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Abstract 

This thesis addresses the development and characterization of transparent conducting films 
(TCFs) using single wall carbon nanotubes (SWNTs). This work was produced within the BMBF 
project "Carbofilm" and European Commission project “CONTACT”, which are funded in the 
framework of the Inno.CNT initiative, and Marie Curie Initial Training Network, respectively. A 
large part of the experimental work was performed at Bayer Technology Services GmbH, 
Leverkusen. The last three of the four chapters in this thesis are to be submitted as original 
journal articles. 

The introductory first chapter summarizes the general background of this work on SWNTs, 
including their synthesis, purification, and processing methodologies that are in practice today. On 
the other hand, the functional requirements (e.g. sheet resistance, optical transmittance, haze 
and colour neutrality) for TCFs in different applications are also described in detail. Furthermore, 
SWNT-based TCFs reported in the literature are abridged in this section. 

The second chapter describes the effect of different purification conditions of SWNTs on the 
electrical and optical properties of TCFs. The motivation was to find out the optimum purification 
conditions (e.g. reagents, temperature and time) for SWNTs in order to fabricate TCFs with better 
electrical and optical properties. The effect of pH on the dispersibility of SWNTs as well as on 
properties of TCFs was also investigated. We found that by using SWNT dispersions of higher 
pH, the electrical and optical properties of TCFs can be enhanced. We attribute this enhancement 
to the better spatial distribution of the SWNTs and their bundles which in turn depends on the 
increased electrostatic repulsion forces at higher pH values. This increase is due to the enhanced 
dissociation of functional moieties (e.g. carboxylic acid and phenolic groups) which had been 
introduced during the purification process.  

The third chapter describes the effect of stabilizers (surfactants) used in the process of making a 
SWNT dispersion on the electrical and optical properties of TCFs. We found that by using a 
mixture of two different stabilizers at an appropriate ratio, the properties of the TCFs can be 
significantly enhanced as compared to those of TCFs fabricated with single stabilizers. We have 
used poly(sodium 4-styrene sulphonate) in combination with polyvinylpyrrolidone and lignosodium 
sulphonate in combination with poly(vinyl alcohol) as stabilizers in these investigations. We try to 
rationalize the improved electrical and optical properties for TCFs with mixed stabilizers by 
ascribing these to effects in the spatial orientation of the SWNTs, which are governed by the 

interactions between them and the stabilizers (e.g. hydrogen bonding, ionic and -  interactions, 
van der Waals forces).  

The fourth chapter describes the effect of doping of SWNT-based TCFs. Following a suggestion 
from the scientific literature, graphene oxide (GO) is used as a dopant. The motivation was to 
enhance the electrical and optical properties of SWNT TCFs. Although we have successfully 
demonstrated that the electrical properties of SWNT films are significantly enhanced, it is 
observed that the sheet resistance of GO-doped TCFs does not remain stable at ambient 
conditions. The analysis of the effects of GO-doping on the TCFs and the possible effect of 
moisture on the de-doping of TCFs are described. 

These new insights on the preparation of SWNT TCFs are useful for upcoming technological 
advancements and applications. With further development, such TCFs could be used in next 
generation flexible electronic devices and applications. 

Keywords: transparent conducting films – single wall carbon nanotubes – SWNTs – flexible 
electronics – dispersibility 
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Kurzzusammenfassung 

Diese Arbeit befasst sich mit der Entwicklung und Charakterisierung von transparenten elektrisch 
leitfähigen Beschichtungen (engl. Transparent conducting films: TCFs), die mit einwandigen 
Kohlenstoffnanoröhren (engl. Single Wall Nanotubes: SWNTs) hergestellt wurden. Die Arbeiten 
entstammen dem BMBF-Projekt "Carbofilm", das im Rahmen der Inno.CNT-Initiative gefördert 
wurde. Ein Großteil der experimentellen Arbeiten wurde bei der Bayer Technology Services in 
Leverkusen durchgeführt. Die letzten drei Kapitel dieser Arbeit sollen in dieser Form als 
eigenständige Artikel in Fachzeitschriften veröffentlicht werden. 

Das einleitende erste Kapitel fasst den allgemeinen Hintergrund dieser Arbeit zusammen und 
befasst sich zum einen mit der Herstellung, Aufreinigung und den gängigen Verarbeitungsverfahren 
für einwandige Kohlenstoffnanoröhren. Zum anderen werden die Leistungsanforderungen für 
transparente elektrisch leitfähige Schichten (z.B. Flächenwiederstand, optische Transmission, 
Trübung und Farbneutralität) im Hinblick auf die unterschiedlichen Anwendungsfelder im Detail 
beschrieben. In diesem Abschnitt werden zudem SWNT-basierte TCFs vorgestellt, die bereits in der 
Fachliteratur beschrieben wurden. 

Im zweiten Kapitel wird darüber berichtet, welchen Einfluss verschiedene Aufreinigungsprozesse der 
SWNTs auf die elektrischen und optischen Eigenschaften der TCFs haben. Das Ziel dieser 
Versuche war es, optimale Bedingungen (z.B. Reagenzien, Temperatur und Reaktionszeit) für die 
Aufreinigung von SWNTs zu finden, die anschließend zu TCFs mit besseren elektrischen und 
optischen Eigenschaften führen. In diesem Zusammenhang wurde auch der Einfluss des pH-Wertes 
auf die Dispergierbarkeit der SWNTs und auf die Eigenschaften der TCFs untersucht. Dabei konnten 
wir feststellen, dass bei Verwendung von SWNT-Dispersionen mit einem höheren pH-Wert die 
elektrischen und optischen Eigenschaften der TCFs verbessert werden können. Diese Verbesserung 
führen wir auf eine bessere räumliche Verteilung der SWNTs bzw. deren Bündel zurück, die dadurch 
entsteht, dass bei einem höheren pH-Wert stärkere repulsive Kräfte wirken. Hervorgerufen werden 
diese Kräfte durch die vermehrte Dissoziation funktioneller Gruppen (z.B. Carboxyl- oder 
Phenolgruppen), die während des Aufreinigungsprozesses erzeugt wurden. Weiterhin werden die 
Charakterisierung der TCFs beschrieben und Hypothesen zu pH-abhängigen 
Umwandlungsprozessen in SWNT-basierten TCFs diskutiert. 

Im dritten Kapitel werden die Effekte von Stabilisatoren (Tensiden), die zur Herstellung der SWNT-
Dispersionen verwendet wurden, auf die elektrischen und optischen Eigenschaften der TCFs 
beschrieben. Dabei konnte festgestellt werden, dass eine Mischung aus zwei verschiedenen 
Stabilisatoren in einem geeigneten Verhältnis die Eigenschaften der resultierenden TCFs deutlich 
verbessern kann, wenn man diese mit TCFs vergleicht, die mit nur einem Stabilisator hergestellt 
wurden. Bei diesen Versuchen wurden als Stabilisatoren Poly(Natrium-4-Styrolsulfonat) in 
Kombination mit Polyvinylpyrrolidon oder Natriumligninsulfonat in Kombination mit Polyvinylalkohol 
verwendet. Es werden erste Erklärungsversuche unternommen, die die verbesserten elektrischen 
und optischen Eigenschaften von TCFs, die unter Verwendung zweier Stabilisatoren hergestellt 
wurden, auf die räumliche Orientierung der SWNTs zurückführen. Diese Orientierung wird durch die 

Wechselwirkungen (Wasserstoffbrückenbindungen, ionische und ― -Wechselwirkungen, van der 
Waals-Kräfte) zwischen den SWNTs und den Stabilisatoren beeinflusst. 

Das vierte Kapitel beschreibt die Dotierung von SWNT-basierten TCFs. Einer Idee aus der 
Fachliteratur folgend, wird hier Graphenoxid (GO) als Dotand verwendet. Das Ziel war es, die 
elektrischen und optischen Eigenschaften der SWNT-basierten TCFs zu verbessern. Auch wenn wir 
erfolgreich zeigen konnten, dass die Eigenschaften der SWNT-Filme durch die Dotierung deutlich 
verbessert werden, konnten wir doch auch beobachten, dass der Flächenwiderstand der GO-
dotierten TCFs in Umgebungsbedingungen nicht stabil blieb. Die Analyse des Effekts der GO-
Dotierung auf die TCFs und die Möglichkeit einer durch Luftfeuchtigkeit verursachten Verminderung 
der Dotierung werden beschrieben. 
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Diese neuen Erkenntnisse hinsichtlich der Herstellung SWNT-basierter TCFs sind hilfreich für 
zukünftige technologische Fortschritte und Entwicklungen. Durch weitere Entwicklungsschritte ist es 
denkbar, dass diese TCFs in der flexiblen Elektronik Anwendung finden könnten. 

 

Schlagworte: transparente leitfähige Filme – Single Wall Carbon Nanotubes – SWNTs – flexible 

Elektronik – Dispergierbarkeit 
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1. Introduction 

1.1 Background 

1.1.1 Flexible Electronics 

Flexible electronics has drawn more attention since the discovery of polymer based 

semiconductor architectures and devices. The first initiative to fabricate flexible electronics 

devices started with silicon on plastic substrates in mid-1960s. In 1967, solar cells were 

prepared by depositing a thin layer of silicon (≈ 100 µm) on a plastic substrate to offer 

flexibility.1 However, flexible electronics took a different direction after the discovery of 

conducting polymers2 in 1977 and electroluminescent polymers3 in 1990. These discoveries on 

semiconducting polymer materials, which are outstandingly mechanically flexible compared to 

silicon, led to a new field of research with lot more intensity to develop flexible, bendable, and 

stretchable polymer electronics devices. This technological advancement offers plenty of 

opportunities to take electronics to many places, where silicon is unable to go, e.g. plastics, 

textile, paper, etc.  

Flexible electronic device architectures comprise 5 major parts: 1) substrate, 2) back-plane 

electrode, 3) active layer, 4) front-plane electrode and 5) encapsulation. In order to make the 

architecture flexible, all these 5 components must comply with bendability to a desired radius or 

angle, without compromising on its functionality. The key qualities of the materials involved in 

fabrication of devices are: flexible, bendable, elastic, rollable, conformally shaped, unbreakable 

and solution processable. Solution processing is a cheaper and easier method of fabrication 

compared to conventional manufacturing methodologies for inorganic materials that requires 

ultrahigh vacuum and temperatures. Polycarbonates (PC), polyethylene terephthalate (PET), 

polyethylene naphthalate (PEN), polyimide (PI) polyethersulphone (PES) polycyclic olefin 

(PCO), and polyarylate (PAR) are the typical plastic materials, which can be employed as 

substrates in flexible electronic devices, depending upon the processing temperatures and cost. 
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Most of the research work has been conducted on PET, PEN and PI substrates, due to their 

relatively low coefficient of thermal expansion (CTE, ≈ 16 ppm/°C) and acceptable resistance to 

processable chemicals.4 PET and PEN are the most preferred plastic substrates due to their 

very low absorption to water vapour (0.14% compared to 1.8% for PI, which is also yellow in 

colour). Other plastic materials such as PES, PCO and PAR are optically transparent, but their 

CTEs are more than 50 ppm/°C.5 Polymer-based hybrid materials with very low water vapour 

transmission ratio (WVTR) and oxygen permeability are used as encapsulants in flexible 

electronics.5-7 Commercially available printable nanometal inks can be used as one of the 

electrodes.8 For light emitting or electroluminescent and photovoltaic applications, one of the 

electrodes used in the device has to be optically transparent as well as electrically conductive 

(transparent conducting films, TCFs). More about TCFs and the requirements they must fulfill 

are described in the following sections. 

1.1.2 Transparent Conducting Films 

Transparent conducting films are integral part of electronic devices, as they serve the purpose 

of allowing photons to enter and exit from the device. They also complete the functions of 

injecting and extracting charge carriers on the light emitting display and photovoltaic devices. 

Metal oxides are used as TCFs (also known as transparent conductive oxides – TCOs9) to meet 

such requirements. TCOs have the ability to reflect the thermal-infrared heat, which resulted in 

the use of making energy conserving windows.10 Application of TCOs on the windows of ovens 

helps to maintain the outside temperature to make it safe to touch them. They can also be used 

to defreeze the windows in vehicles, by passing electric current through transparent conductors 

(transparent heaters).11 Automatically dimming rearview mirrors for automobiles are possible by 

sandwiching electrochromic material between the transparent conductors.10, 12 Cadmium oxide 

is the first TCO as reported by Bädeker in 1907.13 Indium tin oxide (ITO) was reported in 1951 

by Mochel, who produced it by spray pyrolysis14 and in 1953 by Holland et al., who used 
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sputtering method to produce it.15 Nowadays, sputtered ITO films are the most widely used 

transparent conductors in the electronic industry, because of their excellent optical 

transmittance coupled with excellent electrical conductivity. ITO has the lowest resistivity value 

reported for TCOs so far, 10–4 Ω∙cm.16 At the moment, ITO has been employed in many 

commercially available electronic devices such as light emitting diodes, flat panel displays, 

electromagnetic shielding, touch panel sensors, photovoltaic cells, etc. Other TCOs under 

investigation are tin oxide (SnO2), zinc oxide (ZnO) and their derivatives. Other promising 

materials that are under research, which can be used in such applications are single wall carbon 

nanotubes (SWNTs),17-19 conducting polymers,20-24 conducting polymers-SWNT composites,25-27 

metal nanowires,28 and graphene.29, 30  

1.2 Motivation 

Although ITO is the most commonly used transparent conducting material, its employability on 

flexible electronic devices are jeopardized due to the following reasons: 1) ITO films are not 

highly flexible; thus the sheet resistance of the films tend to increase with the number of bending 

cycles.31 2) ITO has a yellow haze, though it is tolerable.32 3) Scarcity of indium increased the 

price levels of ITO in the recent years and also decreased the availability.33 4) ITO is not a 

solution processable material, which increases the cost implications for next generation 

applications. Therefore, the search for suitable transparent conducting films has taken its 

direction towards alternate possibilities. One of those are the conducting polymers,20-23 which 

have high degree of mechanical robustness and are solution processable. Poly(3,4-

ethylenedioxy thiophene):poly(4-styrene sulphonic acid) (PEDT:PSS) is the commercially 

available conducting polymer material for TCF applications. The drift in sheet resistance due to 

moisture absorption and an intolerable blue haze hinder further developments on PEDT:PSS 

based TCFs.34  TCOs are similar to ITO, they are brittle and usually require ultra-high vacuum 
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for film deposition. Though metal nanowires are solution processable, the expensive nature of 

this material jeopardized the possibility to use it in flexible TCFs applications. High reflectivity 

and large haze values of metal nanowires are not good for transparent conducting 

applications.35 Graphene is a material that is similar to SWNTs, but arrived recently in the 

market. The optimization on the process to produce high-quality graphene is underway; 

moreover graphene is available only in small quantities that are not enough for industrial-scale 

applications research.36 Single walled carbon nanotubes (SWNTs) are considered to be more 

suitable candidates,37, 38 as it has higher flexibility than ITO,31  negligible amount of reflectivity,34 

better colour neutrality than both ITO and PEDT:PSS films.32  SWNTs have further advantages 

such as availability in abundance, similar work-function as ITO. SWNTs are possible to process 

in solutions or suspensions, to print them without using etching with corrosive chemicals, and 

adaptability of film fabrication at room temperatures. 

1.3 Single wall carbon nanotubes 

1.3.1 Historical Background 

In 1952, Roger Bacon, a Russian Physicist observed carbon whiskers made of concentric 

nanotubes, and reported a morphology of a rolled-up graphite sheet forming a cylinder.39 The 

results were published in Russian language during the Cold War and so failed to receive global 

attention from the scientific community. These carbon whiskers were grown by arc-discharge 

method under high pressure. In 1991, Iijima and coworkers scripted the historical significance, 

by reporting multi-walled carbon nanotubes with finite carbon structures, as a result of their 

investigation on fullerene formation.40 This work laid a solid foundation for the development of 

this area, which is the root cause of the explosion of the research interests to use this material in 

many applications. On the hunt for less complex system than “multi-wall” carbon nanotubes, 

Iijima & Ichihasi41 and Bethun et al.42 have come up with single wall carbon nanotubes in 1993, 
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two years after the discovery of carbon nanotubes. Both Iijima and Bethune et al. worked 

independently. Their SWNTs were produced by the arc-discharge method in the presence of a 

metal catalyst, which provided small amounts of nanotubes along with copious amounts of 

impurities such as catalyst particles, amorphous carbon, and graphite, etc. Therefore, the 

scientific community extended its focus on improving the production processes for nanotubes 

with high yield, high quality and high structural uniformity. 

1.3.2 Preparation of single wall carbon nanotubes 

There are three major ways to produce single wall carbon nanotubes: 

1) arc discharge method, 

2) laser vaporization (ablation), and  

3) chemical vapour deposition. 

These synthesis methods produce SWNTs with different yields, purity and structural uniformity 

as each method has different limitations. These methods produce mixtures of single wall carbon 

nanotubes which vary in length, diameter, chirality and defects. Following are brief summaries of 

the three different methods to produce carbon nanotubes. 

1.3.2.1  Arc discharge method 

The arc discharge method43 is the most common and probably the easiest way to produce 

single wall carbon nanotubes. In 1993, Bethune et al.42 and Iijima et al.41 independently reported 

the production of SWNTs by arc discharge method. The tubes had diameters of 1.2 ± 0.1 nm 

and 0.7 – 1.6 nm, respectively. Graphite rods which are impregnated with transition metals (Fe, 

Co, Ni, Ni/Y etc.) as catalyst are the main component used in this method. In an enclosure filled 

with inert gas (helium or argon at about 100–500 Torr) the graphite rods are used as both 

cathode and anode and are separated only by a short distance (< 1 mm). They are heated by 

applying an electric voltage of ≈ 20 V.  Electrons flow from anode to cathode and ionize the gas 

molecules between them to create a hot plasma of high temperature that vaporizes carbon. 
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Some of the vaporized carbon recondenses back in the form of nanotubes. The tubes produced 

are covered with amorphous carbon soots, metal particles and metal carbide particles. 

Therefore it is necessary to purify the tubes through further processing steps to remove the 

impurities. The yield of nanotubes produced by this method is as high as 30% by weight.44 In 

2007, Mansour et al. developed a process to increase the yield and purity of SWNTs 

significantly by using small grain graphite powder (≈ 1 µm) and diamond powder (≈1 µm) as 

anodes, instead of conventional graphite powder (≈100 µm). Both single- and multi-wall carbon 

nanotubes can be produced by this method. Nanotubes produced by this method have a 

relatively small number of structural defects, as the tubes are produced at very high 

temperatures, which helps to graphitize the carbon. This method can produce nanotubes of 

lengths as large as ≈ 50 µm, which is smaller than for nanotubes produced by other methods. 

