom, 2010), SOT18 has the highest structural identity 

to apo-AtSOT12 (41%) (Smith et al., 2004), followed by human SOT1A1 (Lu et al., 2005) and 

SOT1A3 (Lu et al., 2010) (27% identity each). Interestingly, the dimerization domain 

KxxxTVxxxE, which is conserved in all human SOTs (Tibbs et al., 2015) is neither present in 

AtSOT18, nor in any other A. thaliana SOT. Furthermore, comparison of crystal symmetry of 

AtSOT18 and homodimeric hSOT1B1 does not give any indications for a dimeric structure. 

In total, the structure of AtSOT18 shows high similarity to mammalian SOTs, which illustrates 

the high evolutionary conservation of this multifunctional enzyme family. Hence, the structural 

basis for the functional divergence of SOTs is provided by the fine-tuned conformational 

control of the unique residues in the individual enzymes.  

   

Analysis of substrate binding sites in the AtSOT18 complexes 

Towards a better understanding of ds-Gl SOT specific structural characteristics, we analyzed 

the substrate binding sites in complex with sinigrin and PAP and in complex with sinigrin alone. 

The structure comparison revealed that there are no major differences upon sinigrin binding 

(Fig. S1). In general, the two models could still be overlaid with a root mean square deviation 

(RMSD) of 0.187 Å. Only Met186 undergoes conformational change upon sinigrin binding. 

Both closed-state AtSOT18 crystal structures showed two openings to an active site cavity. One 

is located directly at the proteins acceptor site as an entry for the substrates and has dimensions 

of approximately 14 Å x 9 Å. The second opening has a smaller diameter of 10 Å x 7 Å and is 
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located close to the adenyl group of the donor PAP. The electron density for sinigrin was partly 

diffuse, therefore the electron-rich sulfate and hydroxyl groups were used as reference points 

for better positioning of the substrate (Fig. S2). The obtained fit was in agreement with the 

reference structural groups and produced no stereochemical clashes.  

Sinigrin binding is facilitated by hydrogen bonds with the residues Arg51, Glu54, Thr96, 

Tyr130 and Tyr306 (Fig. 4a). The Arg51 guanidinium group interacts with the 6’-hydroxyl 

group of the glucopyranose of the Gl. The carboxyl group of Glu54 interacts with the 4’- and 

the 6’-hydroxyl groups. The hydroxyl of Tyr306 forms a hydrogen bond with the oxygen in the 

glucopyranose ring. The transferred sulfate group is stabilized by a hydrogen bond to Thr96 

and Tyr130. The minimal distance between the transferred sulfate group of sinigrin and the 5’-

phosphate group of PAP was 4.4 Å. 



  CHAPTER 4 

57 

 

Fig. 4. Ligand binding sites. (a) Sinigrin binding site and (b) PAP binding site with and π-π stacking (green lines) interaction 

and hydrogen bonds to residue backbone (purple arrows) and side chains (dotted purple arrow). 

 

The quality of the electron density allowed an exact determination of the position and 

stereochemistry of the PAP (Fig. S2). PAP was embedded within the structure and stabilized 

by several hydrogen bonds and π-π stacking with surrounding amino acids. The four oxygen 

atoms of the 3’-phosphate group were stabilized by six hydrogen bonds with the side chains of 

Arg177, Ser185, Arg313, and the main chain of Lys314 and Gly315 (Fig. 4b). The oxygen 

atoms of the 5’-phosphate group were stabilized by six hydrogen bonds to the side chains of 

Lys93, the main chain of Gly95, and both the main and the side chains of Thr96 and Thr97. 
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Arg313 formed a hydrogen bond to the hydroxyl group at the 2’-carbon of PAP. The adenyl 

group of PAP is stabilized by hydrogen bonds with Cys282 and Tyr243, the stacking interaction 

with Trp98, and the hydrophobic contacts with Phe284 and aliphatic groups of Arg247. 

Interestingly, from the 14 residues that contact PAP directly, 11 are within the highly conserved 

regions I-IV (with the exception of Arg247, Cys282 and Phe284), while only a single (Thr96) 

of the 5 substrate binding residues is in there (Fig. 3). In the AtSOT18•PAP complex, the main 

conformation of Met186 was oriented away from the acceptor site (Fig. S3). In the second 

conformation the methionine side chain is oriented towards the acceptor, providing an 

additional stabilization to its hydrophobic moiety.  

In summary, analysis of the binding sites revealed that the Gl sinigrin is rather loosely bound 

compared to the tightly bound PAP. Furthermore, it was shown that PAP binding residues are 

mostly located inside and sinigrin binding residues outside of the conserved regions (Fig. 3). 

Binding of the comparatively small substrate sinigrin induces only subtle structural changes, 

while the overall loop conformation remains about the same, except for a conformational 

change of the Met186 residue. The latter may contribute to the sinigrin stabilization by forming 

a new hydrophobic contact with the substrate.  

 

Identification of the amino acids involved in the enzymatic reaction 

The stereochemical analysis suggests that Lys93, Thr96 and 97, Tyr130 and His155 (Fig. 5), 

which are located directly in the catalytic center, may be involved in the proton transfer event, 

as well as in the stabilization of the transition states, which could lower the transition energy 

barrier of the chemical reaction.  
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Fig. 5. Close up of the binding site with residues of the catalytic center. Catalytic residues (red) with bound sinigrin 

(magenta), PAP (cyan) and protein surface (light-grey) 

To test the importance of the five residues in the catalytic center we performed mutagenesis 

and enzymatic activity studies. The selected amino acids are conserved through the AtSOT 

family, indicating a significant function, except for Tyr130, which is only conserved in 6 out of 

17 AtSOTs, including the three ds-Gl SOTs. 

After the respective point mutations to alanine, the mutants were tested with 3-methylthiopropyl 

Gl (3MTP), 8MTO and sinigrin as substrates (Table 1). In the assays, the mutants Lys93Ala, 

Thr97Ala, Tyr130Ala and His155Ala showed strongly reduced activity. Thr96Ala still showed 

residual activity with the preferred substrates 3MTP and 8MTO (12-fold reduction and 3-fold 

reduction, respectively), while with sinigrin no more activity was detected (wildtype activity: 

879 ± 410 pkatal mg-1), possibly because the signal was under the detection limit.  A major 

significance of the selected amino acids for catalysis is indicated by the absent or strongly 

reduced activities. 
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Table 1. Mutational analysis of the AtSOT18 enzyme. Selected amino acids in the catalytic center were mutated to alanine. 

