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Abstract
The thermodynamic limit of superspin chains can show several intriguing properties,
including the emergence of continua of scaling dimensions and the appearance of
discrete states when imposing toroidal boundary conditions. Nevertheless, the former’s
exhaustive characterization in terms of Conformal Field Theories is still lacking.
In order to study the thermodynamic limit of the Uq[sl(2|1)] 3⊗ 3̄ superspin chain

in the antiferromagnetic regime, we analyze the low lying excitations by means of the
model’s exact solution using the Algebraic Bethe Ansatz. In the isotropic limit, this
model may be used as a toy model for the description of plateau transitions in Quantum
Hall systems. The definition of a quasimomentum operator allows for a characterization
of the continua of scaling dimensions, thereby giving rise to a quantum number for
the corresponding non-compact component of the spectrum in the thermodynamic
limit. The associated degeneracies are lifted on the lattice by logarithmic fine structures.
Based on the extrapolation of our finite size data we find that under a variation of the
boundary conditions from periodic to antiperiodic for the fermionic degrees of freedom,
levels from the continuous part of the spectrum flow into discrete levels and vice versa.
Investigating the thermodynamic limit of the q-deformed osp(3|2) superspin chain,

corresponding to an intersecting loop model in the rational limit, we seek to uncover
its low-lying critical exponents. We present evidences that the latter are built in terms
of composites of anomalous dimensions of two Coulomb gases with distinct radii and
exponents associated to Z(2) degrees of freedom. This view is supported by the fact
that the S = 1 XXZ integrable chain spectrum is present in some of the sectors of the
superspin chain at a particular value of the deformation parameter. We find that the
fine structure of finite-size effects is very rich for a typical anisotropic spin chain. In
fact, we argue on the existence of a family of states with the same conformal dimension
whose lattice degeneracies are lifted by logarithmic corrections. On the other hand, we
also report on states of the spectrum whose finite-size corrections seem to be governed
by a power law behaviour. We finally observe that under toroidal boundary conditions
the ground state dependence on the twist angle has two distinct analytical structures.

Keywords: Bethe Ansatz, superspin chains, Conformal Field Theories, quasimomentum,
critical exponents
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Zusammenfassung
Der thermodynamische Grenzwert von Superspinketten kann viele faszinierende Eigen-
schaften aufweisen, beispielsweise die Ausbildung von Kontinua von Skalendimensionen
sowie das Auftreten diskreter Zustände, wenn verdrillte Randbedingungen betrachtet
werden. Allerdings fehlt bisher eine allgemeine Klassifizierung dieser Grenzwerte in
Bezug auf konforme Feldtheorien.
Um den thermodynamischen Grenzwert der Uq[sl(2|1)] 3⊗ 3̄-Superspinkette im an-

tiferromagnetischen Regime zu untersuchen, analysieren wir die niederenergetischen
Anregungen vermöge der exakten Lösung des Models mittels des algebraischen Bethe-
Ansatzes. Im isotropen Grenzfall kann die untersuchte Superspinkette zur Modellierung
von Plateau-Übergängen in Quanten-Hall-Systemen verwendet werden. Die Definition
eines Quasi-Impuls-Operators ermöglicht durch die Einführung einer Quantenzahl für
den nicht-kompakten Anteil des Spektrums die Charakterisierung derselben innerhalb
des untersuchten Modells. Die entsprechenden Entartungen werden auf dem Gitter durch
logarithmische Feinstrukturen aufgehoben. Ausgehend von Extrapolationen unserer
Daten für endliche Systemgrößen zeigen wir, dass unter Variationen der Randbedingun-
gen von periodisch zu antiperiodisch für die fermionischen Freiheitsgrade Zustände des
Kontinuums in diskrete Zustände übergehen und umgekehrt.

Anschließend untersuchen wir den thermodynamischen Grenzwert der q-deformierten
osp(3|2) Superspinkette, die im rationalen Limes zur Beschreibung des “intersecting
loop”-Modells verwendet werden kann, indem wir die niederenergetischen kritischen
Exponenten bestimmen. Wir präsentieren Anhaltspunkte, dass jene aus zwei Coulomb-
Gasen unterschiedlicher Radien und den Exponenten der Z(2)-Freiheitsgrade bestehen.
Diese Sichtweise wird unterstützt durch die Tatsache, dass das Spektrum des S = 1
XXZ-Heisenbergmodells bei einer bestimmten Anisotropie im Spektrum der Super-
spinkette enthalten ist. Insbesondere legen wir dar, dass eine Klasse von Zuständen
mit gleicher konformer Dimension, deren Gitterentartungen durch logarithmische Kor-
rekturen aufgehoben werden, existiert. Andererseits finden wir ebenfalls Zustände im
Spektrum, deren Korrekturen bei endlicher Systemgröße einem Potenzgesetz folgen.
Schließlich beobachten wir zwei verschiedene analytische Verhalten des Grundzustandes
in Abhängigkeit des Drehwinkels in den Randbedingungen.

Schlagworte: Bethe-Ansatz, Superspinketten, konforme Feldtheorie, Quasi-Impuls, kriti-
sche Exponenten
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Introduction

Although magnetism is intuitively familiar to us, the theoretical description of this
purely quantum mechanical phenomenon can be rather complicated. While studying
ferromagnetism in a solid, Werner Heisenberg [1] and Paul Dirac [2] both realized that
the spin degrees of freedom solely determine the magnetic properties of the system.
These thoughts resulted in the famous Heisenberg model consisting of particles with
spin-1/2 (e.g. electrons) sitting at each lattice site and interacting with each other. A
few years later, the one-dimensional Heisenberg model for spin-1/2 particles was solved
exactly by Hans Bethe [3]. In general, lattice models of interacting spins in one spatial
dimension are called spin chains.
Consecutively, spin chain Hamiltonians were shown to be generated by transfer

matrices of classical statistical lattice models in two dimensions [4]. This equivalence
became manifest mathematically in the theory of integrable models. Within this theory
each Lie algebra allows for the construction of a spin chain [5, 6] by means of its
equivalent two dimensional vertex model. Moreover, generalizing the ideas of Bethe
enables their subsequent exact solution. Particularly, the Heisenberg chain with spin-S
particles can be reproduced within this framework when studying the vertex model
associated with the spin-S representation of the su(2) Lie algebra. Other spin chains
may be seen as mathematical generalizations thereof.
Since the most relevant spin chains like the one-dimensional Heisenberg model with

arbitrary spin provide examples of quantum mechanical systems which are completely
solvable it is tempting to calculate macroscopic properties for a comparison with
experiments or to study phase transitions. In both cases the thermodynamic limit (e.g.
enlarging the lattice size to infinity while keeping the density of particles constant) is of
extraordinary relevance.
If spin chains based on two dimensional statistical vertex models can be shown to

have a massless region in the spectrum, their thermodynamic limit is expected to be
described by a Conformal Field Theory (CFT). To be more precise, spin chains based
on simply laced Lie algebras were shown to be lattice regularizations of Wess-Zumino-
Novikov-Witten (WZNW) models [7]. Generally speaking, the thermodynamic limit of
spin chains is well understood.

The scenario completely changes when considering spin chains based on Lie superalge-
bras instead of ordinary Lie algebras. For this class of models, a complete understanding
of the thermodynamic limit is still lacking. Superalgebras allow for a simultaneous
description of both bosonic and fermionic degrees of freedom. In a physical context such
objects appeared first in the 1970’s when Julius Wess and Bruno Zumino constructed
transformations between bosonic and fermionic states [8, 9] which is not possible using



‘normal’ Lie algebras.

In principle, superspin chains can be constructed in a very similar way as ordinary
spin chains with a few slight modifications. Despite being extremely interesting from
the purely mathematical point of view, the question arises in which context spin chains
based on superalgebras appear in physics. One example of applications of superspin
chains are plateau transitions in the integer Quantum Hall Effect [10]. In 1980, Klaus
von Klitzing studied a setup using electrons confined to two spatial dimensions with a
strong magnetic field perpendicular to the plane in which the electrons can move. When
exposing this setup to low temperatures he found that the resistivity exhibits plateaus
at ρ = 2π~/νe with integer ν and the electron charge −e. It can be shown that an
effective field theory describing plateau transitions is in fact the thermodynamic limit of
a superspin chain with infinitely many local degrees of freedom [11–17]. Since models of
interacting particles with an infinite-dimensional Hilbert space may be treated exactly
neither analytically nor numerically, toy models which can be constructed by truncating
the local Hilbert space have to be used. One example of such a toy model is the sl(2|1)
superspin chain which is one of the models studied extensively within this work.

The applicability of superspin chains in statistical physics is not exclusively restricted
to order-disorder transitions in Quantum Hall systems. A different class of models for
whose description superspin chains can be used are intersecting loops. These models
allow for the study of the diffusion of particles through barriers which are placed
randomly on a square lattice [18, 19] and tilted left and right w.r.t. the lattice. Incoming
particles will change their direction when hitting a scatterer but will pass through a
node if it is empty. Hence the particles’ paths form intersecting loops on the lattice
which is eponymous for the model. In a special case it may be reformulated in terms of
the superspin chain built from representations of the osp(3|2) superalgebra. This model
will be investigated thoroughly within this thesis.

While not completely characterized, thermodynamic limits of superspin chains have
been shown to exhibit rather unusual features. Several superspin chains have been
revealed to possess infinitely many states with the same conformal dimension in the
thermodynamic limit [19–22] - although the amount of local degrees of freedom on the
lattice is finite. Hence, effective field theories for these models feature a quantum number
which describes the corresponding non-compact degree of freedom. This observation
indicates that the associated effective field theories may be characterized in terms of non-
unitary CFTs. Besides, the latter reveal other interesting features, e.g. the emergence
of non-normalizable states which may appear in the spectrum of the corresponding
superspin chain for certain boundary conditions only. Note, thermodynamic limits with
similar properties do appear not only for superspin chains. The staggered six-vertex
model [23–26] as well as models describing the physical properties of two-dimensional
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Introduction

polymers [27, 28] have been proven to correspond to non-unitary CFTs as well.
In this context, the present work aims to provide new insights in the thermodynamic

limits of two superspin chains. The first example to be studied, the staggered superspin
chain based on quantum deformations of sl(2|1), was previously shown to exhibit a
series of levels which tend to the same conformal dimension in the thermodynamic limit
[21]. Hence, we seek for a characterization of these states. Further, we investigate the
spectral flow when a twist in the boundary conditions is imposed and thereby search
for non-analyticities which are expected for lattice regularizations of non-unitary CFTs
in order to ultimately study properties of the thermodynamic limit. Consecutively,
we investigate a superspin chain built from quantum deformations of osp(3|2). In the
corresponding isotropic model, again continua of scaling dimensions have been found
[19]. Thus, we are intrigued by the question if such continua can survive in the presence
of quantum deformations. To go even beyond, we search for a complete characterization
of the operator content in order to provide a solid basis for subsequent studies hopefully
leading to an understanding of the thermodynamic limit of the q-deformed osp(3|2)
superspin chain.

Thesis outline

In order to provide a clear structure this thesis is divided into two parts. Part I is
dedicated to introduce briefly the main concepts needed to understand and construe
the results presented in part II. In more detail, we will start by reviewing the Quantum
Inverse Scattering Method and the Algebraic Bethe Ansatz in I.1. The following section
will familiarize the mathematical concepts of superalgebras in I.2 where we will discuss
the basic ideas needed for the subsequent construction and solution of superspin chains.
Since the thermodynamic limit of such models is believed to be described by a CFT,
we will establish the notion of conformally invariant field theories and discuss their
implications for finite size studies in I.3. The preliminary part will be closed by a short
discussion of the integer Quantum Hall Effect. It will be shown how superspin chains
emerge for the theoretical description of the aforementioned order-disorder transition in
Quantum Hall systems in I.4.

The latter section serves as motivation for the second part of this thesis in which two
examples of superspin chains will be studied in detail, namely the quantum deformations
of sl(2|1) in II.1 and osp(3|2) in II.2. While both sections will contain a finite size study
of several states belonging to the low-energy spectrum the scope of these studies is rather
different. For the q-deformed sl(2|1) superspin chain in II.1 the operator content for a
subset of the spectrum as well as the existence of continua of scaling dimensions has
already been established [21]. Hence, in order to study its thermodynamic limit we will
seek for a description of these continua in terms of an operator which commutes with the
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Hamiltonian and therefore provides us with a good quantum number. Subsequently, we
will impose a twist in the boundary conditions and investigate the emergence of discrete
states. On the other hand, for the q-deformed osp(3|2) model in II.2 the operator content
is still unknown. Hence, we pursue to establish a proposal for the scaling dimensions
corresponding to the primary fields by a thorough numerical study of some tens of
low-energy states. Our conjecture will be underpinned by analytical arguments using a
correspondence with the Heisenberg XXZ spin-1 chain at a certain anisotropy.
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Preliminaries





1 Integrability

In classical mechanics, a system with n degrees of freedom is referred to as completely
integrable if it possesses n independent conserved quantities, i.e. n integrals of motion.
In this case, the system is said to be completely solvable. Since this definition is
unambiguous it seems surprising that there is no precise quantum equivalent [29]. In
this thesis, for the definition of quantum integrability, we will follow the notion by
Faddeev [30], Izerghin and Korepin [31] and call a (1+1)-dimensional vertex model or its
equivalent one-dimensional quantum spin chain integrable if it can be constructed and
solved by means of the Quantum Inverse Scattering Method (QISM) and the Algebraic
Bethe Ansatz (ABA), respectively.

In this section we will introduce the main concepts of the QISM in 1.1 following [32]
and [33]. We will see that it is a powerful tool for constructing integrable models. The
second subsection 1.2 is dedicated to a brief discussion of ABA and how it uses the
outcome of the QISM to solve the eigenvalue problem for one-dimensional quantum
spin chains.

1.1 Quantum Inverse Scattering Method

The starting point for the construction of an integrable model by means of the QISM is
the Yang-Baxter equation (YBE) which goes back to independent works by C.N. Yang
[34, 35] and R.J. Baxter [4],

R1,2(λ)R1,3(λ+ µ)R2,3(µ) = R2,3(µ)R1,3(λ+ µ)R1,2(λ) (I.1)

where λ and µ are complex numbers called spectral parameters. As we will see below,
each solution of (I.1) allows for the construction of an integrable model since it imposes
an integrability condition for the building blocks of such models, the R-matrix.

In general, R-matrices Ra,b(λ) are maps from a tensor product Va ⊗ Vb of two vector
spaces Va (a, b = 1, 2, 3) onto itself where the vector spaces Va up to this point are
arbitrary. The R-matrix can be seen as the scattering matrix for one-dimensional
quantum systems since the YBE can be understood in the following way. If a system is
integrable, i.e. its R-matrix fulfills (I.1), then every three-particle scattering process can
be decomposed into two-particle scattering processes, thus the order of the (artificial)
two-particle scattering processes is irrelevant, see fig. 1 for a graphical representation.
In fact, this interpretation provides an alternative way to define a (quantum) integrable
model. A discussion about the assets and drawbacks of several definitions of quantum
integrable models can be found in [29].
For the construction of a physical integrable model (having a spin chain in mind)
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Figure 1: Graphical representation of the Yang-Baxter equation (I.1): The YBE can be seen
as condition for the decomposition of any three-particle scattering process into two particle
processes such that the order of the two-particle scatterings (denoted as black dots) is irrelevant.

we define the Lax operator Ln,a to be a map between the tensor product of the local
Hilbert space Hn of the n-th site and a so-called auxiliary space Va onto itself. The total
N -site Hilbert space is defined as the tensor product of all sites and will be denoted by
H = ⊗Nn=1Hn. The Lax operators are related to the R-matrix in virtue of

Ra,b(λ− µ)Ln,a(λ)Ln,b(µ) = Ln,b(µ)Ln,a(λ)Ra,b(λ− µ). (I.2)

Eqs. (I.2) are called the RLL-relations. If the R-matrix satisfies (I.1) the Lax operator
exists and is unique [36, 37].

In contrast to Hn which is fixed by the local degrees of freedom there is essentially
no constraint regarding the auxiliary space. If Va = Hn the R-matrix and the Lax
operators are basically the same.

Since the Lax operator Ln,a describes the ‘transport’ [32] of an auxiliary particle at
site a to site n the ordered product over all sites

Ta(λ) ≡ LN,a(λ)...L1,a(λ) (I.3)

defines a monodromy around the spin chain when periodic boundary conditions are
imposed [32]. Note, the monodromy matrix is an operator valued matrix in the auxiliary
space whose entries act on the whole Hilbert space H. For the effect of general boundary
conditions, see below.

Since the monodromy matrix is built from Lax operators which satisfy the RLL-
relations (I.2), so does the monodromy,

Ra,b(λ− µ)Ta(λ)Tb(µ) = Tb(µ)Ta(λ)Ra,b(λ− µ). (I.4)

Analogously, these relations are referred to as RTT-relations.

To make contact with more familiar physical quantities acting on the Hilbert space
H only we define the transfer matrix as the trace of the monodromy matrix over the
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1. Integrability

auxiliary space,
τ(λ) = tra Ta(λ). (I.5)

The RTT-relations (I.4) guarantee that transfer matrices with different spectral param-
eters commute,

[τ(λ), τ(µ)] = 0. (I.6)

Therefore, it can be used to generate a series of conserved quantities Qi, e.g.

Qi = di

dλi
log τ(λ)

∣∣∣
λ=η

, i = 0, ..., N − 1, (I.7)

where η denotes the shift point, the spectral parameter where the Lax operator becomes
proportional to the permutation operator.1 The definition of these conserved charges
connects the notion of quantum and classical integrability. It can be shown that the
momentum and the energy are related to the Q0 and Q1 [32],

P ∝ Q0 and H ∝ Q1. (I.8)

To summarize we have argued that a specific solution of the YBE (I.1) yields the
Hamiltonian and other conserved charges of the corresponding integrable model. Let us
close this overview with a few remarks:

• The YBE generates a rich algebraic structure, known as Yang-Baxter algebra in
which the Lax operators and the monodromy matrix appear as local and global
representations, respectively, see [39] and the references therein.

• In this thesis we will investigate spin chains based on superalgebras which leads
to some subtleties in the QISM scheme. We will discuss these issues in sec. 2.6.

• More general boundary conditions that preserve the integrablity can be imposed
by inserting a matrix G representing these boundary conditions in the definition
of the monodromy matrix,

T bd
a (λ) ≡ GaLN,a(λ)...L1,a(λ) (I.9)

provided that G also fulfills a Yang-Baxter equation2,

Ra,b(λ)GaGb = GbGaRa,b(λ). (I.10)

1Note, the existence of a shift point is not guaranteed, e.g. if the dimensions of the auxiliary and
quantum space are unequal. However, even if there is no trivial shift point, it may be possible to
construct Hamiltonians e.g. by means of fusion in the auxiliary space [38].

2In other words, G ⊗ G commutes with R.
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In (I.9), the matrix Ga acts in the auxiliary space only. One example of such
integrable boundary conditions are twisted boundaries where Ga is generated by
the generator of rotations in the auxiliary space.

1.2 Algebraic Bethe Ansatz

The Bethe Ansatz dates back to Hans Bethe in 1931 who used a superposition of plane
waves in order to compute eigenstates of the Heisenberg XXX spin-1/2 chain [3]. His
technique was later on called Coordinate Bethe Ansatz. Afterwards, this method has
been successfully extended to many other one-dimensional models like the Hubbard-
model [40]. Here we will focus on the Algebraic Bethe Ansatz which naturally hooks up
with the results of the QISM and allows for a systematic calculation of the eigenstates
and eigenenergies of the corresponding integrable model.

To start, we study for simplicity a model with sl(2) symmetry or deformations thereof.
In this case, the auxiliary space is isomorphic to C2 such that the monodromy matrix
can be written as operator-valued 2× 2 matrix,

Ta(λ) =
(
A(λ) B(λ)
C(λ) D(λ)

)
. (I.11)

We further assume that there is a reference state |0〉, also called pseudo vacuum3, such
that |0〉 is an eigenstate of A(λ) and D(λ) and therefore it is also an eigenstate of
the Hamiltonian. In addition we demand |0〉 to be annihilated by C(λ). In this case
candidates for eigenstates of the integrable model can be constructed by

|λ1...λM 〉 =
M∏
j=1

B(λj) |0〉 . (I.12)

Up to this point the λj are arbitrary complex numbers.
For |λ1...λM 〉 to be an eigenstate of the Hamiltonian it is sufficient to be an eigenstate

of A(λ) +D(λ) with eigenvalue Λ(λ; {λj}),

(A(λ) +D(λ)) |λ1...λM 〉
!= Λ(λ; {λj}) |λ1...λM 〉 . (I.13)

The RTT-relations allow for an explicit calculation of (A(λ)+D(λ)) |λ1...λM 〉 leading to
consistency equations which ensure for |λ1...λM 〉 to be an eigenstate of the Hamiltonian,
thereby fixing the λj . The corresponding consistency equations are referred to as
Bethe Ansatz Equations (BAE), their solutions λj are called Bethe roots or rapidities.
Solving these equations completely fixes an eigenstate of the Hamiltonian. The BAE

3Note, there are integrable models where a reference state does not exist although this is the main
ingredient for the following, e.g. for non-diagonal boundary conditions [41].

10



1. Integrability

also guarantee that the eigenvalues Λ(λ; {λj}) are analytic functions in λ (or, at least,
that Λ(λ; {λj}) can be analytically continued), i.e. all residues vanish. For the XXX
Heisenberg chain with spin S = 1/2 it can be shown that Bethe states are highest weight
states w.r.t. the symmetry of the model [42].

For higher-rank models, the lowest possible dimension of the auxiliary space is larger
than 2, e.g. in the case of models with gl(n), n ∈ N symmetry [41, 43]. For models
based on its fundamental representation, the auxiliary space is n-dimensional. In this
case, the transfer matrix

τ(λ) = trTa(λ) (I.14)

cannot be diagonalized in one step. In fact, when applying the above scheme the
obtained Bethe Ansatz equations will themselves impose a new eigenvalue problem for
a nested transfer matrix with reduced dimension. This procedure is called nested Bethe
Ansatz [43, 44]. In an iterative scheme, the nested transfer matrix can be diagonalized
by the Algebraic Bethe Ansatz as described above which leads to a second set of Bethe
Ansatz equations. The ‘depth’ of nesting necessary to finally arrive at Bethe Ansatz
equations only containing the Bethe roots is equal to the rank of the symmetry Lie
algebra of the system.

11





2 Superalgebras
This section is concerned with the discussion of superalgebras. These mathematical
objects will serve as symmetry algebras used for the construction of the models which
will be investigated in part II of this thesis.

Superalgebras were introduced in the mathematical literature to study deformation
theory by Nijenhuis [45] and Fröhlicher [46] in the 1950’s. In physics, superalgebras
appeared first in the 1970’s when J. Wess and B. Zumino used these objects to construct
transformations between bosonic and fermionic states. Using normal Lie algebras such
a transformation cannot be designed because the generator which connects a bosonic
and a fermionic state is itself a fermion, hence its density only comprises an odd amount
of fermionic fields. Therefore, it is not possible to extract the essential information to
build up a Lie algebra commutator between two fermionic states from the relations
between the fields and the corresponding canonical momenta [8, 9].
Two decades later, in 1986, Kulish [47] investigated solutions of the graded Yang-

Baxter equations and thereby for the first time constructed superspin chains based on
the general linear and the orthosymplectic supergroup. Subsequently it was discovered
that superalgebras also play a role in the theory of strongly correlated electrons. It can
be shown that the t− J-model, as introduced by Zhang and Rice in 1988 [48], is super-
symmetric for the value J = 2t, that is, its Hamiltonian commutes with all generators
of a specific Lie superalgebra. This allows for the construction of the corresponding
spin chain using the Quantum Inverse Scattering Method and its subsequent solution
by means of the Algebraic Bethe Ansatz [49].

This section is organized as follows: In subsection 2.1, we will provide the necessary
definitions required for the construction of integrable models in part II which will be
followed by two examples in 2.2, where we will discuss briefly the Lie superalgebras
gl(n|m) and sl(2|1). The latter is one of the most important superalgebras in the
context of this thesis. It turns out that two specific bases are very well suited for the
following discussions, namely the Cartan-Weyl and the Chevalley basis which will be
defined in 2.3. Consecutively, in subsection 2.4 we will discuss shortly the representation
theory for superalgebras which can be quite different compared to the representation
theory for Lie algebras, and mention the concept of quantum deformations in 2.5. The
last subsection will deal with the modifications of the QISM which are necessary for the
construction of integrable models based on superalgebras in 2.6.

2.1 Definitions

We shortly list some necessary definitions. For a full mathematical discussion of
superalgebras see [50–52] which also provides the basis for this subsection.



Definition 1. Let V be a vector space over a field K. A Z2-gradation (or, grading) of
V is a decomposition of V such that

V = V0 ⊕ V1. (I.15)

In this case V is said to be Z2-graded. The elements of V0 (V1) are called even (odd).

The gradation of a Z2-graded vector space defines a natural decomposition for its
elements:

∀v ∈ V ∃v0 ∈ V0, v1 ∈ V1 : v = v0 + v1. (I.16)

The component v0 (v1) is called even (odd) component of v. Elements which fulfill
v ∈ V0 (v ∈ V1) are called homogeneous. Homogeneous elements have degree deg(v) = 0
if v ∈ V0 and deg(v) = 1 if v ∈ V1.

Definition 2. Let V and W be two Z2-graded vector spaces over the same field K. The
graded tensor product V ⊗W is also a Z2-graded vector space with the natural grading

(V ⊗W )γ =
⊕

α+β=γ
(Vα ⊗Wβ), γ ∈ Z2. (I.17)

Definition 3. Let A be an algebra over a field K. A is said to be a superalgebra, if

A = A0 ⊕A1 (I.18)

AαAβ ⊂ Aα+β ∀α, β ∈ Z2 (I.19)

Definition 4. A left ideal I of a superalgebra A is a subalgebra such that ax ∈ I ∀a ∈
A, x ∈ I. A subalgebra of a superalgebra is a subset which is also an algebra. A graded
subalgebra (ideal) of a superalgebra is a subalgebra (ideal) which is also a graded subspace
of the underlying vector space.

For every superalgebra, A0 is a subalgebra of A.

Definition 5. Let A and B be two superalgebras. The graded tensor product A⊗B is
defined by the multiplication

(a⊗ b)(a′ ⊗ b′) = (−1)βα′(aa′)⊗ (bb′)

∀a ∈ A, b ∈ Bβ, a′ ∈ A′α, b′ ∈ B; β, α′ ∈ Z2.
(I.20)

on the graded vector space A⊗B.

There is a unique linear map

s : A⊗B → B ⊗A (I.21)
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2. Superalgebras

such that
s(a⊗ b) = (−1)αβb⊗ a ∀a ∈ Aα, b ∈ Bβ; α, β ∈ Z2. (I.22)

Thus, the two tensor products A⊗B and B ⊗A are canonically isomorphic.

Definition 6. Let L = L0 ⊕L1 be a superalgebra and denote its multiplication by [ , }.
L is said to be a Lie superalgebra if

[a, b} = −(−1)αβ[b, a} (I.23)

(−1)γα[a, [b, c}}+ (−1)αβ[b, [c, a}}+ (−1)βγ [c, [a, b}} = 0 (I.24)

for all a ∈ Lα, b ∈ Lβ, c ∈ Lγ and α, β, γ ∈ Z2.

Equation (I.23) defines the super Lie product: For even as well as mixed a, b, it is
identical to the Lie product. When thinking of matrices, it is in these cases identical to
the commutator while for both a, b odd, it is the anti-commutator. The second of the
above equations, (I.24), can be read as a graded version of the Jacobi identity.
It can be easily seen that the odd part L1 of a Lie superalgebra is the carrier space

for a representation of the even part L0 which is itself a Lie algebra [52] in the usual
sense of representations which is called representation of L0 on L1. This fact allows for
for a simple way to construct Lie superalgebras: Choose a Lie algebra L0 and specify
a representation Γ of L0. Then, the direct sum A = L0 ⊕ Γ is a graded vector space
provided the elements of L0 are defined as even and the ones of Γ as odd. However, it is
difficult to construct a super Lie product consistent with the defining equations, (I.23)
and (I.24) [52].

Definition 7. A Lie superalgebra L is said to be simple if there is no graded ideal
different from {0} and L and if, moreover, [L,L} 6= 0.

Definition 8. A simple Lie superalgebra L is called classical if the representation of
the even part on the odd part is either irreducible or completely reducible.

Let us conclude this subsection with two remarks:

• The equations (I.23) and (I.24) indicate the difference to Lie algebras where the
multiplication is defined to be the commutator and to fulfill the normal Jacobi
identity. Nevertheless, most of the definitions are quite similar compared to the
ones for Lie algebras.

• All definitions can be generalized to more complex gradings like Z. In this case,
all direct sums run over all elements of the chosen gradings instead of just the
two elements of Z2.
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2.2 Examples: gl(n|m) and sl(2|1)

In the following, we discuss some basic aspects of the Lie superalgebras L = gl(n,m)
and L = sl(2|1) over the field of complex numbers.

2.2.1 The general Lie superalgebra gl(n|m)

For the general Lie superalgebra gl(n|m), the even elements (when thinking of matrices)
are of the form

M =
(
A 0
0 D

)
(I.25)

where A and D are n× n and m×m matrices. The odd elements look like

M =
(

0 B

C 0

)
(I.26)

where B and C are n×m and m×n matrices, respectively. There are no restrictions on
the block matrices A,B,C,D at all, similar to the elements of the general Lie algebra
gl(n).
All superalgebras which appear in this thesis are subsets of gl(n|m). Having con-

structed the general Lie superalgebra, we can now define a linear form analogously to
the trace for ordinary matrices:

Definition 9. Let V be a Z2 graded vector space and consider the linear map

γ : V → V, γ(x) = (−1)ξx (I.27)

if x ∈ Vξ and ξ ∈ Z2. Define a linear form on gl(n|m) by

str(A) = tr(γA). (I.28)

The linear form str is called supertrace.

2.2.2 The special linear Lie superalgebra sl(2|1)

For the special linear Lie superalgebra sl(2|1), the even elements are of the form

M =
(
A 0
0 D

)
(I.29)

where A is a 2× 2 matrix and D is a number fulfilling str(M) = tr(A)−D = 0. Thus,
there are two different kinds of matrices in the even part L0 = sl(2|1)0:
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2. Superalgebras

(i) Elements with tr(A) = 0 and D = 0. These elements form a Lie subalgebra
isomorphic to sl(2), therefore it is 3-dimensional. Note, there is no complement in
which the roles of A and D are interchanged since D is just a number.

(ii) Multiples of (
1/2E2 0

0 1

)
(I.30)

where En is the n×n unit matrix. Such elements form a one-dimensional Abelian
Lie algebra, thus isomorphic to gl(1).

Hence, L0 is the direct sum

sl(2|1)0 ∼= sl(2)⊕ gl(1) (I.31)

and has dimension dim(sl(2|1)0) = 3 + 1 = 4. The odd elements consist of

M =
(

0 B

C 0

)
(I.32)

where B and C are 2× 1 and 1× 2 matrices with no additional constraint. Therefore
the dimension of the odd part is given by dim(sl(2|1)1) = 4. In summary, we have
shown that sl(2|1) is a 4 + 4 = 8 dimensional Lie superalgebra.
Lie (super-)algebras alternatively can be characterized by specifying the (super-)

commutator-relations for their generators. Since sl(2|1)0 decomposes as eq. (I.31),
the even generators are given by the generators of sl(2) which we will denote as Qm,
m = 1, 2, 3 (‘isospin’) together with one additional gl(1) generator denoted by B (‘baryon
number’). The odd generators are designated by V± and W±. They are sl(2) − 1/2
spinors with baryon number +1/2 and −1/2. As usual, we can define creation and
annihilation operators for the isospin, Q± = Q1 ± iQ2. The commutation relations of
these generators are given by

[Q3, Q±} = ±Q±, [Q+, Q−} = 2Q3, [B,Q±} = [B,Q3} = 0

[Q3, V±} = ±1
2V±, [Q3,W±} = ±1

2W±, [Q±, V∓} = V±, [Q±,W∓} = W±

[Q±, V±} = 0, [Q±,W±} = 0, [B, V±} = 1
2V±, [B,W±} = −1

2W±

[V±, V±} = [V±, V∓} = [W±,W±} = [W±,W∓} = 0

[V±,W±} = ±Q±, [V±,W∓} = −Q3 ±B.

(I.33)

More detailed discussions about sl(2|1) can be found in [50–57].
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2.3 Cartan-Weyl and Chevalley basis

For the subsequent discussion of the representation theory as well as the construction
of quantum deformations, it is useful to consider different bases for Lie superalgebras.
To this extent, we define the Cartan subalgebra Hs of a classical simple complex Lie-
superalgebra L to be the largest Abelian subalgebra, i.e.

[h, h′} = 0 ∀h, h′ ∈ Hs. (I.34)

The dimension of the Cartan subalgebra is called the rank l of L = L0 ⊕ L1. As an
example, rank(sl(2|1)) = 2.

Consider now linear functionals on the Cartan subalgebra, α : Hs → C. α is called
root if there is at least one element aα ∈ L such that

[h, aα} = α(h)aα ∀h ∈ Hs. (I.35)

The root α is called even (odd), if aα ∈ L0 (aα ∈ L1). The set of all elements aα ∈ L
which fulfill (I.35) for a given root is called the root subspace Lα corresponding to the
root α.

The definition of roots allows for the construction of the Cartan-Weyl basis for an
n-dimensional Lie superalgebra L. Instead of characterizing a Lie superalgebra by
means of the super-commutation relations for its generators, the first l elements of the
Cartan-Weyl basis are given by the elements of the Cartan subalgebra Hs. The n− l
missing elements are associated with the elements aα corresponding to the non-zero
roots according to (I.35). Hence, the commutation relations for the generators within
this basis read

[h, h′} = 0, (I.36)

[h, aα} = α(h)aα, (I.37)

[aα, aβ} =


Nαβaα+β if α+ β is a root and α 6= −β,∑
h Ñ

h
αβh if α = −β,

0 if α+ β is not a root.