Coal was used, as an alternative to graphite, to fabricate the electrodes in order to reduce the 

raw material cost by ten-fold.45 However, problems with contaminations produced by non-carbon 

materials in the coal has made this attempt insignificant.46 With advanced developments on the 

arc discharge process, the Fraunhofer IWS in Dresden offers SWNTs in kilogram quantities for 

commercial developments.47 

1.3.2.2 Laser Vaporization 

SWNTs were first synthesized through laser vaporization method by the Smalley group in 

1995.48 A year later, the experiments were optimized and refined to better yield and purity of the 

SWNTs which consist of large bundles or ropes.49 Nd:YAG lasers have been used to vaporize a 

cylindrical target of graphite, doped with metal catalyst (0.5 - 1 % each of Co and Ni) in a closed 

furnace filled with inert gas (argon) and maintained at a temperature of 1200 °C and a pressure 

of 500 torr. This method was capable of producing 1 g SWNTs per day at high purity. The 

availability of materials in gram scale further gave an important boost to nanotube research. 

This method was further investigated by other research groups, although high-cost powerful 
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lasers are required. In 1999, Iijima and co-workers came up with a laser ablation method of 

producing SWNTs by irradiating the graphite target (doped with Co/Ni) with a CO2 laser.50 It is 

also reported that the production of SWNTs can be performed at room temperature to 1200 °C. 

Later in the early 2000s, Eklund et al. came up with an up-scaled process of producing SWNTs 

with a 1 kW-free electron laser, at a production rate of 1.5 g/hr.51 Reports suggests that the laser 

vaporization method produces larger amounts of metallic SWNTs (≈ 70%) than other 

methods.52 This would be potentially important for many applications; however, these results 

have not been confirmed by other researchers. The diameter and the yield of the nanotubes can 

be controlled by varying the furnace temperature.46 The major advantage of this method is that 

the average yield of SWNTs produced is very high with ≈70%, higher than that of arc discharge 

method. This method is widely used to produce SWNTs, although it is the most expensive 

method to produce SWNTs due to the implication of lasers with high implementation and energy 

costs. 

1.3.2.3 Chemical vapour deposition 

Chemical vapour deposition (CVD) is a method that requires relatively smaller amounts of 

energy than the other methods. CVD-produced SWNTs were first reported by Smalley’s group 

in 1996.53 Catalytic decomposition of hydrocarbons or carbon containing species in the 

presence of metal catalyst particles and condensation of the resulting carbon vapour onto a 

substrate is the principal mechanism behind the CVD process. In a typical experiment, CO 

feedstock was passed over a catalyst containing Mo nanoparticles placed in a furnace at a 

temperature of 1200 °C; SWNTs of a diameter range of 1–5 nm were produced. The choice of 

the catalyst particles depends on the feedstock material. Fe, Co, Mo, Ni and combinations of 

these metals are the most commonly used catalyst metals.46 SWNTs can be produced from a 

variety of hydrocarbons and other carbon containing species. Konga et al. reported the CVD 

production of SWNTs by decomposing CH4 in the presence of a metal oxide catalyst, Fe2O3.54 
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Benzene, ethylene, ethanol and acetylene have also been used as feedstock materials to 

produce SWNTs.46 Understanding the formation of SWNTs became more complicated when it 

was reported that SWNTs can also be produced when metals are employed which had not been 

known for carbon formation, like Au, Ag and Cu.55-57 However, it was shown experimentally that 

Cu cannot catalyze the growth of nanotubes;58 and theoretically it was shown that Au is not 

capable of catalyzing the growth of SWNTs.59 Temperature, feedstock and type of catalyst play 

major roles in determining the growth of SWNTs. Catalyst particle size < 8 nm facilitate the 

growth of SWNTs, whereas particle size > 8 nm produce multi-wall carbon nanotubes.46 

However, there are reports showing that SWNTs can be grown even with larger catalyst particle 

sizes (Co/Mo, 11 nm).60 The CVD process is economic and simple to execute; but on the other 

hand, the understanding of the growth mechanisms of SWNT become relatively complex. As the 

CVD process is easily upscaled, a large volume production of SWNTs can be executed using 

this method. Variations of the CVD process have also been employed to fabricate SWNTs. 

Plasma-enhanced CVD (PECVD) can also be used for the production of SWNTs, in addition to 

its common usage in producing MWNTs. Dai et al. reported a process for producing vertically 

grown SWNTs on an SiO2/Si substrate, using Fe as catalyst particle.61 A high volume production 

was reported by Resasco et al., where SWNTs produced by catalytic disproportionation of a CO 

feedstock using oxides of Mo and Co as catalysts (CoMoCAT process).62 Another large scale 

synthesis of SWNTs was described by Smalley’s group in 1999, where a high-pressure catalytic 

CO (HiPCO) disproportionation was performed in the presence of Fe clusters as catalyst.63 As 

the percentage of Fe in final product of SWNTs tend to be too high (14%), purification protocols 

were introduced to remove the excess metal catalyst. Overall, the CVD processes give a better 

platform to achieve high volume synthesis of SWNTs, with typical yields of 20 – 100%. This 

process also helps to grow longer SWNTs, as large as 40 mm,64 which is useful for applications 

in composites. A limitation of this method is that the products come with more defects. 



Introduction 9 
 

 

1.3.3 Purification and processing of SWNTs 

Purification is an essential step in the processing of SWNTs. SWNTs, especially those produced 

by arc evaporation and laser vaporization techniques tend to contain large amounts of residual 

catalysts and amorphous carbon and other carbonaceous materials such as graphite, small 

fullerenes, etc. These impurities will affect the properties of the SWNT compositions and limit 

their use in applications. To maximize the utilization of SWNTs on the various applications, it is 

inevitable to remove these unwanted impurities to obtain a homogeneous material. The amount 

of effort put into the processing of purifications of SWNTs in the last decade is enormous.65-67  

1.3.3.1 Dry oxidation 

Oxidative treatments at elevated temperatures (performed under air, oxygen, argon and other 

gases) are one of the possible ways to remove the unwanted impurities such as carbonaceous 

materials from the SWNTs. This purification method is performed based on the principle of 

selective oxidation and etching, where the carbonaceous impurities are oxidized at a faster rate 

than the SWNTs. After the removal of carbonaceous species, the metal particles are removed 

by washing with inorganic acids such as hydrochloric acid.67 Few examples of these purification 

methods are as follows. SWNTs produced by the arc discharge method were subjected to high 

temperature oxidation in air at 350 °C;  the yield of nanotubes was improved by combination 

with the microfiltration method.68 Nagasawa et al.  reported a purification method for SWNTs 

produced by laser vaporization with a combination of gas phase oxidation at elevated 

temperature to remove the carbonaceous materials and later by refluxing in nitric acid to remove 

the metal catalyst particles.69 It was observed that SWNTs of thinner diameter (≈ 1 nm) burn 

more quickly than those with larger diameters. Zimmerman et al. reported a method of removing 

carbonaceous impurities by treating the raw SWNT soot with a mixture of chlorine, water vapour 

and hydrogen chloride gas at a temperature of 500 °C.70 Thereafter, the material was treated 

with hydrochloric acid to remove the metal catalyst particles. However, the procedure was 



10 Introduction 
 

 

applicable only to SWNTs synthesized by laser vaporization but did not work for SWNTs 

produced by arc discharge.70 Another method of purification was reported by Vivekchand et al. 

which was employed on SWNTs prepared by arc discharge, laser vaporization and CVD 

methods.71 The method involves dry air oxidation, subsequent acid treatment, followed by a 

hydrogen treatment at elevated temperatures. Arc discharge and laser vaporization tubes were 

oxidized at 300 °C, washed with nitric acid, followed by hydrogen treatment at 1000 °C. High 

pressure carbon monoxide (HiPCO) tubes were hydrogen treated at 700 °C. However, the 

presence of amorphous carbon was still detected in the TEM images.71 Therefore, the 

purification by air oxidation combined with a treatment with inorganic acids is effective only to 

some extent, and the procedures need to be optimized according to the different types of 

nanotubes. A disadvantage of the dry air oxidation techniques is that the SWNTs will also 

become oxidized. During dry air oxidation, the metal catalyst particles attached to the impurities 

will act as a catalyst for the oxidation, which is an advantage. However the efficiency, yield and 

purity of SWNTs obtained from this technique depends on several factors such metal content, 

oxidation time, oxidation environment, oxidizing agent, temperature, etc. 

1.3.3.2 Acid treatment (Wet oxidation) 

Treating SWNTs with inorganic acids to purify from its impurities is a well-known procedure from 

the literature. Nitric acid is the commonly used inorganic acid to remove large part of the metal 

catalyst particles and amorphous carbon impurities from SWNTs. While oxidizing with nitric acid 

under sonication or reflux conditions can introduce functional moieties such as carboxylic acid at 

the defect sites, open ends, and also be on the side walls. The oxidation introduced functional 

groups on the SWNTs helps to debundle the tubes and facilitate dispersibility in water and other 

polar solvents, which is useful from the applications perspective. Following are few examples of 

purification of SWNTs by oxidation through acid treatments. Ebbesen et al. reported the first 

protocols on purification of carbon nanotubes in 1994.74 20 minutes of sonication was performed 
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on a mixture of laser vaporization produced SWNTs in H2SO4:HNO3 (3:1 v/v), followed by 

filtration through 0.2 µm membrane. Then the residue was further sonicated in water for 20 

minutes, and washed repeatedly. The sample was “polished” by stirring it in 

H2SO4(30%):H2O2(30%) (4:1 v/v)) for 30 minutes followed by filtration and washing. Later, the 

material was washed with 35% HCl to induce the formation of carboxylic acid groups on the 

defect sites and open ends.  Liu et al have reported the first large scale (10 g)  purification  of 

SWNTs through acid treatment process in 1998.72, 73 Laser vaporization produced SWNTs of 

longer lengths have been purified by refluxing in 2.6 M nitric acid for 45 hours. Upon cooling to 

room temperature, the brownish yellow supernatant was decanted and the precipitate was 

washed with deionized water for multiple times. The tubes were resuspended with the help of 

surfactants and filtered through cross-filtration technique.  

It is shown that the acid treatment process on arc discharge produced SWNTs can remove the 

excess amount of metal catalyst particles to produce high purity SWNTs. In 2002, three step 

purification process to obtain high purity SWNTs was reported by Kajiura et al.76 Arc discharge 

produced soot containing SWNTs was refluxed in 2.8M HNO3 to remove metal particles by 

dissolution. Sample was then annealed at 500 °C in air to remove the amorphous carbon 

followed by treatment at elevated condition of 1600 °C / 10–3 Pa for 3 hours to heal the defect 

sites. This method has produced the highly pure SWNTs but with the yield of less than 20 %. 

Refined and simplified protocols on acid treatment on arc discharge produced tubes by treating 

with 3M HNO3 for 12 hours or 7M HNO3 for 6 hours were reported by Hu et al. in 2003.75 

Variations on this protocol is enormous such as temperature variation, reflux duration, mixture of 

inorganic acids, sonications, cross flow filtration, etc. Similarly CVD produced SWNTs can also 

be purified with variations of acid treatment processes. Therefore, the key parameters to obtain 

highly pure SWNTs with maximum possible yield depends on many factors such as, reflux 
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temperature, reflux duration, concentration of acid, combination of acid mixtures, annealing 

temperature after acid treatment, etc.  

1.3.3.3 Functionalization 

Chemical functionalization of SWNTs is considered to be an important step in processing of 

tubes. Functionalization means, introducing functional moieties such as –COOH, –COO–, –C=O, 

–C-O, –OH etc. on the defect sites, open ends or sidewalls of the tubes. Dispersing SWNTs in 

different solvent medium is a very important step on solution processing fabrication 

methodologies that saves time, energy and cost, On the other hand, conventional fabrication 

techniques require several hours pumping down to achieve ultra-high vacuum, high energy, and 

high operating cost. Dispersion of SWNTs also provides room for printability of circuit patterns 

that avoids corrosive etching and lithographic methodologies that are in practice today. 

Commonly used acids and acid mixtures for functionalization of SWNT ends and defect sites 

are HNO3,77 Mixture of HNO3+H2SO478 and H2SO4+KMnO4.79 Such processes will introduce 

carboxyl and other groups on the tube ends and defect sites which induce dispersibility in water 

and other polar solvents. However, the dispersibility of functionalized tubes can be altered by 

other methods such as, condensing long-chain alkylamines with carboxyl groups attached to the 

tubes ends of SWNTs (fig 1.1).80 After introducing octadecylamine to the carboxyl groups, 

SWNTs were dispersible in chloroform, dichloromethane, carbon-di-sulphide, and other 

aromatic solvents such as benzene, toluene, chlorobenzene and 1,2-dichlorobenzene.  
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Figure 1.1. Schematic representation of defect and tube end functionalization of 

SWNTs with octylamine to produce dispersible tubes in various solvents.80 

Similarly several other possibilities of attaching different functional molecules such as 

poly(propionylethyleneimine-co-ethylenimine),81 poly(vinyl acetate-co-vinyl alcohol),81 

carbenes,82 nitrenes,83 azomethine ylides,84 to attach to SWNTs were experimented and 

established. Other functionalization routes such as solution-phase ozonolysis,85 radical 

addition,86 silylation,87 fluorination,88 electrochemical reactions89, 90 and attachment of 

polymers91, 92 were also reported. 

Non-covalent functionalization by surfactants was performed in the following ways. Sodium 

dodecyl sulphate (SDS) was first used to demonstrate this principle, where the ionic surfactant 

molecule transfers its charges to nanotube surface.93 The tubes are then dispersed by 

electrostatic force, which is supported by strong dependence on the dispersion behavior with 

respect to pH. However, large amount (1% SDS in water) of surfactant is required to debundle 

the tubes; and the power and time required for ultrasonication is very high for this method. 

Sodium dodecyl benzene sulphonate (SDBS) was used as a surfactant to disperse SWNTs in 

water, which is more effective than SDS due to the presence of benzene ring which facilitates 
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better - interactions between the surfactant and SWNTs.94 Other non-ionic surfactants such 

as Triton X-100 was also reported to be an effective candidate in dispersing nanotubes in water, 

which operates in combination with hydrogen bonding and steric dispersion forces.95: SWNT 

can be suspended in different solvents by using longer molecules (polymers such as 

polyvinylpyrrolidone, poly(3,4-styrene sulfonicacid)) that wrap around the nanotubes.46 

1.3.4 Structure of single wall carbon nanotubes 

Understanding the structure of SWNTs received more attention after the work by Iijima et al in 

1991.41 Knowledge on the structure of SWNTs would be useful for determining the physical and 

electronic properties. Several experiments have been carried out since then, mainly using high-

resolution transmission electron microscopy (HRTEM) to find out the structure of tubes. Later, 

spectroscopic techniques such as absorption spectroscopy and Raman spectroscopy added 

more value to the experimental determination of structure of SWNTs.  

 

Figure 1.2. Schematic representation of SWNT: (a) extension of fullerene 

molecular cluster in 1D. C60 can be extended into nanotube of diameter 0.7 

nm. (b) Graphene sheet rolled-up seamlessly in to single wall carbon 

nanotube. (taken from ref.96) 

 

Carbon nanotubes are sheets of graphite which is rolled up into a tube; SWNTs are single layer 

of graphite, which is called as graphene that is rolled up into a tube, or an extended C60 
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fullerene molecular cluster (Fig 1.2). Orientation and configuration of carbon atoms present in 

SWNTs defines the optical and electronic properties of SWNTs. The presence of a strongly 

bonded network of sp2-hybridized carbon atoms with delocalized electrons provides electrical 

conductivity along the graphitic planes of SWNTs. In addition, van der Waals forces, which are 

rather strong due to the good polarizability of the  bonding systems, keep the individual 

SWNTs aggregated. Due to this effect, the formation of SWNTs usually results in bundles and 

not in individual tubes. Some of the carbon atoms on the SWNTs are sp3-hybridized and are 

viewed as defects. Heating to high temperatures can remove such defects by transforming sp3-

hybridized to sp2-hybridized carbon atoms, a process called graphitization. Carbon nanotubes 

have diameters ranging from 0.7 to 10 nm, though most of the tubes have a diameter < 2 nm. 

SWNTs are called as one-dimensional structures because of their large length-to-diameter ratio 

(aspect ratio > 104). 

1.3.4.1 Representation of the structure of carbon nanotubes 

This section gives the brief summary on the theoretical representation and interpretation of 

different structural parameters. A SWNT is described as a graphene sheet rolled-up into a 

cylindrical shape.46  The rolled up graphene sheet consists of six-membered carbon rings 

(hexagon) oriented in honeycomb lattice. Three different structures are possible, considering the 

orientation and angle of the roll-up process of a graphene sheet. The two most ordered 

configurations are designated as ‘zigzag’ and ‘armchair’. A schematic representation of the 

structures is shown in Figure 1.3. Most of the tubes produced do not have these highly 

symmetric forms, but have structures where the hexagons are helically arranged around the 

tube axis. Such structures are known as chiral tubes (Fig. 1.3c).97  
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Figure 1.3. Three different structures of SWNTs: (a) armchair (b) zigzag and (c) chiral 

(mixture of armchair and zigzag) nanotubes (taken from ref.97. (d) Atomic resolution 

scanning tunneling microscopic image of SWNT, which is not a zigzag tube, but either a 

chiral tube or an armchair tube (chiral angle 30°) – taken from ref. 98 

Chiral vector  ⃗, which joins the two equivalent points on the graphene lattice, is one of the key 

parameters with which the structure of an individual tube is specified.  ⃗ is perpendicular to the 

tube axis, which is parallel to translational vector  ⃗⃗. The crystallographic representation of the 

following discussion is given in figure 1.4. The chiral vector can be represented in terms of unit 

cell parameters as follows:97  

 ⃗                   (1.1) 

where,    and    are the unit vectors and the length of the unit vector is calculated to be 0.246 

nm    √                    . The term (n,m) are the integers, where n and m are 

integers and   | |   , identifies a certain tube structure. 

(d) 
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Figure 1.4. Crystallographic representation of two-dimensional graphene lattice that can be 

rolled into a carbon nanotube. Metallic and semiconducting SWNTs (n, m) are represented by 

the open and solid circles on the map of chiral vectors (redrawn from ref.97) 

The length of the chiral vector  , can be calculated as follows:97  

   √            (1.2) 

       √            (1.3) 

The diameter   of the tube is related to the crystallographic parameters, and this can be 

calculated using the following relation:97 
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The chiral angle   is given by, 
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We can see from the representation (Fig 1.4) that m = 0 for all the zigzag tubes, while n = m for 

the entire set of arm chair tubes; and the remaining tubes are chiral. The following relations 

describe the metallic and semiconducting nature of single wall carbon nanotubes. 

      {
                                
                 

   (1.6) 

Particulary, arm chair tubes denoted by       are always metallic as      ; and zigzag 

tubes denoted by       are metallic when   is multiple of 3. In figure 1.4, the SWNTs that are 

semiconducting are denoted by solid circles; metallic tubes are denoted by open circles. In 

theory, approximately one third of the tubes should be metallic and two thirds should be 

semiconducting in nature. In practice, the composition of the mixture of semiconducting and 

metallic tubes may differ from this. However, all the synthetic procedures produce major 

fractions of semiconducting and a smaller fraction of metallic tubes. Procedures for the 

formation of only metallic or only semiconducting tubes have yet to be discovered. Such 

methods would have a high potential for technological investments and developments.     