The activity was tested with short-chained aliphatic 3MTP, long-chained aliphatic Gl 8MTO, co-crystallized sinigrin and 

indolic Gl I3M. The 150 µL assays contained 80 mM Tris/HCl, pH 8.0, 9.2 mM MgCl2, 60 mM of the respective ds-Gl 

substrates, 1 µg purified protein, and 60 µM PAPS. The reactions were started by the addition of PAPS, incubated for 20 min 

at 37 °C, and stopped by incubation at 95 °C for 10 min. The formation of the respective sulfated product was analyzed by 

HPLC at 229 nm. The specific activities are given in pkatal mg-1. N.D., not detectable; -, not tested. 

 

 Activity in pkatal mg-1  

AtSOT18 3MTP 8MTO Sinigrin I3M 

Wildtype* 1624 ± 122 1618 ± 272 879 ± 410 501 ± 46 

Lys93Ala N.D. N.D. N.D. - 

Thr96Ala 122 ± 19 536 ± 73 N.D. - 

Thr97Ala N.D. N.D. N.D. - 

Tyr130Ala N.D. N.D. N.D. - 

His155Ala N.D. N.D. N.D. - 

Pro136Ala 1726 ± 264 - - 473 ± 18 

 

Overall, the residues for substrate binding and catalysis were identified by analysing the active 

sites. Putative catalytic residues were tested by mutagenesis and enzyme activity study. The 

mutants showed drastically reduced activity, confirming the high impact of the respective 

residues.  

 

Enzyme kinetics and inhibition tests of AtSOT18 

The AtSOT18 enzyme kinetics and the inhibition of the enzyme by PAP were analyzed, as PAP 

is an important second messenger molecule in A. thaliana (Estavillo et al., 2011; Chan et al., 

2013). For better comparison with former studies (Klein et al., 2006; Klein and Papenbrock, 

2009; Hirschmann and Papenbrock, 2015), the inhibition tests were performed with 3MTP 

instead of sinigrin. The product formation was used to determine the respective enzymatic 

activity. A two-dimensional titration experiment was performed, where product concentration 

was determined at various concentrations of donor and inhibitor molecules. 

For AtSOT18, the analysis of the enzyme kinetics included the following assumptions: 

According to literature (Chapman et al., 2004; Wang et al., 2014; Tibbs et al., 2015), PAP and 
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PAPS were expected to bind to the same site in the enzyme resulting in a competitive inhibition. 

This implies unaltered dissociation constants KD for PAPS, KA for 3MTP, and KI for PAP. We 

also assumed that the dissociation constants KD for PAPS, KA for 3MTP, and KI for PAP are 

independent of each other. Finally, the concentration of enzyme molecules E0 in the reaction 

was much lower than the initial ligand concentrations of donor D0, acceptor A0, and inhibitor 

I0. Therefore, the ligand concentrations at equilibrium were assumed to be unchanged as 

compared to the initial concentrations. Also, the correlation between the product 3MTP and the 

equilibrium population of AtSOT18•PAPS•ds-3MTP complex was assumed to be linear. In 

other words: once the enzyme included both ligand molecules, the reaction was catalyzed and 

two product molecules were released with respective dissociation rates. These assumptions 

result in a six equilibrium states model depicted in Fig. 6. At the pseudo first order conditions 

(i.e. when E0 << A0 ;  D0  ; I0 ) the following simple system of algebraic equations represent 

the probabilities to find the enzyme in the particular occupied state: 

 

𝑃𝑃00 + 𝑃𝑃�10 + 𝑃𝑃10 + 𝑃𝑃01 + 𝑃𝑃�11 + 𝑃𝑃11 = 1 

 

𝑃𝑃10
𝑃𝑃00

=
𝑃𝑃11
𝑃𝑃01

=
𝐷𝐷0
𝐾𝐾𝐷𝐷

 

 

𝑃𝑃11
𝑃𝑃10

=
𝑃𝑃01
𝑃𝑃00

=
𝑃𝑃�11
𝑃𝑃�10

=
𝐴𝐴0
𝐾𝐾𝐴𝐴

 

 

𝑃𝑃�10
𝑃𝑃00

=
𝑃𝑃�11
𝑃𝑃01

=
𝐼𝐼0
𝐾𝐾𝐼𝐼

 

 

where: 

 

𝑃𝑃𝑖𝑖𝑖𝑖 =
𝐸𝐸𝑖𝑖𝑖𝑖
𝐸𝐸0
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The resulting solution for the productive state P11 has the following hyperbolic form: 

 

    𝑃𝑃11 = 𝐴𝐴0𝐷𝐷0
𝐴𝐴0𝐷𝐷0+𝐴𝐴0𝐾𝐾𝐷𝐷+𝐷𝐷0𝐾𝐾𝐴𝐴+𝐾𝐾𝐷𝐷𝐾𝐾𝐴𝐴+𝐼𝐼0

(𝐴𝐴0𝐾𝐾𝐷𝐷+𝐾𝐾𝐷𝐷𝐾𝐾𝐴𝐴)
𝐾𝐾𝐼𝐼

 

 

 

 

Fig. 6. Model of the competitive inhibition of AtSOT18 by PAP. In equilibrium six different populations of enzyme•ligand 

complexes are present with their respective probabilities Pij, where i and j represent the status of the donor and acceptor site, 

respectively. 0 and 1 represent non-occupied and occupied enzyme sites. 𝑃𝑃�𝑖𝑖𝑖𝑖 represents the probability of an enzyme•inhibitor 

complex species with the inhibitor bound to the donor site. D0, A0, and I0 represent the initial concentration of donor PAPS, 

acceptor ds-3MTP, and inhibitor PAP, respectively. Dissociation constants are displayed as KD for the donor, KA for the 

acceptor, and KI for the inhibitor in equilibrium, respectively. The sulfate transfer could only be catalyzed within the state P11 

where donor and acceptor site are each occupied with the substrates. 