(I.38)

Here Nαβ and Ñh
αβ are some constants. The first two of these relations are obvious due

to the definitions, the third one follows immediately from the graded Jacobi identity,

[h, [aα, aβ}} = (α(h) + β(h))[aα, aβ} (I.39)

for h ∈ Hs with deg(h) = 0. Thus, by constructing the Cartan-Weyl basis we have
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2. Superalgebras

shown that a Lie superalgebra can be decomposed into the Cartan subalgebra and the
sum of the root subspaces,

L = Hs
⊕
α root

Lα. (I.40)

Similar to Lie algebras, roots are called positive or negative. To define this notion
properly, note that each simple classical Lie superalgebra L with Cartan subalgebra Hs
can be decomposed,

L = N+ ⊕Hs ⊕N− (I.41)

where [Hs, N±} ⊂ N± and dim(N+) = dim(N−). A root is said to be positive (negative)
if Lα ∩N+ 6= ∅ (Lα ∩N− 6= ∅).

To make further progress, we define a classical simple Lie superalgebra to be basic if
it possesses a non-degenerate bilinear supersymmetric consistent invariant form B( , ).
Using this bilinear form we can associate each root α to a unique element hα ∈ Hs by
demanding

B(h, hα) = α(h) ∀h ∈ Hs. (I.42)

In a similar way, a quadratic form for the roots themselves can be constructed,

〈α, β〉 = B(hα, hβ). (I.43)

A non-zero positive root of a basic classical simple Lie superalgebra is called simple if it
cannot be decomposed into a sum of two other positive roots. For the Lie superalgebras
investigated in this thesis, the number of positive roots matches the rank of the Lie
superalgebra.
Another important quantity is the Cartan matrix A of a basic classical simple Lie

superalgebra. Its matrix elements read

Ajk = 2〈αj , αk〉
〈αj , αj〉

, j = 1, 2, ..., l (I.44)

if 〈αj , αj〉 6= 04 for the simple roots αj . The matrix elements then read Ajj = 2 and
Ajk ∈ {0,−1,−2} for j 6= k.
Finally, we can construct the Chevalley basis. This basis serves as a starting point

for the subsequent construction of quantum deformations. In the Chevalley basis, a
basic classical simple Lie superalgebra is described in terms of rescaled elements of the
Cartan subalgebra (assuming 〈αj , αj〉 6= 05),

4Otherwise, one of the αj ’s in the denominator can be replaced by any of the roots αj′ such that
〈αj , αj′〉 6= 0. Then, the matrix elements can be quite different [52].

5Otherwise, one of the αj ’s in the denominator can be replaced by any of the roots αj′ like above.
Then the factor 2 in the numerator has to be dropped.
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Hj = 2
〈αj , αj〉

hαj , (I.45)

where hαj is the element in the Cartan subalgebra corresponding to the simple root αj
in the sense defined above, and the raising and lowering operators corresponding to the
simple roots,

ei = aαi (I.46)

fi = a−αi , (I.47)

where aα is the element used to define the root α (cf. (I.35)). The super Lie products
for the generators within this basis read

[Hi, Hj} = 0, [ei, fj} = δijHj ,

[Hi, ej} = Aijej , [Hi, fj} = −Aijfj ,
(I.48)

where A = (Aij) denote the elements of the Cartan matrix. The super Lie products for
the raising and lowering operators can be read off from those for the Cartan-Weyl basis.
Up to now, our basis consists of 3l with l = rank(L) elements. The remaining degrees
of freedom are fixed by the repeated commutation of the generators ei, fi [58] by means
of the Serre relations,

ad(ei)1−Ãij (ej) = 0,

ad(fi)1−Ãij (fj) = 0
(I.49)

where the matrix Ãij can be constructed from the Cartan matrix by replacing the
non-vanishing positive elements in the row with aii = 0 by −1 [59]. The adjoint operator
ad(ei) is defined by

ad(ei)(a) = [ei, a} ∀ a ∈ L. (I.50)

The adjoint operators form an irreducible representation of each Lie superalgebra which
will be discussed in the next subsection.

2.4 Representation theory

The superspin chains and vertex models discussed in the second part of this thesis are
built using representations of several Lie superalgebras as carrier space for the models’
local Hilbert spaces. Since for Lie superalgebras, the representation theory is more
involved than for Lie algebras, we present in this subsection the main concepts and
results of the representation theory for Lie superalgebras followed by a discussion of
some irreducible representations of sl(2|1) and their properties. The definitions and
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2. Superalgebras

theorems presented here can be found with detailed commentaries in [50, 52].

2.4.1 Definitions

The basic definitions read almost identically compared to the representation theory for
Lie algebras except for the notion of grading.

Definition 10. A graded representation of a Lie superalgebra L = L0 ⊕ L1 is a map

Γ : L → gl(d0|d1) (I.51)

with finite d0, d1 such that

(i) ∀ a, b ∈ L and α, β ∈ C: Γ(αa+ βb) = αΓ(a) + βΓ(b),

(ii) ∀ a, b ∈ L: Γ([a, b}) = [Γ(a),Γ(b)}

(iii) Γ preserves the degree of the elements, that is,

(a) if a ∈ L0:

Γ(a) =
(

Γ00(a) 0
0 Γ11(a)

)
, (I.52)

where Γ00(a) and Γ11(a) are d0 × d0 and d1 × d1-matrices, respectively;

(b) if a ∈ L1:

Γ(1) =
(

0 Γ01(a)
Γ10(a) 0

)
, (I.53)

where Γ01(a) and Γ10(a) are d0 × d1 and d1 × d0-matrices.

The representation Γ is said to be d0 + d1-dimensional.

The super Lie product for the elements of a representation is given by

[Γ(a),Γ(b)} = Γ(a)Γ(b)− (−1)deg(a) deg(b)Γ(b)Γ(a) (I.54)

if a and b are homogeneous elements of L. Thus, in accordance to the remark above,
it is identical to the commutator for even and mixed elements whereas it is the anti-
commutator for odd elements.

Each representation provides us with a carrier space which we will use in the second
part of this thesis in order to construct superspin chains. The carrier space can be
seen as the graded vector space the representation can act on. For the construction,
given a d0 + d1-dimensional representation Γ, let the carrier space V c be a d0 + d1

dimensional graded vector space6 V c = V c
0 ⊕ V c

1 . We demand the even (odd) part
6Sometimes, the carrier space is additionally demanded to have an inner product. For our purpose in
this section, this is not necessary.
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to be d0 (d1)-dimensional. Consider now the bases ψj (j = 1, ..., d0) of V c
0 and ψj

(j = d0 + 1, ..., d0 + d1) of V c
1 . The action of each element a ∈ L in the representation Γ

on the basis ψj is mediated by a linear operator Φ(a) via

Φ(a)ψj =
d0+d1∑
k=1

Γ(a)kjψk. (I.55)

Thus, the set of operators Φ(a) itself form a Lie superalgebra isomorphic to L.
Two representations Γ and Γ′ are said to be equivalent if there is a matrix S with

S =
(
S0 0
0 S1

)
(I.56)

where S0 and S1 are d0×d0 and d1×d1-dimensional non-singular submatrices such that

Γ′(a) = S−1Γ(a)S ∀ a ∈ L. (I.57)

Definition 11. A reducible graded representation of a Lie superalgebra L is a graded
representation of L for which the carrier space V c possesses a proper invariant subspace
V c′ under the action of {Φ(a), a ∈ L}.
An irreducible graded representation of L is a graded representation which is not

reducible.
A completely reducible graded representation of L is a graded representation for which

the carrier space V c can be decomposed into a direct sum of graded subspaces which
are all invariant under the action of {Φ(a), a ∈ L} and none of which possess a proper
invariant subspace.

An example of an irreducible graded representation is the adjoint representation: Let
L = L0⊕L1 be a Lie superalgebra whose even and odd parts are d0 and d1-dimensional,
respectively, and let a1, ..., ad0+d1 be a basis consisting of homogeneous elements. To
each a ∈ L we can assign a (d0 + d1)× (d0 + d1) matrix ad(a) via

[a, aj} =
d0+d1∑
k=1
{ad(a)}kjak. (I.58)

The set of matrices {ad(a), a ∈ L} forms an irreducible graded representation which is
called the adjoint representation of L.

Now, we introduce the concepts of weights. This will help us to point out one major
difference to the representation theory of Lie algebras. To this purpose, let us remark
that for any given graded representation Γ of a basic classical simple Lie superalgebra,
a similarity transformation can be applied to diagonalize all representation matrices
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2. Superalgebras

of the Cartan subalgebra, Γ(h), simultaneously. Therefore, we can assume that this
transformation has already been carried out. It follows that there is a basis of the
carrier space consisting of eigenvectors ψ(λ) with

Φ(h)ψ(λ) = λ(h)ψ(λ) ∀ h ∈ Hs. (I.59)

Here, λ is a linear functional defined on the Cartan subalgebra and yields the eigenvalues
of the operators Φ(h), h ∈ Hs. The functional λ(h) is referred to as weight. The
dimension of the subspace spanned by ψ(λ) for a fixed weight, m(λ), is called multiplicity.
If m(λ) = 1, the weight is said to be simple.
If λ is a weight of a given graded representation and α any root then λ+ α is also

a weight of the same representation if α satisfies Φ(aα)ψ(λ) 6= 0 (for aα see (I.35)). If
instead Λ is a weight such that Φ(aα)ψ(λ) = 0 for every positive root α, then Λ is called
highest weight of the representation.

Definition 12. A typical graded irreducible representation (‘ìrrep’) Γ with highest weight
Λ of a basic classical simple Lie superalgebra L is an irreducible graded representation
such that any reducible graded representation Γ′ of L with the same highest weight can
be written as the direct sum of Γ and some other graded representations. Otherwise, it
is called atypical.

Hence, if there exists an atypical graded irreducible representation with highest weight
Λ, there is also at least one graded reducible representation with the same highest weight
which is not completely reducible, in contrast to the situation for Lie algebras.

Theorem 1. Let Γ be a graded irreducible representation of a basic classical simple Lie
superalgebra, and let Λ be the highest weight of Γ. Γ is atypical if and only if

〈Λ + ρ, α〉 = 0 (I.60)

for some positive root α such that 2α it not a root and

ρ = 1
2
∑
β∈∆+

0

β − 1
2
∑
β∈∆−0

β (I.61)

where ∆+
0 (∆−0 ) is the set of positive even (odd) roots.

Finally, Casimir operators can be defined in the same way as for Lie algebras.

Definition 13. Let Xj be a set of generators of a simple Lie superalgebra L in a matrix
representation. We can write their commutation relation in the following way,

[Xi, Xj} =
∑
k

CkijXk (I.62)
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with some structure constants Ckij. Let us also define a metric by

gij = str(XiXj). (I.63)

Then the operators constructed by

Kn = gs1...snX
s1 ...Xsn (I.64)

with
gs1...sn = str(Xs1 ...Xs1) and Xs = gsjXj (I.65)

are Casimir operators [53], that is, they commute with all the generators.

2.4.2 Example: sl(2|1)

The irreducible representations of sl(2|1) can be constructed by studying how the
generators act on the elements of the carrier space. This procedure yields a labeling of
the irreducible representations in terms of the eigenvalue of the isospin j = 0, 1/2, 1, ...
and baryon number b ∈ C as well as the states included in the representation under
consideration [53]. It can be shown that all (b, j)-irreps of sl(2|1) can be decomposed
into irreps of su(2) with spin j for which the baryon number operator B takes the value
b. Such an su(2)-irrep will be denoted by ρbj .

Details for the construction of the irreps can be found in [53–55]. Let us briefly discuss
the most relevant irreducible representations in the context of this work.

(a) j = 0: For any value of b, this is the trivial one-dimensional representation.

(b) b = j: This irrep is 4j + 1-dimensional and atypical. Its decomposition reads

(j, j) = ρjj ⊕ ρ
j+1/2
j−1/2. (I.66)

In the special case j = 1/2, this representation is the fundamental representation
of sl(2|1) and will be denoted by 3 ≡ (1/2, 1/2).

(c) b = −j: Like the previous irrep, (−j, j) is 4j + 1-dimensional and also atypical
with decomposition

(−j, j) = ρ−jj ⊕ ρ
−j−1/2
j−1/2 . (I.67)

These representations are duals of the (j, j)-representations. In the special case
j = 1/2, this representation will thus be denoted by 3̄ ≡ (−1/2, 1/2).

(d) In the general case b 6= ±j and j > 0, this irrep is 8j-dimensional. Its decomposi-
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tion reads
(b, j) = ρbj ⊕ ρ

b+1/2
j−1/2 ⊕ ρ

b−1/2
j−1/2 ⊕ ρ

b
j−1. (I.68)

These irreps are the typical ones since typicality requires b 6= j [20].

The two independent Casimir operators, K1 and K2, can be constructed by the intro-
duction of new generators

U1 = V+, U2 = V−, U3 = W+, U4 = W−, (I.69)

see (I.33). The Casimirs read

K1 = Q2 −B2 + 1
2UC4U

K2 = BK1 + 1
2BUC4U + 1

6UQε4τ4C4U + 1
12Uε4τ4C4UQ,

(I.70)

using the notation

C4 =
(

0 C

C 0

)
, C =

(
0 1
−1 0

)
, ε4 =

(
E2 0
0 E2

)
, (τ4)m =

(
σm 0
0 σm

)
, (I.71)

where σm are the usual Pauli-matrices and E2 the 2× 2 unit matrix. For typical irreps,
the eigenvalues of the Casimirs read

K1 = j2 − b2, K2 = b(j2 − b2), (I.72)

while for the atypical ones (i.e. b = ±j) both Casimirs are zero. In particular they are
degenerate, thus they cannot be used to specify the irrep in contrast to the situation
for Lie algebras.

We will use the carrier space of the representations 3 and 3̄ in part 2 of this thesis as
local Hilbert space of a superspin chain. Thus, it is useful to consider the decomposition
of the tensor product (3⊗ 3̄)L with the system size L. For L = 1, 2, it reads [20]

3⊗ 3̄ = (0, 0)⊕ (0, 1)

(3⊗ 3̄)2 = (0, 0)⊕ 4(0, 1)⊕ (0, 2)⊕
(1

2 ,
3
2

)
⊕
(
−1

2 ,
3
2

)
⊕
(

0,−1
2 ,

1
2 , 0

)
.

(I.73)

The representation (0,−1/2, 1/2, 0) is atypical and reducible, but not decomposable. It
can be written as a semi-direct sum [54, 60],(

0,−1
2 ,

1
2 , 0

)
= (0, 0)⊕s

(1
2 ,

1
2

)
⊕s
(
−1

2 ,
1
2

)
⊕s (0, 0). (I.74)

The notion of the semi-direct sum in this representation is depicted graphically by
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means of a quiver diagram [61] in fig. 2. This representation and its generalization are
discussed in [20]. A more detailed discussion of the representation theory of sl(2|1) can
be found in [62].

(1/2, 1/2)(−1/2, 1/2)

0

0

Figure 2: Quiver diagram for the indecomposable representation (0,−1/2, 1/2, 0) of sl(2|1).
This picture indicates the notion of the semi-direct sum: The indecomposable contains a trivial
representation 0 at the bottom which is an invariant subspace of the indecomposable. Next,
there are two three-dimensional submodules which are again invariant subspaces modulo the
trivial representation, and finally, on top there is a second one-dimensional trivial representation
which is an invariant subspace modulo all the others [20].

2.5 Quantum deformations

In this subsection, we briefly introduce the notion of quantum deformations of Lie
(super-) algebras. Originally, those structures arose in the Quantum Inverse Scattering
Method when investigating several properties of the Yang-Baxter equation [63, 64]. One
famous example where quantum deformations of Lie algebras play a crucial role is the
Heisenberg XXZ spin chain [65] which has a Uq[su(2)]-symmetry. Here, the deformation
parameter is directly related to the anisotropy in the interaction.
Intuitively, the terminus quantum can be understood as deforming something com-

mutative (like observables in classical physics) into something non-commutative (like
observables in quantum mechanics). In our context, the object being deformed can be
thought of as the algebra of functions that map the Lie superalgebra L under consid-
eration onto the underlying field. This object is commutative by definition. For more
details see e.g. [59, 66].

2.5.1 Construction

There are several ways to construct quantum deformations of Lie superalgebras including
the following three,

(i) deformation of the super-commutation relations [59, 66],

(ii) solution of the Yang-Baxter equation [67],

(iii) direct construction of the Hopf algebra structure [66].
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2. Superalgebras

Here, we utilize the first method. To this extent, we use the Chevalley basis (I.48)
together with the Serre relations (I.49) of a Lie superalgebra L. The corresponding
quantum deformation Uq[L] has an analogous set of operators denoted by Hi, Xi, Yi

where the commutation relations are slightly changed,

[Hi, Hj} = 0, [Xi, Yj} = δij
sin(γHi)

sin(γ) ,

[Hi, Xj} = aijXj , [Hi, Yj} = −aijYj ,
(I.75)

where aij denote the elements of the Cartan matrix. Also the Serre relations get
deformed,

adq(Xi)1−ãij (Xj) = 0, adq(Yi)1−ãij (Yj) = 0, (I.76)

with q = exp(iγ) parametrizing the deformation. The q-deformed adjoint operator is
defined by a deformed supercommutator,

adq(X)(Y ) ≡ [X,Y }q ≡ XY − q (−1)deg(X) deg(Y )Y X (I.77)

The equations (I.75) and (I.76) define the quantum deformed Lie superalgebra Uq[L] [59].
Obviously, the limit q → 1 yields the original superalgebra L. Note, this mathematical
object is neither a Lie (super-) algebra nor a group - despite its name, quantum group -
but rather a Hopf algebra. A detailed discussion about Hopf algebras can be found in
[66].

2.5.2 Example: Uq(sl(2|1))

As an example, we consider the quantum deformation of sl(2|1). We work with the
following Cartan matrix [59, 68]7,

A =
(

0 1
1 −2

)
. (I.78)

For convenience we rewrite the elements of the Cartan subalgebra,

k2
i ≡ qHi . (I.79)

The commutation relation then read

kikj = kjki, kiXj = qaijXjki (I.80)

7Since the Cartan matrix is not unique, we could have equivalently worked with another choice. The
results are identical up to an appropriate transformation.
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kiYj = q−aijYjki, [Xi, Yj} = δij
k2
i − k

−2
i

q − q−1 . (I.81)

Together with the deformed Serre relations, this defines the quantum deformed Lie
superalgebra Uq[sl(2|1)].
Let us briefly mention the impact of quantum deformations on the representation

theory [21]. In general, quantum deformations lead to a break of degeneracies present
in some sl(2|1)− (b, j)-multipletts. For example, the octet (0, 1) splits into two doublets
with b = 0 and s3 = ±1 (s3 being the eigenvalue of the generator Q3) and s3 = 0
together with quartets b = ±1/2 and s3 = ±1/2. The states included in such a subset
will be denoted by |b, s3〉. Thus, the octet decomposes in the following way,

(0, 1)→{|0, 1〉 , |0,−1〉} ∪ {|0, 0〉 , |0, 0〉}∪{
|12 ,

1
2〉 , |

1
2 ,−

1
2〉
}
∪
{
|−1

2 ,
1
2〉 , |−

1
2 ,−

1
2〉
}
.

(I.82)

2.6 Graded Quantum Inverse Scattering Method

Having defined the basic tools how to handle physical models where the local degrees
of freedom are carried by a representation of a Lie superalgebra, we briefly mention
its influence on the QISM. The tools developed in section 1 still hold if all tensor
products are replaced by super tensor products since the underlying vector spaces are
now graded vector spaces. In the same way, the permutation operator turns into a
graded permutation operator and the transfer matrix is defined as the super trace over
the auxiliary space of the monodromy matrix [39, 49]. A detailed discussion of the
graded QISM applied to the supersymmetric t− J-model can be found in [49].
Although the QISM with the described modifications can be applied to models

based on representations of Lie superalgebras, the subsequent solution by means of
the Algebraic Bethe Ansatz involves some subtleties. For example, the Hamiltonian
generated by an expansion of the transfer matrix, eq. (I.7), is no longer inevitably a
hermitian operator8. Hence, some of the ‘energies’ may have a non-vanishing imaginary
part. Up to now, the role of the corresponding complex ‘energies’ is still unknown.
Therefore, in this work, we focus on the study of purely real energies in the low-energy
spectrum and the corresponding low-energy effective field theory in the thermodynamic
limit if the Hamiltonian is not hermitian.

8This is related to the existence of unitary representations of the investigated model. For example,
the Hamiltonian of the t− J-model at the supersymmetric point is still hermitian since it can be
recast by means of operators acting on the carrier space of the unitary fundamental representation
of u(1|2) [49].
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3 Conformal Field Theory
Conformal transformations appeared in theoretical physics already in the early 20th
century, i.e. the Weyl transformation of the metric tensor [69] is exactly what is called
a conformal transformation nowadays. Later on, in 1970 Polyakov pointed out how
Conformal Field Theories (CFTs) can be applied in the context of statistical mechanics
to study critical phenomena [70]. The growing interest during the last decades on CFTs
can be traced back to two influential papers by Belavin, Polyakov and Zamolodchikov
in 1984 [71, 72] where its relevance for string theory became apparent. More historical
information can be found in [73].

To motivate the investigation of CFTs in the context of statistical mechanics we will
begin this section by briefly reviewing critical phenomena in 3.1 followed by a short
introduction into conformally invariant field theories in 3.2. Note, this subsection is
not intended to provide the reader a complete discussion of the broad field of CFTs.
A detailed study of CFTs can be found in [58] and [74]. Here, we will focus on its
precise definition and its most important implications for the purpose of this thesis.
Subsequently we will discuss how conformal symmetry characterizes the finite size scaling
of lattice realizations of CFTs in 3.3. Since the critical properties of the spin chains
which are studied in part II of this thesis are believed to be described in some specific
‘massless regions’ by two-dimensional Conformal Field Theories [19–22] the discussed
results will be used intensively throughout this work. We will close the study of CFTs
by discussing two minimal supersymmetric extensions of Conformal Field Theories in
3.4.

3.1 Critical phenomena

This subsection provides for a short motivation for the study of CFTs. A more detailed
but still brief introduction into critical phenomena in the context of CFTs (which is the
basis of this subsection) can be found in [74].
For the sake of simplicity, we study critical phenomena using the classical two-

dimensional Ising model,

H = −J
∑
〈i,j〉

σiσj −B
∑
i

σi, (I.83)

defined by N classical spin variables σi = ±1 sitting at the sites of some lattice being
exposed to an external magnetic field B. We focus on ferromagnetic interactions, J > 0.
The summation 〈i, j〉 indicates that only nearest neighbour interactions are taken into
account.

The variation of the temperature T and the external field B allows for an investigation



of the phase diagram which is schematically depicted in fig. 3. For low temperatures

B

T
Tc

↑↑↑

↓↓↓

Figure 3: Phase diagram of the classical Ising model, eq. (I.83), taken from [74]. Note, to
be more precise, although the model is defined on a finite lattice with N sites, continuous
transitions between the phases are only present in the thermodynamic limit, N →∞.

and non-zero magnetic field, two ordered ferromagnetic phases emerge: the majority
of the spins tend to the same direction defined by the external field, thus the system
shows a finite magnetization per size,

M = 〈σi〉 = − 1
N

∂F

∂B
6= 0, (I.84)

with the free energy F . When crossing the line B = 0, M (as a first partial derivative of
the free energy) remains finite and therefore shows a jump discontinuity. By definition,
the system traverses a first order phase transition. In general, a phase transition is
of n-th order if one of the n-th partial derivatives of the free energy is a non-analytic
function at the phase transition. At high temperatures thermal fluctuations become
apparent and lead to one single disordered phase such that the magnetization vanishes
when B = 0.

The three described phases merge at the critical point at T = Tc, B = 0 such that
the two ordered phases are physically indistinguishable. When crossing criticality the
system shows a second-order phase transition. In order to study the critical point, we
define the two-point spin-correlation function for two spins at sites i and j,

G(i, j) = 〈σiσj〉 − 〈σi〉 〈σj〉 ∝ |i− j|−τe−|i−j|/ξ (I.85)

for T 6= Tc, B = 0 with the correlation length ξ = ξ(T,B) and an exponent τ which
depends on the sign of the reduced temperature t = (T − Tc)/Tc. The modulus |i− j|
denotes the distance of the sites i and j on the lattice. The correlation length describes
the average size of ordered clusters in which the spins tend to point in the same direction.
At a second order phase transition (i.e. at the critical point of the Ising model discussed
here) ξ diverges, thus correlations are present on all length scales. In contrast, the
correlation length remains finite for first order phase transitions. In the vicinity of a
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3. Conformal Field Theory

second order phase transition the behaviour of quantities like the magnetization or the
specific heat are completely described by the critical exponents, i.e.

M ∝ (−t)β, t < 0, B = 0 (I.86)

with β the critical exponent for the magnetization M . The critical exponents are
independent of microscopic details of the model like the chosen lattice or the ratio of the
couplings if we had added next nearest neighbour ferromagnetic interactions. Therefore,
the critical exponents are referred to as being universal.

To figure out the possible corresponding universality classes, we note that a diverging
correlation length leads to scale invariance. In [75] it was argued that quantum field
theories with scale invariance also are conformally invariant - otherwise such systems are
not compatible with some axioms of quantum field theory. Conformal transformations
are angle-preserving transformations of the space-time. In particular, they contain scale
transformations. Hence, studying Conformal Field Theories is of great interest when
investigating critical points as the possible values of the critical exponents (or, their
universality classes) unfold as scaling dimensions of certain fields, see e.g. [74].

3.2 Conformal invariance

A quantum field theory in d dimensions which is invariant under conformal transforma-
tions is called Conformal Field Theory. As discussed above those field theories are of
exceptional relevance in describing critical points by means of their scaling dimensions.
Mathematically conformal transformations are those that preserve angles, thus leaving
the metric tensor of the space-time invariant up to a local scaling factor Λ(x),

gµν(x)→ g′µν(x′) = Λ(x)gµν(x). (I.87)

In 3.2.1, we will investigate the allowed conformal transformations. Subsequently we
will discuss the implications of conformal invariance for quantum field theories in 3.2.2.
Finally we will study the Hilbert-space structure of CFTs by investigating the Virasoro
algebra and its representations in 3.2.3.

3.2.1 Conformal transformations

The definition (I.87) yields the allowed conformal transformations [58],

translations: x′µ = xµ + aµ, (I.88)

dilations: x′µ = αxµ, (I.89)

rigid rotations: x′µ = Mµ
ν x

ν , (I.90)
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special conformal transformations: x′µ = xµ − bµx2

1− 2b · x + b2x2 . (I.91)

with aµ, α,Mµ
ν , b

µ ∈ R and M−1 = MT . These transformations form the conformal
group. In particular (with Λ(x) = 1), it contains the Poincaré-group as a subgroup. It
can be shown that the conformal group in d dimensions is isomorphic to SO(d+ 1, 1).
Note, the special conformal transformation is equivalent to a translation with a preceding
and following inversion.
The case d = 2 is rather special. We will parametrize the two-dimensional plane

by coordinates z = (z0, z1) and consider a transformation zµ → wµ(z0, z1). It is easy
to show that (I.87) is equivalent to the Cauchy-Riemann equations for holomorphic
functions,

∂w0

∂z1 = ∂w1

∂z0 and ∂w0

∂z0 = −∂w
1

∂z1 , (I.92)

or to those for antiholomorhpic functions,

∂w0

∂z1 = −∂w
1

∂z0 and ∂w0

∂z0 = ∂w1

∂z1 . (I.93)

Thus, every holomorphic function defines a conformal transformation on the plane. This
motivates the usage of complex coordinates,

z = z0 + iz1, z0 = z + z̄

2 , (I.94)

z̄ = z0 − iz1, z1 = z − z̄
2i , (I.95)

∂z = 1
2(∂0 − i∂1), ∂0 = ∂z + ∂z̄, (I.96)

∂z̄ = 1
2(∂0 + i∂1), ∂1 = i(∂z − ∂z̄). (I.97)

Note, formally z and z̄ are independent components. For explicit calculations z̄ obviously
has to be the complex conjugate of z.

Since the holomorphicity of a function is a local property, the transformations obeying
(I.92) (or, (I.93)) are called local conformal transformations. There is no need for
these functions to be defined on the entire complex plane. For the construction of the
algebra corresponding to local conformal transformations we consider the impact of an
infinitesimal local conformal transformation on a spinless and dimensionless field φ(z, z̄).
We write

z → z′ = z + ε(z) (I.98)

with the Laurent expansion in the vicinity of z = 0,
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3. Conformal Field Theory

ε(z) =
∞∑

n=−∞
cnz

n+1. (I.99)

Since the field φ is spin- and dimensionless, it transforms as9

φ(z, z̄) = φ′(z′, z̄′) (I.100)

leading to an infinitesimal change δφ of the field,

δφ ≡ φ′(z, z̄)− φ(z, z̄) (I.101)

= −ε(z)∂zφ(z, z̄)− ε̄(z̄)∂z̄φ(z, z̄) (I.102)

≡
∑
n

{cnln + c̄n l̄n}φ(z, z̄). (I.103)

In the last line we introduced the generators of local conformal transformations,

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄. (I.104)

The holomorphic and antiholomorphic generators form the Witt algebra,

[ln, lm] = (n−m)ln+m, [l̄n, l̄m] = (n−m)l̄n+m, [ln, l̄m] = 0. (I.105)

The Witt algebra contains a finite-dimensional subalgebra {l−1, l0, l1} which together
with its antiholomorphic counterpart is said to generate global conformal transformations
as the corresponding finite transformations are well-defined on the compactified complex
plane, the Riemann sphere. The global conformal transformations on the Riemann
sphere, sometimes also referred to as projective conformal transformations, are equivalent
to the Möbius-transformations, hence, the group of global conformal transformations
is equivalent to SL(2,C). Geometrically, l−1 generates translations, l0 generates scale
transformations and l1 special conformal transformations. Dilations and rotations are
generated by the linear combinations l0 + l̄0 and i(l0 − l̄0), respectively. The Cartan
subalgebra of the Witt algebra is spanned by {l0, l̄0}. As we will discuss below, physical
fields will be eigenstates of this subalgebra. The corresponding eigenvalues ∆ and ∆̄ will
be referred to as conformal weights since they determine how certain fields transform
under conformal transformations. Due to l0 + l̄0 and i(l0 − l̄0) generating dilations and
rotations, their eigenvalues are consequently called scaling dimension X = ∆ + ∆̄ and
conformal spin s = ∆− ∆̄.

9This is a special case of the general scheme how fields transform under conformal transformations
which will be discussed in 3.2.2.
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3.2.2 Fields and their correlation functions

In the following, we focus on two dimensional Conformal Field Theories. To define
how fields10 transform when applying a conformal transformation, we call a field φ(z, z̄)
with conformal weights ∆, ∆̄ quasi primary if it transforms under any global conformal
transformation z → wp(z) according to

φ(z, z̄)→
(
∂wp
∂z

)∆ (∂w̄p
∂z̄

)∆̄
φ(wp(z), w̄p(z̄)). (I.106)

If the field φ(z, z̄) transforms in the same way under any local conformal transformation
it is referred to as primary field. Obviously, every primary field is also a quasi primary
while the opposite is not true. All fields which are not primary are sometimes referred
to as secondary fields. In 3.2.3 we will show that all properties of any secondary field
can be completely determined by the knowledge of all primary fields.

In discussing the properties of the critical Ising-model, we have seen that the two-point
spin-correlation function plays a crucial role. In general, critical models are described
by CFTs which motivates a study of correlation functions within the framework of
conformal invariance. Using the path-integral formalism, the two-point function of the
quasi-primary fields φ1 and φ2 is defined by

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 = 1
Z

∫
[dΦ]φ1(z1, z̄1)φ2(z2, z̄2) exp(−S[Φ]) (I.107)

where S[Φ] denotes the conformally invariant action and Z the partition function

Z =
∫

[dΦ] exp(−S[Φ]) (I.108)

of the model. In both integrals we integrate over all independent fields in the theory.
n-point functions can be defined analogously as the correlation function of n quasi
primary fields.

From eq. (I.106) it can be deduced how n-point functions transform under a projective
conformal transformation zi → wp(zi),

〈φ1(z1, z̄1)...φ2(zn, z̄n)〉 =
(
∂wp
∂z1

)∆1 (∂w̄p
∂z̄1

)∆̄1

...

(
∂wp
∂zn

)∆n
(
∂w̄p
∂z̄n

)∆̄n

· 〈φ1(wp(z1), w̄p(z̄1))...φ2(wp(zn), w̄p(z̄n))〉 .
(I.109)

Using suitable projective conformal transformations, eq. (I.109) determines the form
of two- and three-point functions and also yields some constraints on the four-point

10Although we will speak a lot about ‘fields’ we will not specify their image set. Instead we will focus
on the discussion of their dependencies on two complex numbers z and z̄.
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3. Conformal Field Theory

functions. This procedure leads to

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =


C12

z−2∆
12 z̄−2∆̄

12
, if ∆1 = ∆2 ≡ ∆

0, otherwise
(I.110)

for the two-point and

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉 = C123z
−(∆1+∆2−∆3)
12 z

−(∆2+∆3−∆1)
23 z

−(∆1+∆3−∆2)
13

· z̄−(∆̄1+∆̄2−∆̄3)
12 z̄

−(∆̄2+∆̄3−∆̄1)
23 z̄

−(∆̄1+∆̄3−∆̄2)
13

(I.111)

for the three-point function. We used the notation zij = |zi − zj |. Note, while the
coefficient C12 in the two-point function is an arbitrary normalization factor, the factor
C123 in the three-point function is not arbitrary. It is rather determined by the crossing
symmetry of the four-point function. This approach is utilized in the conformal bootstrap
program [58].
We close this subsection by briefly summarizing what a Conformal Field Theory

actually is: A CFT is completely determined by the correlation functions of a set of
fields (or, equivalently, operators) {A(z, z̄)} over the complex plane with the following
properties [74],

1. If φ ∈ {A(z, z̄)} then all its derivatives are also in {A(z, z̄)}.

2. There is a subset of fields which transforms under projective conformal transfor-
mations like eq. (I.106). These fields are called quasi primary.

