Trusted Community:
A Novel Multiagent Organisation for Open Distributed Systems

Von der Fakultat fur Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des akademischen Grades
Doktor-Ingenieur (abgekurzt: Dr.-Ing.)

genehmigte Dissertation

von

M.Sc. Lukas Klejnowski

geboren am 21. November 1981

in Piekar

2014

1. Referent: Prof. Dr.-Ing. Christian Muller-Schloer
2. Referent: Prof. Dr. rer. nat. Jérg Hahner
Tag der Promotion: 24.02.2014

Danksagung

Ich méchte zunachst meinem Doktorvater Prof. Christian Miller-Schloer fiir die ausgezeichnete Be-
treuung danken. Durch seine konstruktive Begleitung meiner Forschung, gepaart mit Vertrauen in
meine Arbeitsweise und dem notwendigen Freiraum hat er meine Entwicklung geférdert und mir die
notwendige Sicherheit geboten. Ich danke weiterhin meinem Zweitgutachter Prof. J6rg Hahner far
seine fachliche, aber vor allem auch menschliche Unterstiitzung wahrend meiner Zeit als Doktorand.

Diese Arbeit ist wahrend meiner Téatigkeit am SRA entstanden. In dieser Zeit habe ich sehr viel
Zuspruch, fachlichen Austausch und eine wunderbare Arbeitsatmosphére erfahren. Dafiir danke ich
Prof. Jirgen Brehm, Monika Lorenz und Lars Maasjost sowie meinen Kollegen Sven Tomforde, Emre
Gakar, Aret Duraslan, Michael Nolting, Yvonne Bernard und loannis Zgeras. Sie haben mich die
meiste Zeit am Institut begleitet, immer ein offenes Ohr fir mich gehabt und dafiir gesorgt, dass ich
mich am Institut wohlgefiihlt habe. Ich danke weiterhin den neuen Kollegen Sebastian Niemann,
Jan Kantert und Henning Spiegelberg fiir die gemeinsame Zeit. Ich bin sicher, dass durch sie die
familiare Atmosphére am SRA bestehen bleibt.

Mein gréBter Dank gilt meiner Frau Anna Charlotte und unserer Tochter Eva Linea sowie meinen
Eltern Beata und Jan Klejnowski. Sie haben mich zu dem gemacht, der ich heute bin, mich auch in
schwierigen Zeiten bedingungslos unterstltzt und in meinem Vorhaben bestarkt.

Zusammenfassung

Schlagworte: Offene verteilte Systeme, Organic Computing, Multiagentensysteme, Multia-
gentenorganisationen, Vertrauen und Reputation, Desktop Grid Systeme

Offene verteilte Systeme wie das Internet, Peer-to-Peer-Systeme, Desktop Grid Systeme, E-
Commerce-Systeme, drahtlose Sensornetzwerke oder Fahrzeug-Ad-hoc-Netzwerke haben in den
letzten Dekaden immer mehr Verbreitung gefunden. Der Entwurf solcher Systeme ist jedoch von
Herausforderungen geprégt: Der Betrieb muss stets gewahrleistet, oder gar zur Laufzeit optimiert
werden und zwar unter Bedingungen wie dynamischen Systemteilnehmern, eigennitzigen Systemteil-
nehmern und unkooperativen oder gar feindlichen Systemteilnehmern. Zusétzlich herrscht in solchen
Systeme, bedingt durch die nichtdeterministischen Interaktionen, eine komplexe Dynamik, die zu un-
erwlnschten, emergenten Systemzustédnden fihren kann. Da die Kontrolle eines solchen Systems
dezentral ist und zwischen den Systemteilnehmern verteilt werden muss, erfordern solche Bedingun-
gen von den Systemteilnehmern flexible und komplexe Entscheidungsmechanismen. Diese missen
in der Lage sein,Unsicherheiten bezuglich der Ziele und Motivationen anderer Teilnehmer sowie des
Systemzustandes zu bewaltigen.

In der Forschungsliteratur wurden viele Ansatze zur multiagentenbasierten Kontrolle solcher of-
fener verteilter Systeme vorgeschlagen. Diese beruhen auf der Delegation von Kontrolimechanis-
men an autonome Agenten, die diese durch selbstorganisierte und adaptive Prozesse realisieren. In
diesem Zusammenhang wird einerseits der Einsatz von (kiinstlichem) Vertrauen und Organisationen,
inspiriert durch die Ubertragung soziologischer Konzepte, propagiert. Andererseits entstand vor ein-
igen Jahren das Forschungsfeld Organic Computing, das Werkzeuge und Methoden zur Steuerung
komplexer Systeme durch naturinspirierte Selbstorganisationsverfahren zum Inhalt hat. In der vorlie-
genden Arbeit wird zwecks Realisierung von ganzheitlich robusten Kontrollstrukturen, die Verflech-
tung von Ansétze dieser unterschiedlichen Forschungsfelder vorangetrieben.

Zu diesem Zweck wird in dieser Arbeit die Entwicklung einer vertrauensbasierten Multiagenten-
organisation beschrieben. Diese Trusted Community genannte Struktur ist fir die langfristige Organ-
isation von Agenten mit starken gegenseitigen Vertrauensbeziehungen ausgelegt. Im Kollektiv bilden
diese Mitgliederagenten eine vertrauenswirdige geschlossene Umgebung in einem ansonsten un-
sicheren und offenen Umfeld. Dies erlaubt ihnen, ihre Interaktionen zu optimieren, da der Grad
an notwendigen Sicherheitsmechanismen reduziert werden kann. Um weiterhin die Robustheit und
fortwahrende Optimierung einer solchen Organisation zu gewahrleisten, wahlen die Mitglieder einen
sogenannten Trusted Community Manager. Diese Rolle beinhaltet die Reprasentation und Regulier-
ung der Organisation, indem sie die Ausflihrung von entsprechenden Strategien vorgibt. Diese real-
isieren beispielsweise die Aufnahme neuer Mitglieder, den Ausschluss von Mitgliedern, die Verteilung
weiterer Rollen sowie der Beobachtung und Anpassung dieser Kontrollmechanismen basierend auf
der beobachteten Leistungsfahigkeit der Organisation. Zusammengefasst bilden diese Strategien
die sogenannten Selbst-X Eigenschaften aus (z.B. Selbstschutz, Selbstheilung, Selbstoptimierung).

Das Trusted Community Konzept basiert auf einem modularen Entwurf: Die Funktionalitat dieser
Organisationsform wird durch die entkoppelte Komposition von Strategien erbracht. Diese sind kon-
figurierbar, zur Laufzeit austauschbar und erlauben Anpassungen an die Charakteristiken des Ein-

satzsystems. Jede dieser Strategien wird formal definiert und fur jede wird eine Basisimplementier-
ung vorgestellt. Zusatzlich werden erweiterte sowie szenariospezifische Implementierungsvarianten
diskutiert.

In der vorliegenden Arbeit wird zudem ein Systemmodell vorgestellt, das die Anforderungen fiir
den Einsatz von Trusted Communities in technischen Systemen formal spezifiziert und dessen Gren-
zen diskutiert. SchlieBlich wird die Anwendbarkeit in einem offenem Desktop Grid System demon-
striert. Diese Systemklasse ist gekennzeichnet durch vielféltige technische Herausforderungen, die
einen grofB3en negativen Einfluss auf die Leistungsfahigkeit und Robustheit eines solchen Systems
haben kénnen. Es wird konsequenterweise in einer ausfihrlichen Evaluation dargestellt, wie der
Einsatz von Trusted Communities zur Lésung dieser Herausforderungen beitrédgt und wie sich in-
folgedessen das System verbessert. Die hierbei unter unterschiedlichen Bedingungen und Stérein-
flussen erzielten Ergebnissen werden mit Ergebnissen von verwandten Verfahren aus der Literatur
verglichen. Diese Vergleiche belegen, dass der Einsatz von Trusted Communities insbesondere
bezlglich der Robustheit des Einsatzsystems signifikante Vorteile bringt.

Abstract

Keywords: Open Distributed Systems, Organic Computing, Multiagent Systems, MAS organ-
isations, Trust and reputation, Desktop Grid Systems

Open Distributed Systems, be it the Internet, peer-to-peer systems, e-commerce systems, Desktop
Grid Systems, wireless sensor networks, or vehicular ad-hoc networks, have immensely gained in
popularity in the recent decades. The design of such systems is however a challenging domain:
The operation must be maintained or even optimised at run time, despite participants entering and
leaving the system at will, participants being self-interested and participants being uncooperative or
adversary. In addition, the interactions within such systems have complex dynamics and often lead
to undesired, emergent system states. As the control of such systems is decentralised and must
be distributed among the system participants, these aspects require flexible and complex reasoning
mechanism for the participants. These must allow to cope with the uncertainty about motivations and
goals of other participants, as well as the uncertainty about the state of the system.

In the research literature on Open Distributed Systems, many approaches have been proposed
to realise the control of such a system by the delegation of control to autonomous (software) agents.
The control is then realised through self-organising and adaptive processes of the agent society. On
the one hand, the realisation of such systems is often aided by the application of computational trust
and agent organisation methods, inspired by research in sociology. On the other, hand a relatively
recent approach called Organic Computing has contributed tools and methods to the control of such
complex systems by nature-inspired approaches to self-organisation. It is argued in this thesis that it
requires a combination of techniques from these research fields to allow for a truly robust control of
technical Open Distributed Systems.

To this end, a trust-based Multiagent organisation approach termed Trusted Community is pro-
posed. Trusted Communities are long-term organisations that are formed in a self-organised process
by mutually trusted agents. The members establish a highly trusted, closed environment in an oth-
erwise uncertain and open environment. Consequently, the members benefit from optimised interac-
tions due to the reduced degree of required safety means. To ensure the robustness and optimisation
of this collective, Trusted Communities designate a members to represent and regulate the organisa-
tion. This special role is referred to as Trusted Community Manager and allows to execute strategies
which decide about the invitation of additional members, the exclusion of members, the assignment
of roles and the continuous adaptation of this control based on the performance of the organisa-
tion. In sum, these strategies realise the concept of so-called self-X properties (e.g. self-protecting,
self-healing, and self-optimising).

The Trusted Community concept presented in this thesis is based on a modular design: The
functionality of this organisation is determined by a decoupled composition of strategies. These are
highly configurable, exchangeable at runtime and allow to adjust the approach to the characteristics of
the applied technical system. Each of these strategies is formally defined, and a basic implementation
is provided. In addition, extensions and scenario-specific implementations are discussed.

This thesis provides a system model with a formal specification of the requirements for the applic-
ation of the Trusted Community approach and a discussion of applicability limitations. The benefits of

the application are further demonstrated in a particular instance of a technical Open Distributed Sys-
tem - an open Desktop Grid System. This system class is characterised by many challenging issues
that can have a high impact on the performance and robustness of such systems. Consequently, it is
shown in an extensive evaluation, which considers many different types of setups and disturbances,
that the application of Trusted Communities provides a solution to these issues. The resulting per-
formance and robustness improvements are finally contrasted with the results achieved by related
state-of-the-art approaches in the same environment. These comparisons show that Trusted Com-
munities outperform other approaches, esp. with respect to increasing the robustness of the system
they are applied in.

Contents

Zusammenfassung i
Abstract iii
List of Abbreviations viii
List of Figures ix
List of Symbols Xi
List of Publications Xii
1 Introduction 1
1.1 Motivation e 1
1.2 Problem Statement and Contribution o .. 3
1.3 OverviewoftheThesis. 5

2 Related Work 7
2.1 Multiagent-based Open Distributed Systems 7
2.2 Trustin Multiagent Systems 8
2.3 Multiagent Organisations e 12
2.4 Organic Computing Systems e 16
2.5 Decentralised Control of Open Distributed Systems 20
2.5.1 Related Joint and Agent-based Approaches 21

2.5.2 Approaches for Open Desktop Grid Systems 27

2.6 Summaryand OVErviewo e e 31

3 System Model 35
3.1 System View 35
3.1.1 TheHosting System 35

3.1.2 AgentModel 36

3.1.3 Trust Management System 41

3.1.4 Composition and States of the Hosting System 45

3.2 Trusted Communities for Open, Technical MAS 47
3.2.1 Challenging Issues in the Hosting System 47

Vi Contents

3.2.2 Trusted Community - An Introduction 49
3.2.3 The Application of Trusted Communities in a Hosting System 53
3.2.4 Applicability Limitationsof TCs 54

3.3 Summary ... e 55
4 Trusted Community: A Novel MAS Organisation 58
4.1 Introduction e 58
4.2 Formal Definition L 59
4.3 Organisation Benefit Strategies 61
4.4 Trusted Community Lifecycle and Management 63
4.5 The Trusted Community Manager. 68
4.6 Trusted Community Strategies 70
4.6.1 Potential Member Search Strategies 70
4.6.2 Association Evaluation Strategies oo L 72
4.6.3 TC Initiation Strategies e 75
4.6.4 Membership Evaluation Strategies 77
4.6.5 Distributed Leader Election Strategies 78
4.6.6 TCM: Active TC Expansion Strategies 80
4.6.7 TCM: Member Control Strategies 84
4.6.8 TCM: Role-Assignment Strategies 87
46.9 TCM:TC Observerand TC Controller 91
4.6.10 Strategy Configuration 98

47 SUMMArY . . . ot e e e e e e 98
5 Evaluation 100
5.1 The Trusted Desktop Grid 100
5.1.1 System Classification 100
5.1.2 System Formalisation 105
5.1.3 Open Desktop Grids - A challenging environment 108
5.1.4 The Trusted Desktop Grid: Trust-Aware Agents 110
5.1.5 Agent Interactions in the Trusted Desktop Grid 114
5.1.6 DisCuSSION 121

5.2 Application of Trusted Communitiesinthe TDG 124
5.2.1 Organisation Benefit Strategies o L. 125
5.2.2 TC Strategy Configurationforthe TDG 129
5.2.3 Discussion e 131

5.3 Evaluation Results of the TC Applicationinthe TDG 135
5.3.1 Experimentalsetup 135
5.8.2 Performance Evaluation 138
5.3.3 Robustness Evaluation 152

5.4 Summary 161

Contents

vii

6 Conclusion 162
6.1 ThesisSummary e 162
6.2 Future research opportunities L 163
Bibliography 176
Appendices 177
A TC Strategy Algorithm Details 178
A.1 Basic Distributed Leader Election Strategy L. 178
A.2 Basic Role Assignment Strategy 180

B The Design of the TC Organisation Agent Component 182
C Threat Model For Open Desktop Grids 195
D Performance and Robustness Metrics For Open Desktop Grids 199
D.1 Performance Metrics 199
D.1.1 Theoretic Scheduling Problems 199

D.1.2 Distributed Systems 202

D.1.3 Desktop Grid Systems 202

D.1.4 Open Desktop Grid Systems 204

D.2 Robustness Metrics 205
D.3 Rationale for the Utilisation of Metricsinthe TDG 208

E Additional Evaluation Results 211

viii

List of Abbreviations

™
oC
MAS
AOSE
TC
TCM
TDG
iTC
O/C-loop
DGS
DG
BoT
Wu
P2P
DoS

Trust Management

Organic Computing
Multiagent Systems
Agent-Oriented Software Design
Trusted Community

Trusted Community Manager
Trusted Desktop Grid

Implicit Trusted Community
Observer/Controller-loop
Distributed Grid System
Desktop Grid

Bag-of-tasks

Work unit

Peer-to-Peer

Denial of Service

List of Figures

2.1 Observer/Controllerdesign pattern..
2.2 Overviewofrelatedwork.

3.1 System model of the hosting system.
3.2 System model with OC-based agents.
3.3 Agentmodel. e
3.4 Agent model with TM agentcomponent.
3.5 System view on a hosting system withasingle TC.
3.6 System view on a hosting system with a multiple TCs.
3.7 Refined agent model including TM and TC organisation agent components.

4.1 Trusted Community lifecycle and composition.
4.2 Basic Association Evaluation Strategy.o oo
4.3 TC strategy implementations.

5.1 Excerpt from Desktop Grid Taxonomy by [80].
5.2 Hierarchy of distributed computing systems and TDG classification..
5.3 Overview of the job scheduling formalisation of a hostinthe TDG.
5.4 Workunitlifecycle. e
55 AgentmodelofaTDGagent. e
5.6 Traversal through the TDG agent architecture.
5.7 Decision tree for submitter agentsinthe TDG.
5.8 Complete model of a TC-forming TDG agent.
5.9 Decision tree for submitter agents including the TC delegation strategy.
5.10 Comparison of incentives forthe TDG.,
5.11 Reputation of a TM-exploitingagent.
5.12 Worker diagram for the iTC-approach in undisturbed performance experiment.

5.13 Worker diagram for the TC-approach in undisturbed performance experiment.
5.14 Comparison of association numbers for undisturbed performance experiment.
5.15 Comparison of relative organisation utilities for undisturbed performance experiment. .
5.16 Comparison of association numbers for undisturbed performance experiment.
5.17 Comparison of the speedup of associated and unassociated agents.
5.18 TC composition and speedup for experiment with 30% defecting agents.
5.19 Association times diagram for Clans in the presence of CAA-agents.
5.20 Association times diagram for TCs in the presence of CAA-agents.
5.21 Comparison of the speedup of agent stereotypes for iTCs/TCs/Clans.
5.22 Reputation for agent stereotypes for disturbance size 0.6.
5.23 Worker diagram for disturbance size 0.6 aniTC.
5.24 Worker diagram for disturbance size 0.6 and TCs.
5.25 Speedup comparison for disturbance size 0.6 iTC/Clan/TC.
5.26 Speedup comparison for disturbance size 0.6 Clans/TC.

18
34

36
37
38
44
51
52
53

153

5.27 Summarised relative recovery costs at collusion attacks. 159

5.28 Summarised speedup collapse at collusion attacks. 160
5.29 Summarised recovery duration at collusion attacks. 160
B.1 TC organisation component agent states and transitions. 183
B.2 Workflow of the Unassociated Open State. 186
B.3 Workflow of the TC Member State. 187
B.4 Workflow of the TC Manager State. 189
B.5 Workflow of the Unassociated Forming State. 190
B.6 Workflow of the Electing TCM state. 192
D.1 Overview of relevant TDG performance metrics for distributed systems. 200
D.2 Robustnessexample. 206
E.1 Speedup comparison - undisturbed o 211
E.2 Speedup comparison - 20 % defectingagents L. 212
E.3 Speedup comparison - 30 % defectingagents 212
E.4 Speedup comparison - 20 % TM-exploitingagents 213
E.5 Speedup comparison - 30 % TM-exploitingagents 213

Xi

List of Symbols

DT%’E Subjective direct trust value of agent y in context ¢, estimated by agentx.
RT%’CA Reputation value of agent y in context ¢, estimated by opinion providers P.

TC;(t) ©* a Operator denoting the exclusion of an agent a from a TC;(¢) by itself or the TCM. .

TC;(t) @< (t) 5 Operator denoting the inclusion of an agent a in a TC;(t) by its TCM.

TC;(t) A Trusted Community, being a tuple of members, TCM and roles attime t.
TJZ’E Subjective trust value of agent y in context ¢, estimated by agentx.
uTCi(t,.) Relative TC utility function.
u*(t) Utility functionofanagentx.

T~ Interaction model ofanagentx. oo

default

Alt' The implementation i of an agent component type t, e.9. Apjy - - - - . o
Y1, (t) The set of roles in a Trusted Community TC;(¢) attimet.

(G Observation model ofanagentx.
A(t) Agent society of the hosting system attimetimet.
Bi(t) (m) A binary fnc. denoting whether there is a global trust breakdownin #
B%(t)(m) A binary fnc. denoting whether there is a trust breakdown in reference group P(t) . .
Comp? An agent component of an agent x, e.g. Compy. . « - .« o o o o oL
H The hosting system in which TCs can be applied.
MM (t) The setof TC membersin H attimet.

Mrc,(t) The set of members of a Trusted Community TC;(¢) attimet.

O(t) <7 TC;(t) Operator denoting the formation of a TC;(t) by agents F.

O(t) st () TC;(+) Operator denoting the dissolution of a TC;(t) by its TCM.
O(t) The set of operating agent organisations in attimet.
U™M(t) The set of unassociated agents in H attime t..
7 ~stemre (t) g Operator denoting the assignment of a role » to a TC member a by the TCM. . .

temrc,(t) The TC manager of a Trusted Community TC;(¢) attimet..

42

42

. 61

. 61

59

42

93

37

40

41

59

40

45

46

46

39

45

60

59

61

61

59

60

. 61

Xii

List of publications

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

[10]

(1]

(2]

[13]

[14]

[15]

[16]

(7]

S. Tomforde, M. Hoffmann, Y. Bernard and L. Klejnowski, ‘POWEA : A System for Automated Network
Protocol Parameter Optimisation Using Evolutionary Algorithms’, in Beitrdge der 39. Jahrestagung der
Gesellschaft fiir Informatik e.V. (Gl), 2009, pp. 3177-3192.

J.-P. Steghofer, F. Nafz, W. Reif, Y. Bernard, L. Klejnowski, J. Hahner and C. Miiller-Schloer, ‘Formal
Specification and Analysis of Trusted Communities’, in Proceedings of the Fourth IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems Workshop (SASOW), IEEE, Sep. 2010, pp. 190—
195, ISBN: 978-1-4244-8684-7.

J. Steghéfer, R. Kiefhaber, K. Leichtenstern, Y. Bernard, L. Klejnowski, W. Reif, T. Ungerer, E. André, J.
Hahner and C. Miller-Schloer, ‘Trustworthy organic computing systems: challenges and perspectives’, in
Autonomic and Trusted Computing, Springer, 2010, pp. 62—76.

Y. Bernard, L. Klejnowski, J. Hahner and C. Miiller-Schloer, ‘Towards trust in desktop grid systems’, in
Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE
Computer Society, 2010, pp. 637-642.

L. Klejnowski, Y. Bernard, J. Hahner and C. Muller-Schloer, ‘An architecture for trust-adaptive agents’, in
Proceedings of the Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshop (SASOW), IEEE, 2010, pp. 178—-183.

G. Anders, L. Klejnowski, J.-P. Steghofer, F. Siefert and W. Reif, ‘Reference Architectures for Trustworthy
Energy Management and Desktop Grid Computing Applications’, Universitatsbibliothek der Universitat
Augsburg, Augsburg, Tech. Rep. March, 2011.

Y. Bernard, L. Klejnowski, R. Becher, M. Thimm, J. Hahner and C. Mdller-Schloer, ‘Grid agent coopera-
tion strategies inspired by Game Theory’, in Proceedings 4. Workshop Grid-Technologie fiir den Entwurf
technischer Systeme - Grid4TS, Dresden, 2011.

Y. Bernard, L. Klejnowski, E. Gakar, J. Hahner and C. Miiller-Schloer, ‘Efficiency and Robustness Using
Trusted Communities in a Trusted Desktop Grid’, in Proceedings of the Fifth IEEE Conference on Self-
Adaptive and Self-Organizing Systems Workshop (SASOW), IEEE, Oct. 2011, pp. 21-26, ISBN: 978-1-
4577-2029-1.

Y. Bernard, L. Klejnowski, D. Bluhm, J. Hahner and C. Miiller-Schloer, ‘An Evolutionary Approach to Grid
Computing Agents’, in Proceedings of the Italian Workshop on Atrtificial Life and Evolutionary Computation,
2012, ISBN: 978-88-903581-2-8.

Y. Bernard, L. Klejnowski, J. Hahner and C. Miiller-Schloer, ‘Self-organizing trusted communities of trust-
adaptive agents’, Awareness magazine - Self-Awareness In Autonomic Systems, pp. 3-5, Apr. 2012.

L. Klejnowski, Y. Bernard, C. Miller-Schloer and J. Hahner, ‘Using Trust to reduce wasteful computation
in open Desktop Grid Systems’, in Proceedings of the 10th Annual International Conference on Privacy,
Security and Trust, IEEE, Jul. 2012, pp. 250—255, ISBN: 978-1-4673-2326-0.

M. Pacher, C. Muller-Schloer, Y. Bernard and L. Klejnowski, ‘Social Awareness in Technical Systems’, in
The Computer After Me, Imperial College Press / World Scientific Book, 2013.

G. Anders, J.-P. Steghofer, L. Klejnowski, M. Wissner, S. Hammer, F. Siefert, H. Seebach, Y. Bernard,
W. Reif, E. André and C. Muller-Schloer, ‘Reference Architectures for Trustworthy Energy Management,
Desktop Grid Computing Applications, and Ubigitous Display Environments - Technical Report 2013-
05,” Universitatsbibliothek der Universitat Augsburg, Universitatsstr. 22, 86159 Augsburg, Augsburg, Tech.
Rep. March, 2013.

L. Klejnowski, Y. Bernard, G. Anders, C. Miller-Schloer and W. Reif, ‘Trusted Community - A Trust-Based
Multi-Agent Organisation for Open Systems’, in Proceedings of the Fifth International Conference on
Agents and Atrtificial Intelligence (ICAART), Barcelona, Catalonia, Spain, 2013.

Y. Bernard, J. Kantert, L. Klejnowski, N. Schreiber and C. Mller-Schloer, ‘Application of learning to trust-
adaptive agents’, in Proceedings of the Seventh IEEE Conference on Self-Adaptive and Self-Organizing
Systems Workshop (SASOW), IEEE, 2013.

J. Kantert, Y. Bernard, L. Klejnowski and C. Muller-Schloer, ‘Interactive Graph View of Explicit Trusted
Communities in an Open Trusted Desktop Grid System, 2013 Demo Entry’, in Seventh IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2013.

Y. Bernard, L. Klejnowski, D. Bluhm, J. Hahner and C. Muller-Schloer, ‘Self-organisation and Evolution
for Trust-adaptive Grid Computing Agents’, in Evolution, Complexity, and Atrtificial Life, S. Cagnoni, Ed.,
Springer, 2014, 1ISBN: 978-3-642-37576-7.

xiii

(18]

[19]

L. Klejnowski, S. Niemann, Y. Bernard and C. Mdller-Schloer, ‘Using Trusted Communities to Improve the
Speedup of Agents in a Desktop Grid System’, in Proceedings of the Seventh International Symposium on
Intelligent Distributed Computing (IDC’2013), F. Zavoral, J. J. Jung and C. Badica, Eds., vol. 511, Prague,
Czech Republic: Springer International Publishing, 2014, 1SBN: 978-3-319-01570-5.

J. Kantert, Y. Bernard, L. Klejnowski and C. Mdiller-Schloer, ‘Estimation of reward and decision making for
trust-adaptive agents in normative environments’, in Architecture of Computing Systems - ARCS 2014,
E. Maehle, K. Rémer, W. Karl and E. Tovar, Eds., vol. 8350, ser. Lecture Notes in Computer Science,
Springer International Publishing, 2014, pp. 49-59, ISBN: 978-3-319-04890-1.

1 | Introduction

1.1 Motivation

In everyday life, we constantly interact with other members of our society. Cultural experience teaches
us to be aware that our interaction partners may have motivations and interests about these inter-
actions that are not necessarily compatible with what we expect. To experience negative interaction
outcomes - be it deception, disappointment, fraud, exploitation or deceit - have taught us to carefully
consider whom to commit to, when our welfare, freedom or integrity are at stake. On the other hand,
we are usually not all paranoid and impute only bad intentions to our fellow society members. Neither
do we control them all the time, trying to ensure that we really are not exposed to harm. These bal-
anced considerations are based on the socio-cognitive concept we call trust. Though highly complex,
trust assessment is so natural to us, that we are seldom consciously aware of the exact interpreta-
tions and assessments we carry out when deciding to trust someone. At the same time, it guides us
convincingly and we never question the very fact that we need trust for a functional society. Research
about the notion of trust, conducted in the fields sociology, psychology and economics, has provided
us with many answers and theoretical frameworks about why we trust, whom we trust and how we
trust (cf. e.g. [20]). Apart from the ongoing analysis of trust, research in this field has also lead to the
idea of synthesis, of applying artificial trust systems in technological contexts (as part of socionics, cf.
e.g. [21], [22]). This has resulted in research of computational trust models and Trust Management
systems and their application in the domains of Multiagent Systems (cf. e.g. [23], [24], [25]), as well
as Distributed Systems (cf. e.g. [26], [27]).

Especially the domain of Multiagent Systems has received considerable attention from trust re-
search in the last few years. Multiagent systems offer two views on trust application: On the one
hand, they allow to test trust theories from the traditional fields of research in controlled environ-
ments. Researchers here try and implement the models behind the theories, as accurately and with
as much detail as possible, in order to test them in evaluations not feasible in real societies or with
real individuals. The results are then fed back into the trust theories and used to extend and detail
the according models. On the other hand, Multiagent Systems are a key technology in the design
of (technical) open distributed systems (cf. e.g. [23]). These systems are characterised by the dis-
tribution of control among autonomous software entities (agents) that represent users in the system,
are in general designed by different programmers, and can enter and leave the system arbitrarily.
The users let their agents participate in the system with specific goals and their individual success
is measured according to formal performance metrics. Examples of these systems can be found in
domains such as e-commerce, vehicular networks and Desktop Grid Systems amongst others. In

2 Chapter 1. Introduction

these systems, the application of trust serves a specific purpose: Agents shall be enabled to identify
capable, credible, and reliable interaction partners. Obviously, a metaphor is used here, when stating
that agents shall be enabled to trust each other. The idea here is to apply concepts that proved es-
sential to the functioning of human societies to improve artificial societies. However, in contrast to the
rather vague functional definition of a human society, an artificial agent society for a technical system
has a precise and quantifiable performance definition. Accordingly, trust theories from other research
fields are taken as inspiration, but not implemented in each detail. Instead, they are simplified and
adapted to the specific technical context they are applied in. Research in these applications is then
conducted with the aim to improve the performance of agents in such a technical, open distributed
system.

In the literature, these two approaches to trust in Multiagent Systems are not clearly separated
from each other (cf. e.g. [28]). Many elaborate trust models are for example theoretically valid, but not
tested in concrete technical systems (cf. e.g. [29]). On the other hand, oversimplified trust models are
applied in technical systems where they allow for good results as long as the system is predictable.
If however the system changes too much during runtime, for example if new or different agents enter
the system, the Trust Management decreases the performance of the system. This also applies to
the problems of over-confidence on the one hand, and too much trust on the other hand: These
phenomena make many Trust Management systems slow to react and sub-optimal. Additionally,
Trust Management in technical systems has to be always treated as overhead. If no adversary or
unreliable agent behaviour is expected, this overhead should be avoided. However, typical Trust
Management systems are often not adequately flexible and the systems they are applied in are not
optimised for this kind of differentiation.

This is where research from the field of Organic Computing (OC) (cf. [30]) can be applied: OC is a
recently introduced paradigm related to the notions of biologically-inspired and autonomic computing.
The key idea is to design decentralised control structures for complex systems. Here, the term com-
plex system characterises a system in which heterogeneous elements show self-motivated, dynamic
and stochastic interaction patterns, that can lead to undesired, emergent system states. Control of
complex systems is a demanding goal, as these systems tend to change during runtime, express
emergent properties and are thus only partially suited to be planned at design time. OC systems can
be realised as Multiagent Systems and consequently endowed with trust-aware control and control
based on self-X properties like self-organising, self-healing, self-protecting and others. Accordingly,
control design by OC-technologies aims at producing mechanisms that adapt to the system state of
the complex system they control at runtime. This has for example been demonstrated with a system
of decentralised traffic control (cf. [31]) capable of adapting to emergent traffic states like congestion
or the failure of control components, and improving the throughput of the traffic system in comparison
to traditional control mechanisms. In this thesis, the work on a Multiagent organisation that applies
Trust Management and is self-organised using methods from Organic Computing, is presented. By
applying Organic Computing techniques in this context, it can account for the dynamics of open
distributed systems and counter the problems many Trust Management systems have in this domain.

1.2. Problem Statement and Contribution 3

1.2 Problem Statement and Contribution

In this thesis, a self-organised Multiagent organisation based on Trust Management and Organic
Computing techniques for open distributed, technical systems, is presented. The aim of this self-
organisation is (1) to allow agents to increase their utility (the technical performance they experience
in these systems) and (2) to increase the robustness of these systems against disturbances. This is
achieved by enabling the agents to form and operate within the organisation Trusted Community.

Open distributed systems based on agents are a challenging domain. Agents, as they are under-
stood in this context, are software elements. As such, agent code originates from unknown sources,
agents are autonomous, agents are blackboxes and most-importantly, agents are self-interested. Ad-
ditionally, the agent society in a system is dynamic and the system composed of these agents can
change at runtime. In order to control these complex systems, in terms of allowing for performance,
fairness and robustness among the participants, decentralised control mechanisms have many ad-
vantages. This is mainly due to the fact, that centralised systems rely on entities that are potential
single points of failure (compare for example the argumentation for peer-to-peer systems). The task
is thus, to distribute the control of the system among the agents. Here, three main approaches can
be identified in the research literature:

e Control by Agent Organisations (cf. e.g. [32], [33], [34])
e Control by Trust Management (cf. e.g. [20], [35], [36], [23])

e Control by Organic Computing (cf. e.g. [30], [37], [38])

Control by Agent Organisations follows the argumentation, that while distributing control among
agents often leads to high-performance systems, it is still limited because of the restrictions on agent
reliability mentioned above. One way to cope with these challenging conditions is to introduce sub-
systems composed of groups of agents. Again, a metaphor from human society is used here: These
groups of agents are referred to as organisations. Just like in human societies, organisations can
have different structures and properties, especially with regard to hierarchy, composition criteria,
goals, lifecycle and formation criteria. When specifically designed for a target system, an agent or-
ganisation can then allow a different form of control: Enabling member cooperation, aggregating
local views to system models, motivating information exchange and other organisational benefits,
are strong incentives for agents to become members of this organisation and then coordinate and
cooperate. This in turn leads to systems where agents experience a good performance. Additionally
the partitioning of the system into organisational subsystems can increase the overall robustness of
the system.

On the other hand, the challenges in open distributed systems are often addressed with control
by Trust Management. By letting agents assess each others trustworthiness, based on interaction
experiences and reputation, firstly the uncertainty introduced by autonomous and blackbox-behaviour
is reduced. This especially refers to uncertainty with respect to the willingness and competence of
potential interaction partners. Secondly, Trust Management can serve as an incentive for agents to
change their behaviour to a more cooperative scheme, as usually agents will utilise reciprocity when

4 Chapter 1. Introduction

choosing interaction partners. Overall, to apply Trust Management often leads to increased agent
performances and a certain degree of robustness. In fact, as often stated in the literature, Trust Man-
agement is seen as fundamental to functioning Multiagent-based open distributed systems (cf. e.g.
[20], [25]).

Finally, control by Organic Computing is a recent approach to the decentralised control of
complex systems, such as open distributed systems. It is focussed on the assumption, that control
of complex systems cannot be planned comprehensively at design-time because of emergent pro-
cesses among the elements, which create unforeseen system states, as well as vast configuration
spaces, which do not allow to calibrate these elements efficiently off-line. Control of these systems
has therefore, at least in parts, be transferred to the runtime of the system. To allow for this, ele-
ments of such a system under observation and control are enabled with the ability to firstly gather
and analyse information about themselves, other elements and the system as such, and secondly
to adapt their control of the system based on these observations. This allows the control to react to
emergent changes in the system, as well as optimise the control of the system based on real data
gathered at runtime. It has been shown, that the approach of OC blends well with open distributed
Multiagent Systems (cf. e.g. [39]), as these are indeed complex systems with emergent processes,
and as agents possess all necessary properties to implement the observation and control model re-
quired by OC. This allows for Multiagent Systems based on OC technology and leads to systems that
are usually more robust and induce a higher agent performance.

In this thesis, it is argued that these three approaches can be combined, and that this com-
bination results in an improvement of the performance and robustness of technical, open
distributed systems beyond what is currently possible. On the one hand, agent organisations
need some form of member control and counter mechanisms for adversary and uncooperative agent
behaviour. This is where Trust Management can improve agent organisations: By incorporating Trust
Management, agent organisations are equipped with additional mechanisms for formation, composi-
tion optimisation, sanctioning the behaviour of members and classification of non-members. On the
other hand, Trust Management can be a serious overhead in a system. Take for example agents that
do not stop to evaluate each others’ trustworthiness at each interaction, despite having only good ex-
periences with the respective interaction partners (referred to as too much trust, cf. [20]). Or agents
counting on the slowness of the Trust Management system (referred to as over-confidence, cf. [20])
and adapting strategically to their trustworthiness assessment by repeatedly being cooperative only
as long as they have not enough reputation, and then show uncooperative behaviour. Additionally,
systems with control built solely on the requirement of an operating Trust Management system are
vulnerable to system states, where the Trust Management fails or shows unexpected results: Com-
pare, for example, the case of subsequent trust crises (agents loose their previously established trust
in another agent , cf. [40]) among agents, which can lead to a breakdown of the Trust Management
system in an emergent process. In such a state, agents cannot rely on their trustworthiness assess-
ments any more and the interactions among them are likely to collapse (cf. e.g. [29], [41]). This is
where agent organisations in combination with Organic Computing technology can improve systems
with Trust Management: Agent organisations can reduce the dependability of Trust Management
in open systems, by creating subsystems where the members are not affected by issues in Trust

1.3. Overview of the Thesis 5

Management. This is possible where especially trustworthy agents form an organisation and stop
utilising Trust Management for normal interactions due to overhead minimisation concerns. Instead,
Trust Management is only utilised for aspects regarding the management of the agent organisa-
tion, as mentioned above. In such organisations, the members are also less affected by emergent
processes regarding the Trust Management in the system. However, such organisations cannot be
entirely defined statically at the design-time of the system. Emergent processes and dynamics in the
agent society demand not only adaptivity from single agents, but even more so from agent organisa-
tion. In order to account for the characteristics of such complex systems, and to sustain successful
operation of agent organisations, self-organisation and adaptivity need to be applied. Here, Organic
Computing provides methods and design patterns to detect emergent phenomena in these systems
and allow for adaptive compensation or where impossible, at least graceful degradation. When ap-
plied in the context of trust-aware agent organisations, these techniques provide tools for agents to
manage the organisations, such that the operation can continue even in unusual or abnormal system
states.

In summary, this thesis introduces a novel agent organisation - Trusted Community - for
technical, open distributed systems, that are agent-based and provide a Trust Management
system. By combining techniques from research on agent organisations, Trust Management
and Organic Computing, this novel organisation form allows for an increased agent perform-
ance and an operation that is sustained even in system states that arose from emergent
processes, not predicted at design-time. As a result, the robustness of these systems is
increased.

1.3 Overview of the Thesis

This thesis is organised as follows: The following Chapter 2 presents work related to the research
presented in this thesis. This is introduced with an overview of research on open distributed systems
and Multiagent Systems in general and continued with a summary of work on agent organisations,
Trust Management and Organic Computing. This chapter is then concluded with a review on ap-
proaches similar to the Trusted Community concept.

Chapter 3 is divided in two main parts: In the first part, the system view applied in this thesis is
detailed. This is composed of a structural model for systems Trusted Communities can be applied
in, as well as models for the requirements on the agents and the Trust Management system in the
target system. The second part discusses the application of related work in the target systems,
gives a coarse-grained introduction to the Trusted Community concept and analyses the applicability
of Trusted Communities in the target system. It concludes with a discussion of the limits of the
applicability.

Chapter 4 is the main body of the thesis and presents the novel Multiagent organisation Trusted
Community from various views: The chapter starts with a short introduction and a formal represent-
ation of the Trusted Community concept. Then the lifecycle and structural, as well as behavioural
properties of this organisation are presented, both from the view of a member agent and a managing
entity. The chapter then concludes with a discussion of the configuration for this agent organisation.

Chapter 5 presents the evaluation of the Trusted Community concept in an exemplary technical,

6 Chapter 1. Introduction

open distributed system, the Trusted Desktop Grid (TDG). This system is an open MAS realisa-
tion of a Desktop Grid System and is perfectly suited to demonstrate the benefits of the Trusted
Community approach, as it incorporates complex agent behaviour, selfish motivations and threats to
single agents as well as the system as such. The TDG system is first introduced and the applied
performance metrics are discussed. In the following, the application of a Trust Management system
to improve the Desktop Grid system is presented and the results are discussed. This is concluded
by a motivation for the application of Trusted Communities in this scenario and the presentation of
the experimental results for the application. These results show that the application of TCs in open
distributed systems substantially increases the performance and robustness of these systems under
a variety of conditions. Finally, this chapter discusses the motivation to apply this agent organisation
in two additional open distributed systems and conceptually defines how this application is to be laid
out, in terms of Trusted Community configuration and limitations.

Chapter 6 is the final chapter and concludes this thesis with a summary of the work conducted
here and an outlook on further research opportunities based on this work.

2 | Related Work

As motivated in the previous chapter, the approach presented in this thesis has been developed
by using technologies from the fields Multiagent Systems, as well as Organic Computing. In this
chapter, these fields are first briefly reviewed. The summary of Multiagent Systems focusses on
the application of computational trust and organisations for the control of distributed systems. For
both sub-fields, the original application domains in the social and economic sciences are referred,
and the development of their application as computational models is highlighted. This is followed
by a brief summary of classifications for the research literature in both fields, and concluded with
references to the application in technical systems. The summary of Organic Computing first explains
the underlying paradigm and then introduces associated techniques and architectures as, for the
example, the generic Observer/Controller architecture. In conclusion, applications of OC techniques
are referred and an in-depth summary for an exemplary project is provided.

After these summaries, related work that combines control paradigms from these fields, e.g. trust-
based multiagent organisations, is referenced, summarised and examined in greater detail. This
includes the utilisation of such approaches for the control of Desktop Grid Systems, a system class
which is is used for the evaluation in this thesis. The chapter is concluded with a review and coarse
classification of related approaches, as well as with a discussion of possible contributions.

2.1 Multiagent-based Open Distributed Systems

This thesis presents an approach to improve the control of (technical) Open Distributed Systems such
that the participating entities benefit from a higher performance and robustness towards disturbances.
In this context, open means that the system can be joined and left by entities at any time, and that
the exact realisation of these entities is not known to the system designer. Distributed on the other
hand means that the entities in the system are in general at spatially varying locations and must
be connected through a network in order to interact. This Open Distributed System model is very
generic and applies to many systems that surround us nowadays (cf. e.g. [35]), such as the Internet,
most e-commerce systems, the Internet of Things (cf. e.g. [42]), Peer-to-Peer Systems, Desktop
Grid Systems. In the recent decades, many researchers have taken the point that such systems
are complex, dynamic and challenging and that this requires autonomous components that act, and
interact, on behalf of the users. It is therefore argued to model such systems as Multiagent Systems
(MAS) (cf. e.g. [43], [44], [45], [46]). MAS are systems comprised of a population of software entities
(agents), participating as user representatives and having the ability to self-responsibly achieve goals
set by the users (delegation, cf. e.g. [47]). The most outstanding characteristics of agents are their
autonomy (esp. in reasoning about how to achieve these goals) and their ability to interact with each

8 Chapter 2. Related Work

other according to clearly defined protocols (cf. e.g. [48], [49], [44]). A vast body of research on MAS
has been created in the past decades, comprising such diverse fields as for example:

e Agent Reasoning and machine learning (cf. e.g. Learning-Classifier Systems: [50]),

Agent Cooperation, Collaboration and Coordination (cf. e.g. contract net protocol: [51]),

Agent Organisations (cf. e.g. congregations: [52]),

Agent Communication (cf. e.g. knowledge query and manipulation language: [53]),

Agent Models (cf. e.g. Belief Desire Intention model: [54])

Agent Norms (cf. e.g bottom-up and top-down norms: [55])

e Agent-Oriented Software Design (AOSE) (cf. e.g The Gaia Methodology: [56])

The design of a MAS-based Open Distributed Systems is a challenging problem as agents cannot be
controlled directly to ensure the desired global behaviour of the system (cf. e.g. [57], [58]). Instead,
control relies on self-organised and collective actions of the agents (cf. e.g. [59]). This is further
complicated as in open systems agents are self-interested, internal agent states are not accessible,
agent code stems from different stakeholders, agents are unknown at design time and the population
of agents in the system is dynamic at run time (cf. e.g. [60], [61], [62]). What is more, agents can
follow uncooperative or even adversary strategies due to their programming or due to autonomous
strategy explorations: Agents can exploit others (cf. e.g. free-riding: [63], [64]), or even damage the
entire system (esp. by disrupting other participants, cf. e.g. [65] [66]). The control of an Open MAS
under these circumstances has been approached in the research community from various directions.
The most prominent are the incorporation of (computational) trust and reputation into agent reasoning
(cf. e.g. [23], [25]), and the design of organisations (cf. e.g. [67], [34]) for the enforcement of design
goals. In the following, the related work in these two research directions is summarised in more detail.

2.2 Trust in Multiagent Systems

The phenomenon trust has been researched in such diverse fields as sociology, biology, psycho-
logy, economics and computer science, leading to a great number of definitions, formalisations and
models. In fact, in [20] the authors provide an analysis of 72 definitions of the notion trust that were
published in the literature from 1960 to 1999. However, there is a common understanding that trust
is the subjective expectation of a trustor that a trustee will perform a certain action. This prediction
is based on the assessment of competence, willingness and risk. Also, it is generally agreed that
in its consequence, trust is a fundamental prerequisite for cooperation, while strong distrust hinders
cooperation (cf. e.g. [68]). Research on the socio-cognitive phenomenon trust finally found its way
into computation around the year 1980: As detailed in cf. e.g. [21] and [22], computer scientist on
the search for new approaches for distributed problem solving constituted a research field that was
later termed socionics. In socionics, research results on sociological phenomena are adopted for the
design of distributed and intelligent systems based on artificial intelligence and software agents. With
S. Marsh introducing the first major contribution to a formalisation of trust as a computational concept
in his Ph.D. thesis in 1994 (cf. [69]), the incorporation of trust into computation found many followers.

2.2. Trust in Multiagent Systems 9

Marsh proposed a model of trust that was implementable, and showed in an experimental evaluation
using the Prisoner’s Dilemma that agents equipped with such an implementation are able to make
decisions based on what we understand as trust. In the following years, these ideas were picked up
by many scientists and a vibrant community of computational trust researchers arose. Consider for
example [23], [70] and [24] for extensive surveys on the application of computational trust in MAS.
Contributions in this field are often classified according to trust evaluation vs. trust-aware decision-
making approaches (cf. e.g. [24]), though trust-aware decision-making is sometimes seen as integral
part of trust evaluation (cf. e.g. [25]).

Trust evaluation has the goal to allow agents to assess each others’ trustworthiness in a quanti-
fied measure resulting in a time-dependent and subjective trust(worthiness) value. This is achieved
by formal trust models (also referred to as trust metrics, cf. e.g. [23]) that capture the interaction
experiences of agents with each other. Such models are most often based on the rating of direct
observations, indirect observations (also referred to as reputation), or a combination of both. In gen-
eral, each new observation influences the trust value of a trustee and consequently allows to identify
agents that act uncooperatively towards a trustor agent. The characteristics of trust models can be
best illustrated by regarding one of the most cited trust models in the literature: REGRET (cf. [28])
is a very elaborate trust and reputation model that aggregates many state-of-the-art properties of
trust models (like direct and indirect experiences, credibility, reliability) and extends them by incorpor-
ating additional dimensions (social and ontological). In the resulting multi-facet model, the primary
source for trust information are direct experiences. For a more complete estimation of a trustees’
trustworthiness, This information is extended by the consideration of reputation information. Herein
lies the contribution of this approach: Not only is the reputation information processed dependent on
the reliability of the reputation providers, but also based on the social group of the agent. Additionally,
reputation is seen as linked to a specific context (or aspect). An agent in an e-commerce system can
for example have a reputation as a seller of goods, as well as a reputation as a provider of goods with
a high product quality. In REGRET these aspects are related by ontologies, such that an aggregated
reputation value can be estimated. For an extensive and specific overview over trust models, their
classification and contributions in the literature, see the surveys presented in [25] and [71]. Besides
the characteristics of the trust models themselves, contributions in this field also address questions
about the robustness of trust models (cf. e.g. [72]), the dependence on security mechanisms (cf. e.g.
[20]), the association to norms (cf. e.g. [73]), or the alignment of trust values obtained by different
trust models (cf. e.g. [74]).

While the focus of approaches in the trust-evaluation field is the modelling and assessment of
trustworthiness relationships, approaches in the field of trust-aware decision-making aim at the util-
isation of this information for the reasoning of agents. Ultimately, these approaches revolve around
the decision which interaction partner to choose from a set of trustees (cf. e.g. [24]). This decision is
highly relevant for the control of open MAS as described above: The presence of self-interested, ex-
ploitative and adversary behaviours in such systems generates a high amount of uncertainty among
the agents (cf. e.g. [35]). Agents are put at great risk of decreasing their utility when delegating tasks
to such uncooperative agents ([20], [25]). Hence a discrimination of uncooperative agents is needed
to allow agents to maximise their utility by choosing to delegate tasks only to interaction partners
that provide the negotiated interaction results (cf. e.g. [29]). The choice of interaction partners based
on trust criteria can also be seen as an optimisation problem: A trustor agent can exploit the know-

10 Chapter 2. Related Work

ledge about highly trustworthy agents or it can explore by interacting with agents that it cannot yet
assess with respect to trustworthiness (cf. e.g. [24]). The former greedy approach is more intuitive as
agents trying to maximise their utility are expected to choose interaction partners that can most reli-
ably provide this utility. This approach is therefore prevalent in the literature (cf. e.g. [69] as example).
However, due to the dynamics in such a system, the greedy restriction to the most trustworthy agents
can have disadvantages for these agents: The number of interaction requests can become so high
that these agents cannot continue to provide a high service quality (cf. e.g. [24]). Besides, the dynam-
ics of the system with new agents entering a system and agents changing their behaviour provide a
strong motivation to explore these new agents in order to find agents that are even more trustworthy
than the known agents (cf. e.g. [75]). In [76] and [77] for example, the author propose the utilisation of
stereotypes in order to minimise the risk of exploration in case of new agents in the system. Stereo-
types allow to generalise experiences with agents to new agents based on typical behaviours. This
work is classified as contribution to the trust evaluation field discussed above, as the authors do not
explicitly evaluate the application of stereotypes to actual decision-making. However, they motivate
such application and address it as future work. Another example is the work presented in [78]: Here
the authors apply a machine-learning approach to the decision-making of agents. The agents use
either exploration or exploitation for each interaction decision and the received utility gain from this
decision is used to reinforce a Bayesian model. Apart from the value of trust-aware decision-making
for the performance of single agents, there is also a strong interest about the regulatory effects of
trust management in such systems. For example [66] have examined the isolation of adversary or
unreliable agents, also referred to as soft security approach. Isolation here means that uncooperative
agents are made known to the agent society (esp. via reputation). This allows cooperative agents
to avoid interactions with these agents without having to first make unsuccessful direct experiences
with them. Also, trust-aware decision-making is shown to enforce the cooperation in a system: If a for
example a high reputation is required to allow for certain types of interactions or certain interaction
partners, rational agents are expected to cooperate in order to achieve a high reputation. This is
where trust and reputation are used as an incentive (cf. e.g. [60], [63], [79], [80], [46]). Furthermore,
it is examined how trust management or the dependence on trust can have a negative effect in the
MAS. For example in [40] the emergence of trust earthquakes is examined, a phenomenon that leads
to distrust among agents due to reputation effects. Also, in [29] the paralysis of agents dependent
on trust is explored: Due to the reliance on trustworthy interaction partners and the temporary lack
of these, agents seize to interact with each other, causing more damage than the cooperation with
seemingly untrustworthy agents. Additionally, the authors in [24] examine the reputation damage
problem: Agents that are cooperative develop a high reputation and are increasingly sought as inter-
action partners as a consequence. This can lead to a decreased capability of the agent to process
the requests (for example due to overload). In effect the agent fails to provide positive interaction
experiences for the many requesters attracted by its reputation and hence receives many negative
ratings, damaging its reputation.

Most of the approaches to computational trust in the literature use theoretic (as opposed to tech-
nical) models of agent populations, comprised of agents with specific traits (e.g. defecting, cooper-
ating, random behaviour), as base for their evaluations. Consider for example how the authors in
[29] use a pool of agents with randomly assigned characteristics and unspecified interactions to
evaluate their trust decision-making approach. Additionally, consider the ART approach of a domain-

2.2. Trust in Multiagent Systems 11

independent testbed for trust and reputation models presented in [81]. Though such theoretic models
have a high importance in the development of computation trust approaches, these are really put at
test in actual technical domains. As the focus in this thesis is on technical systems, it is especially
interesting to see where computational trust has been used to enhance agents in concrete instances
of these systems. Examples of this are found in the following examples in the literature:

e Desktop Grid Systems (cf. e.g. [82], [83], [84], [85], [86], [87], [88], [89], [11]):
Here computational trust is mostly used to help agents find reliable workers for the processing
of their tasks, as well as identify free-riders and clients that return invalid processing results.
The evaluation of the approach presented in this thesis is from this domain, hence the related
work is discussed in more detail in the following.

e Grid Computing Systems (cf. e.g. [90], [91], [92], [93]):
More general than Desktop Grid Systems, these type of systems are mainly examined with
respect to the benefits of trust and agent application in the security of such systems. Also, ap-
proaches aim at improving the establishment and operation of virtual organisations that group
resources from various owners.

e Decentralised Power Grid Systems (cf. e.g. [94], [95], [96], [97]):
An only recently established, but highly active field of research in which the possibilities of the
representation of energy producers and consumers by agents is explored. Trust is used here to
enhance decision-making based on e.g. the reliability of predictions on energy production and
usage.

e Vehicular Ad-Hoc Networks (VANETS) (cf. e.g. [98], [36]):

VANETSs are an interesting domain gaining increased attention in the recent years. Trust-aware
agents are applied here for example to provide reliable information on traffic congestions or
routing information. This domain has however some unique aspects that put such traditional
approaches at great stress: Due to the high mobility of the vehicles and their high number,
trust-relationships are seldom long-term. Instead, approaches must allow for rapid and highly
adaptive discrimination of trustworthy agents based on few and short-lived interaction experi-
ences.

e Wireless sensor networks (cf. e.g. [99], [100]):
In sensor networks the autonomous components (the sensor nodes) often produce unreliable
data, e.g. due to environmental conditions. Trust and reputation models are used here to clas-
sify data providers and adapt to changing data quality. However, this is clearly a challenging
application domain for trust-aware agents, as the resources on sensor nodes are far more
limited than in other domains.

e Peer-to-Peer networks in general (cf. e.g. [101], [102], [103], [104], [105], [106]):
Peer-to-Peer networks are the most commonly used network infrastructure for technical open
distributed systems. Trust and reputation can be applied already on this layer of the systems:
Agents need to for example assess the trustworthiness of peer recommenders and service
providers, identify colluding agents and peers that tamper with or reject to support the routing
functionality of such a system.

12 Chapter 2. Related Work

e E-Commerce Systems (cf. e.g. [107], [108], [109], [110], [111]):
In e-commerce systems, traditionally the modelling of the trustworthiness of stakeholders like
sellers, buyers, service providers etc. is of great interest. With agent technology being increas-
ingly applied for automated interactions such as transfers, the reasoning of these agents was
enhanced by the incorporation of computational trust and reputation to improve the agents’
performance on the electronic markets.

This brief overview illustrates that the literature on computational trust provides many approaches
to the control of Open Distributed Systems. Formalisations of trust in implementable models and
especially their application in trust-aware decision-making provides a system designer with tools to
incentivise cooperation and isolate exploiting or adversary agents. Additionally, system users being
represented by an agent benefit from the agents’ ability to increase its utility by incorporating trust-
based reasoning. In summary, most authors in the research community agree that computational
trust is a key ingredient in the design of MAS (cf. e.g. [46]) and Open Distributed Systems (cf. e.g.
[35]). However, only a small number of the referenced contributions is actually designed for the
application in technical system (with the exception of the above referenced approaches). Instead
most approaches are evaluated in theoretic scenarios. In addition, most of the referenced approaches
to trust-aware decision-making assume that trust information is reliable and constantly available.
The consideration of trust management breakdowns or emergent effects in trust dynamics is mostly
neglected.

2.3 Multiagent Organisations

As pointed out in the introduction, this thesis presents an approach that combines methods from
computational trust, MAS organisations and Organic Computing to allow for the control of technical
Open Distributed Systems. This section summarises related work in the field of MAS organisations.
Much like the phenomenon of trust, organisations are ubiquitous in everyday life - the company
we are employed in, the government of the country we live in, and the shop we buy our supplies at
are all a form of organisation. Another similarity with the trust notion is the lack of consensus about
an all-encompassing definition of organisations. A rather generic example of an attempt is made by
the author in [112] who defines an organisation as providing “[..] a framework for activity through the
definition of roles, behavioural expectations and authority relationships (e.g. control)’. Here, the basic
concepts of division of labour (and specialisation) common to most organisations are paraphrased by
their implementation (roles) and control (through authorities and according to known expectations).
Another exemplary definition proposed in [113] is: “An organisation can be defined as an arrangement
of relationships between components or individuals which produces a unit, or system, endowed with
qualities not apprehended at the level of the components or individuals. The organisation links,
in an interrelational manner, diverse elements or events or individuals, which thenceforth become
the components of a whole. It ensures a relatively high degree of interdependence and reliability,
thus providing the system with the possibility of lasting for a certain length of time, despite chance
disruptions.”. Here the motivation for an organisation is the main focus. Due to the “arrangement of
relationships” an organisation becomes more than the sum of its parts (the elements belonging to the
organisation). An organisation hence allows to overcome the limitations of single elements. Research
in the field of economics, psychology, sociology etc. has provided theories of how organisations must

2.3. Multiagent Organisations 13

be structured, operate and adapt to be efficient. In the recent decades, this research has profited from
the rise of a new field, the computational organisation theory. In the early survey presented in [114],
computational organisation theory is yet described solely as means to gain insight about forms and
functions of human organisations by artificial and executable models of organisations. The findings
from the research of such models are described as being fed back into economic theories on human
organisations. The necessity for this direction is motivated by the complexity of real organisational
systems, being subject to nonlinear dynamics, complex interactions and heterogeneity and eluding
traditional analysis methods. This motivation has been stated early on for approaches in the entire
field of MAS, e.g. by sociologists modelling human interactions with artificial agents and evaluating
their behaviours in situations that are not feasible to evaluate in real societies. This has advantages
over purely analytical models, especially because it can lead to tractable claims about real systems
produced by the execution of these models. However, the reduction of MAS to an analysis tool for the
study of real systems has been overcome in the recent decades. Today, it is a generally accepted view
that MAS in general, as well as computational organisations in particular, have a great value beyond
modelling systems in economics and sociology. Instead, MAS organisation technology is applied as
design paradigm for distributed systems, applicable in its own right, and allowing to improve technical
systems (cf. e.g. [67]). Here, human organisation theory merely provides templates and patterns for
artificial organisations, inspired by, but not restricted to, human forms of organisations’.

MAS organisations have been extensively examined by the research community. In a survey
paper presented by B. Horling and V. Lesser (cf. [32]) these organisation approaches are classified
according to common properties such as persistence (short- vs. long-term), purpose (goal- vs. utility-
driven), and hierarchy. For each organisation type, the authors examine the key characteristics, as
well as the formation process, and reference related work. The following summary is a short overview
about the most relevant forms of MAS organisations for the work in this thesis:

e Society: This type of organisation is the most general. As discussed earlier, a MAS is essen-
tially composed as an agent society. Such a form of organisation constitutes an open system
and provides rules for agent interactions (e.g. by a formulation of norms). Societies are long-
term organisations and can have any goal or hierarchy structure, as they allow the agents to
form sub-organisations.

e Hierarchy: The second general-purpose form of agent organisation is the hierarchy, being an
integral part of any other organisation structure. Hierarchies allow for the specification of inform-
ation and control flows and the implementation of task decomposition and divide and conquer
solutions. Additionally, holarchies can be understood as a specific form of hierarchies. Holarch-
ies describe self-similar systems of systems that are structured as levels with characteristics
that cannot be attributed to the comprising elements (subsystems) alone.

e Team: The origin of distributed problem solving in MAS has inspired the definition of agent
teams. A team is a specific unit used to coordinate agents by assigning roles. The members
of the team are in general not primarily self-interested, instead the team is formed to reach a
common goal.

"In the remainder of this thesis, the term MAS organisation always refers to this synthesis approach.

14 Chapter 2. Related Work

e Coalition: This organisation is goal-directed and exists mainly as short-term structure to reach
a given goal. Once this goal is reached, a coalition is disbanded. The members of a coalition
are organised mostly as peers without hierarchy. Agents join coalitions to increase their benefit
or decrease their costs, albeit in conformity to the coalition goal. Coalitions are very common
in the literature, especially due to high interest they raised in the game theory community.

e Congregation: Unlike coalitions and teams, congregations are formed as long-lived units of
self-interested agents. A common goal does not exists, instead the agents join the organisation
to increase their personal utility. Congregations have typically a flat hierarchy and attract agents
with either homogeneous or complementary capabilities.

e Federation: The basic concept behind this organisation is the delegation of control to a single
member (higher hierarchy) and the associated partial abdication of autonomy. Such a des-
ignated member then acts as representative of the group. This allows other components to
interact with the federation as a holon by using the representative as interface.

In addition, the authors in [115] provide a more formal analysis of MAS organisations based
on three dimensions of the organisation structure: Power, coordination and control. Obviously, MAS
organisations are inspired by organisation theory in economics. But what is the benefit of their applic-
ation in a technical context? Here, especially the research community for AOSE provides answers:
For example in [34], the authors refer to the evaluation of drawbacks of traditional MAS (without or-
ganisations) and propose the development of an organisation-centric engineering approach for MAS
as solution. Specifically, the following statements published by N. Jennings in [116] are used as
motivation: The engineering of large agent-based systems is impaired because “the patterns and
interactions are inherently unpredictable”, and because “predicting the behaviour of the overall sys-
tem based on its constituent components is extremely difficult (sometimes impossible) because of
the strong possibility of emergent behaviour’®. Due to their ability to reduce complexity by decom-
position and coupling, MAS organisation as software pattern are then seen as a natural solution to
this control problem (cf. e.g. [34]). In [67], the authors follow a similar argumentation: The utilisation
of organisations in system design enforces the definition of roles and associated interactions for the
agents in a system. Such well-defined interactions are then claimed to be more task-related and
lose their property of being unpredictable interdependencies of system components. This is again a
reduction in complexity of a system and allows for the easier design of its control. In addition, the
authors also point out that the utilisation of MAS organisations can be a benefit in systems where
these represent actual human organisations. Such supporting systems are easier to design when
the actual work- or control flows of these organisations can be mapped directly via MAS organisa-
tions in the supporting system. However, the application of MAS organisations is not limited to the
design phase of a MAS covered by these software-engineering argumentations. In fact, a purely
static design approach of MAS organisations lacks the flexibility to be applicable in open MAS (cf.
e.g. [117], [52]). Consider for example the argumentation in [33], where the authors make a strong
case for using approaches of self-organisation in MAS, as opposed to static design time organisation
structures. Their argumentation is mainly focussed on the difficulty of anticipating run time situations
in which e.g. service providers become bottlenecks, new agents are not explored enough, or agents

2This understanding is shared with the Organic Computing community, albeit for technical systems in general, hence not
reduced to agent-based systems (as discussed in Sec. 2.4).

2.3. Multiagent Organisations 15

suffer from the lack of capability adaptation. Instead, they argue to equip agents with the ability to
increase their autonomy such that they can adapt to changes at runtime. A similar argumentation
is found in [60]: Here, the authors summarise the literature and find that the enforcement of system
goals in Open MAS is often realised by organisation approaches. They note however that these are
design time approaches that produce fixed rules. Due to the autonomy of the agents, these rules may
be circumvented and additionally, these rules are not flexible enough to allow for appropriate reac-
tions to unforeseen system states. They also propose a more adaptive approach to the organisation.
With the increased interest in open MAS, this type of argumentation has also gained in prominence.
As a result, a great number of MAS organisation approaches in the literature incorporate some form
of self-organisation and adaptivity to account for the dynamics in open MAS (cf. e.g. [118], [117],
[52]). These approaches can be further classified: In [119], the authors categorise organisational
mechanisms as being either informative or regulative mechanisms. The former are used to improve
the decision-making of agents by providing them with more information than they can locally perceive.
Such information can for example be the reputation value of another agent or information about con-
sequences of its own interactions. Informative mechanisms aim at improving a system from the local
(agent) level and thus do not require the formulation of a global utility function. In contrast, regulative
mechanisms are used to enforce the global behaviour of a system. For this they require on the one
hand the formulation of regulatory preferences, e.g. (top-down) norms defined by a system designer.
On the other hand, they must allow for the actual regulation according to these preferences requires
an institutionalised organisation with the capability to change agent behaviours either via incentives
or via explicit control actions that alter the capabilities of agents. The authors then claim that all
organisation approaches in the literature can be classified according to these dimensions and that
the regulative mechanisms are more common. In addition, they contribute to the state of the art by
presenting a formal model of MAS organisations that incorporates these mechanism definitions. An
example for a combined approach using both mechanisms (on agent and system level) is proposed in
[120]: Here organisation structures are adapted on both levels to allow for an increased robustness of
a dynamic system towards undesired behaviour. The main focus is on the realisation of a respective
decentralised monitoring scheme in the form of an organisation.

Finally, it is generally agreed that although MAS organisations can significantly improve the per-
formance of a system, there is no universal form of organisation that would allow this in any system
(cf. e.g. [32]). Instead, a part of the research literature is dedicated to the evaluation of applicability
constraints, as for example the existence of group goals (allowing the formation of e.g. coalitions).
Consider for example the work on an evaluation of the dependence between organisation structures
and their performance regarding different aspects, as presented in [121].

In addition to the concept of a Multiagent organisation reviewed here, relatively recently a similar
concept termed Virtual Organisation (VO) has been established in parallel by the research com-
munity. Again, definitions are numerous and ambiguous. This is further complicated by the fact
that the term is used for human forms of organisation (sometimes also referred to as Virtual Corpora-
tions), as well as independently for MAS organisations. The equivocality of the term agent, which can
refer to a human agent or a software agent, as well as the fact that sometimes systems with mixed
types of agents are examined further adds to the confusion. As for human-centric VOs, the authors in
[122] suggest the following definition of VOs: “A virtual organization is primarily characterized as be-

16 Chapter 2. Related Work

ing a network of independent, geographically dispersed organizations with a partial mission overlap.
Within the network, all partners provide their own core competencies and the cooperation is based
on semi-stable relations. The products and services provided by a virtual organization are depend-
ent on innovation and are strongly customer-based.”. The emphasis is here on the aggregation of
other human organisations, hence a holistic management structure. This view is shared in e.g. [123],
where VOs are defined as being “composed of a number of individuals, departments or organisations
each of which has a range of capabilities and resources at their disposal. These VOs are formed so
that resources may be pooled and services combined with a view to exploiting a perceived market
niche.”. The authors also give an example for a VO: “[..] suppose that two relatively small airline
companies with complementary routes agree to cooperate and coordinate their services so that they
may offer flights, as a coalition, between a wider range of destinations, with a view to becoming more
competitive in this market.”. Further definitions of human-centric VOs and their comparison are for
example provided in [124]. In MAS, a VO is referred to as an “empty” agent organisations “[..] that has
a fixed purpose (e.g. to provide a set of services) but a potentially transient shape and membership”
because it “[..] separates form and function [..]” (cf. [32]). The authors especially emphasize the
customer-oriented service purpose of VOs that is shared by most definitions of human-centric VOs.
Based on this characteristic, they refer to VOs as resembling MAS coalitions and congregations in a
classification attempt regarding other MAS organisations. This view is also adopted in [125], where
a VO is defined as “[..] the aggregation of autonomous and independent organisations connected
through a network and brought together to deliver a product or service in response to a customer
need”. For a more formal examination of VOs in MAS consider for example [126].

Due to the varying meanings, research literature on Virtual Organisations is found in the econom-
ics as well as in computer science. In practice, modern corporations have steadily increased their
activities in the Internet since the early 90s. In the course of this progression, many systems have
emerged that represent human or organisational stakeholder with autonomous agents and provide
a common ground for interactions between humans and software agents (consider for example sys-
tems for trade in the stock market). As a consequence, VOs are often used as conceptual, as well
as technical basis for such systems. Consider for example the application of VOs in Grid systems as
presented in e.g. [127], [128], [129], and [92]).

In summary, computational organisation theory has been developed well beyond its original pur-
pose as modelling tool for the use in economics. Today, MAS organisations are seen as fundamental
tool for the development of controllable open MAS. Through the application of design time as well
as run time approaches, agent interactions are specified and agents are enabled to overcome the
limitations of their local capabilities. This however requires adaptive approaches that allow for self-
organisation. In addition, VOs have gained popularity as an interfacing concept between human and
software agents that interact in a commonly shared system.

2.4 Organic Computing Systems

So far, the focus in the review of related work has been on Multiagent-based Open Distributed Sys-
tems. In these systems, the components of a system are agents and mostly represent users (or
groups of users), are autonomous and can interact in a shared environment, the MAS. However, the

2.4. Organic Computing Systems 17

application of agent technology to control distributed systems is only one particular approach, albeit
one with the largest research community. In the recent decades, a new research direction called
Organic Computing (OC) (cf. e.g. [30], [37], [130]) has emerged. Here, a holistic view on distributed
systems is in the focus: Apart from their inherent complexity, such systems are increasingly operated
in environments where other complex systems exist. Consider for example the increasing number
of smart phones, ambient intelligence devices, navigation systems, intelligent automotive systems
etc. that are connected to the internet as well as to local networks. Such ubiquity often leads to
interferences, especially where such systems are highly interconnected. Due to the complexity, often
emergence occurs and these systems can enter operational states that they have not been designed
for. This is seen as a problem that cannot be solved by the improvement of design methodologies
alone: It is already challenging to design the control for a complex system, but the difficulties are
exponentiated if interconnections to other systems must be anticipated. The same applies to the
extrinsic control of such systems at run time. Here, the OC proposes a paradigm shift: Instead of
attempting to refine design and control mechanisms to account for more configurations and environ-
mental dynamics, complex systems should be designed such that they autonomously become aware
of the need to adapt their control structures and execute this adaptation in an internal self-organised
manner. This approach is also referred to as controlled self-organisation and shares some common
views with the Autonomic Computing concept (cf. e.g. [131]) developed by IBM (for a comparison
with OC cf. e.g. [30]). As the name Organic Computing suggests, inspirations for the realisation of
such self-organising and evolvable systems are drawn from systems observed in nature. Physical,
biological, chemical and other systems in nature are mostly complex and self-organising (consider
e.g. swarm behaviour of birds or fish, neural networks in the brain, dissipative structures). Undeni-
ably, these systems show an astonishingly degree of robustness towards disturbances. Consider for
example the evaluation of universal properties of complex robust systems presented in [132]. In OC,
the aim is hence to design systems with organic, life-like properties to endow technical systems with
robustness and high performance. These properties are referred to as Self-X properties (cf. e.g. [30],
[131]) and seen as constituting the term self-organisation:

e self-configuration: The ability of a system to explore its configuration space in order to adapt its
parameters such that it can cope with changes in the environment. Parameter changes

e self-healing: The ability of a system to recover from sub-optimal states induced by disturbances
without external control.

o self-explanation: The ability of a system to provide information about its properties and states.

e self-protection: The ability of a system to protect its operation from disturbances in the environ-
ment.

e self-optimisation: The ability of a system to change its structure and properties if this allows for
an improved operation.