 

Our experimental data were therefore approximated by the function Vmax*P11. Since the 

concentration of acceptor A0 was fixed at 60 µM and the KA were chosen equal to 55 µM, based 

on conditions used in previous studies (Glendening and Poulton, 1990; Klein et al., 2006; Klein 

and Papenbrock, 2009; Hirschmann and Papenbrock, 2015), this function contains three 

unknown parameters KD , KI, and Vmax, and depends from the two independent variables: D0 
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and I0. We have found that the Igor Pro software is the most appropriate data analysis package, 

since it allowed to perform the non-linear least squares fit of multidimensional data by user-

defined functions. The best approximation of experimental data provides the following 

parameters for wild-type AtSOT18: Vmax= 5200 ± 300 pkatal mg-1, KD = 4.2 ± 2.6 µM, KI = 

3.0 ± 1.7 µM, with the RMSD value of 150 pkatal mg-1. The experimental data and fit are shown 

in Fig. 7. 

 

Fig. 7. 3D plot of AtSOT18 kinetic titration data their fit. Blue spheres represent the mean values of three replicates of the 

enzyme rate in pkatal mg-1. Triangles are the estimated errors of experimental points. The wire frame surface represents the 

fitted function. Ds-3MTP concentration was kept constant at 60 µM. 

 

In summary, the obtained kinetic data imply that turnover time of AtSOT18 reaction is close to 

4 seconds. Furthermore, the sulfate group of PAPS does not contribute significantly to the 

binding energy of the donor.   

 

The source of ds-Gl SOT specificity 

Another topic of interest was how the substrate specificity of ds-Gl SOTs is regulated on the 

molecular level. The major differences are between AtSOT18, which hardly accepts indolic ds-

Gls, and AtSOT16, which highly prefers these (Klein and Papenbrock, 2009). To investigate 
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structural differences between AtSOT18 and AtSOT16, a homology model of AtSOT16 was 

built based on our AtSOT18 structure. Comparison of the experimental AtSOT18 and 

homology AtSOT16 models revealed that both the amino-acid composition and the geometry 

of the Gl binding sites are highly conserved in both proteins (Fig. S4). Therefore, we concluded 

that the substrate specificity of ds-Gl SOTs may be regulated by the residues outside of the 

immediate active site. Analysis of residues in the second coordination sphere with respect to 

the Gl binding site revealed that AtSOT18 Pro136 is replaced by an alanine residue (Ala124) 

in AtSOT16 (Fig. S5). Hence, we hypothesized that the differences of conformational dynamics 

of helical turn α6 containing proline vs alanine may influence the flexibility of the Gl binding 

site, thus decreasing the ability of AtSOT18 to bind the comparably large I3M. Normal-Mode-

Analysis (NMA) with the original AtSOT18 structure and an AtSOT18 Pro136Ala mutant 

revealed a bending deformation of α6 in the mutant vs a simple shift in the wild-type protein 

(Fig. S6), which supported our hypothesis. However, the mutation of Pro136Ala did not lead 

to the changes in substrate specificity in vitro (Table 1). At the same time, the homology models 

combined with NMA results suggested that the specificity may be controlled by the three 

functional loops. Amino acid alignment of AtSOT16 and AtSOT18 shows that the loops are 

non-conserved (Fig. S7). Loop 2 in particular is highly heterogeneous, with 30% of amino acids 

conserved. Loops 1 and 3 also contain many non-conserved residues. After careful exclusion 

of other options, we hypothesize the loop regions to be most important for substrate specificity, 

especially in the absence of other selectivity sources directly in the active site or in the adjacent 

regions.    
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Discussion 

Biology of SOTs 

Several studies have investigated molecular and structural features of SOTs, regarding the 

mechanism, specificity and function, as reviewed in Chapman et al. (2004) and Tibbs et al. 

(2015). In most cases, interest was focused on human SOTs (Lu et al., 2010), but also SOTs 

from mice (Kakuta et al., 1998), insects (Pakhomova et al., 2005) and prokaryotes (Malojčić et 

al., 2014) were analyzed in detail. In the plant kingdom, SOTs were mainly studied on a 

physiological level (Hirschmann et al., 2014), and until now, only one plant structure was 

published, which substrate-binding loops showed no electron density  (Smith et al., 2004). 

Thus, the molecular details of SOTs from plants and their structure-function relationship in 

comparison with other SOTs remained unclear. Here, we demonstrated that the SOT18 

structure from A. thaliana shares a classical fold of soluble eukaryotic SOT proteins, including 

conserved catalytic residues, PAPS binding region and flexible loops surrounding the substrate 

binding site (Fig. 2). Hence, it can be speculated that many general SOT characteristics are also 

conserved in plants. A major difference between mammalian and plant SOTs seems to be the 

absence of a dimerization domain.  

Analysing the binding sites for ligand binding residues revealed that the PAP binding residues 

are mainly located in the regions I-IV, which are conserved though all organisms (Fig. 3). High 

conservation of the PAPS binding site has been reported for previously solved structures from 

other organisms (Chapman et al., 2004) and could now also be confirmed for plant SOTs. 

Hence, it is plausible that residues responsible for the binding of various Gl substrates are 

located outside of the conserved regions. The high and low degrees of binding site conservation 

for the sulfate donor and acceptor, respectively, illustrates how SOTs easily adapt to different 

substrates in various organisms. In mammals, for example, SOTs are involved in detoxification, 

thus sulfating a broad range of compounds. They also perform various specific tasks, like the 

homeostatic control of signalling molecules, such as oxysterols and steroids like 

dehydoepiandrosterone  (Mueller et al., 2015; Tibbs et al., 2015). In plants, they also fulfil a 

broad range of functions, some of general nature, such as AtSOT10 sulfating brassinosteroids 

(Marsolais et al., 2007), and more specific functions such as the choline-O-sulfate SOT from 

Limonium as part of a highly specialized salt stress response (Rivoal and Hanson, 1994). Ds-Gl 

SOTs, found only within the plant order Capparales, could be considered as a plant order 

specific SOT. In a previous study we analyzed ds-Gl SOTs in Brassica napus and identified a 
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new subgroup of SOT18-like enzymes, which did not show any activity with the tested ds-Gls 

(Hirschmann and Papenbrock, 2015). We speculated that due to genome triplication and 

allopolyploidization events in the evolutionary history from A. thaliana to B. napus, SOT18 

might have undergone pseudo- (loss of function), or neofunctionalization (gain of new 

function). Regarding the solved AtSOT18 structure it is comprehensible that the natural 

variation of the identified catalytic residues or residues involved in PAPS binding are likely to 

result in pseudofunctionalization, while mutations in the substrate binding site, but also in the 

flexible loops, could lead to neofunctionalization. 