3. Every field in {A(z, z̄)} can be decomposed as linear combination of the quasi-
primary fields and their derivatives.

4. There is a vacuum field invariant under projective conformal transformations11.

5. There is a subset of the quasi primary fields which transform under any local
conformal transformation like eq. (I.106). These fields are called primary.

Note, a CFT can actually be completely determined by much less information. We will
remark on this in the following subsection.

3.2.3 The Virasoro algebra and its representations

Up to this point, we discussed mathematically the implications of conformal transfor-
mations. In this subsection, we enrich these results with physical input. Thus, we
11For more details see 3.2.3.
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construct the generators of conformal transformations acting on the space of physical
fields. Thereby we gain insights into the Hilbert space structure of Conformal Field
Theories.

We defined primary fields to transform according to (I.106) under any local conformal
transformation. However, by Liouville’s theorem, these transformations cannot be
bounded in the entire complex plane unless they are constant. Hence, if we demand
the infinitesimal conformal transformation x→ x′ = x + ε(x) to be analytic inside a
region D1, ε is a priori non-analytic in the external of D1 which will be denoted by D2.
Therefore, it drives the system away from criticality [74] by modifying the Hamiltonian

H → H − 1
2π

∫
D2

d2x∂µενTµν(x). (I.112)

The tensor Tµν is called energy momentum tensor12 and describes the first-order coupling
of the small perturbation ε and the Hamiltonian. By demanding conformal invariance
of T it can be shown that it is symmetric and traceless allowing us to use again complex
coordinates,

T (z) = T11 − T22 − 2iT12, T̄ (z̄) = T11 − T22 + 2iT12. (I.113)

Before we proceed, we briefly mention some properties of the energy momentum tensor.
When inserting T in a n-point function it acts like

〈T (z)φ1(z1, z̄1)...φn(zn, z̄n)〉

=
∑
i

( ∆i

(z − zi)2 + 1
z − zi

∂zi

)
〈φ1(z1, z̄1)...φn(zn, z̄n)〉 .

(I.114)

Eq. (I.114) is often referred to as conformal Ward identity. It determines the scaling
dimension X(T ) = X(T̄ ) = 2 and conformal spin s(T ) = −s(T̄ ) = 2 of the energy
momentum tensor. The correlation function of T with itself is given by

〈T (z1)T (z2)〉 = c/2
(z1 − z2)4 . (I.115)

The normalization factor c is called central charge and will play a crucial role in the
following.

As we already argued T determines how the Hamiltonian changes when applying local
conformal transformations. Hence its Laurent coefficients can be seen as generators
of conformal transformation acting on physical fields (see below). This motivates the

12Alternatively it can be seen as the Noether-current corresponding to infinitesimal coordinate transfor-
mations.
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definitions

Ln = 1
2πi

∮
dz zn+1T (z), T (z) =

∑
n∈Z

z−n−2Ln, (I.116)

L̄n = 1
2πi

∮
dz̄ z̄n+1T̄ (z̄), T̄ (z̄) =

∑
n∈Z

z̄−n−2L̄n. (I.117)

By inverting these relations and applying Cauchy’s integral theorems repeatedly the
commutators of the Ln’s can be calculated,

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m,0,

[L̄n, L̄m] = (n−m)L̄n+m + c

12n(n2 − 1)δn+m,0,

[Ln, L̄m] = 0.

(I.118)

These equations define the Virasoro algebra. It differs from the Witt algebra only by
the central term proportional to c which occurs for n+m = 0. Before we discuss its
representations, we give some remarks regarding this definition.

• c is sometimes referred to as anomaly since it describes the anomalies in statistical
systems at criticality due to fluctuations on all length scales. Thus, c is of great
interest when describing critical points in terms of Conformal Field Theories.

• c disappears for n = 0,±1 thereby recovering the generators l0, l±1. The Cartan
subalgebra of the Virasoro algebra is spanned by {c, L0, L̄0}.

• As justified above, the generators Ln generate conformal transformations on the
Hilbert space corresponding to physical fields - see below - while ln generate con-
formal transformations in the space of functions. This observation is in accordance
with quantum field theory, i.e. it is demanded that symmetry transformations act
on states by means of projective representations which are equivalent to repre-
sentations of the central extension of the symmetry algebra [76]. In the case of
conformal transformation, the central extension of the symmetry algebra (Witt
algebra, (I.105)) is the Virasoro algebra.

In the remaining part of this subsection we will focus on the representation theory of
the Virasoro algebra which allows for a construction of the Hilbert space corresponding
to CFTs. The starting points in constructing representations of the Virasoro algebra
are primary fields. Algebraically they may be defined as a field φ with conformal weight
∆ that satisfies

Lnφ = 0 if n > 1

L0φ = ∆φ
(I.119)
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where we omitted the explicit dependence of the field φ on the coordinates. The
conformal weight of the primary defines the highest weight of a representation. All
other states which belong to this representation can be constructed by means of the
operators L−n with n > 0,

φ(−nk,...,−n1) = L−nk ...L−n1φ. (I.120)

These states are called descendants of the primary φ. Their conformal weight can easily
be calculated using the commutator relations (I.118),

L0φ
(−nk,...,−n1) = L0L−nk ...L−n1φ = (∆ + n1 + ...+ nk)φ(−nk,...,−n1) (I.121)

Hence, the operators L−n with n > 0 act as ladder operators. The integer n = n1+...+nk
is called level of the descendant. A representation built of a primary and all its
descendants is called Verma module13. The primary φ is the only state in the Verma
module with conformal weight ∆, the descendant L−1φ is the only one with weight
∆ + 1. As an example, it can be shown that the energy momentum tensor is a level-2
descendant of the identity operator 1,

T (z) = L−21 (I.122)

which justifies X(T ) = 2.
We now argue that the operator L0 should be bounded from below. Assume L0 were

not bounded. Hence, there is a primary field with conformal weight ∆ = −∞. By means
of (I.110) it follows that its correlation function with itself would be infinite everywhere
which is not physical. Thus, in a physically reasonable theory it is legitimate to assume
that L0 is bounded from below. Moreover, since L0 + L̄0 generate dilations we may
presume for the Hamiltonian of the theory,

H ∝ L0 + L̄0, (I.123)

giving L0 the notion of an energy operator. We will use this result in the next subsection
to study finite-size effects in physical systems whose thermodynamic limit is described
by a Conformal Field Theory. Finally in order to fix the representation we declare the
states on which the representation act. To this end, we define the vacuum state as the
highest weight of the identity operator at the origin [74],

13Note, there are fields that are primary and descendant at the same time. These states are called null
vectors. Therefore, non-degenerate representations of the Virasoro algebra can be constructed by
dividing out the null vectors of a Verma module.
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|0〉 ≡ 1(z = 0), (I.124)

which is assumed to satisfy

Ln |0〉 = 0 for n ≥ −1. (I.125)

Hence, the vacuum is invariant under global conformal transformations. Further, the
vacuum expectation value of the energy momentum tensor vanishes. The true physical
vacuum is the tensor product of |0〉 with |0̄〉, the latter being the vacuum of the
antiholomorphic identity. States corresponding to a primary φ with conformal weight ∆
can now be defined as

|∆〉 ≡ φ(0) |0〉 with

L0 |∆〉 = ∆ |∆〉 and

Ln |∆〉 = 0 for n > 0.

(I.126)

Descendants of this primary may be constructed by acting with several ladder operators,

|∆(−nk,...,−n1)〉 ≡ (L−nk ...L−n1)φ(0) |0〉 , (I.127)

with conformal weight ∆ + n1 + ...+ nk as computed above.
In order to obtain a Hilbert space structure we need to define the dual of the vacuum

state. The dual of (I.125) should read

〈0| (Ln)† = 0 for n ≥ 0 (I.128)

leading to
(Ln)† = L−n (I.129)

which looks quite natural. Hence, L†0 = L0 and the Hamiltonian is hermitian with a real
spectrum. The dual of primary states can be defined by evaluating the field at infinity,

〈∆| ≡ lim
z→∞

〈0|φ(z)z2∆ (I.130)

which finally allows for the calculation of scalar products and norms of states. Further, it
guarantees orthogonality of primaries with different conformal weights, 〈∆|∆′〉 = δ∆,∆′ .
We close this subsection by two remarks.

• It is possible to connect the states defined here to fields evaluated at arbitrary
positions on the complex plane by
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φ(z) |0〉 ≡ exp(zL−1) |∆〉 (I.131)

since L−1 generates translations which allows for the calculation of correlation
functions as scalar products. For the two-point function, this leads to

〈0|φ(z1)φ(z2)|0〉 = 1
(z1 − z2)2∆ (I.132)

for the holomorphic part in total agreement with eq. (I.110).

• It is possible to prove that every quasi primary is the secondary operator of a
primary, hence the primaries are the building blocks of a CFT. Thus, a CFT can
be completely described by knowing all the primaries, their conformal weights, the
central charge and the three-point function normalization factors Cijk. By means
of the operator product expansion, the coefficients Cijk determine completely all
higher n-point functions. Historically, the reduction of four-point to three-point
functions is manifest in the conformal bootstrap approach which allows for a
computation of the Cijk using crossing symmetry. More details can be found e.g.
in [58].

3.3 Finite size scaling

This subsection treats the calculation of the scaling dimensions and the central charge
for a critical system with a finite system size, L < ∞. To this end we consider the
two-point correlation function of a scalar primary field φ with conformal weight ∆,
eq. (I.110), and study its transformation, (I.109), using

w = L

2π log z. (I.133)

This conformal transformation corresponds to a mapping between the infinite complex
plane and a strip with a finite width L. Eq. (I.109) allows for the calculation of the
two-point function on the strip geometry,

〈φ(w1, w̄1)φ(w2, w̄2)〉strip (I.134)

=

∂w
∂z

∣∣∣∣∣
z1

∂w

∂z

∣∣∣∣∣
z2

−∆∂w̄
∂z̄

∣∣∣∣∣
z̄1

∂w̄

∂z̄

∣∣∣∣∣
z̄2

−∆̄

〈φ(z1, z̄1)φ(z2, z̄2)〉 (I.135)

=
(2π
L

)2∆+2∆̄
(
z

1/2
1 z

1/2
2

z1 − z2

)2∆(
z̄

1/2
1 z̄

1/2
2

z̄1 − z̄2

)2∆̄

(I.136)
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=
(2π
L

)2∆+2∆̄
(

eπ/L(w1+w2)

e2πw1/L − e2πw2/L

)2∆(
eπ/L(w̄1+w̄2)

e2πw̄1/L − e2πw̄2/L

)2∆̄

(I.137)

=
(
π

L

1
sinh

(
π
L(w1 − w2)

))2∆(
π

L

1
sinh

(
π
L(w̄1 − w̄2)

))2∆̄

(I.138)

We write wj = uj + ivj . Asymptotically, for |u1 − u2| � L, an expansion of the sinh
yields

〈φ(w1, w̄1)φ(w2, w̄2)〉strip

=
(2π
L

)2X
exp

(
−2π
L
X(u1 − u2)− i2π

L
s(v1 − v2)

) (I.139)

with the scaling dimension X = ∆ + ∆̄ and conformal spin s = ∆− ∆̄. A comparison
of eq. (I.139) with the definition of the correlation length, e.g. eq. (I.107) finally gives
the correlation length for the field φ,

ξ = L

2πX . (I.140)

In [74] equation (I.140) was called

“[...] one of the most important results for the application of conformal
invariance to critical phenomena”.

To go even one step further, the Lehmann representation of the two-point function
relates the correlation length with the eigenenergies of the Hamiltonian (~ ≡ 1),

ξ−1
i = Ei − E0 ⇒ Xi = L

2π (Ei(L)− E0(L)), (I.141)

where E0(L) is the exact ground state energy of the Hamiltonian and Ei(L) the energy
of an excited state for a system with system size L. The lattice constant is set to unity.
We will make extensive use of eq. (I.141) in part II of this work since this equation
allows us to calculate the scaling dimensions of the Conformal Field Theory describing
the thermodynamic limit by simply calculating the energy spectrum of a superspin
chain for a given finite system size L.

A similar argument applies to the central charge c. It can be calculated by means of

c = −6L
π

(E0(L)− Le∞) (I.142)

again for finite system sizes. Here, we introduced the ground state energy per site in the
thermodynamic limit, e∞. We recall that we started by studying two-point functions of
a scalar primary field. However, it turns our that eq. (I.140) is also true for descendant
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fields. Also, we implicitly assumed isotropic interactions. On the other hand, anisotropic
interactions manifest themselves only by a slight modification of the above formulas,
e.g. for the scaling dimension

Xan
i = L

2πvF
(Ei(L)− E0(L)), (I.143)

where the information about the anisotropy is solely contained in the Fermi velocity vF .
One example of an application of eq. (I.142) is the calculation of the specific heat

for spin chains at small but finite temperatures. It turns out to be proportional to the
central charge,

C = πc

3~vF
k2
BT, (I.144)

where ~ is the reduced Plank constant and kB the Boltzmann constant. Thus, intuitively
the central charge counts the critical degrees of freedom of the studied system.

3.4 Supersymmetric extensions

Finishing this short introduction into Conformal Field Theories, we briefly discuss
supersymmetric extensions, i.e. Superconformal Field Theories. The corresponding
symmetry algebra is called super Virasoro algebra. The commutation relation for the
generators read [77]

[Ln, Lm} = (n−m)Ln+m + c

12n(n2 − 1)δn+m,0, (I.145)

[Gr, Gs} = 2Lr+s + c

3

(
r2 − 1

4

)
δr+s,0, (I.146)

[Ln, Gr} =
(
n

2 − r
)
Gn+r. (I.147)

accompanied by the corresponding generators for the complex conjugate coordinate.
The even part of the super Virasoro algebra is spanned by the operators Ln, hence,
the even part of the super Virasoro algebra is the ordinary Virasoro algebra discussed
above. The operators Gn form a basis for the odd part. While n,m are integers, the
indices r, s are integers or half integers originating in a possible double-valuedness of
the energy-momentum tensor when the spin is half-integer. If r, s are integers the
Superconformal Field Theory is said to describe the Ramond sector [78] while the
half-integer case is called Neveu-Schwarz sector [79]. The whole Hilbert space of a
Superconformal Field Theory contains both the Ramond- and the Neveu-Schwarz sector
Like for Conformal Field Theories, the operator L0 + L̄0 generates dilations and

acts as a Hamiltonian. Likewise, Ln and Gn are lowering (raising) operators for n > 0
(n < 0). The vacuum state is defined by the condition that it is annihilated by all
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3. Conformal Field Theory

lowering operators. An irreducible representation can again be constructed by acting
with all raising operators on a suitable field.

The state-field correspondence described in subsection 3.2 holds only in the Neveu-
Schwarz sector while in the Ramond sector it is far more involved and hence beyond
the scope of this work.

In part II where superspin chains are constructed and solved by means of the Algebraic
Bethe Ansatz, the Ramond- and the Neveu-Schwarz sector are manifest in the boundary
conditions: The Ramond-sector correspond to periodic boundary conditions for the
fermionic degrees of freedom whereas antiperiodic boundary conditions translate to
the Neveu-Schwarz sector in the language of Superconformal Field Theory. The latter
implies that the transfer matrix for the Neveu-Schwarz sector in the QISM framework
is calculated by means of the trace over the auxiliary space (rather than the supertrace
which is used in the Ramond sector).
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4 From the Integer Quantum Hall effect to
superspin chains

Having discussed the mathematical basics, we seek for the answer of the question: Why
should we study integrable superspin chains, i.e. spin chains constructed by means of
QISM where the local degrees of freedom are carried by a representation of a certain
Lie superalgebra? One pragmatical reason can be formulated in Baxter’s words [4],

“Basically, I suppose the justification for studying these models is very
simple: they are relevant and they can be solved, so why not do so and see
what they tell us?”

Following this idea, in this section we argue why superspin chains are relevant by briefly
studying the Quantum Hall effect based on [80] and show how superspin chains emerge
for its theoretical description.
Motivated by a remark of Maxwell [81],

“It must be carefully remembered that the mechanical force which urges a
conductor carrying a current across the lines of magnetic force acts, not on
the electric current, but on the conductor which carries it. – The only force
which acts on electric currents is electromotive force”,

Hall studied the effects of a magnetic field pointing perpendicular (here: z-direction)
to an electric current confined to two dimensions (here: (x, y)-plane). The setup is
schematically depicted in fig. 4. Using this setup, Hall measured a voltage in y-direction

Ix
vH

B

Figure 4: The experimental setup for the classical Hall effect.

although the external current is applied in x-direction [82]. By means of the Drude-model,
the longitudinal ρxx and Hall-resistivity ρxy can be calculated,

ρxx = m

ne2τ
and ρxy = B

ne
(I.148)

with the electron mass m, the electron density n, the electron charge −e and the
scattering time τ . This classical calculation therefore predicts a constant longitudinal
and a linear dependence of the Hall-resistivity w.r.t. the magnetic field.



Figure 5: Hall- and longitudinal resistivity for low temperatures and fixed electron density as
a function of the magnetic field. Taken from [83].

However, for low temperatures and high magnetic fields, von Klitzing and coworkers
observed several plateaus labeled by integers in the Hall resistivity and sharp peaks in
the longitudinal resistivity whenever there is a transition between two plateaus in the
Hall resistivity [10], see fig. 5. This effect is referred to as Integer Quantum Hall effect.
In 1985, von Klitzing was rewarded with the Nobel price of physics for the discovery of
the Quantum Hall effect. The Hall resistivity at the ν−th plateau was found to be

ρxy = 2π~
e2

1
ν

(I.149)

which can be explained by the quantization of the non-interacting electrons in two
dimensions exposed to a magnetic field leading to Landau levels. Instead of free electrons
described by two quantum numbers corresponding to the two degrees of freedom, the
presence of a magnetic field allows for a mapping to a harmonic oscillator with the
cyclotron frequency

ωB = eB

m
. (I.150)

Each Landau level can be filled with

N = eBA

2π~ (I.151)

electrons where A is the area of the sample. Hence, each Landau level is highly
degenerate. Whenever the ν−th Landau level is completely filled the Hall resistivity is
given by eq. (I.149) which explains the values which ρxy can take. The persistence of
the plateaus over a wide range of the magnetic field can be attributed to the disorder in
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4. From the Integer Quantum Hall effect to superspin chains

the sample which leads to additional but localized states (in contrast to the Landau
level states which are delocalized). When the magnetic field is decreased each Landau
level can be filled with fewer electrons. But instead of occupying the next Landau
level, the remaining electrons start to populate the localized states which by default
do not contribute to the electric transport. At the same time the current caused by
the delocalized electrons occupying the Landau levels increases to compensate for the
missing current from the now localized states. Eventually this leads to the plateaus
observed by von Klitzing. As mentioned above the role of disorder is crucial for the
emergence of plateaus in the Hall resistivity. When studying the very same setup with
a perfect sample, i.e. without any disorder, no plateaus would be observable in an
experiment.
We now focus on the transition between two plateaus. Numerical studies using the

network model to incorporate the effects of disorder indicate that the correlation length
diverges at the critical point for the electron gas [11], hence, the plateau transition is
of second order. Naively we would expect a description in terms of a Conformal Field
Theory. However a multifractal analysis of the moments of the local density of states at
the critical point shows a continuous spectrum of critical exponents [12] which can be
achieved by non-unitary field theories only.
The first Ansatz for a field theoretical description of the plateau transition was

formulated by Pruisken and his coworkers using a nonlinear sigma model [13, 14].
However it does not have the right symmetry to include conformal invariance [15].
To overcome this problem, Weidenmüller constructed a supersymmetric version of
Pruisken’s nonlinear sigma model [16] by calculating disorder averages of correlation
functions [17]. As Zirnbauer showed, in the Hamiltonian limit this supersymmetric
nonlinear sigma model can be mapped to a superspin chain [15] in which the local
degrees of freedom are carried by alternating infinite dimensional representations of
gl(2|2). Thus, superspin chains may be good candidates for lattice models corresponding
to field theories for plateau transitions in integer Quantum Hall systems. However,
in order to perform analytic or numerical studies, the local Hilbert space has to be
truncated which allows for the construction of toy models with finite local degrees of
freedom [20, 21, 84, 85]. One of these toy models, the superspin chain with sl(2|1)
symmetry, can alternatively be derived directly from the network model [86].
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Part II

Finite size study of integrable
superspin chains





1 The Uq[sl(2|1)] superspin chain
Since the last decade, a growing number of lattice models including order-disorder
transitions in Quantum Hall systems, the anti-ferromagnetic Potts-model, intersecting
loops or physical properties of two-dimensional polymers have been shown to exhibit
thermodynamic limits that - although having a finite-dimensional Hilbert space for the
local degrees of freedom on the lattice - have been found to correspond to non-unitary
CFTs [19–21, 23, 27, 28, 84]. The corresponding non-compactness of the target space
manifests itself in the emergence of a continuous component in the spectrum of scaling
dimensions in the thermodynamic limit. Additionally, in non-unitary CFTs, there may
exist (discrete) levels which are not normalizable. Hence, the corresponding states
appear in the spectrum of the lattice model only when the norm of the corresponding
operator in the CFT becomes finite, e.g. by imposing certain boundary conditions. In
the spectrum of the superspin chain, this may lead to a non-analytic dependence of the
effective central charge of the lattice model on the boundary conditions.

For some of the following lattice models the spectral data obtained from their exact
solution have allowed to identify the CFT describing their thermodynamic limits:

• An integrable vertex model built from the three-dimensional fundamental and dual
representations of the superalgebra sl(2|1) was argued to flow to a SU(2|1) Wess-
Zumino-Novikov-Witten (WZNW) model at level k = 1 [20, 87]. For a physical
modular invariant partition function it is only allowed to consider continuous values
of the sl(2|1) charge quantum number leading to continua of scaling dimensions.

• A staggered six-vertex model related to the anti-ferromagnetic Potts model [23]
(which also appears in the phase diagram of a staggered superspin chain built from
four-dimensional representations of Uq[sl(2|1)] [84]) has been argued to provide
a realization of the SL(2,R)/U(1) Euclidean black hole sigma model [88, 89].
This identification was based on the density of states in the continuous spectrum
corresponding to primary fields [24–26]. However, taking also into account the
contribution of descendant states, this identification is no longer true [90].

• The a(2)
2 model (equivalent to the 19-vertex Izergin-Korepin model [91]) in ’regime

III’ has a non-compact thermodynamic limit which can again be described by the
SL(2,R)/U(1) black hole sigma model [27]. Here, the spectrum of discrete levels
appearing in the lattice model with twisted boundary conditions has been found
to be consistent with the predicted appearance of levels related to the principal
discrete representations of SL(2,R) states [92, 93]. Similarly, the scaling limit
of the general a(2)

N−1 model has been shown to be a SO(N)/SO(N − 1) gauged
WZNW model [28].



In this section we will focus upon the thermodynamic limit of the mixed q-deformed
sl(2|1) superspin chain based on the three dimensional atypical representation and its
dual, labeled 3 and 3̄ in the following [94]. In previous work on this model, and similar
as in the isotropic case q → 1, the existence of an exact zero energy state and of continua
of scaling dimensions have been established [21].

As sketched in section 4 in part I, the corresponding isotropic sl(2|1) superspin chain
may be a good candidate for describing order-disorder transitions in Quantum Hall
systems. Hence, the investigation of its thermodynamic limit is intriguing, not only
because it is mathematically unknown. A better understanding of the latter can also
help to gain insights in the field theoretical description of the critical point regarding
plateau transitions in Quantum Hall systems.

This section is organized as follows: In the first subsection we will recall the definition
and solution of the staggered Uq[sl(2|1)] superspin chain by means of the Algebraic
Bethe Ansatz in 1.1 followed by a short reminder of some previous results for the
operator content in 1.2. Subsequently we will define an operator which allows for a
characterization of the continuous components of the spectrum in 1.3. Further, we will
generalize the lattice model to include general toroidal boundary conditions allowing for
an adiabatic change from periodic to antiperiodic boundary conditions for the fermionic
degrees of freedom. Using the Bethe Ansatz solution of this model, we will find the
exact dependence of e.g. the scaling dimensions for some low lying levels on the twist
angle in 1.4. Translating our results into the context of the field theory describing the
thermodynamic limit of the model, we will find that under the spectral flow states from
the continuous part of the spectrum in the Neveu-Schwarz sector are mapped onto
discrete levels in the Ramond sectors, and vice versa. This section will be closed by a
summary of our findings in 1.5.

1.1 Definition and solution of the model

This subsection is dedicated to the definition of the Uq[sl(2|1)] superspin chain and its
equivalent two-dimensional vertex model. Subsequently, its solution by means of the
nested Algebraic Bethe Ansatz will be presented. The Lie superalgebra sl(2|1) and its
quantum deformation are discussed in section 2 in part I of this work.
We consider the mixed vertex model based on the three dimensional atypical repre-

sentation of Uq[sl(2|1)] labelled 3 and its dual 3̄ (see 2.4 in part I) as shown in fig. 6.
Arrows pointing to the right or up (left or down) denote the representation 3 (3̄). The
Boltzmann weights for the different local states are encoded in the elements of four
different R-matrices acting on the tensor products 3⊗3, 3⊗ 3̄, 3̄⊗3 and 3̄⊗ 3̄ depending
on which representations are sitting at the corresponding vertex [21, 94], see fig. 7.
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Figure 6: Vertex model corresponding to the staggered Uq[sl(2|1)] superspin chain.
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Figure 7: Weights of the four different types of vertices giving rise to four different R-matrices.
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Explicitly, the four different R-matrices read [21]

R(3,3)
a,b (λ) =

3∑
j=1

aj(λ)e(a)
jj ⊗ e

(b)
jj +

3∑
j,k=1
j 6=k

b(λ)e(a)
jj ⊗ e

(b)
kk

+ c(λ)

 3∑
j,k=1
j>k

(−1)pjpke(a)
jk ⊗ e

(b)
kj + e−2λ

3∑
j,k=1
j<k

(−1)pjpke(a)
jk ⊗ e

(b)
kj

 ,
(II.1)

R(3,3̄)
a,b (λ) =

3∑
j=1

aj(−λ− 2iγ)e(a)
jj ⊗ e

(b)
jj +

3∑
j,k=1
j 6=k

b(−λ− 2iγ)e(a)
jj ⊗ e

(b)
kk

+ c(−λ− 2iγ)

 3∑
j,k=1
j<k

(−1)pjfjke(a)
jk ⊗ e

(b)
jk + e2λ+4iγ

3∑
j,k=1
j>k

(−1)pj (fjk)−1e
(a)
jk ⊗ e

(b)
jk

 ,
(II.2)

R(3̄,3)
a,b (λ) =

3∑
j=1

aj(−λ)e(a)
jj ⊗ e

(b)
jj +

3∑
j,k=1
j 6=k

b(−λ)e(a)
jj ⊗ e

(b)
kk

+ c(−λ)

 3∑
j,k=1
j>k

(−1)pk(f̃jk)−1e
(a)
jk ⊗ e

(b)
jk + e2λ

3∑
j,k=1
j<k

(−1)pk f̃jke(a)
jk ⊗ e

(b)
jk

 ,
(II.3)

R(3̄,3̄)
a,b (λ) =

3∑
j=1

aj(λ)e(a)
jj ⊗ e

(b)
jj +

3∑
j,k=1
j 6=k

b(λ)e(a)
jj ⊗ e

(b)
kk

+ c(λ)

 3∑
j,k=1
j<k

(−1)pjpke(a)
jk ⊗ e

(b)
kj + e−2λ

3∑
j,k=1
j>k

(−1)pjpke(a)
jk ⊗ e

(b)
kj

 .
(II.4)

Here, e(a)
jk are the standard 3×3 Weyl-matrices acting on the a-th copy of C3, pj denotes

the degree of the j-th component of a vector in C3, i.e. pj = 0 if the j-th component is
even or bosonic and pj = 1 if it is odd or fermionic. The functions aj , b and c are given
by
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aj(λ) = sinh(λ− 2iγ(2pj − 1)
sinh(λ+ 2iγ) , b(λ) = sinh(λ)

sinh(λ+ 2iγ) , c(λ) = eλ sinh(2iγ)
sinh(λ+ 2iγ) .

(II.5)
Further, the matrices fjk and f̃jk depend on the anisotropy q = e−iγ only. Their
non-zero elements read

f̃12 = e2iγ(1−p3), f̃13 = e2iγp2 , f̃23 = e−2iγp1 , (II.6)

as well as

f12 = (−1)1+p2e2iγ(p1+p2+2p3) sin(2γ)
sin(2γ(1− 2p1 − 2p3)) ,

f13 = (−1)p3e2iγ(2p1+p2+2p3) sin(2γ − 4γp3)
sin(2γ) ,

f23 = (−1)1−p2+p3e2iγp1 sin(2γ(1− 2p1− 2p3)) sin(2γ − 4γp3)
sin2(2γ) .

(II.7)

The four different R-matrices obey Yang-Baxter equations for any combination of
the representations 3 and 3̄,

R(ω1,ω2)
12 (λ)R(ω1,ω3)

13 (λ+ µ)R(ω2,ω3)
23 (µ) = R(ω2,ω3)

23 (µ)R(ω1,ω3)
13 (λ+ µ)R(ω1,ω2)

12 (λ) (II.8)

for ωj ∈ {3, 3̄} and j = 1, 2, 3. As a consequence, two families of row-to-row transfer
matrices acting on the Hilbert space (3 ⊗ 3̄)⊗L can be constructed as the supertrace
over auxiliary spaces A ∼= C3 of ordered products of these R-matrices [47],

τ3(λ) = strA T3(λ),

T3(λ) = G(3)(α)R(3,3)
A,2L(λ)R(3,3̄)

A,2L−1(λ− iγ)R(3,3)
A,2L−2(λ) . . .R(3,3̄)

A,1 (λ− iγ),

τ3̄(λ) = strA T3̄(λ),

T3̄(λ) = G(3̄)(α)R(3̄,3)
A,2L(λ+ iγ)R(3̄,3̄)

A,2L−1(λ)R(3̄,3)
A,2L−2(λ+ iγ) . . .R(3̄,3̄)

A,1 (λ).

(II.9)

The boundary conditions are controlled by the diagonal twist matrices G(ω)(α) =
exp

(
2iαQ(ω)

3

)
with Q

(ω)
3 the diagonal generator of the spin-subalgebra in the repre-

sentation ω. For α = 0 the lattice model obeys periodic boundary conditions while
for α = ±π bosonic states are periodic while fermions fulfill antiperiodic boundary
conditions. In the field theory describing the thermodynamic limit of the lattice model,
these cases correspond to the Ramond (R) and Neveu-Schwarz (NS) sector, respectively.
Due to the Yang-Baxter equations (II.8), the two transfer matrices commute with

each other, in addition to commuting among themselves,
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[τ3(λ), τ3̄(µ)] = 0 ∀λ, µ. (II.10)

Local integrals of motion are generated by the double row transfer matrix

τ(λ) = τ3(λ)τ3̄(λ). (II.11)

For example, the Hamiltonian14 of the mixed Uq[sl(2|1) superspin chain is defined by

H = i
∂

∂λ
log τ(λ)

∣∣∣
λ=0

. (II.12)

The transfer matrix (II.11) (and therefore H as well as other conserved charges) can be
diagonalized using the nested Algebraic Bethe Ansatz (see 1.2 in part I). The resulting
expressions obtained within this framework depend on the choice of grading for the
underlying superalgebra [47, 49, 95–97]. Note, the expressions above for the R-matrices
are valid for all possible gradings. As in refs. [20, 21] we choose [p1, p2, p3] = [0, 1, 0].

We now explicitly diagonalize the transfer matrix for periodic boundary conditions,
α = 0, by following the calculation in [98]. Since the two different single row transfer
matrices commute with each other, [τ3(λ), τ3̄(µ)] = 0, it is sufficient to diagonalize τ3.

As discussed in part I, the most important fundament for applying nested Bethe
Ansatz techniques is the existence of a suitable reference state. We may use the state15

|0〉 = |0(3)〉1 ⊗ |0(3̄)〉2 ⊗ |0(3)〉3 ...⊗ |0(3̄)〉2L (II.13)

with

|0(3)〉j =


1
0
0

 and |0(3̄)〉j =


0
0
1

 . (II.14)

To prove that |0〉 is an appropriate reference state we consider the action of the Lax
operators16 on |0〉,

R(3,3)
A,j (λ) |0(3)〉j =


h1(λ) # #

0 h2(λ) 0
0 0 h3(λ)

 |0(3)〉j (II.15)

14Note, for this model, R(3,3) and R(3̄,3̄) turn to graded permutation operators at the shift point λ = 0.
15Note, there is a different scheme of performing the nested Algebraic Bethe Ansatz for this model and

related superspin chains in which the reference state remains undetermined, besides belonging to a
certain subspace [97].