1.3.5 Properties of single wall carbon nanotubes 

Single wall carbon nanotubes have attracted the research community because of their 

combination of outstanding properties, including record-breaking mechanic resilience and 

variable electronic properties, ranging from metallic to semiconducting. As SWNTs are 

analogous to rolled-up single layers of graphite, the electronic structure of graphene sheets has 

been used as the basis for the theoretical representation of the electronic properties of SWNTs. 

It can be assumed that the graphene planes are infinite in two dimensions. The electronic 

properties of graphite are highly anisotropic: The electron mobility within the planes is very high, 

due to the delocalization of  electrons or the overlap of  orbitals among adjacent atoms. The 

in-plane resistivity of high quality graphite at room temperature is approximately 0.4 µΩ-m.46 
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However, the electron mobility perpendicular to the planes is low. Detailed band structure 

calculations for 2D graphite were performed by Wallace in 1947, ignoring interactions between 

planes.99 Band structure calculations for 3D graphite were performed by Slonczewski, McClure 

and Weiss in the 1950s, incorporating the interactions from adjacent graphitic planes.100, 101 This 

model shows that  bands overlap by ≈40 MeV, making graphite a semi-metal with free 

electrons and holes at all temperatures. This results in ≈10-4 N electrons in the conduction band 

and the same number of holes in the valence band at 0 K, where N is the number of atoms. The 

calculation also shows that the carrier density of graphite is of the order of 1018 cm–3, which is 

very small. Therefore, in spite of the very high mobility of the charge carriers in the graphitic 

planes, the electronic conductivity of graphite is rather low compared to metals like copper, 

which has one free carrier per atom. 

1.3.5.1 Electronic properties of single wall carbon nanotubes 

In 1995, Dresselhaus and coworkers have performed a complete study on the electronic 

structure calculations for SWNTs.97 Different electronic structure for different chiral structures of 

SWNTs were calculated using tight binding approximation.102 Energy band gap    of SWNTs 

can be related to the diameter of tubes by the following relation:103 

   
     

 
     (1.7) 

where,      is carbon-carbon bond distance in SWNT lattice (0.142 nm) and t  is the tight 

binding overlap energy of nearest neighbor carbon-carbon bond. Three different types of band 

structure diagrams102 can be discerned (Figure 1.5).  
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Figure 1.5. Energy dispersion relation for (a) armchair (5,5) nanotube, (b) zigzag (9,0) 

nanotube, and (c) zigzag (10, 0) nanotube (taken from ref.102) 

The valence bands and conduction bands crosses at the k point on the one dimensional energy 

dispersion relation for armchair tubes, and it takes places at the Fermi level.102 This suggests 

that armchair (n,n) tubes are metallic in nature. Each curve displayed on figure 1.5 corresponds 

to single sub band. The energy states above the Fermi level (E = 0) are completely empty and 

the lower energy states are fully occupied. Figure 1.5a and 1.5b shows the electronic energy 

dispersion relation for armchair (5,5) and zigzag (9,0) nanotubes that are metallic. From figure 

1.5c, the valence band and conduction band did not touch each other at the the Fermi level for 

zigzag tube (10,0). Therefore the zigzag tube (10,0) is considered as a semiconducting tube, 

due to its narrow band gap. Chiral tubes may also be either metallic or semiconducting, 

depends on the chiral angle of the tubes. Dresselhaus et al shows that metallic conduction 

occurs in chiral tubes, when  

            (1.8) 

Where, p is an integer. Therefore, theoretically, one third of chiral tubes are metallic and two-

thirds are semiconducting. 
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As carbon nanotubes are limited in size especially around circumference, their density of states 

(DOS) exhibits in sharp peaks that is known as van Hove Singularities (vHS). DOS at the Fermi 

level is always zero for semiconducting tubes, as there are no electronic states in the forbidden 

gap; DOS is non-zero for metallic tubes. This is shown in Figure 1.6 where the electronic DOS 

for a zigzag (9,0) metallic nanotube and a zigzag (10,0) semiconducting nanotube are depicted. 

The dotted line in Figure 1.6 represents the DOS for a two-dimensional graphene sheet. For 

both metallic and semiconducting nanotubes, the energy band gap is inversely proportional to 

the diameter of nanotubes (eq. 1.7) 

 

Figure 1.6. Electronic one dimensional density of states per unit cell for (a) 

zigzag (9,0) nanotube, and (b) zigzag (10, 0) nanotube. Dotted line represents 

the density of states for two-dimensional graphene sheet. (taken from ref.104) 
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Electronic transitions take place between the sub-bands of conduction band and valence band, 

when external energy is applied. The transition of electrons from first sub-band of valence band 

to conductions band is represented as     for semiconducting tubes and     for metallic tubes. 

Similarly, the other possible electronic transitions are    ,    , etc for semiconducting tubes 

and    ,    , etc for metallic tubes. These transitions can be detected using optical 

absorption spectroscopy and vibrational spectroscopies, which are useful in characterizing 

carbon nanotubes. 

1.3.5.2 Optical properties of single wall carbon nanotubes 

 

Figure 1.7. Optical absorption spectra of sodium cholate stabilized SWNTs, 

sorted by electronic type using density gradient ultracentrifugation. On the left 

hand side, SWNT dispersion in centrifuge tube, shows the separation of SWNTs 

by electronic type (taken from ref. 107) 

Different optical properties for SWNTs are observed due to their difference in electronic 

structures. These differences in optical properties can be used to distinguish the nature of the 

tubes (e.g. semiconducting or metallic). van Hove singularities of SWNTs are formed when the 

two-dimensional energy bands of a graphene layer into one-dimensional band.105 When the 
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energy of incident light radiation coincides with the energy level of a van Hove singularity, an 

optical transition of an electron from the valence band to the conduction band occurs, leading to 

a resonant enhancement in the corresponding photo-physical process.106 A simple UV-Vis-NIR 

spectrum of SWNTs can provide this information in detail. An example of a UV-Vis spectrum of 

CoMoCAT-grown SWNTs dispersed in water with the help of sodium cholate as surfactant is 

shown in figure 1.7.107 

 

Figure 1.8. Kataura plot, shows the inter-band transition gap energies between 

quantized sub-bands of valence band and conduction bands. Solid circles 

represent the metallic tubes, open circles represent semiconducting tubes and 

double circles represent arm chair tubes. Arrows indicates the diameter 

distribution of tubes produced by arc-evaporation and laser vaporization methods 

using Rh-Pd and Ni-Y catalysts (taken from ref. 107) 

The distinct van Hove singularities observed from the spectra are marked as    ,     and     

in the range of 400 to 1200 nm.     represents the first optical inter-band transition of metallic 

tubes. Similarly     and     represent the second and third optical inter-band transitions of 

semiconducting tubes, respectively. The dotted line in Fig. 1.7 represents the optical absorption 
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spectrum of SWNTs before their separation. The separation shown in Fig. 1.7, achieved by 

density gradient ultracentrifugation, was a remarkable achievement in SWNT research, as it 

scripted an avenue to the possible separation of tubes by the type of their electronic structure.  

Optical absorption spectroscopy contains a wealth of information about SWNT structure, 

electronic type and band gap, etc. Kataura et al,106 demonstrated for the first time that the van 

Hove singularities (inter-band transitions) of SWNTs can be decoded using optical absorption 

spectra. Inter-band transition gap energies with respect to diameter of nanotubes are 

theoretically predicted and confirmed experimentally (Fig 1.8).106 

The transition gap energies decrease with increasing nanotube diameter. The Kataura plot also 

shows that simple absorption spectra are of limited use in predicting the nanotube structure, as 

the absorption features of nanotubes with different structures overlap with each other. Also, the 

absorption features of SWNTs can be influenced by molecular environments such as the 

dispersion medium, surfactants, pH value of the dispersions as well as on the functionalization 

of the tubes. However, the discovery of fluorescence in SWNTs opened up new possibilities in 

determining the structure of SWNTs.108, 109 

1.3.5.3 Vibrational properties of SWNTs 

Raman spectroscopy is one of the powerful tools for the analysis of SWNTs. Analysis of the 

samples can be done at ambient conditions. However, the same tool is not as effective for multi 

wall carbon nanotubes. A sample spectrum of SWNTs is shown below in figure 1.9. 

The following features of SWNTs can be observed in their Raman spectra: 

1. Low frequency peak (< 200 cm–1), assigned to the radial breathing mode (RBM); this 

peak mainly depends on the diameter of the tube and corresponds to a vibration 

during which the diameter of the tube shrinks and increases. 

2. A strong feature at about 1340 cm–1, the  –band, which is assigned to disordered 

parts of graphitic structures, due to sp3-hybridized carbon. 
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3. Peaks around 1550 to 1600 cm–1 labelled as  –band, which stem from graphitic 

structures. 

4. Peak at about 2600 cm–1 labelled as    band, which is a second order harmonic of 

the  – band. 

5. Some weak second order modes between 1700 and 1800 cm–1, which are not very 

useful for the characterization of nanotubes. 

 

Figure 1.9. Raman spectrum of SWNT sample (taken from ref. 110) 

RBM is a mode where all carbon-carbon bonds stretch and shrink, leading to a coherent motion 

of all carbon atoms in radial direction (see Fig. 1.10). The RBM mode frequencies (    ) are 

related to the diameter of the tube by the following relation:111 

      
   

 
       (1.9) 

where,   is a factor that is related to tube-tube interactions and the nature of sample and d is 

the diameter of the tube. RBM modes also give information on whether the tubes are metallic or 

semiconducting in nature, by offering a possibility to calculate the chiral indices from the 
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diameter of the tube. For tubes of diameter larger than 2 nm, the character of the electronic 

states becomes independent of the tube diameter, and hence approximates that of a graphene 

sheet.46 The tube indices (n,m) can be calculated from the     . 46,112 

 

Figure 1.10. Schematic representation of atomic displacements that 

are associated with RBM and G-band vibrations (taken from ref.113) 

The graphitic mode G is the contribution from the tangential vibrations of C−C bonds along the 

nanotube axis, which appears at about 1585 cm–1, depending on the nature of the tube. This 

band is composed of two main features that can be termed as    and    bands. The split in 

the   band is probably due to the curvature of carbon nanotubes, as it does not appear 

normally in graphene sheets. The    band appears due to the vibrations that are parallel to the 

tube axis which will have Lorentzian line shape. The    band appears due to the vibrations that 

are perpendicular to the tube axis, which will normally have Breit-Wagner-Fano (BWF) line 

shape. Lorentzian shapes are predominant in semiconducting nanotubes whereas BWF line 

shape is typical of metallic tubes.102 It is also reported that the spectral features are subject to 

changes with respect to different excitation wavelengths and power density of the laser that is 

used in Raman spectroscopy.114 The  –band also gives information about the state of ‘doping’ 

in SWNTs. The  –band is upshifted (to higher wavenumbers) for p-doped tubes and 

downshifted (to lower wavenumbers) for n-doped tubes with respect to  –band of undoped 

SWNTs.115 
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1.4 SWNT thin films: Transparent conductors - Overview 

Using appropriate methods, SWNTs can be processed to form nanoscale network films that can 

be useful in many applications such as large display panels, touch-panels, light emitting diodes, 

sensors, transistors and electromagnetic interference shielding, etc. The wide range of potential 

of SWNTs in different applications are due to their excellent electron mobility (on the order of 

1x105 cm2V–1s–1) and electrical conductivity (up to 4x105 Scm–1) due to the strong carbon-carbon 

bonding between the atoms in the tube.116 The band gap of semiconducting tubes, which is 

inversely proportional to the diameter, is on the order of 0.7 eV for tubes of a diameter of 1 

nm.102 The work function – i.e. the amount of energy required to remove an electron from a 

nanotube − is a crucial parameter in optoelectronic device applications; for SWNTs, it is on the 

order of 4.7 to 5.2 eV and thus similar to that of ITO.117 

1.4.1 SWNT nanoscale network 

Although many interesting devices have been constructed with individual SWNTs and have 

shown interesting physical properties, the production of SWNT films for devices is challenging. 

SWNT films consist of large number of individual SWNTs that differs in quality and type. The 

final properties of SWNT films are the statistical average of properties of all the individual tubes 

in the film. Therefore, theoretical predictions of properties of SWNT films often significantly differ 

from the experimental results. It is difficult to control the architecture of the SWNT film, 

especially on larger scales. Simple film architectures can be achieved by forming a nanoscale 

network of randomly oriented tubes, which consists of different compositions of metallic or 

semiconducting tubes. An example of a randomly oriented nanoscale network of SWNTs, above 

the percolation threshold is shown in Figure 1.11. The percolation threshold is the point at which 

a sudden increase in electrical conductivity is observed, with respect to the concentration of 

SWNTs in a film.  
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Figure 1.11. Example of atomic force microscopic image of nanoscale network 

comprising many SWNTs oriented randomly in order. (taken from ref. 38) 

The electrical conductivity of SWNT films is limited by the inter-tube junctions, as the junction 

resistance is very high. The charge carrier transport through the network is not limited by the 

conductivity along the nanotubes, but by the resistance associated with barriers to charge 

propagation at the inter-tube junctions of nanotubes. Therefore the electrical conductivity of 

nanotube films is always lower than the electrical conductivity of an individual nanotube. The 

highest reported value for electrical conductivity of nanotube films is 6x103 Scm–1, which is 

about 3 orders of magnitude lower than the electrical conductivity of a single nanotube.116  

With regard to optical transmittance, SWNT films are capable of exhibiting > 95% transmittance 

for very thin films. However, the optical transmittance of the film will be compromised when the 

nanotube density or the film thickness are increased to achieve high electrical conductivity. 

Correspondingly, the optical transmittance and the electrical conductivity of SWNT films always 

play against each other. Nanotube films are well known for their flexibility compared to 

counterparts like ITO, which suffer a loss of electrical conductivity when subjected to bending 

cycle tests.118 This feature of SWNT films provides venues for their application in several next 

generation flexible electronic devices. 
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1.4.2 Electrical and optical properties of SWNT films 

Electrical properties of SWNT films depend mainly on the concentration of nanotubes present in 

the film, i.e. the nanotube density as projected onto the film area. At a critical nanotube density 

(which is also known as percolation threshold) there is a sufficient number of conducting 

pathways available for efficient charge transport. The available number of pathways strongly 

depends on the nanotube density.119 However, the individual character of each nanotube with its 

structure, diameter and chirality, as well as the variability in inter-tube junctions, barrier heights, 

and charge propagation through inter-tube junctions brings complexities to the final electrical 

properties of the film.120 Hence, the charge transport in nanotube films has to be treated 

differently from transport in band like in metals.  

1.4.2.1  Concentration dependent electrical properties of SWNT films 

One of the important parameter that affects the electrical properties of SWNT films is 

percolation. Percolation defines how the conducting pathways form across a SWNT film as the 

nanotube density of the film increases. There are established reports on theoretical and 

experimental studies that narrate about how the electrical properties of SWNT films scale with 

nanotube density.119,121,122 Theoretical studies of percolation in nanotube films were conducted 

based on the assumption that the network conductance is proportional to the number of 

conducting path ways in the film. There are three different types which occur in randomly 

oriented nanotube films as seen in Figure 1.12.  At low density regimes (Fig. 1.12.a), continuous 

path across the surface cannot be achieved; hence the conductivity (σ) at this regime is zero. At 

the regime of moderate nanotube density (Fig 1.12b), which is slightly above percolation 

threshold, continuous conduction path across the surface is achieved; therefore, the electrical 

conductivity is comparatively very high. At the regime of higher nanotube density (Fig 1.12c), the 

continuous path across the surface is slightly improved from moderate tube density regime; 

hence the slightly better electrical conductivity (σ) is achieved.  
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Figure 1.12. SEM images of SWNT network film on alumina substrates. Films with nanotube 

density (a) near percolation threshold (b) slightly above percolation threshold and (c) well 

above the percolation threshold. (taken from ref. 119) 

As the critical nanotube density (  ) increases, a nanotube film reaches its percolation 

threshold when the conducting pathways are sufficient to form a continuous path across the film. 

At this critical nanotube density, the conductivity of percolating networks varies as:119 

         
      (1.10) 

where σ is the conductivity,   is the nanotube density, and    is the critical nanotube density 

corresponding the percolation threshold;   is the critical exponent, which depends on the 

dimensionality of the space; for a film in two dimensions,        whereas for a film in three 

dimensions, it is 1.94 (Fig 1.13).123 

 

Figure 1.13. (a) Theoretical plot of the conductance versus area coverage for a 2-D surface 
covered with sticks (dashed, left) and discs (solid, right). Critical density for sticks (aspect ratio 

= 100) is ∼5%, while that of discs is ∼67%. (b) Experimentally measured sheet conductance 

versus surface coverage for nanotube films. It follows the expected power law with a critical 
exponent of 1.31 (taken from ref. 16) 

 

a) b) 
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For the random distribution of nanotubes in a conductive stick model,124 the critical density is 

given by:119 

   
   

  
      (1.11) 

Here,   is the length of the conductive stick, which is a nanotube in our case. Equation 1.11 

suggests that using longer nanotubes will decrease the critical density to achieve the percolation 

threshold, which will enhance the optical transmittance of the film. The critical exponent   

depends only on the space of percolation, i.e. whether it is two- or three-dimensional. For 

densities greater than   , the critical exponent   become density-dependent and approaches 1 

for films with     . 

1.4.2.2 Geometrical factors affecting SWNT films 

The resistance of SWNT networks has a strong dependence on the length of the nanotubes. 

Whereas long nanotubes are of advantage to surmount the percolation threshold, the resistance 

of an individual nanotube increases with its length when it is longer than the carrier mean free 

path (Fig 1.14).125-128 Length independent resistance values are observed for tubes of length 

smaller than the carrier mean free path.  

  

Figure 1.14. Resistance values for SWNTs of varying length. (taken from ref.16) 
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The limiting resistance of 6 kΩ observed in figure 1.14 corresponds to the quantum resistance 

of a wire with ballistic transport. These results conclude that the mean free path of charge 

carriers in nanotubes are possibly in the range of 1 µm.129  

Inter-tube junction resistance between SWNTs were measured to be in the range of 200-400 

kΩ for metal-metal tube junctions, 1MΩ for semiconducting-semiconducting tube junctions and 

100 MΩ for metal-semiconducting tube junction, at low bias voltages in the range of mV.120 The 

effect of length of nanotubes on the electrical conductivity of network films has been studied 

experimentally.130 Nanotubes were subjected to high-powered sonication to debundle them to 

create tubes of controllable length, and later deposited to form a SWNT network film. It was 

established experimentally that the electrical conductivity of the film scales with the length of 

thenanotubes as follows:130 

             (1.12) 

where,   is the average length of SWNTs or bundles present in the nanoscale network film. The 

average bundle size of SWNTs will also play a role in final electrical conductivity of the films, as 

it has been reported that smaller bundles have higher conductivity.131 This effect is likely due to 

the fact that most of the current flows through the surface of the nanotube bundles, creating 

non-conducting parts at the center of the bundles. However, the length of the non-conducting 

parts in the center of the nanotube bundles decreases with respect of decreasing average 

bundle length, which results in higher conductivity.   

