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Zusammenfassung 

Viele der aktuellen Herausforderungen in Wissenschaft und Technik werden von zwei 

Themenkomplexen dominiert: Interdisziplinarität und Komplexität. In Medizin und 

Molekularbiologie stellt die Erfassung und das Verständnis der Gesamtheit der zellulären 

Prozesse eine solche Herausforderung dar. Ein Teilbereich dieses Themenkomplexes, die 

Transkriptomanalyse durch DNA Microarrays wurde in mehreren interdisziplinären Ansätzen in 

dieser Doktorarbeit analysiert und um neue Methoden erweitert. 

Im ersten Teil dieser Arbeit wurde die photoneninduzierte Zerstörung weitverbreiteter 

Fluoreszenzmarker bei zweifarben-Microarrays charakterisiert. Das farbstoff- und 

scannerspezifische Photobleaching wurde quantifiziert und zur Erstellung eines empirischen 

Models genutzt. Mit Hilfe dieses Modells lässt sich die durch Photobleaching eingetragene 

Verzerrung der Messdaten effizient minimieren. 

Im zweiten Teil dieser Arbeit wurde einerseits eine technisch-chemische Schutzschicht für 

fluoreszenzmarkierte zweifarben DNA-Microarrays entwickelt. Sie basiert auf einem reduktiv-

oxidativen Schutzpuffer und minimiert erfolgreich Photobleaching. Mit Hilfe dieses Schutzpuffers 

wurde andererseits ein weiterer verzerrender Effekt charakterisiert: Förster-Resonanz-Energie-

transfer zwischen dem Donor Cy3 und dem Akzeptor Cy5. Dabei konnte nicht nur das allgemeine 

Auftreten des Effekts nachgewiesen werden, sondern auch seine Relevanz (Verzerrung) für die 

Analyse der resultierenden Scanning-Daten. 

Der dritte Teil dieser Arbeit behandelt die Entwicklung einer .NET-basierten End-User-Software 

zur geführten Prozessierung, Normalisierung, Analyse und Veröffentlichung von DNA-Microarray 

Ergebnissen. Die Software enthält die neu erarbeiteten Normalisierungmethoden aus den 

vorangegangenen Teilen dieser Arbeit sowie weitere Methoden. Neben der Normalisierung von 

Photobleaching wird das Vorhandensein desselben durch ein für low density Arrays trainiertes 

Neuronales Netz erkannt. Ein auf Varianzanalysen basierendes weiteres Modul evaluiert jede 

angewendete Normalisierung bezüglich ihres Effekts auf diverse Verzerrungen. Zusammen mit 

einem Tooltip-System wird dem Anwender so die Möglichkeit gegeben, unabhängig vom 

wissenschaftlichen Hintergrund fundierte Entscheidungen bzgl. der Behandlung seines 

Datensatzes zu treffen. 

Alle Arbeitsteile dienen der Erhöhung von Vergleich- und Reproduzierbarkeit von DNA-

Microarray Experimenten um deren Anwendbarkeit zu verbessern und das Potential dieser 

Technology auszuschöpfen. 

 

Schlagwörter: Microarrays, Cyanin-Farbstoff, Photobleaching, FRET, ROXS, Analysesoftware 



Abstract 

Many recent challenges in science and engineering are dominated by two subjects: 

Interdisciplinarity and complexity. In medicine and molecular biology, one of these challenges is 

the understanding of the entirety of cellular processes. In this thesis, a sub-area of this subject, 

DNA-microarray-based transcriptome analysis, was assessed and methodically advanced using 

multiple interdisciplinary approaches. 

As a first of this thesis, photo induced destruction of fluorophore labeling agents widely used for 

two-channel microarray experiments was characterized. Dye and scanner-specific 

photobleaching was quantified und used to generate an empirical model. It was shown that by 

utilizing this model, photobleaching induced bias can be successfully normalized. 

In the second part, as a technical, chemical solution for photobleaching minimization, a protective 

layer directly applied onto the array slide was designed. The protective function is based on a 

buffer including a reductive-oxidative system (ROXS). Employing this protective layer, another 

biasing effect could be characterized: Förster-Resonance-Energy-Transfer between the donor 

cyanine-3 and the acceptor cyanine-5. Next to verifying the existence of this effect in two-channel 

microarrays, its relevance of normalizing this effect prior to microarray data analysis was shown. 

The third part of this thesis covers the development of a .NET-based end user software for guided 

processing, normalization, analysis and publishing of microarray experiment data. Previously 

mentioned novel normalization methods were implemented, together with other widely used 

methods. This software can not only normalize photobleaching, it also recognized it using a neural 

network trained with low density array data. A variance analysis based algorithm automatically 

evaluates each applied normalization regarding its effect on possible bias of various sources. In 

combination with a tool-tip system, it empowers the experimenter, regardless of scientific 

background, to make informed decisions regarding the individual handling of his microarray data 

set. 

All parts of this thesis serve the improvement of comparability and reproducibility of DNA-

microarray experiments to harness the full potential of this technology. 
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1 Introduction 

If we begin in certainties, we shall end in doubts; but if we begin with doubts, and are patient in them, 

we shall end in certainties. 

- Francis Bacon 

 

The manipulation of statistical formulas is no substitute for knowing what one is doing. 

- Hubert M. Blalock Jr. 

 

In the 21st century, data has become a most valuable and abundant resource.  Our ability to 

measure processes and generate data is the key stone to our advancement in all areas of science 

and engineering.  The connection of data generation and the hope for advancement was almost 

never shown as clear as with the Human Genome Project in the 199Ͳ’ies. The characterization of 
all human genes, often referred to as ǲdecryptionǳ, held out the prospect of great advancements 

e.g. in molecular biology and medicine.  However, the sheer mass of generated data proved to be 

difficult to analyze. Instead of answering questions, the results generated many new ones. The 

idea of genetic determinism, a clear connection between genotype and phenotype, had to be mostly 

rejected. It was substituted with the realization that the phenotype is the result of a highly 

complex process of interactions between nucleic acids, proteins and elements of the cell plasma. 

To illuminate these processes multiple new disciplines emerged, analyzing compositional changes 

of an organism biomolecules as a result of e.g. different stimuli. The term Omics was coined, 

summarizing observations of e.g. DNA (Genomics), RNA (Transcriptomics), proteins (Proteomics) 

and metabolites (Metabolomics). These disciplines depend on high-throughput technologies to 

allow for the parallel analysis of all genes, RNAs or proteins. In the case of transcriptomics, DNA 

microarray technology, next to NGS methods, is the method of choice. 

DNA microarray experiments generate big datasets. Harnessing the information lying within this 

data necessitates sound knowledge of the underlying physical and chemical processes as well as 

proficiency in statistical paradigms. These interdisciplinary prerequisites in combination with the 

often varying scientific backgrounds of the experimenters lead to heterogeneous data generation 

and handling. This diminishes the transparency and reproducibility of these experiments and 

complicates the scientific discourse, limiting the applicability and capability of DNA microarrays. 

This thesis aims to overcome these limitations with a dual approach. Firstly, generated microarray 

data quality is improved by optimizing the treatment and composition of the microarray slides, 
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the scanning setup and through the application of an empirical algorithm. Both strategies are 

designed to minimize/normalize bias introduced through bleaching of the labeling agents. This 

allows for the application of multiscan-techniques which in turn improves the dynamic intensity 

range the scanner can cover. Secondly a software was developed as part of this thesis. It is 

equipped with the aforementioned algorithms as well as an artificial neural network that allows 

for automatic photobleaching bias recognition and normalization. Additionally the software 

provides the user with ANOVA-based bias evaluations, so that he can make educated decisions on 

which normalizations should be applied to his dataset. These and other functions were developed 

to help harmonize the microarray data analysis process in order to expand the applicability of this 

technology. 
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2 Theoretical Part 

2.1 DNA Microarrays for Gene Expression Analysis 

The DNA microarray technology applies principles of nucleotide hybridization methods such as 

blotting and PCR as well as fluorescence-microscopy. It allows for high-throughput parallel 

analysis of large numbers of different nucleotide sequences. The main application is the gene 

expression analysis, where the regulation of multiple genes or even the whole genome is 

approximated through the evaluation of transcriptional changes. It is further used for genotyping 

of SNPs, STRs and more. One exemplary field of use is medical research and diagnostics. Here, the 

observation of transcriptional changes is used for clarification of disease processes or for 

diagnostic means [1,2]. Other fields include molecular biology or nutrition and food research [3]. 

The underlying principle of DNA microarray gene expression analysis is the competitive 

hybridization of differently dye-labeled cDNA-probes with spotted, immobilized DNA-targets (see 

Figure 2.1). Microarray slides are functionalized with spots of covalently bound nucleotide 

sequences. Each spot carries sequences designed to hybridize with cDNA derived from a single 

genes mRNA transcript. Prior to the hybridization mRNA acquired from different regulatory states 

of the chosen biological sample is transcribed to cDNA. Dye-labeling can take place co- or post-

transcriptional and a different labeling agent is chosen for each regulatory state. Upon 

hybridization, cDNAs derived from the same gene transcript, but from different regulatory states 

compete passively and stochastically for the available suitable immobilized target sequences. 

Eventually, the intensity ratio of the dyes immobilized on a spot reflect the relative abundances of 

the respective gene’s transcript in the different regulatory states under study. Depending on the 

number of genes that are evaluated in a microarray experiment, the arrays are referred to as ǲlow densityǳ arrays ȋup to several hundred genesȌ or ǲwhole genomeǳ array ȋall relevant genes of the 
organism under study). To allow for sufficient statistical power, DNA microarrays have multiple 

spots per gene (specified as ǲreplicatesǳȌ. Some setups work with so called ǲspike-inǳ spots. These 
spots hybridize special marker nucleotides of known quantities to allow for signal calibration 

[4,5]. 
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DNA microarray data is generated using laser scanners. The imaging is dominated by two 

processes (see Figure 2.2). Firstly, a laser beam irradiates the dyes, which are covalently bound to 

the immobilized oligos (see above). This induces the emission of lower energy photons from the 

dyes. The amount of irradiating primary photons is controlled by the applied scan power which 

can be set by the experimenter. The dye-emitted, secondary photons are not directly measured 

but their signal is transformed into an electronic signal by a photomultiplier tube. This electronic signal can be individually enhanced by setting the voltage applied to the photomultiplier’s 
cathodes. As many DNA microarray experiments work with multiple dyes, settings such as the photomultiplier’s voltages are set for each laser/dye individually in an attempt towards 

comparable dye signals [6]. 

 

 

Figure 2.2: Schematic model of Cy3-fluorescence-labelling based DNA microarray scan imaging. 

 

2.2 Cyanine Dye Labeling in Microarray Experiments 

Today, experimenters can choose between many labeling agents [7]. While the number of dyes 

and labeling methods is ever growing, most approaches only allow for single channel labeling [8-

11] or only allow for multiplexed qualitative labeling/detection [12-14]. The wish for comparable 

near-quantitative multi-channel labeling is one of the main arguments for the usage of cyanine 

fluorophore dyes. Especially Cy3 and Cy5 are a widely used combination [15]. These molecules 

only differ by one conjugated C-C double bond in structure and share many chemical and physical 

characteristics. Especially interesting for labeling uses is their small cross-talk [15,16] which 

should, in theory, allow for selective excitation of either Cy3 or Cy5 while their respective cyanine 

counterpart is present. Nonetheless, earlier works showed that the widespread application of 
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cyanine labeling can cause significant bias due to the dyes’ differing susceptibility to 

photobleaching and through possible FRET interaction between Cy3 and Cy5 [17-21]. 

2.2.1 Photobleaching-Susceptibility 

Photobleaching is an irreversible photochemical reaction which destructs a fluorophores ability 

to emit photons [22]. Photobleaching can be caused by photons and ozone [23]. The effect’s 
magnitude is characteristic for each fluorophore [16,24,25]. A general schematic model of the 

underlying electronic processes can be seen in chapter 3.2, Figure 1. Many fluorophores are also 

excited by visible light, which is consequentially also a source of bleaching. This complicates the 

experimental handling in terms of reproducibility: extreme precision would be needed to 

guarantee that each DNA microarray is exposed to equal doses of visible light [25]. 

Several concepts were pursued in the past to minimize the photobleaching of cyanine dyes. 

Branham et al. proposed the installation of ozone filters in labs running microarray experiments 

and showed how ozone mediated bleaching can successfully by diminished by these efforts [26]. 

Some microarray scanner manufacturers already equip their scanners with ozone filters to 

minimize ozone bleaching in the scanning process [27]. A different approach tries to minimize the labeling agents’ susceptibility towards bleaching by altering the molecule. Dar et al. modified Cy5, 

increasing its stability towards ozone and light to increase dye comparability in combination with 

the more photo-stable Cy3 [24]. Other takes on this subject tried optimizing scanner/laser 

settings and buffer composition [28]. Vogelsang et al. significantly reduced blinking and photo 

destruction of cyanine dyes by depopulating reactive intermediate states of the cyanine’s exited 
electrons from which photo-destruction is initialized [20]. This was achieved by applying a buffer 

with oxidizing and reducing agents suited to catalyze the depopulation of critical states, based on 

works of Widengren et al. [29]. This increased dye longevity and quantum yields for experiments 

in aqueous solution using a fluorescence microscope [20,30]. 

The relevance of these effects for microarray experiments where shown by Satterfield et al. [25]. 

Monitoring intensity-changes of cyanine-3 (Cy3) and cyanine-5 (Cy5) serial dilution slides under 

heavy use over the course of five weeks, it was shown that multiple microarray scans also bleach 

the fluorophores. These findings are of even higher importance for experimental design that rely 

on multiple scans to extend the dynamic intensity range. 

2.2.2 FRET - Förster-Resonance-Energy-Transfer  

FRET (Förster/Fluorescence-Resonance-Energy-Transfer) described a physical energy transfer 

from an excited donor towards an acceptor [31]. This energy transfer distinguishes itself from 

most other transfers by being non-radiative. Instead, the energy is transferred through dipole-

dipole coupling of the donor and acceptor molecules. This process is highly sensitive to changes 
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in donor-acceptor distance. The so called Förster-distance R0 is defined as the distance at which 

the transfer efficiency is 50 %. This sensitivity is also used as a means of determining molecular 

distances and structures [32]. Given the molecule densities that are usually found in DNA 

microarray spots [33], it is reasonable to assume, that cyanine labeled nucleotides are in a close 

enough proximity to allow for FRET to happen. 

Previous studies showed that FRET occurs between the donor Cy3 and the acceptor Cy5 by observing ǲpassive de-quenchingǳ. This effects describes an observable increase in donor photon 
emission over time, caused by the increasing destruction of the acceptor, allowing a higher 

percentage of donor to emit photons instead of transferring their energy to an acceptor. ǲPassive 

de-quenchingǳ of Cy͵ by photo destruction of Cy5 was used to quantify FRET [34,35]. The 

relevance of a FRET bias for microarray experiments was demonstrated by Rao et al. [18]. In their 

research it was qualitatively evaluated if FRET is observable in DNA microarray two-dye 

experiments. This was done by partially exposing a spot containing Cy3- and Cy5-functionalized 

immobilized oligonucleotides to confocal laser light. Cy3 and Cy5 emissions before and after the 

exposure were compared and the expected anti-proportional change in intensity for both dyes 

was observed. Thus, the possibility of FRET biasing cyanine labeled microarray experiments 

cannot be discarded.  
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2.3 Principles of Microarray Data Processing and Analysis 

2.3.1 The GPR Format 

The microarray data on which this thesis is based was generated using the GenePix® scanner and 

software system. The GenePix® Pro software evaluates the scanned microarrays and converts the 

generated tiff-images of 2-channel fluorescence intensity into numeric data. This output data is 

provided in the GPR Format [36]. A GPR file consists of a header section containing general 

scanning information e.g. PMT voltages, laser and scan power, temperature and applied laser 

wavelengths. The results section is made up of a table containing various information for each 

spot previously defined and allocated by the experimenter. Available information includes 

foreground spot intensity means and medians (named feature intensities, integer values ranging 

from 1 to 65.535) as well as local background intensity means and medians for all used laser 

wavelengths. Measures of variability such as standard deviations, percentage of spot pixels 

outside of various thresholds and more are given. This information is complemented by quality 

indicators such as percentages of saturated pixels, percentages of pixel that are possibly affected 

by noise, the overall SNR and more. Additionally, GenePix® applies its own quality check algorithm and ǲflagsǳ spots that fail their test. The validity of this algorithm has been positively evaluated be 
Repenning [37]. 