The realisation of these properties is facilitated by the increasing computational power of modern
systems, as well as the ubiquitous and inexpensive equipment with a multitude of sensors. On the
algorithmic and conceptual side, the OC community has developed a set of design methods, tools,
architectures and patterns to aid the design of adaptive and self-organising technical systems.

18 Chapter 2. Related Work

The most prevalent concept is the Observer/Controller (O/C) design pattern (cf. e.g. [133], [38],
[134]): As depicted in Fig. 2.1, the design pattern is aimed at the creating a configurable regulatory
feedback loop for a complex technical system, here termed production engine (this is sometimes
also referred to as System under Observation and Control (SuOC). By definition, the production en-

Dbserve
e |
model

—> Production engine —

Figure 2.1: The generic Observer/Controller design pattern: Observer and Controller constitute a
regulatory loop over a complex technical system (the production engine). The control is dependent
on goals prescribed by an user.

gine serves a specific technical purpose, is composed of many decentralised elements (e.g. agents,
devices) that interact locally, and is situated in a system environment. This environment, as well as
the production engine itself, are monitored by a superimposed Observer. The data collected by this
component is then pre-processed, analysed and aggregated, resulting in a situation description. This
is a vector containing values for the system attributes and captures the state of the production en-
gine at the time of the observation. Obviously complex systems cannot always be monitored entirely,
instead relevant and accessible system attributes must be selected. This task is performed by the
observation model included in the Observer. In addition, this model must specify the scope of the
data, hence whether a short-term or long-term situation description is required, and whether situation
predictions shall be incorporated. The condensed data is then passed on to the Controller: This com-
ponent is responsible for the adaptation of the system control to the current system state according
to goals set by a user or designer. If for example, the Controller recognises a deteriorated system
performance in a certain system state (compared to previous data), then the control is adapted to
this state. Also, if the presence of a disturbance is detected in the situation description, the system
control is restructured to allow for a robust handling of this state (cf. e.g. [135]). It is important to note
here that such correcting actions are intrinsic and do not require external control mechanisms (e.g.
from a system operator). However, they require that the effects of control actions are also monitored.
This is where the regulatory loop is closed: By observing the influence of the control on the system
and iteratively adapting (and hence optimising) this control, the system becomes self-managed. This
loop resembles artefacts known from control theory and related fields. Detailed comparisons and a
classification can be found e.g. in [135], [136], and [137].

OC systems can be comprised of several variants of O/C-loops (cf. e.g. [138]): The central layout
described so far uses one loop for the control of a production engine. However, as the production en-
gine is composed of many elements, each element can be endowed with such an O/C-loop (see e.g.
Sec. 3.1.2 of this thesis, where this is applied in MAS). This is referred to as distributed approach.
Finally, both approaches can be combined resulting in a system that has a central O/C-loop that is

2.4. Organic Computing Systems 19

superimposed on system elements each with an own O/C-loop (multi-level). In case of the design
of a MAS as OC system, with agents as system elements, the multi-levelled approach can be used
to realise an organisation structure with an aggregated system view and delegated control over the
agents. Finally, it is assumed that due to the complexity and dynamics of the system Observer and
Controller components can fail. As the components are superimposed on an independent production
engine by definition, it is however guaranteed that such malfunctions do not affect its operation (cf.
e.g. [134]).

The OC community has shown interest in a variety of topics related to self-organising, and nature-
inspired systems: A recurring theme in the OC community has for example always been the quantific-
ation and control of emergence. In [139] the authors propose a quantification of emergence in tech-
nical systems based on entropy. Special attention is regarded to the fact that the term emergence is
ambiguous and its quantification arguable. This quantification approach has been for example incor-
porated as emergence detector within the Observer component of an O/C-loop in order to suppress
negative emergence. Another topic of interest is the functional verification of self-organising systems.
OC Systems that constantly adapt their structure are hard to predict and can lack trustworthiness.
This is especially relevant if the application in safety-critical domains is considered, such as in the
control of power plants by means of Organic Computing (cf. e.g. [94]). The work presented in [140]
has therefore been conducted with the aim to produce behavioural guarantees for OC systems. This
is achieved by a framework for the formal specification of OC systems and the separated verific-
ation of their functionality and their self-X properties. The verification is integrated into a theorem
prover and has the advantage that it is independent of the actual number of system elements (here:
agents) which greatly increases the utilisation for analysis of large systems. The applicability of the
framework is then demonstrated with resource-flow system. Another central theme in the research
literature about OC systems is the application of machine learning: The shifting of the design of con-
trol mechanisms from the design time to a self-organised process at run time requires the system to
learn itself how the control must be structured in diverse situations to yield a high performance. As
the authors in [141] analyse, this is a challenging task as the optimisation of the behaviour of system
components is in general performed in a so-called self-referential fitness landscapes. This means
that the system elements cannot explore optimal behaviour rules in a static fitness landscape but that
they change the fitness landscape due to their behaviour. The authors then propose a two-layered
O/C-architecture that incorporates an extended learning classifier solution to learn the best control
rules for a given observation on-line. In addition, they contribute a new optimisation algorithm that
can be used for run-time optimisations of OC systems in noisy environments and self-referential fit-
ness landscapes.

The OC community has demonstrated the applicability of the developed OC methodology in a
number of projects from such diverse domains as Traffic Control (cf. e.g. [142], [143]), Robotics
(cf. e.g. [144]), Middleware Systems (cf. e.g. [145]), Network Protocols (cf. e.g.[146]), Decentralised
Power Grids (cf. e.g. [94]), Wireless Sensor Networks (cf. e.g. [147]) and Smart Camera Networks
(cf. e.g. [148]) amongst others (cf. e.g. [30]). For the purpose of a more in-depth explanation of OC
application, the following description summarise an exemplary project:

20 Chapter 2. Related Work

In the Organic Traffic Control (OTC) project (cf. e.g. [149], [31]), the systems of interest are urban
traffic networks. Traffic networks are highly dynamic systems that rely on signalling control mechan-
isms to allow for the efficient flow of traffic. Yet, especially the control of traffic lights at intersections
is still manually designed and considers only few traffic states, such as rush hours or night traffic, if
at all. Under normal circumstances, this inflexible control scheme is sufficient. However the flow of
traffic is complex, and traffic incidents, sport events, demonstrations, emergent traffic patterns and
other seemingly unrelated environmental conditions can have massive effects on it. As the signalling
of the traffic networks is not designed for such states, they can hardly be anticipated precisely enough
for control consideration, traffic control operates far from the optimum here. This does not only affect
the efficiency of the system, but can in the worst case even worsen the situation due to feedback
effects of the inflexible control. The key motivation in the OTC project is thus to allow the system to
self-organise in a way that allows to constantly optimise the signalling (increase the systems’ per-
formance), and to adapt to emergent system states to preserve a high performance (increase the
systems’ robustness). This is realised by interconnection of these intersections, such that they can
exchange data and their equipment with a three-layered O/C-loop (cf. e.g. [136]). The first two layers
comprise an O/C-loop as described above. The production engine is a standard traffic light control-
ler, the Observer has access to traffic data measures by standard detectors (e.g. induction loops),
and the Controller can change the signalling of the traffic lights. This system is used in conjunction
with a Learning Classifier System (cf. e.g. [50]) to individually optimise the control of the signalling at
each intersection. This is done at runtime and based on actual traffic flows. In that, the configuration
space for the various signalling times is limited by the classification of similar traffic situations. Finally,
the third layer comprises an additional superimposed O/C-loop that explores new control rules by
simulation and observes their performance in the real system. In the 6-year project period, various
refinements to this approach have been developed, such as the cooperation of intersections in the
prediction of traffic, the consideration of traffic incidents, the extension to routing service provision
and others (cf. e.g. [149]). In addition, numerous evaluations have demonstrated the increase in
performance and robustness in urban traffic networks through the application of the described OC
technology (cf. e.g. [31], [142], [143], [136]).

Finally, though the approaches in OC refer to general technical systems composed of a great
number of interconnected elements, such systems are often (to varying degrees implicitly) inter-
preted as MAS in OC, albeit MAS operating in a technical environment. The reason for this is the
shared interest in self-organisation in MAS (cf. e.g. [59]) and the availability of respective tools and
frameworks. Consequently, the application of MAS technology in OC shows in several of the projects
described in [30] and [37]. Explicit discussion of the compatibility of the two approaches can be found
in e.g. [39], where the implementation of self-x properties by agent-technology is evaluated, and in
[150], where an AOSE process for the design of OC systems is in the focus.

2.5 Decentralised Control of Open Distributed Systems

As reflected in the summaries above, the interest in the control of Open Distributed Systems is shared
by the research communities for computational trust, MAS organisations and Organic Computing.
Based on the varying schools of thought, each of these communities contributes unique approaches

2.5. Decentralised Control of Open Distributed Systems 21

and application case studies. It is argued in this thesis that these approaches can be combined, and
that such a joint approach can generalise some of the specific benefits provided by approaches from
either research field. Consequently, a joint approach termed Trusted Community® is presented in this
thesis. This view is however not exclusive to this thesis, esp. with respect to the combination of MAS
trust and organisations, albeit a view not very commonly found in the literature. This section therefore
reviews similar joint and approaches from the literature. In addition, the second part of this section
is dedicated to the summary of related approaches specifically for the control of Open Desktop Grid
Systems, as this is the system class in which the evaluations in this thesis were conducted (see
Sec. 5).

2.5.1 Related Joint and Agent-based Approaches

In the following, a selection of related approaches using Multiagent technology are summarised:

Trust-based decision-making with controls: In [29], the authors examine trust-based decision-
making for the delegation of generic tasks by self-interested agents in open and highly dynamic
systems. They state, in accordance with referenced literature, that though trust and reputation are
often used for decision-making approaches, it can be difficult to establish long-term trust relations
in system with such challenging environments. According to the authors, this is especially critical
when the MAS becomes paralysed due to the lack of reliable trust data. As a solution they suggest
that “[..] organisations may make use of controls which permit interaction when trust is low, providing
initial evidence from which to bootstrap trust evaluations.”. In the course of the paper, they present an
approach that combines trust-based decision-making with the additional controls explicit incentives,
monitoring, and reputational incentives. They formalise this approach with the help of a decision
tree for trustor agents. Then they successively evaluate their hypotheses that: (1) Agents show a
better performance when their reasoning is based on trust, as well as on these controls, and that (2)
agents apply the monitoring control preferably when trust information is rare and abandon this control
in favour of less costly delegations when trust has been built up. Despite the initial motivation of
applying organisations for the control of interactions at the beginning of the paper, further references
to organisations are limited to the definition of ad-hoc groups of agents in the system. These groups
are described as partitioning the system and being a context for information about other agents,
such as reputation. The opportunity to extend the incentive and monitoring control approach by e.g.
coordination and enforcement through organisation authorities is missed out by the authors. Despite
its value on the insights about the necessity to enrich trust-based decision-making with control, the
work must be classified as motivating a joint approach, rather than detailing its realisation.

Trust-Based Community Formation in Peer-to-Peer File Sharing Networks: The work presen-
ted in [152] discusses the design of a trust-based MAS organisation termed community* for the
application in a peer-to-peer-based research paper sharing community. This MAS organisation is
used to group agents that represent researchers with similar interests and lets them recommend rel-
evant papers to each other. The trust relationships between agents in the system thus mainly reflects

3Disambiguation: The term Trusted Community is also used in [151] for the denomination of a social community approach to
prevent cheating in online computer games. This concept is not related in any way to the work presented in this thesis.
4At one point in the paper, these are referred to as trusted communities, though this term is not used in the definition.

22 Chapter 2. Related Work

the trust relationships between their owners. In addition, the authors provide a means of evaluating
the collective trustworthiness of such a community via a non-normalised trust value, i.e. the size of a
community affects the maximal reachable trust value. A community of such agents is further defined
as a MAS organisation that combines aspects of teams, coalitions and congregations, albeit the clas-
sification used is arguable. Community formation is self-organised and agents can join and leave
them according to the value of received recommendations. A particularly interesting aspect of this is
the ability of communities to fuse if they contain an intersection of mutually trusted members, a pro-
cess that is decided based on consensus finding of all involved members. In addition, a community
organises itself to consists of the k most trusted known agents (based on reputation). Agents from
that list that are not members are invited to join, while members not included in that list lose their
membership. This approach is evaluated in a simulation environment with 50 agents and the results
show that its application increases the number of relevant research papers obtained by the users.
Finally, the work in this paper features some ideas on the combination of trust and organisations that
are also explored in this thesis, especially the self-organisation of a MAS organisation based on the
trustworthiness of the members. However, in the opinion of the author, the case study used in the
paper is not particularly suited to explore all relevant aspects of such an approach. Especially, the
limited autonomy of the agents, along with an implicit benevolence assumption, make the case study
appear as less challenging system than other MAS-based peer-to-peer systems.

Isolation of uncooperative agents by groups of trustworthy agents: In[153] an interesting the-
oretic work is presented on how defecting agents can be isolated by a self-organised process that
combines MAS trust and organisations. In that, the behavioural dynamics of the agent population are
influenced by game-theoretic considerations: The system is arranged as a spatial grid with neigh-
bours randomly interacting by executing an iterated prisoner dilemma game. The agents can move
within the grid and communicate asynchronously. Furthermore, agents choose to either cooperate
or defect in the interactions based on the expected utility gain. The outcomes of interactions are
remembered by the agents through the utilisation of a trust and reputation model. The authors are
then primarily interested in the dynamics of trust among the agents. Especially, the characteristics
of that model that agents adapt their behaviour based on the imitation of prevalent behaviours (co-
operation/defect) in their neighbourhood, and that feedback loops can emerge are examined. In the
evaluations, the authors use 400 agents with varying degree of bias to cooperate. They show that
the system converges to an equilibrium state in which clusters of cooperative agents form neighbour-
hoods (referred to as communities) and isolate defecting agents. In a set of additional evaluations,
they show then that this equilibrium is stable, hence that the cooperating communities are robust
towards attacks. This work is chosen as a representative of game theoretic trust applications in the
literature, esp. focussing on evaluations of (spatial) prisoner’'s dilemma games (for further examples
cf. e.g. [154], [155]). What makes this work particularly relevant for the approach in this thesis, is the
examination of the trust dynamics that lead to clustering of mutually trusted agents. Also the authors
motivate the application of their model in technical open systems, though this is only sketched.

Group Organisation Algorithms based on Trust and Reputation: The work presented in [156]
proposes a discrimination between individual trust, interaction trust and group trust to improve part-
ner selection in open MAS. In that, the group trust is directly linked to MAS organisations and used

2.5. Decentralised Control of Open Distributed Systems 23

for the identification of trustworthy collectives, rather than individuals. This is used in two presented
algorithms, a centralised and a distributed algorithm. While the centralised algorithm is not partic-
ularly suited for the application in Open MAS due to the lack of a scalable interaction information
management, the distributed algorithm utilises self-organisation. It allows to identify trusted agents
and group them for the selection as interaction partners. Overall, the work presented in the paper
features an interesting idea, but is merely a position statement, as it lacks any sort of evaluations.

Trust-based Congregations - Clans: The most relevant piece of related work for this thesis is
described by N. Griffiths in his 2005 article called “Cooperative clans” (cf. [118]). In this paper, the
author describes a type of MAS organisation called clan that is based on the idea of congregations
(cf. e.g. [52]), as well as on literature on trust management®. Clans are medium-term compositions
of agents that trust each other and have a motivation to enforce their cooperation. This motivation
is derived from the agents’ goals and their requirement for cooperation to execute the plans leading
to the fulfilment of the goals. More precisely, agents seek to form clans whenever they experience a
certain amount of missed opportunities for cooperation, lack of scalability, lack of information, or high
failure rate. This amount is quantified by thresholds. If one of these criteria is met, an agent triggers
the clan formation and invites other agents to join in. These potential members are chosen based on
their subjective trustworthiness, as well as their capability to execute tasks prescribed by the plans of
the initiating agent. Additionally, the number of agents invited is restricted by the initiators’ demand
for cooperation partners. Conversely, agents invited to join clan formation make this decision based
on the trustworthiness of the initiator and the expected benefits of the clan membership as advertised
by the initiator. Once established, each clan member can invite other agents to become members
which does not require negotiation with the existing members. Additionally, each member leaves a
clan at any time it finds the clan does not provide it any benefits in the execution of its’ plans or that
it does not trust the fellow members any more.

Benefits of clan membership are derived mainly from the kinship motivation: Motivations are
introduced in the reasoning of the agents to reflect their high-level desires and determine situations
in which cooperation towards other agents should be executed. In that, the kinship motivation is one
of possibly many motivations determining the behaviour of an agent associated to a clan: When the
motivation is high, it provides fellow clan members assistance in the execution of their plans, while
a low motivation leads to the rejection of cooperation. The motivation value is updated cyclically
based on the beliefs of an agent and its’ perceived environment. Apart from this commitment to
cooperation based on the kinship motivation, clan membership brings the advantage of information
sharing among members (mainly about the trustworthiness of agents unknown to the information
requester), as well as scalability (not searching the whole agent society but requesting only fellow
clan members to cooperate).

Clans are proposed as purely decentralised MAS organisation for self-interested agents that mit-
igates some of the drawbacks of other MAS organisation, such as the lack of trustworthiness con-
siderations and the focus on short-term relationships. The membership in a clan is then described
as being beneficial for an agent as it enforces the motivation to cooperate of fellow agents. However
the author does not address issues encountered in an open MAS: The exploitation of clan members
by adversary agents, the requirement for the adaptation of formation and maintenance criteria to dy-

5In [157], an earlier work of Griffiths et. al. clans are yet referred to as being coalitions.

24 Chapter 2. Related Work

namic states of the system, as well as the possibility of emergent system states, esp. the breakdown
of the trust management system. In other words, the purely decentralised composition and the lack of
meta-reasoning (about the efficiency of the clan itself which does affect the benefits for single mem-
bers) make clans vulnerable to exploitation. Consider the following concluding example: Each clan
member can invite other agents to become clan members, merely informing its fellow members about
the composition change. Due to the autonomy of the agents, it must be assumed, that membership
is sought by an adversary that builds up a high trust value in order to become member and then
pull other colluding agents in by providing them with membership invitations. Given that adversary
clan members refuse to cooperate with fellow members, this phenomenon will lead to the disruption
and finally dissolution of clans. In addition, the paper describes the concept of clans in an elaborate
theoretic approach, however the lack of evaluation and/or application scenario discussions remains
a flaw to the estimation of the applicability of this approach.

The shared system model for applicability in open systems with differences in the realisation of a
trust and organisation based solution, make the Clan-approach a suited benchmark for the evaluation
of Trusted Communities.

Trust and Coalitions: Multiagent coalitions have received special interest in the MAS community
as they allow for self-organised and adaptive approaches to distributed problem solving. Con-
sequently, joint approaches that utilise computational trust in conjunction with coalitions are more
common in the literature than joint approaches for other MAS organisations. As summarised before,
coalitions are short-term organisations that are formed due to specific goals and disbanded after their
achievement (cf. e.g. [32]). Trust models are then used to initiate the formation of coalitions, make
them robust towards the challenges of open environments and to expand them based on trustwor-
thiness criteria. In the following, a few approaches from the literature that exemplify these different
aspects are briefly reviewed.

In [158] the examined MAS is used as a service environment, with services being provided only by
coalitions of cooperating agents. Agents are described as being unable to provide complex services
individually, due to the requirement of complementary agent capabilities. To allow for flexible and ad-
aptive service provision and a high quality of service, the agents are autonomous with respect to the
formation of coalitions. To this end, the authors propose an approach with the following components
to aid the agents in the self-organisation process:

1. A trust and reputation model that produces an aggregated normalised trust value based on
weighted product of the single values.

2. A centralised coalition formation service that is used in case of insufficient trust information,
such as for new agents in the system. This service matches service requests with available
agents and suggests the formation of coalitions between them.

3. A coalition formation process based on the trust and reputation model. The provided algorithm
allows mutually trusted agents to negotiate the formation of a new coalition.

4. An adaptation heuristic that allows agents to react to changes in the environment and interac-
tion outcomes. Ultimately, the heuristic implements the decision whether to use the trust and

2.5. Decentralised Control of Open Distributed Systems 25

reputation model to form a coalition or resort to the coalition formation service to be assigned
a coalition.

The presented approach is highly relevant for the work presented in this thesis as the self-organised
grouping of trusted agents is a shared perspective. However, the produced coalitions are used only
as to provide requested services and membership is not long-term. In addition, the coalition forma-
tion service provides an interesting approach to the handling of situations with insufficient trust data
(which is also the main theme in e.g. [76]). However, due to the centrality of the approach, the applic-
ability in an open MAS is arguable. Finally, the agents are not referred as self-interested, instead they
exists only to provide services to request, which represents a fundamentally different system model
as the one used in this thesis.

Another work addressing the trust-based formation of coalitions is presented in [159]. Here, the
authors focus on the performance of agents in a coalition. They define a two-component trust model
that considers the agents’ reputation, as well as their competence. After a coalition of agents has
finished its task and is disbanded, the contributions of the agents are assessed with the help of this
model. This allows to choose members for future coalitions based on these past performances. The
authors then suggest with a very simple simulation model that the application of their model can
improve the formation of coalitions, and that it can give more significance to reputation values due to
the consideration of the competence of agents.

A stronger focus on the individual utility of agents is pursued in [160]. In the work presented, the
agents strictly try to optimise their own utility by joining coalitions. Formally, the model used lets
agents rank available coalition options and then choose the most suited to this end. This initiates
a negotiation between the potential members and results in either a successful formation or the
cancellation of the formation. As members, agents can leave a coalition at any time. This introduces
some challenges, as the utility of the other agents is negatively influenced by such an event. The
authors therefore propose to utilise a trust model in order to estimate the previous behaviour of agents
regarding their willingness to remain in a chosen coalition. This is evaluated in a setup with varying
behaviours: Risk-seeking agents leave a coalition by accepting to join the formation of a higher rated
coalition, even if the chance of a successful formation is low. On the other end, risk-averse agents
make this decision only in case of a high probability for the formation. Finally, neutral agents make
a balanced decision regarding expected utility and formation probability. In addition, agents have
a honesty-level which determines how tempting the utility differences between the current coalition
and an inviting coalition are perceived. The authors examine the relation between honesty, risk-
orientation, association to coalitions and average utility with in simulation experiments with 20 agents.

The self-interested perspective on coalition members is also regarded in [161] (and the related
earlier work presented in [162]). Here the authors examine an electronic market in which customer
agents form coalitions to benefit individually from greater price discounts of large transactions. In ad-
dition, vendor agents join coalitions to negotiate such discounts and to increase its sales. The general
assumption is here that agents who trust each other can form long-term coalitions and that such co-
alitions are stable and can reduce the dynamics in the market. This long-term view on coalitions
distinguishes the presented approach from the approaches discusses so far. The authors propose
mechanisms to undertake coalition formation and operation dependent of trust relationships. In their
model, the trust between agents represents commonalities with respect to commercial preferences.
A high trust value is then seen as yielding a high chance of successful future transactions (negoti-

26 Chapter 2. Related Work

ations over a price). In the paper, a coalition reasoning mechanism is proposed that updates these
trust values based on the success of transactions. In a next step, the trust relationships are inter-
preted (in search of the best trust relationship) and based on this it is decided whether to form a new
coalition, leave a coalition to become member in a competing coalition, or to maintain the status quo.
For the trust interpretations, the authors use agent strategies that prefer either the highest individual
trust, or the highest social trust in a coalition (by summing the trust values of its members / counting
its members with a positive trust value). In addition, the system is set up such that interactions within
a coalition have a higher probability, leaving a coalition induces costs, or neither of the two. Finally,
the coalition reasoning mechanism is evaluated in a set of simulation experiments with up to 10000
customer, and up to 1000 vendor agents. The main interest here is in the number of coalitions in
relation to the number of interactions in the system. Here, the authors provide support for their initial
hypothesis that in most cases the application of the trust-based reasoning can stabilise the dynam-
ics of the system and lead to fewer and longer lasting coalitions. In addition, measurements of the
individual gain of the agents are analysed. These show that the agents indeed benefit from such
long-term coalition memberships.

In addition to the related work discussed here, coalition formation in conjunction with trust has
also been examined in a number of publications focussing on game theoretic scenarios (as referred
toin Sec. 2.5.1 where an exemplary paper is discussed).

Trust and Virtual Organisations: As summarised in Sec. 2.3, VOs are often interpreted as MAS
organisations resembling coalitions or congregations. Consequently, this paragraph reviews related
work that combines VOs with trust-based approaches.

In [163], the authors refer to VOs as open MAS in which a certain type of agent behaviour is pre-
scribed, often by norms, but must be incentivised or enforced as agents can autonomously decide
whether to adhere to the prescriptions. This view is compatible with most definitions of open MAS
per se, but here the authors already explicitly assume the utilisation of organisation structures for the
enforcement of behavioural rules. They further explicate that a trust and reputation model is useful
for the decision-making of agents in such environments and that such a system can be improved by
incorporating the organisational aspects of a VO. Consequently, the authors propose a trust model
based on confidence and reputation and enrich the model by taking advantage of organisation in-
formation. For example the choice of good recommenders for the aggregation of a reputation value
is based on the similar position (role) in a VO, and roles are assessed with a confidence value. In
addition, groups of agents that are organised can be assessed as a unit which again is a holistic
approach. Also, as already seen in the reviews of [158] and [29], the authors here see organisational
information as a means to make decisions in case of insufficient trust information. However, the work
presented in this paper is described as preliminary and lacks an evaluation in an instance of such a
VO-based open MAS.

A similar motivation can be found in the Ph.D. thesis of J. Patel (cf. [93]). Here, an elaborate trust
and reputation model for VOs is presented. In that, the definition of [45] for VOs is adopted, hence
a VO is seen as a short-term coalition with a group goal, albeit the author considers the self-interest
of agents in his work. In the development of the trust model presented in this thesis, the author pur-
sues the following research aims: (1) The utilisation of direct trust for the model, (2) the utilisation of
recommendation trust, (3) the realisation of robustness towards biased and erroneous recommend-

2.5. Decentralised Control of Open Distributed Systems 27

ations, (4) the exploitation of organisation information to enrich the model, (5) the incorporation of a
confidence metric for trust and reputation values, and (6) decentralised design and computations of
the model to allow for a scalability and robustness in dynamic environments. Apart from the present-
ation of a model designed by these principles itself, a particularly interesting aspect of the thesis
is the description of the utilisation of this model to influence VO formation, operation, restructuring
and dissolution in a Grid environment. Here, the author is influenced by similar work presented in
e.g. [45], [127] and [129], albeit he substantially extends it by incorporating aspects of trust into the
concept. Finally, the consideration of a Grid system allows an evaluation within a technical context
which the author conducts by simulating a respective system and its agent population.

Other work regarding the utilisation of trust and reputation in the isolated aspect of VO formation
is for example presented in [164] (a reinforcement learning approach) and [165] (focus on attacks
and threats in the process).

Trust and Organic Computing So far all related joint approaches have utilised a combination of
MAS organisations and computational trust. Here, approaches are reviewed that utilise trust in OC
systems. As this field has been established only recently, the literature on joint approaches is yet
rather limited. A summary of concepts and motivations for the utilisation of trust in OC systems can
be found in [3]. After presenting a literature survey on computational trust and a functional definition of
trust as multi-facet concept, the authors discuss research challenges and opportunities of the design
of trust-based OC systems. The following are described as most pressing: (1) The requirements of
OC systems to represent aspects of both user and device trust in shared trust models, (2) the pos-
sible benefits of trust-based self-organisation on the control of the emergence in OC systems, (3) the
influence of trust-based approaches on the verification of OC systems, (4) the consideration of trust
in the software-engineering of OC systems, and (5) the influence of user-trust oriented concepts for
the design of adaptive user interfaces for OC systems. Exemplary research papers in this field cover
the trust-based formation of autonomous virtual power plants (cf. e.g. [94]), a software engineering
view on such systems in (cf. [13]), and the application of trust in OC-based robotics systems (cf. e.g.
[166]). In addition, the project website for the DFG research unit OC-Trust (FOR 1085, cf. [167])
contains an overview over the research field and esp. features a list of related publications. Also
note that this thesis has been conducted in context of this project and the authors’ publications are
referred there.

To the best knowledge of the author, the combination of MAS organisations and Organic Com-
puting in joint approaches has not been adopted in the research literature. A single exception being
the application of coalitions in formal verification of OC systems, as proposed in [168].

2.5.2 Approaches for Open Desktop Grid Systems

The approach presented in this thesis is generic and can be applied in any Open Distributed System
that fulfils the requirements of the system model discussed in the next chapter. However, to demon-
strate the benefits of its application, a specific instance of this system class has been chosen, an
Open Desktop Grid System. This section is therefore intended to provide a brief description of such
systems and to review related work that also explores the opportunities of applying agents in general,
and computational trust and/or MAS organisations in particular in such systems.

28 Chapter 2. Related Work

Desktop Grid (DG) Systems (cf. e.g. [169]) are based on the idea of using shared idle resources
(also referred to as “harvesting”) of usual personal computers, in order to allow for fast and parallel
computations for suited applications 8. Desktop Grid Systems are distinguished from (traditional)
Grid Systems: The latter operate with dedicated and static, often homogeneous, machines (e.g.
clusters) in order to provide computation as a service. Mostly the scheduling of jobs is centralised
and machines can be fully controlled. Desktop Grid Systems on the other hand, are a network of
rather unreliable machines providing computational power on best-effort basis in often dynamic en-
vironments. They are mostly decentralised, and direct control is not possible. In traditional Grid
Computing, research is often focused on efficient and fair scheduling, management of the dedicated
machines (e.g. fail-over mechanisms, redundancy etc.) and efficient processing of workflows with
highly interdependent tasks (e.g. via MPI [171]). Realisations of these systems are mostly based
on either the Globus Toolkit (cf. [172],[173]) or Web-Service-based standards (cf. [45]). Also, as dis-
cussed earlier in this chapter, the utilisation of VOs (sometimes in conjunction with trust models) is
quite common in Grid systems. In the remainder of this thesis, traditional Grid Systems will not be
further referred to, mainly due to the lack of openness and uncertainty among the participants (no
Open Distributed System) and thus low motivation for the application of the approach presented in
this thesis. In contrast, Desktop Grid Systems can be realised as open systems, albeit this is not
always the case (as for example in Enterprise DG systems). A thorough taxonomy for the different
types of DG systems can be found in [80], and an additional taxonomy focussed on evaluations of
DG systems is presented in [174]. The former taxonomy is also summarised and used to classify the
evaluation scenario for this thesis in Sec. 5.1.1. In the following, only related work considering Open
DG systems is referred.

Agent and Trust-based approaches for Open DGs Agent-based open DG systems are partic-
ularly challenging as the participants can have unreliable soft- or hardware components, refuse to
cooperate with other participants (free-riding), deliver no, invalid, or tardy processing results, and
worst of all, be adversary and try to disturb the operation of the system on their own or in collusion
(cf. e.g. [80]). This has motivated research that tackles these challenges by the measurement of
trust, reliability and reputation and by using these measurements to reduce the uncertainty of agent
decision-making in such systems.

The problem of detecting and avoiding invalid processing results in a volunteer-based DG sys-
tem has been addressed by L. G. Sarmenta in [175], a work that coined some of the terms used in
many further publications by other authors. In this paper, the author proposed the following so called
sabotage tolerance mechanisms: Spot-checking, a mechanism that utilises undistinguishable test
task that are pre-processed and hence allow to identify false results at very low validation costs and
the Credibility-based fault-tolerance mechanism. This mechanism is a combination of the classical
majority voting, as well as the spot-checking approach. It asserts probability values (the credibility)
for correct task results to the system participants, results, result groups and work entries. In partic-
ular, the performance of system participants is measured according to the amount of successfully
passed spot-checks, hence the utilisation of evidence-based trust. The mechanisms presented in
this work have then been extended in a number of contributions from various authors. For example

B¢f. [170] for an elaborate analysis of the requirements to transform a user application to a DG application.

2.5. Decentralised Control of Open Distributed Systems 29

in [83], sabotage-tolerance mechanisms are seen in a broader context and complemented by further
trust-aware decision-making, as well as application check-pointing to reduce the impact of adversary
behaviour. Furthermore, in [176] the spot-checking approach is characterised as being impractical
due to the requirement that test task must be undistinguishable from other task, whereas it is very
hard to realise such tasks. Consequently, the authors propose a generalised version of this mechan-
ism which is to some degree robust towards the detection of such spotter jobs.

In addition to the work on result verification, some contributions have addressed DG participants
that behave uncooperatively, referred to as free-riders. This phenomenon is best known from file-
sharing networks (cf. e.g. [63], [177]), but can also significantly impact the performance of a Desktop
Grid system. In [84], the authors therefore propose a reputation-based approach to detecting free-
riding and demonstrate its applicability in a system called OurGrid. In that, they show that the utilisa-
tion of reputation can not only identify free-riders, but also that it serves as an incentive to cooperative
behaviour. This is especially interesting as the authors use a setup in which the participants are al-
lowed to change their behaviour based on the expected utility. Note however that this approach does
not refer explicitly to agents (as opposed to users), though the MAS perspective seems compatible
with the approach. In [178] also a reputation-based approach is chosen to cope with the problem
of free-riders in a super-peer structured DG system. Here, the authors show in a set of simulation-
based evaluations that the application of their approach improves the makespan and speedup of
collaborative agents in a DG.

Another phenomenon of constant interest is collusion. Collusion is referred to as the cooperation
of adversaries to achieve a common goal, e.g. the disruption of a service. Collusion in DG systems
is a highly relevant topic, especially due to the fact that task results can often only be validated by
majority voting and hence a colluding majority can have a strong impact on the accuracy of obtained
results. While most approaches to get hold of collusion do not consider open decentralised agent-
based DG systems, the obtained results can often be generalised for such utilisation. In [179] for
example, the authors suggest to assess the behaviour of DG users by utilising a reputation model
in conjunction with pre-processed and indistinguishable quiz tasks (an approach also referred to
as spot checking in the literature, cf. e.g. [175]). The approach can easily be incorporated in the
decision-making of agents as it is purely decentralised. In addition, their approach is specifically
designed to be robust towards collusion and in the paper the authors claim to outperform standard
replication-based approaches when collusion is involved. In another work presented in [89], the
authors propose a collusion classification approach that allows to identify groups of colluding agents.
Although the presented approach does not utilise a trust or reputation model directly, the identification
of colluding nodes could be used to improve such a model. However, to allow for this, the approach
requires further evaluations in environments with dynamic behaviour (the paper considers only static
behaviour). Finally, in [85]) an approach to identify colluding nodes based on the application of the
EigenTrust model (cf. [106]) is proposed. Such adversaries are then excluded from the processing of
further tasks which could also be incorporated in the reasoning of DG agents.

Other work has for example explored the modelling of daily DG user behaviour in combination
with evidence-based trust estimations to improve the performance of DG participants (cf. [82]).

Agent and organisation-based approaches for Open DGs The application of MAS organisations
within open DG systems is not a very common approach in the research literature. Most of the

30 Chapter 2. Related Work

approaches are rather oriented at traditional grids, such as the VO approaches for these systems
discussed earlier in this chapter. Consider for example the work presented in [180]: The authors
apply organisational structures to improve a system that is open in terms of nodes being able to
join and leave the system at any time. However, the approach targets the application in a strictly
hierarchical system, which shows in such organisation roles as global scheduler being responsible
for e.g. the monitoring of user jobs. An open DG system based on nodes being peers has in part
fundamentally different requirements on the control. Similarly, the authors in [181] present a coalition-
based approach for the improvement of grid scheduling. Again, a central system is assumed: Tasks
arrive at a global point in the system and their processing is assigned to a global utility value. The
agents in the system then form coalitions such as to process these tasks in a way that maximises the
global utility. The problem is hence one from the domain of distributed problem solving and does not
consider self-interested grid participants.

In contrast, the approach presented in [182] explores the application of organisation in an Or-
ganic Grid”, a truly decentralised realisation of a peer-based DG system. The authors propose a
concept of mobile agents and show how these can self-organise a tree-overlay network to improve
the autonomous scheduling in the system. In that the organisations in themselves are rather simple
structures that define hierarchies based on e.g. the processing speed of participating nodes. In addi-
tion, the authors do not address disturbances in the system, such as adversary strategies. In [183],
such disturbances are considered in the form of agents that e.g. leave the system before a compu-
tation is finished (requiring re-scheduling), or have a low availability. Here, the authors also explicitly
refer to DG systems. Again, an overlay network is created that organises nodes according to their
performance as in the approach discusses previously. However, here further criteria are considered,
e.g. locality and behaviour. This organisation process is managed by coordinator agents and res-
ults in computation groups. These are used in an agent-based autonomous scheduling mechanism.
The application of organisational techniques is however very limited in this paper and could also be
referred to as a clustering approach.

Joint approaches for Open DGs The most complete approach to combine computational trust
and MAS organisations in order to tackle the challenges of open DG systems is presented in a Ph.D.
thesis by S. Choi (cf. [184]). In his work, Choi first presents his taxonomy on Desktop Grid systems
which has already been discussed as [80] and is used later in this thesis to classify the evaluation
scenario. The taxonomy is accompanied with an extensive review of DG realisations in the literature.
The author then discusses his system model, a centralised and open DG, and formalises a failure
model for the system participants. Finally, a very interesting approach based on trust and organisa-
tions is proposed, the group-based adaptive scheduling mechanism. Here, Choi uses the following
three main categories to group volunteered resources into scheduling groups: (1) Volunteer Credibil-
ity (trust), (2) Volunteer Service Time (dedication), and Volunteer Availability (volatility or failure). He
then describes how the values for each category are determined for the volunteers, and how they are
updated whenever the volunteers complete interacts (e.g. finish the processing of a task). In that,
he defines the credibility of the volunteers as the probability that they produce a correct result for a
task, based on observed evidence in this role. Choi then describes an approach to group volunteers
based on the categories above and additional properties such as e.g. their locality (home or enter-

"This work is not related to the field of Organic Computing as introduced in Sec. 2.4

2.6. Summary and Overview 31

prise resources). In conclusion, three modes are presented to construct and maintain such resource
groups: (1) task-based mode initiates the grouping after completed tasks, (2) time-based mode does
so in regular time intervals, and (3) count-based mode groups according to the number of volunteers
in the system. Choi then describes how such volunteer groups can be used to improve a centralised
DG system: By utilising mobile agents, scheduling and handling of faults is distributed among groups
of agents rather than being executed by a central scheduler. In addition, this approach allows to use
multiple scheduling algorithms, tied to the properties of a volunteer group, in parallel. For example,
groups of resources with low trustworthiness required more safety-oriented scheduling schemes than
groups of low rates of failures. Finally, this approach allows to react to the dynamics of the volun-
teers joining and leaving the system as the utilisation of mobile agents allows for e.g. migrations to
other groups. The author then details several aspects of this approach, for example a quantification
of replica generation, choice of tasks to replicate, result verification, and re-scheduling in the event
of failures. Finally, the thesis presents an evaluation in a simulated system environment with 200
volunteers with varying service time, credibility and availability. In the presentation of the results, the
author focusses on the improvement of the throughput in the system, the amount of redundancy and
the accuracy. Despite the many very interesting contributions, one could argue that the utilisation
of organisation is rather limited and used only for clustering resources. The volunteers organised in
the groups do not actively take advantage of their shared membership. In addition, the presented
approach is tied specifically to the utilisation in a centralised DG system and lacks the generality of
the approach proposed in this thesis.

Further research on joint approaches in the open DG domain is for example presented in [79].
Here, the authors propose an utility-based trust and reputation model for VOs in collaborative com-
puting environments. The model is an interesting approach to the holistic view on a VO, however, the
authors do not refer to agents, but rather understand VOs in the sense of human organisations. Fur-
thermore, the paper features an extensive summary of the application of trust in distributed systems.

Another joint approach is presented in [88]. The authors propose a trust and reputation man-
agement system termed H-Trust that also incorporates the notion of group trust. The application
scenario resembles that of Choi, reviewed above: A job distributor can use the model to determine to
which group of agents its job should be assigned. In that, the owner of the job can use the model to
discriminate trustworthy from untrustworthy groups, which is necessary according to the authors, as
in an open system any agents can form such a collective. They then present evaluation results from
simulations with up to 500 agents and demonstrate that their mechanism allows to detect malicious
nodes based on an accurate reflection of their behaviour in the trust model.

2.6 Summary and Overview

Open, Agent-based Distributed Systems are a challenging domain: The autonomy of the agents, the
autonomy of agent owners to use custom code, the self-interested utility definition of agents, and their
often complex decision-making and resulting interactions are factors that heavily impact the control
of such systems. In this chapter, many approaches to these challenges have been discussed, both
for Open MAS in general and open, MAS-based Desktop Grids in particular. To this end, approaches
from the research fields of Organic Computing, computational trust, and MAS organisations have
been reviewed. A special focus has been laid on approaches that combine methods from these

32 Chapter 2. Related Work

fields, as it is argued in this thesis that such a combination yields a high potential to generalise the
benefits approaches from either individual research field. The review of related work has especially
revealed the potential of such a combination in the following aspects:

¢ In the application of computational trust to address undesired agent behaviours, the Trust Man-
agement is most often implicitly seen as stable, and abnormal system states are seldom
considered. Subsequent trust crises and TM breakdowns are neglected and the approaches
presented are not prepared for such system states. However, the systems regarded are often
composed of many autonomous agents with complex interactions. Such complex systems are
described to evolve at runtime and not all trends can be predicted and prevented at design-time
of such a system. Hence online reactions to emergent, abnormal system states should be
considered in the design of such TM-based approaches.

e The consideration of the trustworthiness of interaction partners in the decision-making of agents
allows to improve their robustness towards uncooperative and adversary behaviours. This has
been presented in a large body of research literature. However, the overhead of Trust Man-
agement, together with an often slow response time to variations in agent behaviour remain
challenging issues. Often authors in the literature propose approaches that do not adapt to
states in which agents have strong, positive, and mutual trust relationships that render TM and
its overhead unnecessary. This can lead to suboptimal interactions due to TM overhead.

e Evidence-based Trust Management requires the involved interaction partners to fully compre-
hend the interaction. However systems composed of self-interested agents often do not allow
for comprehensive observations. Instead the agents can only make local observations and
hence only rate the trustworthiness accordingly where the outcome of an interaction can be
understood with these observations. On the other hand, such systems are described as open
towards agents with various types of behaviours aimed at exploiting or damaging the system.
As such, behaviours that cannot be observed by single agents, in particular collusion, require
agents to cooperate in order to prevent harm to them. Often, MAS organisations are proposed
to allow for this cooperation. However, most of the proposed organisations either require group
goals (e.g. coalitions) or do not apply trust management despite its benefits in this context (e.g.
congregations). Only few approaches regard trust-based MAS organisations to motivate
self-interested agents to make shared and comprehensive observations of their environ-
ment.

e Most of the approaches in the the domain of computational trust and MAS organisations
are not evaluated in technical environments, but according to theoretic models. While
this accounts for various characteristics of the proposed approaches, it is often hard to judge
about the applicability in technical Open Distributed Systems.

e The number of research papers addressing truly decentralised and peer-based Desktop
Grid Computing systems is still limited and the application of computational trust and
MAS organisations in them even more so. As the computational power of personal devices
steadily increases, while ecological and economic reasons advise to harvest these often spare
resources, such systems are seen as having a high potential for being adopted more commonly

2.6. Summary and Overview 33

in the future. In addition, these systems are a perfect instance of technical Open Distributed
Systems, and very well suited as evaluation scenarios for approaches in the reviewed research
fields.

Finally, for a quick overview over the most relevant related approaches reviewed in this chapter,
see the following Fig. 2.2.

Chapter 2. Related Work

34

‘[e 32 pismouldy

» » » » » » » » uogesiebIo SYIN ‘ saijluNWwo) paisniL
SaAnuaUI ‘e 18 psmoulz|y
» & » S » X » yum Buinpayds areme-isniL ‘sanunwwo) paisniy uaidwi
‘e 18 syuyo °N
b8 x » % » » » uonesiuebio Sy ‘suepn
‘[e19 104D 'S
> » » X & WEIEURE (RS S ‘ wsiueyosaw Buinpayos aandepe paseq-dnoio,
opouw-isn. 19%8d °(
X » » X » » » 1op L * SOA paseqg-juabe 1oy |opow uolyeindal pue -isni} |
Bupjew-uoisioap ‘[e 18 pauing D
X » X » X » » paseq-1sniL *51013U00 YIIM BupfeW-UOISIOBap I1SNIL
‘e 10 Buep "A
pd » » » » uonisodwod uonesiuebio SOMUNWWOD POSEG-1SNIL
‘[e 19 39021aH-eaueyD Y
X » b » » » soweuAp syl swa|qoid ad [eneds ul syusabe paisnii Jo SaIUNWWOD
(sreob dnoub) uoisinoid ‘[e 19 Z|90H 'g
X X & & & & 92IAI9S WIB)-HOYS U1 *1SNJ} UO paseq uoljew.o} uoniEeoD
SI9pL-9314 JO UONBIBP pue ‘[e 19 spelpuy V|
» » & % » X s uonesadood 10} SSARUSIU| ‘ PU9INO paseq-dzd ayl ulisniy
sjuabe ajiqow ‘[e 18 IeAeseYD Y
» » » N » pue opesiueblio-j|as ‘ puo a1uebio
pub e ul sjusbe ‘e 18 oeyz ‘H
» » & » » Snoidlfew Jo uondalag ‘1snil-H
walsAs [-IER
puo sanadoud sioyine
panqguisip [uoneneas | Alelsuso 1sniL | uonesiueblo | SYIN yoeoudde jo snoo4 .
dosag X-}19S yoeoiddy
uado |esiuyosal

ure, as well as their classification according to key aspects of this thesis. For each related approach,

Figure 2.2: Overview of related work depicting the most relevant related approaches from the literat-
the degree of consideration of the key aspects is depicted.

3 | System Model

This chapter introduces the system model developed and applied in the thesis, by first presenting
a system view. Here, the concept of the hosting system is defined: This is a model how to apply MAS
in general, and Trusted Communities in particular, to technical systems by using Organic Computing
techniques. This model is composed of the submodels of agents, as elements of the system, the
production engine, encapsulating the mechanics of the technical system, and a Trust Management
system the Trusted Communities are built upon. The second part of this chapter presents an ana-
lysis of the challenging issues in such a system and introduces the Trusted Community approach to
overcome these issues. It describes how Trusted Communities can be applied in a hosting system,
and where limitations to the application exists.

3.1 System View

This section specifies for which systems the approach in this thesis has been designed. First, the
concept of the hosting system is introduced, followed by a detailed specification of a functional agent
model for participants in the hosting system. This is concluded by a specification of the required Trust
Management system for such systems. Finally, the composition of a hosting system is discussed and
the assumed agent society introduced.

3.1.1 The Hosting System

This thesis introduces the approach to improve open, distributed systems by providing the elements
of the system with the ability to form Trusted Communities and thus apply an advanced form of self-
organisation. From here on, the system in which Trusted Communities are applied will be referred to
as the hosting system H. As depicted in Fig. 3.1, the hosting system is an open distributed system
without central control. It is composed of a number of elements, the so-called production engines. A
production engine is a client software that allows technically to participate in the system, for example
a Desktop Grid Client (see Sec. 5.1), a wireless sensor node or a client in an e-commerce system.
Additionally, the assumption is made here, that each production engine is under the responsibility
of a user or owner, although this is not a requirement for the approach presented in this thesis. It
is additionally assumed, that the production engines are independent of each other, such that they
belong to different users and/or administrative domains, and that they are heterogeneous with respect
to their capabilities and configurations. Owners of production engines use them to interact with other
production engines and via a shared environment (usually a network) to reach an individual goal or
performance. The interactions rely on a shared protocol defining the exposed functionality, whereas
the exact capabilities and configurations of production engines are not visible to others.

35

36 Chapter 3. System Model

Production eccae
X ee=° Seo User y
engine Seo
- = =<3 Production
.o engine

PEY Y XX E K Rd
.

o
L4

) n
Seo Production
engine

Figure 3.1: System model of the hosting system: Each user owns a production engine, a client
software that allows to participate in the hosting system and defines a performance measure.

The hosting system is characterised by its openness, i.e. participants can enter and leave the
system arbitrarily. Note that this is a very broad definition of a technical system, comprising most of
internet-based, decentralised systems. However this definition of a hosting system is emphasised
here in order to distinguish the application scenario of the TC approach from non-technical scenarios
like social simulation with agents’. In the following, this very generic view is left behind and the
system model is refined by the incorporation of agents that represent users in the system and control
the production engine. This allows for the self-organisation of the system and thus for adaptivity to
system states that were unforeseen at the design time of the production engines.

3.1.2 Agent Model

In this section, an agent model for the application of Trusted Communities is presented. It is not the
intention of the author to contribute to the numerous and elaborate agent models described in the
literature on MAS (cf. e.g. BDI [54] or MIS [185]). Instead, the agent model is introduced with the aim
to capture a functional representation of the requirements necessary for the TC approach. The work
here is based on the Observer/Controller design pattern (see Sec. 2.4) and on agent models in the
literature (cf. e.g. [49]).

It is generally agreed in the research community (cf. e.g. [49]), that agents, in the sense of
software agents in the field of Multiagent Systems, are programs acting on behalf of a user and/or
program. Referring to the model of a hosting system from the previous section, this means that the
agents control the production engine on behalf of the user (as depicted in Fig. 3.2). In that, agents
are characterised by autonomy (at least to some extent), i.e. they exhibit reasoning capabilities, as
well as interactions, i.e. agents have the capability to interact with each other via defined protocols.
It is these interactions, that essentially characterise a Multiagent System, a common environment

"In e.g. [44] the type of system that is referred to in this thesis is denoted as “Multi-agent decision system”, as opposed to
“Multi-agent simulation system” and “Agent assistant” system.

3.1. System View 37

engine

Figure 3.2: System model with OC-based agents: Here the system participants incorporate observer
and controller to allow for adaptations based on the utility of the production engine. The communica-
tion between the agents is controlled by COMM interfaces encoding an interaction protocol.

shared by a number of agents perceiving each other, and being able to interact. Interactions between
agents are of utter importance here: Not only are they often required for agents to reach their user’s
goals (cooperation), but they are in general one of only three sources? of information about other
agents. This is due to the autonomy of the agents: Agents have a strict local view, i.e. agents (as
well as users) are not able to perceive reasoning states, actual capabilities, strategies, plans etc. of
other agents (black box approach, cf. e.g. [186]). Only when agents decide to share information with
other agents, is this information disclosed. Agents can always reject to share information with other
agents because of strategic considerations. Additionally, in open systems without central control over
the implementation of agents, the interactions between agents need to be based on a commonly
understandable communication protocol. As depicted in Fig. 3.2, this is abstracted by the use of a
communication-interface (COMM) in the specified model.

When applying agents to represent them, users expect these agents to firstly hide the complexity
of a system participation, and secondly to perform better in the system than is expected from manual
control. The performance of the agents is measured in terms of a utility function U*(#), with x
being an agent and the time t being the time of the utility evaluation by the agent. This function is
defined by a system designer and reflects the desired agent performance. Consider for example the
completion time of jobs in a Desktop Grid System as such performance measure. If an agent is aware
of its utility at runtime, it can adapt its behaviour constructively (self-awareness, cf. e.g. [187]). Here
technical systems are considered, therefore the definition of a utility function U*(¢) is always derived
from the performance of a production engine in the open distributed system. In a Vehicular Ad-Hoc
Network (VANET) for example, the utility function of an agent designed to control the according client,
will incorporate the aspects connectivity, energy consumption and communication economy among

2The other sources being the shared environment (through observation: stigmergy) and external entities (like users, providing
additional information retrieved from external sources like program analysis).

38 Chapter 3. System Model

others. For the agents that are modelled here, the utility function is therefore always technically
defined and quantified. What is more, the agents are assumed to be self-aware in this respect, i.e.
they know and can interpret their own utility value. The reflection about the own utility is a central part
of agent decision-making and allows agents to optimise their behaviour.

In the following, it is presented how an agent based on the Observer/Controller design pattern
(cf. [30]) is defined. As depicted in Fig. 3.2, an agent is set up by a user to control its production
engine. Each agent contains two essential building blocks: The Observer (O) and the Controller
(C). The Observer monitors the production engine and the environment and aggregates the gained
knowledge into a situation description. This situation description classifies the local view of the agent
about the system state at the time of observation and is passed on to the Controller. The Controller
is the active part of the agent: It adapts the configuration of the production engine based on the
information in the situation description. The new configuration of the production engine has then an
influence on the performance and the system state, which then again is perceived by the Observer,

thus building up a control loop as applied in control theory and similar to the MAPE-cycle (cf. e.g.
[131]).

Agent Components

In the following, a more detailed view® on the Observer and Controller parts of an agent, as depicted
in Fig. 3.3, is presented:

User x
Agenty
cowm | =
Agent x ; -
K Production
,: engine
’

0, coms
| e
el

N -

" : .
engine

Production engine W

Observation
model

OX

-
PR i X Y

Agent z

Figure 3.3: Agent model of an agent participating in the hosting system. The observer incorporates
an observation model and the controller is composed of single agent components. Communication
between agents is based on interactions that the agent components provide.

In this model an agent is defined by encapsulated and coherent function blocks, the so-called
agent components. These components serve the purpose to be effective on the production engine
and represent the reasoning and control capabilities. The Controller of an agent is thus comprised of
a set of components, with each agent having a component composition not known to other agents.
Each component needs input data to operate and can provide interaction interfaces to other agents.

3This view is compatible with the definition of the Observer/Controller design pattern in [30] and extends it with an observation
and interaction model. All advantages of the O/C pattern apply, but the presentation is more focussed on agents than the original
pattern. Work on this has been conducted in cooperation with Yvonne Bernard.

3.1. System View 39

Consider for example an agent x, with an agent component Comp?, that needs to make the decision
whether an interaction with another agent y is beneficial to increase its utility and should therefore
be accepted. In this case, the agent component needs information about agent y, possibly about its
trustworthiness, in order to make a good decision about a potential utility gain for x, based on the
probability that i will make a trustworthy interaction partner. An agent component Compy thus needs
to define the required input information in the form of a set Of = {01, ..,0n} of observables with each
observable o; being the following tuple:

o; = <(7f,(7f,ai”,¢7f>
with:
o the owner of the information
o} the scope of the information
ol the name of the information
(rl.f the observation update frequency

The owner of the information is an agent or set of agents in possession of this information. The scope
of the information is either of the following:

e Self Knowledge: Information the agent has about itself, such as the current utility.

e Private Knowledge: Private information the agent has about other agents, such as trustworthi-
ness values assigned based on former interaction experiences.

e Society Knowledge: Information that is freely obtainable by any agent, such as information
broadcasted by agents in the society.

The name of the information is an identifier defined by a common communication protocol within
the COMM interface, while the observation update frequency allows to specify periodic information
requests. Note here, that due to the autonomy of the agents, an information owner x is free to decide
whether to provide the information requested from it by an observable of agent y or not. Finally, an
observable ¢; is the specification of an information retrieval requirement. The actual value of this
information at the time ¢ is denoted as: v(0;, t).

Additionally, in order to understand the request of agent y and allow for an interaction with it, a
component also needs to define interaction interfaces.

A component Compy of agent x therefore also comprises a list C = {cy,.,c,} of interactions
or primitives that this component allows. This does not imply that agents are obliged to provide
these interaction possibilities to other agents, but rather that they can be requested of them, with the
decision about an interaction being part of the decision making within the component.

The main part of a component encodes the decision-making for the encapsulated functionality
of the component. In that, it provides interfaces for other components of the owning agent, an eval-
uation of the observables, and the control of the functionality based on the respective view on the
environment. Finally, a component must also encode adaptable rules for the handling of interaction
requests via its specified interaction interfaces.

40 Chapter 3. System Model

Observation and Interaction Models

In general, an agent x is composed of k components Compy,...Compi, each encapsulating a different
functionality. However, the observables O; defined by each component Comp; can have similar
characteristics: Identical observables, or observables only varying in the update frequency, can be
required by two different components. To avoid redundant information retrieval and provide a precise
information definition, an Observer aggregates the required observables in an observation model ®*,
defined as:

-

©* =agge(07,..05) C | J OF

i=1

In that the aggregation function agge (07, .., Of) merges the required observables such that all com-
ponent requirements are met while the redundancy is removed. This results in a set ®* of distinct
observables. This model is then used by the Observer of agent x to control the information retrieval
(also referred to as observation) needed by the components. The aim of this observation is to produce
a situation description D(®%,t) at each time t that is as complete as possible* with respect to the
observation model ®*. Formally, a situation description is a set of observable-retrieved-value-pairs,
such that:
D(O%,1) = {(03,0(01,1)) , -, (0, 00w, 1))

A situation description is used by the components of x for their decision-making, as well as by the
controller as such to allow for adaptations of the components to the present situation (for example the
exchange or activation/deactivation of components within the Controller). Note here, that the obser-
vation model ®*, and consequently the composition of situation descriptions D(®*, t), is dynamic:
The activation/deactivation or internal reasoning of an agent component Comp; can inflict changes in
the set O of observables required for the operation of Compy. This in turn can change the compos-
ition of ®*, resulting in a new observation model @*. As a side effect, this introduces a challenging
issue® for learning-classifier-based adaptation (cf. e.g. [50]) within the Observer/Controller cycle: Two
situation descriptions D(©%, ;) and D (6%, t;) need to be matched in order to compare the rewards
achieved by applying different actions in both situations.

Another agent-wide characteristic is the sum of interactions it provides to other agents. This is
referred to as the interaction model T'* of an agent x. It is composed of the union of all interaction
interfaces provided by the agent components and the production engine interactions C3., such that:

' = JCf UCE.
i

In that, the set C is composed of interactions that the production engine provides even if there
is no control by an agent (in which case the user has to manually decide whether to accept inter-
action requests). In case of agent control, decision-making for the functionality of the production
engine is transferred to the agent components. The production engine interactions are then triggered
only internally by the components. Both, observation and interaction model, are dependent on the
component configuration of an agent at time ¢, which can be subject to change during the system

4This refers to the fact that observable owners can reject to provide the requested information. It is in the responsibility of the
function agge (07, .., OF) to account for this and use previously acquired information as needed.
50/C-based adaptations are however not in the focus of this thesis, this is therefore neglected here.

3.1. System View 41

participation of an agent. This is due to the fact that (1) agents can decide to exchange component
realisations at runtime (with possibly different input and interaction requirements), and (2) activate
new or deactivate existing operating components.

In conclusion, the notation Alt;'}f’el is utilised throughout the thesis to denote the implementation
of an agent component type. This type is, for example, a specific component required to control the
production engine. The implementation impl is the realisation of a type of component, for example
a stereotype freerider (see Sec. 5.3.1), being a realisation of a decision-making for this component
that rejects all interaction requests from other agents.

3.1.3 Trust Management System

The previous section extended the system model by introducing agents that control the production
engines on behalf of the users. The delegation of control to autonomous agents enables the system
to self-organise and better adapt to runtime system states. Here, cooperative behaviour of agents
can lead to a high performance increase for a user. On the other hand, the exact realisation of beha-
vioural agent strategies is not known to other agents and the system is open, meaning that any agent
can enter the system; the only constraint being a functionally compatible production engine and the
adherence to a common interaction protocol. This introduces the risk of uncooperative, exploitative or
even adversary agents and can, if not accounted for, lead to dramatic performance decrease among
the agents. This is where the application of a Trust Management system is required.

The Trusted Community concept is based on the notion of (artificial) trust (see Sec. 2.1 for a
detailed discussion). As such the Trust Management of a hosting system is of utter importance for
the formation and maintenance of Trusted Communities: Trust values of agents are both a signalling
system for the agents and a means to evaluate interactions with each other. In the following the
requirements on a trust model are specified:

Required Trust Model

The approach presented in this thesis requires a trust model that allows to derive the trustworthiness
of agents based on evaluations of direct and indirect past experiences among them. In the literature
on trust in MAS, this is the most commonly applied type of trust model (cf. [24]). In such a model, a
direct trust value DT,Z’E, which is the subjective estimate of agent x about the trustworthiness of agent
y in context ¢, is hence the aggregation of the set of interaction ratings RZ’E that x assigned to y. Most
authors in the literature on trust agree (cf. e.g. the analysis in [20] and examples in [24]) that it is not
sufficient to state that an agent x trusts another agent y (in everything y does). Rather, this statement
can only be made for a specific context ¢ in which these agents interacted, resulting in a set of ratings
RZ’é. As an interaction of the type c;, between an agent x with an agent y is always executed via
an interaction interface Ciy = {cq,..,c } provided by a component Comply of y, the context is derived
from this component, such that ¢ = i. In other words, the trustworthiness estimations of x about y
always refer to the trustworthiness of a certain component of y, with y having components that are
potentially heterogeneous in terms of trustworthiness. An agent y can for example have a set of
default components, and additionally some components with modified code for adversary behaviour.

In cases where an agent x has made only few interactions with another agent v, it is often de-

42 Chapter 3. System Model

sirable to not only rely on this little evidence about y, but also consider other agents’ testimonies
about y. From the view of x, these are referred to as indirect trust values about y. The result of an
aggregation of indirect trust values to a single value about y is further referred to as the reputation
value RT%’f of y. In general®, an indirect trust value can be defined as the direct trust value pTY*
of an agent z about y provided to x. The reputation is hence composed of a number of such values
DTIZlff provided by a group P of recommenders or opinion providers p;.

Now to benefit from a broader picture about an agent y (cf. e.g. [188]), the direct trust value DT¥’€
of an agent x about y can be combined with the reputation value RT%e of y to receive a single value,
referred to as the trust value TY".

Formally, the composition of the three values, as required for the approach in this thesis, is then
defined as:

Direct trust value of y in context ¢, as estimated by x:

DTY* = aggpr(RY") (3.1)
with ratings and direct trust value aggregation function:
vre RY v e [-1,1) and aggpr : RYS — [~1,1]
Reputation value of y estimated by a group of opinion providers P:
RTYS = aggrr(DTY,, .., DTY) (3.2)

with the set of opinion providers:
P = {plr vy Pk}

and the reputation value aggregation function:
e e
aggRT : {DT,,1 ,..,DTY, } - [-1,1]
Trust value of y, estimated by x and including the opinions of providing agents P:
TV = aggr(DTYS, RTY) (3.3)
with the trust value aggregation function:
ager : [-1,1% — [-1,1]

These trust values are defined for a range between -1 (total distrust) and 1 (blind trust). For the Trus-
ted Community approach, the aggregation functions (aggpr, aggrr and aggr) must be provided for
the described ranges. It is however not further specified how the functions perform the aggregations.
Example functions, such as an aggr-function utilising a weighted average between direct trust and
reputation for the aggregation of the trust value, can be found in the literature for different trust models
(cf. e.g. [24]). Additionally, example definitions for these functions are provided in the specification of
the application scenario for this thesis, the Trusted Desktop Grid (see Sec. 5.1.4).

Finally, the direct trust value has been introduced as being based on ratings about the interac-

6Some authors (cf. e.g. [74]) state that in Open MAS, agents should also be assumed to have heterogeneous trust models
which need to be “aligned” in order to understand each others decisions and opinions. The focus in this thesis is not primarily on
trust models, hence, this is neglected here.

3.1. System View 43

tions with an agent component (the context ¢). To be applicable, the trust model applied in such a
system must hence define how such a rating is retrieved. For this, a mapping of possible observable
outcomes {o}i,.., o’cﬂ} for each interaction ¢; € IT'* needs to be provided. Additionally, for each of

these outcomes, a rating value r{ must be implemented that rates the usefulness of this outcome.
The retrieval of a rating value by an agent x for such an interaction-outcome pair is formalised with
the following function:

mte(ci,o]c',.) =1 (3.4)

1
with:
rate : T% x {ogi,..,olgi} - [-1,1]

Consider the following basic example: An agent component Comp] provides an interface to the
interaction ¢1, encoding the request of a private information of this agent x. From the view of an agent
y such an interaction with x has two outcomes: Either x cooperates and provides this information
(outcome o) or it rejects the request and no information is delivered to y (outcome o). The agent y
defines the ratings rfr =1landr; = —1 for these outcomes, such that:

rate(c1,08) =r =1 and rate(cy,0;) =1y = —1

This is obviously only possible if x always provides correct information when it cooperates, or if y can-
not validate this. In case y could discern valid from invalid information provided by x, the outcome o
could be split into two outcomes, one for each case (provided y does not equal the value of an invalid
answer with the value of no answer at all). Note here, that interactions are always executed between
a pair of agents. In general both involved parties can rate each others’ behaviour. This is compatible
with this model, as the agents both perform the interaction via specific components allowing each of
them to derive a rating context for the other one.

To conclude the specification of the required trust model, an additional term used in this thesis
is formally defined. This term is the strong mutual trust relation, mainly used within the context of
decision-making for the formation of Trusted Communities. A trust relation of two agents x and y is
(positively) strong and mutual if the following condition holds:

DT,%’CA > thresDT A DT;'é > thresDT (3.5)

In this, the quality strong is quantified by the threshold thresDT € [0,1]. Note here, that this is an
exclusively subjective evaluation of a trust relationship of two agents, not affected by the opinions of
other agents. This is why this definition utilises only the direct trust values (as opposed to additional
consideration of the reputation). Additionally, the value DTK’é of agent x for agent y (and vice versa)
is strictly private information. In order for two agents to realise that they have such a strong mutual
trust relation, they need to exchange this private data. Also, this definition refers to mutual trust in
a certain context ¢, a definition that can be expanded for specific systems where there is need for
a definitive statement about mutual trust, independent of the context. This is reasonable in systems
where agents do not execute interactions with each other in the same context, but two different
contexts, nevertheless building up substantial mutual trust within these different contexts.

44 Chapter 3. System Model

Trust Management Agent Component

So far, the required trust model has been specified. In this specification actions from agents have
been referenced, such as the provision of direct trust values DTiy’é to allow other agents to aggregate
a reputation value RT%é for an agent y. Such actions, as well as the general reasoning based on the
trust model, need to be incorporated in the agent model. This is achieved by a dedicated agent com-
ponent that needs to be provided within an agent: All operations related to trust management, such
as the aggregation of trust values, are placed in the Trust Management (TM) component (depicted in
Fig. 3.4) Compiy,.

User x

cow L0 [NEN

Production
engine

Agent x ;

4
Observer]
x ’

Observation
model

4

>
(1]
]
3
-
N

o

“A{cowm |8

v Production
engine

Production engine W

Figure 3.4: The refined agent model including the Trust Management agent component Compi,,
along with its specification of a set of observables O7,, and interactions C7,,.

The most important function of the TM component Comp?.,, is to enable the rating of interaction
outcomes with other agents. A component Comp} of an agent x that initiated an interaction c; with
a component Compz of agent y evaluates the outcome of the interaction when completed. This pair
(ci,oﬂi) is submitted to the TM component, where it is used to generate an according rating for y’s
behaviour and consecutively to update the trustworthiness estimation DT%’b about y with this rating.
On the other hand, a component Comp? that executes some form of trust-based decision making
needs to retrieve the values T>? before it can decide whether to interact with the component Comp?
of an agent z or not. Again, these values are requested from the TM component.

Besides implementing the trust model and providing other components access to it, the TM com-
ponent provides a specification of observables O%,, and interactions Cf,, adding to the observa-
tion and interaction models like any other component. However, the specification of observables is
demand-driven: The TM component provides information requested by other components. Hence,
only exact specifications of other components allow to derive a set O7,, of TM observables. On the
other hand, the TM component needs to provide an interaction that allows other agents to retrieve
indirect trust values for an agent from it. C,, hence contains the interaction c¢,; pr specified as:

Cret_pT = retrieveDT(y, ¢) (3.6)

This function then allows any agent to retrieve the direct trust value DT,Z’é an agent x has about an

3.1. System View 45

agent y in the context ¢. This function has two possible outcomes: Either x provides the information
or rejects to provide it. The according rating values should however be provided dependent on the
ratings for the other interactions from the interaction model T'*.

Finally, the utilisation of such a default TM component allows the agents to have a common
specification for rating values for the interaction models of a set of default agent components applied
in a specific hosting system. Without such a component, the described implementation of the trust
model requires the agents to assign a rating value for each interaction outcome of each known agent.

3.1.4 Composition and States of the Hosting System

In this chapter, the hosting system H has been introduced as open, distributed system without cent-
ral control, embracing entities that participate in the system by connecting to it via an according
client (production engine). These entities have been further specified as agents with an O/C- and
component-based approach that encapsulates their functionality, as well as a communication com-
ponent that allows them to interact based on according protocols. These agent components have
been described as controlling the production engine and hence realising the actual functionality of
the hosting system. Therefore, all clients that want to participate in the system need to be composed
of these components, with the freedom of utilising additional components. The exact realisation of
components (the decision-making within) is however not visible among the clients. In summary, the
hosting system is specified as the following tuple:

H(t) := (ProductionEngine, SystemComponents, AgentSociety)

In that definition, the system components are a set of components that are required to participate
in the system. It is assumed that the specification of a hosting system includes default implementa-
tions for each system component, such that an interested potential user can obtain these along with
the production engine. The default set of system components is hence composed as:

SystemComponents = (A?eﬂmlt, . Azeﬂmlt>

with 1..k denoting the required system component types. It is assumed, that these system compon-
ents represent the prevalent behavioural strategies exhibited in the system. Due to the openness
of this system, it however depends on the intention of the agent owner whether default component
implementations are used. Just as technically versatile users can apply customised components,
adapted to their individual preferences, can adversary users introduce agents with component im-
plementations aimed at exploiting or damaging the hosting system. Such components produce in-
teractions that are not desired by the majority of other users. It is therefore in the responsibility of
the system designer to provide a Trust Management system that, based on a threat model, identifies
adversary behaviour types for the hosting system. The detection of these behaviours has to be real-
ised by the interpretation of the Observer data within the specialised components. In that, the Trust
Management component has a special role. The hosting system needs to provide a default imple-
mentation A%/ ¢ SystemComponents of that component. This implementation encodes the trust
model and specifies rating types for behaviours, such that agents can estimate the trustworthiness of
other agents.