1.4.2.3 Temperature effects on SWNT films 

The effect of temperature on the electrical conductivity of SWNT films has been investigated in 

experiments with films of various nanotube densities.132-134 At nanotube densities above the 

percolation threshold, the electrical conductivity of the films is not significantly influenced by the 

temperature. However, for films with lower nanotube density or a density close to the percolation 

threshold, a strong dependence of the electrical conductivity on temperature was observed. At 
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lower nanotube densities, the conducting networks are expected to contain some 

semiconducting SWNTs which leads to temperature-enhanced charge transport processes. At 

higher nanotube densities, all-metallic SWNT conduction pathways are feasible that nullify the 

effect of temperature on charge transport processes. From the point of view of applications, the 

temperature-dependent behavior is of interest in some  cases where SWNT films serve as 

semiconducting channels in transistor devices. For other applications aiming at high 

conductivities (which require high nanotubes densities), the effect of temperature on the 

electrical conductivity of the films is not important. 

1.4.3 Doping of SWNT films 

Chemical doping of SWNT thin films enhances the electrical conductivity of the films by 

increasing the number of charge carriers. Doping in SWNTs can be employed in various ways, 

such as intercalation of electron donors or acceptors, molecular adsorption, covalent 

functionalization, non-covalent functionalization, substitutional doping, etc.135-137 p-type doping 

can enhance the electrical conductivity of SWNT network films dramatically. Commonly used p-

dopants are inorganic acids such as HNO3, H2SO4, and gases like NO2, Br2, molecules like 

Tetrafluorotetracyano-p-quinodimethane (F4TCNQ) and polymers, etc.19 Dopant molecules 

increases the number of charge carriers present in SWNT networks, which results in relatively 

higher electrical conductivity of SWNT films. Such type of doping is very common and useful for 

SWNT thin films, especially in applications as transparent conductors. The process of doping 

SWNT transparent conducting films are very simple, as it can be performed by simply 

immersing or dipping the films into a dopant solution for a specified duration. Figure 1.15 shows 

the dramatic decrease in sheet resistance of SWNT transparent films after p-doping by 

immersion in 65% HNO3 and SOCl2 for 30 minutes. 
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Figure 1.15. Effect of p-doping on the sheet resistance of SWNT conductive films. (taken from ref. 138) 

 

Sheet resistance of as-prepared films has decreased after p-doping with HNO3 to 187 Ω/□ from 

the initial sheet resistance of 300 Ω/□. The optical transmittance of the films evaluated in Figure 

1.15 was kept at 80%. As seen from Figure 1.15, the doping effect is not stable when the films 

were kept in ambient conditions. The stability of doping can be improved further by 

encapsulation or top-coating with another layer of material. For example, PEDT:PSS was used 

as such a material.138 

The effect of doping can further be evidenced by differences in the optical properties of the 

films. Disappearance or weakening of van Hove singularities of SWNT films in optical absorption 

spectra is due to the effect of p-doping. The p-doping creates states below the conduction band 

of semiconducting SWNTs, which reduces the total band gap between the van Hove 

singularities or the inter-band transitions. Figure 1.16 shows the typical example of the effect of 

doping on the optical properties of SWNT films in UV-Vis-NIR region.  
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Figure 1.16. Effect of p-doping on the optical properties of SWNT films. (taken from ref. 139) 
 

The bleaching or weakening of inter-band transitions due to p-doping is typical for SWNT films 

prepared from semiconducting tubes. However, SWNT films prepared from metallic tubes do not 

exhibit a similar effect on optical properties upon p-doping. Although the effective charge 

transfer due to p-doping is evidenced for metallic tubes from the reduction in sheet resistance of 

the films (Fig 1.16), the possible Fermi level shift due to the doping does not exceed the energy 

of the first metallic van Hove singularity. This results in substantially fewer holes injected into 

metallic SWNTs when compared to semiconducting SWNTs.139  

Raman spectroscopy is also an effective tool to characterize of effect of doping on the SWNTs 

films. The G-band frequency is used to monitor the effect of doping, as it is sensitive charge 

transfer. The G-band upshifts for electron acceptors (p-doping) and downshifts for electron 

donors (n-doping), as in graphite intercalation compounds.115 

1.4.4 Overview of SWNT transparent conductive films 

SWNTs can be processed to thin films of thickness ≈ 10 – 100 nm, which will have high 

electrical conductivity at reasonably high optical transmittance, due to the sparse structure of the 

nanoscale network. The optical transmittance and sheet resistance decrease with increasing 

film thickness. There are several processing methods available for the fabrication of SWNT 
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transparent conducting films. Spraying,140 slot coating,38 (Meyer rod) bar coating,38 spin 

coating,141 filtration & stamping,142 and dip coating are the methods for fabrication of SWNT 

TCFs, of which spraying and filtration methods are widely used in literature at the laboratory 

scale.  

1.4.4.1 Electrical and optical properties of SWNT TCFs 

As it was observed that the SWNTs are not reflective in nature (negligible amount of 

reflection34), the optical transmittance of the films is determined mainly by their absorption 

behavior.143 Optical transmittance of the film is inversely proportional to the nanotube network 

density, but is not affected by inter-tube resistance, length of the tube, diameter of the tube and 

doping. As the diameter of the tube is much less than the incident wavelength of light (  
 

  
) 

forward scattering will be a predominant process, which does affect the optical transmittance of 

the film significantly.  

 

Figure 1.17. Dependence of sheet resistance of SWNT films on 
nanotube network density. (taken from ref.38) 

 

The electrical conductivity (       of a film can be calculated as the reciprocal of the product of 

the sheet resistance (  ) and the thickness of the film ( ). The sheet resistance of the film 

decreases with increasing nanotube density (Fig 1.17). The optical transmittance varies 
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between 50 to 99% for a nanotube density range of 7 mg•m–2 to 300 mg•m–2; in this regime, the 

sheet resistance varies between 100 Ω/□ to 1000 Ω/□.38 This working range is suitable for 

transparent conducting films. Since the thicknesses of the films are on the order of < 50 nm for 

transparent conducting films, and as the measurement of such small thicknesses using 

conventional equipment are limited, the properties of the films are always described in optical 

transmittance vs. sheet resistance. For this purpose, the ratio of electrical conductivity to optical 

conductivity (
     

     
) is defined. For SWNT TCFs, the optical transmittance at a wavelength of 550 

nm,     , can be deduced from the following theoretical expression, which is widely used as 

figure of merit (it is found that the average value of the transmittance between 400 to 700 nm is 

practically the same as the transmittance at 550 nm):
119, 144

 

      (  
 

   
√

  

  

     

     
)
  

    (1.13) 

where    is the sheet resistance of the film and    and    are the permittivity and permeability 

of free space, respectively. 
     

     
 is the ratio of electrical and optical conductivity and can be 

obtained by curve fitting the experimental values of    vs.     . The higher 
     

     
, the better will 

be the performance of transparent conducting films. The critical values for    and      for 

touch screen applications will be described in the following section. 

1.4.4.2 Requirement for TCFs in different applications 

As transparent conducting films are used in many applications such as LEDs, touch panels, flat 

panel displays, solar cells, EMI shielding, etc., the requirements demanded from them also vary 

from case to case. This section represents a bird eye's view on the requirement for transparent 

conductors in different applications. The customer or the device producer might always want the 

best, typically 100% optical transmittance, 0% haze and 0% reflection. However, the functional 

requirements for specific devices are usually less demanding. The commonly used transparent 
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conductor, ITO, also has 90% transmittance, < 1% haze and reflection losses close to 10 % and 

in some cases the reflection loss exceeds 10%, and, for example, the optical transmittance 

required for touch screen sensors is 90% or more.35 whereas the sheet resistance required 

ranges from 50 to 300 Ω/□.35  

Most of the loss in optical transmission which occurs in current device systems is due to 

contributions from reflections, scatterings and additional absorptions. SWNTs exhibit very low 

reflection losses,34 as compared to ITO (Fig 1.18) or silver nanowires, another alternative for the 

generation of conducting films. Therefore, the focus in the fabrication of SWNT TCFs lies on 

improving their optical transmittance by generating appropriate nanoscale networks. 

 

Figure 1.18. Reflection spectra of ITO and SWNTs films on plastic substrate. (taken from ref.35) 
 

For solar cells and LEDs, the requirements are stricter: The optical transmittance should be 90% 

or more, the required sheet resistance should lie between 10 to 50 Ω/□.145 On the other hand, 

for large flat panel displays, the optical transmittance required is 80% (or more), but sheet 

resistance values between 100 to 125 Ω/□ are acceptable.146 For large touch panel 

applications, the optical transmittance required is ~85% at sheet resistance of 300 to 500 Ω/□. 
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However, the numbers given are subject to change, depending on the sensing capabilities in 

sensors, switching speeds in LEDs and operating frequencies of electronic devices.35  

Color neutrality of the films is another important parameter related to optical transmittance. 

SWNTs have advantages here, as ― corresponding to the fact that they are black in colour ― 

they absorb the entire range of photons in visible wavelength equally. In contrast, ITO films 

usually have a yellow tinge, whereas conducting polymer (PEDT:PSS) films normally have a 

blue tinge. The color neutrality of SWNT films is shown in figure 1.19.  

 

Figure 1.19. Colour coordinate values for ITO, conducting polymer and 
SWNT films on PET substrates. (taken from ref.35) 

 

Haze is another key parameter, which quantifies the amount of light scattered from the surface 

of films. A haze value of more than 1% is not acceptable for a transparent conductor with regard 

to any of the device applications mentioned above. ITO films usually have good haze values. 

Silver nanowires suffer from larger haze values due to the high surface roughness.35 The haze 
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values for SWNT films are in the range of 0.1 to 0.3 %, which is usually controlled by 

appropriate processing methodologies. 

1.4.4.3 SWNT TCFs – comprehensive summary of literature reports 

Since the year 2004, the potential of SWNT films as transparent conductor has been realized.116 

Several reports on the development of SWNT TCFs had already surfaced before 2004. The 

development has included improvements in the synthesis, purification, processing and 

dispersion of SWNTs. On the other hand, the development and optimization of processing 

methodologies for film fabrication and post-film processing for the improvement of film 

properties have also been studied. The effect of using different types of SWNTs (CVD, laser and 

arc evaporation grown SWNTs) on the performance of film properties has also been studied; arc 

evaporation-grown SWNTs tend to give relatively better electrical and optical properties for 

transparent conducting films.147  The effect of varying purification procedures of SWNTs with 

different types of oxidizing acids, the effect of dispersion quality and of fabrication methods 

(spraying, filtration, bar-coating, dip-coating, etc.), as well as the effect of post-film processes on 

the overall performance of SWNT TCFs have been reported. 

In general, the SWNT TCFs reported in literatures can be classified into three major groups: 

Group A:  TCFs prepared from SWNTs dispersed in a solvent medium 

Group B:  TCFs prepared from SWNTs dispersed in a solvent medium, subsequent 

washing with solvents to remove any unwanted impurities from the film 

Group C: TCFs prepared from SWNTs dispersed in a solvent medium, subsequent 

doping of the film with dopants 

SWNT TCFs of group A which have been reported in the literature are summarized in Table 1.1. 

The data summarized include  TCFs  from  SWNTs  which  underwent  a  purification process 

and also films from SWNTs that did not undergo the purification process. 
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In this set of TCFs, the highest value of  
     

     
 = 14 (  = 50 Ω/□ at     = 62%) was reported for 

TCFs which were deposited by direct growth on a substrate and then transferred to glass 

substrates using a “dry transfer technique”.
148

 The films were finally densified with ethanol. It is 

difficult to comment whether the densification process is only densify or also to remove the 

impurities. Although here the dry-transfer technique provides well-performing SWNT TCFs, 

other reports suggest that this technique is difficult to reproduce; the inconsistencies observed 

require further investigation and optimization as well as scale-up experiments.
149,150,151

 TCFs 

prepared by conventional wet-processing techniques (dispersing the SWNTs in a solvent 

medium and then fabricating films through subsequent processing methods) show, for example, 

a value of 
     

     
 = 5.3 (  = 420 Ω/□ at     = 85%) for a film prepared by spraying dispersions of 

SWNTs (synthesized by the CVD method) in dimethylformamide (DMF) onto glass 

substrates..
152 With a similar procedure, Lu et al. reported a value of 

     

     
 = 16,

153
 using 

dispersions of metallic SWNTs (which had been separated from the semiconducting tubes) 

which in addition underwent dry-air oxidation and 2.6 M HNO3 treatments. This additional 

process of oxidation in dry-air and in HNO3 significantly dopes the tubes, thereby resulting 

higher 
     

     
.  The majority of films prepared from SWNT-containing dispersions and measured 

directly without any post-processing has 
     

     
 < 4. This suggests that a superior film can only be 

achieved when additional processes are performed after fabricating the films. 
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Table 1.1: Properties of TCFs prepared from SWNTs dispersed in a solvent medium (Group A) 

 

 

S/No Type[a] Pre-process[b] Additive[c] Coating[d] [e] [e]  [e] Ref 

1 Arc HNO3 - Spray 1000 87 2.61 154 
2 - - PEDT Ink-jet printing 104 90 0.01 155 
3 - - PVA 

PSS 
Layer-by-layer 
assembly 

106 98 0 156 

4 Arc (purified) - Spray 
150 °C 

1200 80 1 157 

5 - - SDS Spray 
50 °C 

400 79 3.8 158 

6 CVD Refined - Spray 390 82 4.6 159 
7 HiPCO O2/Air 

225 °C/18 hr 
In CSA Dipping / 

Immersion 
150 °C 

471 86 5.1 160 

8 APCO161 
Aerosol 

- - Dry Transfer 80 65 9.8 162 

9 Aerosol 
CVD 

- - Dry Transfer 700 90 5 163 

10 HiPCO - SDS Spray 1100 80 1.45 164 
11 HiPCO - SDS Filtration 1200 85 1.85 164 
12 HiPCO - SDS Electrophoretic 

deposition 
1070 75 1.24 164 

13 HiPCO - SDS Dip Coating 106 88 0 164 
14 CVD - - Dry Transfer 50 62 14 148 
15 CAD Oxidation/Air 

225 °C/10 hr 
4M HNO3 
20 °C/2 hr 
Drying 
360 °C/3 hr 
 

- Spin coating 
60 °C/5min 

400 80 4 165 

16 Arc - In NMP Filtration 
130 °C 

925 87 2.8 166 

17 Arc -Purified- In DCE Dip Coating 475 82 3.8 167 
18 Arc -Purified- In DCE Spraying 475 72 2.2 167 
19 Arc -Purified- In DCE Dip Coating 

+ Spraying 
190 70 5.1 167 

20 HiPCO Dry Air 
200 °C/24 hr 
HCl (37%) 
80 °C/15 min 

SDS Filtration 320 65 2.5 122 

21 HiPCO Wet Air 
225 °C/18 hr 

In DMF Filtration 800 71 1.3 168 

22 HiPCO Wet Air 
225 °C/18 hr 
HCl + H2O2 

60 °C/4 hr 

In DMF Filtration 1600 70 0.6 168 

23 HiPCO Wet Air 
225 °C/18 hr 
H2SO4 + H2O2 

In DMF Filtration 1800 75 0.7 168 
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[a]. Type refers to the method in which the SWNT are produced. Arc – Arc evaporation 

method; PLV – Pulsed laser vaporization; CVD – Chemical vapor deposition; HiPCO – hi 

pressure carbon monoxide process.  

[b]. Purification conditions performed on the SWNTs, including temperature and time.  

[c]. Additive refers to the surfactant molecules added in the dispersion of SWNTs. (PEDT – 

poly(3,4-ethylene dioxythiophene):poly/4-styrenesulphonic acid(; PVA – polyvinyl 

alcohol; PSS – poly(4-styrene sulphonic acid); SDS – sodium dodecylsoulphate). Most of 

the dispersions mentioned above are prepared in water. Dispersion prepared in other 

solvents like CSA (chlorosulphonic acid) NMP (N-methyl pyrrolidone), DMF (dimethyl 

formamide), DCE (dichloroethane), o-DCB – orthodichlorobenzene, and 1,2-DCB (1,2-

dichlorobenzene) are mentioned specifically. 

[d]. Coating methods in which the film is fabricated, and annealed at a temperature.  

[e].    is the sheet resistance of the film in Ω/□,     is the optical transmittance of the 

film, and  
     

     
 is the ratio of electrical to optical conductivity calculated using equation 

(1.14). 