 

Mechanism of SOTs and kinetics 

Our kinetic data indicate that the sulfate group of PAPS does not contribute significantly to the 

binding energy of the donor. At the same time, the structure of the AtSOT18•PAP•sinigrin 

complex reveals H-bond interactions of sinigrin with Thr96 and Tyr130 stabilizing the sulfate 

group in the active site. Our mutagenesis study showed that disturbing these interactions leads 

to a dramatic loss of enzymatic activity (Table 1). This seeming contradiction is resolved by 

our AtSOT18•PAP complex structure, where the oxygen positions of the sulfate group are 

occupied by the oxygens of the solvent. The necessity to replace solvent molecules upon 

binding, the sulfate group leads to a near zero binding enthalpy balance, which explains the 

experimental kinetic data. The main contribution to the PAPS binding energy is thus provided 

by the PAP nucleoside moiety, which binds to a deep hydrophobic pocket between helices α3, 

α13 and α16.  

 

Analysis of the catalytic center 

The high-resolution structure of the AtSOT18 complex provided detailed information about the 

spatial arrangement and conformation of the residues of the catalytic center. Structural analysis 

suggests two major functions for the active site residues: providing the proximity and 

orientation effect for the substrate and sulfate donor and providing a direct effect on the catalytic 

reaction center by charge transfer and stabilization of the transition state geometry. The five 

residues of the catalytic center (Lys93, Thr96, Thr97, Tyr130, His155 (Fig. 5)) that stabilize 

the interface between the two substrates were tested by mutagenesis (Table 1). The dramatic 
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effect of alanine mutations at all these positions on enzymatic activity confirmed the importance 

of these residues for catalysis.   

Based on these experiments and the structural conservation between AtSOT18 and human 

SOTs, we are able to adopt mechanistic information from human enzymes (Tibbs et al., 2015). 

In AtSOT18, after charge neutralization of PAPS by conserved residues upon binding, His155 

abstracts a proton from the ds-Gl and the PAPS sulfur is attacked by the newly formed 

nucleophile. For completion of the reaction, the partial participation of the nucleophile leads to 

a charge build-up on the bridging oxygen, which then results in a shift of Lys93. This shift may 

then complete the sulfate dissociation from PAP. Transition state could be stabilized by 

hydrogen bond formation of sulfate oxygens of sinigrin with Thr96 and Tyr130 (Fig. 4a) and 

oxygens of the PAP 5’-phoshphate with Thr96 and Thr97 (Fig. 4b) 

Overall findings strongly indicate that the basic catalytic mechanism, regarding deprotonation 

of the respective substrate and sulfate dissociation from PAP by conserved histidine and lysine 

residues, respectively, is conserved in between mammals and A. thaliana. 

 

The regulatory effect of PAP inhibition 

The dissociation constants obtained from our two-dimensional titration experiment KD (PAPS) 

= 4.2 ± 2.6 µM, KI (PAP) = 3.0 ± 1.7 µM of AtSOT18 are relatively high compared to human 

SOTs. For human SOT2A1, 22 individual rate constants were estimated considering a dead-

end-complex formation with PAP (Wang et al., 2014). The dissociation constants determined 

by Wang et al. (2014) for PAPS were 0.2 µM  and for PAP 0.3 µM. Furthermore, the Km values 

for PAPS were determined for various other human SOTs and ranged between 0.07 µM and 

1.6 µM (Chapman et al., 2004).  

By transferring Gl synthesis genes in Tobacco, thus enabling it to synthesize Gls, it could be 

shown that SOTs are not the bottleneck of synthesis. Instead it was stated that the PAPS supply 

could be the limiting step for Gl synthesis (Møldrup et al., 2011). A possible biological reason 

for the comparably low affinity of AtSOT18 for PAPS could be that there are three ds-Gl 

AtSOTs, hence a reduced affinity would preserve the limited PAPS pool. Since, Gls are 

transported from the cytoplasm into the vacuole and are only biologically active upon cell 

disruption, Gl biosynthesis could be considered a foresighted safety mechanism and not a fast 

immediate stress response. Hence, the limited PAPS would be more available for SOTs that are 

involved in immediate stress response, such as AtSOT12 and AtSOT15 using salicylic acid and 
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hydroxyjasmonate as substrates, respectively (Gidda et al., 2003; Baek et al., 2010), if they 

have a lower Km value for PAPS than AtSOT18. Respective kinetic data have not been 

determined for these SOTs yet. 

Further to the regulative functions of PAPS, also the co-product of SOT reaction PAP is 

considered to be a retrograde signal for induction of stress response (Estavillo et al., 2011; Chan 

et al., 2013). PAP is suggested to move into the nucleus where it inhibits RNA-degrading 

activity of 5’-3’ exoribonucleases, which leads to the prevention of post transcriptional gene 

silencing of stress response genes. Further mutational studies of PAP catabolic genes led to 

accumulation of ds-Gls and lower levels of Gls. It was suggested that this is either caused by 

inhibition of PAPS transport or SOTs (Lee et al., 2012). Here we could demonstrate that ds-Gl 

SOTs are indeed inhibited by PAP.  

 

The substrate specificity of ds-Gl SOTs 

The substrate specificity of SOTs in general, including the ds-Gl SOTs is still hardly 

understood. SOTs in plants and mammals often have an overlapping substrate spectrum 

between each other, making it difficult to assign the enzyme’s specific function. Various trials 

to group SOTs according to accepted substrates based on primary sequence analysis were 

without success (Hirschmann et al., 2014; Tibbs et al., 2015). Comparison of the AtSOT18 Gl 

binding site with the one in a homology model of AtSOT16 showed no obvious differences that 

would explain the distinctions in substrate specificity. Also, the extension of our search to the 

adjacent residues to the catalytic site could not explain the differences in the Gl binding 

affinities. Hence, we suggest that a specificity source of the ds-Gl SOTs might be provided by 

the non-conserved functional loops forming the Gl binding site, similar to the human enzymes 

(Allali-Hassani et al., 2007; Rohn et al., 2012; Rakers et al., 2016). However, substrate 

specificity cannot be entirely explained by the conformational properties of the gating loops. 

For example, for human SOT1A1 a molecular clamp mechanism was suggested, where two 

phenylalanine residues are repositioned in response to preferred substrates in such a way that 

stabilize the substrate’s phenolic residue in a catalytic enhancing position (Cook et al., 2015). 