The hosting system is also defined by a time-dependent agent society A(t) = {al,..,aw} (cf.
e.g. [32]) which represents all agents a; that participate in the system at time t. The agent society

46 Chapter 3. System Model

comprises agents that incorporate the required system components and hence are available as in-
teractions partners in the context of the hosting system. Agents that enter the system are assumed
to know a subset of A(t). Note here, that for the sake of comprehensibility, this is implicitly assumed
throughout this thesis, such that the term A(¢) is used instead of a local subset of A(¢) known by the
agent. In addition, the symbol .4 denotes the set of all agents that have been members of the society
at some point in time ¢.

Additionally, the hosting system is in a certain state at each time step . The states are constituted
by the agents that are in the system at that time, the agent society A(t), as well as their relations.
A particularly interesting state of the hosting system is that of a trust breakdown. Such a trust
breakdown is a condition in which a substantial amount of agents is perceived as not trustworthy
within a reference group of agents. This is formalised by the following function denoting whether
there is trust breakdown in the hosting system for a reference group P(t) at the time ¢:

true, if ‘{yeP(t)} : RT%éio‘ > m-|P(t)]

B gy (m) = (3.7)

false, else

o ,..,DTg,f) (see Eg. 3.2) influences this function,
that this lack of trust refers to a trust context ¢, and that the definition of a majority of agents is flexible,
controlled by the parameter m, with a usual setting of m € [%, 1]. The most interesting reference group
is that of the entire agent society P(t) = A(t): If the majority of agents in the agent society .A()
of the hosting system is not trustworthy, this is referred to as global trust breakdown Bf;l(H (m).

This definition of a trust breakdown is inspired by the examination of feedback effects of trust-crises
in [40]: Here a trust crisis of an agent x towards an agent y can be paraphrased as the loss of trust
towards an agent, such that there is a transition from DT%’é > 0to DT¥’€ < 0. Such trust crises
are described to initiate dynamics in the relationships of agents and lead to trust earthquakes due to
feedback effects. As is shown in the evaluation of this thesis (see Sec. 5.3) trust crises and global
trust breakdowns can occur in open dynamic systems due to attacks of adversary agents. Addition-
ally, the literature on Organic Computing teaches us that emergent system states, generated by local
dynamics and unpredicted at design time, must always be expected in systems that are sufficiently
complex. The global trust breakdown, as a result of the complex trust-based interactions within the
agent society, is such an emergent phenomenon. If the existence of this phenomenon is expected,
and its characteristics are defined (as in Eq. 3.7), it can be observed and countered by the system.

Note here that the aggregation function aggRT(DTy’f

Finally, itis assumed in the remainder of this thesis that agents are only interested in their own per-
formance, whereas aspects like average performance in the hosting system, fairness or robustness
are aims of the designer of such a system, but not of particular agents. To reach such system-level
goals is a design challenge, because central elements in the system must be avoided. Instead in-
centive mechanisms have to be applied in order to motivate the self-interested agents in the agent
society to participate in the pursuit of these goals. In the following section, it is analysed what makes
this design goal particularly challenging and how work presented in this thesis can contribute to such
design.

3.2. Trusted Communities for Open, Technical MAS 47

3.2 Trusted Communities for Open, Technical MAS

In Sec. 2.6, work related to this thesis has been summarised and challenging issues have been
identified. In the following, it is discussed how these issues can manifest in hosting systems as
defined in the previous section. This is followed by the introduction of the MAS organisation Trusted
Community and its realisation as part of the presented system model. Subsequently, a motivation
is provided why this approach can help to increase the performance and robustness of a hosting
system despite the discussed issues, and where this is not expected to work.

3.2.1 Challenging Issues in the Hosting System

The hosting system, as defined in the previous section, is a system open to any client with a produc-
tion engine, agent components to control it and the Trust Management component. Users that join
the system provide a utility definition for their agent, derived from the production engine. In addition,
agents are self-interested and try and maximise their utility, based on decision-making encoded in
their components.

In such a setup, the utility of agents is often defined such that the agents must cooperate in order
to maximise it. However, due to the openness of the system, the interactions with other agents involve
risks. The decision-making of an agent x hence resorts to trustworthiness estimations TZ’E about
potential interaction partners y, often applying trustworthiness thresholds or choosing interaction
partners with the highest trust value. The trust values Tﬁ’é are based on ratings of direct and indirect
experiences made with these agents. In the system model, this has been formalised: A rating rj. €

RZ’E of agent x about agent y has been described as mapping of the usefulness of a particular
outcome Oéi for an interaction c; with an agent component ¢.

In the description of the system model, as well as in the related literature, often assumptions are
implicitly made that have consequences for the control of such systems:

1. Trust Management in Open Distributed Systems is used to reduce the uncertainty among parti-
cipants and allow for cooperation. Decision-making based on trust is mostly static (cf. e.g. [24])
with interaction partners being chosen based on high trust values. In that, the dependence of
an agent x to generate much evidence about the trustworthiness of another agent y before it
will delegate high-risk tasks to y, can be perceived as overhead and lead to missed cooperation
opportunities (cf. e.g. [20], [118]). In the context of a technical system, such as the hosting
system, interactions between agents are often affected by the overhead of the TM system
and are hence sub-optimal. Consider for example the utilisation of additional safety means in
agent interactions. Additionally, the assignment of high trust values in an evidence-based TM
system can also lead to over-confidence. This means that an agent’s trustworthiness is estim-
ated higher than is justified. Consider the example of agents that build up a high reputation and
start to defect once this is reached (cf. e.g. [24]). A high number of positive evidence of their
trustworthiness must be compared to a small number of recent negative experiences. While
trust models vary in their ability to cope with such cases, the decision-making in agents often is
slow to react to such changes when the decisions are made based on the trust values. In con-
sequence, trust-aware decision-making in a technical system should not rely entirely on
trust management to avoid problems with too-much trust and over-confidence.

48

Chapter 3. System Model

2. An agent x makes the decision D(x) to cooperate with agent y, because it expects this in-

teraction i to increase its utility U*(¢). It then initiates the interaction and requests agent y to
cooperate with it. Due to the autonomy, the passive agent y can either accept or reject this
interaction request, referred to as decision D(y). The most influencing factor on this decision
is, that the passive agent y is assumed to have no direct benefit from this interaction.
This means that the interaction does not increase the utility UY(¢) of y. On contrary, the inter-
action usually involves y to perform a task for x and hence block some of its resources, which
can even result in a lower utility of y. Because the agent y is self-interested, this means that
there must be some incentive for it to cooperate. The reasoning within D(Y) must then determ-
ine whether this incentive is sufficient, for example because of the prospect of a future benefit
(U*(t +a) > U*(t)) due to this interaction i. It is commonly agreed that a Trust Management
system can be applied as an incentive mechanism in such a system of self-interested agents.
The fundamental idea behind this is: If cooperation increases the reputation of passive agents
and active agents require to have a high reputation to find willing interaction partners, then it
pays off to be cooperative. However, such a self-reinforcing Trust Management system is
complex and negative emergent phenomena, such as a breakdown of this system, must
be expected. Consider for example the common assumption in such TM Systems that agents
with a high reputation are preferred over agents with a low reputation. Consequently, these
agents receive more interaction requests. But as the capacity to perform these requests is lim-
ited, the agents start to reject interactions. In succession, this leads to a reputation loss until the
agents are not attractive as interaction partners any more. The collective and self-interested
behaviour of agents initiating interactions hence leads to oscillating reputation values, referred
to as reputation damage problem (cf. e.g. [24]). Another case analysed in the literature is that
of a paralysed agent society (cf. e.g. [29]): Here the volatility of agents in an open system leads
to short-lived trust relationships and low overall reputation of agents, blocking high-risk inter-
actions because of high trust requirements. Such effects can be even reinforced by adversary
agents deliberately enforcing such system states and in consequence even lead to chain reac-
tions reducing the expressiveness and significance of reputation values. Despite these effects,
only few authors assume that the underlying TM system can fail entirely, and most approaches
to decision-making with trust do not account for these system states.

. The capability of an agent y to perform a task delegated to it by another agent x does not ne-

cessarily imply that y can determine what the consequences are. Due to the autonomy of the
agents, a passive agent can for example not differentiate whether x really requires the result
for this task or just intends to block y’s resources. Also x does not know whether it has been
the only agent requested to perform this task, or if y has delegated the task to a group of other
agents. As such, the interaction outcome cannot be rated with the Trust Management system
without the cooperation with other agents. But as a passive agent is self-interested and has
no direct utility gain from such an interaction, it will in general not invest an effort to
determine how useful this interaction is for x, or how detrimental it is for other agents or
the system as such. If left unattended, this can lead to exploitation or damage to the whole
system from adversary agents and reduce the performance of participating agents. This espe-
cially refers to collusion among adversary agents. To prevent these system states, agents need

3.2. Trusted Communities for Open, Technical MAS 49

to consider these effects in their decision-making and restrain from pure utility-based considera-
tions. Only if agents coordinate and share their local observations, such undesired interactions
can be detected and prevented. Again, incentives must be provided for self-interested agents to
cooperate in this matter. This is also highly relevant for cases where only a group performs such
regulatory cooperation, while the other system participants benefit from it without contribution
(referred to as second-order freeriding in the literature, cf. e.g. [189]).

These are challenging issues in the design of decentralised control mechanisms for such systems.
In the following, it is described, how these challenges are addressed in this thesis.

3.2.2 Trusted Community - An Introduction

So far, approaches to the control of Open Distributed Systems have been discussed in this thesis and
their general assumptions and challenges have been described. In the following, a novel approach
is introduced, inspired by system control with MAS organisations, Trust Management and Organic
Computing. This is concluded by a discussion about the contribution of this approach with respect to
the summarised challenging issues.

The control structure proposed in this thesis, the Trusted Community (TC), comes in the form
of a MAS organisation. This organisation is formed in a self-organised process among agents from
the agent society A of a hosting system. Self-organised here refers to the fact that no TCs exist in a
hosting system when it is deployed, and that agents form such TCs, without the involvement of any
central entity, when they determine that it is beneficial for them. This self-interested decision is part
of a larger decision-making process of the agents. The Trust Community organisation is then based
on the following design concepts:

The TM in a system is a good instrument to determine suited interaction partners. But once
enough evidence of trust has been received, the TM implies overhead, as no further evidence is
needed. Hence, instead of making risk-aware decision-making, agents should optimise their interac-
tions by resigning safety measures introduced because of the uncertainty with respect to interaction
partners in an open system. In that, it is assumed that such interactions are always preferable over
risk-aware interactions in the context of technical hosting systems, because they increase the per-
formance of an agent. Consider for example task replication in Open Desktop Grid Systems: An
agent replicates tasks to compensate for unreliable interaction partners. However, task replication
involves the utilisation of additional resources and increases the workload in a system, prolonging
the response time for further delegated tasks. By resigning replication, an agent here is able to in-
crease its performance. Obviously, the abandonment of safety means based on a high trust values
of interaction partners involves the risk of behavioural change and exploitation. The aim is hence
to create an environment between agents in which there are incentives to cooperate that go beyond
reputation gain. The most convincing incentive for such a case is reciprocity-based. Only if agents do
not defect when performing interactions without safety means are they allowed to perform such inter-
actions themselves. In other words, only if agents cooperate to provide an optimal performance
to other agents have they the opportunity to receive an optimal performance themselves. To
construct such an environment in an open system, agents have to form an organisation and agree
on common rules for it. In this thesis, the following assumptions are made:

50 Chapter 3. System Model

1. The ultimate goal of agents in the hosting system is to increase their utility. If an organisation
provides the possibility to increase it by means of optimised interactions, then a rational agent
must consider joining it. Consequently, agents that find that the organisation is not suited to
increase their performance will not join at all or leave it when being members already.

2. The motivation of agents to form such an organisation is based on their self-interest. As such
the organisation does not postulate any group goals, such as e.g. a coalition, but provides an
environment for agents to achieve their own goals, such as e.g. a congregation.

3. Only agents that have proved their willingness to cooperate are prospective members. Such
experiences are made among groups of agents with the reputation incentive reinforcing rela-
tionships and partitioning the system into clusters of heavily interacting agents. An organisation
is therefore expected to apply subjective trust as formation membership criterion and agents
are expected to cluster into several groups of mutually trusting agents.

4. This membership criterion cannot be enforced if agents are allowed to become members at
their own will. Rather do the members of a TC need to decide whether an unassociated agent
is allowed to join.

5. Member agents do what best suits their performance, hence they adhere to interacting with
non-member agents in case this is beneficial.

6. The agent society in the hosting system is composed of heterogeneous agents with varying
competence and willingness to cooperate with other agents. It is hence not to expect that all
agents in the society are suited as members of such an organisation.

7. The hosting system is open and can comprise thousands of entities. The number and composi-
tion of such an organisation is not constrained in any way by the hosting system. Especially the
case of a single organisation is not assumed. Such an organisation would render the hosting
system to a centralised system, along with all disadvantages such as poor scalability.

The organisation characterised by these assumptions is referred to as Trusted Community from here
on. A schematic overview is depicted in Fig. 3.5. The Trusted Community is formed by agents
with strong mutual trust relationships (see Sec. 3.1.3) and provides the benefit of interactions with
less overhead. Trust Management is in general not utilised between members. Firstly, this protects
members of the Trusted Community from the failure of the TM System: The decision-making of
member agents requires trust values only for non-members. Inbound interactions between members
are still executed despite such an abnormal system state. Secondly, the incentive to cooperate
between members is based on the benefit of the membership as such: If agents defect, this affects
not only their reputation as is usual in the hosting system, but more importantly, they risk to lose the
TC membership and the benefits of it. This allows the decision-making of passive agents to directly
link their decision to cooperate with a utility gain in future interactions as active agent: With a high
probability it will find interaction partners among the other TC members. In sum, this approach is a
means to cope with the phenomena of over-confidence and too-much trust discussed in the previous
section and provides robustness towards TM breakdowns for TC member agents. In addition, it
creates an environment in which agents can perform optimised interactions.