2.3.2 Filtering and Preprocessing 

While commercial solutions such as the GenePix® platform apply their own filtering algorithm, 

and mark low quality spots e.g. with flags, the scientific community also developed multiple 

filtering approaches. For example, Lyng et al. recommend the exclusion of all spots showing 

median foreground intensities above 50,000  and below 1,000 to account for possible saturation 

and/or noise bias [38]. 

The log-transformation is a fundamental preprocessing step for microarray data. Next to the 

improved interpretability regarding biological issues, the transformation eliminates misleading 

disproportions between two relative changes [39]. In order to improve the statistical power and 

tackle noise issues, microarray experiments should be carried out with replicates. All spots and 

replicates of the same gene/feature can then be tested for outliers and finally be combined 

generating measure of central tendency (e.g. mean or median) and measures of variance. Typical 

outlier test are e.g. the Nalimov-Test, which is implemented in the Array Analysis Manager (see 

chapter 3.3).  
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2.3.3 Normalization 

Basic normalization goals specific to DNA microarrays include the normalization of background 

and dye/color bias. Additionally, if an experimental design included multiple arrays, a between 

array normalization can be applied. 

Several approaches to correct for background bias exist. GPR files provide the experimenter with 

local background intensity measures allowing for local background correction. Spot foreground 

intensity measure are corrected by simply subtracting the respective background. The sub-grid 

background correction calculates a measure of central tendency for all pixels in a sub-grid which 

is then used to allow for comparison between sub-grids. This method was developed with regard 

to spotting robots with pin-arrays, which produce iterative patterns. The group background 

correction uses all local background values of spots within a sub-grid to generate a measure of 

central tendency. In addition to these methods, experimenters use blank spots with no DNA for 

background correction or control spots with random nucleotide sequences to account for 

background and cross-hybridization bias [39]. 

As mentioned in chapter 2.2, the fluorescent dyes Cy3 and Cy5 are a preferred combination for 

two-channel experiments. In spite of their many advantages, these molecule are by no means 

perfect labelling agents. The size difference between these two could negatively affect the 

transcription rate of Cy5-labeled nucleotides in comparison to nucleotides labeled with the 

smaller Cy3. Furthermore, Cy3 and Cy5 show different correlations regarding the concentrations 

of hybridized labeled nucleotides vs. measured intensity as well as differential correlations 

between PMT voltage changes and intensity changes [6]. This differences can result in systematic 

distortions which are visible in Cy3/Cy5 scatterplots of whole genome data. The characteristic 

shape of this dye bias is the basis for normalization strategies [2,40]. This already leads to the 

main disadvantage inherent to these strategies. Relying on a visible distortion limits these 

approaches to datasets that actually display the bias. This is why these normalization methods 

should only be applied to whole genome array data. Method include curve fitting and piece-wise 

linear normalization techniques as well as linear or non-linear regression models such as LOESS 

and LOWESS, as used in the Array Analysis Manager (see chapter 3.3) [41]. Another way to account 

for dye bias, which can be applied to low density arrays as well, is by adjusting the experimental 

design. When comparing two regulatory states, the experimenter manufactures two arrays 

instead of one. The second array is hybridized with transcribed cDNA that was labeled complementary to the first array. This ǲdye swapǳ generates information of both used dyes for 
both regulatory states under study, minimizing dye dependent bias as both observations are 

biased comparably [42]. 
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Array normalization methods are applied to normalize between array bias, allowing for 

comparisons of datasets derived from multiple arrays. Basic methods include dividing each gene’s 
intensity information by the array mean of the same value. In the log-transformed context the 

array mean is obviously subtracted from each value. Similar to background normalization, 

approaches using control spots/genes can be used to compensate for between array bias. 

Analogous to the methods used for color normalization (iterative) linear regression methods also 

align values from different arrays [39].  

Apart from these basic normalization effects various advanced methods have been suggested. For 

example, Bengtsson et al. developed an approach to normalize scanner specific bias for each laser 

channel using an extended dynamical range [43]. The use of an extended dynamic range itself is a 

method to normalize for bias introduced by saturation and/or noise effects. It is realized with 

mulit-scan techniques. A microarray is scanned multiple times with varying PMT and/or scan 

power settings, the resulting datasets for each gene and filtered for a linear range of 

intensity vs. scanner setting correlations. This linear range is then used to calculate normalized 

intensities for each gene. This course of action is often rewarding as the dynamical range of actual 

spot intensities is significantly wider than the dynamic range a single microarray scan can cover. 

Without the use of multi-scan techniques information will be lost due to saturation and noise [43-

45]. Tackling the same issue, Gupta et al. proposed a Bayesian hierarchical model to correct signal 

saturation and Yang et al. proposed a method for intensity estimation of spots with saturated 

pixels [46,47]. 

While many strategies have been proposed to normalize a vast array of bias from various sources, 

a harmonized SOP for microarray gene expression analysis that is widely used has not been 

established as of now. The MAQC I and II were first steps to gather information on the present 

state of microarray data generation and handling [48]. Allison et al. reviewed prevalent 

developments in microarray analysis, concluding that consensus is starting to emerge but still far 

from being established [2]. The resulting lack in comparability and reproducibility is a major 

hindrance for the application of DNA microarray experiments especially in clinical and 

commercial areas [49,50]. Whether a static SOP can be defined especially for experimental designs 

that do not use commercial microarray platforms is questionable. 

2.3.4 Detection of Differential Expression 

Gene expression experiments are comparative studies. Most often 2 different states are compared, 

one state used as a reference or control. For instance, comparing healthy tissue with tissue 

affected by a disease e.g. cancer. Another typical example would be an organism under 

physiological conditions versus the same organism exposed to some form of stress (heat, toxins, 
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etc.). In DNA microarray gene expression experiments this comparison is quantified most often 

by the logarithmic ratio of foreground intensities. These foreground intensities may have been 

preprocessed and/or normalized (see chapters 2.3.2 and 2.3.3). This ratio is usually defined as 

follows: 

log-ratio = 𝑔ଶ݋݈ ቀ𝐼ଵ 𝐼ଶ⁄ ቁ (1) 

 

I1 : 

I2 : 

 

 

mean/median foreground intensity of state 1 

mean/median foreground intensity of state 2 

 

Once this value is determined for all observed genes, a method needs to be applied to separate 

genes depending on the absence or presence of expressional change. Optimally, a selection 

method should offer high sensitivity (few false negative decisions) and a high specificity (few false 

positive decisions) [39]. The simplest approach towards selection of differentially expressed 

genes is the fold change method. For this method a 2-fold or 4-fold threshold is chosen and genes 

are grouped in comparison of this fold change threshold. The inadequacy of this method is 

obvious, as no argumentation is provided on why a threshold of 2 or 4 has any biological or 

statistical significance. The experimenter has next to no control over sensitivity or selectivity. This 

method also tends to overestimate gene expression changes in lower more noise biased 

expression ranges while expressional changes are judged upon more conservatively in high 

expression ranges. A closer examination of the fold change method showed that the significance 

of fold change predictions is severely influenced by the threshold choice, which is problematic as 

no scientific or statistical reasoning is used to determine that threshold [51]. 

Another widely used method uses the mean experimental ratio and its standard deviation to select 

differentially expressed genes. The so called ǲunusual ratioǳ method determines the distance of 
each genes ratio from the experimental mean and set a threshold depending on the means 

standard deviation. Usually genes whose ratios differ by more than two mean standard deviations 

from the experimental mean are considered differentially expressed. While this method is still 

comparatively simple, it is superior to the fold change method, as the experimenter can apply 

statistical reasoning and set a threshold according to the significance level of his choice. This 

method is however limited as it relies on values derived from within the experiment. The 

significance of the experimental mean and of its variance decreases the smaller the number of 

observed genes gets. Another grave disadvantage lies within the statistical setup and is also more 

likely to affect low density arrays but could also affect whole genome arrays. Independent of the 

true number of differentially expressed genes, this method will always select the most changed 

genes in the dataset. Also it will always select a fixed percentage of genes depending on the chosen 
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significance level. While for whole genome experiments, the experimenter can at least estimate a 

percentage of genes affected based on empirical knowledge, such an estimation cannot be made 

with clear conscience for low density arrays. Low density arrays only carry subsets of the genome 

that is affected by genetic regulation. This subset does not necessarily have to show patterns of 

expressional change analogue to the whole genome. The other way around, without further proof 

it is inadmissible to project whole genome characteristics onto subsets of this genome. 

A better statistically backed approach to select differentially expressed genes uses univariate 

statistical tests. This approach has several advantages over fold change or unusual ratio methods. 

The experimenter can select a threshold α to adjust the significance of the test according to the 

prerequisites of his experiment. Instead of comparing a genes log ratio with possibly biased 

experimental means and variance, hypothesis test based method compare the intensities that 

make up an individual genes log ratio. The advantage of being able to set a static α is also a 

disadvantage, though one, that can be accounted for. As hypothesis test methods carry out tests 

for each gene individually, large numbers of tests are carried out, especially for whole genome 

arrays. Similar to applying the unusual ratio method, setting a static α for all carried out tests will 

result in the selection of a certain percentage of genes as differentially expressed. In contrast to 

the usage of the unusual ratio, the individual testing does allow for the implementation of 

correction algorithms for multiple comparisons. The most basic approaches, such as the Šidák or Bonferroni correction, simply minimize α depending on the number of tests carried out to obtain 

a new static value used for each test (see (2) and (3)). 𝛼𝑐 = 1 − √1 − 𝛼𝑅
 (2) 

 αc : 

R : 

 

 

 

Šidák-corrected α 

Number of tested genes 

𝛼𝑐 = 𝛼𝑅 
(3) 

 αc : 

R : 

 

 

Bonferroni-corrected α 

Number of tested genes 
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These approaches lead to highly conservative decisions, in other words many false negatives. 

Dynamic methods such as the FDR and HSW corrections, both implemented in the Array Analysis 

Manager (see chapter 3.3), provide higher sensitivity without a complementary loss in selectivity. 

These method apply dynamically adjusted αs for each individual gene tested (see (4) and (5)). 𝛼𝑐ሺ݇ሻ = 𝛼𝑅 − ݇ + 1 (4) 

 αc(k) : 

R : 

k : 

 

 

 

HSW-corrected α of the k-th gene 

Number of tested genes 

Index of tested gene, ordered 

by increasing p-value 

 

 𝛼𝑐ሺ݇ሻ = 𝑅݇ × 𝛼 
(5) 

 αc(k) : 

R : 

k : 

 

 

 

FDR-corrected α of the k-th gene 

Number of tested genes 

Index of tested gene, ordered 

by increasing p-values 

As a first step, all genes are sorted based on their p-values. Depending on this sorting each gene is tested with an adjusted α. Tests are carried out ascending or descending p-value order. Different 

abort criteria determine which genes can be considered differentially expressed or not [39]. 

Permutation-based methods such as the Westfall and Young step-down correction or SAM should 

only be applied if sufficient numbers of permutations are available, a prerequisite that is often 

unfulfilled, especially in human medical studies [52,53]. 

The selection of available methods is constantly growing [54]. Kerr et al., Ambroise et al. and 

others proposed ANOVA based univariate approaches [44,55,56]. Khan et al. developed sequential 

algorithms to validate microarray data analysis, while Clark et al. utilized multivariate statistics 

to determine differentially expressed genes [57,58]. 

2.3.5 Software Solutions for DNA Microarray Experiment Analysis 

Many tools have already been developed allowing for automated handling of image analysis, 

clustering, normalization, pathway analysis, database management, data visualization and more. 

Most commonly, microarray data is processed and analyzed using tools such as Partek and Spotfire 

in addition to tools created by microarray platform manufacturers such as GeneSpring GX 
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(Agilent Technologies, Santa Clara, CA, USA) or Genome Studio (Illumina Inc., San Diego, CA, USA) 

[59,60]. Alternatively, experimenters rely on the use of more flexible and universal programs or 

even programming languages such as R, Bioconductor or Excel [61,62].  The former allow for a 

guided analysis process with appropriate but limited tools for a limited set of experimental 

designs. The latter enable the user in principle to analyze any dataset with a wide variety of tools 

but without any guidance on which process is appropriate. Especially commercial solutions 

designed by microarray technology providers such as GeneSpring GX are designed to work with 

whole genome arrays provided by the same manufacturer. Thus, available pre-processing and 

normalization methods are suited for their standardized whole genome arrays. Individual, low 

density array setups as often used in academic research environments are an unattractive target 

from a commercial stand-point. Additionally, many assumptions made to justify the application of 

statistical method and normalizations can only be made for whole genome arrays (see chapter 

2.3.3). As a result, experimenters working with individual low density designs have a much more 

limited list of tools and methods to choose from. Instead of utilizing analysis suites, low density 

array analysis is most often based on individual solutions employing Bioconductor, R and others. 

As low density arrays lack whole genome like dataset characteristics, advanced methodology, 

based on multivariate analysis and machine learning is applied to successfully differentiate 

expressional changes [54,63-65]. 
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3 Experimental Part 

3.1 The Impact of Photobleaching on Microarray Analysis 

 

Figure 3.1: Graphical abstract of „The Impact of Photobleaching on Microarray Analysisǲ 

The following section investigates the susceptibility of the fluorophores Cy3 and Cy5 towards 

photobleaching occurring in multiscan DNA microarray experiments. Intensity decreases 

resulting from bleaching are characterized for each dye individually. Findings of other work 

groups were validated, showing that Cy5 is significantly more affected by bleaching than Cy3 

[24,25]. This differential behavior can result in significant bias, especially for multi-scan designs. 

In order to correct for this bleaching bias, an empirical model was devised. Based on the data 

generated in bleaching experiments, this model predicts the measured intensity loss of a spot 

depending on the applied PMT voltage, the initial spot intensity of the first scan, the choice of 

cyanine dye and the total number of performed scans . This model can be adjusted to infer the 

theoretical initial spot intensity for any spot, if information about number of previous scans is 

given. 

Most multi-scan designs rely on the existence of a linear correlation between applied scanner 

settings such as the PMT voltage and the measured spot intensity [38,43,44,66]. These 

correlations are then used to compare spot information over several scans using e.g. a defined 

intercept. However, this course of action is legitimate only if all linear correlations determined 

show comparable slopes. In other words, the resulting straight lines should show a high degree of 

parallelism. The characterization of photobleaching in this study revealed that the reduction of 

measured intensity is in no way a linear process but can be modelled using a twofold exponential 

term. The bias introduced into the data by this process should therefore negatively affect the 
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supposed parallelism of linear fits, especially as the degree of bleaching is depending on the initial 

intensity of a spot. In order to confirm that the devised correction model is actually improving the 

suitability of previously photobleaching-biased data for multi-scan purposes, its effects on the 

slope variance of linear fits was observed. The results of this inquiry clearly showed that the 

correction model significantly improves the data quality. The overall results of this study 

emphasize that photobleaching derived bias has to be accounted for, especially in multi-scan 

experiments. It also provides a mathematical solution that can be applied to microarray data as is. 

  



Biology 2015, 4, 556-572; doi:10.3390/biology4030556 

 

biology 
ISSN 2079-7737 

www.mdpi.com/journal/biology 

Article 

The Impact of Photobleaching on Microarray Analysis 

Marcel von der Haar *, John-Alexander Preuß, Kathrin von der Haar, Patrick Lindner,  

Thomas Scheper and Frank Stahl 

Institute of Technical Chemistry, Leibniz University Hanover, Callinstr. 5, 30167 Hanover, Germany; 

E-Mails: johnalexanderpreuss@googlemail.com (J.-A.P.); vonderhaar@iftc.uni-hannover.de (K.H.); 

lindner@iftc.uni-hannover.de (P.L.); scheper@iftc.uni-hannover.de (T.S.);  

stahl@iftc.uni-hannover.de (F.S.) 

* Author to whom correspondence should be addressed; E-Mail: koch@iftc.uni-hannover.de;  

Tel.: +49-511-762-2316; Fax: +49-511-762-3004. 