Even though we provided the first crystal structure of a plant SOT with bound ligands and 

complete electron density of the gating loops, further studies, including mutation of the loops, 

AtSOT16 crystallization and full molecular dynamics studies, are needed to achieve a 

comprehensive understanding of the ds-Gl SOT selectivity mechanisms. 
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Methods 

Expression, purification and crystallization  

The sequence encoding SOT18 from Arabidopsis thaliana (AtSOT18, At1g74090) was cloned 

into pQE-30 (Qiagen, Hilden, Germany) and expressed in Escherichia coli as described in 

Luczak et al. (2013). Mutagenesis was performed as described by Klein et al. (2006). The 

purification of recombinant AtSOT18 protein by affinity chromatography was performed 

according to Luczak et al. (2013) with modifications. An additional washing step with 0.12 M 

imidazole (20% buffer B + 80% buffer A; buffer B: 20 mM NaH2PO4, 0.5 M NaCl, 0.5 M 

imidazole, pH 7.4) was performed to obtain protein in a higher purity of up to 95%. The protein 

was dialyzed in 20 mM Tris/HCl, pH 8.0 plus 1 mM DTT for enzymatic assays or 20 mM 

HEPES, pH 8 for crystallization. Previously identified crystallization conditions (done by Prof. 

Dr. George N. Phillips, Jr., University of Wisconsin-Madison, USA) were used for further 

optimization by fine screens and additive screens. For the crystallization set-ups the 

concentrated protein sample was mixed gently with 4 mM PAP, and for the 

AtSOT18•PAP•sinigrin complex, with 4 mM PAP plus 4 mM sinigrin. During the complex 

formation the sample remained on ice for 45 min, followed by a centrifugation step at 21,000 x 

g for 30 min. Fine screening was performed in 24-well plates for hanging and sitting drop plates 

with a total reservoir volume of 500 µL and 200 µL, respectively. The total droplet size was 1.8 

to 2.2 µL. Protein complex and reservoir solution were mixed in a ratio of 1:1. Additive 

screening was performed in a 96-well sitting drop plate by preparing the desired protein 

complex and reservoir solution, and mixing the reservoir with 10% volume of the Additive 

Screen HT™ - HR2-138 (Hampton Research, Aliso Viejo, USA).  

Plate incubation and crystal growth documentation was performed using the Ministrel 

CrystalMation incubation and imaging system (Rigaku, Tokyo, Japan) for standard format 

plates (SBS format, Society for Biomolecular Screening). The measured crystals grew under 

0.1 M MES pH 5.9, 16% PEG4000, 160 mM NaCl, and 4% 1,3-butanediol 

(AtSOT18•PAP•sinigrin complex) and 0.1 M MES pH 5.9, 16.5% PEG4000, 160 mM NaCl and 

5% 1-propanol (AtSOT18•PAP complex) at 18°C. 
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Data collection and refinement  

Before crystal harvest and freezing in liquid nitrogen the crystal was immersed in a 

cryoprotective solution (cryo buffer was identical to the reservoir conditions plus 20% ethylene 

glycol). The harvested crystals were irradiated by synchrotron radiation at the European 

Synchroton Radiation Facility. Crystal and modeling parameters, and the refinement statistics 

are summarized in Table 2. The number of protein molecules in the asymmetric unit of the 

crystal was estimated using the Matthews coefficient in the Collaborative Computational 

Project No. 4 (CCP4) application matthews_coef. Molecular replacement was performed using 

the CCP4 application AMoRe. To solve the phase problem of the de novo generated data, the 

AtSOT12 model (PDB ID 1Q44) was used in AMoRe. The high and low resolution cutoff 

parameters and the search sphere radius were optimized for maximal significance of the rotation 

and translation function and the final fit of the search model. Using the application fast Fourier 

transformation, the initial electron density was calculated. Using the initial electron density and 

the known protein sequence of AtSOT18 the initial protein model was generated using 

ARP/warp Classic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  CHAPTER 4 

71 

Table 2. Crystallographic data and refinement statistics for the AtSOT18•PAP•sinigrin and the AtSOT18•PAP 

complexes. Information on high resolution data referred to the outer 0.1 Å of the resolution shell. 

 

 AtSOT18 complexed with 

 PAP, sinigrin PAP, no acceptor 

PDB code to be submitted to be submitted 

 Crystal Parameters 

space group P 43 21 2 P 43 21 2 

cell parameters   

a, b, c (Å) 63.82, 63.82, 209.97 62.74, 62.74, 201.5 

α, β, γ (deg) 90, 90, 90 90, 90, 90 

 Data collection 

ESRF beamline ID23-1 ID23-1 

wavelength (Å) 0.91 0.91 

Crystal mosaicity (deg) 0.066 0.073 

Wilson B-factor 37.246 32.727 

resolution range (Å; total/high) 19.95 - 1.92 /  

2.02 - 1.92 

19.99 - 1.74 /  

1.84 - 1.74 

unique reflections (total/high) 34,239 / 4625 42,500 / 6394 

completeness (total/high) % 99.63 99.9 

〈I/σ(I)〉 (total/high) 22.68 / 3.21 20.44 / 2.65 

Rsym (total/high) % 0.065 / 0.544 0.093 / 0.753 

 Refinement statistics 

included amino acids 26 – 347 26 – 347 

number of protein atoms 2652 2698 

number of H2O molecules 283 242 

Rcryst / Rfree % 16.8/21.7 16.7/20.8 

RMS deviation for bonds (Å) / 

angles (deg) 

0.02/2.047 0.022/2.145 

 
 

Model building was performed using the Crystallographic object-oriented toolkit (COOT) V 

0.7.2.1 and the CCP4 program suite V 6.3.0. For an automated overall refinement of the 

modeled AtSOT18 structures Refmac5 and ARP/warp Classic V 7.3.0 within the CCP4 
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package were used. For electron density map calculation, the refmac5 output was submitted to 

ARP/warp classic. The density map was recalculated within 15 iterations and thereafter used 

with the refmac5 protein coordinates in another manual refinement cycle in COOT. Protein 

visualization and analysis was performed using Pymol and Schrödinger Maestro. Chemical 

equations were designed in ChemDraw. 

 

Homology modelling and NMA  

Homology models were created in Schrödinger Prime, using AtSOT18 as template. NMA was 

performed with the elNémo web interface (Suhre and Sanejouand, 2004) and the respective 

movements were analyzed in Pymol.  