3.2. Trusted Communities for Open, Technical MAS 51

.~
-~

*~.._ Unassociated agents L
~~~~~~~~~ Open (hosting) system__..--=-=""

Figure 3.5: System view on a hosting with a single TC. Unassociated agents, cooperative (blue) as
well as adversary (red) are not part of the TC. TC members (yellow) and TC manager (orange) per-
form inbound interactions among themselves and outbound interactions with unassociated agents.

A Trusted Community, with the definition so far, could however be exploited: As discussed in
the previous section, passive agents in an interaction cannot always perceive what the effect of the
interaction is. Instead, they need to cooperate in order to detect such behaviours as collusion. The
incentive has been discussed: It is the benefit of remaining a member of the TC. However, there is
a requirement for coordination to allow for the goal-oriented cooperation of self-interested member
agents in this matter. Most importantly, interactions that endanger the successful operation of a TC,
such as emerging abnormal system states, must be regarded here. As this regulatory responsibility is
restricted to a limited section of the hosting system, the members of a TC, this control is more feasible
than the control of the whole system as such in this respect. The realisation of this self-organised
control is based on roles that each member of the TC can be assigned. The assignment of roles to
agents, along with the requirement to control the access to the TC, is realised with a second layer
of hierarchy: One of the member agents of a TC is empowered to be a TC Manager (TCM). This
agent is responsible for the coordination of the members with respect to the self-management of the
TC. In that, it has the regulatory aim to maintain the operation of the Trusted Community. However,
such agent is still self-interested and the execution of management tasks must hence be distributed
among the members with the TCM merely coordinating the effort. Note here, that each member of a
TC can become its TCM.

The application of TCs in a hosting system improves the interaction efficiency among the mem-
bers, as well as their robustness towards emergent abnormal system states, such as the breakdown
of the Trust Management system. As these agents are part of the agent society, and system-wide
performance and robustness metrics are often defined over the aggregated performance of single
agents, TC application can hence increase the performance and robustness of the hosting system as
such. This is especially true for agent societies in which the majority of agents self-organise into mul-
tiple TCs operating in parallel. These claims are evaluated in the thesis with the help of an exemplary
hosting system from the domain of Open Desktop Grid Systems.



52 Chapter 3. System Model

Finally, the application of Trusted Communities in a hosting system allows for the following in-
terpretation: Agents are allowed to form a single TC, with each agent in the society either being a
member or not. Alternatively, agents are not restricted in TC formation which can result in the inde-
pendent formation of multiple TCs as depicted in Fig. 3.6. In this thesis, the latter assumption is made

Figure 3.6: System view on a hosting system in which multiple distinct TCs have formed and oper-
ate independent of each other (yellow colour denotes members, orange denotes the respective TC
managers). Unassociated, cooperative (blue), as well as adversary agents (red) are not part of any
TC.

for the following reasons: The formation of multiple TCs in a system adopts the idea of modularity
- the failure of a single Trusted Community is contained within this community and the effect on the
whole system is limited. This is consistent with the argumentation of robustness (cf. e.g. [132]). Be-
sides, multiple TCs are a means to enable scalability - a single TC can only support a limited number
of members before the overhead renders the operation inefficient. In open systems, where the num-
ber of participants cannot be estimated at design time, this is an important issue. Additionally, agents
in large hosting systems interact only with a comparably small subset of other agents. They thus have
only locally the opportunity to develop strong mutual trust relationships, which are the main criterion
for forming and joining a TC. Finally, there is no substantial reason to limit the self-organisation of
agents into TCs in an open system by introducing a fixed number of allowed TCs. When speaking of
the application of Trusted Communities in a hosting system in this thesis, it is hence always assumed
that multiple TCs are involved.

In summary, the proposed approach in this thesis is a novel MAS organisation called Trusted
Community. A TC is characterised as long-enduring organisation between mutually trusting member
agents and a Trusted Community Manager responsible for the coordination of regulatory means.
Trust Management is applied to form a TC, however interactions enabled by TC membership do not
require TM to be performed. In the following, the application of the TC approach in a hosting system
is defined. The focus is here on the presentation as part of the system model defined in this chapter.
The actual design of a Trusted Community is then detailed in the following chapter.



3.2. Trusted Communities for Open, Technical MAS 53

3.2.3 The Application of Trusted Communities in a Hosting System

The Trusted Community has been introduced as a result of the self-organisation of agents within a
hosting system. Besides, the influence of TC membership on the reasoning of agents about more
efficient interactions has been introduced. The abilities to form, maintain, manage, and participate in
TCs, as member, as well as TCM, must hence be grounded in agent capabilities. In conformance with
the system model described in the previous section, these capabilities are modelled as dedicated
agent component. This additional agent component, as depicted in Fig. 3.7, is referred to as TC-
Organisation agent component Compy(-

User x

fa)
o
4
<

Agent x :
S Production
. »
Observer D engine
(]
| | Observation | l ) [
s i
N
o o N
| . Agent z
B > cow |01

Production
engine

»

v v
Production engine w

Figure 3.7: Refined agent model including TM and TC organisation agent components. The TC
organisation component specifies a set of observables O, and a set of interactions C7.- required
for the decision-making of the TC approach.

Similar to the Trust Management agent component, this component is provided in a configurable
default implementation, such that each agent in the hosting system can form or join a TC. The de-
fault implementation of this component is then referred to as A”;"’gg”” € SystemComponents, being a
system component like the default implementation of the TM component A‘;‘EI{;‘Z“”. The observables
Of ¢ of this component are information required for the TC-aware decision-making of an agent x,
for example the set of agents with a strong mutual trust relation with x. The set of interactions C7-,
provided by this component is composed of optimised interactions interfacing interactions provided
by the other components, as well as interactions required for the communication of a TC member
or manager. Such a set contains for example the interaction to assign a TC role to an agent, or to
request an inbound interaction with it.

The TC organisation component is, like any other agent component, part of the Observer/Con-
troller loop. An agent can hence adapt the parameterisation of this component at runtime, based on
the evaluation of situation descriptions. Note here that the TCM extends this system of observation
and control by introducing a second O/C layer (cf. e.g. [134]) by coordinating information retrieval of
its member agents and processing this information to regulate the operation of a TC.

The detailed configuration, decision-making and composition of the observables and interactions

set are provided in Chapter 4. In the following, the applicability limitations of TCs are discussed.



54 Chapter 3. System Model

3.2.4 Applicability Limitations of TCs

Trusted Communities are designed for the application in a hosting system, being an open technical
system populated by an agent society. However, this is a broad class of systems and some of
these system instances hold conditions under which TCs cannot be formed or maintained. In these
conditions, the extension of agents with the TC agent component will thus only introduce additional
overhead without improving the performance or robustness of the respective system.

In the following, system conditions are discussed under which the Trusted Community approach,
realised via the default TC agent component A?‘}{:I“””, is not expected to work as described in the

remainder of the thesis.

Decision-making not considering trust The utilisation of Trust Management for decision-making
about interactions is only reasonable where there is risk involved (cf. e.g. [20]). It is hence assumed
that the components of agents in the system consider trust, and that this involves overhead. The
interactions in a hosting system are hence assumed to be sub-optimal in comparison to those ex-
ecutable in closed systems. If this does not hold, Trusted Communities cannot grant a benefit to
members and hence the actions of the TC organisation component must be considered overhead.

Substantial exploitation of openness The previous section has defined agents as being com-
posed of agent components that encapsulate their functionality. It has been assumed, that due to
the openness of the system, users are allowed to modify the composition of their agents. This has
been somewhat constrained by the assumption that the designer of such a hosting system provides
default implementations of these required system components and that the majority of users adheres
to the utilisation of these components. The degree to which the openness of the system is exploited,
for example by users participating with adversary agents, is hence assumed to be low enough that
the Trust Management system can handle this in general. This is not to say, that there are no sys-
tem states in which this does not hold (as described in the challenges in Sec. 3.2.1), in fact one of
the key contributions of the TC approach is its ability to cope with these system states. As a con-
sequence, the application of Trusted Communities in not feasible, if the system is largely populated
by agents composed of detrimentally modified agent components. This is however hard to quantify
as it depends on the modifications and the exact type of production engines and components. Also,
as some authors in the literature have stated (cf. e.g. [185]), the openness of the system can be
qualified by the difficulty of deploying such modified agents. This difficulty is hence correlated with
the probability of successful TC application in a hosting system.

Additionally, security violations from users can exploit or damage a hosting system in ways that
compromise agents and hence prohibit the successful application of TCs. There is a general agree-
ment in the literature that such security threats cannot be compensated by Trust Management (cf. e.qg.
[20]) and that indeed Trust Management and security are different concepts. Itis hence assumed that
the hosting system utilises a security subsystem preventing such violations.

Lack of enduring trust relationships The formation of Trusted Communities depends on strong
mutual trust relationships. However, not all systems or system states provide for such relationships.
Consider for example the case of a hosting system with a high degree of volatility within the agent
society: Instead of developing strong trust relationships with few agents, agents are forced to interact



3.3. Summary 55

with a great number of different agents, the relationships often remaining shallow (cf. e.g. [76]). Also,
a high frequency or intensity of disturbances to the system (e.g. due to the exploitation of openness),
can prevent the emergence of strong trust relationships. Though the TC is suited to work in system
states, where such issues occur, the initial formation of TCs requires system states without such
issues.

Asymmetrical trust relationships In hosting systems or system states where trust relationships
are seldom symmetrical (bilateral), Trusted Communities cannot be formed, either. Such asym-
metrical relationships between an agent x and an agent y are characterised by conditions where
DT%"? > DT;’é. Such constellations occur in systems where the heterogeneity in agent capabilities
is very high. Consider for example a system where agents have highly varying resources at their
disposal. When the number of agents with high amounts of resources is low, those agents are con-
stantly requested to interact and building up reputation very quickly, due to the self-reinforcement
effect of reputation (cf. e.g. [24]). On the other hand, these agents have difficulties in establishing
strong relationships to other agents, as these have substantially lower resources and it is harder to
choose between them. These constellations allow for the formation of TCs only, if the asymmetry can
be broken, for example through cooperation among over-provisioned resource owners.

Inappropriate Trust model The trust model encoded in the respective agent component has been
described as integral part of the hosting system. The previous section has detailed the requirements
on this model, introducing the trust aggregation functions aggpr, aggrr and aggr. Formally, these
aggregation functions allow for the specification of binary trust values, i.e. it is only discerned between
trustworthy and not trustworthy. This is particularly undesired in this context, as it leads to a parti-
tioning of the agent society into only two groups. In consequence, the group of trustworthy agents
immediately qualifies as Trusted Community without further differentiation. This becomes especially
challenging when new agents enter the system: These newcomers have to be either accepted as
members of a TC instantly, violating the core idea behind the concept, or be marked as not trust-
worthy. In the latter case, these agents will have hardly any opportunities to gain in reputation as the
interactions of TC members will be mainly among themselves.

Inappropriate TC agent component configuration As described above, the agent capability to
interact as TC member or manager is installed as agent component Compz-5. While the details
of the architecture and composition of this component have not yet been presented (this is done in
the following chapter), it has been stated that this agent component is configurable and that a default
implementation A’;Egg”” is expected to be deployed along with the other required system components.
Without advancing too much into the properties of such an implementation, it is adequate to note here
that such an implementation can be inappropriately configured as well, just like the TM component.
Such an improper configuration can affect the dynamics of TC formation and maintenance, and make

it impossible for agents in the society to self-organise into Trusted Communities.

3.3 Summary

This chapter has introduced the class of open, distributed, technical systems in which agents make
decisions on behalf of their users in that they control the software to participate in such a system.



56 Chapter 3. System Model

The model for such a hosting system, as well as for single participants has been described: The
system is constituted by a time-dependent composition of participants that belong to a user, operate
in the system with a production engine, strive for increasing their respective utility, and apply agent
technology for the decision-making in this environment. The chapter has continued by defining how
an agent is understood in this thesis by presenting an agent model. The main building blocks of
this agent model have been presented: An Observer for information gathering and interpretation, a
Controller for the adaptive decision-making based on this information, and a communication interface
for the specified interactions among the agents. The Controller has been further elaborated, and a
model based on agent components constituting the Controller has been laid out. Here, the focus
has been especially on the specification of a set of observables, as well as interactions for each
agent component. Additionally, the aggregation of all these sets provided by any agent component
applied has been defined as the observation- and respectively interaction model. These two models
have been described as determining the entire information an agent requires for its decision-making,
as well as the entire interaction opportunities it allows other agents in the system. Subsequently, a
Trust Management system has been defined. It allows the agents to reduce their uncertainty about
interaction partners by analysing, rating and comparing their behaviour. The requirements on such a
TM system have been formally specified, and the encapsulation in a dedicated TM agent component
detailed. The first part of the chapter has then been concluded by remarks about assumptions
regarding the composition of the hosting system with respect to the applied agent components and
the specification of an agent society for the system.

The second part of this chapter, has been started with the analysis of challenging issues in such
hosting systems. This analysis has been based on observations about approaches in the related
literature on control of such systems. The main issues identified have been

o the sub-optimality of interactions due to overhead of TM and associated safety means,

e the unconditional reliance on a working TM system and hence vulnerability towards emergent
phenomena (such as a trust breakdown),

e the lack of incentives for agents to interact passively when they have no utility gain from the
interaction,

e the lack of incentives for agents to observe the quality of their interactions and their possibly
detrimental consequences for the operation of the system.

This thesis has continued by introducing the Trusted Community approach in order to account for
these issues. The main guideline for the operation of an according agent organisation has been
identified as the self-organised establishment of a closed-system environment for the members. This
closed system, guaranteed by access control based on trustworthiness, is then used to allow for
optimised interactions among the members. These interactions are optimised, because of the aban-
donment of safety means. The approach has been detailed by the presentation of fundamental
assumptions that further characterised Trusted Communities. In the following, the embedding of
TC-reasoning in a dedicated agent component, as defined in the first part of the chapter, has been
described. The chapter has then concluded by the examination of the applicability limitations, con-
sidering such issues as asymmetrical trust relations, and inappropriate trust models.



3.3. Summary 57

The following chapter presents the design of the Trusted Community approach in far more detail
than the introduction provided above, and elaborates on the contribution of this approach as a solution
to the examined issues in systems as defined in this chapter.



4 | Trusted Community -
A Novel MAS Organisation

In the previous chapter, the system model for the application of the Multiagent organisation Trus-
ted Community (TC) in a hosting system has been presented and all relevant submodels have been
elaborated. This chapter is dedicated to the Trusted Communities as such. After an introduction,
the Trusted Community organisation is formally defined. Then, the delegation of control to a Trus-
ted Community Manager (TCM) is explained and its responsibilities are laid out. In the following,
the life cycle of the organisation is presented which includes the designation of the most import-
ant agent decisions as strategies. These strategies are then detailed, including descriptions of basic
and advanced realisations, as well as a default configuration. This configuration is independent of the
application scenario and allows agents to form Trusted Communities that express the described prop-
erties. The chapter continues with an explanation and generic classification of organisation benefit
strategies and concludes with the discussion of the dynamic management of Trusted Communities.

4.1 Introduction

When realising technical systems based on an open Multiagent System model, challenges occur
through agents that join and leave the system arbitrarily, and show various types of behaviours ran-
ging from cooperative to selfish or even adversary. In the previous chapter, it has been discussed
that trust management can be applied to model the relationships between agents and that these trust
relations can be used to improve the performance and robustness (towards misconducting agents)
of these systems. However, the application of Trust Management (TM) alone has been found lack-
ing, especially in cases of abnormal system states and sub-optimal agent interactions. To address
these issues, a novel approach has been proposed to capitalise on enduring and strong mutual trust
relationships between agents. By means of a self-organised process a higher form of organisation
between trustworthy agents is sought. This organisation is referred to as Trusted Community and is
characterised by a decentralised, yet hierarchically managed, operation that provides performance
benefits to its members by improving interaction efficiency, information sharing and cooperation. The
management of a TC allows for the optimisation of the composition, as well as regulatory actions
to preserve the stability of the organisation. This is essential, as composition and stability of an
organisation consisting of self-interested members can easily become fragile.

Trusted Communities have been described as an organisation partitioning the hosting system and
establishing subsystems in which the members can avail of optimised interactions. The capability
of the agents to form, maintain and interact in such TCs has been realised as agent component in

58



4.2. Formal Definition 59

conformance with the system model (see Sec. 3.2.3). This component is responsible for the decision-
making with respect to Trusted Community self-organisation. Central aspects of this decision-making
concern the decisions whether to form, join or leave a Trusted Community from the member view, as
well as how to maintain the operation of a TC despite adversary actions, changing behaviours and
abnormal system states. In this chapter of the thesis, this decision-making and the overall design
of the TC agent component are elaborated and the resulting dynamics are analysed. This is started
with a formalisation of the key terms and concepts in the following section.

4.2 Formal Definition

Trusted Communities form among agents from the agent society .A and are persistent in the hosting
system 7 until their dissolution. The definition of the hosting system, as presented in Sec. 3.1.4, is
hence extended such that the hosting system is understood as the following tuple from here on:

H(t) := (ProductionEngine, SystemComponents, A(t), O(t)) (4.1)

The new set O(t) contains all agent organisations that operate (are already formed and not yet
resolved) in the hosting system at time ¢. In general, this set can be composed of organisations from
several types T (coalitions, clans, TCs), such that:

o= (J 0¥
typecT

In the remainder of this thesis, it is however implicitly assumed that organisations are applied exclus-
ively and that O(t) denotes the set O'C(t) of TCs in the hosting system'.
A Trusted Community TC;(t) € O(t) is further defined as the following tuple at time ¢:

TCi(t) := (Mrc,(t), temrc, (t), ¥rc, (1)) (4.2)
in which:
e My, (t) € Adenotes the members of a TC,

e tcmrc, (t) denotes the TC manager, and

e Yrc, (t) denotes a set of roles that can be assigned to members in this TC.

In that, the members of a TC are from the agent society A, but not necessarily online in the
hosting system at the time ¢. Also, the assignment of roles to members is in the responsibility of the
TC manager.

Additionally, at each time t, the agent society A of the hosting system # is partitioned into the
two sets of:

« Unassociated agents L/* (t) : agents that are not member in any TC, and

e TC members M™ (t) : agents that are a TC member.

"The comparison with the clan approach in the evaluation introduces a set ©O°2"(t) of clans being applied exclusively in the
hosting system, see Sec. 5.3.1



60 Chapter 4. Trusted Community: A Novel MAS Organisation

Furthermore, the Trusted Community approach requires the following properties to hold:
Each agent in the agent society is part of either set Ll”(t) or MH(¢):

Uty uM(t) .= A, Uty n MM (t) =@,
the set of TC members is composed of all agents that are a member in any of the operating TCs:

MM = | Mrq(t),
TC(HeO(t)

the initial (+ = 0) composition of the hosting system does not contain any operating TCs:
U™ (0) := A0), M*(0):= 0,
each operating TC is composed of at least two members at any time ¢:
VTC;(t) € O(t) : |[Mrc,(t)] > 1,
each agent is always either the member of a single TC or unassociated (exclusive OR VY):
Va € A(t): (AITCi(t) € O(t),a € Mrc (t)) V. <a € u”(t)),
a TC has always either no TCM, or one of the members is the TCM:

VTCl‘(t) € O(t) : tcmTCi(t) =QV tcmTci(t) € MTC,-(t)-

Dynamics and operations
Additionally, the following operations define the dynamics in the composition of these sets and
tuples:
The formation of a new Trusted Community TC;(t) by a group of unassociated, founding agents
F C U™M(t) is denoted by:
O(t) <% TCi(t) (4.3)

with:
TCi(t) ¢ O(t) ATCi(t+1) € O(t+1) A Myc,(t+1) = F
tempe,(t+1) = @
U (t+1) =U (D) \FAME(t+1) = MU F

These founding agents are then the initial members of the TC, and the TC does not have a TCM.
On the other hand, the dissolution of an operating Trusted Community TC;(t) by its manager
temrc, (t) is denoted by:

O(t) ptemra () Ty (t) (4.4)

with:

UM (E+1) = UM (1) U Mo, () A M (1) = ML)\ Mo, (1)



4.3. Organisation Benefit Strategies 61

Apart from the description of global dynamics, the dynamics within TCs are needed: The gtemre; ().
operator is applied to denote the inclusion of an agent o € A(t) in TC;(¢). The membership is
granted by tcmrc,(t), the TCM of the TC:

TC;(t) @tomra(t) o (4.5)
with:
a¢ Mrc(t)Na € Mrpc, (t+1)
UM (E+1) = UM (1) \ {a} A MPE(E+1) = MTE(1) U {a}

The opposite operation, the exclusion of an agent a from a Trusted Community TC;(t), is denoted
with the operator &%, such that:
TC;(t) & a (4.6)

with:
a€ Mrc(t)Nag Mrpc (t+1)
x=a V¥ x = temye,(t)
U (t+1) =uUM () U {a} AMPE(E+1) = M)\ {a}

The exclusion from a TC can hence be either performed by a member agent that wants to become
unassociated again, or as regulatory action by the TCM.

Finally, the assignment of a role r € ¥1(,(t) to an agent a by the TCM of the shared Trusted
Community TC;(#), is denoted with the operator ~"7<;() such that:

7 ~stemre () g (4.7)
with:

a e Mrc(t),r € ¥re(t)

4.3 Organisation Benefit Strategies

The Trusted Community approach has been designed around the key concept of providing an en-
vironment for self-interested agents in which they can execute interactions among themselves that
resemble those in a closed system, hence without applying safety means. Additionally, an organisa-
tion composed of mutually trusting agents provides opportunities to share information and cooperate
among members. In the remainder of this thesis, agent strategies employing these benefits to in-
crease the utility of the executing agent are referred to as Organisation Benefit Strategies. The agent
utility U*(¢) of an agent in the society of a hosting system is dependent on the utilised production
engine (e.g. a Desktop-Grid Client or VANET client etc.). Therefore, the exact realisation of organ-



62 Chapter 4. Trusted Community: A Novel MAS Organisation

isation benefit strategies aiming to improve this utility is likewise dependent. However, it is in general
possible to group organisation benefit strategies according to the following classes:

Interaction efficiency: These strategies regard interactions that are optimised versions of system
component interactions executable among each agent in the hosting system. Optimisation here refers
to subadditive costs or superadditive outcome of these interactions, such as the abandonment of
safety means. Consider the set of optimised interactions {cipt, ..,czpt} for a hosting system modelled

in compliance with the system view defined in Sec. 3.1: Each optimised interaction c?”t is derived
from a non-optimised interaction c; € Cj’ provided by the default implementation of a system compon-
ent Comp? of the hosting system %, such that A“/™!* € SystemComponents. These interactions are
executable only between TC members, which is to be guaranteed by the decision-making of the Trus-
ted Community organisation component Compy,. To allow for this control, optimised interactions
are provided by this component, such that {c(l’pt, czpt} C C¥co- As such, these interactions extend
the interaction model of the agent with C7~, C I'*. Agents can then utilise optimised versions of
system component interactions in inbound interactions as TC members and non-optimised versions
of the same interactions when performing outbound interactions with unassociated agents. Consider
for example the case that highly trusted agents do not apply full task replication when interacting with

each other in a Desktop Grid System (see also Sec. 5.2.1).

Cooperation: Efficient interactions, exclusive to TC members, represent an incentive mechanism
for cooperation. This willingness to cooperate among members can be further exploited: Interactions
that have not been considered by system components because of their high risk in open environ-
ments, their scalability, or their demand for coordination can be realised within a Trusted Community.
Consider for example the cooperation of agents to detect and avoid colluding agents, or to collectively
observe the hosting system in order to perceive abnormal system states.

Cooperation strategies for TC members are realised by the provision of a set of additional interac-
tions {c‘l:o”p,..,c,ioo”} by the TC organisation component Comp? ~,,such that {ci‘m”,.., ci"o”} C Cico-
Unlike the formally defined optimised interactions, these interactions are not derived from existing in-
teractions. They have however in common that they are performed exclusively among members,
despite their inclusion and visibility in the interaction model I'* of an agent. The decision-making
whether and how to participate in such cooperative interactions, realised with cooperation strategies,
is under the control of the TC organisation component. Note here that in general, such strategies can
only be formulated for a specific hosting system #.

Information sharing: The capability and willingness of agents to share information with each other
is an essential design principle of Multiagent Systems in general, and the concept of the hosting sys-
tem in particular. Many decision-making strategies within agent components require the processing
of information about potential interaction partners, be it opinions about the trustworthiness of other
agents, or information needed to derive the competence of an agent with respect to the delegation
of a task. On the other hand, the autonomy of agents, here their exact implementation of agent com-
ponents, prescribes the privacy of information and the local control of their transfer. This is due to the
fact that agents providing private information about their internal state to other agents, do not know
whether this information is used to exploit them. Additionally, self-interested agents do not gain in



4.4. Trusted Community Lifecycle and Management 63

utility by providing information to agents actively requesting it. In consequence, the control of inform-
ation transfer in a hosting system is expected to be rather conservative and sub-optimal for the local
decision-making of agents.

This is where a closed environment like the Trusted Community can further exploit the incentive
of optimised agent interactions and strengthen the exchange of private information among member
agents. Interactions of this class hence provide TC members the opportunity to request additional
information from members. Information providers on the other hand can assume that they are not
being exploited if such exploitative actions are perceivable and lead to the exclusion of the TC. An
example of sensitive information, with access restricted to members, are personal observations (local
world model) which could be abused by untrustworthy agents. Additionally, information sharing can
be an auxiliary enabler for the other classes of organisation benefit strategies discussed above. Con-
sider for example cooperation strategies relying on additional information in order to coordinate the
workflow of the cooperating agents.

In sum, the class of information sharing strategies implements a set {c;”f, cf{”f} C Cfp of ad-
ditional interactions as part of the interaction set of the TC component. These interactions are then
included in the interaction model I'* of an agent. Again, the exact realisation is dependent on the
production engine definition of the hosting system. Furthermore, the control of information transfer is
part of the decision-making of the agent component Compy--

The specification of adequate organisation benefit strategies that belong to either class and
provide additional interactions cfpt,c;OOP,cL”f is an essential requirement for the application of TCs.
Only if agents have this incentive to become TC members can the self-organised formation and op-
eration of TCs improve the performance and robustness of the hosting system. In this, the interaction
efficiency strategies, providing optimised interactions cf” ! are the most important strategies. As dis-
cussed in Sec. 3.2.4, itis thus assumed in the remainder of this thesis that these organisation benefit
strategies are realised in the default implementation of the TC organisation component (AE}"(%””) and
include the according interactions in Cf-, C I'*.

Agents incorporating such a default TC organisation component A‘;‘gg‘” can perceive these addi-
tional interaction interfaces. The decision-making within such a default component is assumed to be
based on the rational approach to become a TC member in order to capitalise the provided benefits
with the objective to increase the agent utility. It is equally valid to assume that this agent rationality

will induce a member to leave a TC when its utility has not been improved by the association.

4.4 Trusted Community Lifecycle and Management

Until now, the description of the self-organisation process to form a TC has been reduced to a descrip-
tion of the rational pursuit motivated by the expected benefit and cooperation of other members. Also,
the presence of organisation benefit strategies has been described as incentive mechanism without
further consideration about defecting members and consequences. This view has been taken for the
purpose of comprehensibility. This section extends this description by the analysis of the dynamics
involved in the Trusted Community approach and the decision-making of the TC organisation agent
component.

Agent organisations in the literature are often defined with a lifecycle model (cf. e.g. [126],[93])



64 Chapter 4. Trusted Community: A Novel MAS Organisation

with the definition of phases or stages in which an organisation is at each step in time. This is applied
accordingly here to describe the global dynamics in a hosting system:

In the initial state of the hosting system, there are no operating Trusted Communities and each
agent from the agent society is unassociated. Potential TCs are in the Pre-Organisation Phase.
In this phase, agents have to apply sub-optimal interactions because of their uncertainty about other
agents’ behaviours. These interactions are rated according to the trust model, constantly reducing the
uncertainty. With time passing, groups of trustworthy agents develop strong mutual trust relationships
(as defined in Eqg. 3.5) with each other. Agents execute decision-making here to determine whether
it would be beneficial, in terms of utility, for them to form a Trusted Community within this group.
This self-organised process can eventually lead to a critical number of agents deciding to initiate the
formation of a TC which starts the next phase in the lifecycle.

The Formation Phase is characterised by negotiations of the initiating agents about the subset
of these agents that actually constitute the TC members. Such negotiations are necessary as not all
agents have had the same interaction partners or have made negative interactions with each other.
Finally, these negotiations can lead to the formation of a TC with the negotiated initial members which
enters the next phase.

At the start of the main phase of the lifecycle, the Operation Phase, the forming agents become
regular TC members, elect a TCM and can finally execute the organisation benefit strategies to in-
crease their utility. Unassociated agents can still interact with TC members in outbound interactions
but cannot engage in optimised interactions. Members formed or joined the TC out of self-interest
because they expected to increase their utility by being member. If agents find that this does not hold,
they will eventually leave the TC and become unassociated again. If too many members leave, the
operation cannot be maintained. A TC is dissolved in this case and the TC is transferred back to the
pre-organisation phase?.

Each of these phases requires the involved agents to make decisions about their exact approach.
Consider for example the decision whether to form a new or join an inviting TC, the decision which
agent to elect as TCM, or the criteria to leave a TC. The importance of this reasoning becomes even
more clear when the challenges introduced by the openness of the system are considered. Each
phase involves particular challenges that require the agents to execute decisive actions to deal with
them:

¢ In the Pre-Organisation Phase agents must decide whether to join a TC, and with which other
agents. However, these agents can leave the system during this process. Additionally, the
decision to accept an invitation to join a particular TC may be outdated when the TC dissolves
before the agent can complete the decision-making.

¢ In the Formation Phase, agents that are trustworthy from the view of the formation initiator
are invited to form the TC. Despite their mutual trust relationship to the initiator, these agents
can have had negative trust relationships with each other, in which case the formation can fail.

2In discord to some approaches in the literature (cf. e.g. [126]), the dissolution is not assigned a dedicated phase for TCs. This
is because of the lack of guarantees in open systems that the dissolution can be executed as an ordered process. Here, it is
assumed that this must be rather assumed as a spontaneous and unplanned event without providing opportunities for coordinated
actions



4.4. Trusted Community Lifecycle and Management 65

Additionally, agents can leave the system despite accepting the invitation or before they can
answer it.

e The Operation Phase is the most challenging phase. Here, the TC is operating with mem-
bers executing optimised interactions without safety means. The incentive mechanisms to
enforce inbound cooperation through the membership motivation works if agents behave ra-
tionally. However, the system is open and members can change behaviours, and start to act
irrationally or adversarily. The behaviour of such agents must not influence the successful op-
eration of a TC, else other members will leave it. Such agents must hence be sanctioned and
ultimately excluded from the TC. Additionally, the agent society evolves and agents that have
not been seen as worthy TC members might have proven otherwise in the meantime. These
agents should hence be invited to become TC members if they improve the TC composition.
Finally, as TC members remain self-interested, the incentive of TC membership must always
be provided to prevent members from leaving the TC.

The reasoning and decision-making within the TC organisation component must comprise these
different areas. In that, it must remain flexible enough to be adaptable at runtime to allow for control
reactions to observations, such as an abnormal system state. In the following, this design of the TC
organisation agent component is examined.

As depicted in Fig. 4.1, the TC organisation component is comprised of dedicated strategies that
cover all aspects of the decision-making necessary for the TC approach. These strategies encapsu-
late decision-making for each phase of the lifecycle. They are applied by each agent with the exact
implementation of a strategy being open and hence possibly heterogeneous among the agents. Be-
fore the operation of a TC, the following strategies are required:

e Potential Member Search strategy: Used by an agent to determine which other agents are the
most trustworthy ones from its view.

e Association Evaluation strategy: This type of strategy is used to determine whether to form a
new TC, join the formation of a TC, join an inviting TC or remain unassociated.

e TC Initiation strategy: This strategy is needed to define criteria for a successful TC formation
with respect to the composition of the group of initiating agents.

Apart from these strategies executed by every agent, the operation phase requires special strategies
that are executed exclusively by TC members including the Trusted Community Manager. TC Mem-
bers need the following strategies:

e Membership Evaluation strategy: Here, a TC member determines whether its utility has im-
proved because of TC membership. It hence makes the decision whether to remain TC member
or leave the TC.

e Distributed Leader Election strategy: This strategy is required to elect a TCM. This involves
criteria for TCM qualification as well as distributed leader election algorithms to perform the
election as such.

After being elected, a TCM requires the following strategies:



66 Chapter 4. Trusted Community: A Novel MAS Organisation

TCM: TCM: TCM:
TCM: TCM: Active TC Member Role-
TC Observer TC Controller Expansion Control Assignment
strategy strategy strategy
Members: Members:
Membership g Distributed
Evaluation B i tegies Leader Election
strategy strategy
initiates
TC Formation Phase dissolution
TC Initiation
strategy
*

Agents initiate formation process
|

Pre-Organisation Phase

Potential

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: Agents elect initial TCM TC Manager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Member Assocnapon
Evaluation
Search <rate
strategy gy
L — _‘

Figure 4.1: Trusted Community lifecycle and composition. The depicted strategies constitute the
configurable mechanics of the TC approach and are relevant only in certain phases of the TC lifecycle.
The main phase is the TC operation phase. It further differentiates between strategies required by
TC members and strategies required by a TCM for the management of the TC (prefix TCM).



4.4. Trusted Community Lifecycle and Management 67

e TC Observer: This strategy constitutes the Observer part required for a regulatory O/C-loop of
a TCM. Here, observation criteria and approaches are encapsulated.

e TC Controller Being the complement of the Observer, the Controller is used to regulate the
operation of a TC based on the received observations.

e Active TC Expansion strategy: Here, strategies to extend the composition of the TC at the
time of the TC operation are utilised. This allows to adapt the TC to changing environmental
conditions.

e Member Control strategy: This strategy allows to control members of a TC. Such control in-
volves to provide feedback to member actions, punish members and exclude them.

e Role Assignment strategy: This strategy allows the TCM to distribute its management tasks
among the members by assigning roles to them.

These strategies serve the purpose to realise the self-management of the TC that deals with the
challenges of the TC operation. Without such strategies, the openness of the hosting system and
the autonomy of the agents could lead to exploitation and damage of member agents and forbid the
application of TCs. In other words, these strategies provide a means to manage and protect the
operation of the organisation benefit strategies in order to maintain the incentive of TC membership.
Central to this is the election of a Trusted Community Manager that coordinates the execution of spe-
cial TCM strategies. The power to execute these strategies, for example allowing the TCM to invite
new agents to the TC, or exclude members from it, is delegated from the members to the TCM upon
election.

To ensure the robustness of a TC towards influences from adversary agent behaviours and sys-
tem states, the design of this strategy composition has been inspired by two approaches:

(1) In Systems Theory, the maintenance of the robustness of a system is sometimes (cf. e.g.
[132]) described to be constituted by the following generic mechanisms: System control designates
a mechanism that utilises positive and negative feedback to regulate the operation of a system.
This mechanism is realised by the incorporation of the TCM with its ability to provide feedback to
its members based on the influence of their behaviour to the TC. A fail-safe, redundant mechanism
that allows to continue the operation of a system despite the loss of single components. In the
presented strategic composition, this mechanism is realised by the ability of members to elect a new
TCM when the previous TCM changed its behaviour or left the system. On the other hand, the TCM
is able to compensate for the loss of single members by inviting new agents to the TCM, and by
reassigning roles among the members. The next mechanism is modularity, in computer science also
referred to as separation of concerns. The contribution of modularity to robustness is the feature that
disturbances and failures in the operation of single modules are contained locally and do not affect the
whole system. In the TC design, this is considered by the logical encapsulation of decision-making
procedures in dedicated strategies and the separation of member and TCM responsibilities. Finally,
robust systems often incorporate some form of decoupling: This designates the principle of isolation
of disturbances and variations in low-level components from high-level functionalities. In the design
of TCs, this can be understood as the robustness of the TC as such to adversary behaviour of single
agents. In this the TCM has a special part with the TCM-strategies.



68 Chapter 4. Trusted Community: A Novel MAS Organisation

(2) Organic Computing (see Sec. 2.4) aims at increasing the controllability of technical systems
which consist of a large number of distributed and highly interconnected subsystems. In such highly
dynamic systems, it is impossible to foresee and verify all possible system configurations at design
time. Therefore, OC systems are designed such that they self-organise and incorporate so-called
self-X properties to allow for the efficiency, robustness and online adaptation of these systems. As
summarised in Sec. 2.4, self-organisation is seen as being constituted by the following self-X proper-
ties:

e self-configuration
o self-healing

e self-explanation
e self-protection

o self-optimisation

The design of the strategies incorporated in the TC approach is mainly based on these properties.
This is detailed in the discussion of the respective strategies in Sec. 4.6.

Before the realisation of the lifecycle and the incorporated strategies are described, the TCM,
being the central entity in the design, is examined in more detail.

4.5 The Trusted Community Manager

In the presentation of the TC approach, the Trusted Community Manager has been introduced as
necessary entity of the TC design. This has however not been justified so far and is accounted for
here.

The hosting system has been described as distributed system without central control. As such,
the delegation of control from the members of a TC to a central TCM is a design decision that requires
explanation. The key idea is the general agreement that many systems with a purely decentralised
design often lack the effectiveness of hierarchical systems. The generic concept of task decompos-
ition and responsibilities is found in almost each system of a certain size, be it in nature with the
architecture of organisms, in economy with the division of companies, or in technical systems like the
Internet with the routing hierarchy. In the context of the TC design, the avoidance of hierarchy would
require the members to constantly negotiate about all management actions and strategies. This dis-
tributed decision-making does not only require far more communication, but makes it also necessary
to account for lack of consensus, agents leaving the system during the negotiation process etc. The
TC approach hence utilises the TCM for the control of recurring tasks and the regulation of the TC.
This is not to say that the installation of such a hierarchical entity solves all control issues without
costs. Consider for example the case of an adversary TCM and the damage it can inflict on the TC
members. However, the regulatory mechanism of TC members, namely their free decision to leave a
TC, the ability to re-elect a TCM, and finally the ability to form a new TC with control over the compos-
ition (esp. excluding agents as members that showed such behaviour), allows for a robust resolution
of such issues.

The TCM-strategies introduced above represent the power that the TCM has been granted by
the TC members: The Member Control and the Active TC Expansion strategies encapsulate the



4.5. The Trusted Community Manager 69

responsibility of the TCM to regulate the access to the organisation. The members hence delegate
the power over the TC operations inclusion and exclusion of an agent 2 from a Trusted Community
TC;(t), as defined in Eq. 4.5 and 4.6 by the operators @/ (*) and of"1ci(*) o the TCM. The
design decision to regulate the access to the organisation is without alternative for the TC approach
for the following reasons: An open organisation, such that each agent can declare itself a member
(cf. e.g. congregations in [52]), does not account enough for the fact that in open systems known ad-
versaries can also become members. An open TC would hence require the continued application of
Trust Management among TC members to realise a selective partner determination for the execution
of interactions based on the organisation benefit strategies. In effect, this removes the differentiation
between inbound and outbound TC interactions and violates the core concept of the TC.

On the other hand, the openness of a TC could be understood less strict: Agents are not allowed
to declare themselves members, but they are allowed to actively declare their interest in TC mem-
bership. This case is an alternative to the process of Active TC Expansion strategy execution by the
TCM. However, this does not involve any substantial difference in the process as the TCM still needs
to determine whether an applying agent is suited or not.

The design decision to delegate access control to a central TCM, as opposed to negotiation
among the members about this matter, is then a decision according to the above mentioned reasons.

Additionally, the TCM is granted the power over Role Assignment strategies. These strategies
control the utilisation of the assignment of TC management roles to TC members via the amtemre (t).
operator as defined in Eq. 4.7. The assignment of roles to members, associated with tasks to
perform in each role, is a concept to distribute the overhead of TC management among the TC. This
is necessary because the TCM is self-interested just like any other agent and has become a TC
member to increase its own utility. If TCM management tasks involve too much overhead, the utility
is affected and the incentive to remain in the TC is lost. In this case, rational agents would always
decide to leave a TC once elected as TCM. This in turn would prevent the operation of a TC. The aim
of the role assignment strategies is hence to distribute as much of TC management tasks as possible
to the members.

Finally, the Observer and Controller abilities allow the TCM an adaptive regulation of the TC.
As presented in the agent model in Sec. 3.1.2, each agent in the hosting system is composed of an
Observer and Controller, allowing it to adapt its behaviour to situations observed in the system. It
has been further discussed in Sec. 3.2.1 that, with autonomous agents involved, such observations
must always remain incomplete. On the one hand, agents can only perceive information that others
have disclosed. On the other hand, passive agents being requested to interact with another agent,
have often no incentive to investigate the consequences of these interactions, as they themselves
have no direct utility gain from such interactions. With incomplete observations, control based on
these observations is necessarily lacking. A Trusted Community allows to improve the local O/C-
loops of member agents by firstly providing an incentive to share more information (as discussed in
Sec. 4.3), and secondly by aggregating local views in organisation-wide views. This is realised by
the equipment of the TCM with a superimposed O/C loop, which constitutes a TC-wide multilevel
O/C architecture (cf. e.g. [134]). The aggregation of the member observations to a TCM observation
are then utilised to detect system states that are not detectable by single agents, such as abnormal
system states or a collusion of agents. These observations allow for more accurate control and are
utilised to regulate the adaptation of the TC as such to these system states by the TCM.



70 Chapter 4. Trusted Community: A Novel MAS Organisation

4.6 Trusted Community Strategies

The behaviour of TC agents is determined by a trust-based decision-making process. The most im-
portant of these decisions are encapsulated in the strategies depicted in Fig. 4.1. In the following,
these strategies are further analysed and exemplary realisations are presented. Additional inform-
ation on the incorporation of these strategies in workflows can be found in appendix B where the
design of the TC Organisation agent component is detailed.

The TC strategies are based on the behavioural design pattern Strategy Pattern and allow for
varying realisations (algorithms) of the reasoning process they encapsulate, by being (a) exchange-
able at runtime, and (b) heterogeneous among the agents (clients). This accounts for the requirement
to implement agent behaviour that is adaptive (at runtime) and protected by the autonomy guarantee
for the agents.

The only imperative for the realisation of these strategies is that a clearly defined output (de-
cision) is needed (this is required for the incorporation in workflows within the agent component, see
appendix B). On the other hand, there are no explicit requirements on the input data used to produce
the desired output. This allows for alternative realisations of strategical decisions, based on varying
input data (for example by applying various degrees of agent awareness), and the actual reasoning
process on this data.

In the following, this flexible realisation of the agent decision processes is presented in detail:
For all strategies, the encapsulated decision process (including output) is described and formal-
ised, a basic realisation is presented, and implementation requirements and strategy refinements
are discussed. In addition, the self-x properties of the TC management strategies, constituting the
self-organised TC regulation, as discussed in Sec. 4.4, are elaborated. The section is concluded by
the declaration of a basic strategic configuration that offers a complete TC agent behaviour scheme
based on the basic realisations of the strategies. This strategic configuration is generally applicable
without incorporating any scenario-specific knowledge.®

4.6.1 Potential Member Search Strategies

Trusted Communities are formed between agents with mutual trust relationships. The purpose of this
type of strategy is to determine, from the view of a single agent, which agents are trustworthy
enough to form a TC with. The problem to search good interaction partners can be understood as
optimisation problem. The search for trusted agents among agents with many interaction evaluations
can be described as an exploitation approach to the optimisation. This is opposed to exploration
approaches that search for good interaction partners among agents with no or few interaction exper-
iences.

Formally, the execution of such a strategy by an unassociated agent x at time t determines a set
P(t) of agents that fulfil the criteria of fellow TC members. The most general form of this strategy is
hence described with the following function:

FrR(A(D) = P(t) (4.8)

SAdvanced strategies based on scenario-specific knowledge are presented in the evaluation section for the Trusted Desktop
Grid, see Sec. 5.2.2.



4.6. Trusted Community Strategies 71

with:
P(t) C A1)

The implementation of such a strategy f°¢"<"(A(t)) is then concerned with the filtering of the set
A(t) according to these criteria. The resulting set P(t) is further used as input for the association
evaluation strategies where its composition is checked (see 4.6.2 for details). In case the set fulfils the
TC formation criteria implemented in this strategy, the formation of a TC is initiated. The determination
of this set hence involves the responsibility to choose suited agents, as the executing agent must rely
on them as TC members eventually.

Basic strategy implementation

The basic implementation, applicable in each hosting system, interprets the filtering criteria as fol-
lows: Other agents are expected to form a TC only with trusted agents themselves. Agents that are
trusted by agent x, but do not trust x (asymmetrical trust relationship) should hence be filtered to
avoid the overhead of contacting these agents. Additionally, agents that are already a TC member
in a different TC should not be included in these considerations, as TC members are not expected
to leave their TC without a guarantee that their potential new TC actually forms successfully. Finally,
only agents that are online at the time of execution should be considered. These criteria result in the
following filter for the set of potential member agents:

P(t) = {p cuM(t)\ {x} DTIC > thresDT A DT;;’é > thresﬁT}

According to this definition, P(¢) contains all agents p that have a strong mutual trust relationship
(as defined in Eq. 3.5) with x. This requires a specification of the context ¢ and the threshold thres,,.
Additionally, the executing agent must retrieve a set of opinions {DT;,‘{@,..,DT;,“';M} of the other
agents about itself. This information needs to be provided as input for the function, such that:

e DT ,C <
fsearc (u (t),thresm ,C,DT;C""DT;\;(M) (4'9)

=P(t) = {p ceuM(t)\ {x} ’ DTPC > thresDT A DT;,"E > threng}

Implementation requirements and refinement

The implementation of this strategy has a major influence on the application of TCs in a hosting
system. Consider for example an implementation £ (A(t)) = A(t) of this strategy: This allows
to form a TC with any agent in the society that is online at the time of execution. In case of a
wide-spread use of such a non-discriminating strategy among the agents, the choice of suited TC
members must be compensated with an according TC initiation strategy or will lead to the formation
of TCs with not suited members. A TC composed of such unreliable agents is unstable as exploitation
within a TC decreases the utility of members and makes them leave the TC. The worst case for an
implementation is hence a strategy that does not discriminate enough between trustworthy and not
trustworthy agents and subsequently leads to unstable TC compositions in which the executing agent
has no utility gain. On the other hand, an optimal implementation composes the set P(t) such that
the decision to form a new TC with these agents as members is always successful. This avoids
overhead (i.e. in terms of communication) of the TC formation.



72 Chapter 4. Trusted Community: A Novel MAS Organisation

Finally, more elaborate strategies can further refine the search criteria, for example by including
agents that have no high trustworthiness yet, but are expected to develop it (e.g. because of planned
interactions), and to exclude agents that are expected to lose their trustworthiness (e.g. because of
adversary behaviour in the recent past). These phenomena have also been referred to as too-much
trust, and over-confidence (cf. e.g. [20]) and discussed in Sec. 3.2.1. Strategies to allow for such
filtering can apply trust development prediction, which is for example examined in [76], [77], and
[190].

4.6.2 Association Evaluation Strategies

The Association Evaluation strategies are a key element in the self-organisation of the TC approach:
With such a strategy agents, autonomous with respect to their organisation association status,
decide whether to form or join a Trusted Community based on the prospect of increasing their
utility. This decision-making can be broken down into two separate decisions:

(1) An agent x must determine whether to join (the formation of) a certain Trusted Community
TC;(t). For a rational agent, this decision is based on the expected benefit (the gain in utility U* (t +
a)) of membership. The evaluation of the expected benefit of TC membership in a given TC is related
to the estimation of a coalition value (cf. e.g. [191]): In the latter, agents try to determine how well
a potential coalition is suited to achieve the goal it is planned for, based on the estimation of the
agent capabilities that consider the formation. However, in TCs there is no group goal and hence
each potential member must consider for itself, whether the membership in a forming or inviting
TC will increase its utility. For this, the other members (potential members P(t), or actual members
M, (t)) need to be analysed: The organisation benefit strategies utilised within a TC allow members
to execute optimised interactions. The willingness of the members to cooperate in these interactions
is based on the incentive of maintaining the TC membership and the enforcement by regulatory
observation and control of the TCM. However, the given willingness of other members makes no
statements about their competence. Due to the heterogeneity of agent capabilities, an optimised
interaction performed with a TC member may still be less beneficial to an agent than an interaction
with a non-member with strong capabilities. On the other hand, the contract to remain a TC member
involves the commitment to cooperate with fellow members. As discussed in Sec. 3.2.1, an interaction
as passive agent does not involve any direct benefit, but can be perceived as overhead (e.g. blocking
of resources). In summary, a rational agent x reasoning about membership in a TC;(¢) must hence
analyse the composition of the TC, especially the capabilities of its members (P(t), or Mr¢,(t)), and
additionally the estimated overhead of the demanded cooperation towards these members.

(2) In general, a hosting system # provides opportunities for several Trusted Communities to form
and operate independently of each other (such that ’OTC(t)‘ > 1). This is opposed by the definition
in Sec. 4.2 that each agent is allowed to be the member of a single TC only. The second decision
expected from implementations of the Association Evaluation strategies is hence whether to:

e remain unassociated, or
o follow the invitation to join an inviting TC,(¢), or
e initiate the formation of a new TC with a set of initiating agents P (), or

o follow the invitation to join the formation of a new TC,(t), along with initiating agents P ().



4.6. Trusted Community Strategies 73

This decision is the more complex the more options an agent has: Not only must an agent choose
between those state changes, but also among the varying options for each state change. Consider
for example a trustworthy agent x that has been invited by several operating TCs to join them, and
additionally has strong mutual trust relationships to a large group of agents P(t) allowing it to initiate a
TC formation, while possibly having been invited to join a TC formation already. Clearly, this requires
some form of comparison of the options and a prioritisation between them.

Basic strategy implementation

The basic implementation of the Association Evaluation strategies is an opportunistic algorithm with
the constraint to reduce overhead where possible. The key idea is to use a prioritisation of the
status changes, with the option of joining an inviting TC having top priority. The basic implementation

eceived? TC TCi(t)

Input:

Received TC join invitations Ot)

Received TC form invitations { P{" (1), P{" ()} TC join . Output:
Potential members () invitations >—ves S Join inviting

TC form . .Ogtp_u_t:
invitations E assessFormingTCsy Join inviting
eceived? ({PI (B, PEOY) TC formation
with P (1)

no
Output:
assessPotentialMembers Initiate TC Initiate TC
(P@)) Formation? formation
with P(t)
no

Output:
Remain
unassociated

Figure 4.2: Decision flow of the Basic Association Evaluation Strategy: Based on received invitations
and potential TC members, a prioritisation process for an association status change is executed.
Joining an inviting TC has top priority, then joining a TC formation, initiating a TC formation and
finally the maintenance of the unassociated status.

depicted in 4.2 represents the following decision-making process: [f invited, an agent will always
join a TC. This decision is opportunistic for the following reasons: The choice to join can always
be withdrawn by leaving the TC any time thereafter. This means that an agent does not need to
perform any elaborate assessment of an inviting TC with respect to the TC membership benefits. If
the benefit is not provided, the agent simply leaves the TC again without having any loss. This is



74 Chapter 4. Trusted Community: A Novel MAS Organisation

further motivated by the fact that the agent does not need to change any of its interaction decisions
with unassociated (possibly favourite) interaction partners, as outbound interactions are still allowed
for TC members. This behaviour is also opportunistic because it is not optimal for the management
of a TC, as leaving members cause management overhead (composition updates, role-reassignment
etc.) and should be avoided. It is hence preferential for a TC to accept agents as members that do
not withdraw this decision.

The depicted implementation accounts for the special case of invitations from different TCs for an
agent at the same time. This case can for example occur when the TC managers of the different TCs
use the same (parameterisation for their) Active TC Expansion strategies making the invited agent
seem a suited member based on the same criteria. Additionally, an advanced Association Evaluation
strategy that requires a long time for the decision-making also raises the chance of multiple invitations.
Where multiple TCs are inviting the agent, further assessment is necessary to make the decision
which of the different TCs to join. This involves a comparison of the TCs by analysis of the member
capabilities. Such an analysis is however scenario-dependent and hence designated with a generic
function here: Let O(t) C O(t) be the set of TCs inviting an agent x at the time of the association
evaluation t, then the following function chooses of which Trusted Community TC;(t) to accept the
invitation:

assessInvitingTCsyy : O(t) — TC;(t)

In case, an agent is not invited to join a TC, but has received invitations to join the formation of
new TCs by an initiator a; € A with its respective set of forming agents Pf"(t), the decision must be
made, which of the formations to join. Again, this involves a scenario-dependent assessment of the
agents and is encoded by a function:

assessFormingTCsy, : {P{(t),.., Pec(t)} — P (t)

Note here that the basic implementation prefers the joining of a running formation over the initiation of
a formation. This is because of the opportunistic nature of the implementation and the consideration
that the initiation involves more communication overhead, and the parallel formation of different TCs
reduces the chances for formation success (as invited agents can choose based on different criteria).

Finally, if no invitations were received, an agent must decide whether to initiate the formation of a
Trusted Community. As discussed, this decision is based on the presence of trusted agents that are
suited as potential members. The set P(¢) is determined by the Potential Member Search strategies
(see Sec. 4.6.1). Here, the decision is made, whether this set promises a successful formation. If not
for the reduction of overhead, the most basic approach is to always initiate the formation as long as
the set contains agents. However, the repeated initiation of a TC formation is costly for the initiator,
and can lead to agents ignoring the invitations if they are issued too frequently. As such, the basic
implementation must analyse the set of potential members based on the factors of a successful TC
composition, as well as the last attempt of a formation. This behaviour is again dependent on the
realisation of the hosting system and hence generalised with the following function:

assessPotential Membersy, : P(t) — {true, false}

If the function returns true, the formation is attempted as initiator (with the success determined by the
TC Initiation strategy, see Sec. 4.6.3), else the agent remains unassociated.



4.6. Trusted Community Strategies 75

Implementation requirements and refinement

Implementations of the basic strategy must provide realisations of discussed scenario-dependent
assessment-functions. However, an opportunistic approach as presented here may not always lead
to the desired dynamics. Consider for example agents that use the possibility of a “trial” membership
to exploit it and then leave. This can in turn lead to TCMs inviting less agents to join a TC and
block the self-organisation process. As such, advanced approaches can include a more thorough
assessment of the given options, and for example prioritise the formation of a TC over other options
if overhead is no issue. Here, approaches from related work on the estimation of an organisation
value, as discussed for the coalition value (cf. e.g. [191]), can be applied.

4.6.3 TC Initiation Strategies

The TC Initiation strategies are required when an agent decides to initiate the formation of a new
TC with a group of potential members P(t): Agents from the group are invited to join the formation
and react to this invitation based on the decision-making within their Association Evaluation strategies
(see Sec. 4.6.2). The agents that accept the invitation constitute the set F of potential initial members
of the forming TC. The purpose of the initiation strategies is now to determine whether the set of
accepting potential TC members allows for a successful TC formation. Consider for example
the trivial case that all agents reject the invitations, hence F = @. This does obviously not allow for
a successful TC formation. The strategy must hence implement a function of the following form:
finit(]:) _ true, if |F|>1 (4.10)
false, else
The only constraint in this generic form is that the set of agents forming the TC must include at least
one more agent, such that the formed TC will be composed of two agents (including the initiating
agent) and hence adhere to the minimum size requirement formulated in Sec. 4.2. However, this
very broad constraint only serves the purpose of guaranteeing a correct TC formation, disregarding
how beneficial such a TC would be for its members. The regulatory TCM-strategies for example
involve some overhead for TC members. This overhead is not well invested in a very small TC.
Additionally, a small TC will in general generate a lower utility gain for its few members, as the set
of interaction partners for optimised interactions is very small. The following basic implementation of
this strategy hence accounts for this by defining a minimum size based on overhead considerations.

Basic strategy implementation

The overhead of TC membership, generated by regulatory strategies and induced on TC members,
is dependent on the strategic configuration of the TC manager. Additionally, the quantification of an
acceptable amount of overhead for a single agent is defined by its implementation of the Membership
Evaluation strategy (see Sec. 4.6.4). An exact and generic measure for an overhead-based minimum
TC-size is hence not possible. The approach for the basic implementation is thus to derive such a
measure from known values: As discussed in Sec. 4.5, the TCM is a regular self-interested agent
that does not accept to sacrifice its utility for the regulation of the TC. It is hence equipped with the
instrument of assigning management tasks to its TC members by means of roles. The composition
of the set of roles ¥r¢,(t) included in the tuple that constitutes a TC can thus be further analysed



76 Chapter 4. Trusted Community: A Novel MAS Organisation

and used as a criterion. Note that this set is again dependent on the implementations of the TCM-
strategies, and an initiator does not know which of the agents will become TCM in the TC, thus
how exactly this set will be composed. To allow for any type of qualification, this is hence applied
as a best-effort estimate by referring to the (known) default implementation of the TC organisation
component A‘;egg“” with the assumption that the majority of members will apply such configuration
when elected as TCM. An additional assumption here is that the realisation of each role r € ¥, (t)
is such that it does not imply an overhead that outgrows the benefit of the TC membership, when
assigned to an agent. This is based on the consideration that a validation of this assumption would
mean that the assignment of a role to an agent would force the agent to give up its membership due
to the lack of benefit. On the other hand, it can be generically stated that the (re-assignment) of roles
involves overhead, albeit the exact quantification again depends on the implementation of the Role
Assignment strategy of the TCM (see Sec. 4.6.8). The assumption here is hence that despite limiting
the overhead induced in a single role, a TCM also limits the lower bound for effort in roles (and thus
their number), in order to reduce its overhead for the assignment of roles.

In summary, the following assumptions are made to allow for a best-effort estimate of a min-
imum TC size: The future TCM of the forming TC will utilise a default implementation of regulatory
strategies, hence the set of roles ¥, (t) will be known to the decision-making agent. This set will
be composed of roles that do not focus more overhead on them that would marginalise the benefit
of TC membership, yet the number of roles is limited due to substantial realisation of roles. As a
consequence, the minimum number of TC members for a reasonable TC formation is equalled to the
number of roles needed for the management of the TC. This means that the TC will have enough
members to provide for a stable operation, thus without agents leaving because of lack of benefit. On
the other hand, the constraint for a minimum size is not so hard that it would not allow for the forma-
tion of small TCs with just enough members to preserve the operation. The basic implementation of
the TC initiation strategy is then characterised by the following function:
true, it |F| > [¥rc,(t)]

(4.11)
false, else

fMF, ¥ (1) = {

Implementation requirements and refinement

The implementation of advanced TC Initiation strategies can be adapted to specific requirements
of a hosting system H. Especially, the balance between the overhead for TC management and
the received benefit by the application of the Organisation Benefit strategies (see Sec. 4.3) can be
used to determine the potential of a successful and stable TC operation. Additionally, an approach
to identify key agents from P(t), based on their application-specific capabilities, can be applied to
restrict the formation of TCs with a satisfying number of members, but low performance. Such an
approach would hence allow for the TC formation only if the key agents accept the invitation, such
that they are in F. Finally, the worst case for the implementation is that the formation constraints are
formulated too strictly, such that TCs never form in a hosting system. On the other hand, the best
case for an implementation leads to the formation of TCs only, where the resulting TCs can maintain
a stable long-term operation.

This completes the strategies required for the formation of a TC. The following strategies are all
applied either by TC members or the TC manager during the operation phase of a TC.



4.6. Trusted Community Strategies 77

4.6.4 Membership Evaluation Strategies

A self-interested agent x joins a Trusted Community with the expectancy to experience a higher utility
U*(t) as TC member. The Association Evaluation strategies have been introduced in Sec. 4.6.2 as
instrument to determine whether a utility gain can be expected from a TC membership. The Mem-
bership Evaluation strategies are the complementary estimate. Here however, an agent has more
information: It has already measured the actual costs (execution of tasks for assigned roles, cooper-
ation with TC members) and benefits (optimised interactions) of TC membership and can compare
these measures with its performance as unassociated agents. Periodic execution of this strategy
allows a rational agent to track the development of the TC membership benefits and eventu-
ally leave the TC in case of no utility gain. The most general form of a membership evaluation
strategy makes the decision whether to remain a TC member according to a function of the following
form:

ol 0, U ) — {true, it U () > U (ta), £ > tg

false, else

Basic strategy implementation

An agent utility U*(#) has been described as being derived from the specification of a production
engine that is controlled by the agent. Also, the owner of the agent can modify the utility function to
closer match its goals. Consequently, the development of the utility value over time is dependent on
this usage scenario: In most cases, the evaluation of an interaction outcome influencing the utility can
only be performed deferred. As such, the membership duration must be considered when making
this comparison. Only after a specified time interval, can an agent expect to realistically estimate its
benefit. An improved implementation of such a strategy is hence of the following form:

true, ifU*(t) > U*(t,) V (t —t,) < thres

FE U (1), U (1), hress) = ()= W) V=) < Hhresa ) )
false, else

with thres, being a scenario-dependent threshold that determines a minimal membership duration

correlated to the deferral of the utility function evaluation.

Implementation requirements and refinement

Advanced strategies to be applied here can focus on the comparison of the expected utility of being
unassociated for the following time interval (as opposed to the time interval before the TC member-
ship). This kind of estimate accounts for the fact that the environment of an agent could have changed
considerably since it became a TC member, a possibility that grows with the membership duration
and the observation of system anomalies. Hence, such a utility prediction for the unassociated case
can involve the processing of cooperatively aggregated TCM situation descriptions, an analysis of
other currently unassociated agents 2/*(t), and finally the prediction of the utility as TC member for
the following time interval. Such utility predictions can be for instance realised by the utilisation of
game-theoretic approaches for the analysis of other agents’ behaviour. An optimal strategy imple-
mentation will make an agent leave a TC only in case it will actually improve its utility function U* ()
for a subsequent time interval. On the other hand, the worst case for a strategy realisation is that an



78 Chapter 4. Trusted Community: A Novel MAS Organisation

agent leaves a TC resulting in a utility degradation, making it strive for a renewed membership. The
case of wide-spread utilisation of such sub-optimal strategies threatens the stability of the involved
TCs and can degrade the utility of other member agents.

4.6.5 Distributed Leader Election Strategies

In most distributed systems, some tasks (like making a fast decision) benefit from centralised control.
In scenarios where centralisation is needed, exactly one of the nodes in the system has to be given
the right to execute this control and all other nodes have to know which node this is. In literature this
node is called the leader, and the process of letting nodes designate one of them as the leader and
propagate this information, is called distributed leader election. In the context of the TC approach,
the task is to let the members of a TC elect one of them as Trusted Community Manager. The
election of a TCM is necessary whenever a TC has no TCM, i.e. right after TC formation or leaving
of a TCM (see appendix B for details). The Distributed Leader Election strategy is formalised by the
following function:

FA (Mic, (1) == temec, (£) (4.13)

Implementations of this strategy then realise an algorithm for the distributed execution by all members
that finds a consensus in finite time. Formally, all electing agents are in one of the three states at
each time of the execution: Undecided, Decided(leader), Decided(not leader).

The requirement of a distributed leader election algorithm is that at the finite end of the algorithm
each node is in a decided state and that exactly one of these nodes is in the leader state. Published
distributed leader election algorithms mostly focus on the technical process of election and leader
information propagation, regarding properties like connectivity (incomplete topology (e.g. ring) vs.
fully connected graph), single node identification (anonymous vs. nodes with unique id) and group
identification (electing nodes known to algorithm vs. uniform). Success criteria here are low time
and message complexities (cf. e.g. [192]). Reasoning about the leader decision is mostly reduced
to having the highest unique id (or another low form of discrimination in anonymous networks). For
the application of TCM election, it is however of greater interest by which criteria members should
be elected. This is due to the power the TCM is delegated, granting it partial control over the other
agents in the TC (e.g. their exclusion from the TC). In the following, both views, the procedure and
criteria of the election, are respected and respective strategies outlined.

From the distributed systems point of view, the TCM election is classified as incorporating:

e A fully connected graph: All TC members know each other. This is also a prerequisite for
collective TC formation, esp. for the determination of its success as defined by the TC Initiation
strategies (see Sec. 4.6.3).

e Non-uniform: All members know that every other member is also electing the manager. This
does not mean that the set of electing agents remains constant, however new agents are not
allowed to join a TC during an election (new members are only accepted by the TCM). An
algorithm has therefore only to foresee that members may go offline during an election.

e Non-anonymous: All members have unique ids. This is also a prerequisite for the application
of a trust- and reputation system, in that it allows agents to distinguish each other.



4.6. Trusted Community Strategies 79

Basic strategy implementation

A distributed leader election problem with these characteristics is trivial to solve (without communic-
ation) if the election is based on the highest id of the electing members. If this problem is however
approached from the view of a TCM election, only having the highest id is obviously not an optimal
criterion for electing an agent to be the manager of a TC. As described in detail in Sec. 4.5, the man-
ager of a TC is granted the right to both exclude single members from the organisation and dissolve
the entire organisation. Resulting from the nature of the open hosting system, the decision which
agent to turn into a TCM should be based on the approach to choose the most trustworthy agent.
Additionally, the election process should disclose as few private information of the members as pos-
sible to protect them from agents faking trustworthiness. Performance-wise, the algorithms used
should rather minimise the time complexity than the message complexity as a Trusted Community
cannot be maintained without a manager. The election should hence be as fast as possible. In the
following, the basic election strategy is presented. It is based on trust between the electing member
agents in order to reflect the importance of the TCM election.

The basic implementation of this strategy is termed Highest TC Reputation Election strategy. The
key idea is to choose the member with the highest average direct trust value among all members to be
the manager. This value is the TC reputation obtained by requesting all members as opinion providers
about all other agents, hence: max RTT/iici(t)\{m} for all m € Mrc,(t). In that, the aggregation of
the opinions is computed with the arithmetic mean of the direct trust values. By choosing the most
trusted agent, it becomes more difficult for malevolent agents to become TC managers as they have
to reach a higher trustworthiness than each other member agent just in time for an election. As the
direct trust (opinion) DT,’Z"E of each member x towards each other member m is private information,
it should be protected during the election. For this, the strategy builds a ring of responsibility such
that each agent is responsible for collecting the direct trust values for exactly one other agent. After
computing the average, this aggregated value is broadcasted to the other agents, making it possible
for each agent to locally compute whether it has the highest average trust value, yet hiding how single
members contributed to the aggregate. Messages between members are denoted as msg!"¢(c) with
rnd denoting the round a message belongs to (as determined by the sender), r € M, (t) being the
recipient of the message, and ¢ being the content of the message. The complete presentation and
step-by-step explanation of the algorithm can be found in appendix A.1.

Finally, the algorithm requires the current round as input for the iterative execution, hence the
basic strategy is formalised by the following extended function:

felect(Morc,(t), round) := temre, (t) (4.14)
This algorithm implies that at the end of the execution each member knows whether it has been
elected as a TCM, and - if not - it can identify the TCM without further communication.
Implementation requirements and refinement

Advanced strategies can further aim to increase the robustness of the procedure by for example
explicitly targeting the presence of adversary actions during the election process (cf. e.g. [65]), or
implicitly discouraging the adaptation to an election procedure by using randomisation (cf. e.g. [192]).
Additional strategies can be derived from the literature: The body of literature on distributed leader



80 Chapter 4. Trusted Community: A Novel MAS Organisation

election is vast, as the designation of single elements in a system is a ubiquitous requirement in
technical systems. The worst case in TCM election is a strategy implementation that does not ter-
minate or is not correct. Given these two requirements, the worst case is then a strategy that can be
easily manipulated by adversary agents, such as to maximise their chances of being elected without
investing considerable effort. On the other hand, the best case for an implementation is a procedure
that finds the consensus in a very short time, and prohibits the adaptation to the rules of the election
procedure (is robust).

This completes the strategies applied by TC members during the operation of TC. The following
strategies are applied only by the TCM of a TC, a single agent.

4.6.6 TCM: Active TC Expansion Strategies

The hosting system is characterised by constant dynamics: New agents can join the system, agents
can go offline or leave the system permanently, change their behaviours (consider for example the
Observer/Controller-based adaptation), or provide additional interaction possibilities by exchanging
component implementations. Additionally, the management of a Trusted Community introduces ad-
ditional dynamics: Agents can lose their membership status because of sanctioning actions of the
TCM (see Sec. 4.6.7), or choose to leave a TC because of lack of benefit (see Sec. 4.6.4). These
dynamics provide both challenges and opportunities for the composition of a Trusted Community:

(1) On the one hand, the initial composition of a Trusted Community is fixed with the set F of
forming agents. This set is composed of agents that have been estimated as trustworthy by the
formation initiator (see Potential Member Search strategies in Sec. 4.6.1), and then accepted the
invitation to join (see Association Evaluation strategies in Sec. 4.6.2) at the time of formation. If
agents from this set are excluded from the TC because of the dynamics, the stability of the TC is
in danger as the management overhead has to be distributed among fewer members. Additionally,
these agents are not available as preferred interaction partners anymore, decreasing the benefits for
the other members. Consider for example the discussion of a minimal TC size as constraint for the
formation of a TC in Sec. 4.6.3. This challenge makes it necessary to compensate the exclusion
of TC members with the inclusion of new members in order to preserve the stability of a TC
and the benefits for its members.

(2) On the other hand, the dynamics can reveal trustworthy agents in the society that were not
considered as members when the TC was formed, because they were either not in the system, or
because the initiating agent did not trust them at this time. As TC members adhere to interactions
with non-members (outbound interactions), the trust relationships with non-members can improve
over time and non-members can be perceived as suited for TC membership. In general, the initial
members of a TC can benefit from new members, as the overhead is distributed among more agents,
and the opportunities to execute optimised interactions increase. The TCM hence needs an instru-
ment to grant membership to newly discovered trustworthy agents after the formation, in order
to improve the composition of a Trusted Community, i.e. raise its stability and the benefit for
its members.

This TC management instrument is encapsulated in the Active TC Expansion strategies. The
functionality can be formalised by a function to find a set A/ (t) of potential new member agents in the



4.6. Trusted Community Strategies 81

set of agents that are not yet members of the Trusted Community TC;(¢):
FEPm A\ Mrc, (1) == N (1) (4.15)

such that the manager agent tcmrc, performs the inclusion operations following the execution of the
strategy:
Vn e N(t) : TC;(t) @)

resulting in the extended composition My, (t + 1)) = Myc, () UN(t) of the TC.

The aim of an implementation of such a strategy is then to find (possibly by active observation and
testing) potential members with the goal to optimise the composition of the Trusted Community. The
strategy is however executed by the TCM alone. It can, but does not need to include the members
of its TC in the decision-making. The TCM has the power to gather new member agents without the
need to ask other member agents about their consent. This is grounded in the fact that by electing
a member as TC manager, the agents trust this agent to make decisions for the organisation. In any
case, the members have the option to leave the TC based on evaluations of the TC composition in
the Membership Evaluation strategies. As the aim of the TCM is to improve the composition of its
TC, implementations of this strategy should try and find potential agents to accept as members that
are acceptable for all other members.

The application of the Active TC Expansion strategies improves the robustness of the Trusted
Community by making it self-healing (compensation for leaving members), and self-protecting (ap-
plication of TC access control as opposed to open TCs that can be joined by any agent without
constraints). Finally, to search for unassociated agents that are suited as TC members can also
be understood as exploration approach to the problem of finding suited interaction partners for TC
members (as opposed to exploitation approach, see Sec. 4.6.1).

Basic strategy implementation

The basic implementation of the Active TC Expansion strategy is based on the following considera-
tions:

(1) The set of agents to recruit new members from should be limited to unassociated agents,
hence agents that do not already belong to another TC. Though it is formally allowed to invite the
members Mrc,(t)) of a TC;(t) to the own TC;(t), such competitive behaviour can create a heavy
restructuring dynamic among the TCs and affect their stability. This restructuring of TC compositions
may however be desired to implement mechanics that regard the search for optimal TC compositions
in the hosting system as a decentralised approach to a set partitioning problem (cf. e.g. [96]). This is
nonetheless neglected here as the aim of a basic strategy implementation is its universal applicability.
Such an approach however has manifold implications on the use of other strategies to support it.
Consider for example the description of the basic Association Evaluation strategy in Sec. 4.6.2 and
the basic Membership Evaluation strategy in Sec. 4.6.4: These strategies would have to be massively
extended to account for the switch between membership in different TCs, making the already complex
decision-making less predictable.

(2) The task to estimate which unassociated agents are suited as TC members can be reduced
to the initial problem of finding suited agents to initially form a TC. Agents already have a Potential
Member Search strategy at their disposal that can be reused as TCM. If performed by the TCM alone,



82 Chapter 4. Trusted Community: A Novel MAS Organisation

this approach would however limit the search for new members to agents that the TCM has interacted
with, because the said strategy evaluates the direct trust relationships only. It is hence desirable to
include the TC members in this task by instructing them to execute their Potential Member Search
strategy and providing the TCM with the resulting set of trusted agents. The TCM then aggregates
the resulting sets by union.

Additionally, former TC members that have been excluded from the TC by the TCM should be
excluded from the resulting set NV (t): This is to further protect a TC from agents that defect only
when being TC member, in order to exploit the lack of safety means. This additional protection is
advisable as the monitoring of TC members involves overhead and is to be minimised by the TCM
(see Member Control strategies in Sec. 4.6.7). The disregard of such excluded agents requires the
synchronisation with the Member Control strategies and is best realised by a blacklisting approach.
This blacklist must however account for the fact of a dynamic, open system, such in which agent
behaviours can change due to learning or adaptation by the user. In result, the TCM should apply
forgiveness (cf. e.g. [193]) here, such that agents are removed from the blacklist after a time interval.

Let then the set of potential member agents that a TC member m € Mrc,(t)) determines by
executing the Potential Member Search strategy be the set P™(t). Let additionally £(t) denote the
blacklist generated and maintained by the Member Control strategy implementation. The resulting
basic strategy then determines the resulting set NV (¢) as follows:

N(t) := {n ceutty|ne |J P™(t)n¢ L‘(t)} (4.16)

MEMTCi<t)

Implementation requirements and refinement

This formalisation of the basic strategy leaves it open how, in terms of strategy implementation, each
TC member m estimates its set P (t). This is to respect the autonomy of the members and allow for
a greater exploration of the agent society. The TCM then invites each agent n € A/(¢) that has been
identified as potential members by any of its current members. This is based on the assumption that
the TC members aim for the improvement of the TC composition, too. Advanced implementations
of this strategies can further validate this by first testing the agents before accepting them as new
members. This approach is based on the assignment of tasks to potential members in order to test
them*. The exact realisation of such an approach is scenario-specific. In Desktop Grid Systems for
example, it is referred to as spot-checking (cf. e.g. [175], [176], and [83]), and involves the comparison
of pre-computed work unit results with the results delivered by a tested node. If the application of such
test is openly advertised, it can also be used to communicate which requirements a TC has. This can
further improve the robustness of a TC by also making it self-explaining, which means here that it
allows non-members to understand the rules for a TC membership grant and to adapt their behaviour
accordingly. This resembles the approach for the Member Control strategies described in Sec. 4.6.7.

The approach of testing agents despite their trustworthiness ensures that a TC is protected from
adversary agents during its operation even more than at the time of its formation. However, the
implementation of an Active TC Expansion strategy can also take the directly complementary view:

4This is referred to as invitation with conditions in the workflow depicted in appendix B.



4.6. Trusted Community Strategies 83