 

24 CVD - - Filtration 
Dry Transfer 

100 58 6 169 

25 PLV 30%O2+70%N2 

450 °C/3 hr 
HCl (37%) 

In DMF Spray 200 60 3.2 170 

26 CVD Dry air 
600 °C/30 min 

1,2-DCB Spray 420 85 5.3 152 

27 CVD -  Dry transfer 341 80 4.7 151 
28 CVD Dry Air 

300 °C/30min 
HNO3 (2.6M) 
130 °C/24 hr 

In DMF 
(Separated 
Metallic) 

Spray 
200 °C 

100 80 16 153 

29 CVD Directly grown - Dry Transfer 200 79 7.5 150 
30 Arc HNO3 Purified 

N2H4 + 
Graphene 
Oxide 
23 °C/7days 

- Spin Coating 
115 °C 

636 88 4.5 171 

31 Arc HNO3 Purified 
N2H4 + 
Graphene 
Oxide 
23 °C/7days 

- Spin Coating 
110 °C 

425 82 4.3 172 

32 CVD HNO3 (7M) 
130 °C/3 hr 

CTAOH 
p-TSA 

Meyer Rod 
50 °C 

1086 78 1.3 173 

33 CVD - - Dry Transfer 300 67 2.8 149 
34 Arc -Purified- in DCE Spray 

900 °C 
600 84 3.5 174 
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The second set of SWNT TCFs (group B) reported in the literature is summarized in Table 1.2, 

above. This compilation summarizes preparation and properties of films prepared from SWNT 

dispersions which underwent a subsequent washing process with solvents to remove excessive 

surfactants or impurities from the film. A high 
     

     
 value of 15.6 is reported for a film prepared by 

spraying a dispersion containing SWNTs (synthesized by arc evaporation) in water with sodium 

dodecylbenzene sulphonate as a surfactant onto glass substrates.
196 The TCF was washed with 

copious amounts of water to remove the SDBS surfactant molecules that are insulating by 

nature. Hecht et al. reported the film with the highest 
     

     
 of 65 in this group of SWNT TCFs, 

which was prepared by the filtration method.197 The SWNTs used were subjected to dry air 

oxidation and an acid purification process (which was not described) and then dispersed in 

chlorosulphonic acid (CSA). Filtered films were then washed with diethyl ether and water 

repeatedly. Similarly, Wu et al reported a high value of 
     

     
 = 32 for TCFs prepared by filtration 

of a SWNT dispersion containing TX-100 surfactant.116 The SWNTs used were purified by 

refluxing in concentrated nitric acid for 45 hours. Later the filtered films were washed repeatedly 

with water, acetone and methanol. These high values of  
     

     
  reported by Wu et al. and Hecht 

et al. could not be reproduced by others, suggesting that some of the key parameters went 

unknown during the processes. The majority of the reports in group B consistently report  
     

     
 

values between 5 to 12, implying that better performance of SWNT TCFs can only be improved 

if additional doping processes are implemented (vide infra). 
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Table 1.2: Properties of TCFs prepared from SWNT dispersions, with subsequent washing (Group B) 

 

 

S/No Type[a] Pre-process[b] Additive[c] Coating[d] Washing[f] [e] [e [e] Ref 

1 PLV - SDS Spray 
120°C 

H2O 300 90 11.6 175 

2 Arc HNO3 SDS Filtration Acetone 300 80 5.3 138 
3 Arc HNO3 PVP Wet 

coating 
H2O 1250 85 1.8 176 

4 Arc - SDBS Spray H2O 90 65 8.7 177 
5 - - DMSAPS 

Glycerol 
Filtration H2O 

Acetone 
200 82 9 178 

6 Arc O2 / Air SDBS Spray H2O 1250 70 0.8 179 
7 Arc HNO3 SDBS Spray H2O 600 83 3.2 179 
8 Arc - Na Cholate Filtration H2O 210 72 5 180 
9 HiPCO - SDS Spray H2O 600 90 5.8 164 
10 Arc Step Gradient 

Centrifugation 
SDS Filtration H2O 

Acetone 
246 75 5 181 

11 HiPCO - SDBS Meyer rod H2O + 
Ethanol 

210 64 3.6 182 

12 Arc - SDS Spray H2O 220 85 10.1 183 
13 Arc - SDS Spray 

100°C 
H2O 180 80 8.9 146 

14 Arc Purified Nafion Spray 
100°C 

H2O 430 84 4.8 184 

15 CVD - SDS Spray 
100°C 

H2O 7000 72 0.2 147 

16 HiPCO - SDS Spray 
100°C 

H2O 1070 83 1.8 147 

17 PLV - SDS Spray 
100°C 

H2O 500 77 2.7 147 

18 Arc - SDS Spray 
100°C 

H2O 202 72 5.2 147 

19 Arc - SDBS Spray 
100°C 

H2O 274 90 12.7 185 

20 Arc - SDBS Spray 
100°C 

H2O 200 82 9 186 

21 Arc - SDS Filtration H2O 250 82 7.2 187 
22 Arc HNO3 SDS Spray H2O 1000 80 1.6 188 
23 HiPCO Dry Air 

200°C/24hr 
HCl (37%) 
80°C/15min 

SDS Filtration H2O 100 70 9.7 189 

24 Arc HNO3 TX-100 Filtration Tris-HCl 900 82 2 190 
25 Arc HNO3 TX-100 Filtration Tris-HCl 

Acetone 
Methanol 
(50%) 

250 84 8.3 190 

26 HiPCO HNO3 TX-100 Filtration Tris-HCl 2700 83 0.7 190 
27 HiPCO HNO3 TX-100 Filtration Tris-HCl 

Acetone 
Methanol 

300 76 4.3 190 
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28 PLV HNO3 TX-100 Filtration Tris-HCl 900 86 2.7 190 
29 PLV HNO3 TX-100 Filtration Tris-HCl 

Acetone 
Methanol 

200 78 7.1 190 

30 Arc Dry Air 
200°C/10hr 
Aminopolycar
boxylic acid 
110°C/18hr 

in o-DCB Filtration Acetone 
H2O 

300 88 9.5 191 

31 CVD 2.6 M HNO3 

140°C/48hr 
Nafion Filtration Acetone 600 84 3.5 192 

32 CVD 2.6 M HNO3 

140°C/48hr 
SDS Filtration Acetone 

H2O 
870 81 2 192 

33 Arc Dry Air SDS Filtration H2O 100 60 6.5 193 
34 Arc -Purified- SDS Filtration H2O 

Acetone 
100 80 16 194 

35 HiPCO Density 
gradient 
separation 

SDS:SC 
3:2 (v/v) 

Filtration H2O 
Unsorted 
Metallic 
(0.9nm) 
Metallic 
(1nm) 

 
1500 
400 
 
200 

 
76 
79 
 
76 

 
0.9 
3.76 
 
6.4 

195 

36 Arc Dry Air SDBS Spray 
70°C 

H2O 250 91 15.6 196 

37 CVD Dry Air 
Acid purified 

In CSA Filtration DEE 
H2O 

60 91 65 197 

38 Arc -Purified- SDS Spray 
80°C 

H2O 300 80 5.3 198 

39 Arc - 5TN-PEG 
In Ethanol 

Spin 
Coating 

DCM 
H2O 

3000 80 5.3 199 

40 PLV 30%O2+70%N2 

450°C/3hr 

HCl (37%) 

In DMF Spray - 200 60 3.2 170 

41 HiPCO - SDS 
PEDT:PSS 

Spin 
Coating 
120°C 

Methanol 350 84 5.9 26 

42 Arc Dry Air  Sodiumde
oxycholate 

Layer-by-
layer; 
350°C 

H2O 1236 86.5 2 200 

43 HiPCO -Purified- Sodiumde
oxycholate 

Layer-by-
layer; 
350°C 

H2O 309 83.5 6.5 200 

44 Arc Dry Air O2 

425°C/2hr 

HCl (37%) 
23°C/12min 

SDS Spray 
100°C 

H2O 2100 85 1.1 201 

45 Arc Dry Air O2 

425°C/2hr 

HCl (37%) 
23°C/12min 
HNO3(65%) 

SDS Spray 
100°C 

H2O 956 85 2.3 201 
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[a]  to [e], as described in Table 1.1  

More surfactant molecules abbreviated in table 2: PVP – polyvinyl pyrrolidone; SDBS – 

sodium dodecyl benzene sulphonate; DMSAPS – 3-(N,N-dimethylstearylammonio)-

propanesulfonate; TX-100 – Triton surfactant; SC – sodium cholate; 5TN-PEG – 

quinquethiophene terminated poly(ethylene glycol); p-TSA – para toluene sulphonic 

acid, and CTAOH - cetyltrimethylammonium hydroxide. 

[f]. Describes the solvent with which washing process was performed on the fabricated 

SWNT TCFs, in order to remove the excessive surfactant molecules & impurities. 

 

Properties of the last set of SWNT TCFs (group C) are summarized in Table 1.3. These films 

were fabricated from dispersions of SWNTs that were pre-treated with strong oxidizing agents. 

Later the films were subjected to washing to remove unwanted insulating surfactant molecules, 

and finally to a doping process with dopants such as inorganic acids, graphene oxide, 

conducting polymers, or others. The 
     

     
 values of the majority of films reported in this group 

range from 15 to 20, which can be considered as sufficient for TCFs for several different 

applications. Nitric acid is the most common doping agent for SWNT TCFs. Kim et al. reported a 

     

     
 ≈ 32 for TCFs prepared from dispersions of SWNTs containing hydroxypropylcellulose 

(HPC) as surfactant.
204 Subsequently the film is washed with large amount of IPA to remove the 

insulating surfactant molecules and then doped with nitric acid for 30 minutes.  

 

46 CVD - SDS 
PEDT:PSS 

Filtration H2O 
Acetone 
Methanol 

80 75 15.2 202 

47 Arc Dry Air O2 

400°C/30min 

Argon 
1000°C/1hr 
O2 & Ar 
1000°C/1.5hr 

SDS Filtration NaOH 
 
H2O 
 
H2O 

540 
 
2465 
 
187 

80 
 
80 
 
80 

3 
 
0.7 
 
8.5 

203 

48 PLV HNO3 

130°C/45hr 
 

TX - 100 Filtration H2O 
Acetone 
Methanol 

30 70 32.2 116 

49 CVD HNO3 (7M) 
130°C/3hr 

CTAOH 
p-TSA 

Meyer 
Rod,50°C 

Ethanol 1086 78 1.3 173 
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Table 1.3: Properties of TCFs prepared from SWNT dispersions, prepared with doping (Group C) 

 

 

 

 

 

 

 

S/No Type[a] Pre-process[b] Additive[c] Coating[d] Post-process[f] [e] [e [e] Ref 

1 HiPCO HNO3(6M) 
80°C/12hr 

SDBS Spray 
120°C 

H2O 
12M 
HNO3/1hr 

125 81 13.5 205 

2 Arc - SDBS Spray 
110°C 

H2O 
12M 
HNO3/1hr 

125 86 19.2 206 

3 Arc - SDBS Spray 
110°C 

H2O 
12M 
HNO3+SOCl2/1
.7hr 

105 86 22.9 206 

4 Arc HNO3 SDS Filtration Acetone 
HNO3/30min 

 140 80 11.4 138 

5 Arc HNO3 SDS Filtration Acetone 
SOCl2/30min 

170 80 9.4 138 

6 Arc HNO3 SDS Filtration Acetone 
HNO3 +  
SOCl2/30min 

 115 80 13.9 138 

7 Arc HNO3 PVP Wet 
coating 

H2O 
Insitu 
PEDT:PTS 

350 85 6.4 176 

8 Arc O2/Air 
100°C/18hr 

- Spin 
coating 

IPA/ H2O  
4M 
HNO3+16M 
HNO3 / 12+0.5 
hr 
 

128 90 27.2 207 

9 Arc O2/Air 
100°C/18hr 

SDS Spray 
90°C 

IPA/ H2O  
4M 
HNO3+16M 
HNO3 / 12+0.5 
hr 

57 65 13.7 207 

10 Arc O2/Air 
100°C/18hr 

SDBS Spray 
90°C 

IPA/ H2O  
4M 
HNO3+16M 
HNO3 / 12+0.5 
hr 

68 70 14.2 207 

11 Arc H2SO4:HNO3 

23°C/3hr 
SDBS Dipping 

23°C 
H2O 
AuCl3/30 sec 

424 63 1.7 208 

12 Arc - SDBS Spray H2O;Graphene 
Oxide (GO) 

75 65 10.4 177 

13 HiPCO - SDBS 
TX100 

Mayer rod 9M 
HNO3/18hr 

100 53 5 209 

14 HiPCO - CMC Mayer rod 9M 
HNO3/18hr 

100 59 6.2 209 

15 Arc - CMC Mayer rod 9M 
HNO3/18hr 

100 81 17 209 

16 PLV - CMC Spray 
80°C 

4M 
HNO3/18hr 

50 75 24.4 210 
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17 PLV - CMC Spray 
80°C 

4M HNO3 + 
4M N2H4 / 24 
hr 

70 75 17.4 210 

18 - - DMSAPS 
Glycerol 

Filtration H2O, Acetone  
5M HNO3 

115 82 15.7 178 

19 HiPCO - PSSNa Layer-by-
layer 

H2O ;  
PEDT:PEG 

103 81.8 1.7 211 

20 Arc O2 / Air SDBS Spray H2O ; H2SO4 180 74 6.4 179 
21 Arc HNO3 SDBS Spray H2O ; H2SO4 155 73 7.1 179 
22 CVD - SDBS Spray H2O ; H2SO4 370 81 4.6 179 
23 Arc HNO3 SDBS Spray H2O ; 

H2O2:H2SO4[3:
1] 

385 90 9 179 

24 CVD NaOH 
170°C/5min 

Phenylene Filtration H2O  
HNO3(60%)/12
hr 

380 65 2.1 212 

25 Arc - Na Cholate Filtration H2O ; 
HAuCl4.3H2O 

80 78 17.8 180 

26 CVD Refined - Spray PEDT:PSS 220 81 7.7 159 
27 CVD H2SO4:HNO3 

125°C/25hr 
 LB 

Assembly 
GO 400 84 5.2 213 

28 - - In 
Hydrazine 

Spin 
Coating 

rGO 254 58 2.4 214 

29 CVD H2SO4:HNO3 SDBS Dip 
Coating 
120°C 

PEDT:PSS 173 55 3.1 215 

30 Aerosol 
CVD161 
 

- - Dry 
Transfer 

Ethanol  
NO2 (Gas 
phase)/10min 

84 90 41.5 162 

31  Aerosol 
CVD 

- - Dry 
Transfer 

Ethanol  
HNO3 
(65%)/1min 

110 90 31.7 163 

32 Arc Acid mixture 
125°C/- 

SDS Spray Conductive 
polymer 

100 82 18.1 216 

33 Arc Step Gradient 
Centrifugation 

SDS Filtration H2O, Acetone  
12 M 
HNO3/1hr 

152 75 8 181 

34 Arc Step Gradient 
Centrifugation 

SDS Filtration H2O, Acetone ; 
1hr 
12 M HNO3 + 
0.23M 
Triethyloxoniu
m 
hexachloroant
imonate 

63 75 19.3 181 

35 Arc HNO3 SDS Filtration H2O ; HNO3 400 60 1.6 217 
36 Arc HNO3 SDS Filtration H2O ;  

HNO3 & 
SOCl2/3hr 

150 62 4.7 217 

37 HiPCO HNO3 SDS Filtration H2O ; HNO3 200 40 1.6 217 
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38 HiPCO HNO3 SDS Filtration H2O ; 
HNO3 & 
SOCl2/3hr 

155 63 4.7 217 

39 HiPCO - SDBS + 
TX100 

Meyer rod H2O+Ethanol  
12M 
HNO3/Oleum-
0.5hr 

90 72 11.7 182 

40 Arc - SDS Spray H2O ; 
12M 
HNO3/1hr 

100 85 22.3 183 

41 Arc - SDS Spray 
100°C 

H2O ; 
12M 
HNO3/1hr 

70 80 22.8 146 

42 Arc Purified Nafion Spray 
100°C 

H2O ; 
12M 
HNO3/1hr 

130 84 15.9 184 

43 Arc - SDBS Spray H2O ;  
TEOS sol (top 
coat) 

208 90 16.7 185 

44 Arc - SDBS Spray 
100°C 

H2O ; 
HNO3/1hr 

84 82 21.5 186 

45 Arc - SDBS Spray 
100°C 

H2O ; 1hr 
HNO3 & 
AuCl3(spun) 

50 80 31.9 186 

46 Arc Dry Oxidation 
Acid treated 

- Spin 
Coating 
110°C 

UV-O3 
PEDT:PSS 

362 91 10.8 218 

47 Arc Dry Oxidation 
Acid treated 

- Spin 
Coating 
110°C 

UV-O3 
PEDT:PSS  
HNO3 /1hr 

91 92 48.6 218 

48 CVD HCl (37%) 
100°C/48hr 
Oleum 
120°C/96hr 
HNO3(67%) 
70°C/1hr 

- Filtration 
550°C 

HCl 
(37%)/2min 
HNO3(67%)/30
min 

133 90 26.2 219 

49 CVD - - Dry 
Transfer 

Direct 
Synthesis 

50 62 14 148 

50 Arc Oxidation/Air 
360°C/10hr 
4M HNO3 

20°C/2hr 
Drying 
360°C/3hr 

- Spin 
coating 
60°C/5min 

HNO3 /1hr 100 80 16 165 

51 CVD HCl (29%) 
100°C/10hr 

SDS Electro-
phoretic 
deposition 

2M HNO3/2hr 340 76 3.8 220 

52 Arc - Unknown Filtration PEDT:PSS 200 85 11.1 221 
53 Arc - In NMP Filtration 

130°C 
HNO3/10min 94 87 27.8 166 

54 - - SDS Dip 
coating 

H2O  
16M 

550 83 3.5 222 
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55 HiPCO Dry Air 
200°C/24hr 
HCl (37%) 
80°C/15min 

SDS Filtration HNO3 
(69.7%)/3hr 

250 65 3.1 122 

56 - - TX-100 
PEDT:PSS 

Dip 
Coating 
110°C 

H2O ; HNO3 66 80 24.2 223 

57 - - TX-100 Dip 
Coating 
110°C 

H2O ; HNO3 67 58 9 223 

58 HiPCO Wet Air 
225°C/18hr 

In DMF Filtration 1mM 
HAuCl3/10min 

325 71 3.1 168 

59 HiPCO Wet Air 
225°C/18hr 
HCl + H2O2 

60°C/4hr 

In DMF Filtration 1mM 
HAuCl3/10min 

600 70 1.6 168 

60 HiPCO Wet Air 
225°C/18hr 
H2SO4 + H2O2 

23°C/4hr 

In DMF Filtration 1mM 
HAuCl3/10min 

290 73 3.8 168 

61 Arc Dry Air SDBS Spray 
70°C 

H2O ; GO 215 90.7 20.5 196 

62 Arc SDS-Filtration 
Acetone Wash 

rr-P3HT 
In CHCl3 

Spin  
Coating 
120°C 

CHCl3; 

SOCl2/12hr 
80 
170 

72 
81 

13.2 
10 

224 

63 Arc Dry Air Porphyrin 
alkane in 
CHCl3 

Centrifuge 
Coating 

CHCl3;HNO3/3
0min 

600 90 5.8 225 

64 - -Purified- - 
(Metallic) 

Filtration Acetone; 
HNO3/45min 

76 65 10.3 139 

65 - -Purified- - 
(Semicon.) 

Filtration Acetone 
HNO3/45min 

60 73 18.4 139 

66 Arc - 5TN-PEG 
In Ethanol 

Spin 
Coating 

DCM, H2O; 
HNO3/1hr 
SOCl2/30min 
HNO3+SOCl2/9
0min 

 
200 
150 
110 

 
81.5 
80.5 
80 

 
8.8 
11 
14.5 

 
199 

67 CVD Dry air 
600°C/30min 

1,2-DCB Spray F4TCNQ 220 84 9.4 152 

68 DWNT H2SO4:HNO3 

3:1 v/v, 100°C 
SDS 
Nano Silver 

Meyer 
Rod 

5M HNO3 300 94 20 226 

69 CVD -  Dry 
transfer 

HNO3/1hr 210 87 12.4 151 

70 CVD -Purified- Sodium 
Deoxy-
cholate 

Layer-by-
layer, 
350°C 

H2O  
HNO3 
(Vapor)/30min 

324 82 5.6 227, 

228 

71 Arc Dry Air  Sodium 
Deoxy-
cholate 

Layer-by-
layer, 
350°C 

H2O  
HNO3 
(Vapor)/30min 

227 86.5 11 200 

72 HiPCO -Purified- Sodium 
Deoxy-
cholate 

Layer-by-
layer, 
350°C 

H2O  
HNO3 
(Vapor)/30min 

107 83.5 18.7 200 
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[a]  to [e], as described in Table 1.1  

Abbreviations listed in table 3, other than table 1 & 2: CMC – Carboxymethyl cellulose; 

rr-P3HT – region regular Poly(3-hexylthiophene-2,5-diyl); HPC – 

hydroxypropylcellulose; TFA – trifluoroacetic acid; ANI – Aniline; and TCFSI - 

bis(trifluoromethanesulfonyl)imide. 

[f]. Describes the post-process performed on the SWNT TCFs including washing, 

doping with different dopant molecules and doping duration. 