16By the way the monodromy matrices in (II.9) are built we may interpret the R-matrices as Lax
operators.
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1. The Uq[sl(2|1)] superspin chain

and

R(3,3̄)
A,j (λ− iγ) |0(3̄)〉j =


g1(λ) 0 #

0 g2(λ) #
0 0 g3(λ)

 |0(3̄)〉j (II.16)

where # signifies non-zero entries. The diagonal entries are determined by the functions
hi and gi,

hi(λ) =

1 i = 1

b(λ) i = 2, 3
(II.17)

gi(λ) =

b(−λ− iγ) i = 1, 2

1 i = 3
. (II.18)

Inspired by the structure of the monodromy matrix for su(n)-symmetric models [41] we
impose the following Ansatz for the structure of T3(λ) written in the auxiliary space,

T3(λ) =


A(λ) B1(λ) B2(λ)
C1(λ) D1,1(λ) D1,2(λ)
C2(λ) D2,1(λ) D2,2(λ)

 (II.19)

where A(λ), Bi(λ), Ci(λ) and Di,j(λ) are operators acting on the Hilbert space. Given
this structure, we may write for the transfer matrix

τ3(λ) = A(λ)−D1,1(λ) +D2,2(λ), (II.20)

thus, the eigenvalue problem for τ3 becomes

(A(λ)−D1,1(λ) +D2,2(λ)) |φ〉 = Λ3(λ) |φ〉 . (II.21)

By means of eqs. (II.15) and (II.16), the action of the elements of the monodromy
matrix on reference state can be calculated,

A(λ) |0〉 = g1(λ)L |0〉 , (II.22)

Di,i(λ) |0〉 = fi+1(λ)Lgi+1(λ)L |0〉 , i = 1, 2, (II.23)

Bi(λ) |0〉 = #, (II.24)

Ci(λ) |0〉 = 0, (II.25)

D2,1(λ) |0〉 = 0, (II.26)

D1,2(λ) |0〉 = #, (II.27)

which finally proves that |0〉 is in fact a suitable reference state as it fulfills the require-
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ments presented in part I. The equations (II.22)-(II.27) further shows that Bi(λ) act as
creation operators w.r.t. |0〉. Therefore, we are led to impose the following Ansatz for
the eigenstates of the transfer matrix,

|φ〉 =
∑

i1...iN1=1,2
F iN1 ...i1Bi1(λ(1)

1 )...BiN1
(λ(1)
N1

) |0〉 (II.28)

with a positive integer N1 and coefficients F iN1 ...i1 . To solve the eigenvalue problem we
need to commute the operators A(λ) and Di,i(λ) through Bi(λ(1)

j ), hence, we need to
know their commutation relations. The latter can be obtained by the RTT equations,
(I.4), and read [98]

A(λ)Bj(µ) = Bj(µ)A(λ)
b(µ− λ) −

c(µ− λ)e−2(µ−λ)

b(µ− λ) Bj(λ)A(µ),

Di,j(λ)Bk(µ) =
∑
l,q

Bl(µ)Di,g(λ)
b(λ− µ) ř(1)(λ− µ)jklq (−1)pi+1pl+1

− c(λ− µ)
b(λ− µ)Bj(λ)Di,k(µ)(−1)pj+1pi+1 ,

Bi(λ)Bj(µ) =
∑
l,q

ř(1)(λ− µ)ijlqBl(µ)Bq(λ)

(II.29)

where ř(1)(λ− µ)ijlq are the elements of the R-matrix for the Uq[sl(1|1)] model [98].
Hence, commuting the fields A(λ) and Di,i(λ) through Bi(λ(1)

j ) creates terms propor-
tional to |φ〉 by considering the first terms on the right hand side in (II.29), i.e. the
terms which do not change the argument of the operators. On the other hand, also terms
which are not proportional to |φ〉 occur. Those are called unwanted terms. Demanding
the unwanted terms to vanish yields for the eigenvalue of the transfer matrix τ3(λ)

Λ3(λ) = b(−λ− iγ)L
N1∏
j=1

1
b(λ− λ(1)

j )
+

N1∏
j=1

1
b(λ− λ(1)

j )
Λ(1)(λ, {λ(1)

k }), (II.30)

given that the Bethe roots on the first level {λ(1)
k } fulfill the Bethe Ansatz equations

b(−λ(1)
j − iγ)L

N1∏
k=1,k 6=j

b(λ(1)
k − λ

(1)
j − iγ)

b(λ(1)
j − λ

(1)
k − iγ)

= Λ(1)(λ(1)
j , {λ(1)

k }). (II.31)

Within this framework, the Bethe Ansatz equations can be understood as consistency
equations for a state of type (II.28) to be an eigenstate of the transfer matrix and, thus,
of the Hamiltonian of the model.
The function Λ(1) is defined in terms of a different, nested eigenvalue problem,
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1. The Uq[sl(2|1)] superspin chain

∑
j1,...,jN1=1,2

τ
(1)
3 (λ, {λ(1)

k })
j1...jN1
i1...jN1

F i1...iN1 |0〉 = Λ(1)(λ, {λ(1)
k })F

i1...iN1 |0〉 (II.32)

with the nested transfer matrix

τ
(1)
3 (λ, {λ(1)

k })
j1...jN1
i1...jN1

=
∑

k1...kN1=1,2

∑
m=1,2

(−1)
pm+1

(
1+

N1∑
l=1

pkl+1

)

× ř(1)(λ− λ(1)
1 )mj1i1k1

ř(1)(λ− λ(1)
1 )k1j2

i2k2
... ř(1)(λ− λ(1)

N1
)kN1−1jN1
iN1kN1

Dm,kN1
(λ).

(II.33)

This problem can again be solved by Algebraic Bethe Ansatz methods [98]. Equa-
tion (II.33) may be viewed as supertrace of an auxiliary monodromy matrix T (1)

3 ,

T
(1)
3 (λ, {λ(1)

k }) = DA(1) r
(1)
A(1),N1

(λ− λ(1)
N1

) r(1)
A(1),N1−1(λ− λ(1)

N1−1) ... r(1)
A(1),1(λ− λ(1)

1 ).
(II.34)

where r(1)
A(1),j

(λ) = PA(1),j ř
(1)
A(1),j

(λ) with the graded permutation operator P and D the
2× 2 matrix with elements Di,j . Note, the auxiliary space for T (1)

3 (λ) is now A(1) ∼= C2.
The monodromy matrix T (1)

3 (λ) and the R-matrix r(1)(λ) fulfill also an RTT relation,

ř(1)(λ− µ)T (1)
3 (λ, {λ(1)

k })⊗ T
(1)
3 (µ, {λ(1)

k })

= T
(1)
3 (µ, {λ(1)

k })⊗ T
(1)
3 (λ, {λ(1)

k })ř
(1)(λ− µ)

(II.35)

where the tensor product has to be performed with respect to new parities p(1)
α =

pα+1, α = 1, 2. To solve the nested problem, we impose a nested pseudovacuum state
[99],

|0〉(1) = |0〉 ⊗
N1∏
j=1

(
1
0

)
j

. (II.36)

The nested monodromy matrix T (1)
3 written in auxiliary space reads

T
(1)
3 (λ, {λ(1)

k }) =
(
A(1)(λ) B(1)(λ)
C(1)(λ) D(1)(λ)

)
. (II.37)

Its matrix elements applied to the nested pseudovacuum yield

A(1)(λ, {λ(1)
k }) |0〉

(1) = b(λ)Lb(−λ− iγ)L
N1∏
j=1

a2(λ− λ(1)
j |0〉

(1) , (II.38)

D(1)(λ, {λ(1)
k }) |0〉

(1) = b(λ)L
N1∏
j=1

b(λ− λ(1)
j ) |0〉(1) , (II.39)
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C(1)(λ, {λ(1)
k }) |0〉

(1) = 0, (II.40)

B(1)(λ, {λ(1)
k }) |0〉

(1) = #. (II.41)

Thus, the auxiliary model we have to diagonalize strongly recalls the famous six vertex
model [98]. Hence our Ansatz for eigenstates of (II.33) is given by

|φ〉(1) = B(λ(2)
1 )B(λ(2)

2 )...B(λ(2)
N2

) |0〉(1) (II.42)

with the Bethe roots on the second level, {λ(2)
k }. Again, we can commute the operators

A(1)(λ) and D(1)(λ) through B(1)(λ(2)
j ) and demand the unwanted terms to vanish. This

calculation yields for the eigenvalue of τ (1)
3 (λ),

Λ(1)(λ, {λ(1)
k }) = −b(λ)Lb(−λ− iγ)L

N1∏
j=1

a2(λ− λ(1)
j )

N2∏
k=1

a2(−λ+ λ
(2)
k )

b(−λ+ λ
(2)
k )

+ b(λ)L
N1∏
j=1

b(λ− λ(1)
j )

N2∏
k=1

1
b(λ− λ(2)

k )

(II.43)

provided that the Bethe roots {λ(2)
k )} fulfill a second set of Bethe Ansatz equations,

b(−λ(2)
j − iγ)L =

N1∏
k=1

b(λ(2)
j − λ

(1)
k )

a2(λ(2)
j − λ

(1)
k )

×
N2∏
k=1
k 6=j

1
a2(λ(2)

k − λ
(2)
j )

b(λ(2)
k − λ

(2)
j )

b(λ(2)
j − λ

(2)
k )

.

(II.44)

To simplify the results of this calculation we may use the definitions above. Thereby
we arrive at a symmetrical formulation of the Bethe Ansatz equations for the Uq[sl(2|1)]
model. By taking into account general toroidal boundary conditions imposed by the
matrix G in the monodromy matrix17, see eq. (II.9), we arrive at

sinh(λ(1)
j + iγ)

sinh(λ(1)
j − iγ)

L = eiα
N2∏
k=1

sinh(λ(1)
j − λ

(2)
k + iγ)

sinh(λ(1)
j − λ

(2)
k − iγ)

, j = 1, . . . , N1,

sinh(λ(2)
j + iγ)

sinh(λ(2)
j − iγ)

L = eiα
N1∏
k=1

sinh(λ(2)
j − λ

(1)
k + iγ)

sinh(λ(2)
j − λ

(1)
k − iγ)

, j = 1, . . . , N2.

(II.45)

Note, the numbers N1 and N2 were defined as parametrizing the number of Bethe
roots on each level. However, they correspond to different sectors of the Hilbert space

17Since G is diagonal, it does not break the integrability. It only affects the exact diagonalization by
introducing overall factors in the operators entering the monodromy matrix.
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1. The Uq[sl(2|1)] superspin chain

with fixed quantum numbers related to the U(1) subalgebras of Uq[sl(2|1)], i.e. charge
b = (N1 −N2)/2 and z-component of the spin j3 = L− (N1 +N2)/2.

The corresponding eigenvalue of the single row transfer matrices τ3 and τ3̄ reads for
periodic boundary conditions α = 0 [21],

Λ3(λ) =
(sinhλ+ iγ

sinhλ− iγ

)L N1∏
j=1

sinhλ(1)
j − λ+ iγ

sinhλ(1)
j − λ− iγ

+
( sinhλ

sinhλ+ 2iγ

)L N2∏
j=1

sinhλ− λ(2)
j + 2iγ

sinhλ− λ(2)
j

−
(sinhλ+ iγ

sinhλ− iγ
sinhλ

sinhλ+ 2iγ

)L N1∏
j=1

sinhλ− λ(1)
j − iγ

sinhλ− λ(1)
j + iγ

N2∏
j=1

sinhλ(2)
j − λ− 2iγ

sinhλ(2)
j − λ

,

(II.46)

Λ3̄(λ) =
(sinhλ+ iγ

sinhλ− iγ

)L N2∏
j=1

sinhλ(2)
j − λ+ iγ

sinhλ(2)
j − λ− iγ

+
( sinhλ

sinhλ+ 2iγ

)L N1∏
j=1

sinhλ− λ(1)
j + 2iγ

sinhλ− λ(1)
j

−
(sinhλ+ iγ

sinhλ− iγ
sinhλ

sinhλ+ 2iγ

)L N2∏
j=1

sinhλ− λ(2)
j − iγ

sinhλ− λ(2)
j + iγ

N1∏
j=1

sinhλ(1)
j − λ− 2iγ

sinhλ(1)
j − λ

.

(II.47)
Due to the symmetry of both the Bethe Ansatz equations and the eigenvalues Λ3 and

Λ3̄, swapping the Bethe roots on both levels {λ(1)
k } ↔ {λ

(2)
k } results in an exchange of

the eigenvalues, Λ3 ↔ Λ3̄.
Finally, the eigenvalue of the Hamiltonian (II.12) is given by

E({λ(1)
j }, {λ

(2)
j }) = i

∂

∂λ
log Λ(λ)

∣∣∣
λ=0

= 4L cot(γ) + 2
∑
a=1,2

Na∑
k=1

sin(2γ)
cos(2γ)− cosh(2λ(a)

k )
.

(II.48)

In the large L limit, the possible root configurations solving the Bethe equations (II.45)
can be classified using the string hypothesis [20, 21]. A class of low-energy excitations in
the zero charge sector b = 0 which we will investigate in the following has been identified
with collections of O(L) ’strange 2-strings’. These are complex conjugate pairs of
rapidities λ(1) =

(
λ(2)

)∗
coming in two types, i.e. (±) with Im(λ(1)) = ±γ/2. Solutions

to the Bethe equations consisting of N± type-(±) strange strings with N+ +N− = L−j3
for some fixed values of j3 but ∆N = N+−N− 6= 0 have been found to form a continuous
component of the finite size spectrum starting at levels with ∆N = 0, see below and
refs. [20, 21, 84]. In the rest of this section, we numerically solve the Bethe Ansatz
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equations (II.45) for particular states to study the low-energy spectrum of the staggered
superspin chain.

1.2 Low-energy spectrum

Since the staggered superspin chain is critical in the region 0 ≤ γ ≤ π [21], we expect
its thermodynamic limit to be described by a Conformal Field Theory. Information
on the effective field theory describing the low-energy degrees of freedom in the mixed
superspin chain can be obtained from the finite size spectrum of the lattice model, e.g.
by studying the central charge and the effective scaling dimensions, see section 3.3 in
part I.
Obviously, the choice λ(a)

k = 0 for k = 1, ..., L, i.e. in the sector (b, j3) = (0, 0), and
a = 1, 2, is a solution of the Bethe Ansatz equations [20, 21]. This state has the energy
E = 0 for all system sizes and is the ground state of the periodic superspin chain for
anisotropies 0 ≤ γ ≤ π/4. The existence of a zero energy ground state implies that the
effective central charge of the superspin chain is c = 0. Hence, the scaling dimensions for
the Uq[sl(2|1)] staggered superspin chain with a finite system size L can be determined
as follows,

X(L) = LE(L)
2πvF

(II.49)

with the Fermi-velocity
vF = π

γ
. (II.50)

Before calculating the effective scaling dimensions for several low-energy states by
numerically solving the Bethe Ansatz equations we seek towards some analytical progress.
To this purpose, inspecting the sector with N1 = N2 ≡ N and {λ(1)

j } = {λ(2)
j } we find

that the Bethe Ansatz equations (II.45) turn into the equations for the XXZ spin-1
chain with twist α− π,

[
sinh 1

2γ(λj + 2i)
sinh 1

2γ(λj − 2i)

]L
= −eiα

N∏
k=1

sinh 1
2γ(λj − λk + 2i)

sinh 1
2γ(λj − λk − 2i)

(II.51)

Hence, some of the scaling dimensions of primary operators in the Conformal Field
Theory for the staggered superspin chain can be deduced from the known operator
content of the low-energy theory for the spin-1 XXZ chain [20, 21, 100–102]. This field
theory can be described in terms of composites of an U(1) Kac-Moody field and Ising
operators [103]. The results for the corresponding subset of scaling dimensions in the
low-energy effective theory for the superspin chain based on such a mapping between
the spectra of these lattice models depend on the boundary conditions and will be
elaborated in the following subsections.
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1. The Uq[sl(2|1)] superspin chain

1.2.1 Periodic boundary conditions

For periodic boundary conditions (i.e. the Ramond sector in the effective field theory
for the thermodynamic limit), this mapping yields

XR
(m,w) = m2

2k + k

2w
2 +

0 for m+ w ∈ 2Z

−1
4 for m+ w ∈ 2Z + 1

, (II.52)

with k = π/(π − 2γ) and the compactification radius R = 1/
√

2k =
√

(π − 2γ)/(2π) of
the free boson. The conformal spin of these primary fields is given by s = mw. Here,
the integer m is the quantum number j3 of the corresponding state in both the XXZ
spin-1 model and in the superspin chain while w is related to the vorticity of the state.

Note that the level parametrized by (m,w) = (0, 0) corresponds to the exact zero
mode and therefore vanishes identically, XR

(0,0) = 0. In the related spin-1 XXZ model
with antiperiodic boundary conditions, the exact zero mode has been shown to be a
singlet under an exact dynamical lattice supersymmetry [104].

The lowest excitation above the vacuum (m,w) = (0, 0) is given by the field with
scaling dimension

XR
(1,0) = 1

2k −
1
4 = 1

4 −
γ

π
. (II.53)

In the superspin chain, this state corresponds to a solution of the Bethe equations
consisting of (L − 1)/2 narrow strings with centers distributed over the entire real
axis [20, 21]18. This excitation becomes the highest weight state of an sl(2|1)-octet
(b, j3) = (0, 1) in the isotropic limit, γ → 0.

Similarly, the lowest states in the sectors (b, j3) = (0, 0), (b, j3) = (0, 2), and (b, j3) =
(0, 3) are described by Bethe root configurations with (L−j3)/2 narrow strings. For γ = 0,
the first of these is the highest weight singlet state within the sl(2|1)-indecomposable
(0,−1

2 ,
1
2 , 0) and degenerates with the octet, see [20]. The finite size energy gaps of these

levels are described by the scaling dimensions XR
0,1, XR

2,0, and XR
3,0, respectively, see

fig. 8 where our results from numerically solving the Bethe Ansatz equations for these
sectors are presented.

Excitations with Uq[sl(2|1)] quantum numbers (b, j3) = (0, 1) but outside of the
XXZ spin-1 set of levels have been studied in refs. [20, 21]. They correspond to root
configurations of N+ type + and N− type − strange strings with N+ +N− = L− 1 but
∆N = N+ −N− 6= 0. In the thermodynamic limit, these form a continuum of scaling
dimensions starting at XR

1,0 leading to a logarithmic fine structure of levels which is

18Note that for π/4 < γ < π/2 the scaling dimensions (II.53) become negative and the singlet ground
state disappears within the continuum.
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Figure 8: Scaling dimensions for the ground states of the periodic superspin chain (Ramond
sector) in sectors (b, j3) as a function of the anisotropy γ: symbols denote data extracted from
the finite size spectra for system size L = 1024 for j3 even (L = 1025 for j3 odd). Dashed lines
are the predictions (II.52) from Conformal Field Theory. The deviations of the finite size data
for small γ are a consequence of the appearance of a marginal operator at γ = 0.

determined by the number ∆N for large but finite L,

XR
(1,0)(∆N) ' XR

(1,0) +A(γ)
[ ∆N

log(L/L0(γ))

]2
, (II.54)

with an amplitude A and a non-universal length scale L0 depending on the anisotropy,
see fig. 9.
We have extended the investigation of zero charge states with ∆N 6= 0 to sectors

with different j3.

(b, j3) = (0, 3) : Similarly to the sector (b, j3) = (0, 1), we have been able to identify a
family of excitations described by configurations of (L−3)/2 strange 2-strings with
varying ∆N . The finite size energies show a strong logarithmic dependence on the
system size. Assuming a rational dependence on 1/ logL, all of them extrapolate
to XR

(3,0), see fig. 10. The subleading corrections are quadratic in ∆N with an
amplitude consistent with those in eq. (II.54).

(b, j3) = (0, 2) : For small system sizes L we have found root configurations of (L−2)/2
strange 2-strings and ∆N = 1. As L is increased, however, these configurations
degenerate into a collection of narrow strings and an additional pair of roots
λ(1) = 0 = λ(2), i.e. from the subsector of the spectrum of zero charge states
related to that of the spin-1 XXZ model.
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Figure 9: Finite size scaling dimensions of the lowest states for periodic boundary conditions
(Ramond sector) in the (b, j3) = (0, 1) sector for γ = π/8. The results contained in this figure
were calculated by numerically solving the Bethe Ansatz equations (II.45). Dashed lines are
the results of an extrapolation assuming a rational dependence [105] of the finite size data on
1/ logL.

(b, j3) = (0, 0) the lowest state in this sector (with ∆N = 0) has finite momentum and
a root configuration which is not symmetric under the reflection λ(a) → −(λ(a))∗.
We have not been able to identify a solution with ∆N 6= 0.

1.2.2 Antiperiodic boundary conditions

For antiperiodic boundary conditions, α = π, due to the matrix G, the transfer matrices
are defined by taking the trace rather than the supertrace over auxiliary space in (II.9).
Also, the factor eiα leads to an extra sign in the Bethe Ansatz equations (II.45). As
discussed above, a part of the spectrum in the zero charge sector of the superspin
chain can be related to that of the spin-1 XXZ chain, in this case with periodic
boundary conditions. From this mapping we obtain the following scaling dimensions
for antiperiodic boundary conditions for the fermionic fields, i.e. in the Neveu-Schwarz
sector in the effective field theory for the thermodynamic limit,

XNS
(m,w) = m2

2k + k

2w
2 +

−
1
4 for m+ w ∈ 2Z

0 for m+ w ∈ 2Z + 1
. (II.55)

Note, the lowest state for antiperiodic boundary conditions is realized in the sector
(b, j3) = (0, 0) and thus has a scaling dimension XNS

(0,0) = −1
4 , leading to an effective

central charge ceff = 3. For even L it is realized in the XXZ subspace of this sector. Hence,
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Figure 10: Finite size scaling dimensions of the lowest states for periodic boundary conditions
(Ramond sector) in the (b, j3) = (0, 3) sector for γ = π/8. The results contained in this figure
were calculated by numerically solving the Bethe Ansatz equations (II.45). Dashed lines are the
results of an extrapolation assuming a rational dependence of the finite size data on 1/ logL.

the corresponding Bethe root configuration can be mapped to that of the singlet (j3 = 0)
ground state of the periodic spin-1 chain. However, for odd L the lowest state is doubly
degenerate. One of the Bethe root configurations for this state consists of N± = (L±1)/2
type-(±) strange 2-strings, i.e. ∆N = 1. Other excitations above the ground state
can be constructed by increasing ∆N . The scaling dimensions of these states exhibit a
logarithmic dependence on the system size, XNS

(0,0)(L) = −1
4 +O((∆N/ logL)2) [20, 21],

consistent with the emergence of a continuum of levels starting at Xeff,NS(0, 0) = −1
4

in the thermodynamic limit, see fig. 11 for finite size data of the states with ∆N =
1, 2, 3, 4, 5. Note, states with odd ∆N are realized for odd system sizes only while for
an even ∆N the system size L has to be even.

1.2.3 Conformal Field Theory for the isotropic model

Based on these insights from the lattice model it has been argued that the thermodynamic
limit of the isotropic superspin chain flows to a SU(2|1) Wess-Zumino-Novikov-Witten
(WZNW) model at level k = 1 [20, 87]. These models are certain Conformal Field
Theories based on Lie (super-) groups by means of an action involving a coupling constant
k which will be referred to as level of the theory19. Investigating the commutation
relations for the modes of the conserved currents within the corresponding action
19Note, although often restricted to k ∈ Z by topological arguments, there is no such restrictions for

the WZNW model based on the non-compact Lie group SL(2,R) [106] which turns out to be the
model of special interest in the context of this work, see e.g. [23–26].
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Figure 11: Finite size scaling dimensions of the lowest excitations above the ground state for
antiperiodic boundary conditions (Neveu-Schwarz sector) for γ = π/8. The results contained in
this figure were calculated by numerically solving the Bethe Ansatz equations (II.45). Dashed
lines are the results of an extrapolation assuming a rational dependence of the finite size data
on 1/ logL.

functional it is easy to see that the currents are the generators of an affine Kac-Moody
(super-) algebra. By means of the Sugawara construction it can be shown that WZNW
models are in fact Conformal Field Theories. More details can be found in [58].

The generic class I irreducible representations of the affine superalgebra ŝl(2|1)k are
built over the typical representations (b, j) with charge b ∈ C and spin j = 1

2 , 1, . . . ,
k
2 .

Their ground states have conformal weight

∆R
[b,j] = j2 − b2

k + 1 . (II.56)

Bowcock et al have computed the characters for these representations [107]. At level
k = 1 the Ramond characters can be expressed in terms of the integrable ŝl(2)1 characters
χ`(z, q), ` = 0, 1

2 , as

χR[b, 12 ](z, ζ, q) = q−b
2/2ζb

η(q)
(
χ0(z, q)χ 1

2
(ζ, q) + χ 1

2
(z, q)χ0(ζ, q)

)
(II.57)

where the variables z, ζ, and q keep track of spin j3, charge b, and conformal weight of
the states in the module, respectively. With (II.57) the contribution

χR[b,j+= 1
2 ](z, ζ, q)χ

R
[−b,j−= 1

2 ](z, ζ, q̄) (II.58)

to the partition function with b = 0 yields a spectrum of scaling dimensions XR ∈ N0 + 1
4
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with conformal weights (∆R, ∆̄R) = (1
8 ,

1
8) of the lowest states. The latter can be

decomposed into an sl(2|1) octet [0, 1] and an eight-dimensional indecomposable, which
are degenerate in the isotropic 3⊗ 3̄ superspin chain [20]. The charge quantum number
b takes discrete values b ∈ Z/2 in the lattice model.

Requiring modular invariance, however, this restriction leads to a spectrum of confor-
mal weights which is unbounded from below. For a physical partition function which can
be compared with the spectrum of the lattice model, we are therefore forced to consider
continuous values of b which, after analytical continuation b→ iβ, yields continua of
conformal weights starting at XR = n+ 1

4 [87].
Note, however, that this proposal does not capture the primary fields with integer

scaling dimension (i.e. m+n even in (II.52)), in particular the sl(2|1) singlet state with
∆R = ∆̄R = 0. Since modular invariance appears to preclude the appearance of this
singlet on its own it has been argued in ref. [87] that this state is an artifact of the
lattice model and disappears in the continuum.

1.3 Quasimomentum: Characterization of the continuous spectrum

In the previous subsections, it has been shown that above the lowest states in the
sectors (b, j3) = (0, 1) and (b, j3) = (0, 3) for periodic boundary conditions as well
as (b, j3) = (0, 0) for antiperiodic boundary conditions, there exists a continuum of
levels with the same scaling dimension in the Conformal Field Theory describing the
thermodynamic limit. This subsection is dedicated to a characterization of these
continuous components of the spectrum in terms of the eigenvalues of an operator. To
this purpose, it is tempting to try to connect the integer ∆N with a conserved quantity
of the mixed superspin chain. Clearly, ∆N cannot be related to one of the Uq[sl(2|1)]
charges b and j3. Note, however, that under the Z2 symmetry (b, j3)→ (−b, j3) of the
model, the sets of rapidities {λ(1)

j } and {λ
(2)
j } are interchanged leading to a reversal of

the sign of ∆N .
In a notable work Ikhlef et al. [24] were interested in the very same question but for

the Z2-staggered six-vertex model. This model also exhibits continuous components of
the spectrum. For a characterization of the latter they introduced a quasimomentum
operator K, see also refs. [25, 26]. Its (real) eigenvalues K have been identified with
the quantum number parametrizing the spin j of the SL(2,R) affine primaries from
the continuous series, j = −1/2 + iK [24]. Based on this identification, the staggered
six-vertex model has been argued to be described by the SL(2,R)/U(1) Euclidean
black hole CFT in the thermodynamic limit. However, Bazhanov et al. recently
showed that the density of descendant states does not coincide with the expectations
from the SL(2,R)/U(1) CFT [90]. So the question of identifying the CFT for the
thermodynamic limit of the staggered six-vertex model remains unanswered although
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1. The Uq[sl(2|1)] superspin chain

the quasimomentum operator enabled huge progress.

Hence, we aim for a definition of a similar operator for the superspin chain studied
here, the mixed Uq[sl(2|1)] model. We may define a quasimomentum operator K by
means of

K = γ

2π(π − 2γ) log
(
τ (3)(λ)

[
τ (3̄)(λ)

]−1
) ∣∣∣

λ=0
. (II.59)

Its eigenvalues are parametrized by the Bethe roots according to

K({λ(1)
j }, {λ

(2)
j }) = γ

2π(π − 2γ)

×

 N1∑
k=1

log
(

sinh(λ(1)
k + iγ)

sinh(λ(1)
k − iγ)

)
−

N2∑
k=1

log
(

sinh(λ(2)
k + iγ)

sinh(λ(2)
k − iγ)

) . (II.60)

By construction, this operator commutes with the Hamiltonian (II.12). For a staggered
model as the one considered here, it belongs to an expansion of a different (compared
to e.g. the Hamiltonian and momentum operator) combination of the single-row trans-
fer matrices, i.e. τ (3)(λ)[τ (3̄)(λ)]−1, whose logarithm, unlike (II.11), is odd under the
exchange of the 3 and 3̄ representation. As an immediate consequence, K = 0 for the
levels from the spin-1 XXZ chain subset of the spectrum.

Following the mentioned previous work on the staggered six-vertex model [24–26],
we are led to study the dependence of the quasimomentum eigenvalue K on ∆N for
states belonging to several continua. Hence, we solved the Bethe Ansatz equations
(II.45) numerically for some ∆N > 0 and system sizes up to L ≤ 2000 in the sectors
(b, j3) = (0, 1) and (b, j3) = (0, 3) in the Ramond sector. We find that the ratio ∆N/K
is a linear function of log(L) for sufficiently large L, see fig. 12.

Note, for the ∆N = 1 excitation in the sector (0, 3), the corrections to this behaviour
are larger but appear to approach the same γ-dependent line asymptotically.

The same observation can be found when studying the continuum of excitations above
the ground state with quantum numbers (b, j3) = (0, 0) in the Neveu-Schwarz sector,
see fig. 13.

Based on these data we conjecture the following relation,

∆N
K

= π + 2γ
πγ

[
log

(
L

L0(γ)

)
+B

]
. (II.61)

Here, L0(γ) is a non-universal length scale and B is related to the finite part of the
density of states in the continuous component of the spectrum of scaling dimensions.
Since the allowed values for ∆N at a given system size L differ by multiples of 2, the
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Figure 12: ∆N/K as a function of log(L) for several deformation parameters γ for periodic
boundary conditions (i.e., in the Ramond sector). The circle symbols denote an excitation in the
sector (b, j3) = (0, 1) with ∆N = 1, crosses ∆N = 2, lower triangles ∆N = 3, squares ∆N = 4
and upper triangles ∆N = 5, respectively. The diamond symbols denote the ∆N = 1-state in
the sector (0, 3).

density of states may be defined by

ρ(K) ≡ 1
2
∂

∂K
∆N = π + 2γ

2πγ

(
log L

L0(γ) + ∂

∂K
(KB(K))

)
. (II.62)

As expected, ρ(K) diverges in the thermodynamic limit L→∞ while its finite part is
determined by the function B(K) entering our conjecture, eq. (II.61). Motivated by
the approach from Ikhlef et al. described above [23–25], it is tempting to compare the
density of states found in the lattice model with that from ‘candidate CFTs’ for the
thermodynamic limit. To this purpose, our findings for the function B(K) extracted
from our numerical results for the continuum of states in the sector (b, j3) = (0, 1) at
periodic boundary conditions for several values of the anisotropy γ are presented in fig.
14.

Obviously, different anisotropies lead to genuine different curve progressions. In
contrast, for the staggered six vertex model, the function B(K) was shown to agree
with the expectation from the SL(2,R)/U(1) black hole CFT [23–26] which is in
particular independent of γ. Hence, there is still an unknown γ-dependence hidden in
the function B(K) and our results do not coincide with those from the SL(2,R)/U(1)
CFT. Note, this γ-dependence cannot be absorbed by a different normalization of the
quasimomentum: Our results for the spectral flow in the following subsection indicate for
the quasimomentum of a state to be related to the spin j of the corresponding primary
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Figure 13: ∆N/K as a function of log(L) for several deformation parameters γ for antiperiodic
boundary conditions (i.e., in the Neveu-Schwarz sector). The circle symbols denote the excitation
above the ground state with ∆N = 1, crosses ∆N = 2, lower triangles ∆N = 3, squares ∆N = 4
and upper triangles ∆N = 5, respectively.

in the CFT by means of j = −1/2+ iK. Different normalizations of the quasimomentum
would prevent us from this immediate interpretation of the quasimomentum.

Unfortunately, the identification of the CFT by means of calculating the finite part of
the density of states as described here is reliant on the knowledge of the latter for any
‘candidate CFT’. Since only little is known about the density of states for continuous
components of the spectrum for non-unitary CFTs, we are unable to proceed further
towards an identification of the thermodynamic limit.

Instead, in order to provide support for eq. (II.61), we have computed the asymptotic
slope of the function ∆N/K assuming a rational dependence of the data on log(L).
In figure 15 the numerical data from the (0, 1) states are shown together with our
conjecture (II.61).
Using (II.61) the subleading contribution to the scaling dimensions (II.54) can be

expressed in terms of the quasimomentum K as

X(1,0)(K) = X(1,0) + (π + 2γ)(π − 2γ)
4γ2 K2. (II.63)

In this expression, the quasimomentum K enters as a quantum number for the non-
compact degree of freedom in the CFT.
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Figure 14: The function B(K) for the largest accessible system size, Leven = 2000 and
Lodd = 2001, respectively, and several anisotropies γ. Clearly, there is still an unknown
γ-dependence which is not captured by the well-known SL(2,R/U(1) ‘candidate CFT’.
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Figure 15: Slope of the function f(log(L)) ≡ ∆N/K as a function of the anisotropy γ. The
dashed line is the factor (π + 2γ)/(πγ) entering our conjecture (II.61).
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1. The Uq[sl(2|1)] superspin chain

We have used the numerical estimate for the amplitude A(γ) in (II.54)

A(γ) = π2

4
π − 2γ
π + 2γ , 0 ≤ γ < π

2 . (II.64)

Note, this is a refinement of the estimate from ref. [21] where a factor 5/2 instead of
π2/4 had been obtained without knowledge of the quasimomentum operator.

1.4 Spectral flow between the Neveu-Schwarz and Ramond-sector

In the previous subsections, we have studied the continuous component of the spectrum
and its characterization by means of the quasimomentum operator. In particular, the
eigenvalue of the quasimomentum enters in the finite size correction to the effective
scaling dimensions as a quantum number for the non-compact degree of freedom in
the non-unitary Conformal Field Theory describing the thermodynamic limit. In this
subsection, we focus on a different characteristic feature of such non-unitary Conformal
Field Theories, namely the appearance of non-normalizable states which emerge in the
spectrum of the superspin chain only when the corresponding operator in the CFT
becomes normalizable, e.g. for certain boundary conditions. To be more specific, we
study the spectrum of the staggered Uq[sl(2|1)] superspin chain as a function of the
twist ϕ = α+ π which, in the thermodynamic limit, corresponds to the spectral flow
between the Neveu-Schwarz and the Ramond sector. The results presented within this
subsection are published in [85].
In the presence of a twist ϕ in the boundary conditions, the corresponding effective

scaling dimensions of the superspin chain (II.12) are given by

Xeff
(m,w)(ϕ = α+ π) = −1

4δm+w∈2Z + m2

2k + k

2

(
w + ϕ

π

)2
, k = π

π − 2γ .
(II.65)

Note, for antiperiodic boundary conditions, ϕ = 0, this expression reproduces (II.55)
while for the periodic boundary conditions it is equivalent to (II.52) with a shift
w + 1→ w in the vorticity.