 

Preparation of substrates  

The ds forms of the parent Gl derived from methionine and tryptophan were prepared as 

described by Graser et al. (2001). The following Gl were used in the experiments in their ds 

forms: 3MTP (glucoiberverin) from Erysimum pumillum, 8MTO from Arabis stelleri, I3M 

(glucobrassicin) from Isatis tinctoria. 2-Propenyl Gl (sinigrin) and PAP was bought 

commercially (Sigma-Aldrich, Taufkirchen, Germany). PAPS was obtained from Prof. H. R. 

Glatt, Institute of Human Nutrition, Berholz-Rehbruecke, Germany. 

 

Enzyme activity measurements and analysis of the kinetic 

parameters  

Enzymatic AtSOT18 assays were performed as described by Hirschmann and Papenbrock 

(2015). For inhibition experiments, a set of two-dimensional titration experiments was 

performed to determine the dissociation constants KD of the donor PAPS and the KI of the 

competitive inhibitor PAP. In the experiments the amounts of enzyme AtSOT18 and acceptor 

ds-3MTP were kept constant at 0.5 µg and 60 µM, respectively. The concentration of the sulfate 

donor PAPS was varied to 20, 40, 60, 80, and 100 µM and the inhibitor PAP was added at 

concentrations of 0, 20, 40, and 60 µM. Each reaction was prepared in triplicate. Two-

dimensional non-linear least squares fit of the measured data with donor PAPS and inhibitor 

PAP as variables were performed. IgorPro V4.00 (WaveMetrics Inc., Lake Oswego, USA) was 
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used for nonlinear least squared Levenberg-Marquard fitting of the two dimensional 

experimental data (x as inhibitor concentration I0 and y as donor concentration D0) to the 

theoretical hyperbolic function derived from the model assumptions. The dissociation constants 

for the donor PAPS KD, and the inhibitor PAP KI and Vmax were determined in an iterative 

minimization of the RMSD to the measured data. The dissociation constant KA and 

concentration A0 of the acceptor ds-3MTP was set to 55 µM according to literature (Klein and 

Papenbrock, 2009) and 60 µM due to the experimental procedure. 
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Supplementary Material 

Table S1. Summary of the amino acids putatively involved in sinigrin and PAP binding, as well as catalysis. 

 
Proposed residue / possible role of the amino acid 
------------------------------ 
E54 / substrate binding (dsG1) 
E193 / substrate binding (dsG1) 
R51 / substrate binding (dsG1) 
Y306 / substrate binding (dsG1) 
L190 / substrate binding (dsG1) 
F189 / substrate binding (dsG1) 
M186 / substrate binding (dsG1) 
Y311 / substrate binding (dsG1) 
V305 / substrate binding (dsG1) 
L65 / substrate binding (dsG1) 
S67 / substrate binding (dsG1) 
L68 / substrate binding (dsG1) 
I133 / substrate binding (dsG1) 

K93 / stabilization of transition state, proton or electron transfer 
Y130 / stabilization of transition state, proton or electron transfer 
H155 / stabilization of transition state, proton or electron transfer 
T97 / stabilization of transition state, proton or electron transfer 
T96 / stabilization of transition state, proton or electron transfer 
 
R177 / substrate binding (PAPS), proton or electron transfer 
S185 / substrate binding (PAPS), proton or electron transfer 
R313 / substrate binding (PAPS), proton or electron transfer 
F284 / substrate binding (PAPS) 
R247 / substrate binding (PAPS), proton or electron transfer 
W98 / substrate binding (PAPS) 
Y243 / substrate binding (PAPS), proton or electron transfer 
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Fig.S1. Superimposition of overall structures of AtSOT18•sinigrin•PAP (green) and AtSOT18•PAP (blue). 

 

 

Fig. S2. Ligand electron density of PAP and sinigrin. 



  CHAPTER 4 

81 

 

Fig. S3. Comparison of the AtSOT18•PAP•sinigrin (green) and AtSOT18•PAP (blue) complex’ sinigrin (magenta) 

binding site. All sinigrin surrounding residues are in both complexes in the same position, except for Met186, which shows a 

double confirmation in the AtSOT18•PAP (blue) complex.  

 

 

 

Fig. S4. Structural alignment of the sinigrin (magenta) binding residues of the AtSOT18•PAP•sinigrin (green) and AtSOT16 

homology model (blue) with superimposed indol-3-ylmethylglucosinolate (I3M). 
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Fig. S5. Location of Pro136 (orange) in α6 in the second coordination sphere, in relation to the active site residues 

(green) with sinigrin (magenta) and PAP (cyan).  

 

  

Fig. S6. Visualization of Normal Mode Analyses. The movement of loop 1 localized α6 directly alters the volume of the Gl 

binding site (white arrows). From open (cyan) to closed state (blue) AtSOT18 α6 undergoes a simple shift movement (purple 

arrow), while AtSOT18 Pro136Ala (red) showed a bending deformation (black arrow). 
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Fig. S7. Alignment of the AtSOT16 and AtSOT18 protein sequences. The three flexible loops forming the ds-Gl binding 

site are highlighted. 
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Combination of structure and enzyme assay results 
 

The sequence-based identification of SOT substrates is due to their high similarity and 

overlapping substrate specificities almost impossible and has led in plants (Chapter 2) and 

mammals (Tibbs et al., 2015) to false predictions. In A. thaliana, three ds-Gl SOTs have been 

identified and characterized that showed different substrate specificities among those (Klein 

and Papenbrock, 2009). The main aims of this thesis were the sequence-based identification of 

ds-Gl SOT substrate specificities in B. napus (Chapter 3) and the molecular explanation for 

substrate binding, catalysis and substrate selectivity (Chapter 4). To test whether the sequence-

based prediction is possible, B. napus was chosen due to its economic relevance. In total, 71 

putative functional SOTs were identified in the allotetraploid B. napus and eleven of those are 

likely to encode ds-Gl SOTs. Interestingly, a new subgroup of SOT18-like enzymes could be 

identified. Several of the newly identified ds-Gl BnSOTs were recombinantly expressed and 

purified. By in vitro characterization it could be demonstrated that the SOT16 and SOT17 

homologs show similar substrate specificities as their A. thaliana counterparts. These results 

show, that it is not only principally possible to identify ds-Gls as substrates, but also to predict 

if they prefer aliphatic or indolic ds-Gls. Surprisingly, the tested BnSOT18-a and BnSOT18-b 

did not show any activity. It was hypothesised that the inactivity is either caused by wrong 

folding during the recombinant expression or by natural variation.  