Academic Editor: Chris O’Callaghan 

Received: 29 June 2015 / Accepted: 8 September 2015 / Published: 11 September 2015 

 

Abstract: DNA-Microarrays have become a potent technology for high-throughput analysis of 

genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based 

microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key 

benefit of microarray technology: parallelization. The implementation of multi-scan techniques 

represents a promising approach to overcome these limitations. These techniques are, in turn, 

limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s 

laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of 

solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well 

as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching 

and imaging are investigated. The resulting data is used to develop a model capable of simulating 

the expected degree of signal intensity reduction caused by photobleaching for each fluorophore 

individually, allowing for the removal of photobleaching-induced, systematic bias in  

multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to 

determine the optimal scanner settings. These findings constitute a step towards standardization 

of microarray experiments and analysis and may help to increase the lab-to-lab comparability 

of microarray experiment results. 
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1. Introduction 

DNA microarrays have become a powerful tool for systematic monitoring of gene regulation. The 

technology is based on the competitive hybridization of differentially fluorophore-labeled cDNA-probes 

with spotted, immobilized DNA-targets. The cDNA’s are transcribed from mRNA acquired from different 

regulatory states of the chosen biological sample. Thus, the ratio of the immobilized fluorophores on a spot 

reflects the relative abundance of RNA of the regulatory states under study. Within the last two decades 

the aforementioned principle has gained widespread use in fields such as molecular biology, genetics, 

and medicine [1,2]. It allows for the high-throughput transcriptome analysis of transcriptome regulation 

from a few dozens of genes up to the whole genome of the organism of interest [3]. 

The vast possibilities this technology provides are evenly met by technical, biochemical, and statistical 

difficulties. Each step of a microarray experiment introduces new factors that influence and possibly bias 

the final data. Beginning with choice of sample recovery and primer design, which might cause 

sequence-dependent bias [4]. Furthermore, the used spotting technique, as well as the choice of buffer, 

spotting, incubation and washing conditions, all influence spot geometry and uniformity by affecting 

drop dying and hybridization efficiency [5–9]. Data acquisition is facilitated using laser scanners controlled 

by PC software. Here, influencing factors are the scanner and it’s lasers themselves [10–12], the choice 

of fluorescent dye [13] as well as the scan settings, especially the scan power and the photomultiplier 

tube’s (PMT) voltage [14,15], and also exposure to environmental light, ozone, and laser light prior to 

the data acquisition [11,16,17]. While this multitude of factors does not hinder the acquisition of 

significant data, it is a major barrier for lab-to-lab reproducibility, comparability, and consistency of 

microarray experiment data [18]. 

In order to overcome these limitations a vast array of tools has been developed. Some factors are addressed 

by changing the experimental design, e.g., additionally using reverse dye assignments (dye swap) to account 

for dye bias [19]. Several techniques focus on the data acquisition itself. Finding the optimal scanner 

settings has been the subject of a lively discussion [14]. Regardless of the respective settings, all single 

scan approaches suffer from a limited dynamic range of measured intensity, as the dynamic range of 

fluorescence intensity exceeds the dynamic range of a single array scan by far [14]. Two basic approaches 

have been suggested to overcome these limitations. Mathematical or statistical approaches try to correct 

for saturation or noise using information inherent in the acquired data. Gupta et al. [20] for example devised 

a Bayesian hierarchical model that corrects signal saturation based on pixel intensities. Most approaches 

however extend the scanning routine by recording multiple scans with different settings. The benefits of 

multiscan techniques for extending the linear signal range were, among others [21], shown by Khondoker 

et al. [10] who are using a maximum-likelihood-estimations model based on a Cauchy distribution to 

account for saturated signals and systematic bias. Ambroise et al. [12] characterized a PMT independent 

optical scanner bias that takes account for scanner specific bias. Based on this, a two-way ANOVA 

model was devised that accounts for scanner bias as well as saturation and noise through utilization of 
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multi-scan data. Multiscan techniques were shown to increase overall data quality as well as reproducibility 

in comparison with single scans [15,22]. They can also be used to normalize dye specific bias as an 

alternative to limited methods based on LOESS/LOWESS and others [14,21,23]. 

An ubiquitous difficulty when working with fluorophores is photobleaching, an irreversible 

photochemical reaction which destructs the fluorophores ability to emit photons [24]. Photobleaching is 

caused by photons and ozone and differs from fluorophore to fluorophore [11,16,25]. Satterfield et al. [11] 

showed that microarray scans also bleach the fluorophores when they monitored intensity-changes of 

cyanine-3 (Cy3) and cyanine-5 (Cy5) serial dilution slides under heavy use over the course of five weeks. 

These findings imply a possible effect of photobleaching on multiscan data quality. 

In this study, we evaluate the photobleaching characteristics of Cy3 and Cy5 as part of solid state 

DNA microarrays. The effects of initial foreground intensity on the degree of bleaching as well as the 

effect of laser scanner dependent variables such as the PMT voltage on the imaging are investigated. Several 

microarray slides with identical layout were manufactured with conditions optimized in a previous study 

and repeatedly scanned with individual static PMT voltages. Identical 5'-cyanine functionalized single 

strand DNA was immobilized onto the slides in order to reduce sources of bias, such as the sequence 

differences or dye-incorporation and hybridization efficiency. The resulting data is used to develop a 

mathematical model capable of predicting the expected degree of signal intensity reduction caused by 

photobleaching for each fluorophore individually, depending on the initial foreground intensity, the number 

of previous scans and the desired PMT voltage in order to allow for the removal of photobleaching-induced, 

systematic bias in multi-scan procedures. 

2. Model 

Microarray scan imaging is dominated by two processes. Firstly, the immobilized, dye functionalized 

oligos are irradiated by a laser beam, which induces the emission of lower energy photons from the dyes. 

As the applied scan power is not varied in this study no closer look is taken at the relation between 

applied power and dye-emitted photons. However, considering photobleaching, this process is of upmost 

interest, as the cyanine dye loss of photo activity is photon-induced. Although the mechanism is not 

completely understood yet, it can be assumed that bleaching affects each cyanine molecule independently. 

Also, not every excited molecule is bleached. This leads to the assumption that photobleaching can be 

described as a degradation process, analogue to radioactive decay: pሺp଴, nscanሻ =  p଴ × e−λ × ሺnscan−ଵሻ (1) 

where p(p0, nscan): photons emitted after n scans; p0: initial photons emitted (nscan = 1); nscan: number 

of scans; λ: degradation constant (neglecting a change of scan power, λ is assumed to be dye 
specific). 

The photons, emitted from the cyanine dyes, are not directly measured by an optoelectronic transducer. 

They pass the PMT, which acts as a signal enhancer and transducer. In this vacuum tube, the photons 

strike a photocathode and, as a consequence of the photoelectric effect, electrons are ejected. These 

electrons again strike a dynode that acts as a multiplier, emitting more secondary electrons. Several 

dynodes work as a cascade, each holding a higher positive potential than its predecessor and each 

multiplying its predecessor’s electron signal. Finally, the secondary electrons strike the anode, where the 

signal is transduced. The extent of signal amplification depends on the voltage setting of the PMT. As 
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multiscan techniques are designed to enlarge the linear signal range of microarray experiments through 

variation of PMT voltages, it is crucial to characterize and model the PMT voltage’s influence to fully 

understand its effect on imaging of photobleaching. As a consequence of the previously described 

cascade effect, the PMT signal enhancement is modeled by an exponential function, similar to 

Khondoker et al. [10]: Ieሺp଴, nscanሻ =  𝑒  × pబ × e−λ × ሺnscan−భሻ
 (2) 

where Ie(p0, nscan): post PMT intensity (electron signal); p0: pre PMT intensity (photon signal, theoretical, 

not measured). 

The above model involves a significant problem: p0, the emitted photons of the first scan cannot be 

measured directly. The closest to p0 is I0, the post PMT electron signal of the first scan. As described 

above, the electron signal is an exponential transformation of the photon signal. The exponential 

relationship cannot be exactly determined. However, transforming the relationship into a linear one by 

using the natural logarithm of I0 instead constitutes a practical solution. A model calculated with ln(I0) 

is valid as long as one stays in the ln(I0)-based reference system: ln(IሺI଴, nscanሻ) =  lnሺI଴ሻ  ×  eሺ−𝜆 × ሺnscan−ଵሻሻ (3) 

where I(I0, nscan): post PMT foreground intensity after n scans, with given I0; I0: initial post PMT 

foreground intensity (nscan = 1); nscan: number of scans; λ: degradation coefficient. 

At this time, the model does not directly feature the applied PMT voltage. It might not have to directly 

incorporate the voltage at all if it’s influence is already sufficiently covered by I0, which itself is directly 

dependent on the applied PMT voltage. In case that our model does not account for all major variance 

in the data an additional parameter is introduced. This parameter must be consistent with our degradation 

or decay model, e.g., the model should return I(nscan) = I0 for nscan = 1. This condition rules out intercepts 

and coefficients on the linear level of our model. The exponential term cannot be extended by adding an 

intercept for the same reason. The addition of an exponential coefficient would be redundant as one 

already exists (λ). Adding an exponent to (nscan − 1), however, allows for the alteration of the degradation 

behavior without thwarting the conditions of a degradation model. 

The combination of models (1), (2) and (3) together with the abovementioned considerations lead to 

the following function, which is theoretically suited to model the effect of photobleaching on measured 

intensities of microarray scans, taking into account the initial measured intensity (I0), the number of 

previously executed scans (nscan): ln(IሺI଴, nscanሻ) =  lnሺI଴ሻ  ×  eሺ−λ × ሺnscan−ଵሻaሻ (4) 

where I(I0, nscan): post PMT foreground intensity after n scans, with given I0; I0: initial post PMT 

foreground intensity (nscan = 1); nscan: number of scans; λ: degradation coefficient; a: exponent. 

3. Experimental Section 

3.1. Oligo Preparation 

Single strand DNAs (ssDNA) of 40 nt length were purchased from Eurofins Genomics GmbH 

(Ebersberg, GERMANY). The internally-compiled sequence was optimized with regard to low stabilities of 

potential homodimers and hairpins. The 5'-end of the ssDNA was modified with a Cy3 or Cy5 respectively. 
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The 3'-end of the ssDNA was modified with an amino-modified C7 spacer: 5' Cy3/Cy5–C ACG ATT 

CGG CTT TAG GTC AAC TGG ATT TCG GCT TAG GAC–C7-Amino 3'. In order to minimize 

variance it was decided to use only one sequence, with one spacer-type and a set dye abundance per 

oligo. Instead of a real hybridization, both Cy5 and Cy3 dyes on nt-identical but mixed DNA pools are 

printed together as sequence-identical ss-DNA 40-nt strands. While this does not reflect the realities of 

an actual microarray DNA hybridization experiment, it is suitable to demonstrate the effect of photobleaching 

as well as it can be used as the basis for quantification. Each oligo was serially diluted with a buffer containing 

3× standard saline citrate (SSC) and 0.001% 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate 

(CHAPS) to concentrations ranging from 5 to 0.05 µM (a detailed table can be found in the 

supplementary materials). The buffer composition was chosen as a result of preliminary tests based on 

the works of Dawson et al. [6] in order to allow for homogenous distribution of the spotted oligos and 

minimized drying effects, thus minimizing spot heterogeneity (spot homogeneity information can be 

found in the supplementary materials). Solutions were stored at 4 °C and protected from light. 

3.2. DNA Immobilization 

DNA sequences were immobilized on the aldehyde glass slides (SuperAldehyde 2; Arrayit® 

Corporation, Sunnyvale, CA, USA) using a non-contact-spotter (Nano Plotter™ NP2.1; GeSiM mbH, 

Großerkmannsdorf, GERMANY) with an applied voltage of 75 V. The selection of a contactless printer 

allowed for higher homogeneity in spot geometry by avoiding pin-derived variance. Concentrations 

between 0 and 5 µM per dye were spotted in various pre-mixed combinations (a detailed table can be 

found in the supplementary materials). The spotting layout consisted of 2 × 8 blocks, where each block 

held 1 spot per oligo mixture giving a total of 16 spatially distributed spots per oligo mixture per slide. 

After drying the slides overnight in the dark, six washing steps using 4× SSPE buffer and water were 

performed, according to Dawson et al. [6]. 

3.3. Data Acquisition 

All scans were performed using the GenePix® 4000B Microarray Scanner by Molecular Devices 

(Sunnyvale, CA, USA). All data was collected at a pixel size of 10 µm and a total resolution of 1891 × 2089 

pixels. Spot sizes were 229.48 µm ± 18.77 µm. Model data was acquired subsequently through one 

preliminary scan to determine the scan area and 20 additional scans per slide with constant PMT settings 

at 100% scan power, leaving approx. 6 min between the start of two scans. In this first modeling approach 

it was decided to only use 100% laser power in order to maximize the observable effect. Each slide was 

scanned with a different PMT setting, displayed in Table 1. Data collection was carried out by using 

GenePix®Pro 6.0 (Molecular Devices, Sunnyvale, CA, USA). 

Table 1. PMT settings of different DNA chips. 

# Chip PMT635 nm [V] PMT532 nm [V] 

1 950 700 

2 850 600 

3 750 500 

4 650 400 

5 550 300 
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Validation data was acquired subsequently through one preliminary scan to determine the scan area 

and five additional scans with varying PMT voltage settings at 100% scan power (see Table 2). This 

independent data set consisted of three chips that were, except for the scanning process, identical in 

layout and processing to the five model chips. 

Table 2. PMT settings of validation data. 

# Scan PMT635 nm [V] PMT532 nm [V] 

1 550 300 

2 650 400 

3 750 500 

4 850 600 

5 950 700 

3.4. Data Analysis 

3.4.1. Post Processing 

In addition to the criteria applied by GenePix®Pro in order to flag and exclude low quality spots, all 

spots with any saturated pixels as well as spot whose signal to noise ratio (SNR) was 3 or lower were 

excluded from further analysis. The SNR is defined as follows: ܵ𝑁ܴ =  ݉𝐹௢௥௘𝑔௥௢𝑢௡ௗ − ݉𝐵𝑎௖𝑘𝑔௥௢𝑢௡ௗ𝑠𝐵𝑎௖𝑘𝑔௥௢𝑢௡ௗ  (5) 

where m: median; s: standard deviation. 

Furthermore, following Lyng et al.’s recommendations [15], all sets of spots with median foreground 

intensities of the first scan (I0) above 50,000 and below 1000 relative intensity units were excluded from 

further analysis to prevent saturation and/or noise bias. Although a correction for background is a general 

convention, the actual application varies. Background correction is carried out locally, within a sub-grid, 

with blank spots or control spots. Most of these approaches have different underlying assumptions on 

how the background intensity reflects an intensity bias over- or better underlying the feature intensity. 

Furthermore Qin et al. [26] showed that while a background subtraction actually reduces the bias it 

increases data variability. Furthermore we have to investigate if and how the background intensity 

changes with increasing scans. If the background is indeed affected the question if the process occurs 

comparably on the surface of the actual spot still remains. These aspects were the basis of our decision 

to omit a background correction and to postpone a thorough examination of background photobleaching 

to future studies. Data conversion and filtering was carried out using the open source program R Studio 

Desktop v0.99.441 (R Studio, Boston, MA, USA). 

3.4.2. Modeling 

The processed data was modeled using internally-written scripts in MATLAB v7.12.0.635 (The 

MathWorks, Inc., Natick, MA, USA). 

This model concentrates on actual detected intensity and not on spotted concentration. This decision 

was made regarding intensity profile heterogeneity of replicate spots of the same concentration (e.g., for 
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Cy5 in this experiment, the average percent intensity deviation for replicate spots was approx.  

28.58% ± 20.17%, more information can be found in the supplemental materials). This is a valid approach 

as the photobleaching depends on the actual amount of bound fluorophore on the spot and working with 

the intensity instead of the applied concentration allows for modeling without spot intensity profile bias. 

At first, a regression was calculated for each independent spot, using the model described in Section 

2 for both the Cy5 and Cy3 channel. For these regressions MATLAB’s own non-linear least-square 

fitting algorithms based on trust regions was applied. Using Cy5 model data with R2 ≥ 0.95 the dependency 
of both calculated parameters, λ and a, on PMT voltage and/or initial intensity was examined. Each 

variable, voltage and intensity, was examined independently for each parameter (λ and a) by carrying 

out an analysis of variance (ANOVA). This approach was chosen to determine if a dependency can be 

observed that introduces a variance into the data, significantly higher (α ≤ 0.01) than the experimental 

variance for the parameters (“Lack of Fit Test”). To allow for ANOVA analysis of I0 dependency, I0 

data was organized in groups spanning 100 relative intensity units. Each significant dependency was 

then modeled using second order polynomials. 