Here, we investigate the scaling dimensions of the ∆N = 1 state in sector (b, j3) = (0, 0)
for antiperiodic boundary conditions as we adiabatically change the twist angle. Hence,
we can follow this state under the spectral flow. For |ϕ| < ϕc = π/k, we observe that
its scaling dimension X∗(m,w)=(0,0)(ϕ) stays within the continuum above Xeff

(0,0)(ϕ). As
the twist approaches ±ϕc, the strange string with largest real part goes to ∞. Beyond
±ϕc the root configuration changes and the finite size scaling dimension of the state
deviates significantly from (II.65). Unlike higher excitations (|∆N | > 1) within this
class of Bethe states, it splits off from the emerging continuum above Xeff

(0,0)(ϕ), see
fig. 16. Based on our finite size data, we conjecture the following ϕ-dependence of the
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Figure 16: Evolution of the lowest states in the NS sector of the superspin chain of odd length
L with the twist angle α = −π + ϕ: bullets are the scaling dimensions obtained from the
solution of the Bethe equations (II.45) for L = 27 evolving from a root configuration consisting
of strange strings with |∆N | = 1 for ϕ = 0, i.e. the NS ground state, for anisotropy γ = 17π/40 .
Open circles show the flow of scaling dimensions with |∆N | = 3 and 5 for the same parameters.
Black lines indicate the lowest effective scaling dimensions Xeff

(m,w)(ϕ) of the superspin chain, i.e.
(m,w) = (0, 0), (1,−1), (2, 0), and (0,−1), for this anisotropy. The shaded areas indicate the
observed continua of scaling dimensions starting at Xeff

(m,w)(ϕ) with even m+w. The conjectured
ϕ-dependence of the discrete level X∗(0,0), eq. (II.66), is shown in red (dash-dotted lines indicate
continuations of the functions appearing in the piecewise definition of X∗(0,0)(ϕ) beyond their
domain of definition).

scaling dimension,

X∗(0,0)(ϕ) =

−
1
4 + k

2
(ϕ
π

)2 − 2k−1
(k−1)2

(
1
2 −

k
2
∣∣ϕ
π

∣∣)2
for ϕc ≤ |ϕ| ≤ ϕc,2

k
2
(
1− ϕ

π

)2 + 1
4

1
2k−1 for |ϕ− π| ≤ |ϕc,2 − π|

(II.66)

where ϕc,2 = π − π(k−1)
k(2k−1) .

In other words, we find that one state from the continuum above Xeff,NS(0, 0) evolves
under the spectral flow ϕ = 0 . . . π to a discrete level with dimension

X∗(0,0)(π) = 1
4
π − 2γ
π + 2γ = 1

4
1

2k − 1 (II.67)

in the Ramond sector. The Bethe root configuration for this state consists of (L− 1)/2
of the usual 2-strings (built from two complex conjugate rapidities on the same level
[108]) and, in addition, one single root at ∞ on either level, i.e.20

20This configuration has already been observed for L = 3 in Ref. [21] but not considered further.
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λ
(1)
j = −λ(2)

j ∈
{
µ±k : Im(µ±k ) ' ±γ2 , k = 1 . . . L− 1

2

}
∪ {∞} . (II.68)

Note that there are strong logarithmic finite size corrections to scaling to (II.67), similar
as for the states in the continuum, see figure 17.
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Figure 17: Scaling dimension of the discrete level in the Ramond sector, ϕ = π, as a function
of the anisotropy parameter γ: bullets are the numerical data for system size L = 501, the
dash-dotted line is the conjectured value (II.67) in the thermodynamic limit. The inset shows
the L dependence of the finite size data (•) for γ = 17π/40 together with the extrapolation
based on an assumed rational dependence of the data on 1/ logL (dashed line).

Increasing the twist beyond ϕ = π, we find that X∗(0,0)(ϕ) = X∗(0,0)(2π − ϕ). For
ϕ > 2π − ϕc,2 this level coincides with

X∗(0,−2) = Xeff
(0,−2)(ϕ)− 2k − 1

(k − 1)2

(1
2 −

k

2

∣∣∣∣ϕπ − 2
∣∣∣∣)2

, (II.69)

and disappears in the continuum above Xeff
(0,−2)(ϕ) at ϕ = 2π − ϕc.

Concluding our analysis of the scaling dimensions under the spectral flow, we note
that starting from the lowest state in the continuum above Xeff

(1,−1)(ϕ = π) (for even L)
we have observed another discrete level in the spectrum of the superspin chain

X∗(1,−1)(ϕ) = Xeff
(1,−1)(ϕ)− 2k − 1

(k − 1)2

(
1− k

2

∣∣∣∣ϕπ − 1
∣∣∣∣)2

, |ϕ− π| > 2π
k
. (II.70)

Let us now analyze the quasimomentum of the state with dimension X∗ (II.66)
identified above. As discussed in sec. 1.3, the quasimomentum allows to label the
continua of scaling dimensions: For the lowest state at antiperiodic boundary conditions
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Figure 18: quasimomentum of the discrete level for γ = 17π/40 vs. twist angle ϕ: filled (open)
symbols are the numerical data for the real (imaginary) part of K for system sizes L = 3 and
27. Dash-dotted line (in red) is the conjecture for Im(K), eq. (II.71), saturating at ϕ = ϕc,2.

but outside of the XXZ subspace (i.e. the ∆N = 1 state which was also part of the
numerical study in 1.3), the corresponding eigenvalue K is found to take real values not
only at ϕ = 0 but in the region |ϕ| < ϕc, see figure 18.
The amplitude vanishes as 1/ logL in the thermodynamic limit. This observation

agrees with the density of states observed in the continua [20, 21].
For |ϕ| > ϕc, however, i.e. as the discrete level (II.66) emerges from the continuum

of scaling dimensions, the quasimomentum becomes purely imaginary with a linear
dependence on the twist angle ϕ,

K∗(ϕ) = i

2(π − 2γ) (|ϕ| − ϕc) = i

(
k|ϕ|
2π −

1
2

)
for ϕc ≤ ϕ ≤ ϕc,2, (II.71)

where we have chosen the branch of the logarithm in (II.59) such that Im(K) ∈
[0, (k− 1)/2]. Corrections to scaling in this expression are small which allows to observe
this behaviour already for L = 3, see figure 18.

As for the scaling dimension (II.66), the ϕ-dependence of the quasimomentum changes
when the twist is increased beyond |ϕ| = ϕc,2: while K remains purely imaginary its
value saturates at

Im(K∗(ϕ)) = 4γ2

π2 − 4γ2 = (k − 1)2

2k − 1 for ϕ ≥ ϕc,2. (II.72)

Note that Im(K∗(π)) is smaller than the maximum γ/(π − 2γ) = (k − 1)/2 which is
possible according to the definition and the choice of the branch of the logarithm, see
(II.59).
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The emergence of a discrete level out of the continuum at a finite twist ϕc is strongly
reminiscent to the situation in the a(2)

2 spin chain [27]: in the black hole CFT describing
the low-energy behaviour of this lattice model it is understood as a consequence of
the inclusion of principal discrete representations of SL(2,R) as Kac-Moody primaries
in the field theory. For operators corresponding to normalizable states in the parent
WZNW theory of the model (i.e. states with a finite norm in the Hilbert space defined
by the CFT), the spin of these representations (related to the momentum along the
non-compact direction of the target space, an infinite cigar for the SL(2,R)/U(1) sigma
model) is restricted to values j ≤ −1/2 (see e.g. [109] for the normalizability of states
in WZNW models). To satisfy this bound a finite, non-zero twist has to be applied [92,
93].

For the bosonic SL(2,R)/U(1) coset at level k the spectrum of discrete representations
also needs to be truncated by the ’unitarity bound’ j ≥ −(k − 1)/2 to guarantee non-
negative conformal weights [89, 92, 106].
The appearance of the discrete level X∗ (II.66) in the spectrum of the superspin

chain at the critical twist ϕc accompanied with the change of quasimomentum from
real to imaginary can be interpreted in a similar way: states in the continuum of
scaling dimensions have real K, the discrete levels are characterized by an imaginary
quasimomentum. The observed bound Im(K) ≥ 0 for states in the lattice model
can be attributed to the normalizability of the corresponding primaries. Continuing
(II.71) to |ϕ| < ϕc would yield imaginary quasimomenta −1/2 ≤ Im(K) < 0 which is
not realized in the spectrum of the superspin chain. Hence, these results allow for a
direct interpretation of the quasimomentum of a state to be related to the spin of the
primary in the CFT for the thermodynamic limit by means of j = −1/2 + iK, in strong
reminiscence of the staggered six vertex model [25].

As for a restriction of Im(K) from above (similar to the unitarity bound in the string
theory), our data for the lattice model do not provide a conclusive answer. We would
need to see a level being ’absorbed’ by the continuum at such a bound under the spectral
flow (as is the case for the a(2)

2 spin chain [27]). It would be tempting to associate this
bound with Im(K) ≤ (k− 1)/2 as implied by our choice of the branch for the logarithm
in (II.59). Since the quasimomentum for the discrete level studied above saturates at
the value (II.72) below (k − 1)/2, however, our data cannot support this conjecture.

1.5 Summary

In this section, we have reviewed the construction of the staggered Uq[sl(2|1)] superspin
chain and its consecutive solution by means of the nested Algebraic Bethe Ansatz. We
have also briefly mentioned how a subset of the spectrum of scaling dimensions can
be obtained by mapping certain subsectors of the superspin chain to the XXZ spin-1
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Heisenberg model.
A particular feature of several superspin chains is the emergence of continuous

components in the spectrum of scaling dimensions. For the staggered Uq[sl(2|1)]
superspin chain, this feature was first discovered in [21]. The existence of continua in
the spectrum of scaling dimensions translates to a non-compact target space for the
Conformal Field Theory describing the thermodynamic limit. We have extended the
picture presented in [21] as we have found continua of scaling dimensions also for other
quantum numbers parametrizing the different sectors.

Motivated by the approach of Ikhlef et al. [23–25] we have sought a characterization
of the observed continuous components of the spectrum by means of a conserved charge.
To this purpose, we have defined a quasimomentum operator (II.59). In contrast to
the Hamiltonian and momentum operator which are both generated by an expansion
of log τ3(λ)τ3̄(λ), the quasimomentum originates in an odd combination of single-row
transfer matrices, i.e. log τ3(λ)(τ3̄(λ)−1).

By numerically solving the Bethe Ansatz equations for states belonging to the different
continua of scaling dimensions, we have shown that the quasimomentum operator
parametrizes the continuous components of the spectrum and thereby determines the
logarithmic corrections to scaling. Since the eigenvalues of the quasimomentum operator
allow for an extraction of the density of states for the continuous components of the
spectrum, we have compared the outcome to the known results for the SL(2,R)/U(1)
CFT. Unfortunately, the results do not coincide. Since the identification of the CFT
for the thermodynamic limit by calculating the density of states for the continuous
component of the spectrum is reliant on the knowledge of the latter for ‘candidate CFTs’,
the study of other symmetries on the target space of SL(2,R)/U(1), a semi-infinite
cigar which allows for both a continuous and discrete part of the spectrum, seems
to be promising. This might help to identify the Conformal Field Theory for the
thermodynamic limit.
Subsequently, we turned to a different characteristic of non-unitary CFTs, namely

the emergence of discrete levels. To this purpose we have studied the spectral flow in
the spectrum of the superspin chain under a twist in the boundary conditions. Based
on solutions of the Bethe Ansatz equations for twisted boundary conditions we have
identified a state from the continuous part of the spectrum in the Neveu-Schwarz sector
(i.e. with antiperiodic boundary conditions for the fermionic degrees of freedom) which
under variation of the twist becomes a discrete level in the Ramond sector. We have
found the following behaviour of the scaling dimension for this state with the twist
angle in the boundary conditions,
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1. The Uq[sl(2|1)] superspin chain

X∗(0,0)(ϕ) =


Xeff

(0,0)(ϕ) for |ϕ| < ϕc

Xeff
(0,0)(ϕ)− 2k−1

(k−1)2

(
1
2 −

k
2
∣∣ϕ
π

∣∣)2
for φc ≤ |ϕ| ≤ ϕc,2

k
2
(
1− ϕ

π

)2 + 1
4

1
2k−1 for ϕc,2 ≤ ϕ ≤ π.

(II.73)

In the CFT, levels can be attributed to the continuous or discrete part of the spectrum
based on their quasimomentum: We have found that states belonging to a continuum of
scaling dimensions have real quasimomenta while for discrete levels the quasimomentum
is purely imaginary. The need of a non-zero twist in the boundary conditions for the
discrete levels to appear in the spectrum of the lattice model has been argued to be
related to the normalizability of primary fields in the non-rational Conformal Field
Theory describing the thermodynamic limit.

Again, our results allow for a comparison with expectations from ‘candidate CFTs’
for the thermodynamic limit of the staggered superspin chain. The SL(2,R)/U(1)-
symmetric bosonic black hole theory would yield [110]

X∗(0,0)(ϕ)bos. SL(2,R)/U(1) = Xeff
(0,0)(ϕ)− 2

k − 2

(1
2 −

k

2

∣∣∣∣ϕπ
∣∣∣∣)2

for − k − 1
2 ≤ j ≤ −1

2 ,
(II.74)

the corresponding supersymmetric Kazama-Suzuki theory [111]

X∗(0,0)(ϕ)SUSY SL(2,R)/U(1) = Xeff
(0,0)(ϕ)− 2

k

(1
2 −

k

2

∣∣∣∣ϕπ
∣∣∣∣)2

for − k + 1
2 ≤ j ≤ −1

2 ,
(II.75)

rather than our results, eq. (II.73), which is in accordance with our findings from the
study of the density of states in the continuous component of the spectrum.
In summary, we have uncovered and characterized two interesting features of the

thermodynamic limit of the staggered 3⊗ 3̄ superspin chain, namely the emergence of
continua of scaling dimensions in the thermodynamic limit as well as the existence of
non-normalizable states which gives rise to discrete states appearing when a twist in
the boundary conditions is applied. To completely understand the thermodynamic limit
and its description in terms of a Conformal Field Theory, additional investigations have
to be performed.
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2 The operator content of the Uq[osp(3|2)]
superspin chain

A few years ago, the isotropic spin chains invariant under the action of the osp(n|2m)
superalgebra have been shown to exhibit a number of states in the eigenspectrum leading
to the same scaling dimension in the thermodynamic limit [19, 22]. This degeneracy in
the critical dimensions grows with the lattice size and has been seen as the signature
of the presence of non-compact degrees of freedom in the Conformal Field Theory
describing the thermodynamic limit [112]. Hence, this scenario is strongly reminiscent
of the Uq[sl(2|1)] superspin chain studied above.
One of the models contained in the aforementioned series, the osp(3|2) superspin

chain, may be used to describe the diffusion of particles moving on a square lattice
equipped with barriers which are placed randomly [19]. The barriers are tilted left and
right w.r.t. the lattice. An incoming particle will change its direction when hitting a
scatterer but will pass through a node if it is empty, see fig. 19. Thus, the particles’
paths form intersecting loops on the lattice which is eponymous for the model. The
local configurations of an intersecting loop at each node and the associated Boltzmann
weights are depicted in fig. 20.

w1 w2 w3

Figure 19: The scattering of incoming particles depends on the existence of barriers at each node.
The probabilities for the different vertices to appear are given by w1, w2 and w3, respectively.

w1 w2 w3

Figure 20: Possible local configurations of an intersecting loop at each node with the corre-
sponding Boltzmann weight w1, w2 and w3, respectively.



To calculate the partition function we may sum the contributions for each particle’s
path [18],

Z =
∑

loop configurations
wm1

1 wm2
2 wm3

3 zN (II.76)

where mi are the amount of the weights wi and N denotes the number of loops
in the corresponding configuration. The number z is called fugacity. In the case
z = 1, the intersecting loop model can be formulated as a supersymmetric vertex
model corresponding to the superspin chain which is built from the five-dimensional
fundamental representation of the osp(3|2) superalgebra.

In this section we turn towards the study of quantum deformations of the above-quoted
osp(3|2) superspin chain. Particularly, we are interested in uncovering the structure of
the scaling dimensions X with the deformation parameter q for the compact part of the
eigenspectrum. We will argue that the dependence of such critical exponents with q
can be expressed in terms of the conformal content of two Coulomb gases with distinct
compactification radii. In the rational limit q → 1, one of the Coulomb gases does not
contribute to the critical behaviour since the respective vortex exponent diverges. This
allows for a reasoning for the abundance of states with divergent scaling dimensions
found in previous work on the isotropic osp(3|2) superspin chain [19]. As for the
Uq[sl(2|1)] staggered superspin chain, we find that the feature of having a family of
distinct states with the same leading finite-size correction appears to persist for generic
values of q 6= 1.

This section is organized as follows. In the first subsection 2.1, we will define the
Lie superalgebra osp(3|2) and briefly discuss the representation that will be used as
the carrier space for the local degrees of freedom in the osp(3|2) superspin chain.
Subsequently in 2.2 we will shortly review the Bethe Ansatz solution for the Uq[osp(3|2)]
superspin chain using two suitable distinct grading bases with generic toroidal boundary
conditions. Before we will investigate the operator content, we will compute certain
thermodynamic properties such as the low momenta dispersion relation for low lying
excitations in 2.3 and analytically study the leading finite-size corrections in certain
spectral sectors of the superspin chain using the root density method. This will provide
some insights to conjecture a generic Ansatz for the behaviour of the scaling dimensions
with the deformation parameter. In addition, we will point out a correspondence
between the Bethe Ansatz description and the energies of certain eigenstates of the
superspin chain with those of the integrable spin S = 1 Heisenberg XXZ model for a
particular value of the deformation parameter. This relationship will turn out to be
useful to verify our working proposal for the scaling dimensions. In subsection 2.4, we
will solve the Bethe Ansatz equations numerically to compute the eigenenergies and
scaling dimensions of the superspin chain for many states in nine sectors corresponding
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2. The operator content of the Uq[osp(3|2)] superspin chain

to different eigenvalues of the generators of the Cartan subalgebra of osp(3|2).
Altogether we have investigated the finite-size corrections of around seventy distinct

states. The analysis of the subleading finite-size corrections suggests that some states
exhibit a combination of a power law and a logarithmic behaviour. The results presented
in this section are published in [113], the corresponding research data can be accessed
online [114].

2.1 The osp(3|2) Lie superalgebra

Within this subsection we briefly define the osp(3|2) Lie superalgebra and discuss its
irreducible representations following [115]..
The even part of the osp(3|2) Lie superalgebra is given by the direct sum

osp(3|2)0 = so(3)⊕ sp(2) ∼= su(2)⊕ su(2). (II.77)

Hence, the associated generators are composed of two sets of su(2) generators s±, s3

and t±, t3 fulfilling

[s3, s±} = ±s±, [s+, s−} = 2s3

[t3, t±} = ±t±, [t+, t−} = 2t3
[sµ, tν} = 0 (µ, ν = ±, 3).

(II.78)

The odd part however is built from the elements of the tensor product of a three-
dimensional so(3) tensor with a two-dimensional sp(2) tensor [115]. We will call the
corresponding generators Zα,β with α = −1, 0,+1 and β = −1/2,+1/2. Their super
Lie products with the elements of the even part read

[s3, Zα,β} = αZα,β

[s±, Zα,β} = ((1∓ α)(2± α))1/2 Zα±1,β

[3, Zα,β} = βZα,β

[t±, Zα,β} =
((1

2 ∓ β
)(3

2 ± α
))1/2

Zα,β±1

(II.79)

whereas the non-vanishing supercommutators of the elements of Z are given by

[Z1,1/2, Z0,−1/2} = 1√
2
s+, [Z0,1/2, Z0,1/2} = 2t+,

[Z1,1/2, Z−1,1/2} = −2t+, [Z0,1/2, Z0,−1/2} = −2t3,

[Z1,1/2, Z−1,−1/2} = −s3 + 2t3, [Z0,1/2, Z−1,−1/2} = − 1√
2
s−, (II.80)
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[Z1,−1/2, Z0,1/2} = − 1√
2
s+, [Z0,−1/2, Z0,−1/2} = −2t−,

[Z1,−1/2, Z−1,1/2} = s3 + 2t3, [Z0,−1/2, Z−1,−1/2} = 1√
2
s−

[Z1,−1/2, Z−1,−1/2} = 2t−.

Due to the algebra inclusion

su(2)⊕ su(2) ∼= osp(3|2)0 ⊂ osp(3|2), (II.81)

every irreducible representation of osp(3|2) is also an irrep of su(2)⊕su(2) and therefore
can be decomposed into the direct sum of two su(2) irreps. For example, the five-
dimensional fundamental representation of osp(3|2) contains (1, 0) and (0, 1/2) su(2)
representations, e.g. it can be seen as a direct sum of each one spin 1 and one spin 1/2
representation. Within this irrep, the elements of osp(3|2) are of the following form
[116], 

a 0 b x u

0 −a c y v

−c −b 0 z w

v u w d e

−y −x −z f −d


(II.82)

where all non-zero entries are complex numbers. The even elements fulfill x = y = z =
u = v = w = 0, while for the odd elements a = b = c = d = e = f = 0.

A quantum deformation21 of this osp(3|2) irrep will be used in the remaining section
as local Hilbert space for a corresponding superspin chain. A detailed analysis of all
(finite- and infinite-dimensional) irreducible representations of osp(3|2) can be found in
[115].

2.2 Definition and solution of the Uq[osp(3|2)] superspin chain

In the following, we will investigate a spin chain which can be derived from a vertex model
based on the quantum deformation of the five-dimensional fundamental representation
of the Lie superalgebra osp(3|2). Its R-matrix in the Weyl-basis reads [117]

Ra,b(λ) = Pa,bŘa,b(λ) with

Řa,b(λ) =
5∑
j=1
j 6=j′

aj(λ)e(a)
jj ⊗ e

(b)
jj + b(λ)

5∑
j,k=1

j 6=k,j 6=k′

e
(a)
kj ⊗ e

(b)
jk

21See 2.5 in part I for a general scheme for the construction of quantum deformations. More details
about the explicit construction of Uq[osp(3|2)] can be found in [68].
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2. The operator content of the Uq[osp(3|2)] superspin chain

+ c̄(λ)
5∑

j,k=1
j<k,j 6=k′

e
(a)
jj ⊗ e

(b)
kk + c(λ)

5∑
j,k=1

j>k,j 6=k′

e
(a)
jj ⊗ e

(b)
kk (II.83)

+
5∑

j,k=1
djk(λ)e(a)

j′k ⊗ e
(b)
jk′ .

where Pa,b denotes graded permutation operator within the grading (p1, p2, p3, p4, p5)
and pj = 0 (1) for even (odd) indices,

Pa,b =
5∑

j,k=1
(−1)pjpke(a)

jk ⊗ e
(b)
kj . (II.84)

To each index j we have defined a conjugated index j′ = 6− j. The functions occurring
in the R-matrix are given by

aj(λ) =
(
e2λ − q−1

) (
e2λ(1−pj) − q2e2λpj

)
, (II.85)

b(λ) = q
(
e2λ − 1

) (
e2λ − q−1

)
, (II.86)

c(λ) =
(
1− q2

) (
e2λ − q−1

)
, (II.87)

c̄(λ) = e2λc(λ) (II.88)

djk(λ) =



q
(
e2λ − 1

) (
e2λ − q−1

)
+ e2λ (q2 − 1

) (
q−1 − 1

)
, j = k = 3(

e2λ − 1
) [(

e2λ − q−1
)

(−1)pjq2pj + e2λ (q2 − 1
)]
, j = k 6= 3(

q2 − 1
) [(

e2λ − 1
)
εj
εk
qtj−tk−1 − δj,k′

(
e2λ − q−1

)]
, j < k(

q2 − 1
)
e2λ

[(
e2λ − 1

)
εj
εk
qtj−tk − δj,k′

(
e2λ − q−1

)]
, j > k

(II.89)

where q = exp(iγ) and 0 < γ < π parametrizes the anisotropy. The numbers εj and tj
depend on the grading in the following way,

εj =


(−1)−pj/2, j = 1, 2,

1, j = 3,

(−1)pj/2, j = 4, 5;

(II.90)

tj =



j +
(

1
2 − pj + 2

2∑
k=j

pk,

)
, j = 1, 2,

3, j = 3,

j −
(

1
2 − pj + 2

j∑
k=4

pk

)
, j = 4, 5.

(II.91)
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For the construction of the Hamiltonian by means of the Quantum Inverse Scattering
Method, we construct the monodromy and transfer matrix,

T (λ) = GRA,L(λ)RA,L−1(λ)...RA,1(λ), (II.92)

τ(λ) = strA T (λ) (II.93)

where G is a diagonal matrix represented here as

G =



eiφ1 0 0 0 0
0 1 0 0 0
0 0 eiφ2 0 0
0 0 0 e2iφ2 0
0 0 0 0 ei(2φ2−φ1)


, 0 ≤ φ1, φ2 ≤ π. (II.94)

Using the matrix G allows for a study of general toroidal boundary conditions for the
superspin chain. Although the focus of this section lies in the case of genuine periodic
chains, i.e. (φ1, φ2) = (0, 0) or G = 1, it will turn out to be convenient to formulate
the problem for the generic case. Since R-matrix commutes with two distinct U(1)
symmetries, it also commutes with G,

[R12(λ),G ⊗ G] = 0, (II.95)

hence, the boundary conditions imposed by the matrix G preserve the integrability of
the model.
Specifically, we shall investigate the spectrum of the antiferromagnetic superspin

chain with L sites subject to these boundary conditions. The Hamiltonian with nearest
neighbour interactions expressed in terms of the R-matrix and the twist matrix G reads

H = i
L−1∑
j=1

∂

∂λ
Rjj+1(λ)|λ=0 + iG−1

L

∂

∂λ
RL1(λ)|λ=0GL. (II.96)

The diagonalization of this Hamiltonian (when expressed as logarithmic derivative of the
transfer matrix, eq. (II.93)) can be performed within the Algebraic Bethe Ansatz leading
to a set of algebraic equations for the Bethe roots parametrizing the eigenspectrum.
The calculation in full detail is presented in [117]. Although the auxiliary space is five-
dimensional, the nested Bethe Ansatz solution involves only one step of nesting22. This
becomes manifest after the first Bethe Ansatz where we arrive at a model isomorphic
to the su(2)-symmetric S = 1 Heisenberg XXZ chain. Hence, only one step of nesting
is necessary. Note, in the first Bethe Ansatz used, there occur some subtleties in the

22Mathematically, this stems from the fact that rank(Uq[osp(3|2)]) = 2.
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2. The operator content of the Uq[osp(3|2)] superspin chain

construction of eigenstates by acting with creation operators on the reference state since
the right combination of creation operators have to be used, see [118]. Besides, the
explicit calculation comprises basically the same steps as the solution of the staggered
Uq[sl(2|1)] superspin chain, therefore we will present only the main results.

The presence of two U(1) symmetries allows for a decomposition of the Hilbert space
of the model into sectors according to the eigenvalues of the corresponding charges.
Labeling these sectors by a pair of integers (n1, n2), there exist two convenient reference
states which can be used for the Bethe Ansatz, namely the fully polarized states in
the sectors (0, L) and (L, 0). Selecting one of these also fixes the ordering of bosonic
and fermionic basis states and therefore the parities pj to bfbfb ≡ (0, 1, 0, 1, 0) and
fbbbf ≡ (1, 0, 0, 0, 1), respectively. Likewise the Uq[sl(2|1)] superspin chain, the Bethe
Ansatz equations depend on the chosen grading. Below, we will use whichever turns
out to be more convenient for the particular state, hence, the Bethe Ansatz equations
in both formulations are presented. As we will emphasize below, the model defined in
this way is critical for 0 ≤ γ ≤ π. Thus, we again expect the thermodynamic limit of its
low-energy spectrum to be described by a Conformal Field Theory.

2.2.1 Bethe Ansatz in the bfbfb grading

The eigenstates of the Hamiltonian in the grading bfbfb are parametrized by two sets
of complex numbers λ(1)

j , j = 1, . . . , L− n2 and λ(2)
j , j = 1, . . . , L− n1 − n2, satisfying

the Bethe equations
sinh(λ(1)

j + iγ/2)
sinh(λ(1)

j − iγ/2)

L = eiφ1
L−n1−n2∏
k=1

sinh(λ(1)
j − λ

(2)
k + iγ/2)

sinh(λ(1)
j − λ

(2)
k − iγ/2)

,

j = 1, · · · , L− n2,

(II.97a)

L−n2∏
k=1

sinh(λ(2)
j − λ

(1)
k + iγ/2)

sinh(λ(2)
j − λ

(1)
k − iγ/2)

= ei(φ1−φ2)
L−n1−n2∏
k=1
k 6=j

sinh(λ(2)
j − λ

(2)
k + iγ)

sinh(λ(2)
j − λ

(2)
k − iγ)

×
sinh(λ(2)

j − λ
(2)
k − iγ/2)

sinh(λ(2)
j − λ

(2)
k + iγ/2)

,

j = 1, · · · , L− n1 − n2.

(II.97b)

Note, in this grading the algebra inclusion osp(3|2) ⊃ osp(1|2) becomes explicit: the
second set of equations coincides with those for an inhomogeneous osp(1|2) vertex model
[19, 22, 117].
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In terms of these parameters the corresponding energy is given by

E
(
{λ(a)

j }, L
)

= −
L−n2∑
j=1

2 sin γ
cos γ − cosh(2λ(1)

j )
− 2L cot γ. (II.98)

This choice of grading is particularly convenient to study the thermodynamic limit of
the superspin chain in the subsector with charges (n1 = 0, n2). In these subsectors, the
numbers of Bethe roots for both levels coincides which helps to simplify the analysis.
Comparing the spectrum obtained by exact diagonalization of the Hamiltonian with our
numerical solution of the Bethe equations (II.97) for small lattice sizes, we find that the
Bethe root configurations for levels in these sectors are dominated by pairs of complex
conjugate rapidities with Im

(
λ

(1)
j

)
' ±3γ/4 and Im

(
λ

(2)
j

)
' ±γ/4 (‘2-strings’). To

compute bulk properties of the superspin chain we concentrate our analysis of the Bethe
equations to the case of genuine periodic boundary conditions, φ1 = φ2 = 0. In this
case we find that the differences between the real centers of two-strings on both levels
become exponentially small for large L. This motivates the following string hypothesis
involving two bfbfb-Bethe roots from each level for the analysis of the thermodynamic
limit, L→∞:

λ
(1)
j,± ' ξj ± i

3γ
4 , λ

(2)
j,± ' ξj ± i

γ

4 , ξj ∈ R. (II.99)

Rewriting the Bethe equations (II.97) in terms of the real ξj , we find that the second
set of Bethe equations is automatically satisfied. Therefore, we can restrict our study
to the analysis of the remaining first level equations which, after taking the logarithm,
read

L

[
Φ
(
ξj ,

5γ
4

)
− Φ

(
ξj ,

γ

4

)]
= −2πQj+

+
(L−n2)/2∑
k=1

[
Φ
(
ξj − ξk,

3γ
2

)
+ Φ (ξj − ξk, γ)− Φ

(
ξj − ξk,

γ

2

)]
,

j = 1, . . . , L− n2
2 ,

(II.100)

where Φ(x, γ) = 2 arctan [tanh x cot γ]. The numbers Qj define the possible branches
of the logarithm. They are integers or half-integers, depending on the parity of the
number of strings (L− n2)/2 (which is an integer for the states considered here).

In this formulation, the thermodynamic limit can be studied within the root density
approach [119] in which the roots ξj are expected to fill the entire real axis. Their
density σ(ξ) can be defined by the condition

Lσ(x)dx = Number of ξ′js in [x, x+ dx]. (II.101)
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The thermodynamic limit L→∞ may be studied using the counting function Z(x),

Z(x) = −1
2π

{
LΦ

(
x,

5γ
4

)
− LΦ

(
x,
γ

4

)

−
(L−n2)/2∑
k=1

[
Φ
(
x− ξk,

3γ
2

)
+ Φ (x− ξk, γ)− Φ

(
x− ξk,

γ

2

)]}
.

(II.102)

By means of its definition, the counting function maps the centers of Bethe roots to
the (half-) integers Qj , Z(x)|x=ξj = Qj/L. Hence, the counting function changes every
time its argument passes the center of a Bethe root which allows us to write

LdZ(x)dx = L
dZ

dx
dx = Number of ξj in [x, x+ dx]

⇒ σ(x) = dZ(x)
dx

.

(II.103)

Thus, deriving the counting function enables us to recast the Bethe equations (II.100)
into an integral equation for the density σ(x) in the limit L→∞,

2πσ(x) = Φ′
(
x,
γ

4

)
− Φ′

(
x,

5γ
4

)
+

+
∫ ∞
−∞

dy
[
Φ′
(
x− y, 3γ

2

)
+ Φ′ (x− y, γ)− Φ′

(
x− y, γ2

)]
σ(y)

(II.104)

where
Φ′(x, γ) = 2 sin(2γ)

cosh(2x)− cos(2γ) . (II.105)

The integral equation (II.104) can be solved by the standard Fourier transform method
leading to

σ(x) = 1
γ cosh(2πx/γ) . (II.106)

Using this expression, we can calculate the energy per site ε∞ in the infinite volume
limit,

ε∞ = −
∞∫
−∞

dx
sinh

(γx
2
)

cosh
(

(π−3γ/2)x
2

)
sinh

(
πx
2
)

cosh
(γx

4
) − 2 cot(γ) = −2 cot γ2 . (II.107)

Note, the density of roots and the energy density coincide with the corresponding
expressions of the spin S = 1 XXZ model [120]. Furthermore, since the energy and
momentum of elementary excitations above the ground state are given in terms of the
root density as

ε(x) = 2πσ(x), p(x) =
∞∫
x

dy ε(y), (II.108)
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we find that the superspin chain, too, has gapless excitations with linear dispersion

ε(p) ∼ vF |p| (II.109)

with Fermi velocity vF = 2π/γ.