By solving the 3D structure of AtSOT18 fundamental residues for catalysis and substrate 

binding could be identified. Five catalytic residues were identified in AtSOT18 and their 

mutation to alanine led to inactivation or strong reduction of activity (Chapter 4). Sequence 

alignments of AtSOT18 and the experimentally analysed BnSOT18s now reveal more detailed 

explanations for the inactivity (Fig. 1). In BnSOT18-a two of the five catalytic residues 

(Thr96Ser and Tyr130Phe, AtSOT18 residue numbering) and one Gl-binding residue 

(Glu54Ser) differ compared to AtSOT18. Hence, it can be speculated that the differences in the 

BnSOT18-a catalytic residues explain its inactivity, even though the substituting residues are 

chemically quite similar. In BnSOT18-b, Arg247 (AtSOT18 residue numbering), involved in 

PAPS binding is replaced by a serine. This substitution could also already inactivate the SOT, 

as Arg247 stabilises the PAPS adenine group by π-π stacking effects, which is a conserved 

characteristic in PAPS binding (Chapman et al., 2004).  
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Fig. 1. Alignment of AtSOT18 and the analysed BnSOTs. Residues that were identified by AtSOT18 structure analysis to be 
involved in catalysis (red), PAPS-binding (green) and Gl-binding (blue).  

 

On the other hand, in the active BnSOT17-a, only a glutamic acid residue (54, AtSOT18 residue 

numbering) involved in Gl-binding is replaced by the very similar aspartic acid. Therefore, this 

replacement is not decisive enough to inactivate the SOT. Furthermore, the active BnSOT16-a 

and BnSOT16-b do not show any differences to AtSOT18 in the catalytic or substrate binding 

residues.  

Overall, the newly gained AtSOT18 structural information helps to explain results from BnSOT 

enzyme assays. Hence, the remaining BnSOTs, as well as B. rapa and B. oleracea SOTs, should 

be analysed in consideration of the new structural information to see what candidates are likely 

to be active or inactive. At the same time, enzyme assay (Chapter 3) results support conclusions 

drawn from the structural analysis (Chapter 4). 

 

Are ds-Gl SOTs a good target for breeding? 
 

In this work it was demonstrated that ds-Gl SOTs from B. napus have similar substrate 

preferences as their A. thaliana homologs (Chapter 3). It was also shown that by sequence 

analysis, supported by structural data, it is principally possible to predict their preferred 
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substrates. Furthermore, the analysis of AtSOT18 revealed, which parts of the protein must be 

mutated for inactivation or changes in substrate specificity (Chapter 4). This leads to the 

question, how these new insights might help in future breeding programs? Plants could either 

be bred towards an increase or decrease of total Gl content, a subgroup of Gls, like aliphatic or 

indolic Gls or a single Gl, like the anticarcinogenic glucoraphanin and glucobrassicin. 

In A. thaliana, at least 40 genes are involved in Gl biosynthesis (Sønderby et al., 2010) and the 

ones for manipulation should be chosen depending on the desired Gl alteration. For the in- or 

decrease of total Gl content, manipulation of ds-Gl SOTs seems inapplicable, because they 

catalyse only one of many steps in Gl biosynthesis. Instead, it seems more plausible to up- or 

downregulate transcription factors, which control many Gl biosynthesis genes at the same time. 

The best characterized Gl transcription factors are members of the MYB family, whose impact 

on Gl concentration was already demonstrated by overexpression, RNAi and T-DNA insertion 

studies (Celenza et al., 2005; Gigolashvili et al., 2007b; Gigolashvili et al., 2007a; Hirai et al., 

2007; Sønderby et al., 2007; Gigolashvili et al., 2008; Malitsky et al., 2008; Yatusevich et al., 

2010). Interestingly, they can be divided into two groups, controlling either aliphatic or indolic 

Gl biosynthesis. Hence, the manipulation of MYBs enables the alteration of total Gl 

concentration, as well as the aliphatic or indolic Gl composition, by manipulation of a whole 

cascade of Gl biosynthesis genes, instead of just a single catalysis step. This becomes even 

more relevant, when the Gl content of crops and vegetables shall be altered. In this work 

(Chapter 3), five ds-Gl SOTs were identified in B. oleracea, seven in B. rapa and eleven in B. 

napus. Considering the overlapping substrate specificities, the control of all homologs seems 

rather complicated, even with modern biotechnological methods. Furthermore, in vivo ds-Gl 

SOT catalysis was shown to be limited by the PAPS supply (Mugford et al., 2009; Møldrup et 

al., 2011). This limitation could also be overcome by MYB factor manipulation, since they also 

regulate genes of the primary sulfur metabolism (Sønderby et al., 2007; Malitsky et al., 2008; 

Yatusevich et al., 2010), hence a sufficient PAPS concentrations could be provided.  

Overall, MYB transcription factors are a more promising target for breeding crops with altered 

Gl concentrations. Nevertheless, ds-Gl SOTs could be interesting for breeding plants for 

pharming purposes. In pharming (a coinage of farming and pharmaceutical) plants are 

genetically engineered to biosynthesize valuable compounds that are either impossible or too 

expensive to synthesize with classical chemical or biotechnological procedures. Engineering 

plants to biosynthesize anticarcinogenic Gls like glucoraphanin or glucobrassicin could be an 

interesting field in the future. A traditionally bred broccoli variety called Beneforté, with 2.5 - 

3 times higher glucoraphanin concentrations than standard hybrids (Traka et al., 2013), has 
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already been introduced to the British, Swedish and Finnish market. Furthermore, by metabolic 

engineering, the non-cruciferous plant Nicotiana benthamiana has already been enabled to 

biosynthesize Gls (Geu-Flores et al., 2009; Møldrup et al., 2011). Logically, for the biosynthesis 

of the indolic glucobrassicin, SOT16 should be transferred to the plant. However, the artificial 

biosynthesis of aliphatic Gls, like glucoraphanin, with a specific side chain length would be 

more challenging. The number of side chain elongation steps is controlled by the interplay of 

three 2-isopropylmalate synthase genes, which is not entirely understood (Jensen et al., 2014). 