Instead of applying additional security means despite a good trustworthiness value, a strategy can
be based on the trust-prediction in order to identify a potential member earlier. This is also a highly
valid approach, as the search for the best unassociated agents is a competition among the operating
TCs. The TC with the earliest invitation to an agent has then the greatest chance of winning this
competition. Approaches for the prediction of a trust value development can for example be found in
[76], [77], and [190].

Optimally, these two approaches are combined, such that only agents that have not a sufficient
trust value, but are predicted to develop it in the following time interval are checked with test tasks.

In the previous specifications of the Active TC Expansion strategies, it has been implicitly as-
sumed that the number of TC members should be constantly increased. While this is certainly a
valid approach to optimise small TCs, the question arises whether there is an upper bound to the
TC size, such that the inclusion of new members beyond this boundary will decrease the stability or
provided benefits of the TC. There is no generic answer to this question: In order to determine a gen-
eric boundary, describing the relationship between TC size and TC management overhead is needed.
The form of this function is however determined by the specific configuration of the TCM management
strategies and the scenario-specific capabilities of the agents. Consider for example a TCM applying
a very thorough and costly Member Control strategy to provide high protection against adversary
members. Here, each additional member increases the overhead substantially. It is then dependent
on how well the TCM is able to break this additional overhead down into single tasks that can be
assigned to members within the Role-Assignment strategies. Additionally, it is important to consider
whether the capabilities of the new member increase the average benefit of the other members in
the TC more than the additional overhead introduced by the newly assigned control tasks decreases
it. For a possible quantification of the overhead linked to a TC role, consider the argumentation for a
minimal TC size in the description of the TC Initiation strategies in Sec. 4.6.3. Also the scalability of
the interaction decision-making of the agents is of essence here. Consider for example the realisa-
tion of a Distributed Leader Election strategy here. In this line of argumentation, e.g. [194] propose
to restrict the size of coalitions to a maximum member size in order to provide for the feasibility of
the member decision-making. Finally, the existence of a maximum TC size is directly related to the
question whether there exists an optimal TC size. Implementations of this strategy can be used to
balance the composition of a TC by regarding upper bounds or an optimal size as restriction to stop
searching for new members. This however requires the synchronisation with other strategies, such
as the Member Control strategies that exclude members, in order to provide the required results.
This is further discussed in Sec. 4.6.9 in context of the TC Observer- and TC Controller strategies.

Finally, the worst case in the implementation of this strategy is that adversary agents are granted
membership. This reduces the stability of a TC and the benefit provided to its members and must be
countered by excluding these agents again, which generates a considerable overhead. No strategy
can guarantee that it does not include adversary agents, as agents can adapt their behaviour stra-
tegically to behave trustworthy in order to be granted TC membership, and exploitative afterwards.
However, an implementation can make the costs for the initial membership high enough to prevent
such a strategy, at least for rational agents.

On the other hand, the best case for an implementation is a strategy that accepts trustworthy and



84 Chapter 4. Trusted Community: A Novel MAS Organisation

capable agents reliably and ahead of other TCs. In the end, a strategy extending a TC composition
with new members will always be subject to a trade-off between risk and benefit.

4.6.7 TCM: Member Control Strategies

The key concept of the Trusted Community approach has been described as the provision of a
closed environment for the execution of optimised interactions between TC members. As described
in Sec. 4.3, these interactions have been orchestrated in the Organisation Benefit strategies and
belong to the types of interaction efficiency, information sharing and cooperation. These types of
strategies provide benefits to TC members, however they also require them to invest some effort to
provide these benefits to others. The successful operation of a TC depends on this investment of the
effort:

e Interaction Efficiency is achieved by the abandonment of safety means. Though the exact
nature of such an interaction is scenario-specific, it can be stated that it is in general far worse
if a passive TC member defects in such an interaction, than in a non-optimised interaction
with safety means. This is because it must be assumed that the agent starting the interaction
does not know whether it has been deceived, which is due to the lack of safety means (see
Sec. 5.2.1 for a concrete example). Additionally, TC members initiating inbound interactions
can be guaranteed that their fellow members will accept the interaction request. If this is not
provided for, hence if agents in a TC reject interactions with fellow members, the benefits of TC
membership are substantially lowered.

e Information sharing is an opportunity for agents to enrich their decision-making with additional
input data observed by other members. On the other hand, this decision-making relies on the
provision of this data and TC members are required to answer according requests. Consider
for example an agent m that does not answer a request of its TCM to provide a set P™(t) of
potential members for the execution of the basic Active TC Expansion strategy (see Sec. 4.6.6).
This does not only reduce the ability of the TCM to manage the TC, but can indirectly reduce
the benefits for other TC members.

e Cooperation strategies are exclusive to TC members and provide them with additional inter-
action possibilities. While again increasing the TC membership for agents, these strategies
require TC members to actually execute the requested interactions. The TCM for example re-
lies on the execution of tasks linked to a role r € ¥r¢,(t). If the TCM assigns such a role to
a TC member as a result of the execution of its role assignment strategy (see Sec. 4.6.8), the
agent is expected to execute the tasks. If this is not the case, again the management of a TC
is damaged and the benefit of other members is negatively affected.

But why should TC members not cooperate and perform the required operations? The acceptance
of these agents has been based on their trustworthy behaviour and rational agents should not be
interested in decreasing the benefit of a TC they are part of. However, these considerations must
be neglected due to the openness of the system, constituted by self-interested agents and being
highly dynamic, a combination that can lead to various forms of misconduct. Consider for example
a strategic agent that tries to gain membership in order to exploit the other members because of
the lack of safety means in inbound interactions. Such an agent will behave trustworthy in order



4.6. Trusted Community Strategies 85

to be granted membership and starts to defect only then. But no matter what exact motivations for
uncooperative behaviour towards fellow TC members exist, a TCM must ensure that such behaviours
are detected and sanctioned to allow for the successful operation of its TC. This is where the Member
Control strategies are applied. In its most generic form, such a strategy decides which agents £ (¢) C
M, () to exclude from a TC;(t) (being the ultimate sanction) to protect its operation. It can hence
be formalised as:

FOMOH Merc,(£),£) = E(t) (4.17)

such that the manager agent tcmrc, performs the exclusion operations following the execution of the
strategy:
Ve € E(t) : TC;(t) &tcmrai(D) ¢

The implementation of this function must specify how a TCM can observe undesired TC member
behaviour and how to sanction the agents executing it. Such an implementation increases the
robustness of a TC: Even if the active TC expansion strategy fails to detect agents with adversary
behaviour and accepts them as TC members, these agents can be excluded again. This realises the
property of self-healing. Additionally, such a strategy realises on the property of self-protection by
protecting its members from the effects of uncooperative agents. In the following, a basic realisation
of such a strategy is proposed.

Basic strategy implementation
The implementation of the basic member control strategy is based on the following considerations:

e The abandonment of safety means in the interaction efficiency strategies must be compensated
by collective safety means that are centrally coordinated by the TCM. These collective obser-
vations allow for the detection of misconducting members that is not possible by a single agent.

e These collective safety means must be applied only limited and situation-aware in order to
prevent that the associated overhead prevents the membership benefit. Situation-aware means
here that members should only be observed in case of suspicion, such as complaints of other
members about their behaviours.

o Additionally, the limited application of sporadic observations can increase the incentive to co-
operate as TC member, if these observations are transparent to the members, such that they
always have to expect to be tested.

e The observations should not be (exclusively) limited to the development of the reputation of
a TC member: The intuitive approach to the estimation of member behaviour is here to use
the Trust Management already available to the agents to judge their behaviour. However, this
introduces a dependency to the operation of the TM which was intended to be avoided for the
TC approach in order to provide for robustness towards anomalies like the trust breakdown (see
Sec. 3.2.2 for the according discussion). Additionally, the outcomes of interaction without safety
means by the agents are not assumed to be interpretable by the initiator of such interactions.
This prohibits the rating of the interaction partner and hence does not influence its reputation.

e The exclusion of members from the TC can lead to decreased benefits for the other members or
even to a dissolution if the TC size becomes too small. Members leaving the TC are in general



86 Chapter 4. Trusted Community: A Novel MAS Organisation

degrading the efficiency of the TC, as the number of available member interaction partners
for the remaining members is reduced. Besides, management tasks delegated by the TCM
have to be distributed among fewer agents, increasing the overhead of single agents. This
instrument should hence be handled with great care by the TCM. Especially agents that do not
continuously exploit other members, but have been uncooperative only due to the exploration of
their behaviour range, need not necessarily be excluded. Additionally, the sanctioning should
be based on forgiveness (cf. e.g. [193]), to prevent such single cooperation short-comings to
stick to members indefinitely and further motivate members to restrain from such actions. In
sum, the sanctioning should be gradual and forgiving, with the possibly harmful exclusion of
agents only as ultimate sanction.

e The exclusion of agents should by remembered in the form of a blacklist £(¢) in order to avoid
making these uncooperative agents TC members again (see the discussion of Active TC Ex-
pansion strategies in Sec. 4.6.6). This should however be a temporary measure, such that
eventually the agents are removed from the blacklist. This application of forgiveness (cf. e.g.
[193]) allows to account for changing agent behaviours due to learning and adaptation.

e The rules of sanctioning should be communicated to the TC members, unlike the rules for the
observation. While a transparent observation mechanism prevents adaptations in agent be-
haviour to evade these observations, behaviour adaptations towards sanctions are desired. If
agents know what behaviour imposes which sanction, they can avoid these behaviours. This
introduces the additional property of self-explanation to the TC and helps to increase its ro-
bustness.

The exact realisation of the observations is based on scenario-specific realisations and cannot be
provided in generic form here. If the observation mechanism is provided, it can however be generally
assumed that each observation o;"t of the execution of uncooperative behaviour of type b at time ¢
by a member, can be assigned a sanction sij’t. This assignment is then formalised by the following
function:

sanction(o}") = s} € [0,1]

This function resembles the assignment function of interaction outcomes to trust ratings as described
in Sec. 3.1.3, with the difference that it is restricted to negative TC interactions. Just as with a trust
value, the TCM can then determine a related member score which aggregates the sanctions and can
serve as decision criterion for the application of a final sanction, the TC exclusion. The score for an
agent x at a time ¢ is then formalised by the following function:

t
score(x, t, thresg) := Z sg’f (4.18)
t—thresy
with thres; denoting a forgiveness threshold, being an interval beyond which sanctions are forgiven
(ignored). Such a score can then be utilised to decide whether to exclude an agent x from a TC by
the application of a maximum score scoremqx € [0,1], such that the basic Member Control strategy



4.6. Trusted Community Strategies 87

encodes the following function:

feentrol Mee (1), thress, scoremqy) := E(t) (4.19)

= {e € Mrc,(t)\ {temrc, ()} ‘ score(e, t, thresg) > scoremax}

All agents (except the TCM itself°) that have a higher score than the maximum score, based on
sanctions within the forgiveness interval, are identified as agents to exclude. Additionally, the basic
implementation lets the TCM advertise the function sanction(o’b"t) to its members, and allows the
members to request information about their current score score(x, t, thresf) from the TCM. This forms
an implicit contract between TCM and members, and can incentivise cooperative behaviour if the
members adapt their behaviour based on this information.

Finally, each excluded agent e € £(t) is added to the blacklist £(¢) (along with the time ¢ of the
exclusion), while agents that have been blacklisted for a duration longer than a forgiveness interval
trorgive are removed from L(t).

Implementation requirements and refinement

Implementations of Member Control strategies must provide some means of member behaviour ob-
servations in order to allow for the sanctioning of members. For the case of Desktop Grid systems,
this can be again achieved by applying situation aware spot-checking (cf. e.g. [175]), see Sec. 4.6.6
for a discussion of the application for Active TC Expansion strategies. In general, the worst case of
an implementation leads to extensive observation overhead that devours the benefit of TC member-
ship by exchanging the initially abandoned safety means with a different type of costly safety means.
This can lead to an exodus of TC members based on the execution of their Membership Evaluation
strategies. On the other hand, a too weak control of members can likewise damage the benefit and
stability of a TC, as TC members can be exploited by fellow members, in the worst case without
even being aware of this. Again, the implementation of such strategies is therefore dependent on a
trade-off between risk and control overhead.

4.6.8 TCM: Role-Assignhment Strategies

The management of a Trusted Community is delegated to the TC manager. For this, the agent is
equipped with TCM-strategies that require data for the decision-making, and specify tasks to retrieve
and process this data. These tasks have to be executed to ensure the operation and optimisation of
the TC. However, as discussed in Sec. 4.5, the TCM is a self-interested agent like any member. As
such, the TCM is interested to distribute the responsibility for the execution of these tasks to its mem-
bers and reduce its own effort to the processing of the task results for the decision-making. The key
principle of the TC approach is hence to divide the management tasks of the TCM to roles, and
assign these roles to TC members. TC members are obliged to execute the associated tasks. This
is controlled through the execution of the Member Control strategies (see Sec. 4.6.7) and motivated
with the incentive to remain a TC member.

5A rational and self-interested agent will never exclude itself from a TC if it provides an increased utility to it. If the benefits are
not provided, the agent leaves the TC anyway, based on the execution of its Membership Evaluation strategy. There is hence no
reason for a TCM to consider its own exclusion.



88 Chapter 4. Trusted Community: A Novel MAS Organisation

The organisation of agent collaboration by the division of responsibilities to roles and assignment
of these roles to agents is one of the most active research fields in Multiagent Systems (cf. e.g. [195]).
The application of roles is reported to allow for an engineering perspective to MAS (specification of
functionalities without the need to specify responsible executors), allow for the development of spe-
cialisation, and reduced competition for tasks. For the purpose of TC management, the engineering
approach is clearly in the focus: Management roles specify the functionality required to maintain
the operation of the TC without directly determining which members are responsible for which func-
tionality. This is especially useful as the dynamics in the system (TC members being included and
excluded) require to frequently reassign the responsibilities. This view on roles, adhered to in the
remainder of this thesis, classifies roles as functional (as opposed to social), explicit (as opposed
to implicit), and individual (as opposed to collective requiring coordination among the executors) (cf.
e.g. [195]). Furthermore, the meta role specifying the assignment of roles is taken solely by the TCM
(as opposed to collective role assignment with consensus approaches). Finally, this allows to form-
alise the Role-Assignment strategies as follows: The TCM assigns each role from the set ¥, (t) to
its TC members Mrc,(t), such that:

froles(Mre, (8), ¥re (1) := { (m, ¥ (t)) ) m e Mrc,(t), ¥m(t) C ‘Yrc,(t)} (4.20)

with ¥, () being the subset of roles assigned to a member m at time ¢, such that all roles are assigned
to the agents:

U nt) = 1, (1),

but no role is assigned to more than one agent:

(¥l =@

The TC manager tcmrc,(t) then performs the role assignment operation for all pairs (m, ¥, (t))
generated by the execution of the strategy, to inform all members about the new role allocation, such
that:

V (m, ¥ (t)) Vr € ¥p(t) : 7 ~tomic(t) gy

The division of TC management tasks to roles and the execution of Role-Assignment strategies
to distribute these to TC members increases the robustness of the TC approach: The reduction of
the regulatory overhead for a TCM is self-protecting. This is due to the fact that a TCM is a self-
interested agent that joined a TC to gain some benefit (also see the discussion in Sec. 4.5). An ex-
clusive occupation of a TCM agent with management tasks would substantially lower this benefit and
consequently render the TCM position a highly undesired one. Agents would have a strong incentive
to not be elected as TCM, and once elected, to immediately leave a TC and try to join another TC as
regular member. This would decrease the stability of a TC. Additionally, these strategies also make
a TC self-optimising as an effective management division and role assignment can lower the over-
all overhead of managing the TC. This overhead reduction as superior goal of the Role-Assignment
strategy execution is then guiding the following basic implementation of this strategy.

Basic strategy implementation

The basic implementation of this strategy is based on the following considerations:



4.6. Trusted Community Strategies 89

The set of roles specified for a Trusted Community represents the total overhead of TC mem-
bership. The assignment of these roles to the members is then a distribution of this overhead. The
members of a TC are expected to possess the willingness to execute assigned roles (other cases
must be accounted for by the Member Control strategies as described in Sec. 4.6.7). The TCM does
hence not need to reason about the reliability of the role execution. However, it is assumed that
the members of a TC also possess a competence to execute assigned roles: Each agent m; has a
scenario- and TC-configuration-specific capability to execute tasks associated to a role r,, and this
allows for a quantification of the execution costs c;,, », for this agent. Additionally, it is assumed that
the competence is heterogeneous among the agents, such that the costs incurred by the execution of
arole r, can differ for two agents, with ¢y, r, # cmjr,. Itis further assumed that the TCM knows these
costs for its members. The basic implementation of the Role Assignment strategy is then aimed
at allocating the roles ¥, () to the members in a way that minimises the total costs and thus the
overhead for TC membership.

Given these assumptions, the above defined function is then interpreted as (linear) assignment
problem. This allows to apply verified algorithms from the literature. Details about these algorithms,
as well as the discussion of their application for the assignment of roles to TC members can be found
in appendix A.2. Summarising this approach, it can be stated that if the scenario-specific nature of
the roles allows for the formulation of a cost matrix, such that the costs for the execution of a role
by an agent can be quantified, then the implementation of the Role Assignment strategy can be the
algorithm to solve an assignment problem. The exact choice of that algorithm then depends on the
number of roles in relation to the number of agents.

Implementation requirements and refinement

So far, the description of the Role-Assignment strategies has assumed an available set of roles
Y¥rc,(t) that encapsulate the required TC management tasks and need to be assigned to the TC
members. The process of dividing the required TC management into these roles has however not
been defined. In fact, the division of a system’s functionality to appropriate roles is still one of the
open issues in the literature on (explicit) role allocation (cf. e.g. [195]). A generic procedure has
thus far not been proposed, but the modular design of the TC approach allows for at least coarse
guidelines as how to divide the functionality into roles: The total of distributable management tasks
is derived from the decision-making of the TCM-strategies. Consider the following examples:

e Basic Active TC Expansion strategy: As described in Sec. 4.6.6, the TCM can actively search
the unassociated agents for potential TC members by determining which agents it estimates as
trustworthy. However, this limits the search to agents that had interactions with the TCM and
thus does not cover a large set of potential agents. The basic implementation hence introduced
the processing of sets of member candidates P™ (t) proposed by single TC members m, to
explore more unassociated agents. Depending on the number # of such opinions, the TCM can
utilise a set of exploration roles {r1, .., r»}: An agent m assigned such a role is then responsible
for the tasks of (periodically) generating the set P™ () by executing its Potential Member Search
strategy, and of sending this data to the TCM.

e Basic Member Control strategy: As described in Sec. 4.6.7, this strategy realises a sanctioning



90 Chapter 4. Trusted Community: A Novel MAS Organisation

scheme for undesired TC member behaviours as observed by the TC members. One source
of these observations are the members themselves that have an instrument to complain about
each other in case of negative interaction outcomes. The second source described by the basic
strategy are the collective observations oj}"t of members. Here, the TCM can generate obser-
vation tasks that are associated to observation roles. These tasks can for example incorporate
the mediation of inbound interactions, or the explicit testing of members (e.g. by spot-checking
in Desktop Grid Systems). These observations are then passed to the TCM that can process
them and decide about sanctions.

e Basic Member Control strategy: This strategy allows for additional division of roles. As dis-
cussed in Sec. 4.6.7, the TCM applies a scoring system to track the sanctions of its members
and judge on their exclusion from the TC. The score score(x, t, thresy) for each agent x is then
an aggregation of these sanctions. However, the storage of these scores at a central position,
the TCM, is a single point of failure: If the TCM leaves the system or the TC, the member
scores are lost and the next agent elected as TCM must work with a whitewashed view on the
TC members. It is hence advisable to generate storage roles that are constituted by tasks to
store a set of scores for other members and provide access to it to the TCM (cf. distributed
hash tables). If a new TCM is elected, it only needs to determine from which agents to retrieve
which data, but the data itself is present and can be used by the TCM. This further increases
the robustness of the approach.

Further roles are then derived from specific implementations of the TCM-strategies and can incor-
porate scenario-specific tasks. Note here that the execution of these roles is perceived as overhead
(of TC membership) by the agents. This is because they require actions that would usually not be
performed by the agents: The roles have absolute costs (e.g. communication or processing costs),
as well as opportunity costs (the resources required for the execution of roles are blocked by the exe-
cution and cannot be used for other actions that can raise the agents’ utility) associated to them. This
also allows to specify the costs of the execution: An agent that represents a client with low amounts
of energy, disk space, communication bandwidth etc. will have higher costs for the execution of these
roles than an agent with an abundance of these resources.

Given the existence of such management roles, the assignment of these roles has been for-
mulated as assignment problem in the Basic Role-Assignment strategy. The implementation then
utilised the (modified) Hungarian Method to find an assignment that minimises the summed costs for
the execution of these roles. This assignment goal is however not without alternatives:

e Fairness goal: The minimisation of the total costs does not enforce fair role assignments.
Members with low costs (due to high amount of resources) are assigned more roles than agents
with low resources. Also, the basic implementation is not iterative, thus it does not account for
past role allocations. This will result in capable agents being constantly occupied with roles.
Dependent on the realisation of their Association Evaluation strategy, this can influence their
decision to remain a member. An alternative implementation might hence have the goal to
enforce fair role assignments based on even long-term distribution among all members. Higher
total costs are then accepted. The even distribution of roles can also help to increase the



4.6. Trusted Community Strategies 91

robustness against the impact of leaving members. Consider for example an agent with many
important roles leaving the TC.

e Preservation of TC composition goal: As discussed e.g. in Sec. 4.6.7, each leaving member of
a TC can decrease the utility for the other members as it reduces their choice of partners for
optimised interactions. Agents leave a TC when the benefit of TC membership is not strong
enough. This is negatively influenced by assigned roles, because of their execution costs. An
alternative implementation can hence be primarily aimed at preserving the composition of a
TC by relieving agents that are close to leaving a TC from their roles. This requires firstly the
information about the members disposition to leave a TC, and secondly involves the potential
for conflicts and exploitation by members. The decision-making must hence allow for a fine-
grained balancing of the various interests.

Additionally, a changed TC composition or set of roles do not necessarily require to reassign all
roles. Instead, an iterative approach could be chosen to reassign only those roles that have been
unassigned by the exclusion of the formerly responsible agent. Such an implementation however
only allows for the reaction to such change events and not for the active avoidance of them. It has
therefore not been applied in the basic implementation.

Apart from these TC specific ideas, the body of literature on MAS role allocation is rather large
and allows for various additional approaches to be used in this context. Finally, all implementations
must avoid the case of affecting the TC stability by assigning roles to single members such that they
are driven away because of the associated overhead. In the worst case, this generates feedback
effects and leads to the dissolution of a TC. On the other hand, the best case is to assign roles such
that the costs of TC management are minimised while the stability of the TC is preserved through fair
role assignments.

4.6.9 TCM: TC Observer and TC Controller

The TC Manager is responsible for the management of its Trusted Community. So far, strategies
for the inclusion of new members, the exclusion of uncooperative or adversary members, as well
as strategies for the assignment of roles have been presented. These represent the main activities
required to allow for a robust TC operation, by realising the properties self-protection, self-healing,
self-explanation, and self-optimisation. For each of these TCM-strategies a basic implementation, as
well as directions for refined implementations have been proposed. These implementations contain
many parameters and require a fine-tuning towards the application in the hosting system. Here, the
question arises, which implementations of these strategies should be applied by the TCM for the
management of a certain TC, and how these implementations should be parameterised. This is es-
pecially challenging when the characteristics of the hosting system are considered: As discussed on
many occasions in this thesis, the hosting system is a complex system with high dynamics. Emergent
states, such as a trust breakdown, can occur due to agent interactions. Additionally, agents, even TC
members, can strategically adapt to their environment, interacting with each other, and expressing
behaviours unforeseen at design time. While the TCM has been given instruments to cope with such
threats, the exact utilisation of these instruments cannot always be specified in advance. The TCM
rather requires tools to analyse its management, based on the received performance, and to adapt



92 Chapter 4. Trusted Community: A Novel MAS Organisation

it when necessary. This is beneficial for both, the prevention of inappropriate management in abnor-
mal situations (e.g. utilisation of trust-based strategy implementations despite trust breakdown), and
optimisation of the management to the current situation (e.g. adaptation of thresholds to account for
changes in agent behaviour).

This requirement for self-aware observation and control at runtime is the focal point of the Organic
Computing initiative. Research in this field has resulted in the specification of tools for such environ-
ment. In the following, the TC Observer and TC Controller, realising the OC-tool Observer/Controller
design pattern (cf. e.g. [134], [38]), are presented as final TCM-decision-making strategy.

Observer and Controller have already been introduced in Sec. 3.1.2 as central part of the agent
model. Their defining design pattern allows for the implementation of a regulatory loop to optimise
and adapt the control over a production engine. In the agent model, the production engine has been
directly linked to a client for the participation in the hosting system. The observation and control of
this client, especially its performance expressed in terms of a utility U* (), then allows agents for a
situation-aware adaptation of the client control. Agents can for example exchange their TC strategies
at runtime, and thereby their decision-making and control, based on observations of the hosting
system or their own state. While TC Observer and TC Controller adhere to the same principle of
a regulatory loop, this loop is located on a higher level of hierarchy (cf. e.g. [134]). Here, the term
system under observation and control (SuOC) fits the description better than the term production
engine: This SuOC is the Trusted Community managed by the TCM. The TC Observer and TC
Controller are hence utilised for the observation of the TC environment, and adaptation of the
TC management based on these observations.

For a system designer, it is possible to analytically evaluate the performance of TC application
for its members a posteriori. However, in order to adapt the management of a Trusted Community
during its operation, the TC Manager needs to assess the Trusted Community at runtime. A metric
is hence required that allows for the assessment of this SuOC, equivalent to the utility function U*(¢)
for the assessment within the agent’s O/C-loop. The realisation of this metric via a generic function
UTCi(t) is based on the following considerations:

e The aim of a Trusted Community is to provide an environment in which agents increase their
utility (compared to the utility when being unassociated). As described in Sec. 4.6.2, this is the
reason why self-interested agents join a TC, and as described in Sec. 4.6.4 the lack of such
increase is the reason why agents leave a TC. The goal of the TCM must then be to execute its
TC management such that it increases the utility of its members. This can be expressed with a
relative TC utility quantifying the utility benefit for all TC members.

e The TCM can request private information (such as the current utility) from its members, and the
members have an incentive to provide this information as they are sanctioned if they reject to
do so.

e The members also have an incentive to provide valid private information as this information is
used to improve the benefits of TC membership in general, and their own benefit in particular.



4.6. Trusted Community Strategies 93

Given these considerations, the relative TC utility UTCi is formalised by the following function:

m m
TG (Uml(t),..,u | M1, 0] (1), U™ (t,),.., U | M1, )] (tu)) (4.21)

1 ‘MTCi(t)|
= U () — U™k (t,)
MO & “
which requires the current utility values U™k (t) of each member m;, as well as the utility values
U™« (t,) for the time ¢, of the TC association (when the agent was granted membership). The sum of
the utility differences is divided by the number of members a TC has in order to decouple the utility
value from the TC size and allow for comparisons between TCs.

Let the utility function U™« (¢) of an agent be assigned values from the interval [0,1], then the
relative utility U™« () — U™ (t,) of a single agent takes values from the interval [—1,1]. Consequently,
the relative TC utility function takes values from the interval [—1,1]. When the function approaches 0
though, this means that the TC does not, in average, generate benefit for its members.

Now that the metric for the adaptation of TC management is defined, the information to observe
and the control to adapt by the TCM can be examined: The management of a Trusted Community
is executed via implementations of the TCM strategies Active TC Expansion, Member Control, and
Role Assignment. Additionally, the Distributed Leader Election strategy is counted as TC manage-
ment strategy, because it is executed at the operation phase of a TC and indirectly determines the
realisation of the other TC management strategies by electing an executing TCM. These are the in-
struments that are at disposal for the Controller. These strategies must be executed such that they
result in a high relative TC utility UTC:. The outcomes of the execution are however dependent on the
environmental state: The hosting system, as well as the TC, are subject to dynamics that influence
this outcome. The TC Observer must hence add a description of this environment to its observation
of the outcomes. In sum, the purpose of this O/C-loop is to determine the right sets of TC strategy
implementation parameters for a given situation, based on the resulting relative TC utility.

Consider the following illustrating example: The Basic Member Control strategy, described in
Sec. 4.6.7, defines how TC members should be sanctioned, based on the specification of a forgive-
ness threshold thres I and a maximum score scorey.x. The setting of these parameters determines
how TC members are excluded from the TC. If for example, forgiveness and max score are set very
high, TC members are allowed for many uncooperative actions before finally they are getting ex-
cluded. On the other hand, a very strict interpretation that applied close to no forgiveness and a low
max score punishes TC members for uncooperative actions directly and ultimately. But how should
these parameters be set? This is dependent on the application scenario and can be only approx-
imately be defined at design time. Rather must the environment be observed to allow for the best
setting: Do TC members constantly exploit high max scores by being frequently uncooperative? Or
do uncooperative member agents come in bursts and agents express a high degree of cooperation
before? This may be hinting at limited periods of overload that result in the rejection of further com-
mitment. In order to analyse such interrelations, the observer must here for example monitor the
patterns of uncooperative member behaviour, their degree of commitment for other members etc.
Then the controller can adapt these parameters and the TCM can evaluate whether these adapted
parameter settings lead to a better TC management in terms of a higher relative TC utility.



94 Chapter 4. Trusted Community: A Novel MAS Organisation

The ability to set the parameters of the applied TCM-strategies is a low-level adaptation of the
TC regulation. Parameters can take many different values and the exploration of the result space is
a time-intensive optimisation problem. Apart from these adaptations, the O/C-loop however allows
for further high-level adaptations: The result of the TCM-strategies is obviously determined mostly
by their implementation. In this thesis, basic implementations of these strategies have been defined,
and scenarios discussed in which refined implementations can be applied to improve the execution
results. The high-level adaptation focusses on the adaptive application of the most suited strategy
implementation for a given situation. This optimisation problem is then much more limited than the
previously defined one: Given a set of strategy implementations, the O/C-loop must determ-
ine which implementation should be chosen to achieve the highest relative TC utility for a
given situation. Obviously, the difficulty of this problem is then related to the number of available
implementation alternatives (as depicted in Fig. 4.3).

Advanced

s [ oo O o Jrom rom | rem R v

Base

configeration || M || M I M \I\ M || M |Tem| Tem| Tem | Tem | Tem |

Scenario-

= ™ e
strategies

Trust-based
strategies E ™ | Tem | Tem || Tem|

Generic

grategies | M I M | (M| ™| ™ |Tcm| Tem| Tem| Tem | Tem|

Figure 4.3: TC strategy implementations (for (M)ember or (TCM)-strategies) to choose from for a
TC configuration. The choice of the best implementation for a given situation is part of the TCM
responsibility and realises as search problem via an O/C-loop

In the realisation of such a TC O/C-loop, the following assumptions are made: (1) The TCM does
not need to determine an initial set of control parameters or strategies. Rather is it equipped with a
default implementation of the TCM-strategies (as part of A‘;egg””, see Sec. 3.2.3) that also presets
the required parameter values. The aim of the TCM is hence to optimise these settings, but not to
find an initial working configuration. This is equivalent to the assumption of training data for the case
of machine-learning. (2) Just as the availability of parameter settings for a default system state is
provided for, the TCM can also refer to strategy implementations for known disturbance states. This
allows the TCM to utilise these special strategies in case it detects such a state. Apart from scenario-
specific disturbance states (e.g. overload in Desktop Grid Systems), a particularly relevant state is
the trust breakdown referred to frequently in this thesis. In such a state, the TCM must assume
that trustworthiness data is incorrect, and hence requires strategies that refer to other information for
the decision-making. The TCM hence knows beforehand that the application of trust-based TCM-

strategies will have a low utility when applied in a trust-breakdown scenario, and that the application



4.6. Trusted Community Strategies 95

of trust-independent strategies will increase this utility. (3) The execution of TC Observer and TC
Controller must at least determine whether a TC should be dissolved (for further detail see ap-
pendix B). This minimal requirement is motivated by the following considerations: The processing
of a TC utility function by the O/C-loop allows to determine whether a TC should be dissolved, be-
cause it indicates that the TC provides no benefits to its members (UTC < 0, see the discussion for
Eqg. 4.21). Although the TC members can evaluate the lack of their own benefit by execution of their
Membership Evaluation strategies, which also applies to the TCM, it is generally more beneficial to
dissolve a non-proficient TC than to try and preserve it. This is especially true because cooperative
members can form new TCs.

Finally, the realisation of the O/C-loop, such that it allows for a performance-driven TC manage-
ment adaptation (low-level and/or high-level), enforces the self-x property self-optimisation of the
TC approach. Additionally, the situation-aware choice of strategy implementation increases the TC
robustness towards abnormal system states by making the TC self-protecting. Overall, both types
of adaptations are additionally forms of self-configuration.

In the following, a basic O/C-loop implementation is presented and additional implementations
discussed.

Basic strategy implementation

The basic implementation of the O/C-loop is focused on an aspect of system operation mostly neg-
lected in the literature: The maintenance of the successful operation of a MAS organisation, managed
with trust-based decision-making, in the event of a trust breakdown (as defined in Sec. 3.1.4).

This realisation of an O/C-loop is hence targeted at the high-level adaptation of the TC manage-
ment: After detecting a trust breakdown, a TCM must adapt its TCM-strategies such that it chooses
implementations for execution that do not require a valid TM operation. This is based on the consid-
eration that the application of strategy implementations with such a requirement in a trust breakdown
state have no effect on the TC management (in the best case) or even a detrimental effect on it.
Consider the following two examples:

1. The application of a trust-based implementation of the Distributed Leader Election strategy (as
presented in Sec. 4.6.5): In a trust breakdown scenario, most TC members can be expected
to have a low or negative reputation (see Eq. 3.7). The choice of a TCM based on its reputa-
tion in the TC, as proposed by the basic implementation, hence allows no statement about its
willingness to manage the TC. Here, the application of this strategy implementation can have a
negative influence on the utility of a TC, if an adversary agent whose negative behaviour is hid-
den by the equality of low trust values is elected as TCM. A trust breakdown is however hardly
predictable, the strategic adaptation of an adversary agent to become TCM only in case of a
trust breakdown is therefore a possible, if unlikely threat. Thus, in most cases it can be expected
that a TCM chosen based on the rather random reputation value is cooperative. Nonetheless,
the random election of a TCM is less costly (in terms of duration and message complexity, see
Sec. 4.6.5), and revealing less private information. Its application should hence be preferred in
this scenario.

2. The application of a trust-based implementation of the Active TC Expansion strategy (as presen-
ted in Sec. 4.6.6): The aim of this strategy is to compensate leaving TC members and to op-



96 Chapter 4. Trusted Community: A Novel MAS Organisation

timise the TC composition by finding new potential TC members in the set of unassociated
agents. The proposed basic implementation of this strategy utilises the opinions of members
about unassociated agents to make this selection. More precisely, the TCM requests the out-
put of their Potential Member Search strategies. The basic implementation of this strategy is
based on a trust threshold as main criterion for the suitability of unassociated agents. In case
of a trust breakdown, this threshold is never met due to the low or even negative trust values
of agents in the system. The respective TCM Active TC Expansion strategy will hence receive
only empty sets as input and consequently never determine any agents to invite. The strategy
can thus not fulfil its task of preserving and optimising the composition of the TC. While the
latter task can be neglected in case of a satisfying relative TC utility, the failure to compensate
leaving TC members will eventually lead to the dissolution of the TC. By the utilisation of a
trust-independent Active TC Expansion strategy, such as a test-task-based approach (see dis-
cussion in Sec. 4.6.6), the fulfilment of these tasks can be maintained and negative influences
on the TC operation avoided.

Above, the assumption has been made that the TCM is aware of alternative non-trust-based
implementations for its management strategies, such that it can decide to utilise these instead of
the trust-based implementations. Let AfT”gsot denote a trust-based TC organisation component (as
defined in Sec 3.2.3), i.e. an implementation of this component that uses trust-based TCM-strategy
implementations. Let then A’%@gt be an implementation of the TC organisation component that is
composed of TCM-strategy implementations that do not require trust (the above mentioned alternat-
ives). Let additionally the binary variable Z(Af%") denote whether the trust-based implementation
is used or not. Let further the function switch(Arco) denote the exchange of the TC organisation
component implementation by the TCM. In reference to the definition of a trust breakdown presented
in Sec. 3.1.4, the basic implementation of the O/C-loop can then be formulated as the realisation of
the following function:

true, i Bé(t>(m) NI(AFES)
1O/C (Bé(f) (m), Z( tﬁ%)) = < true, if —Bé (m) NI(ABITS)) (4.22)

false, else

()

This function encodes the decision whether the switch(Arco) operation should be applied by the
TCM: In case of a trust breakdown, the TCM arranges for the utilisation of trust-independent imple-
mentations, and vice-versa. The remaining question is how the TCM determines Bg(t)(m), hence
whether there is a trust-breakdown in the group G(¢). This is approached based on the following
consideration: The trust breakdown is defined over the aggregation of direct trust values within a
reference group G(¢) of agents, also referred to as the reputation of agents within this group. In order
to evaluate the presence of a trust breakdown, the TCM must firstly define this reference group G (),
and secondly acquire® the reputation values for this group of agents. A relevant agent group G(t)
is determined as such: All TCM-strategies that consider a set of agents and require positive trust
relationships within this group, provide subsets of this group. In the basic implementations, these
are the group of unassociated agents U™ (t) (for the Active TC Expansion strategy implementation),

6Note that in case of the availability of a global reputation value RT;‘Q’(E[), the global trust breakdown Bj(,) (m) is trivially observ-
able.



4.6. Trusted Community Strategies 97

and the group of TC members M, (t) (for the Distributed Leader Election strategy implementation).
The composition of this group is hence:

G(t) == UM (1) U Mrc, (1)

The TCM then divides this set of agents, and distributes the task of collecting of according reputation
values as roles among its members (see Sec. 4.6.8 for the discussion of the understanding of roles).

Additionally, the basic implementation of this O/C-loop is used to determine whether a TC should
be dissolved (for further detail see appendix B). The basic approach to this is formalised by the
following decision function:

o ((nte

m m
T (1m0 ), U ) 0 1)) a2

true, if ‘MTQ(,)’ =1
m m
=< true, if UTC (t, um(t),.,u Mol um,), ., u |Mrci<‘>\(ta)) <0
false, else

This implementation causes the TCM to dissolve its TC when it is its only member (see requirement
definition in Sec. 4.2), or if the relative TC utility is below 0, such that the TC provides no benefits to
its members (see the motivation for this in the above description of this utility function).

Implementation requirements and refinement

The application of an O/C-loop for the situation-aware adaptation of the TC management by the TCM
is a potent tool. In the basic implementation of this loop, only the high-level adaptations have been
exploited. A refining implementation can complement this approach by the utilisation of low-level
adaptations, i.e. the adaptation of strategy parameters instead of strategy implementations. In this,
the literature on Organic Computing provides many case studies that can serve as blueprints for such
arealisation. Consider for example the realisation of an O/C-loop with a Learning Classifier Approach
for the control of a Traffic Light System (cf. e.g. [31]). The basic implementation presented here would
benefit from such an approach in the following way: The trust breakdown observation is based on the
utilisation of a parameter m, for the quantification of the percentage of agents with a low reputation in
the reference group (see Eq. 3.7). Consequently, the basic implementation of the O/C-loop presented
defines such a parameter m to specify whether the observed reputation distribution in a group G(t)
should be interpreted as trust breakdown (see Eq. 4.22). Now if machine-learning-based low-level
adaptations of this strategy parameter are utilised, the proactive detection of trust breakdowns is
enabled: A trust breakdown does not occur instantly, rather does it follow a monotone development
leading to low reputation values of a majority of agents (m - |G(t)|). An adaptation of m to a lower
value results in a faster detection of a trust breakdown. However, not in each such situation will a
trust breakdown actually develop. The distribution of low reputation values can also be a temporal
state in the system from which the system recovers. The O/C-loop has hence the responsibility to
analyse the correlation of the system states with respect to the indication of a later trust breakdown.
Finally, the fast detection of this emergent state allows the TCM to increase the robustness of its TC,
by switching to non-trust-based strategies earlier.



98 Chapter 4. Trusted Community: A Novel MAS Organisation

A different approach that can be realised by the utilisation of a refined O/C-loop is the evaluation
of the synchronisation of the TCM-strategies. Consider the following example: The Active TC Ex-
pansion strategy is responsible for the inclusion of new members in the TC. Complementary, the TC
Member Control strategies exclude members from the TC. Both operations influence the relative TC
utility, which can be observed by the TCM. An adaptation approach here could allow to analyse the
agents invited to the TC with respect to their influence on the TC utility. As long as this strategy
implementation would invite agents that increase the ultility, it would be left unaltered. If however
the utility would steadily decrease after the inclusion of new agents, the invitation process should be
stopped. If respectively implemented for the exclusion of agents, such adaptation could be utilised to
determine the composition of a TC that yields the highest relative TC utility.

Finally, the worst case implementation of the O/C-loop would decrease the stability of a TC by
the misconfiguration of the TCM-strategies, such that they would in turn provide only worst case
behaviour. The best case of the implementation allows for a full situation-aware low-level and high-
level adaptation that chooses and configures the TCM strategies such that they operate in their best
case. This would in turn result in a high relative TC utility.

This concludes the description of TC strategies and their implementations. In the following, the
configuration of a TC as a whole is briefly discussed, and the chapter summarised.

4.6.10 Strategy Configuration

The strategies included in the TC approach, and their implementations, capture the behaviour of this
approach. In this, the basic implementations of the strategies provided in this chapter are generic
and can be utilised in all instances of the hosting system class. Additionally, the hosting system may
allow for improved implementations that utilise system-specific mechanisms. While the configuration
of the TC approach with the choice of suited implementations at design time may not provide for
optimal results in all system states, the approach is self-optimising by design: The adaptation of the
TC functionality by the utilisation of TC Observer and Controller strategy implementations can be
exchanged at runtime such that they better match the required functionalities. This is detailed in
appendix B where the design of the TC organisation agent component Compy,-, is presented.

4.7 Summary

After the previous chapter ended with a motivation for the application of Trusted Communities in a
hosting system, this chapter was dedicated to the presentation of the TC design. At the beginning,
a formalisation for the TC structure and its dynamics has been defined. The main focus here has
been on the specification of TC operations: The formation of a new TC, the dissolution of a TC,
the inclusion of a new TC member, the exclusion of a TC member, and finally the assignment of a
role to an agent. The chapter continued with a classification of TC Organisation Benefit strategies.
These strategies capture the core motivation of becoming a TC member for an agent, as they allow
more and optimised interactions among TC members, and thus can increase the utility of an agent.
These strategies are scenario-specific, but can always be assigned to one of the three classes (1)
Interaction Efficiency, (2) Cooperation, or (3) Information Sharing.

The following section has then presented the complete lifecycle of a Trusted Community, intro-
ducing the three phases in which a TC can be: (1) Pre-Organisation Phase, (2) Formation Phase,



4.7. Summary 99

and (3) Operation Phase. Decision-making that needs to be executed in each of the phases has
then been introduced by the discussion of TC strategies, which are encapsulations of parts of this
decision-making. Additionally, the robustness of a TC has been brought up, and the inspiration for
its realisation has been discussed: The system theoretical view on robustness states that in order to
allow for robustness, a system must have the generic properties System control, fail-safe redundant
mechanism, modularity, and decoupling. Additionally, the Organic Computing initiative advertises the
requirement for life-like properties in such systems. These constituting properties of self-organisation
are: self-configuration, self-healing, self-protection, self-optimisation, and self-explanation. Here, the
realisation of the TC approach as system with such properties has been discussed.

The following section has presented a rationale for the utilisation of a hierarchy in a TC, by ex-
amining the head of this hierarchy, the TC Manager. Here, the motivation for the delegation of control
by the TC members to such a TCM has been discussed. This control refers to the regulation of the
TC and is especially concerned with the decision-making for the execution of the above mentioned
TC operations.

The following section of the chapter has then presented each of the TC strategies in detail: First,
the general encapsulated decision has been described, followed by a formalisation of this decision,
and a basic implementation of the strategy. Finally, the requirements for the implementations have
been analysed and refinements or alternatives to the basic implementation have been discussed.
Additionally, the self-X properties of the TCM-strategies have been explained. In conclusion, the
configuration of the TC organisation agent component has been discussed, especially with respect
to its contribution to the observation model.



5 | Evaluation

The preceding chapter covered the detailed presentation of the Trusted Community concept. In
this chapter, the evaluation of this concept in an exemplary application scenario is presented.

This exemplary instance of a hosting system is the Trusted Desktop Grid, an open Desktop Grid
System based on agents that control the grid client software (production engine). After an introduction
to this system, the system model is referenced by providing the applied Trust Management system,
as well as the agent model for this application scenario. In addition, evaluation results achieved
without the application of Trusted Communities are discussed and the use of the TC approach is
motivated. This is followed by the main part, the description of the application of Trusted Communities
in this system. Here, configurations composed of TC member and TCM strategies, and organisation
benefit strategies adapted for this scenario are provided. This is concluded by the presentation and
discussion of the achieved evaluation results in the Trusted Desktop Grid, esp. in comparison to state
of the art approaches.

5.1 The Trusted Desktop Grid

The Trusted Desktop Grid (TDG)' is an open distributed Desktop Grid System based on MAS- and
Trust Management technology which satisfies all requirements of a hosting system for the application
of Trusted Communities. In the following, the TDG is first defined and classified. Then the challenges
in this system, and partial solutions to these challenges based on MAS and Trust Management,
are discussed. The application of TCs to improve the performance and robustness of the TDG is
motivated in conclusion. This TC application is then detailed, followed by a discussion of how the
previously defined challenges can be tackled by TC application. Finally, the results of the evaluations
(based on metrics discussed in appendix D) are presented and discussed.

5.1.1 System Classification

In this thesis, evaluations of the performance of the Trusted Community concept focus on the applic-
ation in an open Desktop Grid System - the Trusted Desktop Grid (TDG). Certain types of Desktop
Grid Systems are instances of Open Distributed Systems and thus a valid choice for a hosting sys-
tem. In the following, a taxonomy of DG Systems from the literature is used to classify the TDG.

Despite the clear differences to traditional Grid computing systems (see Sec. 2.5.2), Desktop Grid
System realisations are nonetheless rather fragmented. In the following, the exact type of the DG

"Work on the Trusted Desktop Grid has been in part conducted in cooperation with Yvonne Bernard and Jan Kantert in the
context of the DFG research unit OC-Trust (FOR 1085).

100



5.1. The Trusted Desktop Grid 101

system used as evaluation scenario is classified according to the taxonomy presented in [80]. This
taxonomy is built upon four main categories called perspectives, containing several properties to
classify DG systems. As depicted in Fig. 5.1, these perspectives are System, Application, Resource
and Scheduler. The strongest classification is provided by the System perspective, therefore firstly

H Taxonomy of Desktop Grids H

System Application Scheduler Resource
Perspective Perspective Perspective Perspective
‘ Organisation ‘ ‘ Dependency ‘ ‘ Organisation ‘ ‘ Altruism ‘
l Dedicati
edication
Mod! L
‘ ode ‘ ‘ (Volatility) ‘
Resource Provider ‘ Dynamism ‘ ‘ Scale ‘
|
‘ Scheduling Goal ‘ ‘ State Change ‘

Failure

Registration

Figure 5.1: Excerpt from the Desktop Grid Taxonomy of [80]. The taxonomy classifies DG systems
according to four perspectives and their associated properties. Here, the set of relevant properties
for the TDG classification is depicted.

the properties of this perspective are described: The resource provider property discerns two main
classes of Desktop Grid Systems: Enterprise and volunteer-based DG Systems. Enterprise (as
well as academic) Desktop Grids are networks within a (virtual) organisation, which provide their
computational service mainly for members of this organisation. Usually, the connectivity in such
systems is rather high, while volatility, machine heterogeneity and distribution of control are low. The
most fundamental difference to volunteer-based Desktop Grid Systems is however the user base:
Participating clients are mostly from the same administrative domain (sometimes even within a local
area network) as the organisation providing and operating this service. Users are thus often known
personally and adversary behaviour disturbing the system is seldom an issue. A typical example
for an Enterprise DG is a network between research institutions from a domain that depends on
computationally intensive experiments (e.g. particle physics). Here, researchers can benefit from the
fact that nowadays computing power is often abundantly present and often not used exhaustively and
consistently. This provides for opportunities to share these resources with other researchers having
different experimentation schedules and in turn take advantages of other institutions’ resources when
experiments are conducted. Realisations of Enterprise Desktop Grid Systems are often based on
Condor (cf. [196]) or similar frameworks.

In contrast, volunteer-based Desktop Grid Systems rely on mostly anonymous users, connected
through the Internet, and willing to donate their resources to other users. Volunteers are per se a



102 Chapter 5. Evaluation

greater risk than organisation members or even owners of dedicated machines: By volunteering, a
user gives no guarantee as to which degree it will provide any service and because of anonymity,
adversary behaviour of users can be a serious issue. Additionally, participating clients are hetero-
geneous in terms of provided computational power, storage capacity and availability. Consider for
example users from varying time zones or users connecting only on rare occasions.

In summary, the resource provider property discerns Enterprise and volunteer-based Desktop
Grid Systems. Enterprise DGs are closed systems (as opposed to Open Distributed Systems) and
therefore not suited as hosting system for the application of Trusted Communities. From here on,
the classification of the Trusted Desktop Grid as a volunteer-based DG is adopted and the further
classification according to the properties of the system perspective is applied to this type of systems
only.

Further classification of the TDG is based on the organisation property: Centralised DGs are
based on a client-server-volunteer model while Distributed DGs are managed without servers. In
Centralised DGs, the servers are mainly responsible for managing volunteers (bootstrapping, iden-
tification, exclusion etc.) and scheduling jobs created by the clients on volunteer machines. Most
centralised Desktop Grids use the following scheme: Clients generate jobs and contact the servers
which then choose appropriate volunteer machines and inform them of new tasks to process. Re-
scheduling in case of failures (volunteer machines can be unreliable) and result verification follow
next, before the clients are requested to fetch the task results. It is important to note that in those
systems volunteer nodes do not submit jobs to the server. Therefore, volunteers need incentives to
participate in the systems. A common approach to this is to establish a DG for scientific computations
that benefit the greater public good and motivate users connected to the internet to donate their spare
resources for this purpose?. In contrast, Distributed DGs transfer the management and scheduling
mechanism to the clients, which are then for example responsible for finding suited volunteer ma-
chines. Additionally, Distributed DGs can be designed as Peer-To-Peer (P2P) systems - this not only
refers to the connectivity in the system, but more importantly to the fact that each grid node can
submit jobs to other nodes, thus the distinction between client and volunteer is not valid any more.
This creates an entirely different motivation for volunteers to participate compared to Centralised DG
systems: Here, users are self-interested and participate in the system in order to let other volunteers
process tasks from their own computationally intensive applications, like for example the rendering
of large animation scenes (cf. e.g. [198]). In turn, they are obliged to donate their own resources to
other users. An exemplary implementation of such a system is the Organic Grid® (cf. [182]).

In summary, the organisation property discerns between the server-based Centralised DG and
the Distributed DG systems. The management of system participants with a centralised server ar-
chitecture is a closed system approach: Each new system participant has to contact a server when
entering the system and whenever it interacts with other participants (consider for example the cent-
ralised scheduling scheme), thus the servers control the participants. In contrast, Distributed DGs
distribute the control among all participants, and interactions are executed directly between them. Ad-
ditionally, new participants can enter the system without following the specifications of servers, and

2The most prominent example is the Berkley Open Infrastructure for Network Computing (BOINC) (cf. [197]) enabling research
institutions to establish projects and set up clients that submit tasks to volunteer machines via the BOINC-servers. An exemplary
project is Docking@Home, a collaboration between the University of Delaware, the Scripps Research Institute and the university
of Berkley. The aim of this project is to find effective drugs for diseases like AIDS and cancer by finding promising molecule binding
combinations via simulation (called docking).

3This work is not related to the field of Organic Computing as introduced in Sec. 2.4



5.1. The Trusted Desktop Grid 103

do so anonymously. Therefore, only distributed systems fulfil the requirements of an Open Distributed
System as application scenario for Trusted Communities.

The remaining two properties of the system perspective are scale and platform. The scale prop-
erty discerns between Internet-based and LAN-based DG Systems. LAN-based systems are closed
systems controlled within a single administrative domain and thus no ODS. Instead, the TDG is
designed as internet-based system. The platform property differentiates between Web-based and
middleware-based systems in the context of the technical realisation of a client machine. The TDG
relies on a middleware-based solution, however this property has no influence on the openness of a
system and can therefore be neglected here.

This completes the classification according to the System perspective in the taxonomy presented
in [80]. In summary, in this thesis DG Systems are referred to as volunteer-based, distributed, P2P-
based, internet-based DGs with client participation over a DG middleware. The main classification is
depicted in Fig. 5.2.

Distributed
Computing

Desktop Grid Grid

Volunteer DG ‘ Enterprise DG ‘

N

Centralised DG ‘ ‘ Distributed DG ‘

|

p2p-based
distributed DG

Trusted
Desktop Grid

Figure 5.2: Hierarchy of distributed computing systems and classification of the Trusted Desktop Grid.
The main discriminating characteristics are the volunteer-based approach and the decentralisation.

In the following, the taxonomy is used to classify the TDG according to a selection of relevant
properties from the application, scheduling and resource perspective.

The Trusted Desktop Grid is a system where each client operates its own scheduler (submitter
component) to distribute work units (WUs, also referred to as tasks in the literature) generated by
an application on the host machine. In the taxonomy, the property application dependency discerns
between the type of jobs an application produces: Jobs from Bag-of-tasks (BoT) applications are
composed of work units that can be processed (and thus scheduled) independent of each other,
whereas all other applications produce jobs with some form of flow or execution dependency among
the tasks. For the evaluations presented here, BoT-applications were used, as in the majority of



104 Chapter 5. Evaluation

research literature*. The metrics are hence chosen for the context of independent jobs and work
units. Additionally, the application divisibility property classifies jobs according to their composition
flexibility, i.e. answering the question: Is the division of a job into work units fixed or can it be adapted
to the current scheduling situation (for example available resources and resource performance)?
Again, the Trusted Desktop Grid is in general capable of both approaches here. As the main focus
of this work is not on the distributed scheduling in a DG System, the evaluations were limited to the
basic form of fixed divisions of jobs into work units.

The fine-grained definition of the types of jobs (or applications producing them) in the TDG now
allows to classify the scheduling in this system according to the scheduler perspective in the tax-
onomy. The most important property to distinguish this system from other types is the organisation
property. This property describes how scheduling in a DG is implemented. As already defined in
the system perspective, a distributed scheduling scheme was used here: All clients operate their
own scheduler and there is no scheduling of foreign work units. This is in contrast to the schemes
“central” and “hierarchic scheduling”, and is a distinctive feature of this system, as most DG systems
evaluated in the literature use central or hierarchical scheduling. However, these forms of scheduling
are less challenging from the trust context and restrict the openness of an according system. The
individual schedulers of the clients further operate in push mode. This means that clients send out
WU processing requests to available workers, which then react with an acknowledgement or a rejec-
tion (scheduling mode property). For instance, this allows to detect free-riding despite decentralised
control. The next relevant scheduling property is dynamism, where (dynamic) online and (static) off-
line scheduling are discerned. In an open system like the TDG, where host and resource availability
are subject to constant change, only online scheduling is possible. The final property needed for
the TDG scheduling classification is the scheduling goals property. This property defines which per-
formance metrics are used to evaluate the scheduling sub-system in a DG. In the TDG, the metrics
speedup, waste, and accuracy are used. For a definition, extensive analysis and rationale consider
the performance metrics section in appendix D.

The resource perspective of the taxonomy specifies properties of single DG participants, the
resource owners. In the TDG, participants are connected through the Internet (scale property) and
donate their resources voluntarily. The latter implies that on the one hand, their resources are not
dedicated to the DG, but users only donate spare resources with the availability of these resources
being highly dynamic (dedication and state change properties). On the other hand, it means that
altruism cannot be expected: Users can participate in the grid for the sole motivation of exploiting the
resources provided by other participants without providing their own resources to the system (referred
to as free-riding). Also, due to the openness of the system, participants are free to join and leave at
will (registration property). With only low requirements on the joining participants, their machines are
heterogeneous (heterogeneity property) and can be composed of unreliable hardware that produces
errors (faulty property). Most importantly, the openness of the system, along with the autonomy of
the participants, involves the risk of adversaries in the system (trust property).

This completes the classification of the TDG in this thesis. However, the taxonomy of DG systems
followed here (cf. [80]) further classifies these systems according to many additional properties within
the perspectives (see Fig. 5.1). In this thesis, a full systematic classification is not applied, as the

“However, the TDG is in general also suited for flow and execution-dependent applications, provided an according submitter
component implementation.



5.1. The Trusted Desktop Grid 105

TDG either does not have strict requirements on the remaining properties, or they are not in the focus
of the TC applicability.

5.1.2 System Formalisation

In the following, the characteristics of the TDG, as classified according to the taxonomy, are described
in more detail, and the underlying assumptions regarding the processing of work units are formalised.

The Trusted Desktop Grid is spanned between the machines of a group of hosts over a network.
The owners of these hosts execute applications that produce DG jobs consisting of atomic work units.
A user wants all generated jobs to be completed. For this, all contained work units must be processed
until a valid result is obtained. In this, the host can request resources from other hosts in the system:
By letting other hosts process its work units, several work units can be processed in parallel and
hence the containing job can be completed much faster. In the remainder of this thesis, the following
terms are used: A host that schedules the processing of own work units to other hosts or itself, is
referred to as submitter. A host that processes work units, is referred to as worker. In the TDG, all
hosts act as submitters as well as workers, though the participation as a worker cannot be taken as
given. This is formalised as follows:

The TDG consists, at each time t, of m machines My, .. ,M,,. Throughout this thesis, the
TDG is understood as working in a time-discrete way (in the evaluation, a simulation of the TDG is
used), such that t € IN. A time step is referred to as tick. A machine M; is modelled according to
the argumentation presented in [199] and others, i.e. by defining a binary host availability (host is
on- or offline) and a resource availability uvailableResourcesj(t) as fraction of all potentially available
resources for this host. The latter aggregates CPU-availability and task execution availability (as
in [199]), hence it is assumed that, as long as a fraction of resources is available to the host, it
can actually process a work unit®. As the available resources are varying for a host (non-dedicated
machines, see above), also the available resources are dependent of a time ¢. Additionally, a machine
M; is characterised by a constant performance level PL; that abstracts from its actual hardware
performance (cf. e.g. [200]). Furthermore, computational jobs generated by DG applications are
modelled as follows: A job ¢¢ belongs to an owner a € A(t) and is composed of a finite number

(denoted as ]4);?{) of work units {Tf,rf,..., T|“¢q| } Each job has a release time ry: that denotes the

time it was generated. A work unit 7" is characterised® by the constant and abstract size costs that
provides an estimate for its computational intensity. Jobs are released when the division in work units
is complete, hence work units share the release time of the containing job. The formalisations so far
are depicted in Fig. 5.3.

This allows to define the processing model: As depicted in Fig. 5.4, each work unit 7/ from the
containing job ¢¢ of owner a traverses a life-cycle: A work unit 7 is released at release time el
which begins its life-cycle. The life-cycle ends when there is a valid result for 7. This point in time is

denoted with """ In between, the life-cycle is divided in rounds that can be interrupted at any of the

5This is because of the agent autonomy in the TDG and the assumption that an agent would not accept a processing request
with good intentions if it was not able to process it.

8The abbreviated form 7 is used wherever the owner of the work unit and its index inside the set of work units of a job are not
important for the context.



106 Chapter 5. Evaluation

Scheduler
of M,

\

Tl TZ X T|¢1a Tl Tz XX Tl(t)za XX}

a a
b1 b2
Figure 5.3: Overview of the job scheduling formalisation of a host in the TDG. Each machine M,
utilises its own scheduler to delegate the processing of work units 7; from jobs <I>;? to other machines.

round 1 round 2

. wu WU result L
Scheduling . . . . . . ) . Validation
. Migration | Waiting duration Processing duration Migration N
duration . . duration
duration duration
rel acc WU_rec proc_start proc_end res_rec res_val compl
t (=ry) t t. t. t. t. t. t;

Figure 5.4: Life-cycle of a work unit T from job ¢ in the Trusted Desktop Grid. The lifecycle begins
with the release of the according job of the work unit and ends after at least one round of processing
with the determination of the completeness of the processing. The time in between is divided into
several periods, with the processing duration normally being the longest.



5.1. The Trusted Desktop Grid 107

delimited time points t-. The major interrupting events of a round r are the rejection of a processing
request by a potential worker (at time 2°°) and the validation of a received WU result g5 \which
either completes the life-cycle or restarts a new round. Additionally, as the system is open, a worker
can leave the system at any time during a round, also interrupting it. In the following, the different
phases in the life-cycle are discussed:

At release time ¢!, a WU is scheduled for processing. In the according scheduling duration’,
suited workers are requested to process the work unit (this process is described in detail in Sec. 5.1.4).
In case of a positive response, at time 4, the WU is transferred to the worker and put in a waiting
queue. It remains there until the worker starts to process it (usually when the worker has completed
the processing of the other WUs in the queue), this is denoted as the waiting duration. In the fol-
lowing, the WU is processed for a certain amount of time (processing duration, see Eq. 5.4) which
generates a WU result (outcome). This result is either valid, denoted as o7, or invalid, denoted as
o7 , where a valid result can only be produced if the processing is fully completed. Subsequently, the
WU result is transferred back to the owner of the work unit, where its accuracy is validated (validation
duration), if the respective application supports this®. In case the validation detects an invalid res-
ult or the round has been interrupted (worker or submitter cancelling), the whole process has to be
repeated in subsequent rounds, until finally a valid result is returned and the work unit is completed
(time £°"""). The time it took to completely process a work unit 7, i.e. including all necessary rounds
to obtain a valid result, is denoted as completion duration and defined as:

completionduration, = tcTompl — t;ez (5.1)

A job ¢f composed of n WUs is completed, when the owner a is in possession of valid results for
each of the n work units 7{'. Hence, the completion time of the job is defined as:

completiontimeg: = max(tgfmpl, t%)mw, v tiimpl) (5.2)

This accounts for the fact that these WUs can in general be processed in parallel (by different

workers). The main (and in general also longest) phase in the life-cycle of a work unit is the pro-

cessing duration a WU T has when processed by a certain machine M;. Note here that firstly M; can

also be the owner of 7, and secondly that processing is always dedicated to one WU at a time (no

parallelism). This duration is of key importance here, since it is usually the longest time interval (from
several minutes to days) in the life-cycle of a WU.

The processing duration can be defined for static, as well as dynamic environments. In case of
constant values for available resources during processing, the duration is defined (cf. [200]) as:

. . costst
durat , M) = , 5.3
processingduration(t, M) PL; - availableResources; (3)

However, the available resources are usually volatile in a DG environment, hence a more compre-
hensive definition is needed. The processing duration for dynamic resources, dependent on the

7Also referred to as task allocation phase in the literature (e.g. cf. [80]).

8The accuracy can either be validated by an according application (validation duration is only a fraction of processing duration)
or the application does not support validation (validation time equals processing time). In this case, the validation time is neglected.
In the TDG, both types of applications are evaluated.



108 Chapter 5. Evaluation

starting time of the processing, is then defined as:

0 processingduration (T, My £ ) PL; - availableResources;(t)

Costs = 100% (5.4)

roc_start
p=t0

Here, the idea is to define the processing duration of a WU over a progress measure (0-100% pro-
cessed): The processing starts at £2°~""" with a progress of 0%. At each next point in time ¢, a
progress increment is added to the overall progress, based on the available resources of j at this time
unit. When the progress reaches 100%, the WU processing is finished and it can be determined how
many time units were needed to complete the processing. Here, a discretisation with ¢ is used, i.e.
the available resources always remain constant for a least a time unit.

Note that in theory the problem of an indefinite processing duration can be encountered here
when the available resources of the worker reach 0 and remain at this level. In the literature, this
case is often eased by using checkpointing (cf. e.g. [201]). In the TDG, checkpointing is not used,
however this case is countered by practical considerations: The owner of a work unit would not wait
for an indefinite time but negotiate a deadline with the worker and decide to reassign the WU to
another worker in case of a missed deadline (cf. [11] for details).

This processing duration is defined as a posteriori measure. To be usable as a worker selection
criterion, this duration has to be predicted. It is assumed that the worker starts the processing of a
WU T at 7" on its machine M; as in the original measure. However, the available resources of
the worker j are not known to the WU owner and hence have to be predicted for the duration of the
processing. The resulting expected processing duration is then defined as:

proc_start proc_start
tr tr

+processingdurationey, (t,PL;, ,availableResources; preq(t))

PL; - availableResources; pre;(t) _ 100%

costs,

roc_start
=t

(5.5)

5.1.3 Open Desktop Grids - A challenging environment

The system classified and formalised in the previous sections is an instance of a technical, Open Dis-
tributed Systems, as users are connected to the system via the Internet, as they can enter and leave
the system arbitrarily and central control cannot be applied (cf. e.g. [202]). Open Distributed Systems
are comprised of an unknown number of autonomous entities that are in general heterogeneous with
respect to goals, capabilities, preferences and behaviours (cf. e.g. [60]). Additionally, the system is
open, hence entities from unknown sources, with code from unknown programmers can enter and
leave the system at any time (cf. e.g. [61]). Finally, due to their distributed nature and autonomy, there
is in general no form of direct or central control in such a system (cf. e.g. [58]). It is generally agreed
that such a system, though beneficial in many ways, introduces a large amount of uncertainty among
the participating entities (cf. e.g. [35]), especially because there are always participants involved that
apply adversary strategies to exploit or damage these systems.

In the following, a discussion is conducted about why this kind of DG system should be realised
as an Open Multiagent System and how the TDG utilises Multiagent technology to represent users.

In general, participants of DG Systems will seek a high degree of automation: The scheduling
of WUs should transparently choose the best workers without manual control, while the decision to



5.1. The Trusted Desktop Grid 109

process WUs for other participants would usually be based on a policy set (and seldom changed)
by the user (cf. e.g. the BOINC client, [197]). It is however not a trivial task to develop an online
scheduler at design time that can cope with the requirements of such a dynamic environment (cf. e.g.
[203]). Besides, the resource donation via fixed policies is rigid and requires the user to take regular
manual control in order to provide an optimal participation as worker. In conclusion, it is worthwhile to
delegate the control of a DG client to an adaptive agent that interacts in the dynamic environment and
applies reasoning approaches to reach the goals set by the user (cf. e.g. [44]). Goals in this context
are mainly to schedule the WUs of the user optimally while often simultaneously demanding not to
dedicate the users’ machine entirely for the processing of other users’ WUs. The fitness of such an
agent is hence defined by its ability to reach these goals. Obviously, this approach intensifies the
self-interested nature of the DG participant: While there can be assumed from the user a general
willingness to donate resources to the DG, an agent controlling the client could reason that the best
strategy would be to (partially) free-ride and not accept any processing requests. This adds the
additional challenge to control the system as such, when agents do not commit to a common goal
but focus on the self-interested fulfilment of local goals.

Here, many researchers in the ODS community argue that the control of DG Systems has a lot
in common with the control of Multiagent Systems, especially where Open Systems are concerned.
It is stressed that essentially, the approaches in both fields provide solutions to shared problems
from different perspectives: According to® [45] and [202], DG system research in this context aims at
building systems with robust infrastructures and services, while MAS research focuses on autonom-
ous problem solving entities, both for dynamic environments. It is then a general consent that these
approaches can complement each other and that Desktop Grid Systems are an interesting field for
the application of MAS technology. This becomes especially obvious when the challenging issues in
Open Desktop Grid Systems, as in the taxonomy in [80], are considered:

e Volatility: Nodes in DG systems are non-dedicated, and resource provision is voluntary, thus
the quality of service cannot be guaranteed.

e Dynamicity: Open DG Systems are complex systems that change during the runtime - host and
resource availability, node behaviour, resource demand, workload and many other properties
are subject to constant changes.

e Lack of trust: Anonymous nodes donate resources and adversary behaviour can always occur
in this environment, decreasing the performance of other nodes. Nodes cannot be assumed as
being trustworthy.

e Failure: Nodes in the DG are prone to network and hardware failures. This can decrease the
performance of these systems.

e Heterogeneity: Nodes are controlled by many users with different behaviours, demands and a
variety of computing resources.

e Scalability: Centralised approaches to scheduling in DGs are not scalable, therefore decentral-
ised and sub-optimal approaches have to be applied to guarantee scalability.

9More examples for the application of MAS technology in the domain of DG systems are discussed in Sec. 2.5.2.



110 Chapter 5. Evaluation

e Voluntary participation: DGs must provide incentives and benefits in order to convince volun-
teers to participate in these systems.

The key motivation for a client to participate in a such a system is that the client can take ad-
vantage of the resources of other clients by delegating the processing of own work units to these
workers. A submitter can hence decrease the completion time for its jobs. However, the issues
described above can have a negative influence on this. More precisely, the workers involved in an
interaction in such a system can exhibit the following behaviours:

A worker can:

Refuse to process WUs for other clients.
Not return the results for processed/accepted WUs.
Cancel the processing of accepted WUs.

Return invalid WU results.

Table 5.1: Worker behaviours that pose threats to submitters in the Trusted Desktop.

A submitter must try and avoid interactions with workers exhibiting such behaviours in order to
have a good performance. Here, the autonomous problem solving capabilities of agent technology
can be applied: By observations of interaction partners, its environment, and its state, an agent
deployed as submitter can realise strategies to avoid such threats. This is especially feasible, if the
agent can reason about interaction partners based on the notion of trust. As discussed in Sec. 2.5.2,
a commonly used solution is therefore to equip such a system with a Trust Management (TM) system:
A submitter is at risk of being deceived by a worker to whom it delegates a work unit. The submitter
is hence the trustor, the worker being the trustee (cf. e.g. [24]). A trustor that decides to interact
with a trustee then evaluates the outcome of the completed interaction. In the TDG, the submitter
can hence rate the worker based on the exhibited behaviour of the worker. This can be either the
successful processing of the delegated WU, or either one of the adversary trustee behaviours listed
in Tab. 5.1. By successively rating each other’s behaviour according to clearly defined rules, the
participating agents in such a system can discern cooperative from adversary behaviours and hence
reduce their uncertainty about other agents in the system. Additionally, TM generates incentives for
agents to adhere to cooperative behaviours.

The Trusted Desktop Grid has been designed as a system where the control over Desktop Grid
Clients has been delegated to agents and a Trust Management system has been installed to guide
these agents. The composition of these TDG agents is presented in the next section.

5.1.4 The Trusted Desktop Grid: Trust-Aware Agents

In Sec. 3.1.2, a generic agent model has been presented that allows Trusted Communities to be
applied in a hosting system. This agent model has been instantiated for the application in the Trusted
Desktop Grid. In the following, the term agent in the context of the TDG hence refers to an agent as
defined by the following instantiation of the agent model depicted in Fig. 5.5.

The lowest layer, denoted with the term production engine in the generic agent model, is here the



5.1. The Trusted Desktop Grid 111

' Desktop Grid Application |
Agent y-

Observer

COMM

x
m
Observation B
Interaction model
model x x
[
* x

GX

| v |
Desktop Grid Client w

Figure 5.5: Refined agent model of a TDG agent including Trust Management (TM) component,
submitter (SUB) component and worker (WORK) component. The latter components are responsible
for the choice of delegation partners, and the complementary decision whether to accept a delegation
request.

Desktop Grid Client. It enables the user to participate in the TDG by providing all protocols necessary
for bootstrapping, the communication and transfer of work units between agents, etc. (provided as
interactions in C3). This DG client is the workhorse, controlled by the core layer of this model, the
agent layer. On top of the agent is the DG application layer. In the generic model this was denoted
with the term user. In this layer, the users’ applications that produce grid jobs are interfaced with the
agent layer, i.e. the agent is informed about new jobs, passes the results for a completely processed
job on to the respective application etc.

The focus in the design of the TDG has been the agent layer. The main responsibility of the
agent is to make decisions regarding the distribution of own work units, as well as the acceptance
of processing requests for other users’ work units. As described for the generic model, the agent is
based on the Observer/Controller architecture with the observer being responsible to collect private,
as well as environment data that is needed by the controller. The controller is further divided into
components, functionally encapsulated sub-controllers. The controller of a TDG agent x € A(¢) is
composed of at least three components:

e The Submitter (SUB) component Compg;;p controls the submission of WUs to the DG and is
active whenever user applications have unprocessed jobs. Delegation strategies are applied
that allow for decisions such as whether to schedule the processing of a WU to a group of
certain workers or to process it on the owners machine.

e The Worker (WORK) component Compiyyorxis the complement of the SUB component: It en-
capsulates all logic that is concerned with the decision whether to accept to process a WU
when contacted by the SUB component of another agent or not. Strategies are applied here,
making decisions such as whether to accept the processing request of an agent that is not seen
as suited worker for own WUs by the SUB component etc. The main interactions provided by
this component are the delegation of WUs for processing by the agent, as well as information



112 Chapter 5. Evaluation

requests (current work load, available resources etc.).

The Trust Management (TM) component Comp?.,, is a required component for the application of
Trusted Communities. The TM component is used to manage the trust relations to other agents
as specified in Sec. 3.1.3. In the TDG, the SUB as well as the WORK component produce
interactions with other agents. These interactions are rated according to their outcome. In
case of positive outcomes, the interaction partner receives a positive rating. In case of negative
outcomes, as for example listed in Tab. 5.1, a negative rating is registered. Additionally, the
other components have access to the aggregated form of these ratings, the subjective trust
value.

Concluding the architectural view on a TDG agent, Fig. 5.6 depicts a successful round of the work
unit lifecycle, as displayed in Fig. 5.4, as a traversal through the agent architecture.

Agent x Agenty
(Submitter) (Worker)
Desktop Grid Desktop Grid
Application Application
T
Valitiate Delelgate Inform about

WU result generated WUs
| 4

Trust-based
agent logic

® o

Process

WU result

1
Trust-based
agent logic

®

— 4 | - . 4 Return WU
@Inform about  Send WU @ Decide about oq,,i¢ 1o
WU result to worker@ WU delegation 0
| ¥ 3 requests
Desktop Grid Receive WUs Desktop Grid
Client <4——Receive WU result——r+ Client

8

Figure 5.6: Traversal through the TDG agent architecture depicting the relationship between applica-
tion, agent, and DG client layers with respect to the WU lifecycle.

In the system model presented in Sec. 3.1, the hosting system has been defined as a tuple
representing the system. Accordingly, the TDG is defined as the following tuple:

Hrp (1) i= (TDG Client, (Al g Alyorir Msag ) - A())

with TDG Client being a DG client software and (AQUB,A{,VORK, A’}M> representing the system
components required for TDG participation, namely submitter, worker and Trust Management com-
ponent. In the following, the internals of the default implementations (Aggg”lt,A%ggz,Aﬁ;”“”) of
these TDG agent components are described in detail.

The TDG trust model:

As presented in the generic agent model, the TM component encodes a trust model. The following
definitions describe the trust model incorporated in the TM component Comp7,, of a TDG agent x €
A(t). To define such a trust model, aggregation functions for the various trust values are provided.

For the aggregation of a set of interaction outcome ratings R%’f from an agent x with an agent y,
to a direct trust value DTJZ’é, the following approach is applied: Only recent ratings, hence ratings no
older than t,,,x, are considered. This allows for a faster detection of changes in the agents’ behaviour.



5.1. The Trusted Desktop Grid 113

Otherwise, the ratings are aggregated by the arithmetic mean formalised in the function aggpr:

R N 1
DT¢" = aggpr(RY") = — =+ ) i (5.6)
’Rx reRY

The next aggregation function to define is aggrr, used to aggregate a set of indirect trust values
into a single reputation value RT7y,’€. In the TDG, the aggregation is done via an arithmetic mean (thus
not preferring any opinion provider over any other). The choice of suited opinion providers P O A(t)
is left to the implementation of the respective submitter and worker components, with the most basic
approach being to request opinions from the entire agent society. The aggregation function is formally
defined as:

RTY = aggrr(DTY,, .., DY) := “13—| Y. DTYf (5.7)
pi€P

In accordance with most authors in the literature (cf. [24]), the aggregation function of the trust
value T%’f of y by x utilised in the TDG is defined as weighted average between the direct trust value

DTY of x and the reputation RT;’;’6 of y, such that:
T = aggr(DTY", RTY) i= 7 DTY + (1= 7) - RTY' (5.8)

In the model applied in the TDG, the weight -y of the direct trust value is dependent on the number