The acquired Cy5 model parameters were used to calculate a surface fit with the processed Cy3 model 

data. Cy3 parameters were modeled analogous to their Cy5 counterparts. 

3.4.3. Validation 

The generated models for both Cy5 and Cy3 photobleaching were applied onto the validation data, 

which was also processed as described in Chapter 3.3.1. The model term was converted to allow for the 

calculation of the initial intensity, given the current intensity (I(nscan)), the used PMT voltage, and the 

amount of scans carried out before. The mean R2 of the linear fits of intensity vs. PMT voltage, as well 

as the standard deviations of the two linear parameters for all uncorrected data series were compared to 

the same criteria of all corrected data series for each cyanine dye independently. 

4. Results and Discussion 

4.1. Regression Analysis 

Using model (4) with the preprocessed model data (exemplary shown in Figure 1) resulted in different 

outcomes for the two color channels. While for Cy3 59.9% of 1331 regressions had an R2 of 0.9 and 

above, 96.5% of all 1772 calculated regressions for Cy5 showed R2 of 0.9 and higher. This discrepancy 

could be a consequence of the well-known higher background of the Cy3 channel. The model data, 

however, contradicts this assumption as standard deviations for both channels are of comparable order 

and the SNR of the Cy3 channel is even higher (132.49) compared to the Cy5 SNR (51.11). Although 

Staal et al. [25] quantified the crosstalk of Cy5 to Cy3 as little as 0.2%, it is still possible, especially at 

higher PMT settings, that Cy5 crosstalk biases the Cy3 data. As the recorded spots were made of 

mixtures with varying concentrations of each dye, a spot with a high Cy5 concentration and a low 

concentration of Cy3 is likely to be biased in a more severely manner. An effect biasing the data could 

be Förster Resonance Energy Transfer (FRET) between Cy3 and Cy5 and intra spot heterogeneity. The 

transfer of energy between a donor and an acceptor in close proximity has been well described for 

nucleotide-bound fluorophores in general, and Cy3 and Cy5 specifically, [27,28]. Through FRET some 
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of the excited cyanines could have transferred the energy to their cyanine counterpart instead of emitting 

photons, thereby reducing the detected intensity of the respective channel. As FRET is highly dependent 

on a close proximity of donor and acceptor, this effect will be much more prevalent in high concentration 

spots or areas of higher nucleotide density in heterogeneous spots. The interdependency of FRET, 

intra-spot heterogeneity and photobleaching has been investigated by Rao et al. [29,30]. Radial and 

vertical intra-spot heterogeneity of printed targets profoundly influence local hybridization efficiency 

and finally the fluorescence signal as well as the occurrence of FRET. The described conjunction could 

also affect photobleaching rates as the excitation of one cyanine also partially excites the other one, thereby 

intertwining the exposition to potential photodestruction. Again the possible effect grows depending on 

the donor and acceptor concentrations. Furthermore Rao et al. [29] showed that the destruction of the 

FRET acceptor (here Cy5) leads to increased emission from the former donor (here Cy3), another source 

of signal crossover. The process of target-probe hybridization is the major influence modulating the scale 

of the phenomenon described before. This study’s experimental setup relies on ssDNA printing of 
directly labeled nucleotides and no hybridization. While FRET and intra-spot heterogeneity can be 

expected to affect this data as well, the effect of hybridization cannot be accounted for and was subsequently 

not modeled. Although choice of experimental design regarding FRET complicates the generation of the 

Cy3 model, it shows that the usage of Cy3 and Cy5, although omnipresent in fluorophore-based bioanalytics, 

entails limitations that have not yet been properly addressed. 

 

Figure 1. Cont. 
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Figure 1. (A) Change in measured intensity of Cy5-labeled cDNA spots with increasing 

number of scans, depending on their initial intensity; and (B) change in measured intensity 

of Cy3-labeled cDNA spots with increasing number of scans, depending on their initial intensity. 

4.2. Generation of the Cy5 and Cy3 Model 

With respect to these results, it was decided to focus on the Cy5 data for closer examination and to 

base a more refined model on this data. 96.5% of all 1772 calculated regressions for Cy5 showed R2 of 

0.9 and higher and were used to generate the model. A model adjusted for Cy3 is calculated based on 

the Cy5 model. In order to investigate possible influences of the initial foreground intensity (I0) and/or 

the PMT voltage (VPMT) on both the degradation coefficient λ and the exponent a, multiple analyses of 

variance (ANOVA) were carried out. The underlying idea is to determine if the variance introduced to 

the parameters by the variables is significantly distinguishable from the experimental variance. This is a 

practical approach that does not ask if the variables actually influence our parameters, but if the modeling 

of any hypothetical influence can significantly improve the accuracy of the model, given the inherent 

experimental variance of the parameters. Firstly, the influence of I0 was investigated: Regarding λ, the 

null hypothesis (h0: σ2
model = σ2

experiment) cannot be rejected for any reasonable significance level α (αh0 

rejected, min = 0.9477). For a, the lowest significance level that allows for rejection of h0 is even higher (αh0 

= rejected, min = 0.9999). As a result, both parameters are not modeled with regard of I0. For VPMT, however, 

results were different: h0 for λ as well as for a are rejected at an α well below all levels established in 

applied statistics (λ: αh0 = not rejected, max = 9.09 × 10−123, a: αh0 = not rejected, max = 4.08 × 10−112). It is 

contradictory that VPMT, a variable of a process succeeding the actual bleaching, is supposed to influence 

the parameter characterizing it. We assume that the PMT voltage’s influence on λ does obviously not 
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display its influence on bleaching itself. A VPMT-dependent λ is an expression of the transformation of 
the “observed” bleaching through the imaging process, which itself is VPMT-dependent. These findings 

indicate that the variance introduced to the model data through VPMT cannot be completely modeled 

indirectly using I0 alone, which is directly VPMT-dependent. The effect of VPMT is clearly visible in the 

model data (see Figure 2). 

 

Figure 2. Change in measured intensity of Cy5-labeled cDNA spots of equal initial intensity 

with increasing number of scans, depending on the PMT voltage. 

All in all, modelling of both parameters including VPMT might yield a significant benefit in accuracy 

and it is therefore carried out and applied to our Cy5 model: ݈݊(𝐼ሺ𝐼଴, ݊௦௖𝑎௡, 𝑉𝑃𝑀𝑇ሻ) =  ݈݊ሺ𝐼଴ሻ  × 𝑒ቀ−𝜆ሺ𝑉𝑃𝑀𝑇ሻ × ሺ௡𝑠𝑐𝑎𝑛−ଵሻ𝑎(𝑉𝑃𝑀𝑇)ቁ
 (6) 

where I(I0, nscan, VPMT): post PMT foreground intensity after n scans, with given I0 and VPMT;  

I0: initial post PMT foreground intensity (nscan = 1); nscan: number of scans; VPMT: PMT voltage; 

λ(VPMT): degradation coefficient; a(VPMT): exponent. 

Both λ(VPMT) and a(VPMT) were modeled using second order polynomials. Based on the Cy5 model, 

a fit for Cy3 model data was calculated by varying λ and a for each VPMT setting. The resulting parameters 

were examined using ANOVAs analogous to the Cy5 procedures, yielding comparable results. The VPMT 

influence was then modeled using second order polynomials. The results are given in term (7) and (8) 

as well as table 3: 𝜆ሺ𝑉𝑃𝑀𝑇ሻ =  𝑝ଵ × 𝑉𝑃𝑀𝑇ଶ + 𝑝ଶ ×  𝑉𝑃𝑀𝑇 + 𝑝ଷ (7) 

where λ(VPMT): degradation coefficient; VPMT: PMT voltage; p1, p2, p3: paramters. 
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𝑎ሺ𝑉𝑃𝑀𝑇ሻ =  𝑝ଵ × 𝑉𝑃𝑀𝑇ଶ + 𝑝ଶ ×  𝑉𝑃𝑀𝑇 + 𝑝ଷ (8) 

where a(VPMT): degradation exponent; VPMT: PMT voltage; p1, p2, p3: paramters. 

Table 3. Parameters of the final fits. 

Fluorophore 
λ(VPMT) a(VPMT) 

p1 p2 p3 p1 p2 p3 

Cy3 −2.153E−07 3.232E−04 −9.200E−02 1,106E−06 −1.885E−03 1.461 

Cy5 −1.122E−08 1.640E−5 −1.948E−03 −4.533E−07 9.433E−05 0.901 

4.3. Model Analysis 

Both resulting models (shown in Figure 3) describe the observed bleaching effects to a high degree 

(R2 from 0.976 to 0.998 for different VPMT settings, examples shown in Figure 4). The unequal susceptibilities 

of Cy3 and Cy5 to photobleaching clearly stand out: While Cy3-tagged spots lose between 23.19% and 

32.01% of their observed intensity after 20 scans, the intensity of Cy5-tagged spots decrease between 

76.92% and 87.07%. As can be seen in the model, the variance in signal decrease is introduced by the 

VPMT settings, which shows that its incorporation into the model is crucial to remedy bias caused by 

bleaching. Looking at a scan number more likely to be utilized in daily microarray analysis, even after 

5 scans the effect profoundly influences the observed intensities: Decreases of 8.73%–10.43% for Cy3 

and 41.77%–52.97% for Cy5 emphasize the need for photobleaching correction and scanning protocol 

standardization not only for multiscan techniques, but for every application relying on microarray scan 

imaging. Furthermore, the dye-dependent bleaching-variation calls for a re-evaluation of dye swap and 

dye switch applications as well as mathematical tools designed to compensate for dye introduced bias 

(LOESS/LOWESS). 

4.4. First Model Validation 

Following the model generation and characterization a model-based correction for photobleaching 

was carried out. The source data for this procedure (validation data) was recorded in a manner designed 

to emulate a random multiscan procedure. The slides used were manufactured analogous to their model 

data counterparts. 

A basic principle of multiscan procedures lies in the correction of saturated or noisy spots through 

extrapolation of intensity data of different VPMT settings. The reliability of the related extrapolation 

model is based on how well-defined its parameters are. In order to get a first assessment of the effect of 

photobleaching correction onto parameter quality, linear fits were calculated for data series of the same 

spots with differing VPMT. Fits were calculated for each cyanine dye separately, with raw validation data 

and model corrected validation data. As seen in Table 4, the application of our model reduces the overall 

variability (σcoefficient, σintercept), thereby improving the data’s suitability for generating an extrapolation 
model (R2). The overall low coefficients of determination imply that a reasonable amount of variation 

remains. While the data was filtered in terms of noise and saturation, other source for variation were not 

addressed e.g., background intensity. No background correction was applied to the utilized data, as the 

background itself might be subject to photobleaching. This, and the ongoing discussion if the subtraction 
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of background intensity, is actually beneficial in terms of variability reduction [26] were the reasons for 

refraining from any background normalization. The characterization of the effect of photobleaching to 

the background will be the subject of future investigations. 

 

 

Figure 3. (A) Three-dimensional illustration of the final model of Cy5-photobleaching for 

VPMT = 950 (B) Three-dimensional illustration of the final model of Cy3-photobleaching for 

VPMT = 700. 
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Figure 4. (A) Cy5-data sets (y(I0)) with model-data (y_hat(I0)) at VPMT = 750. R2: 0.994, 

0.995, 0.998, 0.998, 0.999 (from lowest I0 to highest); and (B) Cy5-data sets (y(I0)) with fits 

(y_hat(I0)) at VPMT = 500. R2: 0.994, 0.997, 0.991, 0.995, 0.984 (from lowest I0 to highest). 
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Table 4. Comparison of regression features of linear fit of ln(I) vs. VPMT for raw validation 

data and model corrected validation data for Cy5 and Cy3. Displayed are the mean R2 as 

well as the mean σ for both parameters of the linear fit for both cyanine dyes for uncorrected 

and corrected validation data. 

Fluorophore Regression Feature 
Data Source 

Raw Validation Data Model Corrected Validation Data 

Cy5 

𝐑૛̅̅̅̅  ૙. ૡ૛૞ ૙. ૡ૜ૡ૝ 𝛔̅𝐜܎܎܍ܗ𝐢𝐜𝐢ܖ܍𝐭 ૝૝. ૛૛૛ ૛૟. ૝૛ૢ 𝛔̅𝐢ܖ𝐭܍𝐫𝐜ܘ܍𝐭 ૛. ૟ૢ૞ × ૚૙૝ ૚. ૚૛૙ × ૚૙૝ 

Cy3 

𝐑૛̅̅̅̅  ૙. ૡ૚ૡ ૙. ૡ૜૜ 𝛔̅𝐜܎܎܍ܗ𝐢𝐜𝐢ܖ܍𝐭 ૡ૚. ૢ૙ૡ ૛ૢ. ૟૚૜ 𝛔̅𝐢ܖ𝐭܍𝐫𝐜ܘ܍𝐭 ૞. ૙૜ૡ × ૚૙૝ ૚. ૛૞ૡ × ૚૙૝ 

5. Conclusions 

Our aim was to characterize and quantify the impact of photobleaching for DNA microarrays. Several 

groups have previously published approaches to improve the quality and capability of DNA microarray 

experiments, especially the extension of the linear range through multi-scan protocols constitutes a 

promising tool. We identified and characterized a major bias for multi-scan procedures and present a 

way to correct for this bias. In summary, we were able to generate models that explain photobleaching 

induced variability in multiscan microarray experiments for the two most commonly used fluorophore 

dyes, Cy3 and Cy5. Our models take into account the initial foreground intensity (I0), the number of carried 

out scans (nscan) as well as the current intensity (I) recorded with a defined PMT voltage (VPMT). Parallel 

to the generation of these models we characterized the photobleaching effect of both abovementioned dyes, 

demonstrating the need for correction of this phenomenon not only for multiscan applications, but for 

all microarray scan based methods, e.g., our model, which explains the variability to a highly significant 

level and shows that the bleaching, itself, is not a simply linear subtractive effect. We therefore assume 

that a mere correction of the dye effect does not correct for the photobleaching by which the spots have 

been affected. A dye swap will in fact correct for intensity differences introduced by the choice of dye, 

but if the spots also differ in intensity, which they almost always will to a certain degree, photobleaching will 

not be automatically be co-corrected as it is not a linear additive effect. The degree of influence this 

effect has on microarray scans, and its disparity depending on the involved dye and the intensity level 

therefore calls for re-evaluation of dye swap/switch applications and dye effect normalization methods. 

As photobleaching is, to a lesser degree, induced by environmental light and other environmental factors, 

such as ozone concentration, our results suggest a standardization of microarray-slide handling to achieve 

comparable, if possible, minimal exposition to light prior to the scanning process. We are aware that a 

total lab-to-lab comparability in terms of microarray processing is not realistic, but still want to address 

the influence of environmental factors on bleaching and the overall quality of microarray results. A real 

standardization will not be accomplished by one single step, but through raising awareness of the subject 

we hope to help improve the reproducibility within a lab/workgroup. The benefit of correcting 

photobleaching-induced variability in multiscan applications was demonstrated. Corrected data was 

more suitable to generate linear ln(I) vs. VPMT fits, leading to more narrowly defined parameters. Future 
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studies need to validate these findings for actual hybridization experiments with dye-functionalized 

cDNA, accounting for the hybridization-derived effects on photobleaching involving the inclusion of 

the interdependent factors of intra-spot heterogeneity and FRET and non-FRET crosstalk. Several other 

factors need to be evaluated to apply our findings to DNA hybridization experiments in general. Among 

these the influence of temperature, DNA chain sequence and rigidity, dye concentration, and dye 

stacking. The overall physico-chemical characteristics of surface bound oligonucleotides are still to be 

sufficiently characterized [8,31]. Also the effect of photobleaching on background intensity needs to be 

examined to allow for integration of background correction. Likewise, interactions with other normalization 

methods have to be evaluated. 

We encourage users of the technology to apply this information and develop multiscan solutions that 

correct for photobleaching. 
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3.2 Optimization of Cyanine Dye Stability and Analysis of FRET 

Interaction on DNA Microarrays 

 

Figure 3.2: Graphical abstract of „Optimization of Cyanine Dye Stability and Analysis of FRET Interaction on DNA 

Microarraysǳ 

In the previous section, the impact of photobleaching on cyanine dye labeled DNA microarray 

setups was characterized. The need for correction of this bias, particularly for multi-scan design 

was addressed by the development of an empirical model suited to normalize occurring 

bleaching-bias. A major advantage of this model is the possibility to apply it to microarray data as 

is, without the need of changing the experimental design or using commercial, modified dyes. It 

can easily be applied to previously generated data too. The research and development reported 

upon in this section were carried out with the same paradigm in mind: Expanding the knowledge 

and understanding of underlying processes to develop solutions that can be easily applied by the 
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experimenter. Following the conviction that the worth of a new method is also determined by its 

practical applicability. 