Hence, the side chain length of the final product must be regulated in a followed biosynthetic 

step. SOT17 and SOT18 could be possible candidates, but only if their specificities were further 

improved. Even though SOT17 and SOT18 have substrate preferences, they still accept all 

aliphatic Gls (Klein and Papenbrock, 2009). However, the SOT18 structure could help to create 

a ds-Gl SOT that is highly specific for a certain chain length. In this work (Chapter 4), it was 

proposed that indolic and aliphatic Gl distinction is controlled by the dynamics of loop 1, 

providing the basis for further research regarding the ds-Gl SOT specificity. Since the 

respective hypothesis could not be confirmed by mutational studies, it was speculated that the 

specificity in between aliphatic Gls could be controlled by the interplay of all three flexible 

loops. This could be further tested by solving more structures with different substrates, 

combined with full molecular dynamics studies and advanced modelling and docking. By 

applying these methods a deeper understanding of human SOT 1A1, 2A1 and 1E1 was 

provided, which even enabled substrate prediction from a 1445-compound library without any 

false predictions (Cook et al., 2013c; Rakers et al., 2016). Nonetheless, the artificial control of 

SOT specificity would be a very ambiguous goal, for which not only protein structure and 

mechanism have to be considered, but also substrate, product, PAP and PAPS concentrations.  

 
The influence of PAPS and PAP concentrations on SOTs 
 

SOT inhibition by PAP is a common characteristic (Whittemore et al., 1985; Zhang et al., 1998; 

Cook et al., 2009; Wang et al., 2014) that has now also been confirmed for AtSOT18 (Chapter 

4). Studies on mammalian SOTs indicate that PAP release is the rate-limiting step (Wang et al., 

2014). Furthermore, the analysis of several human SOTs revealed a number of compounds that 

only bind in the presence or absence of PAP. For example, hSOT1B1 only binds 1-naphtol in 

the presence of PAP, while it binds apomorphine only in its absence (Allali-Hassani et al., 

2007). Further studies on mammalian SOTs showed that loop 3, the largest of three flexible 

loops that overlays the PAPS and substrate binding site, undergoes structural shifts to a closed 
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state upon PAPS binding, which results in alteration of the active site, hence affecting substrate 

specificity (Cook et al., 2010). Further molecular dynamics and experimental binding studies 

suggested that SOTs isomerize between open and closed states and the closed state prevents 

larger substrates from binding (Cook et al., 2013a, 2013b).  

Considering the high similarities between mammalian SOTs and AtSOT18, regarding the 

overall structure, binding and catalytic sites, as well as PAP inhibition, as shown in this work 

(Chapter 4), similar effects of PAP and PAPS could also be assumed in plant SOTs. This would 

have drastic consequences for the interpretation of in vitro results, as the in vivo PAP and PAPS 

concentrations would not only regulate SOT activity (Mugford et al., 2009), but also specificity. 

Hence, in order to understand in vivo sulfation, a deep knowledge about the cytosolic PAPS 

and PAP concentration would be required.  

PAPS and PAP concentrations in A. thaliana were reported in previous studies, but the results 

vary, probably due to different growing and harvesting conditions as well as measuring 

techniques. In Estavillo et al. (2011), 1.1 pmol mg-1 fresh weight and 0.6 pmol mg-1 fresh weight 

PAPS and PAP, respectively, were reported, while Lee et al. (2012) measured 0.6 nmol PAPS 

mg-1 fresh weight and < 0.01 nmol PAP mg-1 fresh weight. Despite the big differences in the 

reports, it also has to be considered that the concentrations in whole leaf tissue were measured 

and therefore no information is available about the actual cytosolic concentrations.  

Assuming that AtSOT18 inhibition leads to a higher preference of smaller substrates, as it was 

shown for human SOTs (Allali-Hassani et al., 2007), it could be speculated that in vitro 

preference of long-chained over short-chained aliphatic Gls is less distinct in vivo. The effect 

of PAP on ds-Gl SOT substrate specificity could further be investigated by structural 

approaches combined with enzyme assays, as it has already been done for mammalian SOTs 

(Cook et al., 2013a, 2013b).  

Regarding the impact of PAPS and PAP on SOT activity and possibly also on the specificity, a 

vast amount of factors have to be taken into account in order to understand the regulation of 

sulfation. First of all the PAPS supply has to be considered, and therefore the connection to 

sulfur assimilation and the primary sulfur metabolism. After sulfate is taken up and activated 

to APS, it can either be used for the formation of sulfite in the primary sulfur metabolism or for 

PAPS synthesis in the secondary sulfur metabolism (summarised in Abuelsoud et al., 2016). 

The multiple APS kinase isoforms, catalysing PAPS formation, are localized in the cytosol and 

plastids. Interestingly, the knockout of the cytosolic APS kinase did not lead to any changes in 

the phenotype and only a minor contribution to the PAPS synthesis was concluded (Mugford 
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et al., 2009). Hence, it was stated that PAPS synthesis mainly takes place in the plastids. 

Logically, the PAPS has to be transported out of the plastids into the cytosol, where the SOT-

catalysed sulfation takes place (Klein and Papenbrock, 2004). Therefore, PAPS transport is 

another factor to be considered regarding in vivo SOT activity. One plastidic PAPS transporter 

has already been described, but the existence of more has been postulated (Gigolashvili et al., 

2012).  

Furthermore, the catabolism and function of PAP have to be taken into account. After PAP 

formation, it is probably transported into the plastids in exchange for PAPS (Gigolashvili et al., 

2012), where it is metabolized to AMP by a 3’(2’),5’-bisphosphate nucleotidase (Wilson et al., 

2009). Knockout of the respective gene leads to a large number of pleiotrophic phenotypes 

(Chan et al., 2013), as it also encodes an inositol polyphosphate 1-phosphatase (Wilson et al., 

2009). Changes in PAP lead to accumulation of ds-Gls and lower levels of Gls (Lee et al., 

2012), which could be explained by our results regarding inhibition of SOT by PAP (Chapter 

4). PAP is also considered to be a retrograde signal in stress response (Estavillo et al., 2011), 

altering microRNA processing (Gy et al., 2007; Hirsch et al., 2011), which illustrates its co-

functionality with SOTs, as they are also involved in stress responses.  

Overall, in vitro SOT assays form the basis for an understanding of sulfation, but regarding its 

in vivo function and significance, many other factors have to be considered, as SOTs are only 

one part of a big network.  
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