 

 

73 Arc Dry Air O2 

425°C/2hr 

HCl (37%) 
23°C/12min 
HNO3(65%) 
23°C/12min 
HCl(37%) 
23°C/12min 

SDS Spray 
100°C 

H2O  
HNO3 
(65%)/2hr 

472 85 4.7 201 

74 CVD 
MWNT 

TFA + Toluene 
ANI+H2SO4+ 
(NH4)2S2O8  

- Wet 
transfer 

H2O  
Camphorsulfo
nic acid 
(0.1M) 
m-Cresol 

 
106 
 
282 

 
89 
 
89 

 
0 
 
11.1 

229, 

230 

75 Arc Dry Air O2 

HNO3 
SDBS Spray H2O  

H2SO4 
(98%)/15min 

175 73 6.3 231 

76 PLV HNO3 (3M) 
120°C/16hr 

CMC or 
SDS 

Spray 
80°C 

H2O  
HNO3 
(4M)/18hr 

80 81 
(400-
1800) 

21.2 232 

77 Arc HNO3 Purified 
N2H4 + 
Graphene 
Oxide 
23°C/7days 
 

- Spin 
Coating 
115°C 

SOCl2 
vapor/15min 

240 86 10 171 

78 Arc HNO3 Purified 
N2H4 + 
Graphene 
Oxide 
23°C/7hr 
 

- Spin 
Coating 
110°C 

SOCl2 
vapor/15min 

103 82 17.5 172 

79 CVD HNO3 (7M) 
130°C/3hr 

CTAOH 
p-TSA 

Meyer 
Rod 
50°C 

Ethanol; SOCl2 480 78 3 173 

80 Arc HNO3 SDS Filtration 
100°C 

H2O; 
SOCl2/12hr 

160 87 16.3 233 

81 CVD - - Dry 
Transfer 

Ethanol; HNO3 90 78 15.8 149 

82 Arc -Purified- in DCE Spray 
900°C 

TFSI  40 84 51.7 174 

83 CVD - HPC Doctor 
blading 
300°C 

IPA  
HNO3/30min 

170 93.5 32.4 204 

84 Arc HNO3 TX – 100 Dip 
Coating 

H2O  
HNO3/1hr 

130 69 7.1 234 
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TCFs fabricated without surfactant molecules has  
     

     
 ≈ 50, reported by Kim et al.

174
 The 

SWNTs were purified and dispersed in dichloroethane, and the dispersions were sprayed onto 

glass substrates. Later, bis(trifluoromethanesulfonyl)imide  is deposited onto the film as dopant. 

The films without surfactant molecules perform better in terms of electronic properties. However, 

the adhesion between SWNTs and plastic substrates is facilitated by the presence of surfactant 

molecules, as the chemical affinity between SWNTs and plastic substrates is poor. However, 

when the amount of surfactant is as minimal as possible, improved adhesion properties go in 

hand with good film formation. 

Graphene oxide (GO) is another dopant mentioned in the literature which is relatively easy to 

handle compared to other corrosive inorganic acid dopants. The 
     

     
  for GO doped films are as 

high as ≈20, for TCFs prepared by spraying the SWNT dispersions containing SDBS 

surfactants.
196

 The films were washed with copious amount of water to remove the surfactants 

and further doped with GO to enhance the electrical properties.   

From the compilation of SWNT TCFs listed in the tables above (Table 1.1 to Table 1.3), it is 

clear that the performance of the films depends on the variations in process methodologies. 

Among them are:  

 type of SWNT 

 pre-treatment conditions to purify the SWNTs 

 surfactant used in dispersion 

 film fabrication method 

 washing processes to remove the surfactants from the films 

 dopant type and doping duration. 
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1.5 Summary 

The application of SWNTs in transparent conducting films for flexible electronics applications 

have been studied thoroughly. The production of SWNTs using different methods and the 

implications of the methods on the type of SWNTs produced (including compositions of metallic 

and semiconducting tubes) has been established. The influence of the structural properties on 

the electrical and optical properties of SWNTs and nanotube network films has been studied. 

The functional requirements for transparent conducting films for different applications such as 

sensors, LEDs, displays, solar cells, etc. are known. Different processes to fabricate TCFs from 

SWNT dispersions containing different surfactant molecules have been reviewed. This detailed 

information helps us to focus more on fundamental insights on the development of SWNT 

dispersion systems and its implications on the electrical and optical properties of TCFs 

fabricated thereof. 
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2. Controlled transformations in transparent conducting films 

fabricated from highly stable hydrophilic dispersions of SWNTs 

through surface charge manipulation and acid treatment conditions 

 

Preface 

This section of the thesis deals with the preparation and optimization of single wall carbon 

nanotube (SWNT) dispersions. SWNTs were treated at reflux temperatures with nitric acid and 

mixture of nitric acid - sulphuric acid for different treatment durations. The acid treatment is a 

purification process that is employed to remove the metal catalyst particles from the SWNTs. 

This process is expected to have an effect on the electrical and optical properties of transparent 

conducting films (TCFs) fabricated from the dispersions of purified SWNTs which contain 

poly(sodium 4-styrene sulfonic acid) as a stabilizer. We have studied and found that the SWNTs 

purified with nitric acid for four hours at reflux temperature provides the optimum electrical and 

optical properties for the TCFs. We have also studied the effect of the pH value of the dispersion 

of SWNTs on the electrical and optical properties of the TCFs. The sheet resistance and optical 

transmittance of TCFs fabricated from the dispersions with pH values ranging from ~3 to ~12 

were analyzed. We found that the TCFs fabricated from dispersions of higher pH value have 

better electrical and optical properties.  

This section will be submitted as an original research article. The authors are Bibin T. Anto, 

Stefanie Eiden, Hans-C. Schwarz, Andreas M. Schneider and Peter Behrens. Prof. P. Behrens 

and Dr. S. Eiden provided general advice on the direction of this work. Mr. H-C. Schwarz and 

Dr. A. M. Schneider actively participated in the discussions of progress of this work. 
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Abstract 

Single wall carbon nanotubes (SWNTs) are considered to be one of the potential candidates for 

the production of transparent conducting films (TCFs), which can be used in many applications, 

e.g. touch panels, displays, and polymer solar cells. SWNTs are flexible, which makes them 

superior over the commonly used Indium Tin Oxide (ITO), a brittle material. Therefore, SWNTs 

may be used in flexible electronic applications. The absorptive nature of carbon in SWNTs at all 

optical wavelengths, brings in better colour neutrality to SWNT based TCFs than ITO and 

conducting polymers. However, better understanding on processing and fabrication of thin films 

are essential to drive this technology to industrial scale. Our work described in here, focused on 

effect of purification conditions of SWNTs on the quality of TCFs and the effect of pH value on 

the stability of the dispersions and TCFs. Here, we reveal that the figure of merit 
     

     
 for such 

films can be increased by the factor of 2, when the pH of the SWNT dispersion increases. We 

also report the surface charge manipulated transformations in transparent conducting films 

fabricated from SWNT dispersions of different pH values. 

Keywords  

Single wall carbon nanotubes – SWNTs – purification – pH – transparent conductors  

Introduction 

Transparent conducting films (TCFs) are integral part of various electronics applications, e.g.  

organic light emitting diodes, displays, photovoltaic cells and touch panels. Currently, indium tin 

oxide (ITO) is the commonly used material in such applications due to its excellent properties of 



76 Results and Discussion 
 

 

optical transparency and electrically conductivity. Flexible electronic devices[1, 2] are receiving 

growing attention  as the next generation applications, but the use of ITO as a TCF in such 

applications is jeopardized due to its brittle nature.[3] Moreover, the lack of availability and the 

increasing price[4] of ITO is driving the materials research towards alternate TCFs, including 

conducting polymers,[5-8] composites of conducting polymers and carbon nanotube,[9-11] 

transparent conducting oxides (TCOs),[12] metal nanowires,[13] graphene,[14, 15] and  single wall 

carbon nanotubes (SWNTs).[16-19] SWNTs are more attractive due to their availability in 

abundance. In addition, they can be processed in aqueous solutions at low temperature, which 

is a key requirement for the application for the fabrication of thin films on low cost plastic 

substrates. Moreover, the work function - the minimum amount of energy required to remove an 

electron from an atom at the surface of a solid state compound - of SWNTs (4.5 - 5.1 eV) is also 

in the comparable range with that of ITO (4.4 - 4.9 eV).[20]  The work function is a key parameter 

in defining energy level alignment of multilayer electronic devices.  

Though vacuum deposited ITO films on glass substrates exhibit low sheet resistance at high 

optical transmittance, the performance of wet coated ITO films on plastic substrates is similar or 

inferior compared to SWNT TCFs.[21, 22]  SWNTs applied on flexible substrates retain their 

electrical conductivity after number of cycles in bending tests.[23] Therefore, they are more 

suitable for applications in flexible electronics. An additional advantage of SWNTs is their colour 

neutrality,[24] since they absorb light all visible wavelengths. 

The fabrication of TCFs from SWNTs involves several processing steps starting with the 

synthesis of SWNTs, e.g. via chemical vapour deposition,[25] pulsed laser evaporation,[26] the 

HiPCO process,[27] electric arc-discharge method,[28]  followed by purification of SWNTs with 

strong oxidizing inorganic acids (mainly to remove the metal catalyst). The purified SWNTs have 

to be dispersed in suitable dispersing media to be utilized in film deposition processes, e.g. 

doctor-blading, dip-coating, spray-coating and spin coating.  The last step is, doping of TCFs by 

immersing in inorganic acids in order to increase the film performance. [18]  Since this extensive 

procedure from the pristine SWNTs to the final TCF product exhibits a number of alternative 

routes, it is necessary to understand the complex mechanisms that influence the electrical and 

optical properties of the films. On industrial applications, the stable and reliable performance of 

TCFs fabricated from SWNTs is of great concern – especially to scale-up the processes. This is 

a major issue as described in the following example. Saran et al. reported TCFs with thickness 

of about 1µm fabricated from dispersions of SWNTs (synthesized by pulsed laser evaporation) 
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exhibits sheet resistance     ~ 1000 Ω/□ at an optical transmittance of ~ 85 %.[29] In contrast, 

Wu et al. reported TCFs with thickness 50 nm fabricated from dispersions of SWNTs (also 

synthesized by pulsed laser evaporation) exhibits    ~ 30 Ω/□ at an optical transmittance of ~ 

70 %.[30] Values reported by Wu et al are consistent with subsequent literature on SWNT TCFs, 

considering variations in nanotube type and processing methodologies. However, insights on 

issues such as – important details of effect of purification conditions of SWNTs; influence of pH 

of SWNT dispersions – were not considered in the previous reports.  

Here, we focus on the effect of purification conditions of SWNTs and the performance of TCFs 

fabricated from dispersions of purified SWNTs. We report in detail about the effect of surface 

charges on the performance of TCFs prepared from SWNT dispersions of different pH and 

discuss the underlying principles. The choice of pH value for the SWNT dispersion depends on 

mainly two issues: (1) any aggregation from the dispersions has to be prevented. This holds 

especially true with regard to time from the dispersion of SWNTs; (2) the films fabricated from 

such dispersions should have reproducibility of both, high optical transmittance and low sheet 

resistance. TCFs, reported in this paper are characterized by figure of merit  
     

     
, where       

and       are the electrical and optical conductivities of SWNT films, respectively, which can be 

obtained from the following equation: [31, 32]  

 

      (  
 

   
√
  

  

     

     
)

  

 

where, 

     is the optical transmittance of TCFs at a wavelength of 550nm (we observed that the 

average value of the transmittance between 400 to 700 nm is same as the transmittance at 

550nm).     is the sheet resistance of the film,    and    are the permittivity and permeability of 

free space, respectively. 
     

     
  is the ratio of electrical-to-optical conductivity and can be obtained 

by curve fitting the experimental values of    vs.     . In general, the larger the value of  
     

     
  

the better will be the performance of the TCF. We, report the effect of purification conditions of 

SWNTs and influence of the pH of SWNT dispersion on the figure of merit  
     

     
  of the 

corresponding SWNT TCFs. 
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Experimental 

Purification of SWNTs and preparation of dispersion: SWNTs, produced by arc-discharge 

method, were purchased from Fraunhofer IWS, Dresden. 20 g of SWNTs were purified by 

refluxing in 200 mL HNO3 (65%) for 2 hours, in a round bottom flask. The mixture was allowed 

to cool down to room temperature, and was washed with 2 L of deionized (DI) water. At pH > 1 a 

portion of SWNTs become dispersible (IEP ~ 1.0, see fig. 4). The residue was collected 

separately; supernatant was acidified to pH < 1.0 to precipitate the suspended SWNTs and 

combined with the residue obtained before.  During the process, SWNTs were kept in wet 

conditions (with minimum amount of water) as the dry SWNTs tend to agglomerate and 

therefore difficult to redisperse in water. Afterwards, the acid treated SWNT mixture was 

dialyzed against DI water until the pH of DI water becomes 7.0 in order to remove all excess 

ions and impurities. Finally, the purified SWNT mixture was sonicated in DI water using Branson 

Sonifier 450 ( 80W, 30 min) to produce a better dispersion. The mixture was then centrifuged 

(3500 rpm/30 min) to remove undispersed materials. Then the supernatant – the SWNT 

dispersion – was collected and used for further characterization and film fabrication. Dispersions 

of SWNTs treated at different conditions (HNO3:H2SO4::3:1 v/v for 4 hours, HNO3 for 3 to 6 

hours) were prepared in a similar way by treating SWNTs in respective acids for corresponding 

durations as summarized in Table 1. Typical concentration of dispersions used for testing and 

characterization were 0.2 to 0.3 wt% SWNT. The pH of the dispersions was modified by 

dialyzing against liquid ammonia and DI water, as needed; dispersions of pH > 8 were modified 

by adding few drops of liquid ammonia to the dialyzed SWNT dispersions. 

Fabrication of transparent conductive films (TCFs):   TCFs were fabricated on glass slides 

using the Meyer rod coating method (doctor blading). The films were annealed at 120 ± 10 °C 

for 1 min. Multilayered coatings were prepared to reach low sheet resistance values (< 500 

Ω/□), typically 3 to 4 layers. All the data were repeated 2 to 3 times to confirm the 

reproducibility. Films were reproduced in large area (ISO A4 size) poly carbonate sheets, which 

were O2 plasma treated prior to doctor blading. 

Electrical and optical properties:  Sheet resistance of TCFs was measured using 2 point 

probe method, across square area, i.e. 1 x 1 cm2, with a probe dimension of 1 cm2. The 

standard error, if any, involved in the measurement of sheet resistance is uniform throughout all 

the measurements. Typically, four to five measurements were taken for each data point and the 

average of the measurements was calculated. Standard deviation of the data points was 
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calculated to be ≤ 7%. Optical transmittance of the TCFs was recorded using Cary 50 UV-Vis 

spectrometer (Varian). Thicknesses of the films were measured using Dektek 150 profilometer 

(Veeco Instruments). 

X-ray Photoelectron spectroscopy (XPS): Core-level and survey X-ray photoelectron spectra 

were acquired on a VersaProbe spectrometer (Physical Electronics) at a base pressure of less 

than 10−8 mbar using monochromatic Al Kα X-ray photons (1486.68 eV) irradiating at 45° 

relative to electron analyzer entrance. The photo-electrons were analyzed by a concentric 

hemispherical analyzer operated at constant pass energy of 29.35 eV for C1s & O1s core-level 

spectra, 117.4 eV for N1s & S2p core-level spectra, and 187.5 eV for survey spectra. The 

photoemission angle (θ) was set to 54.7°. The X-ray gun was operated at 50 W with a spot size 

of 200 µm scanning an area of 0.4 x 0.8 mm2. Sample charging was avoided by using Indium 

substrate to provide a conductive ground; charge neutralization was not necessary.  Core-level 

spectra were processed to give atomic stoichiometry values using Multipak 9.1 software that 

accounts empirical sensitivity factors taking into account photoionization cross sections, inelastic 

mean free paths, and the spectrometer intensity-energy response functions. 

Raman spectroscopy:  Raman spectra of SWNT films were recorded using  Induram (Horiba 

Jobin-Yvon) spectrometer, coupled with confocal laser scanning microscope. Excitation 

wavelength used for the all the measurements is 488 nm. Films for the measurements were 

prepared by drop-casting corresponding SWNT dispersions on to a glass slide and annealed at 

120°C/ 1min. 

Zeta potential:  Iso electric point (IEP) determination experiments on purified SWNTs were 

performed on Malvern Zetasizer 3000HSa. In order to have higher ionic strength, 0.2 g SWNT 

dispersion (0.3 wt%) was dispersed in 10 g of 1mM KCl. Measurements on similar concentration 

of SWNTs in DI water was also performed for comparison. 

Results and discussion 

Purification by refluxing in nitric acid was performed in order to remove the metal catalyst 

particles present in SWNTs. The purification procedure also oxidizes the SWNTs which 

introduces various functional moieties on the surface, e.g. –COOH, -OH, -C=O.[33, 34] After 

purification by refluxing in nitric acid (65%) for two to six hours, SWNTs were dispersed in water. 

The optimum reflux time was determined based on the performance analysis of TCFs with 

respect to acid treatment conditions of SWNTs with nitric acid. The optimum reflux duration was 
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determined by  
     

     
  of TCFs, fabricated from the dispersions of SWNTs under different acid 

treatment conditions. The dispersions prepared from these purified SWNTs are used to fabricate 

transparent thin films by Mayer rod coating method. 

Table 1: Summary of properties of SWNT dispersion and TCFs in this work. 

 

[a] The subscript in the notation represents the acid, used for the purification and the amount of 

time for which the purification/reflux was performed  with SWNTs 

[b] Acid used to reflux with SWNTs, during the process of purification. The temperature, during the 

reflux was maintained at 130 ± 5 °C.  

[c] The ratio of HNO3-to-H2SO4 is kept at 3:1 v/v. Concentrations of HNO3 and H2SO4 used in this 

work are 65% and 98%, respectively, unless otherwise stated.  

[d] The reflux temperature for the purification of SWNTs is kept at 130 ± 5 °C, throughout all the 

experiments listed above. 

[e] pH of the SWNT dispersions were modified (from acidic-to-basic) by dialyzing against 1mM 

NH4OH and (or)  DI water, as desired.  

[f] 
     

     
  of SWNT TCFs were calculated by curve fitting the experimental data for    vs.       of of 

various thin films fabricated from the dispersions listed above.  

[g] SWNT dispersions were prepared without any polymeric stabilizer such as PSSNa, which was 

used in all the dispersions except S/No. 7. Dispersions were stable for more than a year at 

ambient conditions. 