2.2.2 Bethe Ansatz in the fbbbf grading

Alternatively, the Algebraic Bethe Ansatz can be carried out in the grading fbbbf . In
this case, the eigenstates are parametrized by roots to a different set of Bethe equations,

sinh(λ(1)
j + iγ/2)

sinh(λ(1)
j − iγ/2)

L = eiφ1
L−n1−n2∏
k=1

sinh(λ(1)
j − λ

(2)
k + iγ/2)

sinh(λ(1)
j − λ

(2)
k − iγ/2)

,

j = 1, · · · , L− n1,

(II.110a)

L−n1∏
k=1

sinh(λ(2)
j − λ

(1)
k + iγ/2)

sinh(λ(2)
j − λ

(1)
k − iγ/2)

= eiφ2
L−n1−n2∏
k=1
k 6=j

sinh(λ(2)
j − λ

(2)
k + iγ/2)

sinh(λ(2)
j − λ

(2)
k − iγ/2)

,

j = 1, · · · , L− n1 − n2.

(II.110b)

These equations are related to (II.97) by a particle-hole transformation in the rapidity
space [121]. This transformation implies that the second level roots λ(2) coincide in the
two formulations while the first level ones, λ(1), depend on the choice of grading, bfbfb
and fbbbf . In the following, we shall use the same notation but specify the underlying
grading, whenever specific root configurations are discussed.

Using the fbbbf grading, the energy of the corresponding eigenstates is given in terms
of the Bethe roots by

E({λ(a)
j }, L) =

L−n1∑
j=1

2 sin γ
cos γ − cosh(2λ(1)

j )
. (II.111)

Again, the analysis of the thermodynamic limit is simplified when we consider charge
sectors where the numbers of rapidities λ(a)

j on both levels a = 1, 2 are equal, i.e.
(n1, n2 = 0) for fbbbf grading. Here, we find that the Bethe root configurations for
low-energy states of (II.96) are dominated by pairs of complex conjugate rapidities with
imaginary parts Im

(
λ

(a)
j

)
' ±γ/4 on both levels, a = 1, 2. As the system size L grows,

the root configurations on the two levels become exponentially close. Therefore, we
can proceed as above. To study these levels in the thermodynamic limit, L→∞, we
rewrite the Bethe equations in terms of the real centers ξj of the roots containing four
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2. The operator content of the Uq[osp(3|2)] superspin chain

fbbbf Bethe roots

λ
(1)
j,± ' ξj ± i

γ

4 , λ
(2)
j,± ' ξj ± i

γ

4 , ξj ∈ R. (II.112)

As a result, the second level of the Bethe equations are automatically satisfied23 and
the spectrum in these sectors is parametrized in terms of the string equations

L

[
Φ
(
ξj ,

3γ
4

)
+ Φ

(
ξj ,

γ

4

)]
= 2πQj

+
(L−n1)/2∑
k=1

[
2Φ
(
ξj − ξk,

γ

2

)
+ Φ (ξj − ξk, γ)

]
,

j = 1, . . . , L− n1
2 .

(II.113)

Again, the numbers Qj defining the possible branches of the logarithm are integers or
half-integers, depending on the parity of the integer (L− n1)/2.

Note, the same set of equations is obtained for the integrable spin S = 1 XXZ model
are rewritten using a suitable string hypothesis [108]. This identification extends to
the expressions for the corresponding eigenenergies. Therefore, we can rely on existing
results for the spin S = 1 Heisenberg model to obtain certain properties of the superspin
chain in the thermodynamic limit L → ∞. In complete agreement with our results
for the (0, n2) charge sectors based on the Bethe Ansatz in the bfbfb grading, the
energy density and dispersion of gapless excitations are given by (II.107) and (II.109),
respectively.

2.3 Finite-size spectrum

To initiate the investigation of the operator content of the q-deformed osp(3|2) superspin
chain we have studied its spectrum for small system sizes by the exact diagonalization of
(II.96) with toroidal boundary conditions (φ1 = 0, φ2). Based on our results we observe
that the lowest energy in the charge sector (n1, n2) = (0, 0) is given by

E(0,0)(L) ≡ −2L cot γ2 , (II.114)

without any finite-size corrections and independent of φ2. Note, this is exactly the
energy Lε∞ obtained within the root density approach for L → ∞, see eq. (II.107).
As we will see below, however, this is not the ground state of the superspin chain for
finite γ. Inspite of this we shall take this level as a point of reference and compute the
23Strictly speaking, this occurs for the twist φ2 = π due to the emergence of a minus sign on the left

hand side of the second level Bethe equations (II.110) when λ
(1)
j = λ

(2)
j . Here, however, we are

interested in properties of the thermodynamic limit which is assumed to be independent of specific
toroidal boundary conditions.
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effective scaling dimensions, Xeff, for the states considered below by means of

Xeff(L) = L

2πvF
(E(L)− Lε∞) . (II.115)

2.3.1 Root density approach

Before we present our numerical results for the spectrum of scaling dimensions based on
solutions of the Bethe equations (II.97) and (II.110), we extend our analytic treatment
of the thermodynamic limit in the previous subsections to get first insights into the
finite-size scaling of the lowest states in the charge sectors (n1 = 0, n2) and (n1, n2 = 0).
Following de Vega and Woynarovich [122] we compute the corresponding finite-size
energy gaps at large but finite L within the root density approach based on the respective
string hypotheses.
Starting from the bfbfb string equations (II.100) for the lowest state in the sector

(0, n2), we find

E(0,n2)(L)− Lε∞ '
2πvF
L

(
n2

2
γ

4π

)
+O

( 1
L

)
, n2 = 1, 2, 3, . . . (II.116)

The root density approach neglects possible contributions to the scaling dimensions
due to deviations of the Bethe roots from the string hypothesis (II.99). Here, however,
it appears that we are in a fortunate situation as far as the correct 1/L behaviour is
concerned. Our prediction (II.116) reproduces the exact energy (II.114) for n2 = 0 and
is confirmed by our numerical analysis based on the full Bethe equations in the sectors
(0, n2 > 0), see subsection 2.4 below.

Similarly, we can study the finite-size scaling of the lowest states in the sectors (n1, 0)
based on the fbbbf string hypothesis (II.112). In fact, the large L corrections resulting
from (II.113) have already been studied for the XXZ chain [100]. Adapting this approach
to the present model we find that, for n1 odd, the finite-size scaling is given by

E(n1,0)(L)− Lε∞ '
2πvf
L

(
n2

1
(π − γ)

4π − 1
4

)
+O

( 1
L

)
, n1 = 1, 3, 5, . . . (II.117)

Once again, there arise subtleties due to the approximations entering the string hy-
pothesis. Deviations from (II.112), either in the imaginary parts of the roots forming
the strings or between the string centers on level one and two, can modify the scaling
dimensions substantially. In spite of that we shall see that the numerical analysis
performed in subsection 2.4 will in fact confirm the proposal II.117 for the lowest state
when n1 is odd.
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2. The operator content of the Uq[osp(3|2)] superspin chain

2.3.2 Relation to the spin S = 1 XXZ model

Here we provide additional support for the proposed finite-size spectrum by uncovering
relations between the q-deformed osp(3|2) superspin chain and the S = 1 XXZ model.
At the particular choice of γ = π/2 for the deformation parameter, the charge sectors
(0, n2) and (n1, 2) of the superspin chain can be shown to contain the eigenenergies of
the spin S = 1 XXZ model at the same anisotropy.
We begin by considering the bfbfb Bethe equations in the subsector (0, n2). It is

straightforward to see that for γ = π/2 the root configuration

λ
(1)
j = λ

(2)
j + i

π

2 = µj + i
π

2 , j = 1, · · · , L− n2 (II.118)

automatically satisfies the second set of Bethe equations (II.97). The remaining first
level Bethe equations constrain the rapidities µj by the relations

[
sinh(µj + iπ/4)
sinh(µj − iπ/4)

]L
= (−1)n2+1

L−n2∏
k=1
k 6=j

sinh(µj − µk + iπ/4)
sinh(µj − µk − iπ/4) , j = 1, · · · , L− n2 .

(II.119)
These are exactly the Bethe equations of the spin S = 1 XXZ model with twisted
boundary conditions ϕ = 0 (ϕ = π) in the sector with odd (even) magnetization n2.
Furthermore, the corresponding energy (II.98) of the superspin chain coincides with the
expression for the XXZ model. Therefore, there exists a direct correspondence between
some energy levels of the superspin chain in the subsectors (0, n2) and the spectrum of
the S = 1 XXZ model with suitably twisted boundary conditions for γ = π/2. This
observation supports our proposal (II.116) based on the root density method. In fact,
from the conformal content of the periodic, i.e. ϕ = 0, Heisenberg XXZ S = 1 model
with anisotropy γ = π/2 in the sector with odd n = n2 and vorticity m = 0 we find

EXXZ
n2,0 (L)− Lε0

γ=π
2= 2πvf

L2

(
n2

2
8 + 1

8 −
c

12

)
= 2πvf

L2

(
n2

2
8

)
, (II.120)

in perfect agreement with our proposal. The same holds for n2 even using the operator
content of the XXZ S = 1 model but now with antiperiodic boundary conditions, ϕ = π.
For more details about the main results for the XXZ S = 1 Heisenberg model we refer
to the appendix A.1.

Similarly, we now consider the fbbbf Bethe equations in the sector (n1, 2). Substituting
a root configuration where the second level roots λ(2)

j coincide with L− n1 − 2 of the
first level ones, i.e.
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λ
(1)
j = λ

(2)
j ≡ µj for j = 1, . . . , L− n1 − 2 , (II.121)

into the second set of Bethe equations (II.110) we see that they are fulfilled for arbitrary
values of the µj provided that the two remaining first level roots are given by λ(1)

L−n1−1 = Λ
and λ

(1)
L−n1

= Λ + iπ/2. For even L − n1, the first level Bethe equations for such a
configuration can be satisfied provided that Λ is chosen to be one of the roots of24

[sinh(Λ + iπ/4)
sinh(Λ− iπ/4)

]L
=

L−n1−2∏
k=1

sinh(Λ− µk + iπ/4)
sinh(Λ− µk − iπ/4) . (II.122)

Further, the set of rapidities {µj}L−n1−2
j=1 has to fulfill the Bethe equations of the

integrable S = 1 XXZ model with antiperiodic boundary conditions, ϕ = π, in the
sector with magnetization n = n1 + 2

[
sinh(µj + iπ/4)
sinh(µj − iπ/4)

]L
= −

L−n1−2∏
k=1
k 6=j

sinh(µj − µk + iπ/4)
sinh(µj − µk − iπ/4) , j = 1, · · · , L− n1 − 2

(II.123)
We further note that the contributions of the roots λ(1) = Λ, Λ+iπ/2 to the corresponding
energy (II.111) of the superspin chain cancel each other for γ = π/2. Thus, we have
established another one-to-one correspondence between certain eigenenergies of the
superspin chain, now in the charge sectors (n1, 2), and the spectrum of the antiperiodic
spin S = 1 Heisenberg model with even magnetization n1 at γ = π/2. We have checked
numerically that the complete spectrum of the latter appears in that of the superspin
chain for lengths up to L = 8.

The spectral inclusions appearing for the deformation parameter γ = π/2 are summa-
rized as

Spec[XXZ(ϕ = 0)]n ⊂ Spec[osp(3|2)](0,n) for n odd,

Spec[XXZ(ϕ = π)]n ⊂ Spec[osp(3|2)](0,n) for n even,

Spec[XXZ(ϕ = π)]n+2 ⊂ Spec[osp(3|2)](n,2), for n even.

(II.124)

where XXZ(ϕ) refers to the Heisenberg XXZ S = 1 model with toroidal boundary
conditions ϕ. In Table 1 we exhibit these inclusions explicitly for L = 7.

Again, we emphasize that these inclusions are particular for the model with the spe-
cially chosen deformation parameter γ = π/2 where we observe additional degeneracies
in the finite-size spectrum of the superspin chain. Apart from this special point, we
have no evidence for such a relation with the XXZ model. Further, the eigenspectrum
24Note that Λ = 0 is a solution of this equation for any set {µj}L−n1−2

j=1 which is invariant under
µ↔ −µ.
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2. The operator content of the Uq[osp(3|2)] superspin chain

osp(3|2)(n1,n2) XXZ(ϕ)n
(0, 0) n = 0, ϕ = π

(0, 1) n = 1, ϕ = 0
(0, 2) n = 2, ϕ = π

(0, 3) n = 3, ϕ = 0
(0, 4), (2, 2) n = 4, ϕ = π

(0, 5) n = 5, ϕ = 0
(0, 6), (4, 2) n = 6, ϕ = π

(0, 7) n = 7, ϕ = 0

Table 1: Spectral inclusion for L = 7 between sectors of the osp(3|2) and the Heisenberg XXZ
spin-S = 1 chains for γ = π/2.

does not appear to be invariant under γ ↔ π − γ.

2.4 Numerical study of the operator content

In this subsection we analyze the finite-size scaling of the low-lying excitations of the
superspin chain with an even number of lattice sites in a given charge sector (n1, n2).
Specifically we shall consider the nine distinct sectors with n1 and n2 taking values from
the set {0, 1, 2}.

As mentioned earlier, the root configurations of the low lying levels are dominated by
the string complexes (II.99) and (II.112) depending on the grading used. Apart from
these, most of the solutions to the Bethe equations contain a finite number of roots
which do not belong to one of these complexes. A complete classification of the patterns
formed by these additional roots for the Uq[osp(3|2)] superspin chain is not known. In
our numerical work we have observed the following configurations:

1va: 1-strings with parity v = ±1 on level a = 1, 2,

λ(a) = ξ + i
π

4 (1− v), (II.125a)

2+
a : 2-strings with parity v = 1 on level a = 1, 2,

λ
(a)
± ' ξ ± i

γ

4 , (II.125b)

2̄va: wide 2-strings with parity v = ±1 on level a = 1, 2:

λ
(a)
± ' ξ + i

π

4 (1− v)± i3γ4 , (II.125c)
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3v12: mixed 3-strings with parity v = ±1, combining two level-1 and one level-2 roots as

λ
(1)
± ' ξ + i

π

4 (1− v)± iγ2 , λ(2) = ξ + i
π

4 (1− v) (II.125d)

3v21: mixed 3-strings with parity v = ±1, combining one level-1 and two level-2 roots,

λ(1) = ξ + i
π

4 (1− v), λ
(2)
± ' ξ + i

π

4 (1− v)± iγ2 , (II.125e)

where ξ ∈ R.
We note that both the root complexes (II.99) and (II.112) and the string configurations

(II.125b)–(II.125e) of length greater than 1 may appear strongly deformed in Bethe root
configurations for finite L or large real centers ξ. In such cases it may not be possible
to discriminate between 2-strings, wide 2-strings, and the components of mixed three
strings with Im(λ) /∈ {0, π/2}. In these cases the corresponding roots appear as

za: pairs of complex conjugate Bethe roots on level a = 1, 2:

λ
(a)
± = ξ ± iη, ξ ∈ R, 0 < |η| < π

2 , (II.125f)

where we have used that solutions to the Bethe equations are defined modulo iπ only.
To describe the root configurations parameterizing a particular eigenstate, we in-

troduce the following notation. Using the patterns (II.125) we will indicate only the
roots which are not part of the dominant string complexes, i.e. eqs. (II.99) and (II.112)
depending on the grading. As an example, consider an excitation which is described by
a certain number of fbbbf complexes and, in addition, k real roots and one 1−-string
on the first level as well as a wide 2−-string on the second level. Such a configuration
will be indicated by the short notation

f : [(1+
1 )k, 1−1 , 2̄−2 ].

Note, the number of additional fbbbf string complexes in this root configuration is fixed
by the charges (n1, n2) which determine the total number of Bethe roots for a given
grading and system size L. In addition to patterns with finite centers the Bethe roots
only, we have also observed solutions containing strings which are located at ±∞. For
these, we do not have to distinguish different parities and extend our notation as, e.g.,
[11]+∞ for a root λ(1) = +∞.
Considering our observations in subsection 2.3 we expect the critical regime of the

superspin chain to be contained in the interval γ ∈ [0, π]. Let us emphasize, however,
that for much of the numerical analysis in this work we have concentrated on the region

96



2. The operator content of the Uq[osp(3|2)] superspin chain

γ ≤ π/2 where we find that most of the states considered here keep their basic root
structure, independent of the deformation parameter.
As a working hypothesis for the respective lowest scaling dimensions, we conjecture

that they can be expressed in terms of the sum of several distinct parts. The underlying
U(1) symmetries of the superspin chain give rise to two Gaussian fields with distinct
compactification radii depending on the deformation parameter γ. Motivated by our
preliminary finite-size analysis within the root density approach, we propose that these
Coulomb gas contributions to the anomalous dimensions are given by

Ξn2,m2
n1,m1 = n2

1
π − γ

4π +m2
1

π

π − γ
+ n2

2
γ

4π +m2
2
π

4γ (II.126)

where m1 and m2 take into account the vortex companions of the spin excitations n1

and n2. By the same means we propose that the contribution of the Gaussian fields to
the conformal spin of a state is determined by

σn2,m2
n1,m1 = n1m1 + 1

2n2m2. (II.127)

Additionally, we anticipate that there are contributions to the anomalous dimensions
and to the conformal spin coming from fields associated with discrete symmetries.
Support for this expectation comes from the inclusion of levels of the S = 1 integrable
XXZ chain in the spectrum of the superspin chain discussed in subsection 2.3.2. Recall
here that the critical properties of the XXZ chain are known to be described in terms
of composites of Gaussian and Z(2) fields, see appendix A.1. Putting these thoughts
together we are led to propose for the conformal data of the Uq[osp(3|2)] superspin
chain,

Xn2,m2
n1,m1 = Ξn2,m2

n1,m1 + x0,

sn2,m2
n1,m1 = σn2,m2

n1,m1 ± s0.
(II.128)

where x0 and s0 take into account the contributions of the potential discrete degrees of
freedom which are assumed to be independent of γ.

We remark that the respective value of x0 will be determined by the quantum numbers
in (II.128). This can been seen for instance by comparing our proposal (II.128) with
the expected conformal dimensions of the isotropic osp(3|2) superspin chain. We easily
see that in the rational limit γ → 0 the conformal dimensions do not depend on the
quantum number n2 while the modes m2 6= 0 decouple from the low-energy spectrum.
This comparison on the subspace of states n2 = m2 = 0 reveals that for L even the
quantum numbers n1 and m1 satisfy the following rule,
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• for n1 even→ m1 = ±1
2 ,±

3
2 , . . . ,

• for n1 odd→ m1 = 0,±1,±2, . . . ,
(II.129)

where in both cases the isotropic limit yields x0 = −1/4.
In the next subsections we shall see that other values for x0 are possible when the

space of states is enlarged to included states with n2 and m2 6= 0. This indicates the
presence of additional degrees of freedom besides the Gaussian fields in the operator
content of the Uq[osp(3|2)] superspin chain. In addition we find that the vortex quantum
number m1 appears to take values on Z/2 while the quantum number satisfies m2 ∈ Z.
We now discuss the results of the numerical solution of the Bethe equations (II.97)

and (II.110) in the nine sectors characterized by the charges ni ∈ {0, 1, 2}, i = 1, 2. for
system sizes up to L = 8192.

2.4.1 Sector (0, 0)

As we have already mentioned above, the lowest state in the sector with quantum numbers
(n1, n2) = (0, 0) has the energy Lε∞ without any finite-size correction, eq. (II.114). In
terms of our proposal (II.128), this corresponds to a primary operator with scaling
dimension X0,0

0,0 = Ξ0,0
0,0 = 0. This state has zero momentum, consistent with a conformal

spin s = s0 = 0 of the corresponding operator.
For the first excitation in this charge sector, we find that its fbbbf root configuration

contains a single root on the first and a two-string on the second level at infinity,
λ(1) = −∞ and λ(2)

± = −∞ . As a consequence, the remaining finite roots have to satisfy
the Bethe equations (II.110) for (n1, n2) = (1, 1) in the presence of twists (φ1, φ2) =
(2γ, γ) in the boundary conditions. They are arranged in (L− 2)/2 fbbbf two-string
complexes (II.112) and an additional first level root λ(1) ∈ R, i.e. f : [1+

1 ]⊕ [11, 22]−∞
in the notation introduced in eqs. (II.125) above. In fact, this is the first of a family of
excitations with zero momentum in this sector in which k of the string complexes are
replaced by 2k real roots λ(1) and 2k second level roots with Im(λ(2)) = π/2, i.e.

{
λ(1)

}
=
{
ξ

(1)
j ± i

γ

4 , ξ
(1)
j ∈ R

}(L−2)/2−k

j=1
∪ {λj ∈ R}2k+1

j=1 ∪ {−∞}{
λ(2)

}
=
{
ξ

(2)
j ± i

γ

4 , ξ
(2)
j ∈ R

}(L−2)/2−k

j=1
∪
{
λj ∈ R + i

π

2

}2k

j=1
∪ {−∞,−∞} ,

(II.130)

or f : [(1+
1 )(2k+1), (1−2 )2k] ⊕ [11, 22]−∞. The root configurations for k = 0, 1, 2 are

depicted in Figure 21.
We have solved the Bethe equations (II.110) for these configurations with k = 0, 1, 2
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Figure 21: Finite part of the fbbbf root configurations (II.130) with k = 0, 1, 2 for L = 12 and
γ = 2π/7.

for chains of up to L = 2048 sites. The effective scaling dimensions (II.115) computed
from the resulting finite-size energies show strong subleading corrections to scaling, see
figure 22.

Assuming a rational dependence on 1/ logL we have extrapolated the finite-size data
and find that these levels form a ’tower’ starting at

X0,0
0, 12

= Ξ0,0
0, 12
− 1

4 = π

4(π − γ) −
1
4 , (II.131)

with the dominant subleading corrections vanishing as a power of 1/ logL in the
thermodynamic limit L→∞, similar as in the isotropic model [19].

The next excitation for small system sizes corresponds again to an operator with zero
conformal spin, s = 0. The corresponding Bethe state is described by root configurations
b : [1+

1 ]⊕[11, 22]−∞ or f : [11]∞⊕[11, 22]−∞, depending on the grading used. It is studied
most conveniently in the bfbfb formulation where the finite roots satisfy (II.97) with
(n1, n2) = (1, 1) and twist angles (φ1, φ2) = (2γ, γ). The effective scaling dimensions of
this state as calculated from the finite-size energies for chains with up to L = 2048 sites
extrapolate to

X0,1
0,0 = Ξ0,1

0,0 −
1
8 = π

4γ −
1
8 (II.132)

see figure 23.
This observation can be underpinned by a relation to the S = 1 XXZ chain similar

to the ones discussed in subsection 2.3.2. The finite roots in the fbbbf configuration
satisfy the Bethe equations (II.110) in the sector (n1, n2) = (2, 0) with twist angles

99



0 0.1 0.2 0.3 0.4 0.5
1/logL

0.0

0.5

1.0

1.5

2.0

X
ef

f
k=0
k=1
k=2
conjecture

Figure 22: Effective scaling dimensions extracted from the finite-size behaviour of the eigenen-
ergies of the superspin chain in sector (0, 0) described by fbbbf root configurations (II.130) with
k = 0, 1, 2 for γ = 2π/7. Dotted lines show the extrapolation of the finite-size data assuming
a rational dependence on 1/ logL, the dashed-dotted line is our conjecture (II.131) for this
anisotropy.

(φ1, φ2) = (2γ, 2γ). Furthermore, at γ = π/2, we find that λ(1)
j = λ

(2)
j ≡ µj for these

roots, which satisfy the Bethe equations (A.1) of the XXZ model with periodic boundary
conditions for this value of γ. Hence, the proposal (II.132) agrees with the finite size
scaling of the lowest zero-momentum excitation in the sector with magnetization n = 2
of the XXZ model with periodic boundary conditions, eq. (A.7),

EXXZ
2,0 (L)− Lε0

γ=π
2= 2πvF

L

(
22

8 −
c

12

)
= 2πvF

L

(3
8

)
. (II.133)

Continuing our finite-size analysis of the low-energy states in the charge sector (0, 0) we
have identified an excitation with conformal spin s = 1 described by a root configuration
f : [11]∞ ⊕ [11, 22]−∞. In this case the finite roots satisfy the Bethe equations (II.110)
for (n1, n2) = (2, 0) in the presence of twists (φ1, φ2) = (2γ, 2γ). From our numerical
data, we conclude that this level is a descendant of the lowest state in this sector with
scaling dimension

X = Ξ0,0
0,0 + 1 = 1, (II.134)

independent of γ, see figure 24.

Again we can relate this proposal to the finite-size scaling of an excitation appearing
in the periodic S = 1 XXZ model for γ = π/2. More precisely, this state corresponds to
EXXZ

2,1 , see Eq. (A.7).
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Figure 23: Effective scaling dimensions of the second excitation in the sector (0, 0) as a function
of γ for various system sizes. The dashed-dotted line indicates our conjecture (II.132).

Among the remaining low-energy states, there are two levels with conformal spin
s = 1 and scaling dimension extrapolating to

X = Ξ0,0
0, 12
− 1

4 + 1 = π

4(π − γ) −
1
4 + 1, (II.135)

see figure 25.

The root structure of one of these states is given by f : [(1+
1 )3, z2]⊕ [11, 22]−∞. We

note that this configuration is obtained by breaking one of fbbbf string complexes in
the first excitation, described by (II.130) with k = 0, into two real roots on level 1 and
a complex pair on level 2.

The roots for the other level which extrapolates to (II.135) are arranged as f : [(1+
1 )2]⊕

[11, 22]−∞ ⊕ [11, 22]∞. In this case, the finite roots satisfy the Bethe equations (II.110)
for the charges (n1, n2) = (2, 2) with periodic boundary conditions (φ1, φ2) = (0, 0).
This is one example of a more general situation, observed in the exact diagonalization of
systems with sizes up to L = 8. Many of the low lying eigenenergies in the sector (2, 2)
are also present in the sector (0, 0). We defer the discussion of these common levels to
subsection 2.4.9 where the low lying states of the sector (2, 2) are studied.

Another spin s = 1 level appearing in the charge sector (0, 0) is parametrized by a
bfbfb root configuration with the string content b : [1+

1 ] ⊕ [11, 22]−∞. Extrapolating
its effective scaling dimension we find that it is a descendant of the second excitation,
hence

X = Ξ0,1
0,0 −

1
8 + 1 = π

4γ −
1
8 + 1 (II.136)
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Figure 24: Effective scaling dimensions of the descendant of the ground state of the charge
sector (0, 0) as a function of γ for various system sizes. Our conjecture for this state is given by
(II.134), Xeff ≡ 1, independent of γ.

which, for γ = π/2, can again be related to an eigenenergy in the magnetization n = 2
sector of the spin S = 1 XXZ model. The finite-size scaling of this state is shown in
fig. 25, too.
Among the low-energy states is another spin s = 1 level which, depending on

the grading chosen, is described by root configurations f : [(1+
1 )3, z2] ⊕ [11, 22]−∞ or

b : [1+
1 , 1−1 , z2]⊕ [11, 22]−∞ ⊕ [11]+∞ for small L. In both gradings, one of the real first-

level roots, [1+
1 ], and the real center of the pair of complex conjugate roots, [z2], increases

considerably as the system size grows. We describe this behaviour in more detail in
Appendix A.2. Our observation indicates for a change of the root configuration to a new
pattern at some finite-size L∗ which we have not been able to identify, unfortunately.
The value of L∗ where this degeneration takes place depends on the anisotropy, e.g.
L∗ ≈ 26 for γ = 2π/7. As a consequence of this scenario we do not have sufficient data
for a reliable finite-size analysis of this level.
Our findings for the charge sector (0, 0) are summarized in Table 2.

2.4.2 Sector (0, 1)

In this sector, we have analyzed the eight lowest levels present in the spectrum of
the superspin chain with L = 6 sites and, in addition, some higher excitations which
extrapolate to small effective scaling dimensions as well. Based on our numerical finite-
size analysis, we find that the effective scaling dimensions of the investigated states
extrapolate to four different values fitting into our proposal (II.128).

The lowest state belongs to a family of levels with zero momentum, similar as in the
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Figure 25: Extrapolation of the effective scaling dimensions of several spin s = 1 states in
charge sector (0, 0) for γ = 2π/7. The conjectures are given in Eqs. (II.135) and (II.136).

X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.114) 0 0 0 0 0 0
(II.131) 1

2 0 −1
4 0 0 0 tower

(II.132) 0 1 −1
8 0 0 0

Table 2: Summary of the conformal data of primary fields identified in sector (n1, n2) = (0, 0).
The parametrization is according to our proposal (II.128). In addition we have observed
descendants of these primaries, namely (II.134) of (II.114), (II.135) of (II.131), and (II.136) of
(II.132).

(0, 0) sector, described by fbbbf root configurations

{
λ(1)

}
=
{
ξ

(1)
j ± i

γ

4 , ξ
(1)
j ∈ R

}(L−2)/2−k

j=1
∪ {λj ∈ R}2kj=1 ∪

{
±iγ2

}
,

{
λ(2)

}
=
{
ξ

(2)
j ± i

γ

4 , ξ
(2)
j ∈ R

}(L−2)/2−k

j=1
∪
{
λj ∈ R + i

π

2

}2k

j=1
∪ {0} ,

(II.137)

or f : [(1+
1 )2k, (1−2 )2k, 3+

12] with integer k ≥ 0. In this sector, we find another set of levels
parametrized by fbbbf Bethe roots arranged as

{
λ(1)

}
=
{
ξ

(1)
j ± i

γ

4 , ξ
(1)
j ∈ R

}(L−2)/2−k′

j=1
∪ {λj ∈ R}2k

′+1
j=1 ∪

{
i
π

2

}
{
λ(2)

}
=
{
ξ

(2)
j ± i

γ

4 , ξ
(2)
j ∈ R

}(L−2)/2−k′

j=1
∪
{
λj ∈ R + i

π

2

}2k′−2

j=1
∪
{
i
π

2 , i
π

2 ± i
γ

2

}
,

(II.138)
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or f : [(1+
1 )(2k′+1), (1−2 )(2k′−1), 3−21] for positive integers k′.25

We found that the levels (II.137)) and (II.138) with k = k′ are almost degenerate.
Already for L = 6, the relative difference of the energies at γ = 2π/7 is smaller than
10−3.

By solving the Bethe equations (II.110) for these configurations with k = 0, 1, 2,
k′ = 1, 2 and system sizes up to L = 8192 we found that the scaling dimension for the
lowest level (k = 0) level extrapolates to

X1,0
0,0 = Ξ1,0

0,0 = γ

4π . (II.139)

The remaining four levels (k = 1, 2 and k′ = 1, 2) give rise to the same anomalous
dimension,

X1,0
0, 12

= Ξ1,0
0, 12
− 1

4 = π

4(π − γ) + γ

4π −
1
4 . (II.140)

Again, the associated degeneracy in the thermodynamic limit is lifted for finite L by a
fine-structure due to strong subleading corrections to scaling which is shown in fig. 26
for the deformation parameter γ = 2π/7.
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Figure 26: Similar as Fig. 22 but for the eigenenergies of the superspin chain in sector (0, 1)
parametrized by the fbbbf root configurations (II.137) with k = 0, 1, 2 and (II.138) with
k′ = 1, 2 for γ = 2π/7. The dashed-dotted lines are our conjectures (II.139) and (II.140) for this
anisotropy.

We have analyzed the scaling corrections for the k = 0 state extrapolating to (II.139)
in more detail. For γ = π/2, this state belongs to the class of levels discussed in
subsection 2.3.2. Its energy coincides with the lowest eigenvalue of the S = 1 XXZ
25We note that the mixed 3-strings in these configurations are exact, i.e. the constituent rapidities are

separated by iγ/2 without deviations.
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model for magnetization n = 1. This motivates to assume a power law dependence of
the subleading terms on 1/L. Extrapolating our numerical data using the VBS method
[123, 124] we find

Xeff(L)−X1,0
0,0 ∝ L

−α, α = γ

π − γ
, (II.141)

see fig. 27.
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Figure 27: Exponent of the subleading corrections to scaling (II.141) for the ground state of
the (0, 1)-sector.

Note, this behaviour coincides with that of the lowest state of the S = 1 XXZ model
for magnetization n = 1 [100] only for the anisotropy where we have established the
correspondence to the superspin chain, i.e. at γ = π/2. As γ → 0, the exponent
α vanishes indicating the appearance of logarithmic corrections to scaling due to an
operator in the theory becoming marginal. This is in accordance with previous studies
of the finite-size spectrum of the isotropic osp(3|2) chain [19].

For the other members of this tower, i.e. k, k′ > 0, we expect the dominant subleading
corrections to be logarithmic. A detailed analysis of the corrections to scaling in the
combined presence of logarithms and power laws, however, would require data for
significantly larger systems which are not accessible by the methods used here.
Continuing our study of low-energy states in the (0, 1) sector we found two states

which are described by the root configurations f : [(1−1 )2, (1−2 )] and b : [1−1 , 1+
2 , 2̄+

1 , 2+
2 ],

respectively. Both carry the conformal spin s = 1. In the thermodynamic limit, these
states become degenerate since their effective scaling dimensions extrapolate to

X = Ξ1,0
0,0 + 1 = γ

4π + 1, (II.142)
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see figure 28, indicating that these levels are descendants of (II.139).

In addition we have identified three low lying levels described by root configurations b :
[1+

1 , 1−2 ], f : [(1+
1 )2, 1+

2 , 2+
1 , 2+

2 ], and f : [(1+
1 )2, (1−1 )2, 1+

2 , 2̄−2 ], respectively. Extrapolating
their effective scaling dimensions yields

X1,1
0,0 = Ξ1,1

0,0 −
1
8 + 1

2 = γ

4π + π

4γ + 3
8 . (II.143)

The first and third of these states have conformal spin s = 0, the second comes as a
doublet of states with the conformal spin s = 1. Again this is consistent with primaries
being composites of fields with dimensions (II.126) and, according to (II.127), conformal
spin n2m2/2 = 1/2, and an Ising energy operator with conformal weight 1/2. These
factors can be combined to give a scaling dimension (II.143) and conformal spin s = 0
and s = 1, respectively.

The finite-size scaling for one of the singlets and the doublet is shown in figure 28 for
the anisotropy γ = 2π/7. For the lower energy singlet, the Bethe equations have been
solved only around γ = π/2, see figure 29.