Further analysis of the data generated in chapter 3.1 unveiled a phenomenon observable in spots 

where Cy3 and Cy5 labeled oligos were present. In these spots, an increase of Cy3 intensity was 

observed. This behavior – previously been described as ǲpassive de-quenchingǳ – is caused by a 

combination of photobleaching and FRET [18,34,35,67]. While functional Cy5 molecule are in 

proximal vicinity to Cy3, some Cy3 molecule transfer the energy of their excited electrons to Cy5 

molecules by FRET. This causes a smaller observable intensity of Cy3. Over the course of multiple 

scans, an increasing amount of Cy5 molecule became unavailable for FRET as they were subjected 

to photo destruction. While Cy3 molecule were – to a lesser degree – also affected by bleaching, 

the chances for these cyanine molecule to emit photons themselves increased, as the probability 

of having photoactive Cy5 that could act as a FRET acceptor in their vicinity decreased. These 

processes resulted in a higher observable Cy3-related intensity in spite of the influence of 

photobleaching. 

As these processes are not accounted for by the model from chapter 3.1, an alternative approach 

was devised. Based on works of Vogelsang et al. a protective buffer was manufactured [20]. This 

buffer contains a ROXS that catalyzes the depopulation of those intermediate states of excited 

cyanine electrons from which photo destruction can be initialized. This ROXS buffer is used as part 

of an additional functional layer mounted onto the microarray slide prior to the scanning process. 

This setup allows the scanning of microarray slide while the cyanine dye are environed by a 

medium, protecting them from ozone and photo induced bleaching. The simple construction and 

compatibility with the widespread GenePix® 4000B Microarray Scanner by Molecular Devices 

(Sunnyvale, CA, USA) of this solution again allows for easy applicability for all laboratories working 

with DNA microarray technology. 

The significant protection against photobleaching that this method provides also allowed for the 

characterization of FRET in DNA microarray experiments. FRET became observable when comparing 

intensity changes of ROXS protected vs. unprotected arrays over the course of multiple scans. It can 

be shown that the utilization of the same ROXS buffer system is also suited as a means to normalizing 

FRET bias, further increasing the applicability and comparability of microarray gene expression data. 
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Abstract: The application of DNA microarrays for high throughput analysis of genetic regulation is

often limited by the fluorophores used as markers. The implementation of multi-scan techniques is

limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner laser light.

This paper presents combined mechanical and chemical strategies which enhance the photostability

of cyanine 3 and cyanine 5 as part of solid state DNA microarrays. These strategies are based

on scanning the microarrays while the hybridized DNA is still in an aqueous solution with the

presence of a reductive/oxidative system (ROXS). Furthermore, the experimental setup allows for

the analysis and eventual normalization of Förster-resonance-energy-transfer (FRET) interaction of

cyanine-3/cyanine-5 dye combinations on the microarray. These findings constitute a step towards

standardization of microarray experiments and analysis and may help to increase the comparability

of microarray experiment results between labs.

Keywords: microarray; DNA; scanning; photobleaching; fluorophore; cyanine dye; FRET; ROXS;

bioinformatics; bioanalytics

1. Introduction

DNA microarrays are a potent technology for high throughput gene regulation monitoring.

Fluorescence-labeled complementary DNAs (cDNAs) are transcribed from mRNA which is acquired

from different regulatory states of the chosen biological sample. These cDNAs are competitively

hybridized on a modified glass slide. The differently labeled fluorophore cDNA-probes compete

for binding spotted, immobilized DNA-targets. The ratio of the differently labeled, immobilized

fluorophores on a spot therefore represents the relative abundance of RNA in the respective regulatory

states. Technology based upon this principle has gained widespread use in molecular biology, genetics,

and medicine [1,2], enabling high-throughput transcriptome analysis [3].

Nonetheless, DNA microarray technology is set back by a set of disruptive factors, limiting

its application and potential exploitation. These technical, biochemical, and statistical biases are

introduced in various steps of a DNA microarray experiment. Sequence-dependent bias is introduced

by primer design [4], spot-geometry and homogeneity through choice of spotting technique, proximate

humidity, and choice of buffer [5–9]. Further bias is introduced by choice of dyes, scanner settings, the

presence/absence of ozone filters, the exposition to environmental light, etc. [10–17]. While significant

results can still be acquired in spite of these bias sources, they still pose a substantial hindrance when

it comes to lab to lab comparability and standardization [18].

This publication focuses on photonic and photochemical effects, such as photobleaching and

energy transfer, that emerge while scanning the DNA microarrays. In previous works, photobleaching
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susceptibility of the almost omnipresent labeling agents cyanine-3 (Cy3) and cyanine-5 (Cy5) on

DNA microarrays was investigated. Its effect on scanner data was successfully characterized and

an empirical model was devised. The model efficiently normalizes the bias introduced by this effect

with respect to the choice of dye, the previously carried out scans, and the scanner settings [19].

This study aims to minimize photobleaching of Cy3 and Cy5 using a reductive-oxidative, protective

buffer (ROXS).

Vogelsang et al. [20] were able to show that blinking and photo destruction of cyanine dyes

could be significantly reduced through depopulation of reactive intermediate states of the cyanine’s

exited electrons [20]. As seen in Figure 1, internal transitions of the cyanine’s exited electron lead

to a triplet-state from which photo destruction originates. The depletion of this state minimizes the

electrons availability for bleaching processes, thereby increasing the dye’s longevity and quantum

yield. Based on the works of Widengren at al., Vogelsang et al. designed a buffer which contains an

oxidizing agent and a reducing agent [21]. These agents are aimed at catalyzing the transition from the

triplet-state towards the ground state (Figure 1).

could be significantly reduced through depopulation of reactive intermediate states of the cyanine’s 
s of the cyanine’s exited electron

electrons availability for bleaching processes, thereby increasing the dye’s longevity and quantum 

 

• •−

optimizing these dyes’ handling is 

Figure 1. Schematic model of photoinduced electron excitation of organic fluorophores such as cyanine

dyes. From its ground state (S0) the electron is excited to the first singlet state (S1). The sporadically

forming triplet state (T1) is the point of origin for several transitions resulting in the formation

of the photobleaching product (P). Methylviologen and ascorbic acid both rapidly deplete the T1,

forming a radical cation (F•+ through methylviologen) or a radical anion (F•− through ascorbic acid).

These radical ions rapidly recover through reduction (ascorbic acid) or oxidation (methylviologen).

The combination of an oxidizing agent and a reducing agent (ROXS) therefore minimizes photoinduced

formation of P. Model, according to Vogelsang et al. [20].

Vogelsang et al. [20] and others [22] carried out their experiments in aqueous solution using a

fluorescence microscope. This study aims to apply their findings in DNA microarray experiments,

where the cyanine dye is bound to the DNA which itself is fixated on a modified glass slide and is

scanned using a microarray slide scanner. This change in experimental design necessitated an adapted

approach on array design and scanning technique. In order to allow for scanning in the presence of the

protective ROXS-buffer, the arrays were partially modified by adding an improvised liquid chamber

(see Section 2).

In addition, the possible occurrence of Förster-resonance-energy-transfer (FRET, also

Fluorescence-Energy-Resonance-Transfer) in DNA microarrays and its implications on microarray

analysis where examined. FRET between Cy3 and Cy5 molecules has already been described

and is a common tool for oligonucleotide analysis [23]. Although commercial alternatives to the

aforementioned cyanine dyes exist, Cy3 and Cy5 are still used ubiquitously, and the need for optimizing

these dyes’ handling is compulsory.
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The use of acceptor photobleaching (Cy5 being the acceptor) as a means to FRET validation is

especially of interest for this study. In prior studies, the passive “de-quenching” of Cy3 by photo

destruction of Cy5 resulted in an increase of donor (Cy3) photon emission, which was used to quantify

FRET [24,25]. Among other findings, Rao et al. [26] qualitatively assessed if FRET is observable in DNA

microarray two-dye experiments. To do so, a part of a spot containing Cy3- and Cy5-functionalized

immobilized oligonucleotides was exposed to a confocal laser bleaching Cy5. Emissions of Cy3 and

Cy5 were compared prior to and after the selective bleaching. In fact, the expected anti-proportional

change in intensity for both dyes was observed, indicating that DNA microarray imaging of two-color

experiments is biased by FRET. An investigation of the actual impact of FRET for multi-scan approaches

is the subject of this study. Also, cross-over effects of FRET and ROXS protection are examined.

A simplified model of the expected impact of the FRET-effect can be seen in Figure 2.

the passive ȃde quenchingȄ of Cyř by photo 

 

Cyř seems to have ȃincreasedȄ. This effect is called passive ȃde quenchingȄ. All emitted photons then 

Figure 2. Schematic model of a hypothesized Förster-resonance-energy-transfer (FRET)-effect in

cyanine-labeled two-dye DNA microarray scanning. Cyanine-labeled DNA in single-dye setups emits

photons after excitation (upper left, upper mid left). In a two-dye setup at the first scan (upper mid

right), Cy3 only partially emits photons after excitation. With Cy5 in it vicinity, Cy3 acts as a FRET

donor, transferring the energy to the Cy5-acceptor, which itself emits a photon. This leads to a lower

Cy3 signal and a higher Cy5 signal compared to Cy3 and Cy5 from single dye setups. After several

scans, photobleaching should have decreased the amount of functional, photon-emitting cyanine

molecules. While this would be observable in single dye setups (not shown), one does actually observe

a different behavior in two-dye setups (upper left). The higher bleaching susceptibility of Cy5 decreased

the chance of Cy3 acting as a FRET-donor, simultaneously increasing the amount of emitted photons

from Cy3. While a strong decrease in Cy5-photon emission can be observed, the emission of Cy3 seems

to have “increased”. This effect is called passive “de-quenching”. All emitted photons then enter the

photomultiplier (PMT), where they are transformed into an exponentially enhanced electron signal.

Other than to improve the awareness and understanding of underlying photochemical

processes and their effect on microarray data, the results of these studies are aimed at the

improvement of microarray bias minimization and the establishment of experiment reproducibility

and lab-to-lab comparability.
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2. Materials and Methods

Oligo Preparation: Single strand DNAs (ssDNA) of 50 nt length were purchased from Integrated

DNA Technologies, Inc. (Munich, Germany). The sequences were optimized with regard to low

stabilities of potential homodimers and hairpins. The 3′-end of the ssDNA was modified with an

amino-modified C6 spacer. Ninety-six different sequences were used, corresponding to a set of

96 Escherichia coli genes. This set of genes was chosen because it provides a representative set of

regulatory behaviors for heat-shock experiments. Also, the usage and analysis of these genes is well

documented and routinely carried out in our workgroup. Information on these genes can be found in

the Supplementary Materials (Table S1). The oligos were dissolved using Micro Spotting Solution Plus

2X from Arrayit Corporation (Sunnyvale, CA, USA) and nuclease free water to a final concentration of

100 mM (concentrations validated using a NanoDrop 2000 from Thermo Fisher Scientific Inc. (Waltham,

MA, USA)). Solutions were stored at 4 ◦C.

ROXS Buffer Preparation: ROXS buffers were prepared freshly prior to each experiment.

They were based on a 1× standard buffer from phosphate buffered saline (PBS) at pH 7.4, containing

additional ascorbic acid (AA) and methylviologen dichloride hydrate (MV) at 100 mM each. Dilutions

of this stock solution were prepared using 1× PBS. Consequently, if a buffer is described as, for

example, 10 mM ROXS, it contains 10 mM AA and 10 mM MV in 1× PBS.

DNA Immobilization: DNA sequences were immobilized on aldehyde modified glass slides

(SuperAldehyde 2; Arrayit® Corporation, Sunnyvale, CA, USA) using a non-contact-spotter

(Nano Plotter™ NP2.1; GeSiM mbH, Großerkmannsdorf, Germany) with an applied voltage of 80 V.

The selection of a contact-free printer allowed for higher homogeneity in spot geometry by avoiding

pin-derived variance and providing humidity control in the spotting chamber (humidity at 60%).

The general spotting layout can be found in Figure 3.

RNA Treatment and On-Slide Hybridization: RNA was purified and pooled from samples

of two different treatments using Trizol reagent (Invitrogen, Karlsruhe, Germany) according to the

manufacturer’s protocol. This method yielded an average of 30 µg total RNA from 106 cells. In both

cases, E. coli was cultivated until it reached the log-phase at 37 ◦C. While the 37 ◦C sample (Ec37) was

obtained in this phase directly, the 50 ◦C sample (Ec50) E. coli was exposed to 50 ◦C for ten minutes

before cell disruption and RNA purification. Fifty micromoles of purified DNA was transcribed into

complementary DNA (cDNA) using a 1:1:1:1 unlabeled dNTP-mixture for unlabeled cDNA and a

1:1:1:0.25 unlabeled dNTP-mixture (with dCTP being the aforementioned 0.25) with the addition of

0.75 equivalents of Cy3- or Cy5-labeled dCTPs. In the case of labeling, Cy3 was always used for Ec37

while Ec50 was labelled with Cy5. The purified cDNAs were then competitively hybridized on the

microarray slides. The hybridized microarray slides were put into cassettes, purchased from Arrayit

Corporation, for microarray sample multiplexing. Sixteen microliters of the desired cDNA solution

was pipetted into the wells (see Figure 3). The cassette’s wells were sealed using an adhesive strip to

prevent dehydration and the arrays were hybridized at 100% humidity overnight. The slides were

washed and dried through centrifugation.

Application of PBS and/or ROXS-Buffer: The spotting pattern allowed for two different

treatments per slide. Possible treatments were: unprotected (bare slide, without any protection)

or 1× PBS/10 mM ROXS/50 mM ROXS (40 µL of buffer were pipetted onto the slide, covered with a

cover slip that was sealed using construction adhesive).

Microarray Slide Scanning: All scans were performed using the GenePix® 4000B Microarray

Scanner by Molecular Devices (Sunnyvale, CA, USA). All data was collected at a pixel size of 10 µm

and a total resolution of 1891 × 2089 pixels. For unprotected areas the focus level remained by default

at 0 µm. Areas protected by a cover slip were scanned at a focus level of 75 µm.
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ȮFigure 3. Microarray modified glass slide scheme for ROXS and FRET assessment. The slide shows two

main spotting areas (1,2), each subdivided into four blocks (a–d). Each block was used to immobilize

either 96 capture-oligos without replication or 24 capture-oligos with five replicates (six spots per gene).

While (a) was used to hybridize Cy3- and Cy5-labeled cDNAs competitively; (b) for Cy3 vs. unlabeled

cDNA; (c) for unlabeled vs. Cy5; and (d) was used as a negative control, where no hybridization took

place. In the case of subsequent application of a protective cover slip, area 1 remained unprotected

while area 2 was modified using a desired buffer and a cover slip (see Application of PBS and/or

ROXS-Buffer).

The usage of a different focus level for areas modified with a liquid film and a cover slip was

imperative to maintain comparable imaging results. Each area was pre-scanned once to determine

the scan-area and 10 additional scans of this area were performed at constant photomultiplier (PMT)

voltages (635 nm-laser: 800 V, 532 nm-laser: 650 V) and 100% laser power. Data collection was carried

out using GenePix®Pro 7.0 (Molecular Devices, Sunnyvale, CA, USA).
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Data Analysis: After an initial quality control carried out by GenePix®Pro, all spots with any

saturated pixels, as well as spots whose signal to noise ratio (SNR) was 3 or lower, were excluded from

further analysis. The SNR is defined as follows:

SNR =
mForeground − mBackground

sBackground
(1)

where m: median; s: standard deviation.

Also, in accordance with Lyng et al.’s recommendations [15], spots with median local background

subtracted intensities above 50,000 and below 1000 relative intensity units were excluded from further

analysis to prevent saturation and/or noise bias. Although a correction for background is a general

convention, the actual application varies. Background correction is carried out locally, within a

sub-grid, with blank spots or control spots. Most of these approaches have different underlying

assumptions on how the background intensity reflects an intensity bias over- or better underlying the

feature intensity. Furthermore, Qin et al. [27] showed that while a background subtraction actually

reduces the bias it increases data variability. The increase in variability is kept in check using the SNR

threshold. Data was filtered and analyzed using MATLAB v7.12.0.635 (The MathWorks, Inc., Natick,

MA, USA) and Visual Basic for Applications (Microsoft Corp., Redmond, WA, USA).