of ratings in RY* that make up this value DTY. Such an approach is referred to as confidence- or
certainty-based in the literature (cf. e.g. [188]). The following linear function represents the approach
here:

N 1 _ /), .
=1 ‘R%C .2 min
v * thres e
with:
Ymin € [0,1] and thresye > 0

Here, v,ix is the minimal value vy is allowed to have. This represents the approach to always in-
clude opinions from other agents despite having many direct experiences, helping to identify changes
in y’s behaviour faster. Additionally, the threshold thresRy,f specifies the number of required ratings

in DT;L”E to be fully confident about y’s behaviour and thus weigh y’s reputation only with <,,;,,. Note
here that this threshold also relies on the past rating interval t,,,, used for the composition of DT%’C,
it represents a sliding window approach to the counting horizon.

The evaluations described in this thesis use the following parameterisations of the trust model:

tmax = 1000 Lookback interval for ratings [tick]
wh =1 weight of positive ratings

w™ =% weight of negative ratings

Vmin = 15 min weight of reputation

threst,f =50 rating confidence threshold

The definition of the agent model in Sec. 3.1.3 has described the requirement to define the con-
texts in which the model is applied. These are formulated based on the agent components involved
in interactions between agents, such that the trust model always refers to the trustworthiness of a



114 Chapter 5. Evaluation

particular agent component. To conclude the definition of the TDG Trust Management system, it is
necessary to specify the interaction model T'* of a typical TDG agent x, along with possible outcomes
and according ratings for each included interaction c;.

As described above, the most important interaction in such a Desktop Grid System is the deleg-
ation of a work unit from a submitter x € A(t) to a worker y € A(t). In order to allow for this, the
Worker component Compijyori Of an agent provides the interaction cg.; (7). From the view of the
submitter, this can either result in a positive outcome (a valid WU result from a successful worker
processing) or a negative outcome due to any of the worker behaviour deviations listed in Tab. 5.1.

In the TDG, single ratings composing the set of ratings R%’WORK are hence drawn from the following
specification:
Outcomes and ratings for interaction c;,; (7"):
ogddw) Return valid result for T rl, =10
ofmﬁix) Refuse to process T 13, = —0.05
Ogda@") Accept, but cancel processing of T (inform x) 13, i= dur(t,y)
o* . Accept, but do not return result for T (do notinform x) % = —1.0
CdL’I<Ti ) del
0° . Accept, but return invalid result for ¥ i=—1.0
Cm:l(T,» ) del

Table 5.2: Outcomes of worker behaviour and according rating values for the delegation interaction.

The rating values are defined and ordered according to the impact on the performance the submit-
ter x receives from the delegation of T to the worker y. This is also why the rating rgel is specified as
function dur(t,y): The negative impact on the submitter performance is greater the later the worker
cancels the work unit, as more time is wasted, although the act of informing the submitter about the
cancellation is a desired action.

Now that the composition of a TDG agent, as well as the underlying Trust Management System
have been defined, the control of the DG client via trust-based decision making within the Submitter
and Worker is detailed.

5.1.5 Agent Interactions in the Trusted Desktop Grid

In the following, the decision making of the default SUB and WORK components in the TDG are
presented in detail and the required situation description, composed of data to be observed and gen-
erated by the agent Observer, are specified.

Consider an agent x € A(t) that has recently generated a grid job ¢¥. The job is passed to
the SUB component of the agent, and x is hence referred to as acting in the role of a submitter.
To complete the job, the SUB component has to decide for each WU 7 contained in ¢; where to
process it, which is mainly dependent on the trust relationships of the submitter. After the current



5.1. The Trusted Desktop Grid 115

work unit T of a job has been either scheduled for owner processing or successfully delegated to
another worker agent y € A(t), information required for the decision making is updated. Then the
delegation decision process is repeated for the next WU contained in ¢7, until all WUs from this job
have been scheduled'?. Additionally, this process is triggered whenever the processing of T has been
interrupted. In this case, this process has to be executed again, albeit with updated information. The
iterative process to schedule a single WU 1 for processing is formalised in the following submitter
decision tree, depicted in Fig. 5.7. This methodology is based on the generic decision tree for trustor
agents as presented in [29]"".

Delegation with reputational
incentive (RI)

processing duration (z, M ,tP™°-*2")

P,(X,y)= - -
| o* w (%Y) processing duration (z, M, tP™-*") + " waste,
e+ RT y WORK T r
Tyx,WORK > thres, | Pri (€7)

pRI (e(;) e RT YWORK |

waste, =t —t®

\*O - RT y WORK ¢

|
L]
|
L]
H
:
_ :|
_ waste, =t, E
|
L]
{
L]
1
L]

Other delegation strategy :

No delegation

processing duration (z, M, t*°-*2")
processing duration (z, M ,,t?**-**") + " waste,

Prel (Xv y) =

Figure 5.7: Decision tree for submitter agents in the TDG. The submitter decision whether, and to
whom, the delegation of a WU should be executed is denoted with D(x), and the according worker
decision is denoted with D(y). Delegations are carried out according to delegation strategies.

This decision tree is built as follows: The submitter x makes a decision D(x) whether to
process the work unit 7 on its own or to delegate it with one of several delegation strategies.
This decision requires information about the available potential workers. As the agents in the system
are autonomous, this information must be explicitly requested from these workers, and these requests
can be rejected. When a suited worker y has been chosen for the processing of T, the submitter
sends a processing request to this worker. In turn, the worker makes a decision D(y) whether to
process T or not. This is based on reasoning whether the submitter is trustworthy and whether the
fulfilment of the request brings strategic advantages for the submission of own work units. The result

0In the TDG, agents are allowed to schedule one WU per time unit to provide fairness among the agents regarding the
availability of workers with a high expected performance.

In this thesis, this work is extended by applying it to the DG domain, as well as proposing an additional delegation strategy
based on Trusted Communities.



116 Chapter 5. Evaluation

of this decision is connected with an effort that is necessary for the outcome. This is marked with
probabilities, as the decision tree is interpreted from the view of the submitter. At the right hand side
of each effort-outcome pair, the consequence of this decision chain is shown, both for the submitter
x as well as the worker y. The decision tree formalises the following process:

The choice of suited workers: As previously discussed, the aim of an agent x is to process all
work units 7 of a job ¢; as fast as possible. This means to minimise the function completiontime:,
the completion time of the job. In a Desktop Grid, the agent usually does not need to process each
work unit T contained in ¢ by itself, but can take advantage of resources donated by other agents.
This allows to process the WUs of a job in parallel which reduces the completion time of ¢7. However,
the agents in the DG system control machines with heterogeneous computational power. Therefore,
the submitter must first determine which workers are able to process 7 faster than it could do
by itself, given its current workload. The resulting processing duration of such a delegation, as
defined in Eq. 5.5 and discussed in Sec. 5.1.2, is the major contribution of the completion duration of
a work unit. This actual effect of a successful delegation of T to a worker y is depicted on the right
hand side of the decision tree in Fig. 5.7. To also quantify the benefit of the grid participation for the
owner x of T (this is detailed in Sec. D), this duration is compared with the hypothetical processing
duration of x. This performance definition is formalised in the following relative processing duration
function:

owner processing duration
P (x/ .1/) = : A :
delegation processing duration
processingduration(t, My, ti“’“—s”’”)

. . tart
processmgduratzon(r, My, tﬁmc—s a ) + Y waste,
r

In the term for a worker y, the term waste, is included. This is the duration that = spent in round r
(see WU life-cycle in Sec. 5.1.2) without an obtained valid result'?. In the TDG, the positive outcome
ot of the delegation is a state, where a valid result for T exists. This state can only be reached if y
processes T completely. The corresponding effort is denoted as e™. Each other effort level produces
a negative outcome o~, meaning no or no valid result for 73, Two cases are discerned: T has been
straight rejected for processing by a worker y, denoted as effort e’. The waste in this case equals
the scheduling duration, hence 2 — ¢!, The second case is that T has been processed only to
a certain degree d, which is denoted with the effort ey - Here, also no valid result was generated,
but the amount of waste depends on the time t; spent with this effort. The worst case scenario is a
complete processing of T that produces an invalid result, the waste for this case equals the duration
ty = gresval _ trl . In the following, the focus is on the resulting performance of wasteful delegations,
not why negative outcomes and thus waste are experienced. This is discussed in the subsequent
paragraph.

The work units of the submitter iy are delegated iteratively. When a delegation of 7, to the worker
y, inround r, has lead to a negative outcome o, it generates the waste waste,. The work unit is not
completed and hence needs to be re-scheduled. This is done in a subsequent round r + 1, as defined
in Sec. 5.1.2. For this, the submitter chooses the next best worker z € Y;(x) (Y;(x) is ordered ac-

2This is true for applications that do not allow checkpointing.
3Note here that this is an aggregation of the possible outcomes presented in Tab. 5.2, for the sake of readability.



5.1. The Trusted Desktop Grid 117

cording to performance) as a delegation partner or processes T itself if there is no agent left in Y;(x)
that has not been asked. This is done until the outcome o™ is finally achieved. However, waste from
preceding rounds is summed up and adds to the actual processing duration that can be achieved by
delegation of T to other workers from Y;(x). The submitter will therefore check at each round for 7 if
it can reach a satisfying relative processing duration at all'4. If not, the submitter will finally process
the work unit on its own, with the assumption that x always produces o+ when processing an own T,
thus always terminating. This relative processing duration is depicted on the right hand side of the
decision tree in Fig. 5.7 for each of the scheduling options for .

Congruously, a worker y should be included in the set of suited workers Y, (x) for a round r
only if the delegation of 7 to this worker would lead to a processing duration that is shorter
than the owner’s processing duration in this round. Until here, the implicit assumption has been
made that this delegation performance is known to the submitter. However, this measure can only be
made a posteriori which means that the submitter does not know the exact performance of a worker
before it has actually delegated 7 to it. In order to build the set Y, (x), the submitter hence needs to
estimate the actual performance of each known and available worker y. This expected performance
of y is denoted as P_f, and refers to the expected processing duration as defined in Eq. 5.5. The
function requires the following input:

e The work unit T. The costs of the work unit are required to estimate the processing duration.
This information is available to the submitter as it is the owner of the WU.

e The performance level PL, of the worker. The performance level is a static value (see Sec. 5.1.2)
and has to be retrieved only once. For this purpose, it is assumed that the agents in the society
are aware of the performance level of their fellow agents.

e The time t/"°="""" at which the worker will start the processing of T when delegated to it. This

time depends mainly on the workload of the worker and is private information. The submitter
has to request this information of each worker y in order to calculate the estimate. If a worker
does not answer this request, it is excluded from the set of potential workers.

e A prediction function availableResources; ,.4(t) of the available resources of y for the time in-
terval of the processing. The exact course of the available resources is information that is not
available to the submitter nor the worker, because it is an external value controlled by the user
of the agent y. The submitter can here either request a prediction by the worker (worker monit-
ors its available resources) or generate it based on past interactions and the currently available
resources of the worker (private information requested from the worker).

Information needed to be retrieved in this process is hence specified as observables of the sub-
mitter component. On the other hand, the worker component must allow for the interaction of such
an information request. When the submitter has requested and processed all necessary information
about the available workers, it can build the set Y;(x) for a round r, containing all workers y that
are expected to be suited for a delegation of 7. This is based on their expected performance Py in
comparison with the expected submitter performance P¢. The set Y;(x) is then ordered according to

"4This can be also realised by including x in the set Y;(x). As Y,(x) is sorted according to the expected performance, x will
finally be the top agent in the list, and hence process T by itself.



118 Chapter 5. Evaluation

the highest expected performance, such that the best available workers are requested a processing
of 7 first. The set Y;(x) for a round r is then formally composed as follows:

Y(x) = {7 e A(t): P> P} (5.10)

Note here that Y;(x) C \A(t), hence only workers y that are in the agent society at time ¢ (online)
can be in this set.

The submitter decision: As discussed, the requirement for the inclusion of a worker y in this set
is the competence as a delegation partner for x regarding T. The submitter can hence estimate what
to expect from y performance-wise. However, the submitter does not know if the worker is actually
inclined to provide the effort e™.

The worker can also invest less effort: Consider for example an adversary agent that wants to in-
voke damage on the submitter, leading to an unsuccessful delegation and degrading the performance
for the submitter. The probability p(et) that y is willing to invest the effort e* is then referred to as
the workers’ willingness to cooperate. Just like the estimate of a worker performance, the submitter
needs to estimate this willingness of a worker, in order to prevent a performance degradation.

Additionally, from the view of a system designer, the willingness of agents to cooperate cannot be
enforced, due to their autonomy and open realisation. It is thus a design aim to provide delegation
strategies that set incentives to raise the willingness of the agents to cooperate. In the following,
a trust-based delegation strategy for the TDG is presented. This represents a desired behavioural
pattern and reference implementation for the TDG submitter and worker component as defined in
Sec. 5.1.4. This delegation strategy is contained in a default implementation of the agent software
for the TDG and hence can always be chosen in the submitter decision D(x). The assumption here
is that this is the prevalent behaviour. However, the TDG is not limited to submitters and workers
with this delegation strategy, as discussed in appendix C, where a threat model is presented, mainly
referring to worker behaviours that deviate from this desired behaviour.

In the following, the major TDG delegation strategy, the reputation incentive strategy, is described.
In the TDG, Trust Management is used to derive the willingness of workers based on their past inter-
action performances, as well as to provide an incentive for cooperation. As described in Sec. 3.1.3,
this is applied via the TM component of a TDG agent. This component encapsulates the generic Trust
Management system required by the agent model for the application of TCs. Interactions between
agents (here submitters x and workers y) are rated according to the specified trust model. These
ratings have an influence on the personal trustworthiness estimates of x regarding y (denoted as
DT%’WORK), as well as on y’s reputation (denoted as RT%’WORK) if x is requested to provide an
opinion about y’s performance as a worker (hence x € P). Reputation gain and loss due to WU pro-
cessing outcomes are depicted in the decision tree (see Fig. 5.7) with RTYWORK 4 and RTY¥WORK |
respectively.

Trust is applied as follows by the agents in the TDG: The aggregated trust values T%’WORK of a
submitter x towards all competent workers y in the set Y;(x) are used to filter the set: Only those
workers that have proven'® their willingness to cooperate with x by positive interaction outcomes are

SNote that this is a simplification for the sake of explanation. If applied as described, this approach would else lead to a problem
with the newcomers in the system, also referred to as Initial Trust Problem in the literature.



5.1. The Trusted Desktop Grid 119

considered as delegation partners. This filter is realised by a subjective trustworthiness threshold
thresyx, such that workers y are removed from Y;(x) where T%’WORK < thres, holds. After applying
the filter, the set Y,(x) contains all workers that are expected to be competent, as well as willing.
Further interactions consolidate their qualifications, as the outcomes are tracked and update the
trustworthiness value. Also, the threshold thres, is adapted by the agents, based on observations
about their environment. If for example a submitter realises that no worker remains in Y;(x) after
it has applied the filter, the threshold can be lowered. Here, machine learning techniques can be
applied to determine situation-optimal value pairs for this threshold, based on observations defined
in the model of observation by the submitter component (see. Sec. 3.1.2). However, this is not in the
focus of this thesis and is thus neglected in the following.

The worker decision: Agents that successively produce positive outcomes as workers are per-
ceived as trustworthy and increase their reputation over time. Given their competence, these agents
are then frequently requested to process further work units to the benefit of the submitting agents.
But how does this high effort pay off for the workers? Or to put it the other way round: How can agents
be persuaded to regularly invest this effort and cooperate with other agents, such that the probability
for a successful outcome Pg;(e™) is higher than the probabilities for the rejected cooperation Pg;(e®)
or at least higher than the probability for the failed interaction Pr; (e, ). In the following, the realisation
of the default worker decision D(y) in the TDG is presented. This is a binary decision to either
accept or reject a processing request by a submitter x for a work unit . Again, this is only the
preferred reasoning strategy, in the evaluations agents with diverse strategies, e.g. freerider agents,
are examined.

In order to persuade agents to completely process WUs for other agents a reciprocity-based
incentive mechanism is applied: A worker y rejects a processing request of a submitter x, if the
submitter has shown only a low willingness to invest an effort as worker towards y. This relies on
past experiences of y as submitter with x being requested to process work units of y. These interac-
tions built up the trust value T;'WORK which is applied as follows: If T;'WORK < thresy, the processing
request is rejected. This trustworthiness threshold thres, for the worker decision D(y) is usually set
to the value of the threshold thres, for the submitter decision D(x). This encodes the following ad-
ditional considerations of a worker: Only if the submitter agent x would be accepted as a (willing)
worker for a WU delegation of the agent y, i.e. only if y expects to rely on x for future own inter-
actions, is the processing request accepted. This supports the self-interested nature of the agents
in the grid. Additional considerations in the TDG worker component relate to the limitation of the
amount of accepted work units (work load): Here, the worker strategies need to account for the fact
that a high work load reduces the submitter performance of an agent as it cannot process own work
units without costs. These costs result from either waiting for the processing of foreign WUs before
starting to process an own WU (increase of completion time), or from cancelling the processing of
foreign WUs to prefer own WUs, an operation that results in trustworthiness decreases and hence
reduces the agents’ chance of successfully submitting further WUs.

The reciprocity incentive mechanism can be summarised as follows: Agents that invest high
efforts as workers for others have a higher probability to successfully delegate their own WUs
to competent and willing workers. On the other hand, agents that invest low efforts struggle to find



120 Chapter 5. Evaluation

workers that accept their processing requests. This is because the worker performance is registered
by other agents directly, as well as indirectly through the reputation mechanism. Consequently, a
low reputation results in the isolation of low performing agents, which refers to the fact that they are
forced to process own work units by themselves, despite their participation in the DG system. Hence,
there is an incentive for TDG agents to invest high efforts.

Work unit validation: The process has been described for the case of validatable work unit results,
thus with the assumption that the submitter is able to discern the outcomes o~ and o™. This assump-
tion often does not hold in Desktop Grid Systems. Rather do according non-validating applications
produce work units T with results that cannot be programmatically validated. A submitter that has
delegated the processing of a WU, must then decide whether to blindly accept the result returned
by the worker, or apply safety measures: A submitter can replicate the work unit, delegate the
processing of these replicas to a number of different workers, and finally compare the results
from the different workers. The usual approach here is to apply a majority voting validation approach
(cf. e.g. [204], [205]), hence to test for result consensus. The number of replica results from different
workers required to judge on the accuracy of the results, is referred to as quorum (cf. e.g. [206]) and
must be at least 3 in order to allow for majority statements. Workers that produce a result that diverts
from the result obtained by the majority are then assumed to have defected, while those producing
the seemingly right result are assumed to have cooperated. This type of validation is obviously not
fail-safe, as colluding workers that aim at reaching a majority may fool a submitter into thinking to
have received a valid result where this is not the case (cf. e.g. [85], [89]).

The delegation process described in this section is executable for such non-validating DG ap-
plications as well. The only variations are that the number of work units to distribute through the
submission process is multiplied (dependent on a set quorum), the set Y, (x) is composed such that
a single worker is never requested to process multiple replicas of 7 (this would bias the majority
voting), and that the evaluation of the outcome for a single WU processing is deferred until enough
results are returned to allow for the validation.

Summary: In summary, this section has described how the Trusted Desktop Grid is realised via
the system model defined in Sec. 3. The production engine incorporates the Desktop Grid Client
and the user layer is represented with applications that produce DG jobs. The agent, being the most
important layer, is at least composed of the Submitter, Worker and Trust Management components.
The submitter and worker components control the Desktop Grid Client by applying autonomous de-
cision making. The TM component supports this by monitoring the behaviours of agents and applying
the trust model defined here to derive estimations of their willingness. The interactions between the
TDG components have been detailed in this section, focussing on the delegation of work units from
a submitter to a worker. In that, the reciprocity-based incentive mechanism has been described.

So far, the challenges of an open system design for such a system have been mapped to the
threats that a WU delegation to a worker involves. This is a sound approach, as successful WU
delegations are the main motivation for a participation in the TDG. However, these types of worker
behaviour are not the only threats that influence the benefit of the participation in such a system.
To allow for a more comprehensive analysis of the TDG characteristics, especially in consideration
of the application of Trusted Communities, see the presentation of a threat model in appendix C. In



5.1. The Trusted Desktop Grid 121

the following, it is examined how the described agent interactions, and the threats introduced by the
openness of the system, affect the reputation incentive approach in the TDG.

5.1.6 Discussion

The application of a Trust Management system, as described in Sec. 5.1.4, to cope with the chal-
lenging issues in the TDG has been evaluated'® and the results published in e.g. [4], [5], [8], and
[11]. These evaluations have mainly demonstrated that the TDG reputation incentive strategy (intro-
duced in Sec. 5.1.5) allows for the isolation of agents that express some of the forms of class 1 and
2 behaviours listed in Tab. C.3. /Isolation here means that these agents found no workers for the
delegation of own work units, and thus had to process all WUs on their own. This in turn imposes
a long processing duration (due to sequentiality), low utility values, and consequently, no benefit of
TDG participation. The avoidance of such an isolation is hence an incentive to cooperate for agents
in the TDG. Cooperative agents, on the other hand, were shown to profit from their good conduct,
by developing strong trust relationships with each other that opened for them many opportunities to
delegate own work units to other workers, due to the reputation incentive delegation strategy. Con-
sequently, it was demonstrated that these agents had lower processing durations, a higher utility and
hence a benefit from TDG participation. From the organisation point of view, the relationships of these
cooperative agents created a loose coupling without explicit membership notion: Each of the agents
had a subjective view on various trustworthy interaction partners, and the agents did not differentiate
among interaction partners apart from the division into trustworthy and not trustworthy agents based
on a subjective threshold. For the discrimination (and later result comparison) with the TC approach,
a TDG with this reputation incentive strategy approach alone, without the application of any type of
explicit MAS organisation, is referred to as the implicit Trusted Community (iTC) approach. This
term accounts for the strong trust relationships among cooperative agents that are established due
to this approach (and resemble the composition of a Trusted Community), and the fact that no form of
organisation is communicated, negotiated, or maintained among the agents in such an iTC (making
it implicit). Before the application of Trusted Communities in the TDG is motivated, the iTC approach
is discussed with respect to its shortcomings.

In Sec. 3.2.1 of this thesis, generic challenging issues in the class of the hosting system have
been examined. The TDG is an instance of this class, and the scenario-specific impact of these
generic issues is hence encountered in the TDG:

TM exploitation As described in Sec. 5.1.5, the reputation incentive strategy involves the applica-
tion of a submitters’ trust threshold thres, within the worker decision, such that agents are required
to build up reputation as workers in order to be able to delegate own WUs as submitters. Given that
agents know this threshold, this incentive mechanism can easily be exploited: Agents must ensure
that their reputation is higher than that threshold, but beyond it, they have no incentive to cooperate.
This leads to oscillating commitment of agents (and hence reputation), in its effect similar to the repu-
tation damage problem (cf. [24]), but due to strategic considerations instead of emergence. Such an
incentive malfunction is not to overcome by the increase of the threshold, as too high a threshold will

8Work on these results has been conducted in cooperation with Yvonne Bernard in the context of the DFG research unit
OC-Trust (FOR 1085).



122 Chapter 5. Evaluation

hinder initial cooperation and intensify the newcomer problem (cf. e.g. [76], [61]) in the system. In
sum, the reputation incentive can be exploited by strategic agents, reducing their commitment
and decreasing the performance of the hosting system.

Over-confidence The trustworthiness of workers in the TDG is rated by the submitter according to
the received outcome (see Tab. 5.2). The Trust Management then aggregates this set R%’WORK of
experience ratings to a single trust value DT%’WORK. Consider a worker that cooperates by returning
only valid WU results over a longer period of time, and then suddenly starts to defect by accepting a
WU without processing it. This illustrates the problem of over-confidence (cf. e.g. [20]): As long as the
submitter does not detect the defect, the worker maintains a high trust value and is seen as trusted
worker. As soon as the submitter becomes aware of the actual behaviour, it rates the worker with a
negative rating rﬁgl. This single rating will however not have a great influence on the workers’ reputa-
tion, due to its extended period of cooperation. Even successive negative ratings will reduce the trust
value only bit-by-bit. In the meantime, many submitters estimate the worker as trustworthy and del-
egate WUs to it. Only after finally reaching the threshold willingness thres,, will the trust value denote
the current behaviour of the worker. Although the extent of the over-confidence built up is dependent
on the design of the rating aggregation function uggDT(RZ'WORK), the problem itself is universal for
sudden changes of behaviour. In sum, the application of worker trustworthiness estimations for the
submitter delegation decision is susceptible to the development of over-confidence, because
the TM is slow to react. In summary, sudden changes of worker behaviour to defection are per-
ceived by submitters only in a deferred way, decreasing the received performance and hence
the performance of the TDG.

TM reliance In the TDG, worker D(y) and submitter D(x) decisions are based on the evaluation of
the trustworthiness of the counterpart: A submitter won’t delegate a WU to an untrusted worker with
a low trust value to avoid the risk of increasing its processing duration. On the other hand, a worker
won’t accept a processing request from an untrusted submitter to maintain the incentive mechanism
and avoid the blockade of its resources for an agent that it does not want to delegate a WU to (see
Sec. 5.1.5). Consider the event of a global trust breakdown Bim (m) as defined in Eq. 3.7: Only
(1—m)-|A(t)| agents have a positive reputation value, and in general even less are expected to
have trust values above the thresholds thres, and thresy. Hence, only a small minority of agents
will be considered as delegation partners. Additionally, these agents will firstly accept processing
requests only for agents with equal trustworthiness, and secondly, will be overloaded due to being
the only cooperative agents in the system. Such a global trust breakdown cannot be neglected:
The interactions of submitters and agents in the TDG are dependent on the heterogeneous and
dynamic competence and willingness of the agents, the presence of adversary agents, the changes
of agent behaviours due to autonomy and self-interest etc. In sum, the rating activity of submitters
and workers in the TDG is highly complex, and trust breakdowns must be reckoned with in the agent
society. Consider for example the case of a prolonged overload situation, where all agents reject to
process WUs (or are not estimated competent enough due to high workload, see Sec. 5.1.5) and lose
their good reputation as a consequence. Even if the overload situation is ended then the damage is
done, and the agents have lost their trust in the willingness of each other, and will hence not delegate
the WU processing but process WUs themselves. In the literature, such a MAS state, i.e. a state in



5.1. The Trusted Desktop Grid 123

which agents do not execute any interactions with each other due to their risk assessment, is referred
to as paralysed (cf. e.g. [29]). In sum, the TDG reputation incentive relies on the undisturbed
operation of the TM, such that there is no trust breakdown. Yet, on the other hand, the emergence
of a trust breakdown cannot be precluded - quite on the contrary, it can be shown to develop in
certain system states (see robustness evaluation in Sec. 5.3.3). In result, the TDG is not robust
towards abnormal system states as it can become paralysed.

Sub-optimality due to safety means The TDG delegation strategy has been described as ap-
plicable for validating, as well as non-validating applications (see Sec. 5.1.5). In the latter case, a
submitter cannot directly validate the result of a WU processing. In order to reduce the probability
of accepting an invalid result as valid, the application of safety means has been discussed. In the
TDG, these safety means are based on the state of the art concept of “WU replication” and follow-
ing “majority voting” validation on a quorum of WU results. The application of WU replication is a
means to counter the presence of malicious volunteers (as stated in e.g. [175]) returning invalid res-
ults on purpose, or workers returning invalid results due to hardware errors. These safety means
introduce redundancy, which materialises as additional workload of system participants and
necessarily leads to a slowdown of the processing speed if there are more WUs than available
workers (cf. e.g. [175]). The application of such safety means is hence a risk reduction mechanism
with performance costs, due to overhead, assigned to it. The TDG already uses a Trust Manage-
ment mechanism for the evaluation of agent behaviour. This allows for a modification of the submitter
decision, such that the required number of WU replicas is derived from the trustworthiness of the
worker, an approach also described in the literature (cf. e.g. [80], [175]). While this can reduce the
costs of redundancy, it introduces an additional reliance on the operation of the TM, and a susceptib-
ility to over-confidence (as described above). In sum, the TDG uses a static WU replication scheme
that increases the workload in the system and hence reduces the performance. While alternative,
adaptive approaches exist, these are still susceptible to the issues described above.

Sub-optimality due to undetectable submitter behaviour The description of the TDG agent in-
teractions has focused on the probability of uncooperative worker behaviours. This is a sound ap-
proach, as such behaviours mainly determine the performance of agents in the TDG and are to be
avoided. Besides, these behaviours are detectable by single agents and reflected due to the valida-
tion of the interaction outcome by a submitter (either directly or through majority voting, as described
above). However, apart from such worker behaviour, also undesired submitter behaviour exists
in the TDG. These behaviours are much harder to detect, as workers are passive interaction
partners and cannot directly determine the consequence of these interactions. Nor do in-
centives for the enforcement of worker cooperation exist in the TDG. Such incentives could
motivate workers to collaborate in order to detect undesired submitter behaviours. In the following,
this problem is detailed with the help of an additional submitter delegation strategy:

The submitter decision D(x) for the delegation of T in round r has been so far described as the
selection between two options, as depicted in Fig. 5.7. This decision means either to delegate 7 to
a worker y € Y,(x) that is believed to be competent and willing to successfully process , or not to
delegate 7 but process it by itself. The latter is chosen when there is no such worker left that has not
already rejected the processing of 7. As discussed, the openness of the TDG allows for several other



124 Chapter 5. Evaluation

delegation strategies. Here, another delegation strategy, the delegation with reputational incentive
and WU replication is discussed. This strategy is particularly relevant, because on the one hand it
does not include adversary submitter behaviour (as opposed to the behaviours listed in Tab. C.3), but
on the other hand is undesired nonetheless, because it leads to overhead and can deteriorate the
performance for other submitters (similar to the WU replication overhead described above).

This delegation strategy with WU replication also applies the reputation incentive, however, sub-
mitters try to decrease the probability for a high WU completion duration to the disadvantage of the
system: Instead of waiting until the result for 7 is produced by a worker y, the submitter x generates
copies T; of T and tries to delegate these to other workers, in order to minimise the costs of a wrong
processing duration estimate for the worker y (cf. e.g. [207], [208]). As soon as a valid result is re-
turned by any of the workers processing 7 or its copies, the processing of the remaining replicas is
not required any more. This is an appropriate strategy from the cost perspective of a submitter, as
replication generates hardly any additional overhead. However the workload in the system is raised
by the replication factor until o™ is reached: This not only reduces the probabilities pr; ., (e*) and
pri(e™), as D(y) depends on y’s work load, for other submitting agents, but also for x itself, as work
units T come in bursts (jobs). In the long term the speedup of x can therefore even decrease. On the
worker side, wasteful processing of replicas blocks the worker. This reduces the opportunit-
ies to work for agents that could reciprocate and thus counters the effects of the replication
incentive.

In sum, these drawbacks of the application of the iTC approach in the TDG reduce the robustness
of the TDG, as well as the performance that participants experience. The literature review in Sec. 2 of
this thesis has discussed approaches from several research directions that are in principle suited to
counter these aspects. However, none of the discussed approaches is appropriate to cover all of the
TDG issues simultaneously. Consider for example the application of more robust trust metrics, such
as discussed in e.g. [72], [25], or [24]: While the susceptibility to over-confidence can be reduced by
elaborate metrics from the literature, the reliance on the operation of the TM with these metrics still
persists. In effect, a trust breakdown or other emergent system state can hence not be countered, and
the TDG can still become paralysed. On the other hand, an adaptive scheduling scheme not (entirely)
based on trust, such as the combined credibility/spot-checking approach presented in [204], could be
applied by submitters. This would increase the robustness towards a trust breakdown by providing
fall-back mechanisms that allow for submitter decision-making despite a lack of valid trust values.
However, such an approach is still susceptible against TM exploitation by strategic adaptation of the
agents. Additionally, it does not include any incentive for the cooperation of workers with respect to
submitter misbehaviours. This concludes the discussion of TDG drawbacks. In the following, the
application of the TC approach in the TDG is described.

5.2 Application of Trusted Communities in the TDG

In Sec. 3.2.2, Trusted Communities have been introduced as approach to address the generic chal-
lenging issues of the hosting system. In the following, it is examined how the TC approach is realised
to address the specific drawbacks of the iTC approach in the TDG, and hence how it can improve the
performance and robustness of the TDG.



5.2. Application of Trusted Communities in the TDG 125

To allow for a self-organised formation of a TC in a hosting system, it is necessary to define organ-
isation benefit strategies, a default TC strategy configuration, potentially containing scenario-specific
strategy implementations, as well as an agent utility function U*(¢). The remaining mechanics (life-
cycle, maintenance etc.) of the TC approach are generically encapsulated in the TC Organisation
agent component. For the TDG, the application of TCs is hence dependent on the extended agent
model depicted in Fig. 5.8. This model specifies a Controller that is constituted by the Trust Manage-

\ Desktop Grid Application {

Agent DG App
Agenty
Observer -
’
[on | o ] T
,
’
o e[ b | _comv |
Observation "
o e e R
e N EN
.
e ),
LN Agent z
- A
B . el

_ A

! * A 4
Desktop Grid Client w

Figure 5.8: Complete model of a TC-forming TDG agent. Includes Trusted Community Organisation
component (TCO), Trust Management component (TM), submitter component (SUB) and worker
component (WORK).

ment agent component, the TC organisation agent component, as well as the TDG-specific Submit-
ter and Worker agent components. In the following, it is assumed that a TDG agent is composed as
defined by this model. This allows to consider the realisation of organisation benefit strategies for the
TDG.

5.2.1 Organisation Benefit Strategies

Trusted Communities have been proposed as approach to let agents self-organise in a closed envir-
onment. At the core of this TC environment are benefits that must be provided to agents in order for
them to request and maintain TC membership. The presence of such benefits hence generates a TC
membership incentive. TC benefits have been generically classified as strategies in Sec. 4.3. In the
TDG, the following specific organisation benefit strategies are realised:

Worker Guarantee Incentive In the TDG, interactions between agents are mainly restricted to
the processing of each others’ work units, and to negotiations about the respective terms and the
exchange of information necessary for the identification of suited partners (esp. reputation). In that,
the most critical interaction is the delegation of the WU processing by a submitter to a worker (see
Sec. 5.1.5): Workers are autonomous in their decision to accept or reject such a processing request.
The reasons for a worker to reject a request (branch with effort ¢ in Fig. 5.9) reach from a too



126 Chapter 5. Evaluation

low submitter trust value (in fulfilment of the reputation incentive strategy), and the reservation of
resources for own WUs (as discussed in Sec. 5.1.5), to the avoidance of worker overhead due to
self-interested or adversary Worker component implementations (e.g. freeriders).

Additionally, as described above, the reputation incentive strategy is susceptible to exploitation
as agents can safely reject processing requests as long as their reputation is above the threshold
thresy. For a submitter, a rejected request means that it has to search and contact additional workers
(which are less competent, as the set Y;(x) is ordered according to the expected performance), or
even process the WU on its own in case it has not found a single worker that accepts the request.
This not only extends the scheduling duration as described by the WU life-cycle (see Fig. 5.4), but
also increases the message overhead.

This allows for the following interaction efficiency strategy: TC members are obliged to accept
processing requests from each other, or in other words, submitters are guaranteed to have the free
choice from workers for their WUs among their fellow TC members. The worker guarantee gener-
ates an incentive for TC membership, as it reduces the overhead of scheduling and increases
its success. This incentive is realised as follows: As depicted in Sec. 5.9, TC members are equipped
with an additional delegation strategy for interactions with fellow TC members (inbound inter-
actions). When becoming a member of a Trusted Community TC;(¢), an agent y makes a contract
with the TCM and all fellow members. This contract is based on the notion of kinship and states that,
if chosen as delegate by any fellow member x in the round r, the agent y commits to provide the
effort e™. This commitment guarantees the prolonged TC membership of the worker y. This incentive
mechanism is based on the fact that each TC member benefits from the worker guarantee when
submitting WUs, and that rational agents hence invest this effort. In this, the rationality assumption
is based on the composition of the TC by the gathering of highly trustworthy agents (see the de-
scription of the Potential Member Search strategies in Sec. 4.6.1). However, the TDG is an open
system and agent behaviour can change. It must hence be accounted for the fact that TC members
refuse to cooperate. This is a case of supervision by the execution of the regulatory Member Control
strategies by the TCM, as described in Sec. 4.6.7. The effect of such a contract violation by a TC
member y is depicted in the decision tree for the efforts e® or e; . After being informed about this
incident by the submitter x, the execution of the Member Control strategies by the TCM re-evaluates
the membership privilege of the uncooperative worker y. This is formalised by the evaluation of the
following function:

Mo, (t+1) = membership(y, Mrc,(t),e°) € {Mrc,(t), Mrc,(t) \ {y}} 7 (5.11)

Based on the invested effort, the TCM decides whether to exclude the agent y from the TC. In the
TDG, the basic implementation of the Member Control strategies is utilised, such that these effort
levels are assigned member score losses (see Sec. 4.6.7), with the effort ¢ resulting in the smallest
loss.

This approach has a great benefit over the reputation incentive utilised by the iTC approach:
Submitters that are TC members can always draw workers from the pool of TC members, and are
always guaranteed to be granted the effort e™. This serves as an incentive for cooperation. In sum,
it can hence be expected that this increases the probability for an effort e™ among TC members,

7Similar for effort e .



5.2. Application of Trusted Communities in the TDG 127

Delegation with reputational
incentive (RI) processing duration (z, M, tP°-*2")
+ Prel (X, y) = - . . :1
_~0- processing duration (z, M ,,tP*°-* )+Zwaste
Pri (€7) RT YWoRe 4

!

:

.

!

!

waste, =t, ;

r

DY) Pri(€5) <o RT YWORK |
T XWORK

y
waste, =t -t

RT y WORK \L

Delegation with Rl and
WU replication processing duration (z, M, tP"*-%")
/*ot processing duration (7, M, t"**-*") + " waste,
pRI,rep(e+) RT IR T r

_ - waste, =t
pRl,rep(ed)*O "RT Y WORK. l
0
pRI rep (e )

. waste, =t* -t
\O - RT y,\rNORK ¢

IDrel (xy)=

<
=
o
s}
~

-

Delegation with TC

membership incentive processing duration (7, M, t?¢-%")

processing duration (7, M, t”*-*") + " waste

T

IDrel (x,y)=

=

=

m

<
)-_]
0

o™
pRI,rep(e+) yeTCrs

waste, =t,
membership (y, Mrc,(1).e;)

r

waste, =t* —t"
membership (y, Mic,),€°)

No delegation
P rocessing duration (z,M X,'[p oc._start
rel (Xr y) - d ( v )

processing duration (7, M, t”*-*") + " waste,

T

Figure 5.9: Decision tree for submitter agents including the TC delegation strategy. This decision tree
is an extension of the decision tree depicted in Fig. 5.7. In addition to the delegation strategy with
reputation incentive, and the WU replication strategy, a submitter can choose to delegate a WU based
on the TC membership incentive. This choice is however only applicable for TC inbound interactions.



128 Chapter 5. Evaluation

as compared to the same probability for non-members, such that prc(e™) > pgrr(e™). Additionally,
this incentive mechanism reduces the problem of over-confidence, as it does not require the
rating of workers with trust- and reputation values. Instead, the TCM regulation allows for
quick responses to adversary behaviours.

Transparent WU validation The iTC approach in the TDG utilises WU replication for non-validatable
work units. A submitter x hence copies a work unit T and distributes the replicas to different workers.
After receiving the results, the submitter performs majority voting to validate them. As discussed in
the previous section, such a safety means approach generates overhead: Not only does the workload
in the system increase by the replication factor, but also the message overhead, due to the required
communication with many more workers. Such an interaction is more efficient if the submitter
does not replicate its work units, but relies on results from single workers. Trusted Communit-
ies allow for such a risky approach for the following reasons: The TC is a closed environment con-
stituted by highly trustworthy agents, and thus reliable interaction partners. The application of WU
replication as safety means towards agents that have proven their trustworthiness in many in-
teractions, is considered a form of sub-optimal over-monitoring, a phenomenon also referred
to as too much trust in e.g. [20]. The abandonment of WU replication for inbound interactions is
then a risk that has been mitigated by a multitude of positive interaction experiences. As emphasised
many times throughout the thesis though, it must always be assumed that agent behaviour is subject
to change in an open system. Other than in the case of validatable WUs, a worker defection cannot
be detected by a submitter without WU replication. The complete abandonment of WU replications
would hence not allow to detect defecting TC members, and consequently, the membership itself
would turn out as a risk. This is avoided by the utilisation of combined stochastic and situation-
aware TC validation. For this, each submitter informs the TCM about every WU it delegates. The
TCM then decides based on a probability whether to further delegate a single copy of the WU to
an additional TC member by assigning an according TC role to it (see Role-Assignment Strategies
in Sec. 4.6.8). In case of deviating WU results, the TCM informs the submitter, and both workers
are marked for spot-checking with precomputed WUs by the TCM. When the defecting worker is re-
vealed, the execution of the Member Control strategies (see Sec. 4.6.7) allows for the registration
of this misconduct, and eventually leads to the exclusion of the agent from the TC. Unlike with the
Worker Guarantee Incentive, a TC member returning false WU results for non-validation applications
is immediately excluded from the TC, due to the costs of the monitoring.

Note here that this regulated validation is transparent for TC members: Neither submitters nor
workers know if, and to whom, the TCM delegates WU copies, as these are not designated as such.
This hinders the strategic exploitation of this approach. Additionally, note that the probability for
defecting TC members is assumed to be rather low, as the costs of becoming TC members initially
involve a great amount of cooperation in order to build up a high reputation and be invited to become
TC member. Finally, the application of this validation process is decoupled from the TM in the system,
unlike the application of an adaptive credibility-based WU replication as delegation strategy for the
iTC approach. It is hence not susceptible to a trust breakdown scenario or to the detrimental
effects of over-confidence as described in the previous section.



5.2. Application of Trusted Communities in the TDG 129

Submitter replication control In the discussion of drawbacks of the iTC approach in the TDG (see
Sec. 5.1.6), the issues with undetectable submitter behaviour have been examined. Here, mainly the
utilisation of the delegation strategy with WU replication is problematic: Submitters replicate their
WUs, despite validating DG applications, in order to minimise the risk of negative interaction out-
comes with single workers. While this approach is rational from the point of view of the submitters,
it is detrimental for the performance of the hosting system when widely used, because it increases
redundant processing and hence the workload of system participants. As discussed, the detection of
this behaviour requires workers to cooperate, for which there are no incentives in the iTC approach
as the consequences of this submitter behaviour are only indirectly decreasing the workers’ utility.
This is a major advantage of the Trusted Community approach: The incentive to remain a TC mem-
ber promotes cooperation among workers when embedded as Organisation Benefit strategy. This
is realised by a monitoring scheme that is transparent to the submitters and induces only low costs
on the members: Workers in the TC are obliged to report information on accepted WU pro-
cessing requests to the TCM, which then is able to detect whether submitters have applied
WU replication. Again this can be sanctioned via the Member Control strategy and works as in-
centive to cooperate. This organisation benefit strategy is of the cooperation class, as it can not be
executed within the entire hosting system, due to the centralisation and its scalability issues. By de-
tecting and sanctioning WU replication, the workload in the TC is lowered and the processing
duration decreased.

5.2.2 TC Strategy Configuration for the TDG

In this thesis, Trusted Communities have been generically presented, such that they can be applied
in any open distributed system of the hosting system class. This is allowed by the configuration of
the TC mechanics with the basic strategy implementations as proposed in Sec. 4.6. However, each
particular instance of the hosting system, such as the TDG, allows for improvements to these basic
strategies by means of scenario-specific modifications. In the following, the TC configuration used
for the evaluation of the application of TCs in the TDG is discussed, and such modifications are
presented.

The starting point for the TDG TC configuration is a composition of the basic strategy implement-
ations. This configurations is however modified in the following aspects:

Non-trust-based strategy alternatives The application of the basic TC Observer/Controller strategy
allows the TCM to adapt its TC regulation to a trust breakdown scenario by switching to non-trust-
based, alternative, implementations of the TCM strategies (high-level adaptation as described in
Sec. 4.6.9). Obviously, this requires a repertoire of strategy implementations to let the TCM choose
from. In the following, for each TC strategy required within the operation phase of a TC (as depicted
in Fig 4.1), such an alternative strategy is presented where necessary.

e Active TC Expansion strategy: The basic implementation of this strategy aims at recruiting new
TC members from the set of unassociated agents by estimating their trustworthiness based
on the collaborative execution of the Potential Member Search strategy (see Sec. 4.6.6). This
implementation is inherently dependent on an operating Trust Management system, and can
therefore not be applied successfully in the event of a trust breakdown. An alternative imple-



130 Chapter 5. Evaluation

mentation is hence required that allows to estimate the suitability of agents as TC members.
This implementation is based on the approach of spot-checking in the literature (cf. e.g. [175]):
The TCM generates a spot-checking role that determines the submission of pre-processed
work units to potential candidates. These WU delegation requests are openly declared as test
tasks for the following reasons: Unassociated agents may be unaware of the presence of a
trust breakdown and adhere to the application of trustworthiness thresholds within their worker
decision-making (see Sec. 5.1.5). A trust breakdown is also expected to affect TC members,
such that their delegation could fail if not openly declared as test-task. This is especially true for
the case that a trust breakdown was the consequence of an overload situation and agents have
an overall high workload. By openly advertising tests-tasks as TC invitation with conditions (see
Sec. 4.6.6), workers are motivated to consider the processing in order to become a TC member.
The amount of successful spot-checks required to finally invite an unassociated agent as TC
member is then determined by the TCM with a threshold. This approach represents in effect an
alternative trustworthiness estimation scheme, however based on redundancy as the results
of the processed WUs are not further used. This implementation is hence inferior to the basic
implementation and is therefore only applied as fallback in the event of a trust breakdown.

e Member Control strategy: The basic implementation of this strategy has been described in
Sec. 4.6.7 as approach based on the administration of a member score system. Each TC
member is assigned a current score. This score decreases (as described, the amount is de-
termined by a sanction function) whenever a member behaves uncooperatively towards its fel-
low members, including the TCM. Such behaviours include the rejecting of inbound processing
requests, the return of invalid WU results, or the denial to execute TC roles assigned by the
TCM. The member score mechanism already represents a behaviour estimation alternative to
the Trust Management in the TDG. This is a design choice to increase the robustness of Trus-
ted Communities towards uncooperative agents that threaten the operation of a TC. Due to this
decoupling, the basic implementation can be applied unmodified in trust breakdown situations.

e Role-Assignment strategy: The basic implementation of a role-assignment strategy, as de-
scribed in Sec. 4.6.8, allows the TCM to allocate roles to TC members based on the minim-
isation of the overall costs of this allocation. As the allocation is based on the interpretation
of a cost-matrix, and role execution costs are assumed to be immutable throughout the TDG
states, this implementation is also decoupled from the TM system. It is therefore not necessary
to provide an alternative implementation for the application in the TDG.

These strategies are required for the management of a TC and are executed by the TCM. How-
ever, the following strategies are also relevant in the operation phase of a TC, albeit being executed
by TC members. Here, the TCM instructs its members to exchange their strategy implementation
upon detection of a trust breakdown.

e Distributed Leader Election: The basic implementation of this strategy aims at electing the most
suited TC member as TCM, while ensuring that the amount of private information disclosed in
the election process, as well as the message overhead, are minimised (see Sec. 4.6.5). In
the event of a trust breakdown, the election based on the highest average trustworthiness is
assumed to be not better than any other criterion, due to the fact that the trust values are



5.2. Application of Trusted Communities in the TDG 131

not reliable (see discussion in Sec. 4.6.9). However, the time and message complexity is worse
than that of other distributed leader election algorithms, such that an alternative implementation
is preferred here. For the TDG, an ID-based election implementation is utilised as alternative.
Such an algorithm requires only one round of message passing in order to allow each agent to
determine who the leader is. Additionally, it does not disclose any private information. It has
been shown that for this problem algorithms with a time complexity of O(n) exist (cf. e.g. [209]).

e Membership Evaluation strategies: The basic membership evaluation strategy described in
Sec. 4.6.4 compares the utility of an agent before the association to a TC with the current utility
received as TC member. This decision-making is decoupled from the TM and does not require
an alternative implementation.

TDG-specific modifications A Trusted Community is a closed environment in which safety means
are abandoned in order to improve the utility of member agents by optimising their interactions. As
discussed generically for all hosting systems in Sec. 4.6.7, and specifically for the TDG in Sec. 5.2.1,
the exploitation of this abandonment of safety means by adversary TC members must be com-
pensated by the regulatory execution of Member Control strategies by the TCM. As described in
Sec. 4.6.7, this control cannot be determined generically, but must be realised scenario-specific.
For the TDG, the application of spot-checking (cf. e.g. [175]), hence the utilisation of pre-processed
test-WUs, is an adequate instrument to validate the worker willingness of a TC member. Here, com-
plaints about rejected cooperation by other TC members are processed by the TCM, in that it utilises
test-WUs to validate these claims. These test-WUs are not marked as such, and delegated by any
member of the TC (assigned as role), in order to prevent the defecting member from being aware
of the test. This contrasts the approach presented as alternative Active TC Expansion strategy im-
plementation. The validation of test-WUs then determines whether the TC members are sanctioned
by a decrease of their member score, as described in Sec. 4.6.7. This combined approach of mem-
ber complaints processing, and their validation by spot-checking, then allows to realise the Worker
guarantee incentive as described at the beginning of this section.

In addition, the Transparent WU validation is realised via a combined stochastic/situation-aware
validation approach as described in Sec. 5.2.1. For this, the TDG implementation of the Member
Control Strategy is extended, such that in case of non-validating applications, submitters that del-
egate WUs to TC members with a member score below a threshold are always assigned additional
validating workers by the TCM. Additionally, such validating workers are assigned stochastically by
the TCM (realised as TC role). Here, missed validations immediately lead to the exclusion from the
TC by the TCM, due to the severity of this threat (the sanction function hence allows only the value
SCOTemay)-

Finally, the Submitter replication control requires the strategy implementation to assign a sanction
value on the member score for the detection of submitter replication. For this, the TCM utilises a
comparison of checksums for delegated WUs by each submitter.

5.2.3 Discussion

In the previous section, the drawbacks of the iTC application in the TDG have been discussed. In
the following, organisation benefit strategies, as well as a strategic configuration for the application of



132 Chapter 5. Evaluation

TCs in the TDG have been explained. This completes the required specification of the TC mechanics
for the TDG, and allows for a comparison of the iTC application with the TC application in the TDG,
in reference to the drawbacks discussed in Sec. 5.1.6:

e TM exploitation: The iTC approach does not prevent the exploitation of the TDG Trust Man-
agement. This is depicted in Fig. 5.10: A rational TDG agent is motivated to build up its trust-

] N ey thres
< WU delegation with safety means m
o /T\ ¥ (implicit TC)

=, B thres,
8 8 = Uncertain WU delegation (Trust-building)

c £ =

o =< < 0

s o+

e 5 0O

@ 3

8— 2 No WU delegation (Isolation)

o 2

o E

-] —

Figure 5.10: Comparison of incentives for the TDG between the reciprocity-based incentive of the
iTC approach, and the TC membership incentive of the Trusted Community approach. Workers
are motivated to cooperate more when TCs are applied, due to the organisation benefits of TC
membership and its high entry threshold.

worthiness by cooperation as worker, in order to prevent isolation as submitter. However, once
the trust value is higher than the worker acceptance threshold thresy, there is no motivation to
further cooperate, with the exception of occasional cooperation to maintain that trust level. In
contrast, the application of Trusted Communities generates an additional incentive, TC mem-
bership, which allows agents to delegate their WUs without safety means and with the guaran-
tee of successful delegations. TC membership is however granted only to agents with a high
trust level. This is quantified with the threshold thresDT, which is used by the basic Potential
Member Search strategy, and consequently by the basic Active TC Expansion strategy, to de-
termine new TC members in the pool of unassociated agents (see Sec. 4.6.1 and Sec. 4.6.6).
Rational TDG agents that want to take advantage of the TC benefits in order to increase their
utility, will therefore cooperate longer to build up the required trust level. Additionally, the iTC
problem of ceasing worker cooperation, once a required threshold is reached, is avoided in
the TC approach by the application of the modified Member Control strategy: Agents lose TC
membership much faster than agents lose reputation. Additionally, agents excluded from a TC
are blacklisted, such that they are not invited to become TC members again until the TCM
removes them from the blacklist due to forgiveness (see Sec. 4.6.6).

e Over-confidence: The application of TM in the TDG is susceptible to the development of over-
confidence. In the application of the iTC approach in the TDG, over-confidence results from
the slowness of the TM to adequately incorporate negative experiences with workers that have
a high reputation. In effect, it leads to submitters that adhere to delegating their WUs to such



5.2. Application of Trusted Communities in the TDG 133

workers until eventually the trustworthiness sinks below the worker threshold thres,. In the
application of Trusted Communities in the TDG, this effect is avoided by the execution of the
situation-aware Member Control strategy: In case of a report about uncooperative behaviour to-
wards a fellow TC member, an agents’ trustworthiness is validated in a focussed but transparent
spot-checking approach, as described in the previous section. In case of a failed validation, the
reaction, member score sanctions and eventual TC exclusion, is more immediate (the member
score mechanism is usually parameterised very sensitively), and more sustained, than reputa-
tion decrease: In the iTC approach, defecting agents that have exploited over-confidence need
only few cooperations to reach the worker threshold again, while the exclusion from a TC res-
ults in blacklisting and prevents TC benefits for an extended duration (see Sec. 4.6.6). In sum,
the TC approach is less susceptible to the exploitation of over-confidence.

e TM reliance: The iTC approach is based exclusively on trust-based decision-making, as are
most approaches in the literature (see discussion in Sec. 2.2). As discussed, the complex dy-
namics of agent interactions in an open distributed system can lead to the emergence of trust
breakdowns. In this event, the trust relationships between most agents are so low (red isola-
tion margin in Fig. 5.10) that the system can get paralysed, i.e. agents do not interact with each
other due to their perception of the involved risk. In the TDG, this phenomenon manifests as the
submitters’ inability to determine suited workers (due to the worker trustworthiness threshold
thresy), and the isolation of submitters due to the workers’ rejection to process WUs of submit-
ters with low trustworthiness values (utilisation of the submitter trustworthiness threshold thres,
for the reciprocity-based reputation incentive).

This is avoided by the TC approach for agents that are members of operating TCs: Interactions
between members, in the TDG mainly WU delegations, are considered safe without restrictions.
Hence, for a submitter x, all fellow TC members appear suited as workers, disregarding their
current trustworthiness value. This counters the above mentioned submitter inability to find
suited workers. On the other hand, TC members are obliged to cooperate with fellow TC
members. In the TDG, this is realised via the Worker Guarantee Incentive (see Sec. 5.2): TC
members that receive a WU processing request from fellow members must accept and invest
the effort to produce a valid result, while disregarding the submitters’ trustworthiness, in order
to remain TC members. This prevents the isolation of submitting TC members. Moreover,
the continued cooperation allows for a quick recovery from the trust breakdown, such that at
least TC members are eventually considered trustworthy again by unassociated agents (see
the evaluation results presented in Sec. 5.3.3). Additionally, the maintained recruitment of
additional members from the group of unassociated agents, by application of trust-independent
Active TC Expansion strategies (see Sec. 5.2.2), reinforces this recovery process.

In effect, the application of TCs in the TDG generates robust partitions of the agent society in
which cooperation prevails despite a trust breakdown. These partitions consist of subgroups
of the agent society, the TC members. The number of these agents, uﬂ(t)|, then determines
the degree of paralysis in the hosting system.

e Sub-optimality due to safety means: The iTC approach for the TDG suffers from sub-optimality
due to the utilisation of safety means for non-validating DG applications. These safety means



134 Chapter 5. Evaluation

are realised as the replication of work units, and the comparison of their processing results by
majority voting. While this invariable validation generates an incentive for workers to cooperate,
its utilisation considerably increases the workload of the TDG and degrades its performance.

The application of TCs in the TDG mitigates this performance decrease by the abandonment
of regular WU replication in inbound interactions. This reduces the workload of TC members
and hence increases the performance. As discussed above, the WU replication must however
be maintained to some degree in order to account for the dynamics of agent behaviour. This
is achieved by an adaptive approach encapsulated by the Transparent WU validation strategy
(see Sec. 5.2.1). In effect, its execution decreases the workload in the TCs, and consequently in
the entire hosting system. This improves the performance of the hosting system (see evaluation
in Sec. 5.3.2).

e Sub-optimality due to undetectable submitter behaviour: In Sec. 5.1.6 the susceptibility of the
iTC approach to undetectable submitter behaviour has been discussed. The conclusion of this
discussion was that the utilisation of the WU replication strategy by risk-minimising submitters
is not detected by other agents in the system. This is due to the fact that such detection
must be executed collaboratively, that self-interested agents have no direct utility gain from
this collaboration, and that there is no incentive mechanism to enforce it. This is different in
Trusted Communities: TC members accept the delegation of control to the TCM and allow
it to allocate TC management roles to them. This mechanism is used to enforce member
collaboration to detect submitter behaviour that goes unnoticed for single interaction partners:
By pledging TC members to inform the TCM about each accepted WU processing request,
the TCM can compare (checksums of) submitted WUs and decide whether WU replication has
been executed. To discourage its usage, the TCM has a sanction mechanism based on the
execution of the modified Member Control Strategy (as described in Sec. 5.2.2) at its disposal.
Note that such an approach requires closed environments, such as a TC, to be executable.
This is due to the centrality of this approach and its lack of scalability in a distributed system,
such as the hosting system. In sum, the application of TCs in the TDG avoids the problem
of undetectable submitter behaviour, by applying a centralised monitoring of their delegation
activity and enforcing good conduct through sanctions. In effect, TC members are discouraged
from the application of WU replication as means of risk reduction. This avoids the additional
workload involved in this behaviour and hence improves the performance of the hosting system.

This completes the discussion of the benefits of TC application in the TDG, as opposed to the
application of the iTC, or similar trust-based approaches. The elaborated improvements of the hosting
system can however only be realised when the TC application is successful in the TDG. This refers
to the actual formation, and sustained operation of Trusted Communities. In Sec. 3.2.4 the generic
assumptions with respect to such a successful application have been laid out. Finally, the remaining
specification required to apply Trusted Communities in the TDG is the utility function U* () of agents.
This function is defined in appendix D which introduces an analysis on performance and robustness
metrics suited for the TDG. In the following, the evaluation results are presented and discussed.



5.3. Evaluation Results of the TC Application in the TDG 135

5.3 Evaluation Results of the TC Application in the TDG

This section starts with the discussion of the experimental setup used for the evaluation. In the
following, the performance of agents in the TDG is compared when applying the iTC-, the Clan-,
and the TC-approach. Finally, the robustness of the TDG in case of collusion attacks is compared
for the three organisation forms.

5.3.1 Experimental setup

The evaluations have been conducted with the following setup (cases of deviation are documented
in the text):

Agent stereotypes The configuration of agents has been limited to a few stereotypes to account
for the application of default component configurations (as described in Sec. 3.1.4 and Sec. 5.1.4),
while additionally allowing to evaluate uncooperative behaviours. The stereotypes used were:

e Adaptive agents (ADA): The default implementation of an agent using only default components.
This agent type uses the trustworthiness threshold as defined by the iTC-approach.

e Freerider agents (FRE): These agents represent the type of user that wants its own grid jobs
to be processed in the TDG as fast as possible, while not being willing to invest any effort as
worker. In result these agents consequently reject WU processing requests.

e Egoistic agents (EGO): These agents represent a malicious and/or faulty type of behaviour.
Unlike FRE-agents, EGO-agents accept WU processing requests, but do not return any result
with a certain probability (0.2 percent for the experimental setup).

e TM-exploiting agents (CAA): These agents are based on the ADA-agents, but illustrate the
susceptibility of the iTC-approach to TM exploitation: CAA-agents behave like regular iTC-
agents as long as they do not reach a reputation threshold (0.5). Then these agents switch to
a free-riding mode, rejecting all processing requests until again, they reach a lower reputation
threshold (0.1). Then these agents start building up reputation again, by accepting WU pro-
cessing requests based on the rules of an ADA-agent. The effect of this behaviour is depicted
in Fig. 5.11, for a single agent in an exemplary simulation run.

e Defecting agents (DAA): This is a behavioural stereotype that can be imposed on any other
agent type and demonstrates the threat of false WU results for non-validating DG applications.
Agents that are combined with this stereotype accept and process WUs just as their supertype
(e.g. ADA), but have a probability (0.2) of returning a false WU result in the processing. It is
further assumed that agents of this type collude by always producing the same false result, such
that the majority-voting for a set of results returned by such agents can lead to the acceptance
of a false WU result (see the description of the accuracy-metric in appendix D.1.4).

All agents are additionally equipped with a TC organisation component configured for the TDG ap-
plication (as described in Sec. 5.2.2), and allowing them to form Trusted Communities. In alternative
experimental runs, the agents are equipped with a respective component to allow for Clan-formation.



136 Chapter 5. Evaluation

0.5

Reputation of a single agent

) 100k 200k 300k
Time [tick]

Figure 5.11: Reputation of a TM-exploiting agent: When its reputation is above the threshold 0.5, the
exploiting agent starts to free-ride, rejecting all processing requests. This behaviour is changed to
cooperation again when the reputation of the agent reaches the lower threshold 0.1. The course of
the reputation shows that firstly this agent has been consequently requested as worker which allowed
for reputation build-up, and secondly that the time to reach the upper threshold was much higher than
the time to fall back to the lower threshold.

Clan comparison In Sec. 2.5.1 the MAS organisation Clan (cf. [118]) has been summarised and
its relevance as related work for Trusted Communities has been emphasised. Consequently, Clans
have been used in the evaluation of TCs as comparable form of agent organisation. In that, Clans
and TCs have been evaluated separately, but under identical system conditions, such that the set of
organisations in the hosting system is either interpreted as O 7¢(t), or as O°n(¢).

In [118], the article proposing Clans, the mechanics of Clans are given in algorithmic form such,
that an implementation could be derived for this thesis. However, the author does not provide any
information on the evaluation of the approach, especially not in a Desktop Grid scenario. The Clan
implementation has hence been tailored for the application in the TDG by the author of this thesis.
In that, the following aspects required special implementations to the provided generalised concept
described by the article:

e Goals and plans: The goals of agents participating in the TDG have been described as the rapid
processing of DG jobs throughout the thesis. For this several metrics have been introduced.
As discussed in the rationale (see appendix D.3), the speedup has been identified as the most
relevant metric. A concrete plan to fulfil the goal is generated for each DG job produced. Plans
are hence understood as the mapping of workers to every WU contained in such a job.

e Formation criteria: The formation of Clans has been described as a check of criteria against
thresholds, esp. trustworthiness thresholds. For this, the same values have been used as for
TCs. Additionally, the criteria have been interpreted as follows for the TDG application:

Missed opportunities: This criterion allows for a straight interpretation in the TDG system:
Whenever an agent has rejected a processing request of another agent, but has requested the
same agent to process one of its own WUs and was also rejected, a missed opportunity is
registered.

Scalability: The definition of the scalability criterion in [118] is such that in systems with
many cooperation requests and a large number of agents, scalability is an issue as the search



5.3. Evaluation Results of the TC Application in the TDG 137

for interaction partners is more expensive than in small systems. However, it is assumed for the
TDG, that this criterion is always fulfilled.

Lack of information: This formation criterion is described dependent on a system state in
which a large group of agents is not trusted or not known, while a small group of agents is very
trusted. Clan membership is then aspired to gain access to trust and capability information
about the group of unknown agents. This criterion can be generically applied.

High failure rate: This criterion describes agent states in which the agent has many unsuc-
cessful interactions. In the TDG this can be directly translated into the waste (see Sec. D.1.3)
metric: The higher the waste, the more interactions were unsuccessful and the greater the
motivation to form or join a Clan.

Additionally, in [118], agents are described as seeking Clan-membership whenever they have
a plan that requires cooperation, and any of the above mentioned criteria is met. In a strict
interpretation, a TDG agent would seek Clan-membership only if it had a DG job to distribute
as submitter and be in active search for workers. In a less strict interpretation, agents expect
the generation of consecutive DG jobs and seek Clan-membership exclusively based on the
formation criteria. In this thesis, this less strict interpretation has been chosen as this is seen
to more reflect the agent rationality assumptions made by the author of the article on Clans.

e Kinship motivation: For the application in the TDG, the motivation to cooperate when requested
by a fellow Clan member is interpreted as situation-aware probability, as depicted in Tab. 5.3:
This table extends the worker decision making described in Sec. 5.1.5: When using Clans, this

Currently no jobs Unprocessed job
Worker decision: False 0.5 ‘ 0.8
Worker decision: True 1.0 ‘ 1.0

Table 5.3: Values for kinship motivation.

decision is not considered final, but can be overridden by situations with a high motivation for
cooperation. The table primarily accounts for the fact that there is a base probability (0.5) to
cooperate among Clan members even when the requested agent has currently no job and it
would normally not accept the request. If the requested agent has currently a job to distribute (a
plan requiring cooperation from fellow members), the motivation is higher (0.8), due to recipro-
city expectation. Finally, fellow Clan members are never discriminated against non-members,
i.e. when the decision to cooperate as worker is positive, the motivation does never decrease
the probability to cooperate. Note here, that the author of the Clan approach does not provide
any information on the quantification of motivational values, and that motivation is ascribed a
subjective quality (while the values provided in this thesis are applied by all agents disregarding
any disposition for more specific quantifications).

e Preferred Clan size: The initiator of a Clan formation considers the number of agents required
to execute the tasks of its current plan and a small redundancy in order to determine how many
agents to invite to a Clan. In the TDG, this is expressed by the average number of WUs in a
job. However, the Clan approach describes the (seemingly unconstrained) extension of a Clan



138

Chapter 5. Evaluation

by invitations of members towards unassociated agents. This has been interpreted such that
members invite other agents only when the preferred Clan size is not already exceeded.

Adaptation to avoid bias: The benefits of Clan-membership are mainly determined by cooper-
ation resulting from the kinship motivation. In the TDG, this is the high probability that a fellow
member will accept a processing request as a worker. In Trusted Communities, this is related to
the Worker Guarantee Incentive discussed in Sec. 5.2.1. However, TCs also allow for another,
even more substantial benefit: The Transparent WU Validation introduced in Sec. 5.2.1. In a
comparison of the performance of both approaches, this additional benefit strategy is likely to
bias the results of the organisations as such. This is especially valid for the case that the Trans-
parent WU Validation strategy is applied without using TCs. In order to avoid such a biased
comparison, the performance evaluations of Clans were hence conducted with an adapted im-
plementation that uses the additional transparent WU validation benefit within Clans, as is done
in TCs.

TDG composition In general, the evaluations used the following setup:

The agent society A consisted of 250 agents of which 10 % were FRE-agents, 10 % were
EGO-agents and the remaining 80 % of agents were of the ADA-type (for the undisturbed
case, deviations are documented below).

Agents had processing capabilities from the range of a performance level (PL) of 2, to PL 5.

Non-validating DG applications were used, and agents produced a job in average after 4500
ticks. The jobs contained an average of 11 work units (as defined in Sec. 5.1.2) with average
processing costs of 350 (the according processing duration for a single WU copy was between
175 ticks (PL 2) and 70 ticks (PL 5)). The quorum was set to 3, such that each original WU had
in general to be replicated 2 times to allow for the majority voting. An exemplary job processing
scheme resulting from this setup is also illustrated in Fig. 5.12. Finally, this setup had the
following implications on the preferred clan size (as described above): The max. WU number
for a job (15) was taken as base number for the preferred size, adding a redundancy of 10. This
resulted in preferred Clan size of 25 agents.

The Trust Management system was parameterised with the rating values defined in Sec. 5.1.4.
Additionally, the initial reputation of each agent was 0.05.

Metrics The metrics used are discussed in appendix D.3. In the evaluation result presentations
the average (mean) of these metrics (e.g. speedup) is provided, along with the standard deviation.
Here, the notation sy _1 is applied for the standard deviation, based on the bias-corrected variance,
as defined by:

1 i=1
S%\]—l = m . Z (xl —Y)Z and then SN—1 — 5%171
N

5.3.2 Performance Evaluation

The main goal in the development of the Trusted Community approach has been described through-
out the thesis as the increase of the systems’ performance by TC application. In the following discus-



5.3. Evaluation Results of the TC Application in the TDG 139

sion of the evaluation results, this performance improvement, compared to the iTC-approach and the
state-of-the-art approach Clans, is documented for the TDG. As described in the introduction of the
section, the agent society used in the evaluations was comprised of agents based on stereotypes:
Cooperative agents (most ADA-agents), as well as various stereotypes of uncooperative agents. The
aim in the evaluation was to achieve a high performance of cooperative agents, while allowing only
for a low performance of uncooperative agents (isolation). The latter aim is motivated by the potential
of the control of open systems through cooperation incentives. The isolation of uncooperative agents
through the utilisation of the iTC approach in the TDG has been evaluated and documented in vari-
ous publications (see e.g. [8], [18]). The main focus in this thesis is therefore on the performance of
cooperative agents.

The setup of the performance evaluations in the TDG allowed for two cases: The utilisation of val-
idating, or non-validating DG applications by the participating agents. In the former case, a submitter
can easily validate the correctness of a WU result without having to re-process it. In the latter case,
several WU results must be compared in order to allow for statements about the correctness. Only
few types of applications allow for programmatic validation. Additionally, such validating applications
have lower demands on submitter-strategies and are therefore less challenging. As a consequence,
the evaluations for this thesis have been conducted with non-validating applications. For the sake of
completeness, evaluation results for validating applications have been published in [18].

In the following, experimental results for a variety of conditions are summarised in Tab. 5.4, and
then analysed for each condition. The metric values are averages for the group of cooperative agents
in the system, as described above. Each condition has been evaluated in an experiment containing
100 simulation runs for each organisation type (standard deviation depicted in brackets). The para-
meterisation of the approaches was based on parameter studies conducted for each experiment and
organisation approach. In each case, the best parameterisation was used to produce the results. A
more detailed visualisation of the results, depicting the average speedup in each experimental run,
can be found in appendix E. Note that as described above, an adapted, more competitive, Clan-
implementation was used in the evaluation.

Conditions

Metrics (sn_1)

iTC

Clan

TC

Undisturbed

20 % defecting

(DAA) agents

Avg. speedup
Accuracy
Avg. organisation utility

Avg. operating organisations

Avg. speedup
Accuracy
Avg. organisation utility

Avg. operating organisations

5.411 (0.222)
1.0 (0.0)

5.327 (0.203)
0.994 (0.001)

7.223 (0.373)
1.0 (0.0)

1.770 (0.461)
5.280 (0.877)

7.066 (0.309)
0.998 (0.001)
1.667 (0.332)
4.880 (1.387)

8.491 (0.623)
1.0 (0.0)

2.827 (0.494)
3.730 (1.100)

7.108 (0.353)
0.996 (0.001)
2.284 (0.406)
3.360 (0.746)



140 Chapter 5. Evaluation
Conditions Metrics (sy_1) iTC Clan TC

30 % defecting  Avg. speedup 5.316 (0.207) 6.936 (0.309) 6.702 (0.234)

(DAA) agents Accuracy 0.987 (0.002) 0.995 (0.002) 0.991 (0.002)

Avg. organisation utility - 1.567 (0.458) 1.920 (0.178)

Avg. operating organisations - 4.350 (1.794) 3.820 (0.626)

20 % TM- Avg. speedup 4.962 (0.195) 6.785(0.209) 8.102 (0.418)
exploiting Accuracy 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
(CAA) agents o -

Avg. organisation utility - 2.042 (0.254) 3.530 (0.387)

Avg. operating organisations - 4.980 (0.284) 2.500 (0.659)
30 % TM- Avg. speedup 4.686 (0.184) 6.393 (0.202) 7.346 (0.366)
exploiting Accuracy 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
(CAA) agents

2.158 (0.196)  3.517 (0.369)
4.650 (0.479) 2.470 (0.540)

Avg. organisation utility -

Avg. operating organisations -

Table 5.4: Performance evaluation results of the /TC-, the Clan-, and the TC approach for non-
validating DG applications in various conditions. Best values are depicted in bold where applicable.
The average metric values refer to the group of cooperative agents and are based on 100 experi-
mental runs each.

Undisturbed Experiment

In this experiment, the three organisation approaches were compared for the case of an agent society
without additional uncooperative agents (apart from the initial 10% FRE-, and 10% EGO-agents). The
major aim here was to quantify how Trusted Communities improve the TDG by organising agents and
allowing them to take advandage of the organisation benefit strategies (as described in Sec. 5.2.1).
This performance is compared to the performance of Clans which pursue a similar aim by provid-
ing members with the benefits of kinship motivation. As described above, the Clan-implementation
used here also allows Clan-members to benefit from the Transparent WU Validation as presented in
Sec. 5.2.1.

This experiment was conducted to demonstrate the ability of Trusted Communities to optimise
the interactions of agents within the TDG. In Fig. 5.12 the times agents were active as workers are
depicted for the case of iTC-application. The diagram shows firstly that the 20% uncooperative agents
(on the right side) are isolated and forced to process their own WUs (red marks). Additionally, the
diagram shows that the cooperative ADA-agents have a high workload. Especially agents with a high
performance level are sought as workers and are constantly processing WUs with little idle time.

In contrast, the application of TCs allows TC member agents to submit WUs without replicating
them. As there is no uncooperative behaviour among the agents (undisturbed case), the majority
of agents is organised in TCs. This optimises the interactions among the agents and results in a



5.3. Evaluation Results of the TC Application in the TDG 141

600K M Work for cooperative agents 1

W Work for self
‘Work for uncooperative agents
W Wasteful work

500k

400k

300k

time [tick]

200k

100k

Agents

Figure 5.12: Worker diagram for the iTC-approach in the undisturbed performance experiment: The
majority of agents has a high workload, working for other cooperative agents, throughout the duration
of the simulation run. The second group of agents (right side) is the group of 10% EGO and FRE-
agents. These agents are isolated and forced to process their own WUs.

600k

I Work for cooperative agents
M Work for self
‘Work for uncooperative agents
W Wasteful work
O Idle

500K iy i

400k

300k

time [tick]

200k

100k

e s e

Agents

Figure 5.13: Worker diagram for the TC-approach in the undisturbed performance experiment: This
diagram shows how TC members reduce their workload due to the Transparent WU Validation
strategy (see Sec. 5.2.1) while maintaining the isolation of uncooperative agents (right side). The
difference shows best in comparison to the time before TC formation (at tick 30k, depicted by blue
line) and the diagram for the iTC-approach application (depicted above).



142 Chapter 5. Evaluation

reduced workload, as depicted in the lower of the two graphs. Consequently, the throughput is higher
and the speedup increases. This shows in the average speedup values for the 100 experimental
runs summarised in Tab. 5.4: iTCs provide an average speedup that is only 63,73% of the speedup
achieved by applying TCs. Clans also provide the benefit of abondoning the WU replication to their
members. Despite that, the average speedup for Clans is lower (85,07%) than the average speedup
achieved by TCs. This is mainly a result of the composition of the organisation forms: As depicted

Agent society Agent society
Unassociated agents [ Unassociated agents
Clan_0 TC_O
Clan_ 1 —— TC 1 ——
250 Clap-2 —— 250 ¥ 2 ——
Clan_3 ——
@ Clan_4 —— @
S 200 Clan_5 S 200
j=2 j=2
© ©
S k]
g 150 g 150 -
Qo Qo
£ £
=] 3
=4 =4
100 100
50 50
e rﬂtiv
0 : ! 0
0 100k 200k 300k 400k 0 100k 200k 300k 400k
Time [tick] Time [tick]
(a) Clan (b) TC

Figure 5.14: Comparison of the number of agents associated to a Clan/TC in case of the undisturbed
performance experiment: When Clans are applied, the amount of agents associated to any Clan is
approx. 50%. With a total amount of 20% uncooperative agents, approx. 30% of cooperative ADA-
agents remain unasassociated and do not benefit from organisation membership. When TCs are
applied, the number of members is significantly higher with approx. 75%. From the remaining 25% of
agents, only 5% are cooperative ADA-agents.

in Fig. 5.14a the total amount of agents associated to any Clan is approx. 50%. Hence 30% of
the agents do not gain Clan-membership despite being cooperative. In contrast, the amount of
cooperative agents remaining unassociated is only 5% when TCs are used. The difference of agents
being able to submit their WUs without replicating them hence amounts to 25%. This obviously
influences the speedup. Additionally, the size of the organisation forms is a key factor in the average
speedup: While Clans are constrained by a preferred size (see discussion in Sec. 5.3.1), TCs are
unconstrained. The more members an organisation has, the more workers are available for WU
processing without replication, hence the greater the speedup improvement. This is also supported
by the graphs depicted in Fig. 5.15: The relative organisation utility (as defined in Eq. 4.21), hence
the average speedup during membership in relation to the average speedup as unassociated agent,
mainly depends on the number of members in the organisation. This is best demonstrated by the
utility of the largest TC (TC_0): Having approx. 120 members and achieving a utility of approx. 4.5
this TC provides its members with a significant benefit (the average organisation utility being 2.6).
Averaged over the 100 experimental runs, the relative organisation utility between the approaches
amounts to 1.770 in case of Clans, and 2.827 for TC application.

Finally, the speedup of TCs is decreased by the application of a Member Control strategy that
utilises an number of randomly chosen TC members for whom WU replication is applied despite their



5.3. Evaluation Results of the TC Application in the TDG 143

5r- 5r-
jnt sociely ——
Unassociated agents
a4t TC.0
TC —
Tc2 —

4

Clan-Utility
-
TC-Utility
-

3 I I 3 I I
0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500k
Time [tick] Time [tick]

(a) Clan (b) TC

Figure 5.15: Comparison of the relative organisation utilities of Clans/TCs (as defined in Eq. 4.21) for
the undisturbed performance experiment: Both approaches show significant speedup improvements
for organisation members. In that, the comparison of the relative utility of single formed Clans/TCs
with their size (as depicted in Fig. 5.14) shows a strong positive correlation. This is due to the number
of available workers that do not require the application of WU replication.

membership in order to allow for the detection of defecting agents. This strategy is not executed by
Clan members as Clans are not regulated by a manager and members cannot be excluded even
in the presence of uncooperative behaviour. However, this experiment does not include defecting
agents and thus the execution of this strategy in TCs manifests as overhead and decreases the ad-
vantage of TCs over Clans.

In summary, this experiment demonstrates that the optimisation of agent interactions by the Trans-
parent WU Validation strategy yields significant benefits. This shows in an increased speedup of both
explicit organisation approaches Clan and TC, as opposed to the iTC-approach. In addition, the di-
verging organisation mechanics allow TCs to outperform Clans, both in terms of average speedup
and average relative organisation utility.

Experiments With Defecting Agents

In these two experiments, the composition of the agent society has been changed, such that 20 %
(30 % respectively) of the agents were defecting (of type DAA, see Sec. 5.3.1), hence producing false
WU results with a certain probability (here 0.2). This behaviour was static among the agents, such
that they were not influenced by incentives like organisation membership. The motivation to conduct
these experiments was the measurement of the risk of the Transparent WU Validation benefit: By
abandoning the safety means replication, organisation members could accept false WU results as