In table 3 the results presented in this subsection are summed up.

X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
II.139 0 0 0 0 0 0
II.140 1

2 0 −1
4 0 0 0 tower

II.143 0 1 −1
8 + 1

2 1, 0 1
2 ±1

2 Ising (1
2 , 0), (0, 1

2)

Table 3: Conformal data for the primaries identified in charge sector (n1, n2) = (0, 1), see also
table 2. We have also observed descendants of (II.139), see (II.142).

2.4.3 Sector (0, 2)

Extending our analysis to the (0, 2) sector we found the lowest state to be most
conveniently described in the bfbfb grading where all Bethe roots are arranged in
(L − 2)/2 string complexes (II.99). The root configurations of the first and second
excitation are obtained by breaking one of the string complexes into the configurations
b : [(1−1 )2, 1+

2 , 1−2 ] for the first or b : [(1−1 )2, 2̄−2 ] for the second excitation, i.e.

λ
(1)
± = ±ξ + i

π

2 , λ
(2)
± = 0, iπ2 , (II.144a)

λ
(1)
± = ±ξ + i

π

2 , λ
(2)
± ' i

π

2 ± i
3γ
4 , (II.144b)
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Figure 28: Similar as Fig. 22 but for the levels in sector (0, 1) extrapolating to (II.142) (circles)
and (II.143) (triangles) in sector (0, 1) for γ = 2π/7.

1.25 1.50 1.75 2.00
γ

0.85

0.90

0.95

1.00

1.05

1.10

X
ef

f

L=512
L=256
L=128
L=32
conjecture

Figure 29: Effective scaling dimensions of the lowest energy singlet in sector (0, 1) with
conjectured effective scaling dimension (II.143) as a function of γ for various system sizes.
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with real ξ. These three states have zeeo conformal spin. For large L the effective
scaling dimension for the lowest level approaches

X2,0
0,0 = Ξ2,0

0,0 = γ

π
, (II.145)

see figure 30(a).
The subleading corrections are described by a power law in 1/L. At least for γ & π/3

we find that they are described by same exponent as in (II.141) for the ground state in
sector (0, 1).
The excitations described in (II.144) belong to a family of excitations obtained by

breaking more of the bfbfb string complexes forming the ground state leading to root
configurations b : [(1−1 )2k, 1+

2 , (1−2 )2k−1] or b : [(1−1 )2k′ , (1−2 )2k′−2, 2̄−2 ] with k, k′ > 0. We
have analyzed the finite-size scaling of these levels for k, k′ = 1, 2, indicating that the
members of this family of excitations form another tower of scaling dimensions starting
at

X2,0
0, 12

= Ξ2,0
0, 12
− 1

4 = π

4(π − γ) + γ

π
− 1

4 . (II.146)

For finite L, the degeneracy of these levels is lifted. Likewise the situation in the charge
sector (0, 1), for γ > 0, the excitations are separated from the lowest state by a gap
of order 1/L with strong subleading corrections. Also, the relative difference of the
energies of the levels with k = k′ is again very small. e.g. of order 10−2 at L = 6, see
figure 31.
There are two more levels in this sector whose root configurations are described in

terms of (L− 2)/2 bfbfb string complexes. One of them leads to the scaling dimension

X2,1
0,0 = Ξ2,1

0,0 −
1
8 = γ

π
+ π

4γ −
1
8 , (II.147)

with conformal spin s = 1 in agreement with (II.127). The finite-size data for this state
are shown in figure 30(d).

The effective scaling dimension of the other state described by (L− 2)/2 bfbfb string
complexes extrapolates to

X = Ξ2,0
0,0 + 1 = γ

π
+ 1, (II.148)

see figure 30(b). The conformal spin of this level is given by s = 1, indicating that this
is a descendant of (II.145). Breaking one of the bfbfb string complexes we find another
level, also with conformal spin s = 1, described by a root configuration b : [1+

1 , 1−1 , 1+
2 , 1−2 ].

The numerical solution of the Bethe equations for this state for sufficiently large systems
is limited to anisotropies near γ = π/2 where the extrapolation of the finite-size gives
again (II.148), as shown in fig. 30(c).
Additionally, we report on two other low-energy levels in this sector, a spin s = 0
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Figure 30: Effective scaling dimensions of several low-energy states in sector (0, 2) as a function
of γ for various system sizes: displayed in the left panel are (a) the spin s = 0 ground state with
effective scaling dimension extrapolating to X2,0

0,0 , eq. (II.145), and in (b) and (c) two spin s = 1
levels extrapolating to X2,0

0,0 + 1, eq. (II.148). In the right panel the effective scaling dimension
of (d) the spin s = 1 level extrapolating to X2,1

0,0 , eq. (II.147), and the spin s = 0 and s = 1
excitations (e) and (f) extrapolating to X2,1

0,0 +1, eq. (II.149), are shown. Dotted lines connecting
symbols are guides to the eye, dashed-dotted lines show the conjectured γ-dependence.
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Figure 31: Similar as fig. 22 but for the lowest eigenenergy and the first four excitations
forming a tower of scaling dimensions starting at (II.146) in sector (0, 2) for γ = 2π/7. The
dashed-dotted lines indicate our conjectures (II.145) and (II.146) for this anisotropy.
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Figure 32: Effective scaling dimensions of the level extrapolating to (II.150) in sector (0, 2)
as a function of 1/ log(L) for various values of the anisotropy γ. Open (filled) symbols are the
numerical data (the conjectured value in the thermodynamic limit L→∞). The dotted lines
are extrapolations assuming a rational dependence on 1/ log(L).
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state with root configuration b : [3+
12, 1−2 ] and a spin s = 1 state with root configuration

b : [1+
1 , 1−1 , 1+

2 , 1−2 ]. Both of them are found to extrapolate to the scaling dimension

X = Ξ2,1
0,0 −

1
8 + 1 = γ

π
+ π

4γ −
1
8 + 1, (II.149)

see figures 30(e) and (f). From these data we conclude that the zero spin level is a
descendant of (II.147). The s = 1 level appears to be a primary, again the scaling
dimension indicates the presence of an Ising field in the effective low-energy description
of the superspin chain.
Finally, we have identified a level with spin s = 1 and effective scaling dimension

extrapolating to
X = Ξ2,0

0, 12
− 1

4 + 1 = π

4(π − γ) + γ

π
− 1

4 + 1. (II.150)

In the bfbfb grading, its root configuration is characterized by b : [(1−1 )2, 1+
2 , 1−2 ]. Based

on this configuration we propose that this is a descendant of the state with roots
(II.144a) described above. The scaling of this level is displayed in figure 32.

To conclude the investigation of the sector (n1, n2) = (0, 2) we present our findings
for this sector in table 4.

X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.145) 0 0 0 0 0 0
(II.146) 1

2 0 −1
4 0 0 0 tower

(II.147) 0 1 −1
8 1 1 0

(II.149) 0 1 −1
8 + 1 1 1 0 Ising (1

2 ,
1
2)

Table 4: Conformal data for the levels studied in charge sector (n1, n2) = (0, 2) (see also
table 2). We have also observed descendants of (II.145), see (II.148), one descendant of (II.146),
see (II.150) and one descendant of (II.147), see (II.149).

2.4.4 Sector (1, 0)

The lowest energy state in the sector with charges (n1, n2) = (1, 0) is the overall ground
state of the q-deformed osp(3|2) superspin chain for γ > 0. It is described by a symmetric
root configuration f : [1+

1 , 1−2 ] and, thus, has zero conformal spin, s = 0. We have solved
the Bethe equations (II.110) for this state in systems with up to L = 8192 sites. The
numerical finite-size data extrapolate to an effective scaling dimension

X0,0
1,0 = Ξ0,0

1,0 −
1
4 = − γ

4π . (II.151)
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Again, this root configuration can be used as a starting point to construct states
forming a tower of scaling dimensions on top of (II.151). Breaking one of the fbbbf
string complexes into

λ
(1)
± = ±ξ, λ

(2)
− = ±η + i

π

2 , ξ, η ∈ R, (II.152)

we obtain the first excitation in this sector. Repeating this procedure leads to excitations
described by root configurations f : [(1+

1 )2k+1, (1−2 )2k+1]. For k = 1, 2 these excitations
have again zero conformal spin, s = 0, and their effective scaling dimensions extrapolate
to (II.151) as L → ∞ as well. Strong subleading corrections lift the degeneracy for
finite L, see figure 33.
Continuing our analysis within the (1, 0) sector we found two spin s = 1 levels

described by f : [1−1 , 1+
2 ] and f : [(1+

1 )2, 1−1 , 1−2 , 2̄+
2 ] root configurations, respectively.

Extrapolating their effective scaling dimensions leads to

X = Ξ0,0
1,0 −

1
4 + 1 = − γ

4π + 1. (II.153)

Hence these levels are descendants of the lowest two states in the tower starting at
(II.151). A potential second descendant of the lowest tower state is parametrized in
terms of Bethe roots by a f : [1−1 , 1+

2 ] configuration and has conformal spin s = 2. Its
scaling dimension extrapolates to

X = Ξ0,0
1,0 −

1
4 + 2 = − γ

4π + 2. (II.154)

The effective scaling dimensions for these three states display strong subleading correc-
tions, see fig. 34.
Moving on, we found two further low-energy levels with root configurations f :

[(1+
1 )2, 1−1 , 1−2 , z2] and f : [(1+

1 )2, 1−2 , 3−21]. These have conformal spin s = 1 and s = 0,
respectively. Their effective scaling dimensions are observed to tend to

X0,1
1, 12

= Ξ0,1
1, 12
− 1

8 + 1
2 = − γ

4π + π

4(π − γ) + π

4γ + 5
8 (II.155)

in the thermodynamic limit. Our finite-size data for these two states can be found in
fig 35.

Another scaling dimension in this sector has been identified from the finite-size scaling
of a spin s = 1 level with root configuration f : [(1+

1 )3, 1−2 , 2+
2 ]. This state approaches

X0,0
1,1 = Ξ0,0

1,1 −
1
4 = − γ

4π + π

(π − γ) (II.156)

as L→∞. Our numerical results for this state is shown in fig. 36 for several anisotropies.
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Figure 33: Similar as fig. 22 but for the lowest eigenstate and the related tower of levels in the
spectrum of the superspin chain in sector (1, 0) for γ = 11π/40. The dashed-dotted line denotes
our conjecture (II.151).
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Figure 34: Similar as Fig. 22 but for the three lowest states with nonzero conformal spin in the
spectrum of the superspin chain in sector (1, 0) for γ = 2π/7. These states are descendants of
the lowest two tower states. The dashed-dotted lines are our conjectures (II.153) and (II.154),
respectively, for this anisotropy.
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Figure 35: Similar as fig. 22 but for the states in the spectrum of the superspin chain in sector
(1, 0) extrapolating to (II.155) for γ = 2π/7. The dashed-dotted line is our conjecture (II.155)
for this anisotropy.

0 0.1 0.2 0.3 0.4 0.5

1/logL

1

1.2

1.4

1.6

X
ef

f

γ = 2π/7

γ = π/6

γ = π/20

Figure 36: Similar as fig. 32 but for the state in sector (1, 0) extrapolating to (II.156).
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In addition to the levels discussed above, there is another state contained in the
low-energy spectrum where we have observed a change of the root pattern as the system
size changes. For small L, it is described by root configurations b : [1−1 , 1+

2 , 3+
21, z1] and

f : [3+
12, 3+

21], depending on the grading. As the system size is increased the bfbfb root
structure changes when the pair of complex conjugate first level roots degenerates and is
replaced by two one-strings with negative parity, i.e. [z1]→ [(1−1 )2]. For γ = 2π/7, this
happens as L grows from 10 to 12. Increasing the system size further, beyond L = 36
for γ = 2π/7, another degeneration is observed, this time affecting the roots on the
second level. Again, we present more details in appendix A.2. It has not been possible
to follow the evolution of the root configuration beyond the second degeneration. Due
to the presence of strong corrections to scaling in this state, see fig. 37, our data do not
allow for a finite-size analysis.
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Figure 37: Effective scaling dimension of the state b : [1−1 , 1+
2 , 3+

21, z1] or equivalently f : [3+
12, 3+

21]
in sector (1, 0) for small system sizes as a function of γ.

We finally remark that for one spin s = 1 state in the low-energy spectrum of the
superspin chain we have been able to identify the root configuration only for L = 8 and
γ ≤ 2π/7, see appendix A.3.
As before we present our results for the sector (n1, n2) = (1, 0) in table 5.

2.4.5 Sector (1, 1)

The lowest state for the charges (n1, n2) = (1, 1) when using the fbbbf grading is
described by a root configuration f : [1+

1 ], i.e. (L− 2)/2 string complexes (II.112) and
one additional root, λ(1) = 0, on the first level. From our numerical finite-size data for
chains with up to L = 2048 sites we find that the effective scaling dimension of this
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X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.151) 0 0 −1

4 0 0 0 tower
(II.155) 1

2 1 −1
8 + 1

2 1, 0 1
2 ±1

2 Ising (1
2 , 0), (0, 1

2)
(II.156) 1 0 −1

4 1 1 0

Table 5: Conformal data for the levels studied in charge sector (n1, n2) = (1, 0) (see also
table 2). We have also observed descendants of (II.151), see (II.153) and (II.154).

level tends to
X1,0

1,0 = Ξ1,0
1,0 −

1
4 = 0 (II.157)

in the thermodynamic limit. As in the charge sector (1, 0), this state is the lowest in a
tower of levels with zero conformal spin, s = 0, and extrapolating to the same scaling
dimension. The root configurations of these excitations are again obtained by breaking
string complexes as in (II.152), giving f : [(1+

1 )2k+1, (1−2 )2k] with integer k ≥ 1. The
finite-size effective scaling dimensions for k = 0, 1, 2 and γ = 2π/7 can be found in
fig. 38.
We have identified descendants of the two lowest levels in this tower. They are

parametrized by root configurations f : [1−1 ] and f : [(1+
1 )2]⊕ [11, 2+

2 ]−∞, respectively,
and have conformal spin s = 1. Our numerical finite-size data extrapolate to

X = Ξ1,0
1,0 −

1
4 + 1 = 1. (II.158)

We also found a potential second descendant with scaling dimension

X = Ξ1,0
1,0 −

1
4 + 2 = 2 (II.159)

and spin s = 2. This state is described by a b : [1+
1 ] root configuration. The scaling

behaviour of these descendants is displayed in fig. 39.
Among the other low-energy states, we have identified two spin s = 1 primaries. Both

of them are described by Bethe roots arranged as f : [(1+
1 )2]⊕ [11, 22]−∞ and scale to

X1,1
1, 12

= Ξ1,1
1, 12
− 1

8 = π

4(π − γ) + π

4γ + 1
8 (II.160)

and
X1,0

1,1 = Ξ1,0
1,1 −

1
4 = π

(π − γ) , (II.161)

respectively. The results of our numerical analysis concerning these two states can be
found in fig. 40.

As in sector (1, 0), we have observed degenerations of the root configurations for one
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Figure 38: Similar as Fig. 22 but for the lowest eigenenergy and the related tower of levels
in the spectrum of the superspin chain in sector (1, 1) for γ = 2π/7. The dashed-dotted line
indicates our conjecture (II.157).
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Figure 39: Similar as fig. 22 but for three descendants of the two lowest levels in the spectrum
of the superspin chain in sector (1, 1) for γ = 2π/7. The dashed-dotted lines are our conjectures
(II.158) and (II.159).
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Figure 40: Similar as fig. 22 but for the two s = 1 states in the spectrum of the superspin chain
in sector (1, 1) for which the finite part of the root configuration is parametrized by f : [(1+

1 )2]
for γ = 2π/7. The dashed-dotted lines denote our conjectures (II.160) and (II.161).

spin s = 0 level. For the smallest system sizes considered here, its root configurations is
given by b : [1+

1 ] or f : [1−1 ], depending on the grading used. As discussed in appendix A.2,
these patterns change with growing L. We have succeeded in following these changes up
to, e.g. L = 36 for γ = 2π/7. The effective scaling dimensions for this state as obtained
from the available finite-size data are shown in figure 41. Unfortunately, they do not
allow for a reliable extrapolation.

There are two low-energy states remaining which are present in the spectrum of the
superspin chain with lengths accessible to exact diagonalization of the Hamiltonian
(II.96). Both of these levels have non-zero conformal spin. For one of them we have
identified the corresponding Bethe roots for L = 4, 6 and anisotropies γ . π/4,
see appendix A.3, but we were not able to go to larger L. For the other one, the
parametrization in terms of Bethe roots is still unknown.

To end the discussion of the operator content found in the charge sector (n1, n2) = (1, 1)
we present our findings in table 6.

X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.157) 0 0 −1

4 0 0 0 tower
(II.160) 1

2 1 −1
8 1 1 0

(II.161) 1 0 −1
4 1 1 0

Table 6: Conformal data for the levels studied in charge sector (n1, n2) = (1, 1) (see also
Table 2). We have also observed descendants of (II.157), see II.158 and (II.159).
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Figure 41: Effective scaling dimension of the state b : [1+
1 ] or equivalently f : [1−1 ] in sector

(1, 1) for small system sizes as a function of γ.

2.4.6 Sector (1, 2)

The Bethe roots for the lowest state in this sector are arranged in a b : [(1−1 )2, 1−2 ]
configuration, i.e. (L− 4)/2 bfbfb string complexes (II.99) and two (one) additional
roots λ(1) (λ(2)) on the line Im(λ) = π/2. This states appears as the lowest in a tower
of levels with scaling dimensions extrapolating to, see figure 42,

X2,0
1,0 = Ξ2,0

1,0 −
1
4 = 3γ

4π . (II.162)

The other members of this tower are described by Bethe root configurations with
one or more of the bfbfb string complexes replaced by two (1−a )-strings on each level
a = 1, 2, i.e. b : [(1−1 )2k+2, (1−2 )2k+1] for k ≥ 0. All tower states have zero conformal
spin, s = 0. For k = 1, 2, the scaling behaviour of the corresponding excitations is also
shown in figure 42.
The next level which we have analyzed in the charge sector (1, 2) is again described

by a root configuration b : [(1−1 )2, 1−2 ], just as the lowest state in this sector. The
extrapolation of the finite-size effective scaling dimensions yields

X2,1
1, 12

= Ξ2,1
1, 12
− 1

8 + 1
2 = 3γ

4π + π

4(π − γ) + π

4γ + 5
8 . (II.163)

This state has conformal spin s = 2 in agreement with (II.127) in the presence of a
chiral Ising contribution. As γ → π/2, the subleading corrections to scaling become
small, for γ → 0 the level disappears from the low-energy spectrum, see figure 43.
Three additional excitations in this sector have been identified as descendants of
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Figure 42: Similar as fig. 22 but for the lowest eigenenergy and the related tower of levels in
the spectrum of the superspin chain in the sector (1, 2) for γ = 2π/7. The dashed-dotted line
denotes our conjecture (II.162) for this anisotropy.
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Figure 43: Effective scaling dimension for the charge (1, 2) state with conformal spin s = 2
extrapolating to (II.163) as a function of γ for various system sizes.
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the tower states (II.162). They are described by root configurations b : [(1−1 )2, 1−2 )],
b : [(1+

1 )2, 1−2 ], and b : [(1+
1 )2, 1+

2 ], respectively. The first of these levels has conformal
spin s = 1, the others s = 0. Their effective scaling dimensions extrapolate to

X = Ξ2,0
1,0 −

1
4 + n = 3γ

4π + n, n = 1, 2, (II.164)

with n = 1 (2) for the spin s = 1 (0) states. The L-dependence of the corrections to
scaling for γ = 2π/7 is displayed in figure 44.
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Figure 44: Similar as fig. 22 but for the descendants of the tower states in sector (1, 2)
extrapolating to (II.164) for γ = 2π/7. The dashed-dotted line are our conjectured values for
L→∞ for this anisotropy.

Another state belonging to the low-energy spectrum which we have analyzed is
described by a Bethe root pattern f : [(1+

1 )2, 1−1 , 1+
2 ]. This excitation has conformal spin

s = 2. Finite-size data for the effective scaling dimension are available for systems with
up to L = 1024 lattice sites and anisotropies 0 ≤ γ ≤ 2π/3, see fig. 45(a). Although the
corrections to scaling appear to be small, in particular for γ & π/2, we did not manage
to describe the effective scaling dimensions in terms of our scheme (II.128). A possible
explanation for this problem might be a crossing between two levels with similar root
configurations for some γ < π/2 which we have not resolved properly. In this situation,
the data displayed in fig. 45(a) would correspond to two different operators. For γ → 0 a
possible candidate would have, e.g., scaling dimension X = Ξ2,0

1,0− 1/4 + 2 = (3γ/4π) + 2.
Around π/2 the data might correspond to an operator with m2 = 1. If this is the case,
however, the crossing would come along with huge corrections to scaling which cannot
be handled with the available data.
Again, there is one low-energy state present in this charge sector where changes in
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the root configuration with the system size aggravate the solution of the corresponding
Bethe equations. This level has zero conformal spin, s = 0, and is parametrized by
Bethe roots arranged as f : [(1+

1 )2, 1−1 , 1+
2 ] or b : [3+

12] for small system sizes. Similarly
as in the (n1, n2) = (0, 0) example discussed in appendix A.2, the 1+

1 -roots diverge at
some finite value of the system size so that we cannot extrapolate the scaling dimension
from the available finite-size data. Our numerical results for small system sizes, however,
are presented in figure 45(b).
We summarize the findings of our study of the sector (n1, n2) = (1, 2) in table 7.
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Figure 45: Effective scaling dimension for the charge (1, 2) state with root configuration (a)
f : [(1+

1 )2, 1−1 , 1+
2 ] and (b) f : [(1+

1 )2, 1−1 , 1+
2 ] or equivalently b : [3+

12] as a function of γ for various
system sizes.

X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.162) 0 0 −1

4 0 0 0 tower
(II.163) 1

2 1 −1
8 + 1

2 2 3
2

1
2 Ising (1

2 , 0)

Table 7: Conformal data for the levels studied in charge sector (n1, n2) = (1, 2) (see also
table 2). We have also observed descendants of (II.162), see (II.164).

2.4.7 Sector (2, 0)

For L = 6, the ground state in the charge sector (2, 0) is parametrized by two fbbbf
string complexes (II.112). As the system size is increased this configuration degenerates.
For example, at γ = 2π/7 the degeneration occurs at L∗ = 10. Beyond L∗ the root
configuration consists of (L−4)/2 fbbbf string complexes and, in addition, λ(1)

± = ±ξ ∈ R
and λ

(2)
± ' ±iη, i.e. f : [(1+

1 )2, z2]. At least for deformation parameters γ close to
π/2, no further degenerations occur such that we have been able to study the effective
scaling dimensions of this level near γ ' π/2. From our numerical data we conclude
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2. The operator content of the Uq[osp(3|2)] superspin chain

that this level has zero conformal spin, s = 0. The finite-size effective scaling dimensions
extrapolate to

X0,1
2,0 = X0,1

2,0 −
1
8 = 1− γ

π
+ π

4γ −
1
8 , (II.165)

see figure 46(a).

We found a second s = 0 state with the same scaling dimension in the thermodynamic
limit. It is described by a root configuration f : [(1+

1 )2, 1+
2 , 1−2 ]. Here we had to study

deformation parameters from 3π/8 ≤ γ ≤ 5π/8 to get finite-size data with sufficiently
large L for the extrapolation. The results of our numerical analysis for this state is
shown in figure 46(b). Note, the corrections to scaling for both states extrapolating to
(II.165) are small for anisotropies γ ≥ 3π/8.

Among the set of low-energy levels, we have identified two states in this sector with
root configurations consisting only of (L− 2)/2 fbbbf string complexes (II.112). Their
effective scaling dimensions extrapolate to

X = Ξ0,0
2, 12
− 1

4 + n = 1− γ

π
+ π

4(π − γ) −
1
4 + n, n = 0, 1, (II.166)

and have conformal spin s = 1 (2) for n = 0 (1). Their scaling behaviour is shown in
figure 47.

In addition we have observed a pair of excitations combining (L− 4)/2 fbbbf string
complexes with different structures for the additional roots. One of these excitations
has a root configuration f : [(1+

1 )2, (1−2 )2], the other one is described by a pattern
f : [1+

1 , 1−1 , z2] where the roots in the pair [z2] appear to approach λ
(2)
1,2 ' ±iπ/4 for

large L. Their scaling dimensions also extrapolate to (II.166) while their conformal
spins are s = 1 (s = 0) for n = 0 (n = 1). From eq. (II.127), we expect the conformal
spin s = 1 for the (n1,m1) = (2, 1/2) primary field, hence, the s = 0 and 2 levels are
first level descendants. Their finite-size scaling is also displayed in figure 47.

Further, we have studied two excitations with conformal spin s = 1 and s = 0
described both by root configurations b : [1+

1 , (1−1 )3, (1−2 )2] or f : [(1+
1 )2, (1−2 )2] for not

too large L. Unfortunately, the presence of divergent Bethe roots with growing system
size prevented us from getting finite-size data for L & 200 and therefore a satisfying
extrapolation. The results of our numerical study up to L = 208 (160) is shown in
fig. 48.

Finally, we have studied the scaling of a spin s = 0 level with (L− 4)/2 fbbbf string
complexes (II.112) and extra roots λ(1)

± = ±iγ/2 as well as two degenerate second level
roots at λ(2) = 0, i.e. f : [1+

2 , 3+
12]. The effective scaling dimension extrapolate to

X = Ξ0,0
2,0 + 1 = −γ

π
+ 2 , (II.167)
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Figure 46: Effective scaling dimension for the state in sector (2, 0) with root configuration (a)
f : [(1+

1 )2, z2] (Note, this is the lowest state in this charge sector) and (b) f : [(1+
1 )2, 1+

2 , 1−2 ] as a
function of γ for various system sizes. The dashed-dotted lines indicate our conjecture (II.165))
for these levels.
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Figure 47: Similar as fig. 22 but for the states in sector (2, 0) extrapolating to (II.166)) for
γ = 2π/7. The filled symbols denote states with conformal spin s = 1, the open ones are levels
with s = 2 and s = 0, respectively. The dashed-dotted lines are our conjectured values for
L→∞ for this anisotropy.
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Figure 48: Effective scaling dimension for the states in sector (2, 0) with root configuration
b : [1+

1 , (1−1 )3, (1−2 )2] or equivalently f : [(1+
1 )2, (1−2 )2] and conformal spin (a) s = 1 and (b) s = 0

as a function of γ for various system sizes.

see fig. 49.

0 0.5 1 1.5 2
γ

1.25

1.5

1.75

2

X
ef

f

L = 32
L = 128
L = 512
L = 1504
conjecture

Figure 49: Effective scaling dimension for the state in sector (2, 0) conjectured to extrapolate
to (II.167)) as a function of γ for various system sizes.

Again, there is one low-energy excitation present in the spectrum of small systems
for which no Bethe Ansatz solution has been found.
A summary of the numerical study of the sector (n1, n2) = (2, 0) is given in table 8.

2.4.8 Sector (2, 1)

In this charge sector, the lowest level is described by root configurations b : [1−1 , 3+
12] or

f : [(1+
1 )2, 1+

2 ] for small system sizes. Since this configuration degenerates at intermediate
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X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.165) 0 1 −1

8 0 0 0
(II.166) 1

2 0 −1
4 1 1 0

(II.167) 0 0 1 0 0 0 Ising (1
2 ,

1
2)

Table 8: Conformal data for the levels studied in charge sector (n1, n2) = (2, 0) (see also
table 2). We have also observed descendants of (II.166), see fig. 47.

L we were able to solve the Bethe Ansatz equations only for L ≤ 128, depending on
the anisotropy. However, based on a VBS analysis of our data for 3π/8 ≤ γ ≤ 2π/3 we
conjecture that its scaling dimension extrapolates to

X1,1
2,0 = Ξ1,1

2,0 −
1
8 + 1

2 = 1− 3γ
4π + π

4γ + 3
8 . (II.168)

This level has zero conformal spin, s = 0. Our finite-size results for small system sizes
are depicted in fig. 50.

The first excitation is described by an f : [(1+
1 )2, 1−2 ] configuration, i.e. it has (L−4)/2

fbbbf string complexes (II.112), two additional real roots on the first level, and a single
root with Im(λ(2)) = π/2 on the second. The conformal spin of this excitation is s = 1.
For L→∞ its effective scaling dimension tends to

X1,0
2, 12

= Ξ1,0
2, 12
− 1

4 = 1− 3γ
4π + π

4(π − γ) −
1
4 (II.169)

with strong subleading corrections, see figure 51.

Also shown in fig. 51 are two higher excitations with dimension X = X1,0
2, 12

+ 1 and
spin s = 2 indicating that these levels are descendants of the s = 1 level extrapolating
to eq. (II.169). Their root configurations are best described in the bfbfb grading where
both contain (L− 4)/2 string complexes (II.99). The full configurations are b : [1−1 , 3+

12]
and b : [1+

1 , (1−1 )2, 1−2 ], respectively.

For two other excitations with root configurations b : [1+
1 , (1−1 )2, 1−2 ], we had to solve

the Bethe equations for 3π/8 ≤ γ ≤ 5π/8 to get the energies for sufficient large systems.
Based on these data, see fig. 52, we propose that their scaling dimensions extrapolate
to (II.168). Their conformal spin is s = 1 and s = 0, respectively. Given that there is
a contribution n2m2/2 = 1/2 from the γ dependent part of the conformal weights we
argue that their degeneracy is a consequence of the combination with an Ising energy
operator, similar as in (II.143)). Since m2 6= 0 these levels disappear from the low-energy
spectrum for γ → 0.

The last state we have studied in this sector has a b : [(1+
1 )2, 1−1 , 1−2 ] root configuration
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Figure 50: Effective scaling dimension for the lowest state in sector (2, 1) as a function of γ for
various system sizes.
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Figure 51: Similar as fig. 22 but for the first excitation with spin s = 1 in sector (2, 1)
extrapolating to X given by (II.169) and two higher s = 2 levels extrapolating to X + 1. The
data are for γ = 2π/7.
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Figure 52: Effective scaling dimension for the states in sector (2, 1) conjectured to extrapolate
to (II.168) with conformal spin (a) s = 1 and (b) s = 0 as a function of γ for various system
sizes.

and zero conformal spin, s = 0. Its scaling dimension tends to

X = Ξ1,0
2,0 + 1 = −3γ

4π + 2, (II.170)

in the thermodynamic limit, see figure 53.
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Figure 53: Effective scaling dimension for the state in sector (2, 1) conjectured to extrapolate
to (II.170) as a function of γ for various system sizes.

There is one remaining low-energy excitation present in the spectrum of this charge
sector for which the corresponding solution to the Bethe equations has been found only
for L ≤ 16, see appendix A.3.

In table 9 we present a summary of our findings in the sector (n1, n2) = (2, 1).
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X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.168) 0 1 −1

8 + 1
2 1, 0 1

2 ±1
2 Ising (1

2 , 0), (0, 1
2)

(II.169) 1
2 0 −1

4 1 1 0
(II.170) 0 0 1 0 0 0 Ising (1

2 ,
1
2)

Table 9: Conformal data for the levels studied in charge sector (n1, n2) = (2, 1) (see also
table 2). We have also observed descendants of (II.169), see fig. 51.

2.4.9 Sector (2, 2)

Before we consider the low lying states in this sector, let us recall our discussion at
the end of subsection 2.4.1. Although there exist exceptions in the spectra obtained
from exact diagonalization of small systems with L ≥ 6 sites we observe that many
of the eigenenergies in the sector (2, 2) appear also in the zero charges sector. In fact,
this includes all of the levels discussed below. We expect that the formation of such
multiplets can be understood in the context of the Uq[osp(3|2)] symmetry in the presence
of periodic boundary conditions. This, however, is beyond the scope of this work.
We note that, in addition to the numerical evidence, this spectral inclusion is com-

patible with our hypothesis (II.128) for the effective scaling dimensions. The latter
implies

X2,m2
2,m1 = X0,m2

0,m1 + 1. (II.171)

Similarly, the conformal spins according to (II.127) are related as s2,m2
2,m1 = s0,m2

0,m1 + 2m1 +
m2. Therefore, levels with 2m1 +m2 = 1 considered in this subsection may be considered
either as primaries in the charge sector (2, 2) or, alternatively, as descendants of a lower
energy state with spin s = 0 in the sector (0, 0).
As mentioned in subsection 2.4.1, the lowest level in the charge sector (2, 2) is part

of a multiplet which also appears as an excitation in the sector (0, 0). Here, its root
configuration is given by f : [(1+

1 )2]. It has conformal spin s = 1 in agreement with
(II.127)) and its effective scaling dimension extrapolates to

X2,0
2, 12

= Ξ2,0
2, 12
− 1

4 = 1 + π

4(π − γ) −
1
4 , (II.172)

see figures 54 and 55 (a).
Possible descendants of this level are described by root configurations b : [1+

1 , 1−1 ],
f : [(1+

1 )3, 1−1 , z2], and f : [(1+
1 )5, (1−2 )2, 3−21]. They have conformal spin 2, 0, and 0,

respectively, and their scaling dimensions extrapolate to

X = Ξ2,0
2, 12
− 1

4 + 1 = 1 + π

4(π − γ) −
1
4 + 1. (II.173)
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Figure 54: Similar as Fig. 22 for the lowest state in sector (2, 2) extrapolating to X2,0
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eq. (II.172), and three higher levels extrapolating to X = X2,0
2, 1

2
+ 1, eq. (II.173). The data shown

are for γ = 2π/7.

Their scaling behaviour is also shown in figure 54.
Continuing our study in the charge sector (2, 2), we have observed a s = 1 level

described by a root configuration f : [(1+
1 )2]. This level yields an effective scaling

dimension
X2,1

2,0 = Ξ2,1
2,0 −

1
8 = 1 + π

4γ −
1
8 , (II.174)

in the thermodynamic limit, see figure 55(b). Again, we have identified three possible
descendants of this level. Their root configurations are given by b : [1+

1 , 1−1 ], b : [(1+
1 )2],

and f : [(1+
1 )4, 1+

2 , 1−2 ]. The conformal spin of these descendants are s = 2, 2, and 0,
respectively, and their scaling dimension extrapolates to

X = Ξ2,1
2,0 −

1
8 + 1 = 1 + π

4γ −
1
8 + 1, (II.175)

see also figure 55 (d), (e), and (f).
Further, we have found a level in this sector corresponding to an operator with zero

spin s = 0 and scaling dimension

X = Ξ2,0
2,0 + 1 = 2, (II.176)

see figure 55(c). Its root configuration is described in terms of a f : [1+
1 , 1−1 ] pattern.