All derived statistical metadata in this study was calculated taking into account Gaussian error

propagation. If not stated otherwise, all error indicators given in text and graphs always represent the

respective value’s standard error of the mean (SEM) with a confidence level of 95.4%.

3. Results

3.1. Ninety-Six Gene Experiment

A first test with 96 genes was carried out to test the influence of ROXS as well as FRET

and possible cross-over effects. As Figure 4(1a,b) shows, without any protective measures, spots

hybridized with Cy3-labeled DNA lose 6.16% (±0.40%) in signal intensity on average after 10 scans

when no Cy5-labeled DNA is present. Furthermore, 6.14% (±0.38%) are lost when Cy3-labeled

DNA is hybridized competitively against Cy5-labeled DNA. T-Tests show that these two values

cannot be considered different (α ≤ 0.1). For spots hybridized with Cy5-labeled DNA, on the other

hand, a statistical difference is evident: hybridized against unlabeled DNA, Cy5-labeled DNA loses

8.61% (±0.90%) on average. When hybridized against Cy3-labeled DNA, the intensity decrease

changes to 15.52% (±3.02%). These two means are significantly different for α ≤ 0.01. Statistical

inquiries showed that the percentage intensity change evaluated here is independent of the initial

intensity level of the spots under study, ruling out a possible intensity level bias (supporting data can

be found in the Supplementary Materials, Tables S2 to S4). The use of protective measures (in this

case 1 mM ROXS in 1× PBS) was evaluated in comparison (see Figure 4(2a,b). Here, Cy3 without Cy5

loses 11.14% (±0.60%), compared to 13.95% (±0.15%). This difference is as significant (α ≤ 0.01) as the

change of single Cy5 with a loss of 2.51% (±0.05%) to Cy5 with Cy3 present, losing 5.34% (±0.24%).

3.2. Twenty-Four Gene Experiment

The 96 genes of the first experiment were spotted with one replica. The respective gene was

analyzed only when sufficient data for all dye-combinations and treatments was available. The use of

only one replica limited the amount of usable data (data from 61 genes could not be used because for

at least one dye-combination/treatment only one spot met the quality criteria). In order to provide a

more sufficient statistical basis to validate the 96 gene experiment and answer the remaining questions,

a new experiment design was devised: from those 96 genes, 24 were selected that had the most

stable and homogenous spots, also providing a signal variety concerning overall intensity level and

Cy3/Cy5-intensity-ratios. The corresponding 24 oligos where spotted with five replications, providing

a solid basis for statistical analysis.
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In a first evaluation of the results it could be confirmed that the three arrays’ unprotected spots 

Figure 4. Results of the 96 gene experiment. The intensity percent change after 10 scans is compared

for Cy3 and Cy5 depending on the presence/absence of their FRET partner. The percent change for

one-dye setups is plotted against the same value derived from two dye experiments for unprotected

spots (1a) and spots protected by 1 mM ROXS in 1× PBS (phosphate buffered saline) (2a). The dotted

lines pass through the origin with a slope of −1. For each distribution the resulting means are given

in (1b,2b). Error indicators are the respective standard errors (confidence: 95.4%) with Gaussian

error propagation.

In addition to the evaluation of unprotected areas, several protective measures were compared:

liquid chamber with 1× PBS, liquid chamber with 10 mM ROXS, and liquid chamber with 50 mM

ROXS. With respect to array-to-array variability, each slide held one unprotected area and one protected

area, to allow for array-to-array comparisons via normalization of the unprotected areas, resulting in

the following pattern: Array1: unprotected vs. 1× PBS, Array2: unprotected vs. 10 mM ROXS in PBS,

Array3: unprotected vs. 50 mM ROXS in PBS.

In a first evaluation of the results it could be confirmed that the three arrays’ unprotected spots

are statistically comparable with respect to intensity level, percentage intensity change, and overall

spot intensity standard deviation (Tables 1 and 2, Supplementary Materials ANOVAs, Tables S2 to S4).
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Even if the application of a liquid chamber and/or ROXS reduces photobleaching, it is important to

investigate if this modification is beneficial for gathering microarray data in general. To shed light on

this subject, the spot intensity level as well as the spot’s initial intensity deviation of unprotected spots

were compared to their protected counterparts (intensity level: see Figure 5a,c,e, intensity deviation:

see Supplementary Materials, Figure S1). The average intensity level seems to decrease for protected

spots in some cases (Figure 5c,e) and seems to increase in others (Figure 5a,e). However, because of

the overall broad distribution of intensity levels within each group, these decreases and increases are

never significant, even for α = 0.1. Comparing the intensity deviations of protected and unprotected

spots by Analysis of Variance (ANOVA) showed no significant change.

on this subject, the spot intensity level as well as the spot’s initial intensity deviation of unprotected 

increases are never significant, even for α = Ŗ.ŗ. Comparing the intensity deviations of protected and 

 

derived from hybridizations of Cyř/Cyś vs. unlabeled cDNA is tagged ȃsingle dyeȄ 

cDNA is tagged ȃas two dyeȄ.

Figure 5. Examination of the influence of protective measures on the mean spot intensity level and

the spot intensity percent change after 10 scans. Intensity levels are derived from Array1: unprotected

vs. PBS (a), Array2: unprotected vs. 10 mM ROXS (c), and Array3: unprotected vs. 50 mM ROXS (e).

Spot intensity percent changes after 10 scans are derived from Array1: unprotected vs. 1× PBS (b),

Array2: unprotected vs. 10 mM ROXS (d), and Array3: unprotected vs. 50 mM ROXS (f). Intensity

information derived from hybridizations of Cy3/Cy5 vs. unlabeled cDNA is tagged “single-dye” while

intensity information derived from hybridization of Cy3-labeled cDNA with Cy5-labeled cDNA is

tagged “as two-dye”. Error indicators are the respective standard errors of the mean (confidence:

95.4%) with Gaussian error propagation.
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The evaluation of spot intensity percent change for unprotected vs. PBS shows that, for all but

one combination of dyes, no significant change in intensity percent change is observable (for α ≤ 0.1).

Only for Cy5 vs. unlabeled the application of the liquid chamber significantly (α = 0.05) decreases

the average intensity percent change from −6.51% (±5.47%) to 0.18% (±1.45%). Conversely, for

unprotected vs. 10 mM ROXS, all dye combinations see a significant (α ≤ 0.05) elevation of percent

change levels. Most of them are even significant for α ≤ 0.01. While the application of 50 mM

ROXS leads to significant reduction of intensity loss for Cy3-labeled DNAs (α ≤ 0.01), this cannot be

concluded for their Cy5-labeled counterparts. It should be noted that percent changes for Cy5 on this

array were lower in general, compared to the other arrays.

While there are singular significant differences when comparing the intensity level and intensity

percent change of a labeled DNA of a single dye spot with its two-dye counterpart, the overall results

show that no significant differences (α ≤ 0.1) exist in this 24 gene experiment. Similar to the ROXS

results, the statistical analysis of the intensity level is limited by the overall broad dynamic range of

intensity level within each group.

An evaluation of the impact of FRET on actual log-ratios was carried out to investigate the impact

of FRET and/or protective measures on actual microarray data analysis. Log ratios (with base 2)

of single labeled Cy3 and single labeled Cy5 spots were compared to log ratios derived from their

respective Cy3. vs. Cy5 labeling counterparts.

log2ratio (Cy5/Cy3) = log2

(

Intensity Cy5/Intensity Cy3

)

(2)

For unprotected spots of Array2, the average log-ratio derived from Cy3-single intensity divided

by Cy5-single intensity was 0.54 (±0.45), while the average log-ratio from two-dye spots was

1.86 (±0.66). These two values differ significantly (α ≤ 0.01). Plotted against each other, all data

points lie above a line from the origin with a slope of 1 (see Figure 6a).

This tendency can also be observed for the same comparisons made with 1× PBS protected spots

of Array1 (single dye log ratio: 0.75 (±0.28), two-dye log ratio: 1.53 (±0.23)) and unprotected spots of

Array2 (single dye log ratio: 0.72 (±0.35), two-dye log ratio: 1.64 (±0.37)). For both treatments, single

dye log ratios are significantly different (α ≤ 0.01) from two-dye log ratios.

Comparing the same values for ROXS-treated spots of Array2 gives different results: the mean

log ratios of single dyes (0.99 (±0.23)) are not significantly different from those of two-dye spots

(0.91 (±0.26)) for α ≤ 0.1 (graphical representation: Figure 6b).

ǻfor α ≤ Ŗ.ŗǼ. 
liquid chamber significantly ǻα 

−
s see a significant ǻα ≤

even significant for α ≤
labeled DNAs ǻα ≤

show that no significant differences ǻα ≤ Ŗ.ŗǼ exist in this 

logଶ ሺ𝐶𝑦5/𝐶𝑦3ሻ݋𝑖ݐ𝑎ݎ = 𝑔ଶ݋݈  (𝐼݊ݐ𝑒݊ݏ𝑖ݐ𝑦 ஼𝑦5 𝐼݊ݐ𝑒݊ݏ𝑖ݐ𝑦 ஼𝑦ଷ⁄ )
. These two values differ significantly ǻα ≤

dye log ratios are significantly different ǻα ≤

Ǽ for α ≤

 

Figure 6. Comparison of log2-ratios derived from single-dye spots (635 nm intensity from Cy3 vs.

unlabeled, 532 nm intensity from unlabeled vs. Cy5) plotted against log2-ratios derived from two-dye

spots for unprotected spots of Array2 (a) and spots protected by 10 mM ROXS in PBS (b). The dotted

line passes the origin with a slope of 1.
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Table 1. Results and statistical metadata regarding the mean initial spot intensity (I0) of the

24 gene experiment.

Array
Dye

Combination
Mean I0

Std. Error
α = 95.4%

Mean I0
Std. Error
α = 95.4%

p-Value

1

unprotected PBS
Cy3 single dye 6.08 × 103 1.96 × 103 9.58 × 103 5.30 × 103 2.28 × 10−1

Cy5 single dye 3.47 × 103 1.34 × 103 6.37 × 103 4.22 × 103 2.03 × 10−1

Cy3 two dye 7.14 × 103 1.57 × 103 1.36 × 104 7.07 × 103 8.79 × 10−2

Cy5 two dye 1.74 × 103 4.64 × 102 5.39 × 103 3.54 x 103 5.26 × 10−2

2

unprotected 10 mM ROXS in PBS
Cy3 single dye 1.49 × 104 9.73 × 103 8.83 × 103 5.98 × 103 3.23 × 10−1

Cy5 single dye 7.90 × 103 4.24 × 103 3.77 × 103 1.68 × 103 1.02 × 10−1

Cy3 two dye 1.51 × 104 1.00 × 104 8.96 × 103 4.74 × 103 3.08 × 10−1

Cy5 two dye 4.51 × 103 2.98 × 103 5.02 × 103 2.77 × 103 8.12 × 10−1

3

unprotected 50 mM ROXS in PBS
Cy3 single dye 9.48 × 103 4.71 × 103 1.47 × 104 6.95 × 103 2.58 × 10−1

Cy5 single dye 1.18 × 104 8.40 × 103 6.63 × 103 4.75 × 103 3.73 × 10−1

Cy3 two dye 7.39 × 103 3.80 × 103 1.55 × 104 7.91 × 103 9.03 × 10−2

Cy5 two dye 6.46 × 103 4.49 × 103 7.97 × 103 5.76 × 103 7.08 × 10−1

Table 2. Results and statistical metadata regarding the mean spot intensity percent change after 10 scans

(relative ∆ I0) of the 24 gene experiment.

Array
Dye

Combination
Relative ∆ I0

Std. Error
α = 95.4%

Relative ∆ I0
Std. Error
α = 95.4%

p-Value

1

unprotected PBS
Cy3 single dye −7.15 × 10−2 2.31 × 10−2 −6.88 × 10−2 1.37 × 10−2 8.45 × 10−1

Cy5 single dye −6.51 × 10−2 5.47 × 10−2 1.81 × 10−2 1.45 × 10−2 2.67 × 10−2

Cy3 two dye −3.68 × 10−2 2.97 × 10−2 −5.91 × 10−2 9.39 × 10−3 1.67 × 10−1

Cy5 two dye −4.41 × 10−2 4.28 × 10−2 −4.38 × 10−2 1.19 × 10−2 9.88 × 10−1

2

unprotected 10 mM ROXS in PBS
Cy3 single dye −4.77 × 10−2 1.17 × 10−2 −6.77 × 10−2 9.30 × 10−3 1.68 × 10−2

Cy5 single dye −2.98 × 10−2 1.48 × 10−2 6.88 × 10−3 1.67 × 10−2 3.80 × 10−3

Cy3 two dye −5.94 × 10−2 1.19 × 10−2 −9.42 × 10−3 2.36 × 10−2 1.01 × 10−3

Cy5 two dye −3.16 × 10−2 1.54 × 10−2 −1.93 × 10−3 1.19 × 10−2 7.35 × 10−3

3

unprotected 50 mM ROXS in PBS
Cy3 single dye −6.19 × 10−2 1.30 × 10−2 −3.60 × 10−2 8.31 × 10−3 8.59 × 10−3

Cy5 single dye −8.72 × 10−3 1.12 × 10−2 −2.84 × 10−3 9.58 × 10−3 4.89 × 10−1

Cy3 two dye −6.58 × 10−2 1.21 × 10−2 −3.10 × 10−2 9.46 × 10−3 6.78 × 10−4

Cy5 two dye −1.95 × 10−2 8.40 × 10−3 −1.38 × 10−2 6.60 × 10−3 3.64 × 10−1

4. Discussion

The importance of reliable bias normalization and quality control is well recognized in the

microarray field. Next to biological and biochemical sources, bias originates from photochemical

processes and depends on the choice of labeling agent as well as the selected imaging procedure and

environment. In earlier works, it was shown that the ubiquitous application of cyanine dye labeling

causes significant bias due to the dyes’ disparate susceptibility to photobleaching and possible FRET

interaction [19,20,26,28,29].

These findings are confirmed in this study, as photobleaching and FRET result in significantly

different data: as shown in Figure 4(1a,b), without protective measures, photobleaching occurs similar

to previous findings of von der Haar et al. [19] with intensity decreases for Cy3 and to a higher degree

for Cy5. Interestingly, the 96 gene experiment shows that these photobleaching percentages nearly

switch when applying a wet chamber with ROXS. A comparably higher decrease for Cy3 intensity and

a lower intensity decrease for Cy5 is observed. Both changes are statistically significant. These findings
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confirm those of Vogelsang et al. [20], especially the reduction of Cy5 intensity loss. The increase

of Cy3-intensity loss is significantly stronger for Cy3-labeled DNA hybridized against Cy5-labeled

DNA. It can be primarily traced back to a hypothesized FRET effect. This passive “de-quenching”

effect, which has similarly been described by Rao et al. [26], was observable for a variety of genes,

independent of the initial spot intensity (Supplementary Materials, SF1). In one case (Figure 4(1)),

the higher photobleaching susceptibility of Cy5 most probably decreased the chance of excited Cy3

electrons to pass their energy over to nearby Cy5 molecules through FRET. This would result in a higher

Cy3 emission that partially negates the intensity-decreasing effect of its own Cy3-photobleaching. In

the presence of ROXS (Figure 4(2)), however, Cy5 would especially be protected from photo-destruction

(see Rao et al. [26]). This would keep the rate of FRET between the two dyes stable, resulting in a visibly

bigger and statistically significant intensity decrease of Cy3, which is not masked by “de-quenching”

effects, as seen in Figure 4. Therefore, it is assumed that the de-quenching was observable not because

of the selective bleaching of one cyanine dye.

Much of the reasoning applied above is based on the hypothesis that FRET happens to an

observable degree in microarray experiments. In order to confirm FRET and quantify the effect,

the experiment design was adapted so that for each bleaching condition there were spots with only

Cy3-labeled DNA hybridized against unlabeled DNA, only Cy5-labeled vs. unlabeled, as well as

Cy3-labeled vs. Cy5-labeled. In Figure 4(1a), the percentage of intensity change of the single dye spots

after 10 scans is plotted against the same value for two-dye-spots for both cyanine dyes, respectively.