 

S/No Dispersion Notation [a] Acid [b] 
Reflux duration 

(hrs) [d] 

pH of 

Dispersion [e] 
 

1 SWNT(HNO3/2hr) HNO3 2 3.23 3.1 

2 SWNT(HNO3/3hr) HNO3 3 3.1 3.5 

3a SWNT(HNO3/4hr) HNO3 4 3.6 4 

3b SWNT(HNO3/4hr) HNO3 4 6.28 4.5 

3c SWNT(HNO3/4hr) HNO3 4 10.3 5.05 

4 SWNT(HNO3/5hr) HNO3 5 3.3 4.0 

5 SWNT(HNO3/6hr) HNO3 6 3.4 4.0 

6a SWNT(HNO3/H2SO4) HNO3:H2SO4
[c] 4 2.82 2.6 

6b SWNT(HNO3/H2SO4) HNO3:H2SO4
[c] 4 7.7 3.0 

6c SWNT(HNO3/H2SO4) HNO3:H2SO4
[c] 4 9.88 3.5 

7a SWCNT(HNO3/4hr)[g] HNO3 4 3.6 4 

7b SWCNT(HNO3/4hr)[g] HNO3 4 11.6 6 

[f] 
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Figure 1: Electrical and optical properties of SWNT TCFs with respect to acid treatment conditions. (A) TCFs 
fabricated from 2 to 4 hour HNO3 treated SWNT dispersion together with TCFs from HNO3:H2SO4 [3:1 v/v] treated 
SWNT dispersions. (B) TCFs fabricated from 4 to 6 hours HNO3 treated SWNT dispersions, plotted separately for 
better clarity. Inset shows the performance of TCFs of HNO3 treated films from 2 to 6 hours. 

First, the properties of TCFs fabricated from the acidic dispersions of SWNTs were examined. 

Substantial difference in  
     

     
  of TCFs fabricated from the dispersions of SWNTs treated with 

nitric acid from two to six hours have been observed (Fig. 1A, Table 1 S/No. 1, 2 & 3a). 
     

     
  = 

3.1 is observed for the films prepared from SWNT(HNO3/2hr) dispersions,  and it has increased 

to 3.5  for SWNT(HNO3/3hr) films. TCFs fabricated from SWNT(HNO3/4hr) from acidic 

conditions showed the maximum  
     

     
 of 4. Longer  reflux durations of SWNTs did not improve 

the 
     

     
 (Fig 1B, Table 1 S/No 3a, 4 & 5). The upward trend on the  

     

     
   of SWNT TCFs can be 

attributed to the increase in doping level by nitric acid with respect to increase in reflux duration. 

It is known from the literature that the SWNT films post-treated with HNO3 help to improve the 
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electrical conductivity through doping.[16, 35-39] Shin et al reported that the TCFs fabricated from 

dispersion of SWNTs in N-methylpyrrolidone solvent showed a significant decrease in    from 

~1400 Ω/□ to ~ 100 Ω/□ at a given      of ~ 90%, after the TCFs were immersed in HNO3 for 

10 minutes.[40] Though the SWNT TCFs described in this report were not doped immersing the 

films in inorganic acids, analogous effect of doping is achieved through purifying the SWNTs in 

inorganic acids.  X-ray photoelectron spectroscopic (XPS) investigation on our SWNTs is 

consistent with these findings as the stoichiometry changes from C94.65O4.99 for the original 

compound to C94.65O4.99N0.36 for SWNT(HNO3/2hr), C94.72O4.85N0.40 for SWNT(HNO3/3hr), 

C94.84O4.77N0.44 for SWNT(HNO3/4h r) and C93.54O5.91N0.55 for SWNT(HNO3/6hr). 

 

 

 
Figure 2: (A) C1s core-level x-ray photoelectron spectra of SWNT at different reflux durations. Inset shows the 
down-shift in C1s binding energy, attributed to oxidation & doping of SWNTs.  (B) Raman spectra of SWNTs that 
underwent different acid treatment conditions. Excitation wavelength used for the measurement is 488 nm. The value 
after semi-column in legends are, disorder (D)-to-tangential (G) mode ratio. (C) C1s binding energy levels of SWNTs 
with respect to acid treatment durations. (D) Behavior of tangential mode with respect to acid treatment duration.  
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The binding energy of 284.6 eV for C1s core level spectra for SWNT(HNO3/0hr) has been 

downshifted by 0.4 eV for SWNT(HNO3/6hr) samples (Fig. 2A and C). The downshift in binding 

energy of C1s core-level spectra is possibly due to the the oxidation induced functional moieties 

and predominantly due to the doping effects from nitrogen containing molecules. [40, 41] The 

presence of nitrogen detected from N1s core level spectra has increased from 0.36-%, for 

SWNTs refluxed in nitric acid for 2 hours, to 0.44-% for SWNTs refluxed in HNO3 for 4 hours 

(see Table 2). The increment in presence of nitrogen suggests that the doping level also 

increased with respect to time. This could be a possible reason for the increase in 
     

     
  of TCFs 

prepared from dispersions of SWNTs refluxed in HNO3 with increasing reflux time to 4h. Similar  

     

     
  is observed for TCFs prepared from dispersions of SWNTs refluxed in HNO3 for 5 and 6 

hours (Table 1, S/No. 4 & 5). The XPS investigation on SWNT(HNO3/6hr) shows the 

stoichiometry of C93.54O5.91N0.55. Interestingly, the level of nitrogen in SWNT(HNO3/6hr) samples 

have increased to 0.55-%, and the oxygen containing moieties to 5.91-%. Deconvolution of C1s 

core-level spectra shows that the total amount of sp2 hybridized carbon (80.93-%) due to the 

longer oxidation time in HNO3. Thus, the increased doping effect from the nitrogen containing 

molecules is counter-balanced by the reduction in sp2hybridized carbon atoms that contributes 

to electrical conductivity. This could be the possible reason for no increase in 
     

     
  beyond 4 

hours of reflux duration of SWNTs with HNO3.  Improving  
     

     
   of SWNT TCFs through post-

treatment by HNO3 will increase the process complexity with regard to scaling up to roll-to-roll 

fabrication methods. 

 
Figure 3: Electrical and optical properties of TCFs fabricated from same dispersion of SWNTs with PSSNa, 

underwent 4 hours of HNO3 treatment, at different pH conditions. 
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Table 2: Summary of x-ray photoelectron spectra of SWNTs described this work. 

 
[a] Deconvoluted values of C1s core-level spectra obtained using Multipak 4.1 

[b] Deconvoluted values of N1s core-level spectra obtained using Multipak 4.1 

Raman spectroscopy also supports the possible oxidation and doping levels of SWNTs by HNO3 

treatment reached their maximum at 3 – 4 hours reflux duration (Fig. 2B). We noticed that the 

disorder (D)-to-tangential (G) mode ratio, calculated from integrated absorption cross-sections 

of Raman spectra of SWNTs reached its maximum of 0.89 in 3- 4 hours. The D-to-G ratio has 

slightly increased to 0.9 for SWNTs refluxed in HNO3 for 5 hours. Evidence of p-type doping in 

SWNTs with respect to reflux duration is supported by the upshift in tangential mode (G), which 

is due to the softening of lattice, due to the electron withdrawing nitrogen containing moieties 

sorbed onto the SWNTs (see fig 2D). Though the upshift in G has increased linearly with 

respect to reflux duration of SWNTs in HNO3, oxidation time longer than 4 hours could 

significantly reduce the amount of sp2 hybridized carbon atoms. The doping levels of SWNTs 

were tried to increase by employing a more strongly oxidizing acid H2SO4 (98%) in combination 

with HNO3(65%);  the ratio of HNO3 to H2SO4 is kept 3:1 v/v. The combination of 3:1 v/v 

corresponds to ~ 2.5:1 molar ratio of HNO3-to-H2SO4, which is used to introduce nitro (-NO2) 

groups on aromatic rings through electrophilic substitution reactions. We assumed that this 

mixture could increase the oxidation and doping on SWNTs through which the sheet resistance 

of TCFs can be brought down. After the treatment, the oxidation levels and presence of nitrogen 

in the SWNTs increased, but the  
     

     
  of TCFs fabricated from these SWNT dispersions 

decreased. The  
     

     
  of SWNT(HNO3/H2SO4) films dropped to 2.6 compared to 4 for 

SWNT(HNO3/4hr) films (Fig.1A, Table 1 S/No. 3a & 6a).  XPS analysis suggests that the sp2 

hybridization of carbon atoms in SWNT(HNO3/H2SO4) have been damaged more as the 

combination of H2SO4 and HNO3 is more strong  (Table 2 S/No 4 & 6). This could be a possible 

reason for the reduction in  
     

     
 for SWNT(HNO3/H2SO4) compared to SWNT(HNO3/4hr) films. 

 

S/No Notation C1s[a] 
O1s 

N1s[b] 
S2p 

C=C C-C O-C=O π-π ∑C1s NO C=N ∑N1s 

1 SWNT(HNO3/0hr) 82.42 2,39 2,50 9,19 96,5 3,5 - - - - 

2 SWNT(HNO3/2hr) 83.50 3,81 2,68 4,66 94,65 4,99 0,22 0,14 0,36 - 

3 SWNT(HNO3/3hr) 84.50 3,34 2,64 4,68 94,72 4,85 0,27 0,13 0,40 - 

4 SWNT(HNO3/4hr) 85.71 1,72 2,64 4,78 94,84 4,77 0,25 0,19 0,44 - 

5 SWNT(HNO3/6hr) 80.93 4.03 4.46 4.12 93.54 5.91 0.35 0.20 0.55 - 

6 SWNT(NO3/H2SO4) 82.0 4,20 2,90 4,57 93,67 5,76 0,25 0,23 0,48 0,10 
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During the purification of SWNTs by refluxing with oxidizing acids some of the sp2 carbon atoms 

are transformed to C=N structures (for e.g. pyridinic) that adds key features in enhancing the 

surface charge induced transformations in SWNT TCFs. The transformation of sp2 carbon 

atoms to C=N structures are detected from the evolution of new peak centered around binding 

energy levels (~ 401 eV) of N1s core-level XPS spectra of SWNTs.[35]  C=N signature has 

increased from 0.14 at.-% to 0.20 at.-% for SWNTs refluxed by nitric acid from 2 to 6 hours 

(Table 2 S/No 2-5). Addition of different functional groups, due to oxidation, add further 

possibilities to improve the 
     

     
  of TCFs. 

 

Figure 4: IEP measurement: Zeta potential of SWNTs that underwent 4 hours HNO3 treatment. 

In order to determine the effect of pH of SWNT dispersions on the performance of TCFs, the pH 

of SWNT(HNO3/4hr) dispersions was adjusted by dialysis with DI water and liquid ammonia, as 

required.   
     

     
   of TCFs can be increased by adjusting the pH value of the SWNT dispersions 

from acidic to basic. TCFs coated from the dispersion of SWNT(HNO3/4hr) of pH 3.6 (acidic), 

show a  
     

     
  of 4.0. 

     

     
  of TCFs is increased to 4.5 for the films when the pH of the dispersion 

is adjusted to 6.28, and increased further to 5.05 when the pH of the SWNT(HNO3/4hr) 

dispersion is elevated to 10.3 (Fig. 3, Table 1 S/no. 3). 

Zeta potential (, mV) of SWNTs(HNO3/4hr) dispersions increases with respect to increase in 

pH. We notice that  has increased from ~ 40 mV for the pH between 2 and 4 to ~ 50 mV for the 

pH between 4 and 8 (Fig. 4).  for the SWNTs(HNO3/4hr) dispersions of pH beyond 8 are 

centered at around 55 mV. These transformations in  might be as well interpreted as a result of 

the deprotonation of functional moieties, which increase the surface charge on the SWNTs. We 
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propose the following hypothesis for this effect: At different pH values the functional moieties 

present in SWNTs – e.g. carboxylic (      ), pyridinic (      ) and phenolic groups 

(       ) are deprotonated.[42-47] This deprotonation results in increase of the electrostatic 

repulsion, leading to manipulation of the spatial increment between the adjacent SWNTs. It is 

known from literature that the force between equally charged cylindrical objects of equal radii is 

repulsive, and the volume between the two cylindrical objects will have the high concentration of 

ions of opposite charges. [48, 49] The high concentration of ions of opposite charges resulting in 

strong electrostatic repulsion leads to an increased distance between cylindrically shaped 

SWNTs. Larger spacing between SWNTs increases the transmission of photons through the 

TCFs. These effects would possibly causes an increase in light transmission at a given sheet 

resistance of TCFs and therefore to a higher 
     

     
  values.    In other words, due to the increased 

spacing between SWNTs, the optical transmittance of SWNT(HNO3/4hr) films rose from 77.5% 

to 82% at a given sheet resistance of 350 Ω/□ (Fig. 3). 

Table 3: Comparison of properties of TCFs fabricated from SWNT dispersions at different pH 

 

[a] pH of the SWNT dispersion used to fabricate the TCFs; SWNTs used here are 

SWNT(HNO3/4hr). 

[b] Sheet resistance of TCFs fabricated from SWNT(HNO3/4hr) dispersion 

[c] Optical transmittance of TCFs fabricated from SWNT(HNO3/4hr) dispersion 

[d] Thickness of TCFs measured using profilometry. 

[e] Figure of merit of TCFs 

[f] Electrical conductivity of TCFs, calculated from, reciprocal of product of sheet resistance and 

film thickness.  

[g] Optical conductivity of TCFs, calculated by incorporating sheet resistance, transmittance and 

thickness values on the equation described in the paper. 

  

Dispersion pH[a]  (Ω/□)[b]  (%)[c] t (nm)[d]  [e]  (Sm–1) [f]  (Sm–1) [g] 

SWNT(HNO3/4hr) 11.6 235±5 79 29.5±4 6 1.47 x 105 2.4 x 104 

SWNT(HNO3/4hr) 3.6 490±20 83 29±3 4 7 x 104 1.75 x 104 
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Figure 5: Optical absorbance spectra of SWNTs at different pH conditions. 

The increase in spatial distance between the contact pairs of SWNTs with increase in pH is also 

supported by the optical absorbance spectra. Broadening of van-Hove Singularities (vHS) are 

observed when the pH of SWNT dispersions become acidic (pH = 3) (Fig. 5). The vHS of 

SWNTs sharpen at higher pH, which is due to the minimization of inter-tube coupling that can be 

attributed to the larger distance between adjacent contact-pairs of SWNTs (Fig. 5). Effects of 

inter-tube coupling between SWNTs and bundles and its implications on the inter-band 

transitions (vHS) are reported.[50-52] Effect of Broadening of vHS with respect to decrease in pH 

of SWNT dispersions is in accordance with the report by  Zhao et al.[53] It is reported that the 

vHS of surface modified water soluble SWNTs broadens with respect to decrease in pH; 

intensity difference in vHS has been attributed to electrostatic doping, surface charge 

manipulation and intercalation & deintercalation of H+ ions in SWNT bundles.[53] Thus, increase 

in spatial arrangement with respect to increase in surface charge eventually results in relatively 

higher  
     

     
 values of SWNT TCFs. 
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Figure 6: Electrical and optical properties of TCFs at different pH conditions. (A) TCFs fabricated 

from dispersion of SWNTs, underwent 4 hours HNO3:H2SO4[3:1] treatment. (B) TCFS fabricated 

from dispersion of SWNTs without PSSNa, underwent 4 hours HNO3 treatment. 

The mechanism of inter-tube coupling on the broadening of vHS is further evidenced and 

supported from the differential thickness of SWNT TCFs fabricated from the dispersion of 

different pH (Table 3).  For example, films of thickness 29.5±4 nm, fabricated from 

SWNT(HNO3/4hr) dispersions of pH 11.6 gives    = 235±5 Ω/□ at     = 79%, 
     

     
  . A 

similar film of thickness 29±3 nm fabricated from SWNT(HNO3/4hr) dispersions of pH 3.6 gives 

   = 490±20 Ω/□ at     = 83%,  
     

     
  . Optical conductivity,       of SWNT TCFs 

fabricated from the  dispersion of pH 11.6 is calculated to be  2.4x104 Sm–1, which is ~ 40 % 

higher than the      = 1.75x104 Sm–1  for SWNT TCFs fabricated from the dispersion of pH 3.6. 

Optical conductivity of SWNT TCFs fabricated from acidic dispersions are similar to the value 
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(     = 1.7x104 Sm–1) reported by Doherty et al for sodium dodecyl sulfate and sodium dodecyl 

benzene sulfonate stabilized SWNT TCFs.[54] Thus, by manipulating the spatial distance 

between the SWNTs and bundles by increasing the surface charge, increases the possibility of 

better statistical assembly of SWNTs that leads to the formation of thinner films with high 

percolation effects and hence better optical and electrical properties. To test the universality of 

the principle of surface of charge induced transformation in SWNT TCFs, we have conducted 

the similar experiments on SWNT(HNO3/H2SO4) dispersion. Here we found that the  
     

     
  is 

increased from 2.6 to 3.5, when the pH of the dispersions is modified from 2.8 to 9.9 (Fig. 6A, 

Table1 S/No. 6). Similarly for the SWNT(HNO3/4hr) dispersions, without polymeric stabilizer 

(poly(4-styrenesulfonic acid, sodium salt)), 
     

     
  was increased by factor of 2 when the pH of the 

dispersion is modified from 3.6 (acidic)  to  11.6 (basic) (Fig. 6B, Table1 S/No. 7). These new 

insights on surface charge induced transformation in SWNT TCFs, opens up further possibilities 

on materials and technology development in flexible transparent electronics applications. 

Conclusion 

Effect of purification SWNTs with nitric acid at different reflux durations have been studied and 

analyzed. The optimum reflux duration for SWNTs is found to be 4 hours in nitric acid, based on 

the maximum possible  
     

     
  of the TCFs prepared from dispersions of SWNTs purified between 

2 to 6 hours. The principle behind the effect of purification conditions and the effect of doping 

were analyzed using x-ray photoelectron spectroscopy and Raman spectroscopy. We found that 

the maximum possible  
     

     
  for TCFs under optimum purification condition to be 4. Effect of pH 

of the dispersion of SWNTs on the electrical and optical properties of TCFs was also studied in 

detail. The surface charge on the SWNTs can be controlled by adjusting the pH of the 

dispersion, by which the spacing between the SWNTs can be manipulated. The surface charge 

difference in SWNTs with respect to pH is analyzed by zeta potential and optical absorption 

spectroscopy. Maximum possible  
     

     
 = 6.0 for SWNT TCFs can be obtained from the 

dispersions of SWNTs at higher pH, due to increased spacing between adjacent contact pairs of 

SWNTs. 
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3. Molecular scale engineering of transparent conducting films 

fabricated from hydrophilic single wall carbon nanotube dispersions 

containing mixed stabilizers 

 

Preface 

This section of the thesis deals with the effect of stabilizers used in the dispersion of single wall 

carbon nanotubes (SWNTs) on the electrical and optical properties of transparent conducting 

films (TCFs). We have used poly(sodium 4-styrene sulfonic acid) (PSS), poly(vinyl pyrrolidone) 

(PVP) and a mixture of both for this analysis. The sheet resistance and optical transmittance of 

the resulting TCFs were analyzed. We found that the TCFs prepared from dispersions 

containing a mixture of PSS and PVP provide comparatively better electrical and optical 

properties than TCFs prepared from dispersions containing a single stabilizer. This effect was 

studied further and supported with other stabilizers: lignosulfonic acid sodium salt (LSNa), 

poly(vinyl alcohol) (PVA), mixture of LSNa and PVA, and a mixture of LSNa and PVP. Again, we 

observed that dispersions containing mixtures of stabilizers lend better electrical and optical 

properties to the fabricated TCFs. We try to explain this effect through supramolecular forces 

between SWNTs and stabilizers and call this approach molecular scale engineering. 