Apart from these states, we have identified the Bethe roots for two additional levels:
a zero spin s = 0 excitation with root configuration b : [1+

1 , 1−1 ] or f : [(1+
1 )2] and a s = 1
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Figure 55: Effective scaling dimensions of several low-energy states in sector (2, 2) as a function
of γ for various system sizes: displayed in the left panel are (a) the spin s = 1 ground state
with effective scaling dimension extrapolating to X2,0

2,1/2, eq. (II.172), in (b) the spin s = 1
level extrapolating to X2,1

2,0 + 1, eq. (II.174) and in (c) the s = 0 level extrapolating to X = 2,
eq. (II.176). In the right panel the effective scaling dimension of three descendants of (b),
eq. (II.175) with spin (d) and (e) s = 2 and (f) s = 0, are shown. Dashed-dotted lines show the
conjectured γ-dependence. In (a), the extrapolated data were calculated assuming a rational
dependence of the finite-size data on x = 1/ logL. Since the finite-size corrections become larger
the extrapolation starts to fail for small γ.
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excitation described by roots f : [1+
1 , 1−1 ] or b : [(1+

1 )2]. As the system size increases roots
in these configurations degenerate, therefore we were not able to perform a satisfying
finite-size study.

To conclude our investigation of the sector (n1, n2) = (2, 2) we present our results in
table 10.

X s
Eq. m1 m2 x0 total spin σn2,m2

n1,m1 s0 remark
(II.172) 1

2 0 −1
4 1 1 0

(II.174) 0 1 −1
8 1 1 0

(II.176) 0 0 1 0 0 0 Ising (1
2 ,

1
2)

Table 10: Conformal data for the levels studied in charge sector (n1, n2) = (2, 2) (see also
table 2). We have also observed descendants of (II.172), see II.173, and descendants of (II.174),
see (II.175).

2.5 Summary

In this section, we have reported the results obtained in a comprehensive finite-size
study of the q-deformed osp(3|2) superspin chain. We have identified the configurations
of roots to the Bethe equations (II.97) and (II.110) for most of the lowest energy
states. Taking these configurations as an input, we have computed the corresponding
eigenenergies as a function of the system size. With data available for lattices up to
several thousand sites, combined with insights from the root density approach and
at γ = π/2 as discussed in subsection 2.3, this has allowed for a computation of the
effective scaling dimensions even in the presence of very strong corrections to scaling,
see e.g. figure 56. There exist a few states where our solution of the Bethe equations
has been limited to several tens or a few hundreds of sites usually due to changes or
degenerations of the corresponding root configurations when the system size was varied,
see appendix A.2. In these cases, a reliable extrapolation has not been possible.
For the majority of states, however, we have been able to extrapolate the numerical

data and found that the scaling dimensions of primaries can be described by our proposal,
see (II.128),

Xn2,m2
n1,m1 = n2

1
π − γ

4π +m2
1

π

π − γ
+ n2

2
γ

4π +m2
2
π

4γ + x0. (II.177)

We note that modes with m2 6= 0 disappear from the low-energy spectrum in the
isotropic limit γ → 0. Such a behaviour was also observed in other superspin chains
based on deformations of orthosymplectic superalgebras [125].
Based on the finite size scaling of the states we have studied, we find that x0 takes

values from a discrete set depending on the quantum numbers n1, m1, n2, and m2 of
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Figure 56: The difficulties with numerical extrapolation based on finite-size data in the presence
of the strong corrections to scaling observed in some eigenenergies of the Uq[osp(3|2)] are evident
in the scaling behaviour of one of the three descendants (II.175), see fig. 55 (f): open symbols
are data from the numerical solution of the Bethe equations for various values of γ and system
sizes up to L = 2048. The dotted lines are extrapolations assuming a rational dependence of
Xeff on 1/ logL. While the radius of convergence of the latter may not be sufficient to read off
the effective scaling dimensions for L→∞ the extrapolation is consistent with the conjectured
values (filled symbols). Thus, this picture indicates the difficulties in using standard numerical
extrapolation techniques for the calculation of effective scaling dimensions for this model.

the corresponding level. The formulation of the general pattern of such constraints has
eluded us so far, but we note that they should at least include the following rules (for
even L),

for n1 + 2m1 odd and m2 = 0 : x0 = −1
4 ,

for n1 = 0 and m1 = m2 = 0 : x0 = 0,

for n1 + n2 even and m2 = 1 : x0 = −1
8 ,

for n1 + n2 odd and m2 = 1 : x0 = 3
8 .

(II.178)

We recall that the rules form2 = 0 are consistent to what is expected for the conformal
spectrum of the isotropic osp(3|2) superspin chain [19]. The two possible values of x0

observed for m2 = 1 provide a hint that the fields in the low-energy effective continuum
description of the model are composites of Gaussian fields and an Ising operator. The
connection to the integrable spin S = 1 XXZ chain provides additional support for this
interpretation. At present we don’t have a complete comprehension of this feature and
it may require further studies in order to understand the origin of the several allowed
values for x0.
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Another characteristic feature of the conformal spectrum of the isotropic model are
macroscopic degeneracies in the thermodynamic limit L→∞. Their presence appears
to be a general feature of spin chains invariant under the superalgebras osp(n|2m) [22]
and is consistent with the expected low temperature behaviour of the related intersecting
loop models [18, 112].

Here, i.e. for the anisotropic deformation of the osp(3|2) superspin chain with general
values of γ, we have observed a similar feature. In each of the charge sectors (n1, n2)
we have identified groups of levels extrapolating to the same effective scaling dimension.
They are subject to strong corrections to scaling which vanish as a function of 1/ logL.
In this model, such towers of levels have been found to appear on top of the following
dimensions,

Xtower = Xn2,0
n1,m1 = n2

1
π − γ

4π +m2
1

π

π − γ
+ n2

2
γ

4π −
1
4 (II.179)

for (n1,m1) = (0, 1/2), see figures 22, 26, 31, and (n1,m1) = (1, 0) as shown in figures
33, 38 and 42.

With these results, we provide a first phenomenological picture of the finite size
spectrum of the deformed osp(3|2) superspin chain. We emphasize that although most
of our numerical data have been calculated for anisotropies in the interval 0 ≤ γ ≤ π/2
we expect that the proposal (II.128) also captures the behaviour of the conformal
dimensions in the complementary region π/2 < γ < π. The confirmation of this
expectation, however, requires a large amount of additional numerical work which is
beyond the scope of this work.

Additionally, there are issues remaining which are not captured by our conjecture: for
a complete understanding of the effective low-energy theory, the combined presence of
discrete levels (II.128) and a possible continuous component in the conformal spectrum
leading to the existence of towers of levels starting at scaling dimensions (II.179) in the
lattice model needs to be explained. Furthermore, the appearance of the states with
the lowest energy of the lattice model, eq. (II.151), in a sector with non-zero charge
quantum numbers, i.e. (n1, n2) = (1, 0), is still an unanswered question.
In other models showing such peculiar features, studies of the spectral flow under

the change of toroidal boundary conditions have provided further insights [27], see
also section 1 and reference [85]. For the Uq[osp(3|2)] superspin chain, this amounts
to an extension of the finite-size analysis presented in this section to its integrable
modifications obtained by including the generic toroidal twists (II.94). Following the
evolution of the low-energy levels under varying twist angles (φ1, φ2) it is possible
to connect the superspin chain to several, closely related models and thereby obtain
additional evidence supporting the conjecture for the conformal spectrum, see figure 57.
For an exhaustive discussion of these relations, a lot of additional work is required.

Here, we restrict ourselves to list a few observations, mostly concerning the lowest state
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(0, 0) (0, π)

(π, π)(π, 0)

φ2

φ1
S = 1 XXZ chain
with twist ϕ = φ1 − π

R

NS

Figure 57: Models connected by variation of the twists (II.94): the symbol R (NS) denote pe-
riodic (antiperiodic) boundary conditions for the fermionic degrees of freedom of the Uq[osp(3|2)]
superspin chain in analogy to the Ramond (Neveu-Schwarz) sector of Conformal Field Theories.
On the dashed line for φ2 = π the spectrum of the superspin chain contains the eigenenergies of
the integrable spin S = 1 Heisenberg chain.

in the zero charge sector.
We have pointed out already in our discussion of the Bethe Ansatz solution in the

fbbbf grading, eqs. (II.110), that the spectrum of the Uq[osp(3|2)] chain contains the
eigenenergies of the integrable S = 1 XXZ Heisenberg model on the line (φ1, φ2) =
(π + ϕ, π). The Virasoro central charge of the latter model varies between c = 3/2
for periodic (ϕ = π − φ1 = 0) and c = 0 for antiperiodic (ϕ = π − φ1 = π) boundary
conditions of the spin S = 1 XXZ chain, see appendix A.1.

The energy of the latter state has no corrections to scaling and does not change under
the spectral flow (φ1, φ2) = (0, π)→ (0, 0). It therefore connects to that of the lowest
state in the zero charge sector of the periodic superspin chain, eq. (II.114), that we have
used as reference state for our finite-size analysis.
The variation of the twist along the line (φ1, φ2) = (0, 0)→ (π, 0) corresponds to an

adiabatic change of the boundary conditions for the fermionic degrees of freedom from
periodic to antiperiodic. In the field theory describing the thermodynamic limit of the
superspin chain, this corresponds to the Ramond (R) and Neveu-Schwarz (NS) sector,
respectively. The spectral flow connects the reference state with energy (II.114) and
the zero charge ground state of the lattice model for twists (φ1, φ2) = (π, 0). In the
fbbbf grading, the latter is parametrized by roots arranged in L/2 complexes (II.112).
As shown in figure 58 for γ = 2π/7, its effective scaling dimension extrapolates to
XNS0,eff = −1/4 which coincides with the observation of a central charge cNS = 3 in the
isotropic model [18, 19, 112].
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Figure 58: Spectral flow of the lowest level in the charge sector (0, 0) as function of the twist
angle φ1 for γ = 2π/7. The effective scaling dimension for φ1 = 0 (π) appears in the Ramond
(Neveu-Schwarz) of the low-energy effective theory, respectively. Symbols are finite-size data
from the solution of the Bethe equations (II.110), lines show the conjectured analytical behaviour
(II.180).

Curiously, following the scaling dimension as a function of the twist φ1 we find different
analytical expressions near φ1 = 0 and π,

X(φ1) =

X
R
eff(φ1) = − π

4γ

(
φ1
π

)2
, 0 ≤ φ1 ≤ γ,

XNSeff (φ1) = −1
4 + π

4(π−γ)

(
π−φ1
π

)2
, γ ≤ φ1 ≤ π.

(II.180)

Note, the dependence on the twist near φ1 = π can be related to the vortex contribution
m1 in our proposal for the scaling dimensions (II.177). Near φ1 = 0, however, the
flow under the twist resembles the γ-dependence of the m2 vortices albeit with the
’wrong’ sign. Now suppose that it is possible to extend the amplitude XReff(φ1) to the
twist angle domain of the Neveu-Schwarz sector by means of a well defined analytical
continuation procedure. Using this hypothesis, we observe that XReff(π) = −π/4γ is in
fact smaller than the lowest observed scaling dimension in the Neveu-Schwarz sector, i.e
XNSeff (π) = −1/4. Following the arguments of refs. [20, 27, 85] (see also section 1), we
may speculate that this can be taken as an indication for the presence of operators in
the non-unitary effective field theory for the Neveu-Schwarz sector that correspond to
non-normalizable states and therefore are absent in the spectrum of the lattice model.
To put this on firm ground, however, further studies are required.
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Conclusions

Non-unitary Conformal Field Theories show several extremely interesting features. While
the spectrum of unitary CFTs can be characterized by a discrete set of conformal weights
only, the spectrum of non-unitary CFTs may include continua of scaling dimensions,
meaning their target space is non-compact. A second striking feature of non-unitary
CFTs is the existence of non-normalizable states. In lattice realizations these correspond
to discrete states which emerge for certain boundary conditions only. Interestingly,
several lattice models including superspin chains have been argued to correspond to
non-unitary CFTs in the thermodynamic limit [19, 21, 22, 26] although the local degrees
of freedom are finite. Even though some of their features as listed above are known, the
thermodynamic limit of such models is not completely understood. In contrast, spin
chains based on simply laced Lie algebras are believed to correspond to Wess-Zumino-
Novikov-Witten models in the thermodynamic limit [7]. Hence, within this work we
have studied two superspin chains in order to contribute to a characterization of their
thermodynamic limit.

The first model we have investigated within this work is the staggered Uq[sl(2|1)]
superspin chain which is one of the toy models for order-disorder transitions in Quan-
tum Hall systems. The construction of this model is based on the three-dimensional
fundamental representation of Uq[sl(2|1)] and its dual. As mentioned above, a special
feature of this model is the emergence of continuous components in the spectrum of
scaling dimensions [21]. We have extended this picture by discovering continua of scaling
dimensions in other sectors as well. Motivated by the approach of Ikhlef et al. for
the staggered six-vertex model [23–25] we have sought for a characterization of the
different continua by means of a conserved charge. To this purpose we have defined a
quasimomentum operator. In contrast to the Hamiltonian and the momentum operator
which are generated by an expansion of the logarithm of the double row transfer matrix,
the quasimomentum originates from an expansion of an odd combination of single-row
transfer matrices. By numerical solutions of the Bethe Ansatz equations for states from
the continua of scaling dimensions we have shown that the quasimomentum operator
parametrizes the continuous components of the spectrum and thereby determines the
logarithmic corrections which lift the macroscopic degeneracies of these states on the
lattice. Since the quasimomentum eigenvalues also allow for an extraction of the density
of states for the continuous components of the spectrum, we have compared the outcome
to the known results for the SL(2,R)/U(1) sigma model. Unfortunately, the results do
not coincide. Certainly, the identification of the CFT for the thermodynamic limit by
calculating the density of states for the continuous component of the spectrum is reliant
on its knowledge for ‘candidate CFTs’. Therefore, the study of other symmetries on



the target space of the SL(2,R)/U(1) sigma model, a semi-infinite cigar which allows
for both a continuous and discrete part of the spectrum, seems to be promising. The
corresponding results might help to identify the CFT for the thermodynamic limit.

Subsequently, we have turned to a different characteristic of non-unitary CFTs, namely
the emergence of non-normalizable levels. In the spectrum of the staggered Uq[sl(2|1)]
superspin chain, the corresponding states appear as discrete states for twisted boundary
conditions only, that is, when the corresponding primary field in the CFT becomes
normalizable. Hence, we have studied the spectral flow in the spectrum of the superspin
chain under a twist in the boundary conditions. Based on numerical solutions of the
Bethe Ansatz equations, we have identified a state from the continuous part of the
spectrum in the Neveu-Schwarz sector which under variation of the twist becomes a
discrete level in the Ramond sector. Note, for the discrete state to appear a non-zero
twist has to be applied. Thus, our observations coincide with the expectations in the
context of non-unitary CFTs as described above. Additionally, we have found that in the
CFT, levels can be attributed to the continuous or discrete part of the spectrum based
on their quasimomentum: States belonging to a continuum of scaling dimensions have
real quasimomenta while for discrete levels the quasimomentum is purely imaginary.
To entirely understand the thermodynamic limit of the q-deformed staggered sl(2|1)
superspin chain and its description in terms of CFTs, however, additional investigations
have to be performed.

Consecutively, we have studied a superspin chain based on the five-dimensional
fundamental representation of the q-deformed osp(3|2) superalgebra. In the isotropic
limit, this model corresponds to a reformulation of the intersecting loop model. As
a first step for the characterization of the thermodynamic limit for the q-deformed
model, we have investigated its operator content. To this purpose, we have performed a
comprehensive finite-size study thereby identifying the configurations of roots to the
Bethe equations in two different gradings for most of the lowest energy states. Taking
these configurations as an input we have computed the corresponding eigenenergies as
a function of the system size. With data available for lattices up to several thousand
sites, combined with insights from the root density approach and at γ = π/2, this
has allowed for a computation of the effective scaling dimensions even in the presence
of very strong corrections to scaling. For the majority of states we have found that
the scaling dimensions of primaries can be described by our proposal. We note that
modes with quantum number m2 6= 0 disappear from the low-energy spectrum in the
isotropic limit γ → 0. Such a behaviour was also found in other superspin chains based
on deformations of orthosymplectic superalgebras [125]. Among the investigated states
from the low-energy spectrum we have observed groups of levels extrapolating to the
same effective scaling dimension. They are subject to strong corrections to scaling which
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vanish as a function of 1/ logL. We have found such towers of levels on top of the
states with quantum numbers (n1,m1) = (0, 1/2), (n1,m1) = (1, 0), n2 = 0, 1, 2 and
m2 = 0. With these results we provide a first phenomenological picture of the finite
size spectrum of the deformed osp(3|2) superspin chain. Note, the rational osp(3|2)
superspin chain was shown to exhibit continua of scaling dimensions previously. The
amplitudes of the corresponding logarithmic corrections were shown to be related to
the quadratic Casimir of osp(3|2) [19, 22].

There are still some issues remaining which are not captured by our conjecture. For
a complete understanding of the effective low-energy theory, the combined presence
of discrete levels entering our conjecture and a possible continuous component in the
conformal spectrum leading to the existence of towers of levels needs to be further
elaborated. As discussed above, towers of excitations have been found also in the
staggered Uq[sl(2|1)] superspin chain, in which the corresponding continua have been
shown to be parametrized by a quasimomentum operator. Since the latter originates
from an expansion of an odd combination of single-row transfer matrices, its existence
is a direct consequence of the staggering in the model. Therefore, the construction of a
quasimomentum in the absence of staggering should be a major goal of future research.
Intuitively, the framework of quasilocal charges [126] might provide a good starting
point for such a construction.

In our conjecture for the operator content of the q-deformed osp(3|2) superspin chain,
we have taken into account the contributions of potential discrete degrees of freedom
by introducing the γ-independent summand x0. Some of its possible values which
depend on the quantum numbers ni and mi (i = 1, 2) can be fixed by the isotropic
limit. However, it is not clear whether, in terms of the corresponding Bethe roots, x0

originates from finite size string deviations or from isolated roots. A detailed study
thereof would be of great interest and seems to be auspicious.

Additionally, the reason for the appearance of the states with the lowest energy of the
q-deformed osp(3|2) superspin chain in a sector with non-zero charge quantum numbers,
i.e. (n1, n2) = (1, 0), remains unclear. In the context of non-unitary CFTs, this might
be an indication for the existence of non-normalizable states: For the ‘true ground
state’ to appear in the spectrum of the lattice model, a non-zero twist in the boundary
conditions may be needed. However, these thoughts are highly speculative such that
further studies are required.
For both models under consideration our study was reliant on a numerical solution

of the Bethe Ansatz equations. When using this method, the system size determines
the numerical effort needed for a solution with satisfying precision. Assuming the
possibility to deduce nonlinear integral equations not for the thermodynamic limit
but for finite system sizes as in refs. [25, 26] for the (staggered) six-vertex model, the
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system size would appear only as a parameter allowing for a numerical study up to,
in principle, arbitrary large system sizes. Both studied models would greatly benefit
from an investigation based on nonlinear integral equations, if such exist: For the
q-deformed sl(2|1) superspin chain, larger system sizes may allow for a more precise
extraction of the density of states in the continua of scaling dimensions similar to
[26]. The higher precision might be needed when comparing the calculated density of
states in the continuous components of the spectrum with predictions from ‘candidate
CFTs’ if known. In the q-deformed osp(3|2) model, an approach based on integral
equations would allow for a more precise verification of our conjecture as well as a
better understanding of the subleading finite-size corrections. Admittedly, there may be
technical difficulties to overcome when deducing the needed nonlinear integral equations
since some of the states either involve isolated roots or have huge finite-size corrections
in the imaginary parts of the string complexes. In addition, as mentioned above, such
an approach is well-established for the (staggered) six vertex model only. For higher
rank models like the two superspin chains studied within this work, there is no general
scheme how to deduce the correct set of equations.

Recently, it became clear furthermore that the contribution of only the primary
levels to the density of states in the continuous components of the spectrum is not
sufficient for the identification of the thermodynamic limit of superspin chains [90].
Hence, when seeking for an identification of the thermodynamic limit of the Uq[sl(2|1)]
superspin chain by calculating the density of states using the quasimomentum operator
also descendant states have to be considered.

Moreover, as briefly mentioned in the preliminaries, the Hamiltonians for both the
staggered Uq[sl(2|1)] and the q-deformed osp(3|2) superspin chain are not hermitian
operators. Hence, some energies might have a non-zero imaginary part. In fact, when
studying the full spectrum for small lattice sizes, we found complex eigenenergies in
the spectra of both models. However, previous studies of both models focused on the
real part of the low-energy spectrum and the corresponding low-energy effective field
theory in the thermodynamic limit [20–22, 84], hence we acted in a similar way. Since a
rigorous proof for the permission of the negligence of complex eigenenergies is lacking,
this procedure has to be seen as the desire for a simplification to end up with a theory
with well-known properties. On the other hand, for superspin chains with a non-unitary
CFT as effective field theory, the Hamiltonian fulfills a different role, that is, it serves
as the generating functional for correlation functions. In this context, the usage of
a non-hermitian operator is admissible. For the isotropic staggered sl(2|1) superspin
chain, this connection has been elaborated explicitly [127, 128]. Due to its different role,
however, it is unclear whether the formalism to extract the scaling dimensions out of the
finite size spectrum as discussed in I.3.3 needs slight adjustments when being applied to
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superspin chains. Therefore, in this context, the role of non-hermitian Hamiltonians
should be investigated in future research. The mentioned complex eigenenergies might
turn out to be an essential part of the CFT describing the thermodynamic limit of
superspin chains even though this may lead to rather unusual (in a physical context)
field theories.
Allover, this work showed two striking features of the thermodynamic limits of

superspin chains, in fact, the emergence of continua of scaling dimensions and the
appearance of discrete states when imposing general toroidal boundary conditions. By
establishing notable results for both studied models, the q-deformed sl(2|1) and osp(3|2)
superspin chain, a solid basis was set for future research ultimately aiming to unveil
their thermodynamic limit in the context of Conformal Field Theories.
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A Supplements for the Uq[osp(3|2)] superspin
chain

A.1 The integrable XXZ spin-1 chain

We start by recalling the Bethe Ansatz solution of the integrable S = 1 Heisenberg XXZ
spin chain with generic toroidal boundary conditions [48]. The Hilbert space of this
model can be separated into disjoint sectors labeled by the total magnetization Sz ≡ n.
The spectrum of the lattice model with L sites in a given sector n is parametrized by
L− n roots µj of the Bethe equations

[
sinh(µj + iγ/2)
sinh(µj − iγ/2)

]L
= eiϕ

L−n∏
k=1
k 6=j

sinh(µj − µk + iγ/2)
sinh(µj − µk − iγ/2) , j = 1, · · · , L− n (A.1)

where 0 ≤ ϕ ≤ π corresponds to the twist angle around the z-axis. Given a solution
{µj} to eqs. (A.1) the corresponding eigenenergy can be calculated by means of

EXXZ
n (L,ϕ) =

L−n∑
j=1

2 sin γ
cos γ − cosh(2µj)

. (A.2)

For the analysis of the system in the thermodynamic limit, L→∞, we utilize the string
hypothesis [108, 129], that is, for 0 ≤ γ ≤ π we observe for the root configurations of the
ground state and low lying excitations to be dominated by pairs of complex conjugate
rapidities

µj± = ξj ± i
γ

4 , (A.3)

which are continuously distributed along the real ξ-axis. Based on this observation the
root density formalism [119] allows for a computation of the density of these two-strings
[120],

σ(ξ) = 1
γ

1
cosh (2πξ/γ) (A.4)

leading to the ground state energy per lattice site,

ε∞ = lim
L→∞

E0(L)/L = −2 cot γ2 . (A.5)

In this approach, the elementary low-lying excitations above the ground state are found
to be described by their dressed energy and momentum,

ε(ξ) = 2πσ(ξ) and p(ξ) =
∫ ∞
ξ

dx ε(x), (A.6)



yielding a linear dispersion relation ε(p) ∼ vF | sin p| with Fermi velocity vF = 2π/γ.
The complete finite-size spectrum of this model has been studied using a combination
of analytical and numerical methods leading to [100–102]

EXXZ
n,m (L,ϕ)−Lε∞ = 2πvF

L

[
n2 π − γ

4π +
(
m+ ϕ

π

)2 π

4(π − γ) +XI(r, j)−
c

12

]
. (A.7)

The central charge of the Conformal Field Theory describing the low-energy behaviour
of the integrable S = 1 Heisenberg XXZ spin chain reads c = 3/2 [130]. Within this
theory, the operators are given in terms of composites of a U(1) Kac-Moody field with
charge n and vorticity m and an Ising (or Z(2)) operator with scaling dimension XI(r, j).
The latter takes values

XI(0, 0) ∈ {0, 1}, XI(1, 0) = XI(0, 1) = 1
8 , XI(1, 1) = 1

2 , (A.8)

depending on n, m and the parity of the system size by means of the selection rules
r = n+ L mod 2 and j = m+ L mod 2. In particular, XI = 1/8 for n+m odd.

Note, within the root density approach based on the string hypothesis (A.3) only the
contributions from the Kac-Moody field to the finite-size energies (A.7) are obtained
[122, 131]. The differences between the true root configurations solving the Bethe
equations (A.1) and the string hypothesis add up to give the Ising part XI [100].

A.2 Degeneration of root configurations

Usually, the finite-size analysis of a particular level in a Bethe Ansatz solvable lattice
system relies on the fact that the roots to the Bethe equations form characteristic
patterns which allow to characterize this level uniquely for any finite system and in
the thermodynamic limit L → ∞. For most of the studied low-energy states in the
q-deformed osp(3|2) superspin chain, we have found this statement to be true. However,
we have also encountered a number of situations in which at a finite lattice size L∗ some
of the Bethe roots either diverge or degenerate leading to a qualitative change in the
corresponding root configuration.

Unfortunately, it is not always possible to identify the new pattern of roots in order
to follow the state for larger systems sizes. Moreover, such degenerations can occur even
for intermediate system sizes which cannot be reached by an exact diagonalization of
the Hamiltonian preventing us to identify the new pattern of the Bethe roots.
In this appendix we present such degenerations which have been observed in our

finite-size study in more detail.
At the end of section 2.4.1, we have discussed a level in the charge sector (0, 0)

where we have found that the corresponding Bethe root configuration changes as the



system size is increased. For small L, the fbbbf roots for this state are arranged as
f : [(1+

1 )3, z2]⊕ [11, 22]−∞, the finite ones are shown in Figure 59 for L = 10 and L = 16
and anisotropy γ = 2π/7.

-γ/4

γ/4 λ
(1)

λ
(2)

-0.5 0 0.5 1 1.5

-γ/4

γ/4

Figure 59: Finite part of the fbbbf root configurations for the spin s = 1 state in sector (0, 0)
for L = 10 (top) and L = 16 (bottom) and γ = 2π/7. As L is increased we notice a growth in
the real part of one of the roots at the first level and of the real part of a complex pair at the
second´ level.

As can be seen from this figure, three of the roots which are not part of the complexes
(II.112), namely one of the real first level roots [1+

1 ] and the pair of complex conjugate
level-2 roots, [z2], increase considerably as the system size grows. We can follow this
behaviour based on our numerical solution of the Bethe equations (II.110) up to some
finite system size L∗ which depends on the anisotropy, e.g. L∗ = 26 for the parameters
used in figure 59. Beyond L∗, the root configuration degenerates and it is likely to
change forming a different pattern. In principle, it might be possible to identify such a
new pattern by solving the Bethe equations for L & L∗. However, whether this describes
an eigenstate of the superspin chain cannot be checked since an exact diagonalization of
the Hamiltonian for systems of that size is not feasible.
In some cases it may be possible to avoid the degenerations described above by

working in the other grading. Here, however, the bfbfb root configuration degenerates
at the same system size L∗. As a consequence of this scenario we do not have sufficient
data for a reliable finite-size analysis.

A second example for a state where the patterns formed by the Bethe roots changes



with the system size has been observed in the charge sector (1, 0).
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Figure 60: Degeneration of Bethe roots for a state in charge sector (1, 0): for anisotropy
γ = 2π/7 the root configuration changes from b : [1−1 , 1+

2 , 3+
21, z1] for system size L = 10 (top) to

b : [(1−1 )3, 1+
2 , 3+

21] for L = 12 (bottom).

In fig. 60 we show how the bfbfb root configuration of this state changes when the
system size is increased. We first note that the complex pair [z1] at the first level
degenerates at L∗ = 12 into the root pattern [(1−1 )2] with a rather large real part. This
configuration remains unchanged until we reach another finite system size L̄∗ which
again depends on the anisotropy, e.g. for γ = 2π/7 we found L̄∗ = 42. Now for L & L̄∗

we find that the second level roots in two of the bfbfb complexes degenerate giving rise
to yet another pattern of root configurations making it difficult to follow this state for
large L. We remark that this kind of degeneracies is also present when we use the fbbbf
grading. Therefore, the situation is similar to the one described previously.

Another example of a state whose root configuration changes twice, at distinct lattice
sizes, has been observed in the (1, 1) sector. The degenerations are exhibited in fig. 61
for γ = 2π/7.

In (a) we show the root pattern for L = 8 which is built from a configuration f : [1−1 ].
By increasing the system size to L = 10 we see that one of the 2-strings at level one
splits into two real roots giving rise to new configuration f : [(1+

1 )2, 1−1 , 2+
2 ], see fig. 61(b).

In addition, for L > 12 we note that one of the two-strings at level two starts to be
deformed into a [z2] root configuration which is displayed in fig. 61(c) and (d). This
latter root pattern remains stable for system sizes up to L = 36. Beyond this size the



solution of the Bethe equations failed due to numerical instabilities.
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Figure 61: Sequence of degenerations of the Bethe root patterns for a state in charge sector
(1, 1) at anisotropy γ = 2π/7: the root configuration changes from f : [1−1 ] for L = 8 (a) to
f : [(1+

1 )2, 1−1 , 2+
2 ] for L = 10 (b), and further to f : [(1+

1 )2, 1−1 , z2] for L = 18 (c) and L = 24
(d).

A.3 Missing and unclassified states

In addition to states changing their root configuration which have been discussed in
appendix A.2, we have also found states for which we could find the root configuration
only for specific values of the anisotropy γ and system size L. In this appendix, we list
these states and their root configurations if known.

The first of these states belongs to the charge sector (1, 0) and is described in terms
of a f : [1−1 , 1+

2 , z1, z2] or equivalently b : [3+
12, z1, z2] root configuration. The Bethe roots

for both gradings and anisotropy γ = 2π/7 can be found in table 11.
In the (1, 1) charge sector there is again one state for which the root configuration

is known only for certain parameters. For L = 6 and γ < π/4, this state has a
b : [1−1 , z1, z2] root configuration, see tab. 12. When γ → π/4 the imaginary part
of the [z1] configuration shrinks such that at γ = π/4 it passes into [(1+

1 )2] to avoid
degenerations. For γ > π/4 we haven’t been able to find a root configuration.
For the charges (n1, n2) = (2, 1) we found one additional state with a very peculiar

root configuration which does not fit to our notation introduced in section 2.4. Using



λ(1)/γ (bfbfb) λ(1)/γ (fbbbf) λ(2)/γ

−0.0614037 + 0.7497763i −0.0497337 + 0.2308725i −0.0594249 + 0.2575524i
−0.0614037− 0.7497763i −0.0497337− 0.2308725i −0.0594249− 0.2575524i
0.2775207 + 0.7511673i −0.1104048 + 0.1852444i 0.2586970 + 0.2364768i
0.2775207− 0.7511673i −0.1104048− 0.1852444i 0.2586970− 0.2364768i
−0.1083635 + 0.4999904i 0.2434987 + 0.2732079i −0.1052276 + 0.3794159i
−0.1083635− 0.4999904i 0.2434987− 0.2732079i −0.1052276− 0.3794159i
−0.1077535 + 1.0052139i −0.0869949 + π/(2γ)i −0.1083634
−0.1077535− 1.0052139i

Table 11: Root configuration of the b : [3+
12, z1, z2] or equivalently f : [1−1 , 1+

2 , z1, z2] state in
the (1, 0) sector for L = 8 and γ = 2π/7 [114].

λ(1)/γ λ(2)/γ

0.0802213 + 0.7496060i 0.0802934 + 0.2503739i
0.0802213− 0.7496060i 0.0802934− 0.2503739i
0.7922719 + 0.6098025i 0.9907590 + 0.3621826i
0.7922719− 0.6098025i 0.9907590− 0.3621826i
−0.6739339 + π/(2γ)i

Table 12: Root configuration of the b : [1+
1 , z1, z2] state in the (1, 1) sector for L = 6 and

γ = 2π/9 [114].

the fbbbf grading it consist of two (one) purely imaginary roots on the first (second)
level. In contrast to the string complexes occurring at all of the other states, here the
remaining roots on both levels are not complex conjugates. Instead their imaginary
parts are slightly shifted which can be seen explicitly in tab. 13 where we list the
corresponding Bethe roots for L = 8 and γ = 2π/7. We have been able to calculate the
Bethe roots for this state up to L ≤ 16 and 0 < γ ≤ π/3.

λ(1)/γ λ(2)/γ

−0.0574347 + 0.2561136i −0.0576961 + 0.2563855i
0.0574347 + 0.2561136i 0.0576961 + 0.2563855i
−0.0635931− 0.2340169i −0.0573882− 0.2442878i
0.0635931− 0.2340169i 0.0573882− 0.2442878i

−0.1620614i 0.5803344i
1.3092483i

Table 13: Root configuration of the discussed state in the (2, 1) sector using the fbbbf grading
for L = 8 and γ = 2π/7 [114].
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