If FRET does not occur to an observable degree, the absence/presence of a second dye would have

no influence on the intensity change of the first. Data points for both dyes should then be scattered

normally distributed around a spot/gene-specific point on a line from the origin with a slope of −1;

however, this is only the case for Cy3. It was found that unprotected Cy3-labeled DNA did not show

a significantly different intensity decrease depending on the presence/absence of Cy5-labeled DNA.

It is hypothesized that the overall low observable bleaching of this group’s spots obscures possible

FRET effects. For unprotected Cy5-labeled DNA, however, the intensity decrease is significantly higher

when Cy3-labeled DNA is present. A possible explanation is the higher rate of excitation of Cy5 due to

FRET which subsequently leads to more chances of Cy5-photobleaching. For ROXS-protected spots,

we see significantly higher bleaching for two-dye spots of both Cy3 and Cy5. While the explanation for

a visible hypothesized FRET effect on Cy3 has been stated above, the question of why a hypothesized

FRET effect is observable for Cy5 remains. Compared to unprotected Cy3 DNA, it is expected that

the comparably overall low level of protected Cy5 intensity decrease results in a similar insignificant

observable difference of intensity decrease of single-dye and two-dye spots. The fact that a significantly

higher decrease is still observable for Cy5 of two-dye spots can be explained by referring to the cDNA

labeling and scanner settings: although Cy5-molecules are only different in structure by one conjugated

C-C double bond, Cy5’s direct labeling efficiency is significantly lower compared to the one of Cy3.

This source of possible bias is mostly addressed by adjusting/increasing the photomultiplier voltage

of the 635 nm laser to lift the intensity level of Cy5-signals to the one of Cy3-signals. As the process of

photo multiplication exponentially enhances the photon signal, the comparably higher voltage applied

to Cy5-emitted photons might lead to a non-linear enhancement of intensity resolution. Consequently,

two differently intense Cy5 photon signals might result in a larger observed intensity difference than

that of two equally different Cy3 signals. While a stronger bleaching of Cy5 is to be expected, the data

of the 24 gene experiment does not support this hypothesis. In all cases, Cy3 loses a higher fraction

of its intensity after ten scans. Concerning the setups with ROXS present, this protective buffer has a

stronger preserving effect on Cy5 than on Cy3, as described in the literature [20]. This could result

in comparably higher observable relative Cy3 intensity loss. The results of unprotected spots of the

24 gene experiment should show a higher relative intensity change for Cy5, as they do in the 96 gene

experiment (Figure 5b). Why this is not the case remains unclear.

Overall, this experiment statistically supports the hypothesis that FRET is an observable effect in

DNA microarrays. Statistical inquiries showed that the percentage intensity change evaluated here
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is independent of the initial intensity level of the spot under study, ruling out a possible intensity

level bias, as first evaluations showed that the overall intensity level is decreased by applying a liquid

chamber onto the array (additional data can be found in the Supplementary Materials, Tables S2 to S4).

After the evaluation of this experiment, questions remained: If the increase of observable

Cy3-intensity loss is explained by FRET effects, why does it also occur, to a lesser extent, in single-dye

setups? To what extent is the observed reduction of photobleaching caused by ROXS? Are the dyes

merely protected due to the application of the liquid chamber itself? This would indicate that the

bleaching is mostly caused by environmental ozone that is now efficiently blocked. A first evaluation of

the 24 gene experiment showed that the data derived from unprotected spots of all three tested arrays

are statistically comparable with respect to intensity level, percentage intensity change, and overall

spot intensity standard deviation. This, in theory, allows for further examination and comparison of

spots from different arrays; therefore, additional array-to-array normalization was not carried out,

which might also introduce bias obfuscating FRET and/or ROXS effects.

The application of a liquid chamber did not influence the overall intensity levels or the magnitude

of the dynamic signal intensity range for both dyes. While this is a desirable outcome regarding

the intensity level, an effect on the dynamic range would have been a mixed blessing: increasing

the dynamic range benefits the resolution and therefore the distinguishability on the one hand, but

increases the need for problematic multi-scan applications to cover this broadened range on the other.

A decrease would have the contrary effect, sacrificing resolution for more convenient scanning.

In order to ensure that the observed photobleaching protection is due to the ROXS buffer

components, the 24 gene experiment’s setup included spot protected by a liquid chamber filled

with PBS buffer without ROXS. All comparison of intensity percent change made for unprotected vs.

PBS protected spots showed no significant reduction of intensity loss through application of a liquid

chamber with PBS buffer. The only exception was the single Cy5 DNA, though for a less significant

threshold of α = 0.05. Comparing unprotected spots with spots protected by a liquid chamber filled

with 10 mM ROXS in PBS, however, displayed a highly significant reduction of intensity loss for all

compared configurations. These findings strongly indicate that the presence of 10 mM ROXS is actually

responsible for the changes observed in the 96 gene experiment. The additional test of unprotected

vs. 50 mM ROXS did not yield conclusive results as a significant reduction of intensity loss was only

observed for Cy3 and not for Cy5, though overall low intensity of Array3’s spots might have affected

the statistical power of these specific results. On the other hand, a 10 mM solution of ROXS is closer to

the 1 mM formula used by Vogelsang et al. [20].

In contradiction with the 96 gene experiment, the application of ROXS in the 24 gene experiment

also significantly reduced bleaching of Cy3-labeled DNA. Whether this change in observed behavior

was due to the changed ROXS concentration or merely resulted from the absence of bias due to the

better statistical power of the 96 gene experiment’s design cannot be ascertained at this point. All in

all, these results show that the application of a liquid chamber filled with a 1 mM or 10 mM ROXS

solution provides a practical solution for significant reduction of cyanine dye photobleaching caused

by DNA microarray scanning.

Regarding FRET, the same parameters used to evaluate this effect in the 96 gene experiment

do not yield the expected results in the 24 gene experiment. Only 2 out of 12 comparisons showed

a significantly different intensity percent change of a dye depending on the presence/absence of

its cyanine counterpart. This might mislead the observer to the conclusion that the FRET influence

observed in the 96 gene experiment is a bias which disappeared due to the better statistical power.

A closer investigation of the effect FRET has on the results of a typical analysis carried out with

the 24 gene experiment’s data gives a different picture: log2-ratios derived from single-dye data in

comparison with two-dye data were plotted against each other (Figure 6). For data derived from

unprotected and PBS protected spots, the data points do not seem to be normally distributed around

a line to the origin with a slope of 1. Normal distribution around this slope would be the expected

result if the spots were not affected by FRET. This impression is statistically proofed as the means of
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single-dye spots of unprotected/PBS-protected spots are significantly different from those of two-dye

spots of the same treatment. Carrying out the same comparison for ROXS-protected spots of Array2

gives a different result: the mean log2-ratios of single-dye spots are not significantly different from

their two-dye equivalents. These observations support the theory that FRET is not only occurring

in two-dye microarrays, it is significantly biasing the results of these experiments. Furthermore,

the FRET-induced bias seems to be normalized by applying the ROXS-protection, as no significant

difference can be observed in this case. Therefore, the application of a ROXS-filled liquid chamber

seems not only to be beneficial in terms of photobleaching minimization but also poses a valid strategy

in order to normalize FRET-dependent bias in two-dye experiments.

In order to allow for this novel technology to be used in daily experiments, several investigations

and optimizations remain. Is the remaining variability of log2-ratios caused by the difference of

the treatments/dye usages or by systematic/technical variance? If the application of ROXS does

actually compensate the bias introduced by FRET, as implicated by the 24 gene experiment’s results,

further investigations are necessary. Does ROXS minimize the occurrence of FRET by minimizing

the availability of the specific excited electron state from which FRET is initiated in Cy3, much like

with the photobleaching initiating states? Or, is FRET still occurring but the presence of ROXS

implements another compensating effect? FRET is described as induced oscillation of two excited

singlet-state electrons, while photodestruction originates from a triplet-state. Further replication of the

experiments carried out in this study is needed to allow for quantification of FRET influences, leading

to predictive models. Additionally, further tests are necessary to determine the optimal ROXS and

buffer concentrations for DNA experiments. Future research should also broaden the application of

this approach to protein and cellular microarrays. This necessitates the examination of ROXS’s effect

on protein-stability and the compounds’ biocompatibility.

5. Conclusions

Based on the findings of Vogelsang et al. [20], Rao et al. [26], and our own previous research [19],

a novel strategy for the minimization of photobleaching in cyanine-labeling-based DNA microarray

experiments was successfully implemented. The modification of DNA microarray slides with thin

liquid chambers filled with a buffer containing ROXS provided a valid protection of cyanine dyes

against photo destruction occurring in the scanning process. Furthermore, it was shown that while

FRET does not only occur in DNA microarray experiments, it does significantly bias the results of

two-dye microarray derived data. This bias can successfully be normalized by applying the same

ROXS-buffer-filled liquid chamber to the microarray slide. With necessary further optimization of this

technology, the photonic limitations of cyanine-based microarray scanning can be overcome. This does

not only improve the reproducibility of these experiments, it allows for successful implementation of

multi-scan approaches with all the resulting possibilities.

Supplementary Materials: The following are available online at www.mdpi.com/2079-7737/5/4/47/s1,
Figure S1: Influence of spot intensity level on spot intensity percent change after 10 scans. (a) unprotected
single dye spots; (b) unprotected two dye spots; (c) 1 mM ROXS in 1 mM PBS protected single dye spots; (d) 1 mM
ROXS in 1 mM PBS protected two dye spots. Error indicators are simple standard deviations; Table S1: Sets of
Genes for which oligos where designed as used in the 96 gene, two-array experiment and the 24 gene, three-array
experiment; Table S1: Influence of presence absence of protective measures on overall spot intensity deviations
for Array1 (unprotected vs. 1 mM PBS). SS: Sum of Squares, df : degrees of freedom, MS: Mean of Square Sums,
F: F-value, p: p-value corresponding to F, Fcrit: critical F corresponding to chosen confidence interval (α = 0.05);
Table S2: Influence of presence absence of protective measures on overall spot intensity deviations for Array2
(unprotected vs. 10 mM ROXS in 1 mM PBS). SS: Sum of Squares, df : degrees of freedom, MS: Mean of Square
Sums, F: F-value, p: p-value corresponding to F, Fcrit: critical F corresponding to chosen confidence interval
(α = 0.05); Table S3: Influence of presence absence of protective measures on overall spot intensity deviations for
Array2 (unprotected vs. 10 mM ROXS in 1 mM PBS). SS: Sum of Squares, df : degrees of freedom, MS: Mean of
Square Sums, F: F-value, p: p-value corresponding to F, Fcrit: critical F corresponding to chosen confidence interval
(α = 0.05); Table S4: Influence of presence absence of protective measures on overall spot intensity deviations for
Array3 (unprotected vs. 50 mM ROXS in 1 mM PBS).
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3.3 Array Analysis Manager – An automated DNA microarray analysis tool 

simplifying microarray data filtering, bias recognition, normalization 

and expression analysis 

 

Figure 3.3: Graphical abstract of ǲArray Analysis Manager – An automated DNA microarray analysis tool simplifying 

microarray data filtering, bias recognition, normalization and expression analysisǳ 

This section describes the Array Analysis Manager end user software. The program is designed to 

contribute to reproducibility and comparability of microarray experiment results. It is compatible 

with basic single chip experimental design as well as dye swap and loop approaches. Additionally, 

multi-scan datasets can be processed to harness the potential of enhanced dynamic intensity 

range evaluations. The Array Analysis Manager is the first software equipped with photobleaching 

recognition and normalization algorithms [68-71]. The normalization algorithm is an 

implementation of the empirical model explained in chapter 3.1. The recognition function was 

developed using an ANN, provided with bleaching data gathered from low density two-channel 

microarrays. Also, an ANOVA-based normalization evaluation tool was designed and 

implemented. It offers vital feedback on how efficient several bias sources are normalized by all 

supported normalization techniques and their combinations. 

ANOVA is used to evaluate the composition of a regression’s variance in order to determine if and 
how much variance is introduced by independent variables/factors. It customarily works with 

sums of squares. The initial total sum of squares SSTotal is made up from the sum of squares of the 

mean SSMean and the sum corrected by the mean SSCorrected. The latter can be divided into the sum 
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of squares of the effects of independent variables / factors SSFactors and the residual sum of squares 

SSR. The residual sum can be further divided into the model deviation SSModel and the experimental 

error SSExp.-Error [72]. Calculations for theses sums of squares are given in Table 3.1. This 

categorization of the variances of a dataset can be used to gain a variety of indicators. When used 

for regression analysis quantities such as the coefficients of determination and correlation can be 

determined. It further allows for goodness-of-fit and lack-of-fit testing as well as the 

determination of confidence intervals for the factors under investigation. What makes it 

interesting in terms of normalization evaluation is the fact that it allows to separate the deviation 

derived from independent factors from the residual error. This, in theory allows for a comparison 

of these two deviations analogue to an F-test. Given that the residual error is normally distributed, 

a significant difference of these two deviations can be an indicator that the factor under study 

affects the dataset [39]. 

Table 3.1: Calculations of sums of squares ȋSSȌ for a linear regression’s analysis of variance ȋANOVAȌ. y – dependent 

variable; j – vector containing all y-means of the ith measurement/observation; f – number of factor combinations; n – 

number of measurements/observations; p – number of independent parameters; 𝒚̅ = ଵ𝑛 ∑ 𝑦𝑖𝑛𝑖=ଵ  – total mean [72] 

sum of squares matrix operation calculation degrees of freedom 

SSTotal, total 𝑦𝑇 ×  𝑦 ∑ yiଶni=ଵ  
n 

SSMean, mean 𝑦̅𝑇 × 𝑦̅ n × 𝑦̂ଶ 1 

SSCorrected, corrected by mean ሺ𝑦 − 𝑦̅ሻ𝑇 ሺ𝑦 − 𝑦̅ሻ ∑ ሺ𝑦𝑖 − 𝑦̅ሻଶni=ଵ  
n - 1 

SSFactors, factors ሺ𝑦̂ − 𝑦̅ሻ𝑇 ሺ𝑦̂ − 𝑦̅ሻ ∑ ሺ𝑦𝑖̂ − 𝑦̅ሻଶni=ଵ  
p - 1 

SSR, residuals ሺ𝑦 − 𝑦̂ሻ𝑇 ሺ𝑦 − 𝑦̂ሻ ∑ ሺ𝑦𝑖 − 𝑦̂𝑖ሻଶni=ଵ  
n - p 

SSModel, model deviation ሺ݆ − 𝑦̂ሻ𝑇 ሺ݆ − 𝑦̂ሻ ∑ ሺ𝑦̅𝑖 − 𝑦̂𝑖ሻଶni=ଵ  
f - p 

SSExp.-Error, experimental error ሺ𝑦 − ݆ሻ𝑇 ሺ𝑦 − ݆ሻ ∑ ሺ𝑦𝑖 − 𝑦̅𝑖ሻଶni=ଵ  
n - f 

 

 Analysis results can be exported in .xlsx- and GEO-formats, promoting easy and fast data processing 

and distribution. The overall user experience was designed to guide the experimenter through the 

analysis process. Tool tips provide information and guidelines for each step from data preprocessing, 

choice of normalization up to the detection of differentially expressed genes. This software was 

developed to increase the comparability and significance of microarray experiment result data by 

simplifying and harmonizing the data analysis process as well as providing experimenters of varying 

scientific and mathematic backgrounds with the information needed to make educated decisions about 

the processing of his experimental data. 
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Desoxyribonucleic acid (DNA) microarray experiments generate big datasets. To

successfully harness the potential information within, multiple filtering, normaliza-

tion, and analysis methods need to be applied. An in-depth knowledge of underlying

physical, chemical, and statistical processes is crucial to the success of this analysis.

However, due to the interdisciplinarity of DNA microarray applications and experi-

menter backgrounds, the published analyses differ greatly, for example, in method-

ology. This severely limits the comprehensibility and comparability among studies

and research fields. In this work, we present a novel end-user software, developed

to automatically filter, normalize, and analyze two-channel microarray experiment

data. It enables the user to analyze single chip, dye-swap, and loop experiments with

an extended dynamic intensity range using a multiscan approach. Furthermore, to

our knowledge, this is the first analysis software solution, that can account for pho-

tobleaching, automatically detected by an artificial neural network. The user gets

feedback on the effectiveness of each applied normalization regarding bias mini-

mization. Standardized methods for expression analysis are included as well as the

possibility to export the results in the Gene Expression Omnibus (GEO) format.