valid. Additionally, the agents were colluding in the production of false WU results, such that majority
voting could also be overcome. The impact of the defecting behaviour was quantified with the metric
accuracy, as defined in appendix D.1.4. Additionally, the identification of such defecting behaviours
was aided by negative trust assessments, consequently reducing the reputation of these agents.
This resulted in a reduced number of suited workers in the system by 20% and 30% respectively.
An additional motivation for these experiments was therefore the measurement of the impact on the



144 Chapter 5. Evaluation

speedup resulting from this reduced number of cooperative workers.

The results summarised in Tab. 5.4 show that Clans and TCs achieve a comparable speedup
for the case of defecting agents. Both approaches outperform the iTC-approach. However, the
experiments also show that while the speedup of iTCs and Clans is hardly reduced compared to
the undisturbed case, the TC-approach achieves only 83.71% (20% DAA), and 78.93% (30% DAA)
respectively of the speedup in the former case. Additionally, both experiments show that the explicit
forms of organisation (as opposed to the iTC-approach) increase the accuracy in the system. Here,
TCs are outperformed by the Clan-approach. Finally, the results demonstrate that in case of TC-
application the average relative utility of the organisations is higher than in the application of Clans.
In consequence, this means that there is a stronger incentive for TC-membership in such system
states than for Clan-membership.

In the following, the reasons for these results are examined by analysis of a single exemplary
run from the 20%-DAA experiment. The formation of Clans and TCs differs in the required criteria:

Agent society Agent society
Unassociated agents Unassociated agents
Clan_0 TC_O
r Clan_1 —— r TC_1 ——
Clan_2 —— TC 2 ——
Clan_3 ——
250 250
2 2
< <
[ [
= =
& 200 & 200
s s
2 2
£ 150 £ 150
5 5
= =
100 100
T i
0 L 0 L
0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500k
Time [tick] Time [tick]
(a) Clan (b) TC

Figure 5.16: Comparison of the number of agents associated to a Clan/TC in case of the presence
of 20% DAA-agents: These graphs show how the amount of organisation members decreases in
comparison to the experiment with an undisturbed agent society (see Fig. 5.14). Also, the amount
of formed Clans decreases, and the formation of Clans and TCs is initiated later. Additionally, the
TC graph shows how the largest operating TC (TC_0) constantly loses members. This is due to the
exclusion of defecting members which are identified during the course of the operation phase.

While both approaches require a high trustworthiness among the potential members, Clans require
additionally the fulfilment of at least one secondary criterion (see summary in Sec. 5.3.1). As depicted
in Fig. 5.17, this results in a slower Clan-formation as compared to the TC-formation. This time is well
invested in case of defecting agents: As described above, the probability to produce a false WU result
amounts to 0.2. In consequence, this means that the defecting DAA-agents can be identified only
after an extended period of time. Each forming Clan is comprised of the 25 (see preferred clan size
described in Sec. 5.3.1) most trusted agents known to the initiator. Subsequent Clans are formed
when the next set of agents reach the formation criteria, mainly determined by the time they reach a
high trustworthiness. DAA-agents never reach that threshold as their defecting behaviour is identified
through the application of majority voting resulting in lower trustworthiness values. Consequently,
when Clans are applied, DAA-agents have a low chance of becoming organisation members and



5.3. Evaluation Results of the TC Application in the TDG 145

reducing the accuracy of other members.

In contrast, TCs have an unconstrained size (in case of the applied strategy configuration) and
lower formation thresholds. This results in earlier TC formation and the inclusion of DAA-agents as
members due to the lack of negative experiences with these agents. However, TCs are also robust
due to the regulation of the TCM and allow for the exclusion of uncooperative members. This is
depicted in Fig. 5.16b where mainly the largest TC (TC_0) is affected by this phenomenon: Shortly
after its formation the TC comprises 136 members. However, many of these members are DAA-
agents. With time passing, these are subsequently identified and excluded from the TC. This shows
as a decline in the number of members throughout the run duration. At the end of the run, 108 agents
are unassociated and 142 are members. The 20% EGO-/FRE-agents and max. additional 20% DAA-
agents (some are of both types) sum up to max. 100 uncooperative agents. This supports the claim
that in the long term, TCs are comprised only of cooperative agents.

Finally, the speedup decrease of the TC approach (as compared to the undisturbed experiment)
is a result of the membership of DAA-agents and their subsequent identification and exclusion. This
process is associated with a higher overhead due to the situation-aware application of WU replication
among TC-members (as described in Sec. 5.2.1) and consequently lower throughput and speedup.
The process has also an influence on the accuracy achieved by TC application: For this experiment,
the accuracy values for TCs are always between the values of the iTC- and the Clan-approach (see
Tab. 5.4). This is a result of the duration of being exposed to the DAA-agents that produce false WU
results. While in the iTC-approach the DAA-agents can hardly be avoided, TCs lead to their omission
as workers in a lengthy process. This is contrasted by the Clan mechanism discussed above: Here
DAA-agents have only small chances of becoming Clan-members. As Clan-members search for
workers almost exclusively among fellow members, they are least exposed to this threat.

Clan members _ TC members
10 Unassociated, ADA-agents 10 Unassociated, ADA-agents
: i :
S o AR £ s
g / W “lf U W g
8 8
g 6 g 6
=} o
[ [
173 [
Q. o
0 a
@ o |
g 4 ? 4
2 g
< <
2 2
0 0 I
0 100k 200k 300k 400k 0 100k 200k 300k 400k
Time [tick] Time [tick]
(a) Clan (b) TC

Figure 5.17: Comparison of the average speedup for the last job of Clan-/TC-members and unasso-
ciated agents in case of 20% defecting agents. While the speedup of Clan/TC-members is approx. at
the same level in this experiment (see also Tab. 5.4), the average speedup of unassociated agents is
lower in case of TC application. As unassociated agents in this scenario are mostly defecting agents,
this lower speedup is intended to serve as incentive for cooperative behaviour and eventually TC
membership.



146 Chapter 5. Evaluation

The evaluation results summarised in Tab. 5.4 show that Clans and TCs achieve a comparable
average speedup. In the following, the contribution to the average speedup of unassociated agents
and organisation members is examined. The graphs depicted in Fig. 5.17 show the average speedup
of unassociated ADA-agents (including defecting agents) in comparison to the average speedup of
TC members. Here the results for Clans and TCs vary more than in the average speedup: While
the application of Clans results in a comparable speedup for members and unassociated agents, the
application of TCs leads to a significantly higher member speedup. This has the following reasons:
Clan-members search for workers exclusively within their organisation to reduce the costs of find-
ing cooperative interaction partners (cf. [118]). Due to the kinship motivation, they have a very high
probability of finding a worker for each WU among the other members. This leads to a significant
reduction of the workload within the group of unassociated agents as these submit their own WUs
both to Clan-members, as well as among themselves, but do not receive processing requests from
Clan-members. As examined for the undisturbed experiment, a reduction in the workload obviously
increases the throughput and thus speedup of the agents. In Clans, unassociated agents hence
profit from the inbound interactions of Clan-members. When Trusted Communities are applied, un-
associated agents do evidently not profit from the operation of TCs, resulting in a significantly lower
speedup for them. This is due to the different submitter behaviours: TC members choose workers
strictly based on performance and a trust threshold (see 5.2.1). This means that they also choose
workers from other TCs and from the group of unassociated agents when this promises a shorter
processing duration although it involves the necessity to replicate the WUs. The effect is that, the
workload in the group of unassociated agents is reduced less in comparison to Clan-application. In
addition, TC-members refuse to process WUs from non-members whenever they are also reques-
ted to process WUs from fellow members. The unassociated agents hence have in general fewer
available workers to choose from. In summary, the operation of TCs does not provide any advantage
for unassociated agents. Instead, the higher speedup of members provides an incentive to seek TC
membership.

In comparison of the organisation forms, these phenomena are the reason for the higher aver-
age relative organisation utility of TCs (as depicted in Tab. 5.4). In effect, this increased utility also
contributes to the benefits of TC application by providing a strong incentive to agents to abstain from
uncooperative behaviour in order to become TC member. As the behaviour of DAA-agents has been
applied statically in these experiments, the incentive had however no measurable effect. In a more
complete consideration, especially with rational and adaptive DAA-agents, this additional incentive
mechanism is expected to lead to a greater system performance.

Finally, the graphs depicted in Fig. 5.18 show exemplary TC results for the case of 30% DAA-
agents in the agent society. In this scenario, the increased amount of uncooperative agents had a
negative effect on the average speedup and especially on the accuracy (see Tab. 5.4). While the
(above discussed) phenomena that were responsible for these results are the same as for the scen-
ario with 20%, these additional graphs show intensified characteristics: The TC composition shows
that here all operating TCs suffered from DAA-agents that had to be identified and excluded over time.
In addition, the speedup comparison between unassociated agents and TC members for this scen-
ario is depicted in Fig. 5.18b. This graph reveals the same quality of speedup divergence between
the groups of agents as the graph for 20% DAA-agents depicted in Fig. 5.17b. However, the speedup
achieved in this case is lower for both groups of agents.



5.3. Evaluation Results of the TC Application in the TDG 147

TC members
10 Unassociated, ADA-agents

Agent society a

= Unassociated agents =X 8
TC_0 =
TC 1 —— ©
TC 2 —— e
TC3—— 2

%) g— 6

2 250

5 3
2 2
5 200 (7]

T <) 4
E g
E 150 5]
=z >
<

100 2 I
50 e - }: e —
0 i ! 0 | |
0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k
Time [tick] Time [tick]
(a) TC composition (b) TC speedup

Figure 5.18: TC composition and speedup for the experiment with 30% defecting agents. These
graphs show the impact of an increased amount of defecting agents: In Fig. (a), the phenonmenon
of continuous identification and exclusion of defecting TC members, as shown for a single TC in
Fig. 5.16b, manifests here for the majority of operating TCs. However, the number of unassociated
agents increases unproportionally. In Fig.(b), the speedup of unassociated agents is contrasted
with the speedup of members. Here, the speedup of unassociated agents is further decreased in
comparison to the experiment with 20% defecting agents. TC member speedup remains approx.
equal.

In summary, these experiments show that the application of either of the two explicit organisation
forms Clan and TC increases the speedup (to a comparable degree) in an open system that suffers
from defecting agents. Due to the differences in these two approaches, the benefits of their applica-
tion (in addition to the speedup increase) vary: Clans achieve a higher accuracy, while TCs achieve
a higher relative organisation utility and hence provide an incentive to abstain from the defecting
behaviour.

Experiments With TM-Exploiting Agents

These two experiments evaluated the susceptibility of the organisation approaches towards TM-
exploiting agents (of type CAA). Here, 20 % (30 % respectively) of the agent society were of that
type, meaning that they refused cooperation (freeriding) once their reputation reached the threshold
0.5, and remained in this state until their reputation reached the lower threshold 0.1. The presence
of such agents has several implications: Firstly, the number of willing and suited workers is reduced
due to the freeriding phases of the CAA-agents, decreasing the achievable speedup in the system.
Secondly, this also means that the number of suited organisation members is decreased and the
organisations are expected to be fewer/smaller than in the undisturbed case. Finally, as with the de-
fecting agents described above, CAA-agents are either penalised for their uncooperative behaviour
by the organisation approaches or not. This penalty shows in terms of a reduced speedup as com-
pared to the speedup of ADA-agents and is an incentive for increased cooperation. In the following,
the results depicted in Tab. 5.4 are first set in relation and then examined with the help of graphs from



148 Chapter 5. Evaluation

an exemplary experimental run.

The results show the expected decrease in the performance as compared to the undisturbed
experiment: With 20% CAA-agents, iTCs achieve 91,70%, Clans 96,03%, and TCs 95,42% of the
former speedup. In case of 30% CAA-agents, the results show 86,60% (/TC), 88,51% (Clans), and
86,52% (TCs) of the undisturbed speedup. The amount of the speedup decrease is similar for the
three approaches, consequently TCs outperform the other approaches as in the undisturbed exper-
iment. Here, the speedup benefit when applying TCs, as opposed to applying Clans, amounts to
16,26% (20% CAA) and respectively 12,97% (30% CAA). In addition, Tab. 5.4 shows that indeed the
average number of operating organisations has decreased due to the reduction in cooperative ADA-
agents. The benefit for organisation has however increased (significantly when TCs are applied).

In the two graphs depicted by Fig. 5.20, the association to Clans and TCs for a regular run from
the 20% CAA-agents experiment is shown. The graphs visualise for each of the 250 agents in the
agent society if, and for how long, it has been associated to an organisation. The begin of an as-
sociation duration is initiated by either formation or invitation to the organisation in both approaches.
Complementary, the end of an association duration is caused by the dissolution of the organisation,
members leaving it due to lack of benefit and, only for TCs, members being excluded from the organ-
isation by the TCM. A comparison of the two diagrams reveals a similar phenomenon as seen in the
undisturbed experiment: Clan-formation is slower than TC-formation, and more ADA-agents remain
unsassociated. In addition, CAA-agents do not gain Clan-membership (with one exception). This
has the following reasons: As in the experiment with defecting agents, the ADA-agents always have
a higher trustworthiness than the (partially uncooperative) CAA-agents. When Clans are formed,
these agents are therefore not considered suited as members as long as there are sufficiently ADA-
agents to reach the preferred clan size. Finally, in the state when most ADA-agents are associated to
Clans, the remaining group of agents does not include enough trustworthy agents to reach the pre-
ferred clan size, hence no additional Clan is formed. The lower of the two graphs shown by Fig. 5.20
depicts the same run for the application of TCs: Here the number of ADA-agents associated to an
organisation is higher than in the Clan run. In addition, some of the CAA-agents are also associated
to TCs. While this may seem as a disadvantage at first, the reasons for this association character-
istics are that in fact CAA-agents are not constantly uncooperative. Instead, the freeriding phases
depend on their reputation. Due to the varying processing capabilities, not all CAA-agents are equally
attractive as workers. In effect, CAA-agents with weaker capabilities hardly reach a sufficiently high
reputation to start freeriding. On the other hand, even if CAA-agents freeride, there are some ADA-
agents that have sent processing requests to single CAA-agents only at cooperative time intervals.
As a result, they have a strong direct trust relationship to these agents and propose to invite them as
TC members (see the Active TC Expansion strategies in Sec. 4.6.6). In contrast to Clans, where the
preferred clan size does not permit the expansion of the Clan as long as other ADA-agents do not
leave it, a TC makes such agents members. Finally, the graph also shows that most of these accep-
ted CAA-agents have only a short association duration. This demonstrates the regulatory effect of
TCs: When these agents are in the freeriding phase and reject to process WUs from members, the
Member Control strategies help to identify and punish this behaviour. Ultimately, the CAA-agents are
exluded when the rejections are too numerous. However, the application of forgiveness allows them
to become members again at a later time which also shows for some agents in the graph.

These association patterns have the following effect on the speedup: More associated agents



5.3. Evaluation Results of the TC Application in the TDG 149

[J Unassociated open
W Unassociated forming Clan
600k - M Clan member B

ADA-agents

CAA-agents FRE- and EGO-agents

500k i

400k I

300k

fl

‘ l

H

f
|,I'| I
! I i
200k | i ‘ |' ||

I
‘ |I|

time [tick]

| {
100k |
|

agents

Figure 5.19: Association times diagram for Clans in the presence of CAA-agents: The TM-exploiting
CAA-agents are not considered during Clan-formation as they do not reach the necessary trustwor-
thiness value. Later during the simulation, CAA-agents are not invited to become Clan-members (by
members with positive interaction histories) as the operating Clans already have the preferred size.
The majority of ADA-agents is organised in Clans throughout the simulation run while EGO- and
FRE-agents are isolated and have no access to Clans (with one exception).

[J Unassociated open
W Unassociated forming TC
600k - I TC member T
TC manager
M TC member electing TCM
ADA-agents

1 CAA-agents FRE- and EGO-agents
| 1
‘ L]

500k

400k

time [tick]

300k

200k

100k

agents

Figure 5.20: Association times diagram for TCs in the presence of CAA-agents: In contrast to Clan
association (as depicted above), the size of TCs is not constrained, thus CAA-agents can become
TC-members in case there are other agents with a positive interaction history. This allows to take
advantage of the worker power of these agents as long as they are not in the freeriding state. TCs
however adapt to the state change and exclude CAA-agents that frequently refuse cooperation based
on the regulation via Member Control Strategies. The application of forgiveness however allows CAA-
agents to gain membership again.



150 Chapter 5. Evaluation

and larger organisations allow for more agents taking advantage of the Transparent WU Validation
benefit. TCs hence outperform Clans here, because not only do they include more ADA-agents as
members, but also adapt to the behaviour of CAA-agents. When these agents are uncooperative,
they are excluded from the TCs, but for as long as they cooperate, they are seen as valuable members
that further increase the relative utility of the TCs.

Finally, the graphs depicted in Fig. 5.21 show that TCs are the only organisation form in this com-
parison that establishes an incentive for cooperation: As seen with defecting agents, when TCs are
applied the speedup of cooperative agents is significantly higher than the speedup of uncooperative
agents (see Fig. 5.21c). The reasons for this phenomenon are similar to the reasons examined in
case of defecting agents: The formation of Clans leads to a reduction of the workload in the group of
unassociated agents, and consequently to an improvement of their speedup (see Fig. 5.21b). Note
especially how the speedup of the CAA-agents increases when Clans are applied, as opposed to the
application of iTCs (see Fig. 5.21a). The ADA-agents also benefit from Clan-application because of
the Transparent WU Validation and the kinship motivation. However, due to the scalability-motivated
approach of finding workers only among fellow Clan-members and the constrained size of the Clans,
the extent of these benefits is limited. In comparison, less, but larger TCs are formed in these ex-
periments (see Tab. 5.4). This is not only due to the varying forming criteria (as discussed for the
previous experiments), but also due to the inclusion of CAA-agents as TC members. In effect, TC
members have a higher gain from the Organisation Benefit strategies. On the other hand, CAA-
agents that remain unassociated when TCs are applied do not profit from a significant workload re-
duction as is the case for Clan-application. As described for the case of defecting agents, this is due
to the performance-based submitter behaviour of TC members. This behaviour results in processing
requests towards CAA-agents from TC members. Additionally, unassociated agents have a lower
probability to get their WUs processed from TC members as these reject those requests whenever
fellow members also pose processing requests. In effect, when TCs are applied, the unassociated
CAA-agents are forced to let their WUs be processed within a relatively small group of workers who
in addition express freeriding behaviour (rejecting requests) whenever their reputation is high.

In summary, the experiments with TM-exploiting agents show that not only do TCs achieve the
highest speedup in this scenario, but also that they establish an incentive for abstaining from unco-
operative behaviour. In that, the speedup differences between the three approaches are similar to
the differences in the undisturbed experiment.



5.3. Evaluation Results of the TC Application in the TDG 151

14 14
ADA-agents ADA-agents
FRE-agents FRE-agents
12 CAA-agents 12 CAA-agents
EGO-agents EGO-agents
.8 Qo
o 10 =
1%} 1%}
Kl s
k] 5
a 8 o
3 =]
=l =l
[ [
[ [
Q. Q.
(7] (%)
g’ D
g g
[ [
2 2
0 | | 1 O 1 L 1
0 100k 200k 300k 400k 0 100k 200k 300k 400k
Time [tick] Time [tick]
(a)iTC (b) Clan
14
ADA-agents
FRE-agents
12 CAA-agents
EGO-agents
=
= 10 -
%]
<
5
a 8-
=]
=l
[
2
7] 6
D
g
% 4
g

0 I I I
0 100k 200k 300k 400k

Time [tick]

(c) TC

Figure 5.21: Comparison of the average speedup for the last job of agent stereotypes for the case of
20% TM-exploiting (CAA-) agents and iTC/Clan/TC application. While the iTC- and Clan- approaches
allow the CAA-agents to have a high speedup, TCs penalise their uncooperative behaviour. This
shows in the lower speedup of these agents and is an incentive to act cooperatively. In addition, the
speedup of TC-associated agents is higher than the speedup of iTC-agents and Clan-members.



152 Chapter 5. Evaluation

5.3.3 Robustness Evaluation

Apart from the increase of a hosting systems’ performance, the second major goal in the development
of Trusted Communities was the increase of the systems’ robustness towards disturbances. While
the mitigation of the effects of minor disturbances resulting from uncooperative behaviour of single
agents (TM-exploiting, egoistic, freeriding and defecting behaviour) through the application of TCs
has been examined in the previous section, the evaluations here were aimed at substantial attacks
of colluding agents. For this, the following experimental setup has been used:

The experiment used non-validating DG applications. The agent society was then composed
as follows: Initially, the composition was consisted of 250 agents with 70% ADA-agents, 10% CAA-
agents, 10% FRE-agents and 10% EGO-agents, with an additional, random 10% of agents with the
defecting trait (DAA-agents). This composition hence included agents with each type of uncooperat-
ive behaviour from the previous performance experiment, albeit in smaller numbers. After the time
of 100,000 ticks a collusion attack was initiated: Here, a group of FRE-agents entered the system
and started to send processing requests for their DG jobs. These agents colluded in that they knew
each other and did not send request among each other, such that they did not decrease their trust-
worthiness. As these attackers entered the system, they had an initial reputation value and could
therefore not be detected immediately. Such a disturbance was quantified by comparing the amount
of attackers with the size of the agent society before the attack. This is referred to as the disturb-
ance size (ds) in the following. As the agent society size before the attack was always 250 agents,
a disturbance size of 0.5 here means that 125 attacking agents entered the system. The following
evaluations examined the hosting system in the event of disturbances with the size ds. 0.1 to ds. 1.0
for 25 different simulation seeds and each organisation option (iTC, Clan, TC), hence in a series of
750 experimental runs. These were evaluated by using the robustness metrics (speedup) collapse
fraction, relative recovery costs, and recovery duration (defined in appendix D.2).

In the following, the course of such a single experiment run is analysed. This is concluded by the
presentation and discussion of the evaluation results for the entire experiment.

The TDG system under a collusion attack

As described earlier in this thesis (e.g. in Sec. 5.1.6), the control of a system as the TDG by the
application of Trust Management must account for the event of an emergent trust breakdown to
be truly robust. By starting a collusion attack, a trust breakdown is provoked in the system: FRE-
agents behave as producers of WUs, but not as consumers. Hence, the system is flooded with
additional processing requests and agents trying to build up a reputation accept these processing
requests which increase their workload. After a certain number of accepted WU processing requests,
the agents stop accepting further requests and receive negative ratings from attackers, as well as
initial agents alike. These processing request rejection ratings continue as long as the accepted and
queued WUs of the agents are processed. Additionally, these ratings lead to a decreased reputation
of the agents and consequently a system state where the reputation of most agents is so low that the
system becomes paralysed (see Sec. 5.1.6).

This is depicted in Fig. 5.22 for a disturbance size of ds. 0.6 (150 attackers). This graph shows
how the reputation of the various agent stereotypes behaves right after the attack at tick 100,000.
While the initially high reputation of ADA-agents collapses substantially, the reputation of the CAA-



5.3. Evaluation Results of the TC Application in the TDG 153

1+ attack 0.6 ADA-agents (incl. CAA) —
{ FRE-agents
EGO-agents
CAA-agents

recovery

Reputation [-1:1]
o

0 50k 100k 150k 200k 250k 300k
Time [tick]

Figure 5.22: Reputation for agent stereotypes for the disturbance size 0.6. While the average repu-
tation of ADA- and CAA-agents varies due to their behaviour, both suffer from a substantial decline
in the event of the attack. With the average reputation approaching 0, trust within the agent society
breaks down. Following the attack, the reputation recovers and eventually reaches an equivalent
value to the time before the attack. Note that the end of the recovery is based on the speedup which
recovers quicker than the reputation.

agents is not very high initially and hence the collapse is not that strong. However, the typical course
of the CAA-agent reputation, generated by their TM-exploiting behaviour is broken through the attack.
Additionally, the reputation of EGO-agents is not affected by the attack as these agents are already
isolated and are not perceived as competent workers by the attackers in the first place. Also, their
reputation is already very low even before the attack. Finally, the reputation of FRE-agents increases
in the event of the attack. This is due to the fact that the attackers are FRE-agents entering the
system with an initial reputation higher than the average reputation of the isolated FRE-agents before
the attack. The graph also shows how the agent society recovers from the attack and re-establishes
the pre-attack reputation values after a recovery time. The duration of the recovery time is however
based on the influence of the attack on the speedup and not on the reputation which is why the end
of the recovery cannot directly be interpreted from the course of the reputation functions in the graph.

So far, the emergence of a trust breakdown by the collusion attack has been examined. The
system enters a state where paralysis prevails due to the low reputation. This is best depicted by the
worker perspective presented for the iTC-approach in Fig. 5.23. Here, the following phenomenon is
demonstrated: The collusion attack and the resulting trust breakdown lead to a phase where ADA-
agents are isolated and forced to process their WUs on their own (red margin after the attack) hence
do not benefit from the TDG participation. This is where the benefits of TC application can be best



154 Chapter 5. Evaluation

300k I Work for cooperative agents
W Work for self

Work for uncooperative agents
W Wasteful work
[ 1dle

time [tick]

Agents

Figure 5.23: Worker diagram for disturbance size 0.6 and iTC application: The impact of the attack
can clearly be recognized by the appearance of a period of massive owner processing of WUs among
ADA-agents (left side). Only after trust among the agents is slowly restored, are WUs processed by
other workers again.

300k I Work for cooperative agents
W Work for self

Work for uncooperative agents
W Wasteful work
[J I1dle

time [tick]

Agents

Figure 5.24: Worker diagram for disturbance size 0.6 and TCs: In contrast to the application of iTCs,
the impact of the attack on ADA-agents (left side) is less significant. While self-processing of WUs
also appears after the attack, it is limited to unassociated agents and the duration is substantially
shorter.



5.3. Evaluation Results of the TC Application in the TDG 155

demonstrated: As depicted by the lower of the two graphs, this paralysis substantially less affects
a system where TCs are allowed to form. Most of the agents (TC members) continue to cooperate
(green phases) despite the attack, while single agents (not members of a TC at the time of the
attack) are isolated. However, their isolation does not prevail as long as in the iTC-case. The reason
for the continued inbound TC member cooperation lies in the independence of the trustworthiness:
Members accept processing requests for each other due to the TC membership incentive which is
not affected by the collusion attack. Only the cooperation with non-members is reduced by the attack,
such that still the attack has a negative influence of the TDG performance.

Until here, the effect of a FRE-agent collusion attack has been shown to lead to a trust breakdown.
In consequence, a period of paralysis has been shown to prevail, which manifests as the isolation of
a majority of agents (in the iTC-approach) or unassociated agents (for TC application). The focus in
the evaluation of the robustness is however how these phenomena affect the performance, i.e. the
speedup, of the agents in the TDG. That is, how strong the speedup collapses, how long it takes to
recover to the value before the attack, and how costly that recovery has been (see appendix D.2). The
results for these metrics are depicted as a comparison of the iTC-, the Clan- and the TC-approach in
Fig. 5.25 for the experimental run discussed here. The general structure of the graphs is as follows:
The green curve shows the speedup over time (speedup of last job as defined in Eq. D.20). The blue
curve shows how the speedup has been in the equivalent experimental run (same seed) without the
disturbance, and the red area shows the recovery costs.

In the comparison, the speedup of the iTC- and the Clan-approach is in general lower than the
speedup when applying TCs (this has been analysed in the performance evaluation in Sec. 5.3.2).
With respect to the attack, the following additional results are demonstrated by the graph:

e The (speedup) collapse fraction is significantly lower when using TCs: 0.201 compared to 0.592
(Clans) and 0.814 (iTC).

e While all three approaches allow for the recovery from the attack, TCs have a substantially
shorter recovery duration than the iTC-approach: 20410 ticks compared to 55547 ticks (iTC).
Although Clans have an even short recovery duration in this particular example (16736 ticks),
in average, TCs outperform Clans in this metric, too (see Tab. 5.5).

e The relative recovery costs are significantly lower when TCs are applied: 0.152 compared to
0.343 (iTC) and 0.351 (Clans).

The reasons for this high robustness of the TC approach lies within the continued cooperation
despite the attack and the resulting trust breakdown. Such cooperation requires explicit organisation
between members, which is why the robustness of the iTC-approach is low. However organising
agents alone (as is done in Clans) does not suffice: Unlike TC members, Clan members still rely
on correct trustworthiness information in their decision making. A trust breakdown hence negatively
impacts Clan member cooperation. Also, members leave a Clan when their overall trust in the other
members becomes too low, disregarding that this decrease can result from an attack. As depicted in
Fig. 5.26a, the trust breakdown eventually leads to a breakdown of Clan performance as members
leave the Clans until finally the Clans are dissolved. Only after the recovery, when trust among the
agents has reached a high value again, do new Clans form. In contrast, Fig. 5.26b shows how
TCs mitigate the effects of the attack: The most significant difference is seen between unassociated



156 Chapter 5. Evaluation

10 - 10 -

ADA-agents attack 0.6 ADA-agents
ADA-agents without attack ecovery ~ ADA-agents without attack
recovery area - recovery area mm—
8 8

attack 0.6
recovery

f A‘/\ ‘\'\J‘v‘/" ,)'\ N ) s 1 /\M
’ Y Vi ’ AL
| |

A
A A R
1 ‘,’W’WH‘ "\/\UM ‘uw W\AU‘/ A

Average Speedup of last job
Average Speedup of last job

2 / i

0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k
Time [tick] Time [tick]

(a)iTC (b) Clan

10 -
attack 0.6 ADA-agents
N recovery ADA-agents without attack
K recovery area —

i /‘ WMW»/“"WWWW‘W“
6

min

Average Speedup of last job

0 50k 100k 150k 200k 250k 300k
Time [tick]

(c) TC

Figure 5.25: Speedup comparison for the disturbance size 0.6 for iTC-/Clan-/TC-application: The
attack causes the speedup of ADA-agents to collapse for all three organisation forms. The greatest
impact is seen when applying the iTC-approach, hence when no explicit form of organisation is used.
Clan- and TC-application show comparable recovery durations, while the speedup collapse fraction
is more substantial for Clans. The difference grows for increased disturbance sizes, as presented in
Tab. 5.5.

agents and TC members. Here, the speedup of the unassociated agents collapses to a very low
value due to the attack. In comparison, the speedup of the single TCs is not significantly affected. In
case of TC_2, the speedup is even increased due to the attack. These phenomena have the following
reasons: TC members continue to cooperate with other members of their own TC. The difference to
the phase before the attack is however, that TC members do not accept processing requests from
non-members. While the largest TC_2 profits from this as the members’ capacity for inbound jobs is
higher, the smaller TCs suffer from not being able to submit WUs to agents organised in other TCs.
It is hence in particular the robustness of the large TC that has a positive influence of the robustness
of the TDG in total.

This completes the consideration of a single comparative experimental run. In the following, the
evaluation results of the complete experiment are presented and discussed.



5.3. Evaluation Results of the TC Application in the TDG 157

attack 0.6 Unassociated, ADA-agents attack 0.6 Unassociated, ADA-agents
12 recovery Clan_0 12 recovery TCc 0
TC 1 ——
TC2 ——
TC 3

Average speedup of for last job Clan-members
Average speedup of for last job TC-members

0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k
Time [tick] Time [tick]

(a) Members of single Clans vs. unassociated agents  (b) Members of single TCs vs. unassociated agents

Figure 5.26: Speedup comparison for disturbance size 0.6 according to TC/Clan association: When
Clans are applied, the attack causes the speedup of Clan-members and unassociated agents alike
to collapse. This eventually leads to the dissolution of the Clans. In contrast, TC application allows
the members to maintain their speedup despite the attack and only impacts unassociated agents.

Collusion attacks in the TDG and agent organisations

The following table Tab. 5.5 contains the results for the robustness evaluation of the three approaches
iTC, Clans, and Trusted Communities. The experiment contained a series of 10 disturbance sizes
fromds. 0.1 to ds. 1.0, hence for 25 to 250 attackers for an initial agent society size of 250 agents. The
results are based on 25 runs with unique seeds for each disturbance size. Each organisation option
was evaluated under each disturbance size and for the same 25 seeds. The results contained in the
table are based on the robustness metrics defined in appendix D.2. For all three metrics lower values
imply higher robustness. The best result for each disturbance size, among the three organisation
options, is depicted in bold. The textual representation is followed by a graphical representation
(Figures: 5.27, 5.28 and 5.29) for each metric. It also contains the min and max values not contained
in the table.

Conditions Metrics (sy_1) iTC Clan TC
ds. 0.1 Recovery duration 5755 (1321) 28476 (47837) 5318 (1082)
s. 0.
Rel. recovery costs  0.069 (0.020) 0.069 (0.033) 0.035 (0.020)
Speedup collapse 0.057 (0.046) 0.122 (0.113) 0.026 (0.031)
ds. 0.2 Recovery duration 11096 (3848) 25377 (40097) 5640 (1046)
s. 0.

Rel. recovery costs  0.130 (0.043) 0.123 (0.037) 0.053 (0.025)
Speedup collapse 0.166 (0.064) 0.205 (0.099) 0.047 (0.037)



158

Chapter 5. Evaluation

Conditions Metrics (sn_1)

iTC

Clan

TC

ds.

ds.

ds.

ds.

ds.

ds.

ds.

ds.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recovery duration
Rel. recovery costs

Speedup collapse

Recovery duration
Rel. recovery costs

Speedup collapse

Recovery duration
Rel. recovery costs

Speedup collapse

Recovery duration
Rel. recovery costs

Speedup collapse

Recovery duration
Rel. recovery costs

Speedup collapse

Recovery duration
Rel. recovery costs

Speedup collapse

Recovery duration
Rel. recovery costs

Speedup collapse

Recovery duration
Rel. recovery costs

Speedup collapse

16918 (3895)
0.191 (0.059)
0.284 (0.080)

20730 (6943)
0.249 (0.084)
0.392 (0.139)

27923 (10091)
0.298 (0.082)
0.505 (0.166)

32176 (9214)
0.360 (0.088)
0.611 (0.159)

38619 (8861)
0.385 (0.076)
0.692 (0.130)

39075 (7835)
0.410 (0.085)
0.728 (0.123)

44534 (7137)
0.404 (0.074)
0.773 (0.074)

44113 (5298)
0.426 (0.053)
0.799 (0.030)

24412 (37948)
0.169 (0.048)
0.287 (0.094)

15367 (4695)
0.241 (0.070)
0.395 (0.129)

18724 (10402)
0.268 (0.061)
0.451 (0.139)

29147 (30796)
0.291 (0.070)
0.538 (0.130)

31093 (27556)
0.336 (0.062)
0.627 (0.105)

34731 (26865)
0.344 (0.071)
0.660 (0.083)

37878 (34825)
0.364 (0.084)
0.687 (0.078)

35139 (26976)
0.375 (0.085)
0.692 (0.075)

6300 (1520)
0.061 (0.026)
0.061 (0.040)

8353 (4942)
0.070 (0.029)
0.080 (0.053)

12536 (7367)
0.077 (0.032)
0.094 (0.055)

14526 (10528)
0.082 (0.035)
0.111 (0.060)

14501 (11731)
0.078 (0.037)
0.101 (0.065)

19616 (11392)
0.095 (0.040)
0.137 (0.061)

20418 (13043)
0.092 (0.041)
0.132 (0.060)

20028 (11764)
0.092 (0.044)
0.133 (0.066)

Table 5.5: Robustness evaluation of the TC approach for different disturbance sizes (ds.).



5.3. Evaluation Results of the TC Application in the TDG 159

iTC
multi TCs —e—
0.9 clans —@—

relative recovery costs [0,1]

,———

0.1 _J_
S A
0 0.1 02 0.3 04 05 06 07 08 0.9 1

disturbance size [0,1]

Figure 5.27: Relative recovery costs at collusion attacks: Lower values are better. As expected,
the recovery costs are roughly proportional to the disturbance size. The graph also shows that TCs
are substantially more robust compared to iTCs, as well to Clans. The difference increases with the
disturbance size.

The nature of the robustness of each of the organisation approaches has been examined in detail
for the case of a disturbance size of ds. 0.6. The experimental results depicted in the table and fig-
ures complement this evaluation by providing values for various other disturbance sizes. The general
quality of the metric results reflects that the expected performance is proportionally dependent on the
disturbance sizes. As discussed throughout the thesis, the robustness of an organisation approach
is here understood as its ability to recover the system from a disturbance, such that eventually the
performance of the system from before the attack is reached. The results depicted in the figures
5.27,5.28 and 5.29 show that all three approaches are robust to some degree. This is founded in the
course of the metric functions: All functions show a linear or sub-linear behaviour for the increasing
disturbance sizes. An approach not providing any robustness would result in an exponential beha-
viour. However, it can be clearly seen that the robustness of the three approaches varies largely.
The iTC-approach is in general outperformed by the Clan-approach, albeit only for disturbance sizes
greater ds. 0.4 for two out of three metrics. Both approaches are however of equal robustness com-
pared to the robustness of the TC approach which significantly outperforms the other approaches in
all three metrics. The greatest difference shows in the speedup collapse fraction: TCs have an av-
erage value of 0.13 in the worst case (ds. 1.0), while Clans and iTCs have an average value of 0.69
and 0.8 respectively. The smallest difference shows in case of the recovery duration. This metric
is however dependent on a parameterisation of the exact definition for the end of the recovery time.
Depending on the set parameter, the difference can be greater.

In sum, the TC approach makes the TDG significantly more robust than the other two state-of-
the-art approaches. The difference between the achieved metric results of the three approaches is
also larger than in the performance evaluation, where TCs also outperformed the other approaches
albeit not in each case (see experiment with defecting agents in Sec. 5.3.2).



160 Chapter 5. Evaluation

iTC
multi TCs —e—
0.9 clans —@—
0.8 -
0.7 -
= —
S _——
S os
g
'
2 05 /
s
3 p
8
S o4 </
g /
8
Q
a
03+
0.2 - /
01 e —
e
—
—
cee——
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

disturbance size [0,1]

Figure 5.28: Summarised speedup collapse at collusion attacks: Lower values are better. Again it
shows that the metric results are increasing with the disturbance size. While Clans are comparable
to iTCs, TCs are substantially more robust, the difference being even greater than for the relative
recovery costs metric (see Fig. 5.27).

160000 -
iTC
multi TCs —e—

clang —@—
140000

120000 -
100000

80000

recovery time duration

60000 -

40000

 — . /1/ _—
20000 \ g -
L
0./\ I I I
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

disturbance size [0,1]

Figure 5.29: Summarised recovery duration at collusion attacks: Lower values are better. For iTC-
and TC-application the metric values are again proportional to the disturbance size. Also it shows
that TCs are more robust than the other two forms of organisation. The average values for the Clan-
approach are affected by simulation runs in which no complete recovery was achieved after an attack
(maximum values of 150000 ticks).



5.4. Summary 161

5.4 Summary

This chapter first presented a formal definition and classification of the evaluation scenario Trusted
Desktop Grid. It was shown how a job- and work unit model is used to specify the execution as-
sumptions of this system and how the behaviour of system participants is defined. In conclusion, it
has been discussed that this system is subject to challenging issues due to uncertainty in the beha-
viour of the agents. Subsequently, it has been analysed how a trust and reputation model can be
applied to tackle some of these issues and why this does not suffice. Then the applicability of Trus-
ted Communities has been motivated and defined. Finally, the main part of this chapter presented
and discussed the evaluation results achieved in an implementation of this system according to the
models presented in this thesis.

This final section first described the implementation of the related Clan approach and some gen-
eral assumptions. The actual presentation of the evaluation results was then divided into performance
evaluations (no attacks) and robustness evaluations (with collusion attacks). The performance eval-
uations were conducted for an undisturbed TDG, as well as with an agent society containing 20-30%
defecting, and respectively TM-exploiting, agents. In these evaluations, TCs have been compared
with a modified version of the Clan-approach (with the Transparent WU validation benefit for mem-
bers to avoid bias), as well as with the iTC-approach. The evaluations showed that TCs substantially
outperform the iTC-approach in each experiment. As for the Clan-approach, it has been shown that
TCs result in a higher preformance in the undisturbed and TM-exploiting agents experiment, while
being on par in the defecting agents experiment. Additionally, the robustness of the three organisa-
tion approaches has been evaluated in a series of experiments with increasing disturbance sizes.
The diusturbances were caused by attacks from colluding freeriders. The results for these exper-
iments have shown that the TC-approach is significantly more robust than the other approaches,
being reflected in a lower speedup collapse fraction, shorter recovery duration and lower recovery
costs.

In sum, the evaluation results have demonstrated that Trusted Communities significantly increase
the performance and robustness of an Open Distributed System, as compared to state-of-the-art
approaches.



6 | Conclusion

This chapter summarises the preceding chapters, and discusses the contributions of the approach
presented in this thesis. Finally, it presents an overview over future research opportunities in the
context of the proposed approach.

6.1 Thesis Summary

The objective of this thesis was the performance and robustness improvement of open, distributed
systems, accommodating a society of self-interested, heterogeneous and autonomous agents. After
an analysis of the related work, a system model has been presented. This model defines the class
of targeted systems through the specification of system participants, characteristics, agent models
and Trust Management models. In the following, the challenging issues in such systems have been
examined. Based on these issues, a novel MAS organisation, the Trusted Community, has been
proposed. The subsequent chapter presented the modular design of this approach: The focus has
been on the presentation of the state-based realisation as agent component, the configuration of
the decision-making through the utilisation of dedicated strategies, and the proposition of a set of
basic strategy implementation that in sum realise the TC approach. In conclusion, an instance of the
targeted system class, the Trusted Desktop Grid, has been defined with great detail regarding the
underlying assumptions, mechanisms, and challenging issues. The application of the TC approach
in the TDG has then been motivated and the required realisations examined. Finally, the evaluation
results for the application of Trusted Communities in the Trusted Desktop Grid have been presented
and discussed.

The Trusted Community approach presented in this thesis is the result of a focussed combina-
tion of techniques from the fields of MAS organisations, Trust Management, and Organic Computing.
Contributions to the state of the art from this approach can be summarised as the explicit considera-
tion of the following aspects:

e Consideration of emergent system states: Most TM-based approaches in the literature im-
plicitly assume that the operation of the TM as such is never at risk, and consequently do not
account for system states in which agents cannot base their decision-making on trust. Here,
the TC approach is heavily influenced by mechanisms from the field of Organic Computing sys-
tems: Complex systems can drift into emergent states at runtime that have not been predicted
and accounted for at design time. The elements of the systems must hence be equipped with
instruments to observe such states and react to them in order to ensure a successful operation.
Trusted Communities have been designed by incorporating respective instruments, both for TC
members, as well as hierarchically for the TCM.

162



6.2. Future research opportunities 163

o Adaptive optimisation of trust-aware decision-making: Most approaches in the literature
that describe the utilisation of TM in agent decision-making do not explicitly account for the
overhead and sub-optimality of the resulting interactions. Trust is only applied where risk is
involved, but not always does risk actually lead to interaction partners deceiving each other.
In these cases, trust can be too much, preventing optimal interactions without safety means.
On the other hand, TM can make agents slow to react on behaviour changes because of the
phenomenon of over-confidence. The Trusted Community approach contributes to the state
of the art here, by allowing for a situation-aware utilisation of TM towards agents with uncer-
tain behaviours, an abandonment of TM and other safety means in a closed environment for
highly trusted agents, and fast reactions to behaviour changes as regulatory means within this
environment.

o Alternatives to reputation-based incentive mechanisms: Approaches to control agents in
open systems often describe the requirement for incentives in order to motivate self-interested
agents to cooperate. Many approaches describe the utilisation of a reputation system to realise
this incentive mechanism. However, as described above, these approaches do not account for
a malfunctioning reputation system, and provide no solutions for this case. Additionally, the
requirement to provide incentives for the collaborative detection of phenomena that cannot be
observed locally by single agents are often neglected. These phenomena, such as collusion,
can threaten the operation of a system, but self-interested agents need to be motivated to
cooperate in their observation, as these agents have no direct consequences because of such
behaviours and thus see no need to invest effort. The TC approach provides an environment
in which such cooperation can be fostered by incentivising member cooperation through the
absolute goal of agents in the system, the gain in utility.

o Extensive evaluation of controls for open distributed Desktop Grid Systems: The clas-
sification of the TDG according to the taxonomy presented in [80] revealed that this particular
class of Desktop Grid systems has seldom been evaluated by the research community. Most
approaches in the literature are applicable in either centralised, or enterprise-based systems,
while there is a lack of approaches for the application in open, decentralised, and volunteer-
based systems. This thesis contributes to the state of the art by providing an analysis of such
a system instance. This analysis is comprised by the evaluations of Trust Management, as
well as the application of MAS organisations in general, and Trusted Communities in particular
for such systems. Additionally, the developed threat model examines the challenges of such
a system and can be used as a starting point for the development of new approaches for this
system class.

6.2 Future research opportunities

The Trusted Community approach proposed in this thesis has been presented as extensible set of
components, workflows, strategies and decisions. In that, the thesis aimed at providing an overall
view on the design, possible implementations and their applicability in a particular hosting system,
the TDG. Some aspects of this approach have however only been briefly brought up. The following
is a short examination of these aspects and the contained future research opportunities:



164

Chapter 6. Conclusion

e Advanced TC strategy implementations: The Trusted Community approach has been de-

signed with extensibility in mind. Especially the TC strategies, encapsulating specific decision-
making, are an instrument to adapt the approach to the requirements of a hosting system and
to allow for more runtime-adaptations. While this thesis has provided details about basic im-
plementations of the strategies in Sec. 4.6, refined implementations have only been discussed
on an abstract level. The design of advanced strategies offers many opportunities for improved
TC behaviour, be it by the mentioned applications of trust-prediction (cf. e.g. [76]) in the imple-
mentation of an Active TC Expansion strategy, and test-tasks (cf. e.g. [175]) in an advanced
implementation of a Member Control strategy, or entirely different influences on the decision-
making within the strategies.

Incorporation of confidence in the trust model: The specification of the trust model in
Sec. 3.1.3 included the requirement to provide aggregation functions for direct trust, reputa-
tion trust and aggregated trust values. In the literature, often trust models are extended by a
meta value for the confidence for the correct estimation of a trust value (cf. e.g. [210]). The
application of confidence is suited to further improve the TC approach, especially where agents
are accepted as TC members based on their trustworthiness. Consider for example the applic-
ation of the threshold thresDT in the Basic Potential Member Search strategy (see Sec. 4.6):
Here, the additional assignment of a confidence value can help to decrease the risk of accept-
ing agents as potential members that have a high trust value (> thresET) only due to outdated
or too few ratings.

Machine-learning within the O/C-loops: The agent model presented in Sec. 3.1.2 of this
thesis has been described as constituted by an Observer- and Controller component as pro-
posed in the literature on Organic Computing. Additionally, the TC repertoire of TCM-strategies
has been designed including an additional, hierarchical O/C-loop. While the application of both
loops for the runtime-adaptation of the comprising agents has been described and motivated,
a central part of the O/C-loops has been neglected in this thesis: The application of machine-
learning techniques, such as Learning Classifier Systems (cf. e.g. [50]), provides a wide field
of additional research opportunities for the situation-aware self-adaptation of agents. Such ad-
aptations can for example include the runtime exchange of agent component implementations
and their effect on the dynamics within the hosting system.

Protection from adversary TCMs: The design of the TC strategies and compromising states
has focussed on the evaluation and sanctioning of member behaviour in order to allow for a
stable operation of a TC. This design has only rudimentarily accounted for the threat of an ad-
versary TC manager: The upcoming of an adversary agent as TCM has been tried to avoid
by Distributed Leader Election strategies that make it costly for adversary agents to be elec-
ted (e.g. by election based on trustworthiness), and the strategy repertoire of TC members has
been designed such that it allows members to leave a TC and form a new without the adversary
TCM. However, the actual influence of an adversary TCM has not been evaluated thoroughly
and the necessity of a dedicated TCM Control strategy (applied by TC members) has not been
explored.



6.2. Future research opportunities 165

e Consideration of fairness: The contribution of TC application to the operation of the host-
ing system has been demonstrated as the improvement of performance and robustness of the
system. Besides these two aspects, often the fairness of an approach is considered in the liter-
ature (cf. e.g. [35]). The utilisation of fairness as optimisation target for TC application has the
following motivation: In an agent society composed of self-interested agents with heterogen-
eous capabilities, often the best-performing agents build up reputation the fastest and are then
frequently requested for the delegation of tasks by the majority of agents (cf. e.g. [24]). Other
agents, having lower capabilities, benefit from such potent agents, while being ignored as del-
egation partners having much less overhead. This asymmetry provides incentives for agents to
give false testimonies about own capabilities in order to receive less requests. The contribution
of TC application to more fairness in the system can be further explored, with the regulatory
strategies and TC incentives providing strong starting points for an according realisation.

o Utilisation of agent norms: In the design of the TC approach, the communication of TCM in-
structions to members has only been implicitly approached by the definition of roles and the ex-
pectancy of their adherence. Additionally, the Basic Member Control strategy (see Sec. 4.6.7)
has been designed with self-explainability in mind, in that it provides TC members the possib-
ility to request their current score from the TCM and derive the consequences of their actions.
Such expected behaviours and according sanctions are often explicitly formulated by behavi-
oural norms (cf. e.g. [211]). The extension of the TC approach by a stringent formalisation of
norms and their sanctioning could further elaborate on expected TC membership benefits and
allow for more purposeful behavioural adaptations of TC members and potential member alike.
This yields the potential to make Trusted Communities more self-explaining and hence more
robust.

e TC applicability in other systems: The TC approach has been designed as a generic ap-
proach for the class of systems that match the specification of the hosting system in Sec. 3.1.
While the applicability has been extensively evaluated in a particular instance of this class, the
Trusted Desktop Grid, this class contains many other instances, as summarised in Sec. 2.1, that
have been left unexplored. Here, particularly Vehicular Ad-Hoc Networks, and Decentralised
Power Grid Systems are recent fields of research that promise many opportunities for improve-
ment through TC application. The evaluation of the TC applicability in Decentralised Power
Grid Systems is then congruously scheduled as part of the final phase of the DFG research
unit OC-Trust (FOR 1085).

e Advanced Organisation Benefit Strategies: The application of TCs in the Trusted Desktop
Grid presented in Sec. 5.2 has been evaluated with a set of Organisation Benefit strategies that
capture the most common approaches in this field. However, further research opportunities can
be derived from the examination of additional strategies of that type: Especially the application
of a TCM-coordinated, central (TC-wide) scheduling for the members promises to further ex-
ploit the closed environment of a TC. Here, the members would further give up a part of their
autonomy, but would gain in an optimised scheduling of their work units. The TCM could apply
machine-learning techniques to predict resource and host availabilities, as well as job genera-
tion patterns of its members. This could then provide indications for optimal schedules.



Bibliography

[20]
[21]
(22]
(23]
[24]
[25]
[26]

[27]

(28]

(29]

[30]

(31]

[32]

(33]

[34]

[35]
[36]

[37]

C. Castelfranchi and R. Falcone, Trust Theory - A socio-Coginitive and Computational Model. John Wiley
& Sons Ltd., 2010, ISBN: 9780470028759.

T. Malsch, ‘Naming the Unnamable: Socionics or the Sociological Turn of/to Distributed Artificial Intelli-
gence’, Autonomous Agents and Multi-Agent Systems, vol. 4, no. 3, pp. 155-186, 2001, ISSN: 1387-2532.

M. Schillo, P. Funk and M. Rovatsos, ‘Using trust for detecting deceitful agents in artificial societies’,
Applied Atrtificial Intelligence, vol. 14, no. 8, pp. 825-849, 2000.

S. D. Ramchurn, D. Huynh and N. R. Jennings, ‘Trust in multi-agent systems’, The Knowledge Engineering
Review, vol. 19, no. 01, pp. 1-25, Apr. 2004, ISSN: 1469-8005.

H. Yu, Z. Shen, C. Leung, C. Miao and V. R. Lesser, ‘A Survey of Multi-Agent Trust Management Systems’,
IEEE Access, vol. 1, pp. 35-50, 2013, ISSN: 2169-3536.

I. Pinyol and J. Sabater-Mir, ‘Computational trust and reputation models for open multi-agent systems: a
review’, Artificial Intelligence Review, vol. 40, no. 1, pp. 1-25, 2013, ISSN: 0269-2821.

A. Josang, ‘The right type of trust for distributed systems’, in Proceedings of the 1996 workshop on New
security paradigms - NSPW '96, New York, New York, USA: ACM Press, Sep. 1996, pp. 119-131.

M. Blaze, J. Feigenbaum, J. loannidis and A. D. Keromytis, ‘The role of trust management in distributed
systems security’, in Secure Internet programming, J. Vitek and C. D. Jensen, Eds., Springer-Verlag, Jun.
1999, pp. 185-210, 1SBN: 3-540-66130-1.

J. Sabater and C. Sierra, ‘REGRET: A reputation model for gregarious societies’, in Proceedings of the
First International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), C.
Castelfranchi and L. Johnson, Eds., ACM Press, May 2002, pp. 475-482.

C. Burnett, T. J. Norman and K. Sycara, ‘Trust decision-making in multi-agent systems’, in Proceedings
of the 22nd International Joint Conference on Artificial Intelligence, vol. 1, Jul. 2011, pp. 115-120, ISBN:
978-1-57735-513-7.

C. Mdller-Schloer, H. Schmeck and T. Ungerer, Eds., Organic Computing - A Paradigm Shift for Complex
Systems. Basel: Birkhduser Verlag, 2011, 1ISBN: 978-3034-801-294.

H. Prothmann, S. Tomforde, J. Branke, J. Hahner, C. Mller-Schloer and H. Schmeck, ‘Organic Traffic
Control’, in Organic Computing - A Paradigm Shift for Complex Systems, C. Muller-Schloer, H. Schmeck
and T. Ungerer, Eds., Birkhduser Verlag, 2011, pp. 431446, ISBN: 978-3-0348-0129-4.

B. Horling and V. Lesser, ‘A Survey of Multi-Agent Organizational Paradigms’, The Knowledge Engineering
Review, vol. 19, no. 4, pp. 281-316, 2005.

P. Mathieu, J.-C. Routier and Y. Secq, ‘Principles for dynamic multi-agent organizations’, in Intelligent
Agents and Multi-Agent Systems, vol. 2413, ser. Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2002, ISBN: 978-3-540-44026-0.

J. Ferber, O. Gutknecht and F. Michel, ‘From agents to organizations: An organizational view of multi-
agent systems’, in Agent-Oriented Software Engineering 1V, P. Giorgini, J. P. Miller and J. Odell, Eds.,
2004, pp. 214-230, I1SBN: 978-3-540-24620-6.

A. Wierzbicki, Trust and Fairness in Open, Distributed Systems, ser. Studies in Computational Intelligence.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 298, ISBN: 978-3-642-13450-0.

F. G. Marmol, ‘Trust and Reputation Management in Distributed and Heterogeneous Systems’, PhD thesis,
University of Murcia, 2010, p. 166, ISBN: 9780387097503.

R. P. Wiirtz, Ed., Organic Computing (Understanding Complex Systems). Springer, 2008, p. 356, ISBN:
978-3540776567.

166



Bibliography 167

(38]

(39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]
[51]
[52]

[53]

[54]
[55]
[56]

[57]

[58]

[59]

J. Branke, M. Mnif, C. Miller-Schloer, H. Prothmann, U. Richter, F. Rochner and H. Schmeck, ‘Organic
Computing - Addressing Complexity by Controlled Self-Organization’, in Second International Symposium
on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006), IEEE, Nov. 20086,
pp. 185-191, ISBN: 978-0-7695-3071-0.

H. Kasinger and B. Bauer, ‘Combining Multi-Agent-System Methodologies for Organic Computing Sys-
tems’, in 16th International Workshop on Database and Expert Systems Applications (DEXA’'05), |IEEE,
2005, pp. 160—164, ISBN: 0-7695-2424-9.

C. Castelfranchi, ‘Earthquakes in Trust Networks: Basic Dynamic Principles’, SSRN Electronic Journal,
2012, IsSN: 1556-5068.

R. S. Seymour and G. L. Peterson, ‘Responding to Sneaky Agents in Multi-agent Domains.’, in Proceed-
ings of the 22nd International Florida Artificial Intelligence Research Society (FLAIRS) Conference, H. C.
Lane and H. W. Guesgen, Eds., AAAI Press, 2009, ISBN: 978-1-57735-419-2.

L. Atzori, A. lera and G. Morabito, ‘The internet of things: a survey’, Computer Networks, vol. 54, no. 15,
pp. 2787 —2805, 2010, I1SSN: 1389-1286.

N. R. Jennings, ‘An agent-based approach for building complex software systems’, vol. 44, pp. 3541,
2001, I1SSN: 00010782.

M. Luck, P. McBurney and C. Preist, ‘A manifesto for agent technology: towards next generation comput-
ing’, Autonomous Agents and Multi-Agent Systems, vol. 9, no. 3, pp. 203-252, Nov. 2004, I1SSN: 1387-
2532.

I. Foster and N. R. Jennings, ‘Brain Meets Brawn: Why Grid and Agents Need Each Other’, in International
Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, IEEE Computer Society, 2004,
pp. 8-15.

M. Luck, P. McBurney, O. Shehory and S. Willmott, Agent Technology: Computing as Interaction (A
Roadmap for Agent Based Computing). AgentLink, 2005.

R. Falcone and C. Castelfranchi, ‘The human in the loop of a delegated agent: the theory of adjustable
social autonomy’, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
vol. 31, no. 5, pp. 406—418, 2001, ISSN: 10834427.

C. Carabelea, O. Boissier and A. Florea, ‘Autonomy in multi-agent systems: a classification attempt’, in
Agents and Computational Autonomy: Potential, Risks, and Solutions. Vol. 2969. M. Nickles, M. Rovatsos
and G. Weiss, Eds., ser. Lecture Notes in Computer Science, 2004, pp. 103—113.

M. Wooldridge, An Introduction to Multiagent Systems, 2nd ed. Chichester, UK: Wiley, 2009, ISBN: 978-0-
470-51946-2.

J. H. Holland, Adaptation in natural and artificial systems. Cambridge, MA, USA: MIT Press, 1992, ISBN:
0-262-58111-6.

R. G. Smith, ‘The contract net protocol: high-level communication and control in a distributed problem
solver’, IEEE Trans. Comput., vol. 29, no. 12, pp. 1104-1113, Dec. 1980, 1ISSN: 0018-9340.

C. Brooks and E. Durfee, ‘Congregation formation in multiagent systems’, Autonomous Agents and Multi-
Agent Systems, vol. 7, no. 1, 2003.

R. Patil, D. Mckay, T. Finin, R. Fikes, T. Gruber, P. F. Patel-Schneider and R. Neches, ‘The darpa knowledge
sharing effort: progress report, in Proceedings on the Third International Conference on Principles of
Knowledge Representation and Reasoning (KR92), Morgan Kaufman, 1998, pp. 777-788.

A. S. Rao and M. P. Georgeff, ‘BDI Agents : From Theory to Practice’, Practice, vol. 95, pp. 312-319,
1995.

B. Savarimuthu and S. Cranefield, ‘Norm creation, spreading and emergence: A survey of simulation
models of norms in multi-agent systems’, Multiagent and Grid Systems, vol. 7, no. 1, pp. 21-54, 2011.

M. Wooldridge, N. Jennings and D. Kinny, ‘The gaia methodology for agent-oriented analysis and design’,
Autonomous Agents and Multi-Agent Systems, vol. 3, no. 3, pp. 285-312, 2000, ISSN: 1387-2532.

M. D. Oliveira and M. Purvis, ‘A distributed model for institutions in open multi-agent systems’, in Knowledge-
Based Intelligent Information and Engineering Systems, M. Negoita, R. Howlett and L. Jain, Eds., ser.
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2004, pp. 1172—-1178, ISBN: 978-3-540-
23206-3.

R. Centeno, H. Billhardt and R. Hermoso, ‘An Adaptive Sanctioning Mechanism for Open Multi-agent
Systems Regulated by Norms’, in 23rd IEEE International Conference on Tools with Atrtificial Intelligence,
IEEE, Nov. 2011, pp. 523-530, I1SBN: 978-1-4577-2068-0.

G. Di Marzo Seregundo, M.-P. Gleizes and A. Karageorgos, ‘Self-organization in multi-agent systems’,
The Knowledge Engineering Review, vol. 20, no. 02, pp. 165—-189, Jun. 2005, ISSN: 1469-8005.



168

Bibliography

(60]

[61]

[62]

[63]

(64]

(65]

[66]

[67]

[68]
(69]
[70]

[71]

[72]

[73]

(74]

[75]

[76]

[77]

(78]

[79]

R. Centeno and H. Billhardt, ‘Using incentive mechanisms for an adaptive regulation of open multi-agent
systems’, in Proceedings of the 22nd International Joint Conference on Atrtificial Intelligence, vol. 1, Bar-
celona, Catalonia, Spain, Jul. 2011, pp. 139-145, ISBN: 978-1-57735-513-7.

R. Hermoso, H. Billhardt and S. Ossowski, ‘Role evolution in Open Multi-Agent Systems as an informa-
tion source for trust’, in Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, International Foundation for Autonomous Agents and Multiagent
Systems, 2010, pp. 217-224.

A. Artikis, ‘Dynamic protocols for open agent systems’, in Proceedings of The Eighth International Confer-
ence on Autonomous Agents and Multiagent Systems, ser. AAMAS "09, vol. 1, Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2009, pp. 97—104, ISBN: 978-0-9817381-6-1.

M. Feldman and J. Chuang, ‘Overcoming free-riding behavior in peer-to-peer systems’, ACM SIGecom
Exchanges, vol. 5, no. 4, pp. 41-50, Jul. 2005, ISSN: 15519031.

J. Pitt, J. Schaumeier and A. Artikis, ‘Coordination, conventions and the self-organisation of sustainable
institutions’, in Agents in Principle, Agents in Practice, D. Kinny, J.-j. Hsu, G. Governatori and A. Ghose,
Eds., vol. 7047, ser. Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 202-217,
ISBN: 978-3-642-25043-9.

H. J. LeBlanc and X. D. Koutsoukos, ‘Consensus in networked multi-agent systems with adversaries’, in
Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control (HSCC
’11), New York, USA: ACM Press, Apr. 2011, p. 281, ISBN: 978-1-450-30629-4.

K. Barber and J. Kim, ‘Soft security: isolating unreliable agents from society’, in Trust, Reputation, and
Security: Theories and Practice, R. Falcone, S. Barber, L. Korba and M. Singh, Eds., vol. 2631, ser.
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003, pp. 224—233, ISBN: 978-3-540-
00988-7.

F. Zambonelli, N. R. Jennings and M. Wooldridge, ‘Organisational rules as an abstraction for the analysis
and design of multi-agent systems’, International Journal of Software and Knowledge Engineering, vol.
11, no. 03, pp. 303-328, 2001.

D. Gambetta, ‘Can we trust trust?’, Trust: Making and Breaking Cooperative Relations, pp. 213—-237, 1988.
S. P. Marsh, ‘Formalising Trust as a Computational Concept’, PhD thesis, 1994, p. 184.

Z. Yan and S. Holtmanns, ‘Trust Modeling and Management: from Social Trust to Digital Trust’, Computer
Security Privacy and Politics Current Issues Challenges and Solutions, pp. 290-323, 2007.

F. G. Marmol and G. M. Pérez, ‘Trust and reputation models comparison’, Internet Research, vol. 21, no.
2, pp. 138—-153, 2011, ISSN: 1066-2243.

A. Jgsang, ‘Robustness of Trust and Reputation Systems: Does It Matter?’, in Trust Management VI, T.
Dimitrakos, R. Moona, D. Patel and D. McKnight, Eds., vol. 374, ser. IFIP Advances in Information and
Communication Technology, Springer Berlin Heidelberg, 2012, pp. 253-262, ISBN: 978-3-642-29851-6.

D. Elgesem, ‘Normative Structures in Trust Management 1 The Puzzle of Trust Management’, Lecture
Notes in Computer Science, vol. 3986/2006, pp. 48—61, 2006.

A. Koster, J. Sabater-Mir and M. Schorlemmer, ‘Trust alignment: A Sine Qua Non of Open Multi-agent
Systems’, in On the Move to Meaningful Internet Systems: OTM 2011, vol. 7044, ser. Lecture Notes in
Computer Science, Springer-Verlag, Oct. 2011, pp. 182—199, I1SBN: 978-3-642-25108-5.

I. Pinyol and J. Sabater-Mir, ‘Pragmatic-strategic reputation-based decisions in bdi agents’, in Proceedings
of The Eighth International Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS ’09,
vol. 2, Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2009,
pp. 1001-1008, 1SBN: 978-0-9817381-7-8.

C. Burnett, T. Norman and K. Sycara, ‘Bootstrapping trust evaluations through stereotypes’, in Proceed-
ings of the Ninth International Conference on Autonomous Agents and Multiagent Systems, vol. 1, Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2010, pp. 241 —248, I1SBN: 978-0-
9826571-1-9.

C. Burnett, T. Norman and K. Sycara, ‘Stereotypical trust and bias in dynamic multi-agent systems’, ACM
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, 2011.

W. T. L. Teacy, G. Chalkiadakis, A. Rogers and N. R. Jennings, ‘Sequential decision making with un-
trustworthy service providers’, in Proceedings of the Seventh International Joint Conference on Autonom-
ous Agents and Multiagent Systems, ser. AAMAS ’08, vol. 2, Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, 2008, pp. 755-762, ISBN: 978-0-9817381-1-6.

A. E. Arenas, B. Aziz and G. C. Silaghi, ‘Reputation management in collaborative computing systems’, in
Security and Communication Networks, vol. 3, Wiley Online Library, 2010, pp. 546-564.



Bibliography 169

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

[01]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

S. Choi, R. Buyya, H. Kim and E. Byun, ‘A Taxonomy of Desktop Grids and its Mapping to State of the Art
Systems’, Grid Computing and Distributed Systems Laboratory, The University of Melbourne, Tech. Rep.,
2008.

K. K. Fullam, M. Voss, T. B. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol, K. S. Barber, J. S. Ro-
senschein and L. Vercouter, ‘A specification of the Agent Reputation and Trust (ART) testbed’, in Pro-
ceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS '05), New York, New York, USA: ACM Press, Jul. 2005, p. 512, 1ISBN: 1595930930.

L. Shang, Z. Wang, X. Zhou, X. Huang and Y. Cheng, ‘TM-DG: A Trust Model Based On Computer User’s
Daily Behavior for Desktop Grid Platform’, in Proceedings of the 2007 symposium on Component and
framework technology in high-performance and scientific computing - CompFrame '07, ACM Press, Oct.
2007, p. 59, 1ISBN: 9781595938671.

P. Domingues, B. Sousa and L. Moura Silva, ‘Sabotage-tolerance and trust management in desktop grid
computing’, Future Generation Computer Systems, vol. 23, no. 7, pp. 904-912, Aug. 2007, ISSN: 0167-
739X.

N. Andrade, F. Brasileiro, W. Cirne and M. Mowbray, ‘Discouraging Free Riding in a Peer-to-Peer CPU-
Sharing Grid’, in Proceedings of the 13th IEEE International Symposium on High Performance Distributed
Computing, Washington, DC, USA: IEEE Computer Society, 2004, pp. 129-137, ISBN: 0-7803-2175-4.

G. C. Silaghi, F. Araujo, L. M. Silva, P. Domingues and A. E. Arenas, ‘Defeating colluding nodes in Desktop
Grid computing platforms’, 2008 IEEE International Symposium on Parallel and Distributed Processing,
pp. 1-8, Apr. 2008, ISSN: 1530-2075.

J. Dyson, N. Griffiths, H. Lim, S. Jarvis and G. Nudd, ‘Trusting agents for grid computing’, /EEE Interna-
tional Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004.

M. Vladoiu and Z. Constantinescu, ‘A Taxonomy for Desktop Grids from Users’ Perspective’, in Proceed-
ings of the 2008 World Congress on Engineering (WCE), vol. 1, London, U.K., 2008, pp. 1-5, ISBN: 978-
9-8898-6719-5.

H. Zhao and X. Li, ‘H-Trust: A Robust and Lightweight Group Reputation System for Peer-to-Peer Desktop
Grid’, The 28th International Conference on Distributed Computing Systems Workshops, pp. 235-240,
Jun. 2008.

L.-C. Canon, E. Jeannot and J. Weissman, ‘A dynamic approach for characterizing collusion in desktop
grids’, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1-12, 2010.

F. Azzedin and M. Maheswaran, ‘Evolving and managing trust in grid computing systems’, in Canadian
IEE Conference on Electrical and Computer Engineering (CCECE 2002), vol. 3, IEEE, 2002, pp. 1424—
1429, ISBN: 0-7803-7514-9.

A. Arenas, M. Wilson and B. Matthews, ‘On trust management in grids’, in Proceedings of the First Inter-
national Conference on Autonomic Computing and Communication Systems, Rome, Italy: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering), Oct. 2007, p. 7, ISBN:
978-963-9799-09-7.

T. G. Papaioannou and G. D. Stamoulis, ‘Reputation-based estimation of individual performance in collab-
orative and competitive grids’, Future Generation Computer Systems, vol. 26, no. 8, pp. 1327—1335, Oct.
2010, ISSN: 0167739X.

J. Patel, ‘A Trust and Reputation Model for Agent-Based Virtual Organisations’, PhD thesis, University of
Southampton, 2006, p. 184.

G. Anders, J.-P. Steghofer, H. Seebach, F. Nafz and W. Reif, ‘Structuring and Controlling Distributed Power
Sources by Autonomous Virtual Power Plants’, in Proceedings of the IEEE Power and Energy Student
Summit (PESS), IEEE, 2010, pp. 40—42.

G. Chalkiadakis, V. Robu and R. Kota, ‘Cooperatives of distributed energy resources for efficient virtual
power plants’, in The 10th International Conference on Autonomous Agents and Multiagent Systems,
vol. 2, Taipei, Taiwan: International Foundation for Autonomous Agents and Multiagent Systems, 2011,
pp. 787794, ISBN: 0-9826571-6-1.

G. Anders, F. Siefert, J.-P. Steghdfer and W. Reif, ‘A decentralized multi-agent algorithm for the set parti-
tioning problem’, in PRIMA 2012: Principles and Practice of Multi-Agent Systems, 1. Rahwan, W. Wobcke,
S. Sen and T. Sugawara, Eds., vol. 7455, ser. Lecture Notes in Computer Science, Springer Berlin Heidel-
berg, 2012, pp. 107—121, ISBN: 978-3-642-32728-5.

M. Vasirani, R. Kota, R. L. Cavalcante, S. Ossowski and N. R. Jennings, ‘Technical Report: Virtual Power
Plants of Wind Power Generators and Electric Vehicles’, Tech. Rep., 2012, p. 21.

J. Zhang, ‘A Survey on Trust Management for VANETS’, in 2011 IEEE International Conference on Ad-
vanced Information Networking and Applications, IEEE, 2011, pp. 105112, ISBN: 978-1-61284-313-1.



170

Bibliography

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107)

[108]

[109]

[110]

[111]

[112]
[113]
[114]

[115]

[116]

[117]

[118]
[119]

H. Chen, H. Wu, X. Zhou and C. Gao, ‘Agent-based trust model in wireless sensor networks’, in Eighth
ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD 2007), vol. 3, 2007, pp. 119—124.

A. Boukerche and X. Li, ‘An agent-based trust and reputation management scheme for wireless sensor
networks’, in IEEE Conference on Global Telecommunications (GLOBECOM ’05), vol. 3, 2005.

N. Sahli, G. Lenzini and H. Eertink, ‘Trustworthy agent-based recommender system in a mobile p2p envir-
onment’, in Proceedings of the Seventh International Conference on Agents and Peer-to-Peer Computing,
D. Beneventano, Z. Despotovic, F. Guerra, S. Joseph, G. Moro and A. P. Pinninck, Eds., ser. Lecture
Notes in Computer Science, vol. 6573, Berlin, Heidelberg: Springer Berlin Heidelberg, May 2012, pp. 59—
70, ISBN: 978-3-642-31808-5.

N. Griffiths, ‘Enhancing peer-to-peer collaboration using trust’, Expert Systems with Applications, vol. 31,
no. 4, pp. 849-858, Nov. 2006, ISSN: 09574174.

X. Ding, W. Yu and Y. Pan, ‘A Dynamic Trust Management Scheme to Mitigate Malware Proliferation in
P2P Networks’, in Proceedings of the IEEE International Conference on Communications (ICC "08), 2008,
pp. 1605—1609.

J. Hu, Q. Wu and B. Zhou, ‘RBTrust: A Recommendation Belief Based Distributed Trust Management
Model for P2P Networks’, 10th IEEE International Conference on High Performance Computing and Com-
munications, pp. 950-957, Sep. 2008.

K. Aberer and Z. Despotovic, ‘Managing Trust in a Peer-2-Peer Information System’, in Proceedings of the
10th International Conference on Information and Knowledge Management (CIKMO1), P. Henrique, L. Liu
and D. Grossman, Eds., 2001, pp. 310-317.

S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina, ‘The Eigentrust algorithm for reputation management
in P2P networks’, in 12th International Conference on World Wide Web (WWW), 2003, p. 640, ISBN:
1581136803.

Y.-H. Tan and W. Thoen, ‘Toward a generic model of trust for electronic commerce’, International Journal
of Electronic Commerce, vol. 5, no. 2, pp. 61-74, Dec. 2000, ISSN: 1086-4415.

A. Hnativ and S. A. Ludwig, ‘Evaluation of trust in an ecommerce multi-agent system using fuzzy reas-
oning’, in IEEE International Conference on Fuzzy Systems, IEEE, Aug. 2009, pp. 757—763, ISBN: 978-1-
4244-3596-8.

A. Gutowska and K. Buckley, ‘Computing Reputation Metric in Multi-Agent E-Commerce Reputation Sys-
tem’, in 28th International Conference on Distributed Computing Systems Workshops, |IEEE, Jun. 2008,
pp. 255-260.

S. Zhao, H. Liu and Z. Sun, ‘Scalable Trust in Multi-agent E-commerce System’, in 2008 International
Symposium on Electronic Commerce and Security, IEEE, 2008, pp. 990—993, ISBN: 978-0-7695-3258-5.

Z. Gan, Q. Ding and V. Varadharajan, ‘Reputation-Based Trust Network Modelling and Simplification in
Multiagent-Based E-Commerce Systems’, in Fifth International Conference on Next Generation Web Ser-
vices Practices, IEEE, Sep. 2009, pp. 60—67, ISBN: 978-0-7695-3821-1.

L. Gasser, ‘Distributed artificial intelligence’, in, N. M. Avouris and L. Gasser, Eds., Norwell, MA, USA:
Kluwer Academic Publishers, 1992, ch. An Overview of DAI, pp. 9-30, ISBN: 0-7923-1585-5.

J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999, 1SBN: 0201360489.

K. M. Carley and L. Gasser, ‘Multiagent systems’, in, G. Weiss, Ed., Cambridge, MA, USA: MIT Press,
1999, ch. Computational Organization Theory, pp. 299-330, ISBN: 0-262-23203-0.

D. Grossi, F. Dignum, M. Dastani and L. Royakkers, ‘Foundations of organizational structures in multiagent
systems’, in Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS '05), New York, New York, USA: ACM Press, Jul. 2005, p. 690, ISBN: 1595930930.

N. R. Jennings, ‘On agent-based software engineering’, Artificial Intelligence, vol. 117, no. 2, pp. 277-296,
Mar. 2000, ISSN: 0004-3702.

S. A. DeLoach, ‘Multiagent systems engineering of organization-based multiagent systems’, in Proceed-
ings of the fourth international workshop on Software engineering for large-scale multi-agent systems
(SELMAS '05), ser. SELMAS ’05, New York, New York, USA: ACM Press, 2005, p. 1, ISBN: 1595931163.

N. Griffiths, ‘Cooperative clans’, Kybernetes, vol. 34, no. 9/10, 2005, ISSN: 0368-492X.

R. Centeno, H. Billhardt, R. Hermoso and S. Ossowski, ‘Organising mas: a formal model based on organ-
isational mechanisms’, in Proceedings of the 2009 ACM Symposium on Applied Computing, ser. SAC '09,
New York, NY, USA: ACM, 2009, pp. 740-746, I1SBN: 978-1-60558-166-8.



Bibliography 171

[120]

[121]

[122]

[123]

[124]

[125]

[126]
[127]

[128]

[129]

[130]
[131]
[132]
[133]

[134]

[135]

[136]

[137]

[138]

[139]

Z. Guessoum, M. Ziane and N. Faci, ‘Monitoring and Organizational-Level Adaptation of Multi-Agent Sys-
tems’, in Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, vol. 2, New York, New York, USA, Jul. 2004, pp. 514-521, ISBN: 1-58113-864-4.

D. Grossi, F. Dignum, V. Dignum, M. Dastani and L. Royakkers, ‘Structural evaluation of agent organiza-
tions’, in Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS '06), New York, New York, USA: ACM Press, May 2006, p. 1110, ISBN: 1595933034.

K. R. T. Larsen and C. R. Mclnerney, ‘Preparing to work in the virtual organization’, Information and
Management, vol. 39, no. 6, pp. 445-456, May 2002, ISSN: 0378-7206.

T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang, T. D. Nguyen, V. Deora,
J. Shao, W. Gray and N. J. Fiddian, ‘Agent-based formation of virtual organisations’, Knowledge-Based
Systems, vol. 17, no. 2-4, pp. 103 —111, 2004, ISSN: 0950-7051.

A. Amorim, ‘Virtual organization theory: current status and demands’, in Integration and Innovation Orient
to E-Society Volume 1, W. Wang, Y. Li, Z. Duan, L. Yan, H. Li and X. Yang, Eds., vol. 251, ser. IFIP - The
International Federation for Information Processing, Springer US, 2007, pp. 1-8, ISBN: 978-0-387-75465-
9.

E. Oliveira and A. P. Rocha, ‘Agents Advanced Features for Negotiation in Electronic Commerce and Vir-
tual Organisations Formation Processes’, in Agent Mediated Electronic Commerce, The European Agent-
Link Perspective, Jan. 2001, pp. 7897, ISBN: 3-540-41671-4.

J. McGinnis, K. Stathis and F. Toni, ‘A Formal Framework of Virtual Organisations as Agent Societies’,
Electronic Proceedings in Theoretical Computer Science, vol. 16, pp. 1-14, Jan. 2010, ISSN: 2075-2180.

I. Foster, ‘The Anatomy of the Grid: Enabling Scalable Virtual Organizations’, International Journal of High
Performance Computing Applications, vol. 15, no. 3, pp. 200—-222, Aug. 2001, ISSN: 1094-3420.

J. Patel, G. Shercliff, P. J. Stockreisser, J. Shao, W. A. Gray, N. J. Fiddian, S. Thompson, W. T. L. Teacy,
N. R. Jennings, M. Luck, S. Chalmers, N. Oren, T. J. Norman, A. Preece and P. M. D. Gray, ‘Agent-
based virtual organisations for the Grid’, Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS °05), p. 1151, 2005.

M. Coppola, Y. Jégou, B. Matthews, C. Morin, L. P. Prieto, O. D. Sanchez, E. Y. Yang and H. Yu, ‘Virtual
Organization Support within a Grid-Wide Operating System’, IEEE Internet Computing, vol. 12, no. 2,
pp. 2028, Mar. 2008, 1SSN: 1089-7801.

The OC Initiative, Organic Computing Website. [Online]. Available: http://www.organic-computing.org/
(visited on 27/12/2013).

J. Kephart and D. Chess, ‘The vision of autonomic computing’, Computer, vol. 36, no. 1, pp. 41-50, Jan.
2003, ISSN: 0018-9162.

H. Kitano, ‘Biological robustness.’, Nature reviews. Genetics, vol. 5, no. 11, pp. 826—37, Nov. 2004, ISSN:
1471-0056.

C. Miller-Schloer, ‘Organic computing - on the feasibility of controlled emergence’, in International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES + ISSS '04), 2004, pp. 2-5.

S. Tomforde, H. Prothmann, J. Branke, J. Hahner, M. Mnif, C. Miller-Schloer, U. Richter and H. Schmeck,
‘Observation and Control of Organic Systems’, in Organic Computing - A Paradigm Shift for Complex
Systems, C. Mller-Schloer, H. Schmeck and T. Ungerer, Eds., vol. 1, ser. Autonomic Systems, Springer
Basel, 2011, pp. 325-338, 1SBN: 978-3-0348-0129-4.

H. Schmeck, C. Miiller-Schloer, E. Gakar, M. Mnif and U. Richter, ‘Adaptivity and self-organization in
organic computing systems’, ACM Transactions on Autonomous and Adaptive Systems, vol. 5, no. 3,
pp. 1-32, Sep. 2010, I1SSN: 15564665.

S. Tomforde, ‘Runtime adaptation of technical systems: An architectural framework for self-configuration
and self-improvement at runtime’, PhD thesis, Gottfried Wilhelm Leibniz Universitat Hannover, Fakultat fir
Elektrotechnik und Informatik, 2012, p. 356, ISBN: 978-3-8381-3133-7.

U. M. Richter, ‘Controlled self-organisation using learning classifier systems’, PhD thesis, Universitat
Karlsruhe, Fakultat fir Wirtschaftswissenschaften, 2009, p. 248, ISBN: 978-3-86644-431-7.

E. Gakar, J. Hahner and C. Miiller-Schloer, ‘Investigation of generic observer/controller architectures in a
traffic scenario’, in INFORMATIK 2008: Beherrschbare Systeme - dank Informatik, ser. Lecture Notes in
Computer Science, Kéllen Verlag, 2008, pp. 733—-738.

M. Mnif and C. Miller-Schloer, ‘Quantitative emergence’, in Organic Computing - A Paradigm Shift for
Complex Systems, C. Muller-Schloer, H. Schmeck and T. Ungerer, Eds., vol. 1, ser. Autonomic Systems,
Springer Basel, 2011, pp. 39-52, ISBN: 978-3-0348-0129-4.


http://www.organic-computing.org/

172

Bibliography

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

F. Nafz, H. Seebach, J.-P. Steghdfer, S. Baumler and W. Reif, ‘A formal framework for compositional
verification of organic computing systems’, in Autonomic and Trusted Computing, B. Xie, J. Branke, S.
Sadjadi, D. Zhang and X. Zhou, Eds., vol. 6407, ser. Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2010, pp. 17-31, ISBN: 978-3-642-16575-7.

E. Cakar, N. Fredivianus, J. Hahner, J. Branke, C. Mller-Schloer and H. Schmeck, ‘Aspects of learning
in oc systems’, in Organic Computing - A Paradigm Shift for Complex Systems, C. Miiller-Schloer, H.
Schmeck and T. Ungerer, Eds., vol. 1, ser. Autonomic Systems, Springer Basel, 2011, pp. 237-251, ISBN:
978-3-0348-0129-4.

H. Prothmann, J. Branke, H. Schmeck, S. Tomforde, F. Rochner, J. Hahner and C. Mller-Schloer, ‘Organic
traffic light control for urban road networks’, International Journal of Autonomic and Adaptative Commu-
nication Systems, vol. 2, no. 3, pp. 203-225, Jun. 2009, ISSN: 1754-8632.

S. Tomforde, H. Prothmann, J. Branke, J. Hahner, C. Miller-Schloer and H. Schmeck, ‘Possibilities and
limitations of decentralised traffic control systems’, in 2070 International Joint Conference on Neural Net-
works (IJCNN), 2010, pp. 1-9.

B. Jakimovski, B. Meyer and E. Maehle, ‘Swarm intelligence for self-reconfiguring walking robot’, in IEEE
Symposium on Swarm Intelligence (SIS 2008), 2008, pp. 1-8.

B. Satzger, A. Pietzowski, W. Trumler and T. Ungerer, ‘Using automated planning for trusted self-organising
organic computing systems’, in Autonomic and Trusted Computing, C. Rong, M. Jaatun, F. Sandnes, L.
Yang and J. Ma, Eds., vol. 5060, ser. Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2008, pp. 60-72, ISBN: 978-3-540-69294-2.

S. Tomforde and J. Hahner, ‘Organic Network Control: Turning Standard Protocols into Evolving Systems’,
in Biologically Inspired Networking and Sensing: Algorithms and Architectures, 2012, pp. 11-35, ISBN:
9781613500927.

J. Salzmann, S. Kubisch, F. Reichenbach and D. Timmermann, ‘Energy and coverage aware routing al-
gorithm in self organized sensor networks’, in Fourth International Conference on Networked Sensing
Systems (INSS '07), 2007, pp. 77-80.

M. Wittke, C. Grenz and J. Hahner, ‘Towards organic active vision systems for visual surveillance’, in Archi-
tecture of Computing Systems - ARCS 2011, M. Berekovic, W. Fornaciari, U. Brinkschulte and C. Silvano,
Eds., vol. 6566, ser. Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 195-2086,
ISBN: 978-3-642-19136-7.

J. Branke, J. Hahner, C. Miller-Schloer and H. Schmeck, Organic Traffic Control Website. [Online]. Avail-
able: http://projects.aifb.kit.edu/effalg/otcqe/index.htm (visited on 27/12/2013).

B. Bauer and H. Kasinger, ‘Aose and organic computing - how can they benefit from each other? position
paper’, in Perspectives in Conceptual Modeling, J. Akoka, S. Liddle, Y. Song, M. Bertolotto, I. Comyn-
Wattiau, W.-d. Heuvel, M. Kolp, J. Trujillo, C. Kop and H. Mayr, Eds., vol. 3770, ser. Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2005, pp. 109-118, ISBN: 978-3-540-29395-8.

W. van Oortmerssen, Trusted communities: The only way one can effectively combat cheating (article in
"Wouter’s Wiki"), 2013. [Online]. Available: http://strlen.com/trusted-communities (visited on 27/12/2013).

Y. Wang and J. Vassileva, ‘Trust-based community formation in peer-to-peer file sharing networks’, in Pro-
ceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, ser. Wl '04, Wash-
ington, DC, USA: IEEE Computer Society, 2004, ISBN: 0-7695-2100-2.

R. Ghanea-Hercock, ‘Dynamic trust formation in multi-agent systems’, in International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2007), 10th International Workshop on Trust in
Agent Societies, 2007.

D. G. Mikulski, F. L. Lewis, E. Y. Gu and G. R. Hudas, ‘Trust dynamics in multi-agent coalition formation’,
in SPIE Proceedings Vol. 8045, Unmanned Systems Technology XIlI, vol. 8045, Society of Photo-Optical
Instrumentation Engineers (SPIE), May 2011,

L. Nardin and J. Sichman, ‘Simulating the impact of trust in coalition formation: a preliminary analysis’, in
Second Brazilian Workshop on Social Simulation (BWSS), 2010, pp. 33—40.

M. Kim and M. Kim, ‘Group organization algorithm based on trust and reputation in agent society’, Pro-
ceedings of the Sixth International Conference on Advances in Mobile Computing and Multimedia (MoMM
'08), no. ¢, p. 387, 2008.

N. Griffiths and M. Luck, ‘Coalition formation through motivation and trust’, Proceedings of the second
international joint conference on Autonomous agents and multiagent systems - AAMAS "03, p. 17, 20083.

B. Hoelz and C. Ralha, ‘A coalition formation mechanism for trust and reputation-aware multi-agent sys-
tems’, in Advances in Artificial Intelligence (SBIA 2012), L. Barros, M. Finger, A. Pozo, G. Gimenénez-
Lugo and M. Castilho, Eds., ser. Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2012,
pp. 162—171, ISBN: 978-3-642-34458-9.


http://projects.aifb.kit.edu/effalg/otcqe/index.htm
http://strlen.com/trusted-communities

Bibliography 173

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]
[172]
[173]

[174]

[175]

[176]

[177]

Z. Qing-hua, W. Chong-jun and X. Jun-yuan, ‘Core: a trust model for agent coalition formation’, in Fifth
International Conference on Natural Computation (ICNC "09), vol. 5, 2009, pp. 541-545.

A. Ghaffarizadeh and V. H. Allan, ‘History Based Coalition Formation in Hedonic Context Using Trust’,
International Journal of Atrtificial Intelligence & Applications, vol. 4, no. 4, pp. 1-8, Jul. 2013, 1ISSN: 0975-
900X.

S. Breban and J. Vassileva, ‘Using inter-agent trust relationships for efficient coalition formation’, in Pro-
ceedings of the 15th Conference of the Canadian Society for Computational Studies of Intelligence on
Advances in Artificial Intelligence, ser. Al ‘02, London, UK: Springer-Verlag, 2002, pp. 221-236, ISBN:
3-540-43724-X.

S. Breban and J. Vassileva, ‘Long-term coalitions for the electronic marketplace’, in Proceedings of the
E-Commerce Applications Workshop, Canadian Al Conference, 2001.

R. Hermoso, H. Billhardt and S. Ossowski, ‘Integrating trust in virtual organisations’, in Coordination,
Organizations, Institutions, and Norms in Agent Systems Il, P. Noriega, J. Vazquez-Salceda, G. Boella, O.
Boissier, V. Dignum, N. Fornara and E. Matson, Eds., vol. 4386, ser. Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2007, pp. 19-31, ISBN: 978-3-540-74457-3.

F. Kerschbaum, J. Haller, Y. Karabulut and P. Robinson, ‘Pathtrust: A trust-based reputation service for
virtual organization formation’, in Trust Management, K. Sta len, W. Winsborough, F. Martinelli and F.
Massacci, Eds., vol. 3986, ser. Lecture Notes in Computer Science Cd, Springer Berlin / Heidelberg,
2006, pp. 193—205, ISBN: 978-3-540-34295-3.

A. Avila-Rosas and M. Luck, ‘A direct reputation model for vo formation’, in Multi-Agent Systems and
Applications 1V, M. Péchoucek, P. Petta and L. Z. Varga, Eds., vol. 3690, ser. Lecture Notes in Computer
Science, Springer Berlin Heidelberg, Sep. 2005, pp. 460—469, ISBN: 978-3-540-29046-9.

W. Brockmann, A. Buscherméhle, J. Hilsmann and N. Rosemann, ‘Trust management - handling un-
certainties in embedded systems’, in Organic Computing - A Paradigm Shift for Complex Systems, C.
Miller-Schloer, H. Schmeck and T. Ungerer, Eds., vol. 1, ser. Autonomic Systems, Springer Basel, 2011,
pp. 589-591, ISBN: 978-3-0348-0129-4.

W. Reif, C. Muller-Schloer, J. Hahner, T. Ungerer and E. André, Oc trust project website. [Online]. Avail-
able: http://www. informatik . uni- augsburg . de/de/lehrstuehle/swt/se/projects/oc - trust/ (visited on
27/12/2013).

F. Nafz, H. Seebach, J.-P. Steghdfer, G. Anders and W. Reif, ‘Constraining self-organisation through cor-
ridors of correct behaviour: the restore invariant approach’, in Organic Computing - A Paradigm Shift for
Complex Systems, C. Miiller-Schloer, H. Schmeck and T. Ungerer, Eds., vol. 1, ser. Autonomic Systems,
Springer Basel, 2011, pp. 79-93, ISBN: 978-3-0348-0129-4.

C. Cérin and G. Fedak, Eds., Desktop Grid Computing, ser. Chapman & Hall/CRC Numerical Analy &
Scient Comp. Series. Chapman and Hall/CRC, 2012, ISBN: 978-1-4398-6214-8.

T. Kiss and G. Terstyanszky, ‘Programming Applications for Desktop Grids’, in Desktop Grid Computing, C.
Cérin and G. Fedak, Eds., ser. Chapman & Hall/CRC Numerical Analy & Scient Comp. Series, Chapman
and Hall/CRC, Jun. 2012, ch. 14, pp. 309-331, ISBN: 978-1-4398-6214-8.

D. W. Walker and J. J. Dongarra, ‘Mpi: a standard message passing interface’, Supercomputer, vol. 12,
pp. 56—68, 1996.

I. Foster and C. Kesselman, ‘Globus: a metacomputing infrastructure toolkit’, International Journal of Su-
percomputer Applications, vol. 11, pp. 115-128, 1996.

I. Foster, C. Kesselman and Globus Alliance Board, Globus Toolkit. [Online]. Available: http://www.globus.
org/toolkit/ (visited on 27/12/2013).

D. Kondo, M. Taufer, C. L. Brooks, H. Casanova and A. A. Chien, ‘Characterizing and Evaluating Desktop
Grids: An Empirical Study’, in Proceedings of the International Parallel and Distributed Processing Sym-
posium, 2004.

L. Sarmenta, ‘Sabotage-tolerance mechanisms for volunteer computing systems’, in Proceedings of the
First IEEE/ACM International Symposium on Cluster Computing and the Grid, IEEE Computer Society,
2001, pp. 337-346, ISBN: 0-7695-1010-8.

K. Watanabe and M. Fukushi, ‘Generalized Spot-Checking for Sabotage-Tolerance in Volunteer Comput-
ing Systems’, in 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, |IEEE,
2010, pp. 655-660, ISBN: 978-1-4244-6987-1.

K. Ranganathan, M. Ripeanu, A. Sarin and |. Foster, ‘Incentive mechanisms for large collaborative re-
source sharing’, in Proceedings of the 2004 IEEE International Symposium on Cluster Computing and the
Grid (CCGRID), |IEEE Computer Society, Apr. 2004, pp. 1-8, ISBN: 0-7803-8430-X.


http://www.informatik.uni-augsburg.de/de/lehrstuehle/swt/se/projects/oc-trust/
http://www.globus.org/toolkit/
http://www.globus.org/toolkit/

174

Bibliography

[178]

[179]

[180]

[181]

[182]

[183]

[184]
[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

P. Merz, F. Kolter and M. Priebe, ‘Free-riding prevention in super-peer desktop grids’, in Third International
Multi-Conference on Computing in the Global Information Technology (ICCGI '08), 2008, pp. 297-302.

Z. Shanyu and V. Lo, ‘Result Verification and Trust-Based Scheduling in Peer-to-Peer Grids’, in Fifth IEEE
International Conference on Peer-to-Peer Computing (P2P’05), IEEE, Aug. 2005, pp. 31-38, ISBN: 0-7695-
2376-5.

I. Thabet, I. Bouslimi, C. Hanachi and K. Ghédira, ‘A multi-agent organizational model for grid schedul-
ing’, in Agent and Multi-Agent Systems: Technologies and Applications, ser. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2011, 1ISBN: 978-3-642-21999-3.

S. Abdallah, H. Zhang and V. Lesser, ‘The role of an agent organization in a grid computing environment’,
in Proceedings of the 14th International Conference on Automated Planning and Scheduling, Workshop
on Planning and Scheduling for Web and Grid Services, Jun. 2004.

A. Chakravarti, G. Baumgartner and M. Lauria, ‘The organic grid: self-organizing computation on a peer-