This software was designed to simplify the microarray analysis process and help the

experimenter to make educated decisions about the analysis process to contribute to

reproducibility and comparability.
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1 Introduction

Microarray technology allows for efficient high-throughput

transcriptome analysis, based on the competitive hybridization

of complementary desoxyribonucleic acid (cDNA) probes of dif-

ferent regulatory states labeled with different fluorophores. The

intensity ratios of these fluorophores correlate with the abun-

dance of the original messenger ribonucleic acids and allow the

experimenter to study a possible regulatory change of the genes

under study [1]. This principle is widely used in fields such as

medicine and molecular biology [2, 3].

Correspondence: Marcel von der Haar (koch@iftc.uni-hannover.

de), Institut für Technische Chemie, Leibniz Universität Hannover,

Callinstr. 5, 30167 Hannover, Germany

Abbreviations: ANOVA, analysis of variance; Cy3/5, cyanine 3/5; DNA,

desoxyribonucleic acid; GEO, Gene Expression Omnibus; .gpr, GenePix

Pro results document; .xlsx, Microsoft Excel document

Next to technical and biochemical challenges, for example,

regarding the choice of labeling agent or experimental setup the

overall comparability of DNA microarray results is diminished

by the heterogeneity of applied data analysis strategies. While

steps have been taken to develop and establish common minimal

analysis quality criteria for experimental design and data analy-

sis [4–10], publications involved with DNA microarray technol-

ogy still apply different analysis approaches and standards. Given

the various backgrounds of the experimenters this is no surprise,

as each field of research developed its own specialized set of evalu-

ation procedures. Their statistical tools do often differ in nomen-

clature but also in preferred solution strategy. Several strategies

were presented to break down these limitations. Pure mathemat-

ical/statistical algorithms correct saturation and/or noise using

only the information lying in the acquired data itself. A Bayesian

hierarchical model that corrects signal saturation based on pixel

intensities was proposed by Gupta et al. [11]. Another strategy

to overcome these limitations extends the scanning routine by

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1
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recording multiple scans while varying laser power and/or pho-

tomultiplier settings [12]. Khondoker et al. [13] use a maximum

likelihood estimations model based on a Cauchy distribution

to account for saturated signals and systematic bias. A scanner

specific, photomultiplier-independent optical scanner bias was

determined by Ambroise et al. [14]. They then constructed a two-

way analysis of variance (ANOVA) model, normalizing scanner

bias as well as saturation and noise. These techniques, among

others, were reported to have increased the overall data quality

and reproducibility compared to single scan designs [15, 16].

The need for a common and comprehensive analysis strategy

has led to the development of multiple analysis tools. The BAR-

BAR package for R programmers [17] enhances this program-

ming language to normalize and analyze expression datasets.

With GEDI, another approach is used. This software features

a graphical user interface and several regression models used

for normalization, expression analysis, clustering, classification,

and construction of regulatory networks [18]. quantro is a soft-

ware that evaluates the benefit of applying global normalization

methods onto the dataset under study [19]. Next to analysis tools,

solutions are developed for storage and management of microar-

ray datasets. While the National Center for Biology Information

(NCBI) solution Gene Expression Omnibus (GEO) [20] is widely

used, alternative infrastructures such as SaDA emerge [21].

In this work, we present a novel software designed to estab-

lish a standardized set of solution strategies for DNA microarray

analysis. It uses Microsoft’s .NET-framework technology, allow-

ing the software to be executed on any computer system with

preinstalled .NET-framework. Working with GenePix Pro re-

sults document (.gpr) files, a widespread scanning result data

format, our software assists the experimenter and facilitates the

whole process of data filtering, normalization, and expression

analysis all the way up to exporting the experimental results in

the GEO format. Single array, single scan experiments can be

analyzed as well as dye-swap and loop setups. Furthermore, the

software supports experimental setups that use multiscan tech-

niques to enhance the dynamic intensity range. The program

includes an artificial neural network trained to recognize possi-

ble photobleaching and will recommend the application of the,

to our best knowledge, very first correction algorithm, which

is also included. Instead of simply applying a standard set of

normalizations, the program uses an algorithm based on vari-

ance analysis to examine the effect of different normalization

methods on possible bias sources. This allows the experimenter

to make an informed decision on which normalizations should

be applied. Regarding expression analysis, a set of standardized

hypotheses tests enhanced by corrections for high test numbers

automatically evaluates the relative expression using widely used

statistical thresholds. This tool shall contribute to increase the

overall comparability and reproducibility of DNA microarray ex-

periment results to harness the full potential of this technology.

2 Implementation

The current version of the Array Analysis Manager (1.0) is freely

available [22] runs on Windows operating systems and requires

the preinstallation of the .NET-Framework environment which

is freely available [23]. The Array Analysis Manager was developed

entirely in C# using the .NET development environment Vi-

sual Studio 2012 (Microsoft Corporation, Redmond, WA, USA)

which is also freely available [24].

3 Key software features

3.1 Multiscan support

All single scan approaches are limited by the small dynamic

intensity range of the available array scanners. The dynamic flu-

orescence intensity range of labeling agents, for example, cyanine

dyes, goes well beyond what a single array scan can cover [25].

In most cases, feature information is lost due to saturation ef-

fects and noise at both ends of the intensity spectrum. Several

strategies were presented to break down these limitations.

The Array Analysis Manager applies an approach suggested by

Repenning [26]. If scans with at least three different photomulti-

plier voltage settings for at least one laser power setting are given

for each chip of the experiment under study, the software auto-

matically uses its multiscan algorithm. The algorithm applies an

extended gamma correction to exclude data points from outside

the linear range. Given that a sufficient number of data points

per feature remain, a linear regression is carried out for each

feature individually. With this regression a simulated intensity is

calculated for each feature for a fixed photomultiplier voltage of

700 volt (V).

3.2 Photobleaching recognition and normalization

Photobleaching is an irreversible photochemical reaction de-

structing the fluorophores ability to emit photons [27]. The

degree of signal loss differs depending on which fluorophore is

used as a labeling agent [28–30]. Cyanine-3 (Cy3) and cyanine-5

(Cy5) are ubiquitously used for nucleotide labeling. In previous

works, we showed that they possess a varying degree of suscep-

tibility toward photobleaching [31]. All these findings imply an

effect of photobleaching that will be even more significant on

multiscan data quality. In the same previous work, we defined

an empirical model suited for normalization of photobleaching

introduced bias, given that the scanner settings and the order of

applied scans are known (see Eq. (1), an in-detail discussion of

this model can be found in von der Haar et al. [31]). The Array

Analysis Manager is the first software equipped with a normal-

ization algorithm based on this model that allows for automated

photobleaching bias correction.

ln
(

I (I0, nscan, VPMT)
)

= ln (I0) ∗ e

(

−λ(VPMT)∗(nscan−1)a(VPMT)
)

(1)

where I(I0, nscan, VPMT) is post PMT foreground intensity after

n scans, with given I0 and VPMT; I0 is initial post PMT fore-

ground intensity (nscan = 1); nscan is number of scans; VPMT is

PMT voltage; λ(VPMT) is degradation coefficient, and a(VPMT) is

exponent.

In addition to normalizing photobleaching bias and eval-

uating the effect of this normalization (see Section 3.3), this

software is equipped with a bleaching bias recognition function.

This function is based on an artificial neural network trained
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Figure 1. Exemplary screenshot of the result dis-
play of a comparative, ANOVA-based normaliza-
tion evaluation. On the left, dye and variety bias
are shown to be not significant, while the right
side shows that the feature collection from which
this collection was derived did show significant
dye and variety bias but no significant array bias.
From these results, the experimenter can abstract
that the last applied normalization did success-
fully minimize dye and variety bias and that the
choice of source collections was reasonable as no
array bias was introduced by it. The informative
value of these results, however, is diminished in
this case, as the residual variance (systematic er-
ror) for both tested sets of feature collections did
not pass the test for normal distribution. Screen-
shot taken on a Windows 10 system.

to recognize the relative degree of bleaching which a scan has

already been exposed to. It was trained using metadata derived

from low density two-channel scans with Cy3- and Cy5-labeled

complementary DNA. Support for whole genome arrays and

more labeling agents is planned for future updates. After .gpr-

files are loaded into the program, each array will be evaluated

by the neural network and relative bleaching grade numbers are

assigned. While a coefficient of 1.0 equals an array that has not

been scanned before, a coefficient of 2.0 indicates a Cy3 intensity

loss of around 10% and/or a Cy5 loss of around 45% which is

to be expected after five scans with 100% scan power. A coeffi-

cient of 3 and more represents intensity loss rate of around 20%

(Cy3) and 80% (Cy5) and 10 or more previous scans. Given that

scans are loaded into the program whose coefficients differ sig-

nificantly, the program suggests the application of the bleaching

bias normalization model.

3.3 ANOVA-based normalization evaluation

Many array analysis tools provide the user with multiple normal-

ization algorithms. The decision, which algorithm is to be used,

however, has to be made by the user. The lack of well-established

standards, partially caused by the need for an individual ap-

proach for the respective experiment, leads to many parallel data

handling methods. This mix complicates the transparency and

reproducibility and therefore the scientific discourse and overall

applicability of the microarray technology.

The Array Analysis Manager is equipped with multiple nor-

malization algorithms, but also with a normalization evaluation

function. This function is based on two-way ANOVA. The nor-

malized dataset is analyzed before and after each normalization.

Depending on the normalization and the amount of available

data, the variance analysis compares the variance introduced

by factors such as the labeling agents/dyes, the regulatory state,

and/or the arrays with the residual variance which consists of

the model deviation and the experimental error [32]. Given this

residual variance is normally distributed, which too is tested us-

ing the Shapiro-Wilk test, a significant difference to this residual

variance implies that the compared effect is significantly biasing

the dataset. By comparing the p-values of the data before and

after normalization, the experimenter gets information about

the influence of the applied normalization on these bias sources.

After each applied normalization, the algorithm automatically

calculates the aforementioned p-values and displays the results

(Fig. 1). This provides the experimenter with useful feedback

and arguments to choose the right normalization and explain

his choice of data normalization methods.

3.4 Simplified workflow

The Array Analysis Manager was designed with the objective

of creating an easy-to-use, workflow optimizing assistant that

gives the experimenter the tools and information needed to gain

results quickly while making educated decisions regarding the

processing of the array data.

The user experience should be intuitive and feasible, which

is why instead of developing a toolbox for a programming lan-

guage, it was decided to create a software with its own graphical

user interface complete with drag and drop data handling. The

application was created using Microsoft’s .NET environment and

the graphical user interface is based on the Windows Presenta-

tion Foundation, which will easily allow the implementation of

a browser-based web version of the Array Analysis Manager for

world-wide instant accessibility.

A simplified usability is worthless if the applied methods

are not adaptable to the data situation and their effect is not

transparently evaluated. This is why this tool was equipped with

a normalization evaluation algorithm, which gives the experi-

menter feedback on the effect each applied normalization has on

different bias sources.

Finally, the possibility to export results as widely used data

formats allows for a quick, simplified submission, contributing

to the expansion and acceleration of scientific exchange.

The whole analysis process is guided by a tooltip system. It

consists of multiple graphical user interfaces that explain every

step of the analysis process and provides the user with back-

ground information and can be turned on and off individually

(Figs. 2 and 3). Functions are included that allow the quick ex-

change of project data. The possibility of saving the results as

an .xlsx document (and in GEO format) streamlines the data

processing und publishing process.
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Figure 2. Screenshot of the New
Project/New Experiment tooltip. The
tooltip system is designed to guide the
experimenter through the analysis of
his data and provides useful informa-
tion and links to more detailed informa-
tion. Screenshot taken on a Windows 10
system.

Figure 3. Exemplary screenshot of the graphical user interface of the Array Analysis Manager. The “Graphs”-tab allows for easy access to the
generated results. The experimenter can display differently normalized feature collections in parallel to compare them. Screenshot taken on
a Windows 10 system.
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4 Concluding remarks

The Array Analysis Manager is an all-in-one program for DNA

microarray data analysis. It simplifies the whole process from

data processing and experimental design to filtering and data

normalization/correction all the way to publishing the results.

New methods such as multiscan normalization are included. In

the case of photobleaching, this program is the first to incor-

porate a normalization method. With tools such as the pho-

tobleaching bias recognition, the ANOVA-based normalization

evaluation, and the tooltip system, the experimenter is guided

through the process and empowered to make informed decision

regarding the best fitting processing and normalization path for

his dataset. All in all, the Array Analysis Manager is a potent

software designed to improve microarray analysis transparency,

reproducibility, and promote the successful application of the

microarray technology.

Practical application

This software was designed to simplify the microarray anal-
ysis process and help the experimenter to make informed
decisions about the analysis process to contribute to repro-
ducibility and comparability. Single and multiarray exper-
iments can be processed as well as single and multiscan
datasets, allowing for the usage of enhanced dynamic in-
tensity ranges. It provides the experimenter with the first
photobleaching recognition and normalization algorithms.
Also the analysis of variance (ANOVA) based normalization
evaluation provides a vital feedback for the experimenter
regarding the individual benefits and/or disadvantages of
all possible supported normalization techniques and their
combinations. The possibility to export analysis results in
Microsoft Excel document (.xlsx) and Gene Expression Om-
nibus (GEO) formats promotes easy and fast data process-
ing and management. All in all, this software is suited to
increase the comparability of microarray experiments by
simplifying and harmonizing the data analysis process.

The authors have declared no conflicts of interest.
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4 Conclusion 

Many great questions and challenges of this day and age are to be solved only by comprehending 

and mastering complex dynamic systems. This is true for the incomplete understanding of the 

systematic connections of genetic and metabolic regulation in molecular biology. Challenges of 

similar nature can also be found in fields such as neuro science, image processing and robotics 

(facial recognition, autonomous driving, etc.), climate science (predictive climate and weather 

modelling) and many more. As a consequence, problems nowadays are most often not confined to a single scientific and engineering discipline, implying that a single discipline’s set of tools and 
methods may not provide an appropriate solution. It is therefore mandatory for researchers and 

engineers of any kind to obtain and apply interdisciplinary knowledge. On the other hand, several 

disciplines have developed analogous methods to solve analogous problems. However, these 

methods might differ not only in nomenclature but also agreed upon criteria and thresholds of 

significance. All this complicates the interdisciplinary discourse as findings are often not 

presented in transparent and comprehensible ways, depending on who tries to interpret them. 

This thesis contributes to the simplification of scientific discourse regarding DNA microarray 

based gene expression analysis by improving the comparability, reproducibility and 

comprehensibility of DNA microarray result data. On the experimental level, obstructing effects 

that introduce bias into microarray datasets were characterized. Statistical as well as technical 

normalization solutions were proposed that do not only successfully normalize these effects but 

do so in a way that allows for their ubiquitous applicability. Additionally, a software was 

developed that simplifies the microarray data workflow, incorporates new and well established 

methods, and provides the experimenters with the needed information and guidelines, 

empowering them to optimize their dataset regardless of the experimenters scientific background 

and/or prior knowledge. 

Future development should advance the photobleaching-recognition ANN to allow the 

recognition of bleaching for whole genome arrays as well as a broader variety of low density 

arrays. The ANOVA-based normalization evaluation tool should be refined to evaluate additional 

bias sources. While commercial analysis suites concentrate on normalizations for their own 

proprietary whole genome arrays, methods and tools for the analysis and normalization of 

individually manufactured arrays, often used in research environments, are scarce. Further 

development should therefore concentrate on advancing the toolset for these setups. 

Nevertheless new normalization methods that process bias specific to commercial arrays should 

be implemented to increase the usability for users predominantly working with commercial 

arrays, e.g. in clinical research and diagnosis. While the recent version of the Array Analysis 
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Manager does recognize invalid experimental setups and warns the user, the implementation of 

an additional experiment planning module would be advisable. An easy-to-use tool that allows an 

experimenter to plan their experimental design with regard of statistical power and expected 

significance of the results would be an important step towards standardized and comprehensibly 

experimental design. The Array Analysis Manager was developed using the Microsoft® .NET-

framework and WPF. This paves the way for the straightforward implementation of the analysis 

suite as a XAML-based web-service. Experimenters worldwide would profit from the expanded 

accessibility of this software, as now prior installation on their own systems is required. Given the 

agreement of the experimenters, their data could in turn be used to optimize the photobleaching 

recognition ANN as well as any future ANN to come. 
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