to-peer network’, in Proceedings of the International Conference on Autonomic Computing, IEEE, 2004,
pp. 96—103, ISBN: 0-7695-2114-2.

H. Kim, S. Kim, E. Byun, C. Hwang and J. Choi, ‘Agent-Based Autonomous Scheduling Mechanism Using
Availability in Desktop Grid Systems’, in 15th International Conference on Computing, IEEE, Nov. 2006,
pp. 174—179, 1SBN: 0-7695-2708-6.

S. Choi, ‘Group-based adaptive scheduling mechanism in desktop grid’, PhD thesis, Korea University,
2007, p. 194.

W. Jamroga, A. M?ski and M. Szreter, ‘Modularity and Openness in Modeling Multi-Agent Systems’, Elec-
tronic Proceedings in Theoretical Computer Science, vol. 119, pp. 224—239, Jul. 2013, I1SSN: 2075-2180.

M. Viroli and A. Omicini, ‘Specifying agent observable behaviour’, in Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems Part 2 (AAMAS '02), New York, New
York, USA: ACM Press, Jul. 2002, p. 712.

R. Dumke, S. Mencke and C. Wille, Quality Assurance of Agent-Based and Self-Managed Systems, 1st.
Boca Raton, FL, USA: CRC Press, Inc., 2009, ISBN: 1439812667, 9781439812662.

W. T. L. Teacy, J. Patel, N. R. Jennings and M. Luck, ‘TRAVOS: Trust and Reputation in the Context
of Inaccurate Information Sources’, Autonomous Agents and MultiAgent Systems, vol. 12, pp. 183—-198,
2006.

D. D. Heckathorn, ‘Collective Action and the Second-Order Free-Rider Problem’, Rationality and Society,
vol. 1, no. 1, pp. 78-100, Jul. 1989, ISSN: 1043-4631.

G. Anders, F. Siefert, J.-P. Steghofer and W. Reif, ‘“Trust-Based Scenarios - Predicting Future Agent Be-
havior in Open Self-Organizing Systems’, in Proceedings of the Seventh International Workshop on Self-
Organizing Systems (IWSOS 2013), 2013.

O. Shehory and K. Sycara, ‘Multi-agent coordination through coalition formation’, Intelligent Agents IV
Agent Theories, Lecture Notes in Computer Science, vol. 1365, pp. 1-12, 1998.

I. Gupta, R. van Renesse and K. P. Birman, ‘A Probabilistically Correct Leader Election Protocol for Large
Groups’, in Proceedings of the 14th International Conference on Distributed Computing, Springer-Verlag,
Oct. 2000, pp. 89-103, ISBN: 3-540-41143-7.

A. Vasalou and J. Pitt, ‘Reinventing forgiveness: a formal investigation of moral facilitation’, in Proceedings
of the Third International Conference on Trust Management, P. Herrmann, V. Issarny and S. Shiu, Eds.,
ser. Lecture Notes in Computer Science, vol. 3477, Berlin, Heidelberg: Springer Berlin Heidelberg, May
2005, pp. 146—160, ISBN: 978-3-540-26042-4.

P. Tosic and G. Agha, ‘Maximal Clique Based Distributed Group Formation for Autonomous Agent Co-
alitions’, in Proceedings of the Third International Joint Conference on Agents and Multi-Agent Systems,
Coalitions and Teams Workshop (W10), 2004.

A. Campbell and A. S. Wu, ‘Multi-agent role allocation: issues, approaches, and multiple perspectives’,
Autonomous Agents and Multi-Agent Systems, vol. 22, no. 2, pp. 317-355, Apr. 2010, ISSN: 1387-2532.

M. Litzkow, M. Livny and M. Mutka, ‘Condor-a hunter of idle workstations’, in Proceedings of the Eighth In-
ternational Conference on Distributed Computing Systems, IEEE Computer Society Press, 1988, pp. 104—
111, ISBN: 0-8186-0865-X.

Space Sciences Laboratory at the Berkeley University of California, The BOINC Project. [Online]. Avail-
able: http://boinc.berkeley.edu/ (visited on 27/12/2013).

Z. Patoli, M. Gkion, A. Al-Barakati, W. Zhang, P. Newbury and M. White, ‘How to build an open source
render farm based on desktop grid computing’, in Wireless Networks, Information Processing and Sys-
tems, D. Hussain, A. Rajput, B. Chowdhry and Q. Gee, Eds., vol. 20, ser. Communications in Computer
and Information Science, Springer Berlin Heidelberg, 2009, pp. 268—278, 1ISBN: 978-3-540-89852-8.


http://boinc.berkeley.edu/

Bibliography 175

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]
[212]
[213]

[214]

[215]
[216]

[217]

[218]
[219]

[220]

D. Kondo, G. Fedak, F. Cappello, A. A. Chien and H. Casanova, ‘Characterizing resource availability in
enterprise desktop grids’, Future Generation Computer Systems, vol. 23, no. 7, pp. 888-903, Aug. 2007,
ISSN: 0167739X.

C. Anglano, J. Brevik, M. Canonico, D. Nurmi and R. Wolski, ‘Fault-aware scheduling for Bag-of-Tasks
applications on Desktop Grids’, in 2006 Seventh IEEE/ACM International Conference on Grid Computing,
IEEE, 2006, pp. 56—63, ISBN: 1-4244-0343-X.

D. Kondo and H. Casanova, ‘Computing the optimal makespan for jobs with identical and independent
tasks scheduled on volatile hosts’, Technical Report CS2004-0796, Dept. of Computer Science and En-
gineering, University of California at San Diego, San Diego, Tech. Rep., 2004, pp. 1-9.

H. Tianfield and R. Unland, ‘Towards self-organization in multi-agent systems and Grid computing’, Mul-
tiagent Grid Systems, vol. 1, no. 2, pp. 89-95, 2005, ISSN: 1574-1702.

K. Pruhs, J. Sgall and E. Torng, ‘Online Scheduling’, in Handbook of Scheduling: Algorithms, models, and
performance analysis, J. Y.-T. Leung and J. H. Anderson, Eds., CRC Press, Boca Raton, 2004, pp. 196—
231, ISBN: 1584883979.

L. F. G. Sarmenta, ‘Volunteer Computing’, PhD thesis, Massachusetts Institute of Technology, 2001,
p. 216.

F. Araujo and P. Domingues, ‘Security and Result Certification’, in Desktop Grid Computing, C. Cérin
and G. Fedak, Eds., ser. Chapman & Hall/CRC Numerical Analy & Scient Comp. Series, Chapman and
Hall/CRC, Jun. 2012, pp. 211-235, ISBN: 978-1-4398-6214-8.

K. Budati, J. Sonnek, A. Chandra and J. Weissman, ‘RIDGE: Combining Reliability and Performance in
Open Grid Platforms’, in Proceedings of the 16th international symposium on High performance distributed
computing - HPDC '07, New York, New York, USA: ACM Press, Jun. 2007, p. 55, ISBN: 9781595936738.

P. Cremonesi and R. Turrin, ‘Performance models for desktop grids’, in Proceedings of the 10th Interna-
tional Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS),
Citeseer, 2007.

F. Brasileiro and N. Andrade, ‘Open, Scalable and Self-Regulated Federations of Desktop Grids with
OurGrid', in Desktop Grid Computing, C. Cérin and G. Fedak, Eds., ser. Chapman & Hall/CRC Numerical
Analy & Scient Comp. Series, Chapman and Hall/CRC, Jun. 2012, pp. 29-51, ISBN: 978-1-4398-6214-8.

B. Awerbuch, ‘Optimal distributed algorithms for minimum weight spanning tree, counting, leader election,
and related problems’, in Proceedings of the nineteenth annual ACM symposium on Theory of computing,
ser. STOC 87, New York, NY, USA: ACM, 1987, pp. 230—240, ISBN: 0-89791-221-7.

R. Kiefhaber, G. Anders, F. Siefert, T. Ungerer and W. Reif, ‘Confidence as a means to assess the accuracy
of trust values’, in 11th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), 2012, pp. 690-697.

C. D. Hollander and A. S. Wu, ‘The current state of normative agent-based systems’, Journal of Artificial
Societies and Social Simulation, vol. 14, no. 2, 2011.

H. W. Kuhn, ‘The Hungarian method for the assignment problem’, Naval Research Logistics Quarterly,
vol. 2, no. 1-2, pp. 83-97, Mar. 1955, 1ISSN: 00281441.

R. E. Burkard and E. Cela, ‘Linear Assignment Problems and Extensions’, Handbook of Combinatorial
Optimization, vol. 4, pp. 1-54, 1999.

L. Ramshaw and R. E. Tarjan, ‘A Weight-Scaling Algorithm for Min-Cost Imperfect Matchings in Bipartite
Graphs’, in 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, IEEE, Oct. 2012,
pp. 581-590, ISBN: 978-0-7695-4874-6.

A. Kumar, ‘A modified method for solving the unbalanced assignment problems’, Applied Mathematics
and Computation, vol. 176, no. 1, pp. 76—82, 2006, ISSN: 0096-3003.

E. Gamma, R. Helm, R. Johnson and J. M. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, 1st ed. Addison-Wesley Professional, 1994, 1ISBN: 0201633612.

S. Poslad, P. Charlton and M. Calisti, ‘Specifying standard security mechanisms in multi-agent systems’,
in Proceedings of the 2002 International Conference on Trust, Reputation, and Security: Theories and
Practice, ser. AAMAS’02, Berlin, Heidelberg: Springer-Verlag, 2003, pp. 163—176, 1ISBN: 3-540-00988-4.

F. Marmol and G. M. Gémez Pérez, ‘Security threats scenarios in trust and reputation models for distrib-
uted systems’, Computers & Security, vol. 28, no. 7, pp. 545-556, 2009.

S. Hernan, S. Lambert, T. Ostwald and A. Shostack, ‘Uncover Security Design Flaws Using The STRIDE
Approach’, MSDN Magazine, 2006.

K. Lee, J. Y.-T. Leung and M. L. Pinedo, ‘Makespan minimization in online scheduling with machine eligib-
ility’, 40R, vol. 8, no. 4, pp. 331-364, Nov. 2010, ISSN: 1619-4500.



176

Bibliography

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]
[231]

[232]

C. Jiang, C. Wang, X. Liu and Y. Zhao, ‘A survey of job scheduling in grids’, in Advances in Data and Web
Management, Proceedings of the Joint Ninth Asia-Pacific Web and Eighth International Conference on
Web-Age Information Management, G. Dong, X. Lin, W. Wang, Y. Yang and J. Yu, Eds., Springer Berlin /
Heidelberg, Jun. 2007, pp. 419427, ISBN: 978-3-540-72483-4.

K. Shudo, Y. Tanaka and S. Sekiguchi, ‘P3: p2p-based middleware enabling transfer and aggregation of
computational resources’, in Proceedings of the IEEE International Symposium on Cluster Computing and
the Grid (CCGrid '05), vol. 1, 2005.

A. Chien, ‘Entropia: architecture and performance of an enterprise desktop grid system’, Journal of Parallel
and Distributed Computing, vol. 63, no. 5, pp. 597-610, 2003, 1ISSN: 07437315.

D. Kondo, A. Chien and H. Casanova, ‘Resource Management for Rapid Application Turnaround on En-
terprise Desktop Grids’, in Proceedings of the ACM/IEEE SC2004 Conference, |IEEE, 2004, p. 14, ISBN:
0-7695-2153-3.

D. Zhou and V. Lo, ‘WaveGrid: a scalable fast-turnaround heterogeneous peer-based desktop grid system’,
in Proceedings of the 20th IEEE International Parallel & Distributed Processing Symposium, IEEE, 2006,
ISBN: 1-4244-0054-6.

H. Wang, H. Takizawa and H. Kobayashi, ‘A dependable Peer-to-Peer computing platform’, Future Gener-
ation Computer Systems, vol. 23, no. 8, pp. 939-955, 2007.

D. Kondo, D. P. Anderson and J. M. Vii, ‘Performance Evaluation of Scheduling Policies for Volunteer
Computing’, in Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007),
IEEE, 2007, pp. 415-422, ISBN: 0-7695-3064-8.

Q. Zhu and G. Agrawal, ‘Supporting fault-tolerance for time-critical events in distributed environments’, in
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC
'09), New York, New York, USA: ACM Press, Nov. 2009, p. 1, ISBN: 9781605587448.

Y. Yu and H. Jin, ‘A workload balancing based approach to discourage free riding in Peer-to-Peer network’,
Advances in Web and Network Technologies, and Information Management, vol. 4537, pp. 144—155, 2007.

E. Jen, ‘Stable or robust? What’s the difference?’, Complexity, vol. 8, no. 3, pp. 12—-18, 2003.

S. Ali, A. Maciejewski and H. Siegel, ‘Measuring the robustness of a resource allocation’, IEEE Transac-
tions on Parallel and Distributed Systems, vol. 15, no. 7, pp. 630—641, Jul. 2004, 1ISSN: 1045-9219.

J.-S. Kim, B. Nam, M. Marsh, P. Keleher, B. Bhattacharjee, D. Richardson, D. Wellnitz and A. Sussman,
‘Creating a Robust Desktop Grid using Peer-to-Peer Services’, in 2007 IEEE International Parallel and
Distributed Processing Symposium, |IEEE, 2007, pp. 1-7, ISBN: 1-4244-0909-8.



Appendices

177



A | TC Strategy Algorithm Details

A.1 Basic Distributed Leader Election Strategy

This section provides details about the implementation of the basic leader election strategy introduced
in Sec. 4.6.5: The algorithm 1 following on the next page details the Highest TC reputation Election
Strategy. Note that for the sake of comprehensibility, code addressed at verifying that no agent has
left the system during the election process is left out here. The same applies to code that ensures
asynchrony of the algorithm (round message receive order consideration and caching).

The algorithm is split up in three rounds, each round again consisting of up to three actions an
agent a; € Mrc,(t) performs: (1) Receive messages, (2) make local computations and (3) send
messages. The algorithm is executed periodically for as long as it returns UNDECIDED, each time
entering in one of the rounds. In the first round, a; determines (based on ids) the agent a.. This is
the agent the electing agent a; is responsible for. This means that the agent a; collects the direct
trust values of all other agents about this agent in order to compute its reputation among the TC
members. In order to allow for all agents computing such a value for their responsible agents, the
agent must send its own direct trust values DT;*’é about each other agent a, € Mrc,(t) to the
respective responsible agent (determined accordingly to own responsibility). Each agent a; then
receives messages containing direct trust values DTZ;'é about the agent 4. it is responsible for, sent
by the all other agents a,. When a; has received messages from all agents except a,, it enters round
2. In round 2, a; can compute the average direct trust value RTj\LiiCi(t)\{a,} for a, by evaluating the

messages sent by all other agents and its own direct trust value for ai. It then sends messages with
this value to all other agents (this time including a,). Also, other average direct trust messages are
received - if messages from all agents were received, a; enters round 3. In the final round, the agent
arcu is determined by scanning all received messages and the average direct trust value for 4’ for
the highest average direct trust value RT;IICI"AC/[i/ft)\{ﬂTCM}' Based on the comparison whether a; equals
arcm, €ach agent can then go into one of the two state decided(TCM) or decided(member).

This algorithm has a time complexity of O(n) (3 rounds, local computation dependent on electing
member number) and a message complexity of O(2-n-(n —1)) = O(n?). Although algorithms
with better message complexities are known - these do not incorporate the two rounds of message
sending necessary here - the number of electing members » is usually limited (see discussion in
Sec. 4.6.6), which renders the introduced message overhead acceptable.

Note that this algorithm implies that at the end of the execution each member knows whether it
has been elected as a TCM, and - if not - it can identify the TCM without further communication.

178



A.1. Basic Distributed Leader Election Strategy 179

Algorithm 1 Highest TC reputation Election Strategy

Require: Own unique identifier a; of the executing agent
Require: Round variable initialised: ROUND := 0

Require: Set Mr¢,(t) = {al, 10 M (t)‘} of electing TC members with an unique identifiers

a ol
Require: Set {DT;“,..,DTQJMTC‘U) } of direct trust values towards all agents a, € Mrc,(t) \ {a;}

1. Each electing agent 4; executes the following code:

2: if ROUND = 0 then ,

3:  Determine responsible agent a. with r being the next highest id after i or the smallest id if i is
the largest.
foralla; € Mrc,(t),j#iNj#rdo

4
5: Determine responsible agent 4; for agent a.

6: end for

7 ROUND :=1

8: return UNDECIDED

9: end if

10: if ROUND = 1 then

11: i NOT sent | Mrc,(t)| — 1 distinct msg'-messages then

12: forall a; € Mrc,(t),j # r do

] a .
13: Send msg},}(DTg‘”C) with direct trust value for agent 4/ to its responsible agent aj
14: end for

15:  else if received \MTC‘.(t)\ — 2 distinct msg'-messages then

16: Compute TC reputation RT/”\ZC;C (t for responsible agent ai, based on received values

N\ aj}
DT;’;"C from all agents a; € Mrc,(t),j #r Nj #i

17: ROUND :=2

18: return UNDECIDED

19:  end if

20: else if ROUND = 2 then

21:  if NOT sent | Mrc, (t)| — 1 distinct msg?-messages then

22; foralla; € Mrc,(t),j #ido
23: Send msggj(Tf”g) containing the average trust value of the responsible agent ;¢
24: end for
25 else if received | My, (t)| — 1 distinct msg?-messages then
26: Determine the id j = TCM, with the agent 4; being the member with the highest average
a é
[z, o]
trust value, max RTMrci(t)\{al}""RTM " )
TC; u"MTCi(“|

27: ROUND :=3

28: return UNDECIDED
29: endif

30: else if ROUND = 3 then
31:  if TCM =i then

32: return DECIDED(TCM)

33: else
34: return DECIDED(MEMBER)
35:  end if

36: end if




180 Appendix A. TC Strategy Algorithm Details

A.2 Basic Role Assignment Strategy

In Sec. 4.6.8, the implementation of a basic role assignment strategy based on the formulation as
linear assignment problem has been discussed. The following provides a short review on related
work on this problem and discusses how it can be applied for the assignment of roles to TC members
by a TCM.

The (linear) assignment problem comes in two variants: The balanced assignment problem (BAP)
describes the problem to assign n roles to n agents, such that each agent is executing only one
role and the total costs for the execution of all roles are minimised. This special case in the role
assignment can be solved for example by application of the Hungarian Method (cf. [212]) with a time
complexity of O(n*), or its modification reducing it to O(n%) (cf. e.g. [213]). The application of this
algorithm requires the formulation of a cost matrix:

Let [¥rc, (t)| = n be the number of roles to assign, | Mrc,(t)| = k the number of TC members to
assign the roles to, and Comir; be the costs for agent m; to act in the role i, then the cost matrix for
the problem is:

r Ty NN n
my [ Cmyry Cmyry  «-o Cmyry
M2 | Cmy,r1 Cmagry -+ Cmayry
M\ Cmygry Crygyry + oo Cigry

Let additionally a,,,,, be a binary variable denoting whether m; is assigned r; (am,,, = 1) or not
(am,r; = 0). If n = k, the following steps of the Hungarian Method (cf. [212]) will then minimise the
costs

k n

Z Z Amir * Cmy

i=1j=1

for the assignment of each role to exactly one agent:

1. Subtract the smallest entry ¢y, ,, in each row i from the other entries in this row.

2. Subtract the smallest entry ¢y, in each column j from the other entries in this column. The
resulting matrix is called opportunity cost matrix.

3. Check if optimal assignment can be made: Cover all rows i and columns j containing a 0 with
a minimum number of lines possible. If the number of obtained covered rows and columns is
equal to the number of rows (or columns) stop, else continue with the next step.

4. Revise opportunity cost matrix by subtracting the minimum uncovered entry from each un-
covered entry and adding it to each entry covered by two lines. Go back to step 3.

Note here that if the costs for executing a role are identical for each agent, this problem is trivial as
the minimum is reached for any assignment of roles. This is however a special case for BAP.

So far, the case of matching a set of roles with an equally sized set of agents has been covered.
However, the number of roles cannot be expected to match the number of TC members in general.



A.2. Basic Role Assignment Strategy 181

In this second variant, referred to as unbalanced assignment problem (UBAP), the problem is hence
to assign n roles to k agents with n # k. Here, two cases are discerned:

e n > k: There are more roles than available TC members. Some (if not all) agents must be
assigned more than one role such that the summed assignment costs are minimised.

e n < k: There are less roles than available TC members. Not all members will be assigned a
role. The assignment must be done such that the summed assignment costs are minimised.

The latter case can be trivially converted to a BAP by filling up the » roles with d dummy roles that
are assigned costs of 0, such that n +d = k (cf. e.g. [213]). This can then again be solved by the
Hungarian Method as described above. In the resulting assignments, some agents do not have any
roles assigned to them, which is not a problem for the operation of a TC. If however the first case
is encountered, such that there are more roles than agents, the solution of adding dummy agents is
not acceptable, as it leaves roles unassigned. There are two types of solutions to this problem: First,
the division of management tasks to roles can be re-executed. In general, this will mean to iteratively
concentrate two excess roles r; and r; to a single role r; until the number of roles in ¥ r¢, (t) matches
the number of members again. As the roles are containing associated tasks, a new role r, combines
the execution of the tasks for both roles. The costs for the execution of this role by an agent m, can
hence be assumed to be the sum of the costs of these roles, such that: ¢, r, = cm,r; + Cm,r;- The
balancing of the number of roles to the number of TC members is however problematic in a highly
dynamic TC: Each time an agent leaves the TC or is excluded from it by the TCM, a re-balancing
needs to be executed and the entire set of roles must be assigned again. This can be acceptable in
environments where the TC composition does not change often, in general however the assignment
of roles to agents should also be allowed for the unbalanced case where there are more roles than
agents. This is hence the second approach to this case. In the literature some approaches to this
case have been proposed. For example in [214] a very deep analysis of the UBAP is presented, and
modifications of known algorithms for BAP to the application for UBAP are discussed. The algorithm
FlowAssign, being a modification of the Hungarian-algorithm, is then proposed and the performance
analysed. Another solution is proposed in [215], describing a 18-step algorithm again modifying the
Hungarian-algorithm. With such an UBAP-capable algorithm, the number of roles can exceed the
number of agents and still a minimum cost assignment can be computed. This assignment does not
involve the restructuring of roles and can be executed even for TCs with high composition dynamics.

In summary, if the role model allows to formulate a cost matrix to quantify the costs for the ex-
ecution of a role by an agent, then a BAP or UBAP-algorithm can implement the Role Assignment
strategy. As long as the number of roles is smaller or equal to the number of agents in a TC, the
Hungarian Method can be applied for a quick and cost optimal solution. The output of the strategy
for the case |¥rc, (t)| < | Mrc,(t)| will then be a set of tuples

{{m (1)) | m € Muc,(8), ¥u(t) € ¥re (1)}

with each set of roles assigned to a member m containing either one or no role, such that | ¥, (¢)| < 1.
If such a balancing of roles cannot be performed by the TCM, either because the costs of this opera-
tion are too high due to the TC dynamics, or because the roles do not allow for (further) concentration,
the implementation of this strategy must use a UBAP-algorithm (e.g. the ones in [214] or [215]).



B | The Design of the TC Organisation Agent
Component

In the thesis, the TC approach has been discussed from a functional view: The dynamics of
the TC have been introduced with organisation phases constituting a TC lifecycle (as depicted in
Fig. 4.1), and the decision-making strategies required by the approach have been assigned to each
phase. This functional view, detached from the agent model (see Sec. 3.1.2) and TC organisation
agent component (see Sec. 3.2.3), is abandoned here in favour of a complete consideration of the
architecture and workflows of the TC decision-making within an agent.

The design of the TC organisation agent component Compy~ is based on states, as defined in
the well-known behavioural design pattern State Pattern (cf. e.g. [216]). Here, a state encapsulates
all TC-related agent behaviours, esp. the execution of the TC strategies, required by an agent in a
certain situation. The TC organisation component is always in a current state and is invoked period-
ically. An invocation executes the workflow defined in the state. Based on the actions and decisions
within the workflow, the state is either maintained, or the transition to a next state is performed.

A state-based agent component Comp7 -, has several advantages: Firstly, it allows for a clean
encapsulation of agent behaviours that are exchangeable at runtime. This supports the concept of
the Observer/Controller-architecture in that it allows to exchange the implementation of TC strategies
based on observations of the environment. Consider for example a TCM that adapts its TC regulation
by situation-aware adaptations of TC-management strategies. Secondly, this encapsulation allows to
define a set of observables O7-, for exactly the information needed to execute the workflow within
a state. If for example an agent is unassociated, it requires different information than an agent being
the TCM of a Trusted Community.

All states that the Comp? -, can adopt are based on the separation of the decision-making re-
quired for the TC approach. The assignment to separate states is based on the association status of
agents. This status is defined as follows: Each agent in the society of the hosting system is always
either a member of a Trusted Community, or unassociated. This is represented with two according
states, the Unassociated Open-state and the TC Member-state. The Unassociated Open-state is the
initial state for agents entering the system. Here, agents process all decisions regarding association
status changes, i.e. they reason about accepting TC membership invitations, forming a TC etc. The
TC member state is entered by agents when they form a TC as initiating agent, or are granted TC
membership by a TCM. Here, all behaviours regarding interactions with other members and the TCM
are encapsulated. In addition, each TC member can be elected as manager of a TC, which requires

182



183

( Electing TCM
State
y
4 \
[ Unassoaated \‘ | Unassociated /_Nb TC Member | TC Manager \‘
\ Open State | Formlng State State \ State |

\ A N |
N /v / h 4 /
N ) Q> o

Figure B.1: States of the TC organisation agent component and their transitions. The three long-term
states are depicted in darker colour, while the transitional states are depicted in lighter colour.

a third TC Manager-state to encapsulate TCM functionality. These three states are in general main-
tained long-term by the agents that is, the agents usually do not switch between them frequently. If,
for example, being unassociated, and then becoming a TC member, an agent will usually not leave
the TC (and thus become unassociated again) for at least the amount of time it takes to make a
thorough assessment of the experienced utility.

Besides long-term states, the behaviour assignment is further refined by two additional, trans-
itional states. These states encapsulate behaviours required only for a limited amount of time:
The Unassociated Forming-state and the Electing TCM-state. The Unassociated Forming-state is
entered when an agent decided to either initiate or join the formation of a Trusted Community, and
abandoned after the formation is either successful or fails. It serves the purpose to capture beha-
viours that are solemnly related to decisions regarding the formation, like the invitation process of
potential members, negotiations between them etc. The Electing TCM-state is entered by members
of a TC whenever there is no TC Manager, thus after TC formation or when the previous TCM left the
TC. Agents leave this state after a new TCM has been elected. All valid transitions between the five
states of the TC organisation component are depicted in Fig. B.1.

In the following, the detailed, generic workflow within the Comp7-, states is presented. This
presentation starts with the long-term states and is followed by the transitional states. Workflows are
depicted with flow charts utilising the following syntax:

Start/End symbol to show the entry/exit point of the states.
State transitions are explicit via association change actions,

START thus if no change action was called, the agent will begin the
or next run at the start symbol of the current state. In case
END

of a transition, the agent will begin the next run at the start
symbol of the new state.



184 Appendix B. The Design of the TC Organisation Agent Component

Explicit association state change actions, these change
the current association state of the agent to the given asso-
ciation state.

Association state
change

Condition tests to determine the valid branch in a workflow.

Condition test

Strategy actions execute the TC strategies as depicted in
Fig. 4.1. These are the most important and configurable

building blocks of the workflow within the states. The utilisa-
tion of these strategies requires precisely defined inputs and
outputs (which are described in more detail in the following
section).

________________

i ; External actions are actions by other agents (especially a
|

| ——{TC strategy— i TCM) that influence the workflow of the executing agent.
| |

| |

|

Basic actions define management activities that are neces-
Basic action sary, but not expensive and variable, thus not configurable
like strategy actions.

Unassociated Open State

Each agent in the agent society of the hosting system starts its participation in the unassociated
state. In this state, an agent determines whether to remain unassociated or become a the member
of a TC. The workflow, depicted in Fig. B.2, starts with the execution of the potential member search
strategy in order to analyse the trust relationships of this agent towards other agents in the society.
The output of this analysis is a set of agents that are trustworthy enough to rely on them as fellow TC
members. This is followed by the execution of the association evaluation strategy. Here, the agent
decides whether to remain unassociated, initiate the formation of a new TC, follow the invitation to
join the formation of a new TC (not as initiator), or join an inviting TC as member. The last two
decisions require invitations from other agents. The according messages are hence processed in the
association evaluation strategy. If this strategy determines that the agent should follow an invitation,
this invitation is accepted, all other invitations are rejected, and the agent changes the association
state of its TC organisation component. The first two decisions are based on the analysis of the set of
trustworthy agents determined by the first strategy. If this set is auspicious, the association evaluation
strategy determines to form a new TC, leading to a change of states to the unassociated forming



185

state. If the agent trusts only few other agents and has not received any convincing invitations, it
remains unassociated and can eventually leave this state only if its environment changes, for example
if it receives an invitation.

TC Member State

The TC organisation component changes its state to the TC member state when an agent is granted
membership by a TCM or through the formation of a new TC. A Trusted Community must be managed
by a TCM, hence the first test in the workflow depicted in Fig. B.3 is whether the associated TC has
a TCM. In case this does not apply, the agent informs the other members about it and changes the
state of the TC organisation component to the transitional state of TC election. The following steps
in the workflow hence assume that there is a TCM managing the TC. The workflow is continued
by the execution of the membership evaluation strategy. Here, the benefit of the TC membership
is analysed: If the strategy determines that the agent has no utility gain in being a member, the
membership is cancelled. This action involves the notification of the TCM, which can in turn inform the
other members about the leaving agent. The agent then changes its state back to the unassociated
open state. Apart from own reasons to leave a TC, the member can also receive instructions from
its TCM to leave the TC. Such instructions arise from the regulatory reasoning of the TCM and come
into effect when the member has shown adversary behaviours, or when the TC is dissolved.

If the membership evaluation strategy determines that the agent shall remain member and the
TCM does not object, the workflow continues with the processing of updates regarding the TC com-
position. These updates contain information about new and leaving members. Subsequently, the
agent processes information about updates on roles assigned to it by the TCM. Finally, the mem-
ber agent can execute interactions based on the organisation benefit strategies and/or execute tasks
delegated to it by role assignment. This completes the workflow of a TC member.

TC Manager State

The TCM state is initiated in the TC organisation component only when an agent becomes the TC
manager of an associated TC. This status is granted by election in the according state. The TC
manager state is the last of the long-term states, in general preserved by agents over a longer period
in time. The workflow depicted in Fig. B.4 starts with the test whether it is executed for the first time
by the agent. In this case, the TCM performs initialising actions such as the information exchange
with a former TCM (which is possible only in case the former TCM is known and still online).

A usual workflow of a TCM starts with the execution of the TC observer which generates an up-
to-date situation description of the TC. The TC controller is then executed to adapt the configuration
of the TCM according to the observed situation. The most influencing reasoning in this loop regards
the decision whether the operation of the TC cannot be maintained any more. The criteria for this
condition are dependent on the exact realisation of the TC controller, however the most obvious
criterion is a minimum number of members. In case the controller determines to dissolve the TC, the
TCM first informs its members about this. This step has been referred to as external action in the TC
members state as depicted in Fig. B.3. In addition to the notification of its members, the TCM informs
the agent society about the dissolution of the TC. Finally, the TCM ends its own membership and the
TC organisation component initiates a state change to the unassociated open state.



Appendix B. The Design of the TC Organisation Agent Component

186

Jaquiaw D) 03 33els
uojeosse agueyd

(21qejiene y1)
suonelAul
ulor 71 Jayio
pue suoneyAul
uolew.o4
21030y

Suiw.oy
pajenosseun
03 33835
uoneosse agueyd

.o_nm__rs )
SuoI3eIIAUL Ulof
D1 pue suoneAul
uoijew.o}

L J3y10103faY
[

J01e[1ul wouy
UOI3B}IAUI UOIIBWIOH
21 1da20y

(onissed ‘payiaul)
uonew.oy
J1 Mau utof

uoneyAul 21 Suniaul pue

Sunsixa uior

ujor 91 3dady

Indino

Suiwiog
pajenosseun
0} 91e1S
uonelosse aguey)

(a1qeiene 1)
suoljeAul
[[CREEIEN]

(4o3enyui se 3oe)
J1 Mau wio4

uonenjens pajeosseun (31gepiene 41)
91€1S UOIRID0SSE ueway | suonexiaul
A 1le 1232y
(suonipuod

,u:o:u_z, oyum) _
opuofoy | |
juage aynuy 1 |
I I
| I
I I
I I

|
i uonoe oL "

Figure B.2: Workflow of the Unassociated Open State and composing basic actions, condition test,

strategy actions, and state change actions. The key part of the workflow is the evaluation of the

association decision as obtained from the execution of the according strategy.



187

Change association
state to
Electing TCM

Change association
state to
Unassociated Open

TRUE
TRUE

:FABE-

because of
sanction or dissolution

R R R,

End TC membership

TCM action

Figure B.3: Workflow of the TC Member State with composing actions and condition tests. Key parts
of the workflow are the check for the TCM presence, as well as the execution of TC member actions
after a check of the membership benefits.



188 Appendix B. The Design of the TC Organisation Agent Component

In the usual case, the TC can maintain its operation and must be managed by the TCM. The
decision-making for this is divided into two subsequent blocks in the workflow: First, the current TC
memberships are managed. Here, the TCM applies the member control, as well as role-assignment
strategies. The purpose of this execution is to detect and sanction undesired member behaviour, to
(re-)assign management roles to members, to process messages about agents leaving the TC, and
finally to inform the members about this. The second block regards non-members and is constituted
by the execution of the active TC expansion strategy to recruit new members from the TC, and related
actions (invitation with and without conditions). Consequently, invitation answers are processed, and
in case of positive response, the unassociated senders are made members by the TCM. Finally, a
TCM is always also a TC member, hence it additionally executes (parts of) the TC member state,
most importantly interactions based on the organisation benefit strategies. This concludes the TCM
state workflow.

Unassociated Forming State

The unassociated forming state is a transitional state which in entered by the TC organisation com-
ponent when an agent in the unassociated open state decides to initiate the formation of a new TC,
or join such a formation when invited. The relevant workflow, as depicted in Fig. B.6, is divided ac-
cording to these two cases. If the agent in this state is the initiator of the formation, it starts the
execution with a check whether it has already sent invitations to the potential members. If this is the
case, the initiator executes the initiation strategy with the invitations answers as input. The strategy
determines whether the accepting agents constitute a suitable TC composition, in which case the
initiator informs the other agents about the successful formation, advertises the new TC in the agent
society and changes the state of its component to the TC member state. Otherwise, the formation is a
failure and the initiator likewise informs the other agents accordingly and changes its state back to the
unassociated open state. Agents not initiating, but joining a TC formation have already informed the
initiator about the accepted formation invitation (this triggers the transition to this state as depicted in
Fig. B.2). They hence remain in this state checking whether the initiator of the formation has decided
about the success of the formation. Finally, the processing of the decision allows to change the state
to either TC member state (formation success) or to unassociated open state (formation failure).

Electing TCM State

Finally, the last state of the TC organisation is the transitional Electing TCM state. It is triggered by
TC members upon detection of the absence of an (online) TCM in the TC, as depicted in Fig. B.3.
The workflow of this state, depicted in Fig. B.6, starts with the check if all other members of the
associated TC are already in the election state. This is necessary, as in general the election of a
TCM may require some amount of synchronisation between the electing agents and the time the
agents become aware of the necessity to elect a TCM varies. The workflow is hence postponed
until all members are in this state. If all agents entered the state, the election is undecided and the
distributed leader election strategy is executed for the first time. Normally, such a strategy operates in
rounds and the execution ends with either of the three results: election undecided, election decided
(not elected as leader), and election decided (elected as leader). In case one of the latter results is
obtained from the strategy, the state is changed to either TC member state, or to TCM state (with



189

TCM initi
(including

1formation «

with former TCM

Regulatory action
necessary

No regulatory
action necessary

Assign roles

member

No suited
non-members
found

Inform member ‘

Invite non-member
join T(

Change association
state to

bout invitatior Unassociated Open

Inform non-member
condition:

TC Member
actions

Figure B.4: Workflow of the TC Manager State, and composing actions and condition tests. The
key parts are the execution of the TCM O/C-loop, the separate assessment of TC members and
unassociated agents, and the execution of the TC members state.



190 Appendix B. The Design of the TC Organisation Agent Component

Unassociated Open

Change association
state to

Change association
state to
TC Member

TRUE
‘FALSE-
TRUE

TRUE
Change association
state to
TC Member

FALSE‘

Unassociated Open

Change association
state to

-FALSE‘

Figure B.5: Workflow of the Unassociated Forming State, and composing actions and condition
tests. The workflow is divided into two main parts for the separate execution by the initiator of the
formation and agents that joined the formation.



191

prior information of the other electing agents about the result) with the next execution of the workflow.
If the result is undecided, the execution of the strategy is performed for another round and the state
is not left.

Discussion and Summary

The visualisation of the workflows makes the following implicit assumptions for the sake of compre-
hensibility:

The execution of the workflows within the states is performed periodically. In Sec. 5.1.2, it is
formalised that the notion of time is understood as a discrete sequence of time steps t throughout
this thesis. The execution frequency is hence defined in terms of these time steps with the general
assumption that the states are executed in each time step t. Such a periodic execution is indeed
not required for each of the actions within the workflow. Consider for example the workflow of an
unassociated agent (as depicted in Fig. B.2) that executes the potential members strategy in order
to determine whether it has strong trust relationships in the agent society. The environment in which
the agents act is not assumed to change so fast that this action is required in each time step. On
the other hand, other actions, such as the check whether an important message has been received,
may very well require such frequent executions. As such, the presented workflows are simplified
with respect to the representation of time. It is rather implicitly assumed that the TC strategies apply
their own execution constraints. An exemplary constraint is the frequency with which the associated
evaluation strategy (see Fig. B.2) is allowed to determine the formation of a new TC as initiator. This
is usually dependent on past unsuccessful attempts to form a new TC instead of being executed in
each time step without consideration of the overhead such a formation involves.

Apart from the lack of a temporal representation, the workflows are further simplified in that they
do not depict the application of timeouts required due to the open nature of the system. This applica-
tion of timeouts can be best exemplified with the following case: An agent initiating the formation of a
new TC, can get locked in the execution of the according workflow (as depicted in Fig. B.5), if it relies
on the fact that each agent it has sent a formation join invitation will eventually answer this invitation.
Agents not interested in the formation of a new TC, have no incentive to answer such messages,
as they do not have any direct influence on their utility from this. Also an invited agent can have
left the system in the meantime. The initiator is hence forced to apply a timeout mechanism for the
processing of invitation answers, to assume all unanswered requests as rejected, and to continue
with the workflow after the timeout.

Finally, the TC organisation component Comp%~ is always in either of the described states and
all decision-making, required to allow for the TC application in a hosting system, is contained in the
workflows of the states. This allows to complete the specification of the set of required interactions
Cfco = {c1,...ci} for this component. An agent x must utilise an implementation A’T"ijol that allows
other agents to interact with x according to the following interaction interfaces:

e ctO: Receive TC join invitation (unassociated open state)
e c5O: Receive join TC formation invitation (unassociated open state)

. c1UF : Receive TC formation join invitation answers (unassociated forming state)



192 Appendix B. The Design of the TC Organisation Agent Component

Change association
state to
TC Manager

FALSE
state to
TC Member

Change association

TRUE
FALSE

Figure B.6: Workflow of the Electing TCM State, and composing actions and condition tests. The
workflow is executed as long as the election is decided, with the discrimination of the two results
not-TCM and TCM.



193

. clle : Receive TC formation success/failure information (unassociated forming state)

. cflVI: Receive TC join invitation answer (TCM state)

cé"‘: Receive TC composition update (TC member state)
° cé/f: Receive TC exclusion information (sanction or dissolution) from TCM (TC member state)

M

cy": Receive role-assignment instruction from TCM (TC member state)

) cf: Receive TCM election information (sanction or dissolution) from TCM (electing TCM state)
e cI“M: Receive TC membership cancellation information (TCM state)

o cJ“M: Receive TC join invitation answer (TCM state)

. cf‘: Receive advertisements for the formation/dissolution of a TC (all states)

. c2 Receive information request about association state (all states)

The last interactions c allow agents to perceive other agents in the agent society as (fellow) TC
members, TCM, unassociated agent etc. and to remain up-to-date about the operation of TCs in the
hosting system. The complete set of interactions for C5 is then:

. UOUOUFUFMMMMETCMTCMAA
Cico €T —{ B A o ey o i es e cl,c2}

U {ciw, ,Clgpt} U {cioop,..,c;."f} U {Cllnf, ,ci{”f}

with the latter sets denoting interactions defined by the organisation benefit strategies as described
in Sec. 4.3.

Additionally, the operations defined in Sec. 4.2 are encapsulated in the following actions of an
agent x within the workflows of the states:

(B.1)

e The action Advertise TC in the unassociated forming state of a formation initiator x € F ex-
ecutes the operation O(t) <7 TC;(t) to form a TC with the group of agents F.

e The action Advertise TC dissolution in the TC manager state of a TCM x executes the operation
O(t)>* TC;(t) to dissolve a TC.

e The action Cancel membership in the TC member state of an agent x executes the operation
TC;(t) &* x to end its own membership.

e The action Make agents TC members in the TCM state of agent x executes the operation
TC;(t) ®&* y to include agents y as TC members.

e The action Sanction members in the TCM state of an agent x executes the operation TC;(t) &*
y to end the membership of an agent y.

e The action Assign roles to TC members in the TCM state of an agent x executes the operation
r ~»* y to assign a management role to an agent y.



194 Appendix B. The Design of the TC Organisation Agent Component

The set of observables O7-, € ©®* required by the component Compt.- is composed of in-
formation required as input for the strategies that are embedded within the workflows. Consider for
example the definition of the basic Membership Evaluation strategy in Sec. 4.6.4: The according
function requires the information U*(¢) and U*(¢,), being the current utility and the utility at the time
of TC association. The observation model must hence contain observables that provide the current
information, whenever the agent executes the strategy. Consequently, the utilisation of TC strategy
implementations determines the set of observables for this component. Due to the runtime adapta-
tions, this set is time-dependent. For detailed information about this input data see the description of
strategies presented in Sec. 4.6.



C | Threat Model For Open Desktop Grids

Sec. 5.1.4 of this thesis has introduced the detailed process of work unit scheduling in the TDG,
and in particular the application of Trust Management to reduce the impact of adversary worker be-
haviour on submitter agents. This behaviour has been so far limited to disturbances in the processing
of work units, as seen from the view of a submitter. However, the openness of the system, along with
the autonomy of agents, allow for more types of undesirable behaviour. In the following, possible
adversary behaviours in the Trusted Desktop Grid are classified with a threat model. This allows
to define the responsibility of the Trust Management system in the TDG and shows what types of
security means have to be assumed as given, in order to guarantee a robust system.

The application of Trust Management to technical systems has been pursued with growing pop-
ularity in recent decades, especially with the advent of the Internet as a world-wide open distributed
system. TM can be applied to mitigate many types of threats in ODS, as well as threats specific for
Desktop Grid Systems (cf. e.g. [83]). However, Open Desktop Grid systems based on autonomous
agents are a rather new approach and not many TM systems are specifically tied to this system class.
As such, a threat model is presented here, classifying threats that can be countered by TM in such
a system, as well as threats that cannot be countered by these means. In this, the argumentation in
e.g. [20] is followed, i.e. trust and security are two conceptually different notions, and a TM system
cannot be expected to work if there is no underlying security system. This is also valid if security is
understood as facet of trust (cf. e.g. [217], [3]). This is shown with the examination of security threats
that can lead to system exploitation or damage despite a working TM system. On the other hand, as-
suming there is a proper security system, a system can nonetheless be exploited or damaged if there
is no, or only an improperly configured TM system. For this reason, threats to the system participants
that have to be targeted by such a TM system are additionally examined.

As presented in the previous section, the Trust Management in the TDG is applied to influence the
submitter and worker decisions. As such, the most obvious threats to be countered here are those
that negatively influence these decisions if not detected. Take for example an agent that does not
return valid WU results - if this is not considered by the submitter component, then the performance of
the WU owner will decrease. However, as the agents have information about this TM system, it can be
used to the opposite effect, for example by manipulation of the own reputation. As the other agents’
worker decisions are based on the reputation of a submitter requesting a WU processing, a manip-
ulated reputation would lead to undetected advantages of adversary agents. In the following threat
list, indirect threats, realised by the manipulation of the Trust Management system, are also included
where such a manipulation would circumvention the application of this system. While other authors in
the literature provide elaborate analysis of generic methods of such manipulation (cf. e.g. [72], [218]),

195



196 Appendix C. Threat Model For Open Desktop Grids

the model presented here is restricted to those manipulations that induce a direct advantage in the
TDG. As discussed in Sec. 2.5.2, the application of Trust Management to counter adversary actions
in Desktop Grid Systems is an active field of research. Examples of threats mentioned in the threat
model that were also seen as challenging in the research community are the presence of freeriders
(cf. e.g. [84], [63], [177]) or the presence of agents that return invalid WU results (cf. e.g. [83], [204]).
As for the modelling of the security threats, the well-known STRIDE approach is related here (cf.
[219]). In this, security threats are characterised according to the categories depicted in Tab. C.1.

S Spoofing Attackers pretend to be someone (or something) else.

T Tampering Attackers change data in transit or at rest.

R Repudiation Attackers perform actions that cannot be traced back to them.
I Information disclosure  Attackers steal data in transit or at rest.

D Denial of service Attackers interrupt a system’s legitimate operation.

E Elevation of privilege Attackers perform actions they are not authorized to perform.

Table C.1: The STRIDE threat classification, taken from [219]

The following threat model is based on the definition of the function scope of the two concepts
trust and security, stating which class of threats is countered by which part of the system. Firstly, the
threats are grouped according to the capabilities the attacking entity owns:

e Inside threats are executed with capabilities an agent in the system owns. In the context of
the TDG, this refers to the agent components an agent has according to the model presented
indSecl. 5.1.4. Such aLr; adlversary agent utilises custom versions AL, # AZ%””,A{NORK £
Avsfgll{[(t,AJWORK £ ATEACI"“ of the submitter and worker components that encode malevolent

behaviours. This is possible due to the openness of the system. Consequently, attackers here

are agents that represent their users in the system.

e Outside threats are executed with capabilities that are beyond those of elements of the system
(STRIDE model) and usually require additional software to be performed. Attackers here do
not necessarily own an agent participating in the system.

Secondly, the attackers are grouped according to their objectives:

e System exploitation is the objective to gain advantages from the system for the own benefit
(performance) without contributing accordingly.

e System damage represents a class of objectives that do not aim at improving the performance,
but range from the aim to damage the operation of the system or elements of the system to
specific aims like stealing a certain password.

Note that threats that appear as attacks although the “attacker” has no respective objective are
not considered here. This is for example the case when faulty hardware is involved and hence
communication affected. The threats listed here are classified with respect to the capabilities and
objectives of the attacker as depicted in Tab. C.2.

In this model, the focus is on threats in the TDG system. Additionally, the STRIDE classification
for outside threats is provided. In the following, threats comprising the classes are listed in Tab. C.3.



197

System exploitation System damage

Inside threat Class 1 | Class2

Outside threat Class 3 ‘ Class 4

Table C.2: Threat classification

Class

Threat

Target

STRIDE

Class 1

Class 2

Class 3

Refuse to process WUs for other clients (freeriding)

Do not return WU results despite accepting WU processing
request (hidden freeriding)

Delegate accepted WUs to other workers, acting as owner
(hidden freeriding)

Provide false private information (performance level, work load)
to avoid WU processing requests

Submit false positive trust ratings (collusion to improve submitter
success)

Cancel the processing of accepted WUs

Return false WU results

Execute DoS-attack via WU replication and submission

Join other clients to execute a distributed DoS-attack (collusion)
Execute DoS-attack or slow-down with fake WUs

Execute DoS-attack via excessive messaging

Distribute malware via WUs (or results)

Submit WUs with unrealistic processing requirements (to
legitimate negative trust ratings and improve submitter success)
Submit false negative trust ratings (discrediting attack to improve
submitter success)

Manipulate reputation system to improve own or deteriorate rival
reputation (improve submitter success)

Sybil attack: Change own identity to appear as new client (with
no reputation history)

Manipulate other clients’ processing queues to place (or
prioritize) own WUs

Manipulate direct experience history of interaction partners to
hide misbehaviour and/or appear trustworthy

w 0 nu O O

S/C
S/C

S/C



198 Appendix C. Threat Model For Open Desktop Grids

Class Threat Target STRIDE

Manipulate messages with negative trust ratings to avoid being - T
detected as misconducting client

Appear as client with high reputation (impersonation) - S
Manipulate messages, WU results or information of other clients - T
to damage their reputation (relative improvement of own

reputation)

Manipulate messages from other submitting clients to keep - T

preferred worker clients from having a high workload

Class 4 Manipulate reputation system (e.g. by rendering all clients S E,T
untrustworthy)
Generate fake rating messages or manipulate existing messages S/C T

Execute a man in the middle attack to access WU results ordata C I

Execute DoS-attack to damage the communication between S/C D
clients
Generate Class 2 clients (bots) and control them S/C R

Table C.3: Threats in the Trusted Desktop Grid, classified according to Tab. C.2, STRIDE and target
(S)ystem or (C)lient

In the following, the control approach in the TDG regarding these threats is discussed: In the
TDG, an underlying security sub-system is assumed that prevents all outside threats (class 3 and 4).
This assumption allowed to focus the research in the TDG on the application of trust-based MAS- and
OC-technology, while disregarding the well-documented research approaches to the security of such
systems (e.g. distributed cryptographic authentication to prevent Sybil attacks). As for the threats of
exploiting or damaging the operation of the system from within (class 1 and 2), the agent behaviours
behind these threats are either detectable by single agents (e.g. the return of no or false WU results
can be detected by the WU owner), or only detected cooperatively (e.g. delegation of WUs to other
workers requires dedicated communication among workers to be detected.). This is due to the lack
of central control in such a system.

Agents utilise Trust Management to detect agents that show such behaviours, but only if it would
be their disadvantage not to do so. Here, the self-interested and autonomous nature of the agents
generates no motivation to punish these adversary agents, if there is no perceivable drawback from
their behaviour (sometimes also referred to as second order free-riding, cf. e.g. [189]). It is hence
the degree to which this ability of strategic hindsight and perception exists in the agents that decides
whether such selfish and exploiting behaviours by adversary agents can be successful in the system.



D | Performance and Robustness Metrics For
Open Desktop Grids

The research and evaluation of Desktop Grid Systems mostly aims at improving the performance
and robustness of these systems. In this thesis, the application of Trusted Communities is proposed
for this aim. In the following, it is defined under which criteria this improvement has been evaluated.

It is especially interesting in the context of volunteer-based systems how much participants benefit
from the performance of the system (cf. e.g. [204]). This involves to consider the influence of the
openness of the system on the performance. This is discussed in detail in the following section on
performance metrics.

Additionally, the openness also introduces the threat of undesired system states. Therefore, also
metrics are needed to measure the systems’ robustness against these kind of threats. These metrics
are discussed in the final part of this section.

D.1 Performance Metrics

For this thesis, a research literature survey on performance metrics for DG and similar systems
has been conducted, based on the previous TDG classification and scheduling problem definition
presentedin Sec. 5.1.1. A set of relevant metrics from different system views has then been identified,
as depicted in Fig. D.1. The metrics discussed here have been chosen because of their widespread
use in the research community. Other, less frequently used metrics have been neglected here. The
requirement for a relevant metric was that it had to be evaluable by a single host. This is because
of the distributed nature of the considered system and the self-interest of the participating hosts. In
the following, each of these metrics is defined, referenced and discussed. In that, the formalisation
defined in Sec. 5.1.2 is used.

D.1.1 Theoretic Scheduling Problems

The performance of a distributed computing system is mainly determined by the performance of the
contained scheduling sub-system. Consider for example the life-cycle of a work unit as depicted in
Fig. 5.4: When an unreliable host is chosen for the execution of the work unit, the time waited during
the processing of the WU is wasted and another attempt has to be started to process the work unit.
This increases the time the owner of the work unit has to wait for its completion and reduces the
benefit of participating in the Desktop Grid System.

199



200 Appendix D. Performance and Robustness Metrics For Open Desktop Grids

Makespan
Theoretic
scheduling Completion time
‘ problems ‘
Flow time
Distributed
_— T
s hroughput
[ J
Turnaroundtime
Desktop Grid plass
| Systems | Speedup
Scheduling success rate
Open Accuracy
Desktop Grid <
Systems ‘ Number of collaborators

Figure D.1: Overview of relevant TDG performance metrics for distributed systems. The metrics are
grouped according to application domains in the literature.

Formally, a scheduling sub-system, which is referred to as scheduler from here on, solves the
problem of scheduling n atomic pieces of work, called jobs' for the execution on m machines, such
that a given performance criterion is optimised (cf. e.g. [220]). Note that the origin of the jobs (owner),
as well as migration and validation are neglected. This theoretic scheduling problem has been studied
for at least 50 years, with ever increasing interest since the advent of affordable distributed computing
systems. The basic version of this problem is usually refined by further specifying some properties:
The processing speed of the machines is defined as either equal for all machines and jobs, for all
jobs only, or as being truly depended on the combination of job and executing machine - respectively
this is referred to as either Identical (P), Uniform (Q) or Unrelated (R) machines. For the purpose of
transferring this to the modelling of a Desktop Grid System, from here on only unrelated machines
are considered, as machines in Desktop Grids are heterogeneous in terms of processing capabilities.
Further differentiation is made with respect to offline (static) scheduling, if all information about jobs
is known to the scheduler at the start of the scheduling process (release times of all jobs are t = 0),
or (clairvoyant) online scheduling, when information about jobs becomes available only at the release
times of the jobs (not necessarily at t = 0). Many other variations of the problem exist (cf. [220],
[203]), regarding aspects like the quality of the information that becomes available (online vs. semi-
online, clairvoyant vs. non-clairvoyant), restrictions on the set of machines allowed to process a
job (machine eligibility constraints) or preemptiness options (checkpointing allowed or not-allowed,
restart-preemption).

Common to all variations is the formulation of one or more performance metrics under which an
optimal solution to the problem is searched. Obviously, because of the global scope with anonymous
and atomic jobs, this cannot be directly applied to the previous problem definition. Therefore, the fol-
lowing addition is made: For the purpose of conformity, jobs, as in theoretic scheduling problems, are

"Note here, that previously jobs were referred to as Bags-of-tasks, while this definition of job equals the previous definition of
work units.



D.1. Performance Metrics 201

equated with and referred to, as work units (as in BoT-applications). In doing so, owners of the work
units, as well as their assignment to jobs are not regarded. Most importantly, the local scheduling at
the owner is substituted with a central scheduling of all work units for these considerations. In the
following, the most important performance metrics in theoretic scheduling problems are introduced:

Makespan is defined as the point in time where all work units from a finite set {7, o, ..., Tu}
provided to the central scheduler, are completely processed, hence:

1
makespan = max(tifmpl,t%)ml’ Ve t%‘:mpl) (D.1)

This metric is especially useful to evaluate the ability of a scheduler to completely carry out the
scheduling of a set of work units released at the same time, by applying resource and work unit
prioritisation. The performance of the scheduler can then be contrasted with an optimal (minimal)
makespan. Makespan is a very common performance metric, used for example in [220], [203] and
[206]. In the context of Desktop Grid Systems, sometimes other metrics are denoted as makespan -
this is referred to in the according descriptions.

Completion time is the total, or average, of the single completion times of the work units. It is
hence defined as follows for a set {7, 1, ..., T, } of work units:

n
total completion time = Z t%ampl (D.2)
i=1
n
!
3 tc?mp
P = | K
average completion time = — (D.3)

By minimising the completion time, a scheduler can be evaluated with respect to fair task allocation
(average completion time) or efficient task allocation (total completion time). Note that the completion
time is not set in relation to the release time of the tasks. The completion time is for example regarded
in [220], [203], [221] and [79].

Flow time is a measure to relate the completion times of tasks to their release times and thus
provide an estimate of their residing time in the scheduling system. Again, flow time can be meas-
ured as total or average for a set {1, ., ..., 7w} of work units and their respective release times
{#t, ..., 61}, such that:

n
total flow time =) ti?mp[ - t.’[fl (D.4)
i=1

C
K t_[__ —prel
i 1

1
T (D.5)

n
average flow time = =

The use of flow time metrics is for example discussed in [220] and [203].



202 Appendix D. Performance and Robustness Metrics For Open Desktop Grids

D.1.2 Distributed Systems

The class of Desktop Grid systems referred here are distributed systems. As such, metrics from this
domain can also be applied in this context. However, most of these metrics are already in use in
Desktop Grid systems, often in a specialised definition and under a different name. See for example
the discussion of the turnaround time, which is a rephrase of the more generic metric response time.

Throughput The throughput in a distributed system is the amount of successfully processed mes-
sages or tasks in a given time interval. For DG systems, this usually refers to the amount of work
units that are completely processed in a time interval (cf. e.g. [222]), and accordingly, these systems
are described as platform for high-throughput applications (cf. e.g. [174]). The following definition is
applied in this thesis:

number of completed work units T;

throughput (tstart, teng) = (D.6)

tend — Estart
with:

. o !
7; completed in the time interval when tsgay < £ and t7"" <ty

Note that the length of the time interval will usually be in minutes or hours (cf. e.g. [223]). As
opposed to previously discussed metrics, the maximum of this metric is the optimum. Throughput-
based Desktop Grid evaluations are described in cf. e.g. [223], [207] and [222].

D.1.3 Desktop Grid Systems

In DG systems, metrics from the domain of theoretic scheduling problems are often applied, however
redefined to reflect the view of single hosts with decentralised scheduling and self-interested goals.
As the evaluation scenario is from the DG systems domain, the following metrics are the most relevant
for the evaluation.

Turnaround time The turnaround time denotes the time interval from the release of a work unit ¢,
until the work unit is completed. It is therefore defined as:

turnaroundtime(T;) = t%)mpl — t;‘fl (D.7)

As such, the turnaround time is the sum of all intervals of the WU life-cycle presented in Fig. 5.4,
however not providing information about where a possible delay occurred (e.g. high waiting duration
vs. high processing duration). Again, turnaroundtime can be measured as average (locally over all
WUs 7% of an owner a or globally over all WUs in the system), or as local or global total. Turnaround
time is a very common metric for Desktop Grid Systems, its application for the evaluation of e.g.
scheduling approaches is described in [80], [206], [224], [225].

Turnaround time is also sometimes referred to as makespan (cf. e.g. [206]) in the context of DG
Systems, however the scope is on single work units, not the global set of jobs as described by the
makespan-metric in theoretic scheduling problems. Additionally, turnaround time can be regarded as
response time of the system, when taking the scope of single work units as reference tasks.



D.1. Performance Metrics 203

Waste In an open DG system, workers can fail the successful processing of work units, due to
errors or the withdrawal of donated resources. On the submitter side, this means that the time begin-
ning with the distribution of the respective WUs to the unreliable worker to the time the notification of
the processing failure was received, is wasted. In reference to the WU life-cycle presented in Fig. 5.4,
each round except the final round leading to a valid work unit result is comprised of waste. Obviously,
a high waste amount constitutes a long turnaround time. Waste is therefore a good indicator metric
to analyse the reasons for unsatisfying turnaround times. In this thesis, the waste metric is defined
as follows: For a work unit ;, that was completed in r rounds, let tifgi"’ denote the begin of round r
(re-scheduling of the WU). Then the amount of waste in the turnaround time of 7; is:
t_bl_["gi"r _ t}_z_fl

(D.8)

te(t;) = :
waste(Ti) turnaroundtime(t;)

with:

el < s < gt

A host can locally compute the average waste for its work units and indicate the schedulers’
ability to avoid delegation to unreliable workers. Globally, the average waste over all work units can
be computed, indicating the impact and amount of unreliable workers in the system. Apart from
indicating performance issues due to suboptimal worker choice, waste is also applied when work
unit replication is involved (see definition of accuracy below). Here, the processing of replica is also
counted as waste (cf. e.g. [226]) in order to evaluate the efficiency of validation mechanisms. Waste
is applied as performance metric for example in [200], [227] and [226].

Speedup Speedup is a metric known from distributed and multicore systems where parallelisation
can be applied to process tasks faster than on single machines/cores. In DG computing, the speedup
is usually measured for jobs composed of atomic WUs 2. In this thesis, the speedup for a job ¢}
containing |¢?| = n WUs of an owner 4 is defined as:

speedup(¢?) = summed estimated owner turnaround time
peedup($i) = max real turnaround time

Y turnaroundtimeswner (T;) (D.9)
TEP?

max {turnuroundtime(ﬁ ), -, turnaroundtime(Tjg ) }

with turnaroundtime,ner(T;) being the a posteriori estimate of the turnaroundtime the owner
would have achieved, had it processed the work unit 7; on its own. The following assumptions re-
garding this time are made in this thesis:

e The owner is processing its own WUs from the respective job exclusively, that is, other jobs
(own or from other hosts) do not interfere with the processing.

e The processing is not interrupted, thus no waste is generated.

2Sometimes the speedup is also measured for single WUs, here no parallelisation is utilised, but the serial processing speed
of the job owner is compared with the speed of a chosen worker.



204 Appendix D. Performance and Robustness Metrics For Open Desktop Grids

e The available resources delimiting the processing time are exactly known, as this is calculated
a posteriori.

These assumptions result in a strict definition of the owner turnaroundtime that is lower than it might
be in a non-idealised environment (if for example several jobs are being submitted at the same time).
This means that the speedup measure applied here is a worst case measure, and that the speedup
is in general lower than it could be expected to be in a real environment.

Speedup is an important metric in DG computing as it puts the raw performance of job processing
in the system in relation to the relative speed of the owning host. In this, also the benefit of the system
participation is expressed. Speedup is a common metric in the literature, for example applied in [204],
[222] and [207].

Scheduling success rate In the literature, the (scheduling) success rate is most commonly re-
ferred to as the rate of work units that were scheduled to workers that processed them correctly and
in time, as opposed to being scheduled to workers that generate waste. Additionally, a successful
scheduling is sometimes attested only in case of the first chosen worker being the one to produce a
correct result in time, hence penalising rescheduling (cf. e.g. [206]). In case of an unexpectedly large
turnaroundtime, the scheduling success can be a strong indicator where the delay stems from. This
is especially valid for Open Desktop Grid Systems, where workers that behave adversely (and thus
generate waste) are to avoid when scheduling. The scheduling success rate is defined with reference
to Fig. 5.4:

total number WUs with processing in 1 round

scheduling success rate = - —
g total number WUs with processing in r>1 rounds

(D.10)

, where total can be understood as local total or global total. This makes the scheduling success rate
suited for the assessment of a local scheduling strategy by a host. The metric is for example used for
evaluations in [221], [228] and [206].

D.1.4 Open Desktop Grid Systems

Open DG systems introduce challenges encountered in general Open Distributed Systems to the
domain of DG systems. As such, a number of additional metrics have been applied in the literature
to verify approaches countering these challenges.

Accuracy Open Desktop Grid systems are based on the processing of Work Units by volunteers.
This processing can lead to invalid results, due to faulty hardware, network infrastructure or adversary
behaviour (also referred to as sabotage in this context, cf. e.g. [176]). Often WU results cannot be
validated without reprocessing them entirely, in which case replication and then following majority
voting are applied to disseminate correct from invalid results (cf. e.g. [175]). Evidently, majority voting
is a frail validation approach: In case of colluding workers, an incorrect result can achieve a majority
and be accepted by the submitter (cf. e.g. [179]). The metric accuracy is hence applied to verify the
performance of validation approaches like spot-checking (cf. e.g. [176]) by measuring the amount of
wrongly accepted WU results. The metric can be expressed as follows:

number rightly accepted WU results

ACCUTACY = total number accepted WU results

(D.11)



D.2. Robustness Metrics 205

Obviously, accuracy can only be observed theoretically by the designer of a validation approach, and
hence not estimated by participating hosts. Accuracy is also referred to as error rate in the literature
(cf. e.g. [175]).

Number of collaborators In Open Systems as the TDG, the participants are free to chose their
cooperation strategy. However, these systems are often designed such that there are incentives to
collaborate as opposed to exploiting the system without providing compensation (freeriding). In such
systems, the metric number of collaborators, also referred to as number of contributors, can be used
to measure the success of the incentive mechanisms. The metric can be defined as follows:

numbero fcollaborators(t) = total number system participants — number freeriders (D.12)

Note that this metric depends on a reliable identification of freeriders and is thus, similar to the metric
accuracy, not applicable by single hosts. This metric is for example used in [84], [177] and [229]. This
metric is additionally related to the faulty fraction metric defined in [175] measuring the amount of
hosts that produce invalid WU results on purpose, in comparison with cooperative hosts.

D.2 Robustness Metrics

Robustness is a fundamental property of complex systems (cf. e.g. [132]), observed in systems from
biological, psychological and technical (among others) domains. Though the exact definition of ro-
bustness varies in the literature, it is commonly agreed that robustness is the ability of a system
to maintain a stable or high-performance state, or recover to such a state, in the event of specific
disturbances in the system (cf. e.g. [135], [230]). High-performance refers to system features or char-
acteristics that must be present in such a state and be quantifiable, e.g. by a performance metric
(cf. e.g. [231]). To maintain or recover to such a state means thus, to preserve or recover a system
characteristic despite disturbances (cf. e.g. [121]). System characteristics related to the work presen-
ted are for example to protect the operation of the Trust Management system, such that it cannot be
manipulated (cf. e.g. [98], [72]), or to guarantee a certain performance (measured in e.g. makespan,
see above) when submitting jobs to workers in a Distributed Computing System (cf. e.g. [231], [232]).

In this thesis, the robustness for the evaluation scenario Trusted Desktop Grid is defined as fol-
lows:

e The system characteristic that is to preserve is the global average of one of the performance
metrics as defined in the previous section (e.g. speedup). It is denoted as A(t).

e The perturbations under which A(t) is to preserve are defined via a threat model (see appendix
C). These perturbations 4;, , have an intensity i and an activation time t,.;. To preserve A(t)
means thus to ensure that A(#) does not collapse for t > t,.;. Note that it is assumed here, that
once activated, a perturbation remains active, i.e. if the system does not provide any means to
detect and neutralise the disturbance, it will have a constant influence on the system perform-
ance A(t). A set of disturbances D; is further defined to denote the variety in intensities for a
given perturbation.

e Finally, the robustness of the system is quantified as the function r,,,(A, Ds): This function ex-
presses the systems’ ability to preserve the system characteristic A against various intensities



206 Appendix D. Performance and Robustness Metrics For Open Desktop Grids

of the perturbation é. In that, m denotes a specific robustness metric, thus a metric to measure
whether the system is within an accepted state.

Consider the example depicted in Fig. D.2: Here, the system characteristic to preserve, A(t),
is the average speedup for the last job among the system participants. The time ¢, marks the

25 Host performance 25 Host performance
Host performance without attack estimated absolute recovery costs =
absolute recovery costs mm— recovery reserve
recovery reserve

20 attack recovery end 20 attack recovery end
o =
k- A, J'v\ )»/\ S My AWPA
b | A po | |
1| W o A 5y el
= sl / BT e e v A /d '
5 f \ 5 15 o \
s | W s | il
S El /
g | |
a | =3 |
7] | I7%) |
@ @
P o
o o
= =
LS ’ < ; Sir

5 f min recovery speedup 5 [l min recovery speedup

|
0 ol
tattack tena tattack tena
Time Time

Figure D.2: Robustness example: Speedup collapse and recovery due to attack. The left figure
shows an example where the reference performance without perturbation can be determined, while
the right figure depicts an interpolated performance.

activation of a perturbation ¢, ,, here the arrival of a group of colluding freeriders in the system. The
intensity 7 of this collusion attack is the fraction of freeriders of the total number of system participants.
Here, the evaluation focuses on the impact of this perturbation. In the progression of the example, the
speedup drops due to the attack and recovers after a certain amount of time. To evaluate the general
robustness r, (A, Dy) of this system against this type of attack, it is necessary to evaluate the system
with a set D; of various attack intensities, as well as robustness metrics m. For the evaluations in this
thesis, the following robustness metrics, referring to Fig. D.2, are applied:

Recovery duration After the activation of J;; , at t,,ck, @ robust system will eventually recover
from the attack. The recovery duration is hence the time to reach a value for A(t) that is accept-
able (formalised by facc - A(t)) and maintain it stable for a time interval (formalised as tg,). This
requirement to the recovery is expressed as the following function:

1, if tend 2 tact/\
a(/\(tend)')\(tﬂd)/fﬂcc/ tStﬂ) = Vit € {tEHd/--/ tena + tstu} : )‘(ti) > facc : /\(tuct) (D-13)
0, else

The recovery duration is then based on the existence of a time ¢,,; at which the system recovered
from the disturbance:

tond — tact, F3E ca(A(t S A (tact), ,t =1
recoverydumtion _ end act end ( ( end) ( uct) facc stu) (D.14)

undefined, else



D.2. Robustness Metrics 207

In the example above, f4 is 1, that is the speedup has to reach the value from before the attack in
order to constitute a recovery, while t¢, is setto 0, that is, the speedup has only to be reached and not
maintained. Obviously, a full recovery cannot always be expected, consider for example disturbances
that lead to a complete breakdown of a system (for example by disabling a central component in a
non-robust system). Here, [135] is referred to, in which the following understanding of robustness is
proposed: The ideal set of states for an adaptive system constitute the target space. This is where
the system is before the disturbance. When a disturbance occurs, in general the system leaves the
target space, and depending on the type and intensity of the disturbance, enters a state where the
performance is degraded:

e but recovery is possible without external control actions (acceptance space),
e and recovery is only possible with external control actions (survival space),

e and recovery is not possible at all (dead space).

The acceptance state is defined over the compliance of constraints. A typical constraint is the
threshold for allowed values of the system characteristic A(t), for example, the constraint that the
average speedup in a DG system has to be greater 1, i.e. there is a benefit in system participation.
This definition provides a way to complete the definition of the recovery duration: The end of the
recovery, constrained by f,.., can only be reached when the system is in the acceptance space, and
facc can be dimensioned by providing for facc - A(tact) being greater than the threshold for an accepted
state. Finally, this allows to define a recovery phase for systems that do not fully recover to A(#4¢)
and leave the recovery duration metric undefined only for cases in which the system did not (re-)enter
an acceptance or target space.

Collapse fraction While the recovery duration can capture how long the performance of a system
was degraded due to a disturbance, it does not measure the extent of the degradation. This is
achieved by the metric collapse fraction which relates the values of a system characteristic A(t)
during the recovery phase to the value at the begin of the disturbance. Here, the minimum value is
essential and the metric is hence defined as:

min {/\(tact + 1)/ o /\(tend)}
AMtact)

If the system did not recover, t,,,; marks the end of the evaluation interval.

(D.15)

collapsefraction =1 —

Relative recovery costs Though generally useful, the two previously defined metrics are limited
with respect to the comparison of two robustness approaches in a system: One of the approaches
could reduce the recovery duration, but have a higher performance collapse fraction (and the other
way round). Therefore, a more elaborate metric, the relative recovery costs, is introduced here: The
(absolute) costs for the recovery are the surface S,., bound by the performance values of A(¢) during
the recovery phase, and the performance without a disturbance (see Fig. D.2). The latter is either
known from reference measurements or interpolated by using the datapoints A(t,:) and A(t,,,4). The
absolute recovery costs neglect how the performance was before the attack and could thus bias the



208 Appendix D. Performance and Robustness Metrics For Open Desktop Grids

results for comparisons. As such, in this thesis the relative recovery costs are applied, defined as:

SVC

_— D.16
St 5 (D18)

recoverycosts,,; =

The relative recovery costs are bound by 0 (no recovery costs) and 1 (the system performance
completely collapsed and did not recover).

D.3 Rationale for the Utilisation of Metrics in the TDG

The system model presented in Sec. 3.1 introduced agents that control the production engine (here
the DG client) such that they achieve their users’ goals. These goals are reflected in the agent util-
ity U*(t), a function that can be evaluated by the agents (self-awareness), as well as the user of
the agent (benefit of grid participation). The self-evaluation is necessary to allow for adaptations of
the agent in the O/C-cycle, as well as for decision making in the context of TC membership. Con-
sequently, the choice of a suited metric for the utility U*(¢) of a TDG agent depends on the possibility
to locally evaluate this metric. The second aim of this analysis is to choose a metric that allows for
the measurement of a system performance: Here, abstracted from the view of single self-interested
agents, the system as such is analysed. This allows for making statements about the improvements
of Trusted Community application in such a hosting system.

The discussion on performance metrics has first referred to metrics derived from the domain of
theoretic scheduling problems. The metrics referred there are useful as they focus on a complete
consideration of the whole life-cycle (see Fig. 5.4) without breaking it down into sub-phases. This has
the advantage of definite statements about the performance of a scheduling scheme. Additionally,
these metrics have a distinct optimal value with respect to a given problem size - the set of all jobs
generated during a finite execution time. This optimum can however only be determined offline (a
posteriori), as the problem is NP-complete (cf. e.g. [221]) and of unmanageable scale for DG systems.
In addition, agent autonomy does not allow an agent to determine the exact situation in which its
submitter component has made delegation decisions, hence an offline optimisation is always biased
by the observations a particular agent has made. Optima are thus only of minor practical relevance
for the utilisation as agent utility, while also being too restrictive for the use as system metric.

The throughput metric is applied in distributed systems in general, as well as in DG systems in
particular. While this metric is suited as a system-wide performance metric, it requires a precisely
defined job generation function as benchmark. Only by relating the number and specification of
generated jobs is the throughput resulting from two different approaches comparable to each other.
Note also that the throughput is a global measurement, not evaluable by a single agent. Additionally,
the throughput of jobs/WUs is linked to their completion times in a time interval (cf. e.g. [207]). As
the completion is also covered by other metrics, the throughput is neglected as performance metric
in this thesis.

The next set of metrics discussed was from the domain of Desktop Grid systems. As expected,
these metrics are regarded as the most relevant for the evaluations in this thesis. The metric turn-
around time reflects the users’ goal to process own work as fast as possible in the grid. Also, it hides
the single phases of the work unit life-cycle (see Fig. 5.4) as it focuses only on the resulting summed



D.3. Rationale for the Utilisation of Metrics in the TDG 209

time. This metric can hence be applied by TDG agents to evaluate their submitter decision-making
and make adaptations to it based on the resulting performance. However, the summed turnaround
time is insufficient when the deviation of an expected turnaround time needs to be analysed. This is
for example the case in the distinction of an extensive waiting duration from a processing duration in
system states with a high load.

The amount of waste in the turnaround time of a work unit is particularly suited to indicate whether
a submitter component is delegating the workers with uncooperative behaviours. This is highly rel-
evant in an open system as the TDG, where agents with adversary behaviours try and disturb other
agents. The waste is hence used in the evaluations, where the isolation of such agents is involved.
In that, the waste is used in the form of an average waste over all agents and all of their work units.

Turnaround time and waste are absolute measurements of the performance received in the DG
system. These metrics are not suited to give feedback to the agent (and user) whether the deleg-
ation of work units to other agents really pay off. Consider for example an agent that has exhibited
adversary behaviour (possible because of an exploration of behavioural strategies) that has a bad
reputation value and hence spends a long time waiting for workers to accept its work units. In that
time, the agent might have processed the respective WUs by itself, depending on the processing
capabilities of its machine. Additionally, turnaround time and waste refer to single work units. The
aim of the agent is however to process a job composed of these work units as fast as possible. In
that, the turnaround time of single WUs in the job can vary substantially. Also, the ability to schedule
WUs of a single job efficiently to several workers in parallel is not determined by a WU metric as
the turnaround time. It is therefore useful for the decision-making of the agents, as well as for the
estimation of the benefit of DG participation for a user, to relate the absolute performance for an
entire job to a personal performance for that job. This is only achieved with the speedup metric. This
metric is hence regarded as the central metric for the evaluations in this thesis, being measured in
the following forms:

The system-wide performance is given as average speedup over all jobs and agents. This is used
to make statements about the benefits of the self-organisation within the whole system. Especially,
the introduction of Trusted Communities in a system is shown to raise the average speedup in the
whole system, as well as the average speedup of TC members in particular when compared to a
simulation run without TCs. Formally, this metric is defined as:

1

S(A, M, .., d%4) := <Y speedup (¢™) (D.17)
) a; U D
U @) 7
a,€A !

with:

®% being the set of all jobs that the agent a; € A generated throughout its participation time in
the system, and referring to the speedup definition presented in Eq. D.9.

On the agent level, hence for agents to estimate the performance of their decision-making with
respect to their users’ goals, the speedup of the last job of a single agent is used as utility function
U*(t). This measure is defined for an agent x as follows:

U*(t) := speedup(last(d*,t)) (D.18)



210 Appendix D. Performance and Robustness Metrics For Open Desktop Grids

with x € A and last(®*, ) being the last completed job of agent x, such that:

last(®*,t) := ¢*,Vp* € @\ {¢*} : t > completiontimeg: > completiontimeg, (D.19)

Where effects with an activation time in the system and their influence on the speedup are re-
garded, the average speedup for the last job, a time dependent form of the average speedup, is used
as a system-wide metric. Formally, this function is defined in

S(A, @M, &N L) = ‘17| Y speedup(last(¢”,t)) (D.20)
a,eA
As the speedup is used for the performance measurements in the following evaluation, the time-
dependent form of it is consequently also applied as system characteristic A(t) for the robustness
metrics, hence:
Alt) := S(A,®M,.., %, ¢t) (D.21)

The openness of the TDG allows for the evaluation of agents with adversary behaviour. As such,
the performance metrics used in open Desktop Grid Systems are highly relevant. Especially the
metric accuracy is applied for the evaluations of the self-protection abilities of the TC approach with
respect to the exploitation of the Transparent WU validation (see Sec. 5.2.1).



E | Additional Evaluation Results

11
iTC
Clan ——
Multi TC —=—

10

speedup adaptive agents (without misbehaving)

4 I I I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

simulation run

Figure E.1: Speedup comparison of the iTC, TC and Clan approaches for the undisturbed case and
non-validating DG applications. TCs formed in each experiment run and outperformed the /TC and
Clan results in each run.

211



212 Appendix E. Additional Evaluation Results

u

iTC
Clan ——
Multi TC —=—

10

speedup adaptive agents (without misbehaving)

4

4 I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

simulation run

Figure E.2: Speedup comparison of the iTC, TC and Clan approaches for the case with 20 % defect-
ing agents and non-validating DG applications. TCs formed in each experiment run and outperformed
the iTC results in each run. The difference was however smaller than in the undisturbed case. The
performance of Clans was on par with the TC performance.

1 -

iTC
Clan ——
Multi TC —=—

10 ~

speedup adaptive agents (without misbehaving)

4 I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

simulation run

Figure E.3: Speedup comparison of the /TC, TC and Clan approaches for the case with 30 % de-
fecting agents and non-validating DG applications. TCs formed in each experiment run and the
outperformed the iTC results in each run. The difference was however smaller than in the other
cases. The performance of Clans was on par with the TC performance.



213

11 -
iTC
Clan ——
Multi TC —=—

10 -

speedup adaptive agents (without misbehaving)

4 L I I 1 L I I 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

simulation run

Figure E.4: Speedup comparison of the iTC, TC and Clan approaches for the case with 20 % TM-
exploiting agents and non-validating DG applications. TCs formed in each experiment run and out-
performed the iTC and Clan results in each run.

-
iTC

Clan ——
Multi TC —=—

10 -

speedup adaptive agents (without misbehaving)

4 I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

simulation run

Figure E.5: Speedup comparison of the iTC, TC and Clan approaches for the case with 30 % TM-
exploiting agents and non-validating DG applications. TCs formed in each experiment run and out-
performed iTCs and Clans.



LEBENSLAUF - LUKAS KLEJNOWSKI

PERSONLICHE DATEN
Geboren 21. November 1981 in Piekar, Polen
Staatsangehorigkeit  Deutsch

Familienstand Verheiratet, 1 Kind

BERUFLICHER WERDEGANG

03.2009-09.2013 Wissenschaftlicher Mitarbeiter

Leibniz Zeitlich befristete Anstellung als wissenschaftlicher Mitarbeiter im Institut fiir Systems
Universitit Engineering, Fachgebiet System- und Rechnerarchitektur. Tatigkeiten: Forschung und
Hannover Entwicklung im Bereich dezentraler Kontrolle von offenen, verteilten Systemen im
Rahmen des DFG-Projektes OC-Trust (FOR 1085), sowie Lehre im Universitatsbetrieb.
http:/ /www.sra.uni-hannover.de
12.2008-02.2009 Praktikum als Java-Entwickler
SoftwareLoft Praktikum im Bereich der Java-Entwicklung. Das Praktikum umfasste die Anforde-
IT-Solutions rungsanalyse, den Entwurf, die Implementierung und Integration einer Softwarekom-
GmbH, Hamburg ponente in das bestehende System des Arbeitgebers. Auftraggeber war ein Kunde aus
dem Finanzdienstleistungsbereich.
http:/ /www.softwareloft.de/
BILDUNGSWEG
03.2009-03.2014 Promotion im Fachgebiet Informatik
Leibniz Promotion an der Universitit Hannover im Institut fiir Systems Engineering, Fachge-
Universitiit biet System- und Rechnerarchitektur. Dissertation bereits eingereicht, Priifung und
Hannover Abschluss mit Titel Dr.-Ing. am 24.02.2014.
10.2006-03.2009 Studium Master Informatik
Leibniz Studium im Studiengang Master Informatik. Abschluss mit Titel M.Sc..
Universitdt
Hannover Masterarbeit:
Design and Implementation of an Algorithm for the Distributed Detection of Disturbances in
Traffic Networks
Fachbereich System- und Rechnerarchitektur.
Priifer und Betreuer: Prof. Dr. rer. nat. . Hahner - Dr.-Ing. S. Tomforde.
10.2002-09.2006 Studium Bachelor Informatik
Leibniz Studium im Studiengang Bachelor Informatik. Abschluss mit Titel B.Sc..
Universitit
Hannover Bachelorarbeit:

Wilhelm-Raabe-
Schule
Hannover

Entwurf und Implementierung eines XForms-Interpreters fiir Java Swing

Fachbereich Software Engineering.
Priifer und Betreuer: Prof. Dr. K. Schneider - Dr.-Ing. D. Liibke.

08.1994-07.2001

Schiiler der Wilhelm-Raabe-Schule Hannover, Abschluss mit allgemeiner Hochschul-
reife (Abitur).

Schiiler am Gymnasium



	Zusammenfassung
	Abstract
	Contents
	List of Abbreviations
	List of Figures
	List of Symbols
	List of Publications
	Introduction
	Motivation
	Problem Statement and Contribution
	Overview of the Thesis

	Related Work
	Multiagent-based Open Distributed Systems
	Trust in Multiagent Systems
	Multiagent Organisations
	Organic Computing Systems
	Decentralised Control of Open Distributed Systems
	Related Joint and Agent-based Approaches
	Approaches for Open Desktop Grid Systems

	Summary and Overview

	System Model
	System View
	The Hosting System
	Agent Model
	Trust Management System
	Composition and States of the Hosting System

	Trusted Communities for Open, Technical MAS
	Challenging Issues in the Hosting System
	Trusted Community - An Introduction
	The Application of Trusted Communities in a Hosting System
	Applicability Limitations of TCs

	Summary

	Trusted Community: A Novel MAS Organisation
	Introduction
	Formal Definition
	Organisation Benefit Strategies
	Trusted Community Lifecycle and Management
	The Trusted Community Manager
	Trusted Community Strategies
	Potential Member Search Strategies
	Association Evaluation Strategies
	TC Initiation Strategies
	Membership Evaluation Strategies
	Distributed Leader Election Strategies
	TCM: Active TC Expansion Strategies
	TCM: Member Control Strategies
	TCM: Role-Assignment Strategies
	TCM: TC Observer and TC Controller
	Strategy Configuration

	Summary

	Evaluation
	The Trusted Desktop Grid
	System Classification
	System Formalisation
	Open Desktop Grids - A challenging environment
	The Trusted Desktop Grid: Trust-Aware Agents
	Agent Interactions in the Trusted Desktop Grid
	Discussion

	Application of Trusted Communities in the TDG
	Organisation Benefit Strategies
	TC Strategy Configuration for the TDG
	Discussion

	Evaluation Results of the TC Application in the TDG
	Experimental setup
	Performance Evaluation
	Robustness Evaluation

	Summary

	Conclusion
	Thesis Summary
	Future research opportunities

	Bibliography
	Appendices
	TC Strategy Algorithm Details
	Basic Distributed Leader Election Strategy
	Basic Role Assignment Strategy

	The Design of the TC Organisation Agent Component
	Threat Model For Open Desktop Grids
	Performance and Robustness Metrics For Open Desktop Grids
	Performance Metrics
	Theoretic Scheduling Problems
	Distributed Systems
	Desktop Grid Systems
	Open Desktop Grid Systems

	Robustness Metrics
	Rationale for the Utilisation of Metrics in the TDG

	Additional Evaluation Results