 

This section will be submitted as an original research article. The authors are Bibin T. Anto, 

Stefanie Eiden, Hans-C. Schwarz, Andreas M. Schneider and Peter Behrens. Prof. P. Behrens 

and Dr. S. Eiden supervised this work. Mr. H-C. Schwarz and Dr. A. M. Schneider actively 

participated in the discussions of progress of this work. 
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Abstract 

Transparent conducting films prepared from single wall carbon nanotubes are considered to be 

potential candidates for flexible electronics applications. The absorptive nature of carbon in 

SWNTs at all optical wavelengths, brings in better colour neutrality to SWNT based TCFs than 

ITO and conducting polymers base films. Employing large amount of molecular stabilizers and 

washing away with highly concentrated inorganic acids, are common practice in literatures, to 

enhance the overall performance of transparent conducting films. Our work described in here, 

reports that employing appropriate combination of molecular stabilizers in appropriate ratio can 

enhance the overall performance 
     

     
 of TCFs. 

     

     
 of SWNT TCFs can be enhanced by more 

than 70% by employing mixture of polystyrene sulphonic acid (PSS) and polyvinyl pyrrolidone 

(PVP) as stabilizers, when compared to the SWNT TCFs comprising single molecular 

stabilizers. We also report the possible underlying principle behind the performance of SWNT 

TCFs with different combinations of molecular stabilizers. 

Keywords: Single wall carbon nanotubes – SWNTs – Surfactant effects – Stabilizer effects – 

transparent conductors  

Introduction 

Flexible transparent electronics[1,2] is a developing field that promises many advantages over the 

conventional processing techniques, which require ultra-high vacuum, high energy, and high 

cost. On this note it is essential to develop transparent conducting films (TCFs), which complies 
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with flexible back-planes (polymeric substrates, for e.g. polycarbonate, polyethylene 

terephthalate, polyethylene naphthalate) used in flexible electronic devices. Widely used 

transparent conductor, Indium Tin Oxide (ITO) is not suitable for flexible electronics applications, 

due to its brittle nature.[3] In addition, the availability of ITO is deteriorating in the recent years. [4] 

Other materials under research for the development of TCFs are transparent conducting oxides 

(TCOs),[5] metal nanowires,[6] conducting polymers,[7-10] conducting polymer-carbon nanotube 

composites,[11-13] graphene[14, 15] and single wall carbon nanotubes.[16-18] TCOs are as similar as 

ITO – brittle in nature, and require ultra-high vacuum for film deposition. Metal nanowires are 

solution processable, but very expensive compared to their counterparts. Graphene is a rather 

new material, and lot of research is still going on to make it robust and improve its availability. 

Poly(3,4-ethylenedioxy thiophene):Poly(4-styrenesulfonic acid) (PEDT:PSS) showed great 

potential when it was reported for the first time. However, the sheet resistance of the transparent 

film made out of this material drifts due to the moisture absorption nature of the sulfonic acid 

groups. ITO and PEDT:PSS are not colour neutral,[19]  which is one of the key requirement for 

transparent conducting films. Single walled carbon nanotubes (SWNTs) are considered to be 

more suitable candidates, as they show better flexibility than ITO,[20]  and better colour neutrality 

than both ITO and PEDT:PSS films.[19]  SWNTs have further advantages such as good 

availability and solution processability. Its adaptability of film fabrication at room temperatures 

makes it more attractive as well.  

 

Fabrication of TCFs from SWNTs involved several steps, starting from material synthesis to the 

final deposition of film. The key step is to produce dispersions of SWNTs with appropriate 

solvent and stabilizer molecules. The addition of molecular stabilizers is inevitable in the 

production of SWNT dispersions, as the stabilizers are needed to increase the dispersibility of 

SWNTs in a solvent through interfacial interactions. Many stabilizers used for the fabrication of 

TCFs are small molecules that are easy to remove by washing after film fabrication. Supra-

molecular forces like hydrogen bonding, ionic interaction, van der Waals forces, – 

interactions are the common interactions between SWNTs and stabilizers that facilitates the 

dispersibility of SWNTs. The chain length of small molecules is shorter, and the amount of 

stabilizers required to produce SWNT dispersions is large. Polymers have longer chains which 

possibly entangle with SWNTs, additional to possible supra-molecular interactions, to facilitate 

the dispersion of SWNTs. Therefore, the amount of polymers required to disperse the SWNTs is 
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lower compared to small molecules.  Most of the stabilizer molecules are insulative in nature 

that deteriorates the electrical conductivity of SWNT film. A sheet resistance of 400 /□ at 79 % 

optical transmittance was achieved for TCFs - containing sodium dodecyl sulphate (SDS) - 

fabricated without any post treatment of washing or doping.[21] Better electrical and optical 

properties are reported for SWNT TCFs that are either fabricated from dispersions containing no 

stabilizers in organic solvents (e.g. 1,2-dichlorobenzene,[22] dichloroethane,[23] and 

chlorosulphonic acid,[24]), in combinations of inorganic acids[25], and by dry transfer technique, [26] 

which involve no solvent medium at all. The organic solvents are not as environmentally friendly 

as water. Many reports[27-32] employ the method of fabricating TCFs with large amount of 

stabilizers and then wash away these insulating moieties with water and inorganic acids to 

enhance the electrical conductivity. Washing with inorganic acids such HNO3, H2SO4, SOCl2, 

etc. not only remove the stabilizers, but also dope the TCFs that enhance the electrical 

conductivity.[33] However, handling of highly corrosive chemicals on the large scale roll-to-roll 

coating machineries is an unsafe practice for both machinery as well as employees. Therefore, 

the amount of surfactant should be kept to a minimum that is required for a good thin film 

formation. Treating SWNTs in different oxidising acids (e.g. HNO3, H2SO4, etc.) helps to improve 

the dispersibility of nanotubes due to the interaction between the oxidation induced hydroxyl, 

carboxyl, and carbonyl moieties and SWNTs.[34] Hence, the requirement of stabilizers as 

dispersant can be reduced to a greater extent. The treatment with oxidising acids also helps to 

remove metal catalysts that are used to prepare the SWNTs. There is very little literature on 

SWNT dispersions without the use of stabilizing agents. However, appropriate stabilizers 

improve the stability of dispersions and enhance the functional properties of the SWNT 

dispersions.  

Mostly polymers and small molecules are used as stabilizers while making SWNT dispersions. 

Commonly used stabilizers for the fabrication of TCFs are sodium dodecyl sulphate (SDS),[35] 

sodium dodecyl benzene sulphonate (SDBS),[36] sodium cholate (SC),[37] triton TX-100.[38] In rare 

cases polystyrene sulfonic acid-sodium salt (PSS),[39] polyvinyl pyrrolidone (PVP),[40] nafion,[29] 

carboxymethyl cellulose (CMC),[41] polyethyleneglycol (PEG),[42] etc are mentioned. In this 

report, we reveal that by choosing a suitable combination of stabilizers at appropriate ratio, the 

electrical and optical properties of TCFs can be enhanced. We also report in detail about the 

possible underlying principle behind the performance of TCFs fabricated with different stabilizer 

molecules.  
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The TCFs reported in this paper, are characterized by the commonly used figure of merit  
     

     
 , 

which indicates the ratio of electrical       and optical conductivities       of the SWNT film. In 

general, the larger the value of  
     

     
  the better will be the performance of TCF. 

     

     
 can be 

obtained from the following equation: [43,44] 

      (  
 

   
√
  

  

     

     
)

  

 

where, 

   is the sheet resistance of the film,    and    are the permittivity and permeability of free 

space respectively.      is the optical transmittance of TCFs at a wavelength of 550nm (we 

observed that the average value of the transmittance between 400 to 700 nm is same as the 

transmittance at 550nm). 
     

     
 is the ratio of electrical-to-optical conductivity and can be obtained 

by curve fitting the experimental values of    vs.     .  

 

Experimental 

Purification of SWNTs and preparation of dispersion: poly(sodium 4-styrene sulfonate) 

(PSS, Mw ~ 70000), polyvinylpyrrolidone (PVP,K30, Mw ~ 52000), Lignosulfonic acid sodium salt 

(LSNa, Mw ~ 52000) and poly(vinyl alcohol) (PVA, Mw ~ 13000-23000) are purchased from 

sigma-aldrich. SWNTs, produced by arc-discharge method, were purchased from Fraunhofer 

IWS, Dresden. 20g of SWNTs were purified by refluxing in 200 mL HNO3 (65%) for 2 hours, in a 

round bottom flask. The mixture was allowed to cool down to room temperature, and was 

washed with 2L of deionized (DI) water. At pH > 1 a portion of SWNTs become dispersible (IEP 

= 1.0, reported elsewhere[45]). The residue was collected separately; supernatant was acidified 

to pH < 1.0 to precipitate the suspended SWNTs and combined with the residue obtained 

before.  During the process, SWNTs were kept in wet conditions (with minimum amount of 

water) as the dry SWNTs tend to agglomerate and therefore difficult to redisperse in water. 

Afterwards, the acid treated SWNT mixture was dialyzed against DI water until the pH of DI 

water becomes 7.0 in order to remove all excess ions and impurities. Finally, the purified SWNT 

mixture was sonicated in DI water together with stabilizers using  Branson Sonifier 450 ( 80W, 

30 min) to produce a better dispersion. The mixture was then centrifuged (3500 rpm/30 min) to 
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remove undispersed materials. Then the supernatant – the SWNT dispersion – was collected 

and used for further characterization and film fabrication. Details of optimum purification 

conditions reported elsewhere [45]). Different combinations of stabilizers (poly(4-styrene 

sulfonicacid sodium salt) (PSS), polyvinylpyrrolidone (PVP), Lignosulfonicacid sodium salt 

(LSNa), poly(vinyl alcohol) (PVA) were used to make a better dispersion. Purification conditions 

and combinations of stabilizers are given in Table 1. Typical concentration of dispersions used 

for testing and characterization were 0.2 to 0.3 wt% SWNT. The pH of the dispersions was kept 

between 3 - 3.5, in order to avoid overlapping of pH induced transformations in SWNT TCFs. [45] 

Fabrication of transparent conductive films (TCFs):   TCFs were fabricated on glass slides 

using the Meyer rod coating method (doctor blading). The films were annealed at 120 ± 10 °C 

for 1 min. Multilayered coatings were prepared to reach low sheet resistance values (< 500 

Ω/□), typically 3 to 4 layers. All the data were repeated 2 to 3 times to confirm the 

reproducibility. Films were reproduced in large area (ISO A4 size) poly carbonate sheets, which 

were O2 plasma treated prior to doctor blading. 

Electrical and optical properties:  Sheet resistance of TCFs was measured using 2 point 

probe method, across square area, i.e. 1 x 1 cm2, with a probe dimension of 1cm2. The standard 

error, if any,  involved in the measurement of sheet resistance is uniform throughout all the 

measurements. 

Typically, four to five measurements were taken for each data point and the average of the 

measurements was calculated. Standard deviation of the data points was calculated to be ≤ 7%. 

Optical transmittance of the TCFs was recorded using Cary 50 UV-Vis spectrometer (Varian). 

Thicknesses of the films were measured using Dektek 150 profilometer (Veeco Instruments). 

The surface morphology of transparent thin films were captured using FEI Sirion 100T scanning 

electron microscopy. 

X-ray Photoelectron spectroscopy (XPS): Core-level and survey X-ray photoelectron spectra 

were acquired on a VersaProbe spectrometer (Physical Electronics) at a base pressure of less 

than 10−8 mbar using monochromatic Al Kα X-ray photons (1486.68 eV) irradiating at 45° 

relative to electron analyzer entrance. The photo-electrons were analyzed by a concentric 

hemispherical analyzer operated at constant pass energy of 29.35 eV for C1s & O1s core-level 
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spectra, 117.4 eV for N1s & S2p core-level spectra, and 187.5 eV for survey spectra. The 

photoemission angle (θ) was set at 54.7°. The X-ray gun was operated at 4.5 W with a minimum 

possible spot size of 20 µm. Measurement was perfomed at two different points within the 

scanning an area of 0.25 x 0.25 mm2. Sample charging was avoided by using Indium substrate 

to provide a conductive ground; charge neutralization was not necessary.  Core-level spectra 

were processed to give atomic stoichiometry values using Multipak 9.1 software that accounts 

empirical sensitivity factors taking into account photoionization cross sections, inelastic mean 

free paths, and the spectrometer intensity-energy response functions. 

Raman spectroscopy:  Raman spectra of SWNT films were recorded using  Induram (Horiba 

Jobin-Yvon) spectrometer, coupled with confocal laser scanning microscope. Excitation 

wavelength used for the all the measurements is 488 nm. Films for the measurements were 

prepared by drop-casting corresponding SWNT dispersions on to a glass slide and annealed at 

120°C/ 1min. 

 

Results and Discussion: 

SWNTs were purified by refluxing in different combinations of acids for different durations, in 

order to find the optimum conditions for dispersibility and performance of TCFs. Detailed 

information on purification is reported elsewhere.[45] Stability of SWNT dispersion can be 

enhanced by adding appropriate amount of stabilizer molecules during preparation. As the 

stabilizer molecules are insulative by nature, the amount of stabilizer should be as minimum as 

possible to improve the film formation. Polymeric PSS and PVP molecules are longer than usual 

stabilizer molecules, and has the ability to disperse carbon nanotubes at very high 

concentrations in water and other polar solvents.[46] PVP enhances the adhesion between the 

carbon nanotube films and polycarbonate or other polymeric substrates. In addition, the highest 

possible electrical conductivity for carbon nanotube films are also obtained with PSS as a 

stabilizer.[46] However, neither PSS nor PVP are widely used for the fabrication of TCFs . Here, 

we present the first investigations on the effect of dispersions containing PSS and PVP.  

SWNTs used here are purified by refluxing in mixture of HNO3:H2SO4 (3:1 v/v) for four hours. 

Different ratios of SWNT-to-stabilizers, 1:10 to 10:1, were tested and the optimum ratio is found 

to be 10:1 wt/wt with regard to the figure of merit 
     

     
 of TCFs. This is also the lowest amount of 
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stabilizer necessary for the dispersion of the purified and functionalized SWNTs in water.  

Significant difference between TCFs prepared with PSS (SWNTPSS) and PVP (SWNTPVP) is 

observed. SWNTPSS films fabricated from dispersions containing SWNT and PSS show a larger 

     

     
      compared to 

     

     
     for SWNTPVP films (Fig 1, Table 1: S/No. 1a-b). The better 

performance of SWNTPSS TCFs can be explained by the presence of  electrons in PSS that 

facilitate more effective charge transfer between SWNTs. Moreover, the presence of sulphonic 

acid group (SO3) in PSS, which is an electron withdrawing group, may lead to p-doping of the 

SWNTs. This assumption is evidenced by an upshift of 2 cm–1 in the tangential mode in Raman 

spectra. This shift can be ascribed to the depletion in the conduction band due to p-type doping 

(Fig 2B,    =1595 cm–1 for SWNTPVP;    =1597 cm–1 for SWNTPSS).[47]   

 

 
Figure 1: Electrical and optical properties of SWNT TCFs fabricated from different dispersions containing, PSS, PVP 

and mixture of PSS+PVP molecular stabilizers. SWNTs used here are purified by refluxing in HNO 3:H2SO4 (3:1 v/v). 

Data were plotted separately for clarity; (A) Shows the data for films of sheet resistances in the range of 200 to 

2000Ω/□ and (B) shows the data for the films of sheet resistances in the range of 2 to 20 k Ω/□. 
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Table 1: Summary of properties of SWNT TCFs described in this report 

 

[a] Acid used to reflux with SWNTs, during the process of purification. The temperature, during 

the reflux was maintained at 130 ± 5 °C. 

[b] The duration at which, the SWNTs were refluxed at different combinations of acid listed 

above. 

[c] Sheet resistance of transparent conducting films fabricated from respective dispersions. 

[d] Optical transmittance of transparent conducting films fabricated from respective dispersions. 

[e] Figure of merit of transparent TCFs calculated by incorporating the    and      values in 

the expressions described in the text. 

[f] The ratio of HNO3-to-H2SO4 is kept at 3:1 v/v. Concentrations of HNO3 and H2SO4 used in 

this work are 65% and 98%, respectively, unless otherwise stated. 

[g] The ratio of PSS to PVP was varied from 2:1, 1:1 and 1:3 wt/wt, while maintaining the SWNT 

to stabilizer ratio at 10. 

[h] Ratio of LSNa to PVA was kept at 2:1 wt/wt. 

[i] Ratio of PSS to PVP was kept at 2:1 wt/wt. 

[j] Ratio of LSNa to PVP was kept at 2:1 wt/wt. 

S/No 
Purification Conditions 

Notation Stabilizer 
Ratio 

(wt/wt) 

[c] 
(Ω/□) 

[d] 
(%) 

  
Acid [a] t [b] 

1a HNO3:H2SO4 
[f] 4 SWNTPSS PSS 10 415 73.8 2.6 

1b HNO3:H2SO4 
[f] 4 SWNTPVP PVP 10 460 60.3 1.2 

1c HNO3:H2SO4 
[f] 4 SWNTPSS+PVP 

[g] 
PSS 

PVP 
10 200 68.9 4.6 

2a HNO3 4 SWNTLSNa LSNa 10 260 74 4.5 

2b HNO3 4 SWNTPVA PVA 10 420 81.3 4.5 

2c HNO3 4 SWNTLSNa+PVA 
[h] 

LSNa 

PVA 
10 240 71.4 4.5 

3a HNO3 4 SWNT(PSS) PSS 10 350 77.8 4.0 

3b HNO3 4 SWNT(PVP) PVP 10 430 73.5 2.7 

3c HNO3 4 SWNT(PSS+PVP) 
[i] 

PSS 

PVP 
10 215 78.2 6.7 

4 HNO3 4 SWNT(LSNa+PVP) 
[j] 

LSNa 

PVP 
10 230 79.6 6.8 
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The performance of SWNT films can be improved by using dispersions containing mixture of 

PSS and PVP. Different combinations were tested with a ratio of PSS to PVP of 2:1, 1:1 and 1:3 

wt/wt. TCFs prepared with these combinations of PSS & PVP led to similar results (Fig 1). The 

experimental data of SWNTPSS+PVP TCFs could not be fitted using the theoretical expression 

used for other TCFs with single stabilizers. Therefore, for comparison, 
     

     
 = 4.6, is calculated 

from the lowest possible    = 200 Ω/□ and       = 69% (Table 1: S/No. 1c). Performances of 

SWNTPSS+PVP films are better by 77% better compared to the  
     

     
  of SWNTPSS and SWNTPVP 

films. To understand the underlying mechanism, we first examined the optical absorption 

spectra of all three films. Interestingly, the van Hove singularities (vHS) become broader in the 

sequence SWNTPVP – SWNTPSS – SWNTPSS+PVP (Fig 2). Broadening and intensity difference in 

van Hove singularities occur due to the types of tubes,[48] effect of chirality[49] and diameter of 

SWNTs,[50] molecular environments, and charge screening effects. Effects of intertube coupling 

between SWNTs and bundles and its implications on the inter-band transitions (vHS) are also 

reported.[51] We attribute the broadening of  vHS to molecular environments, where the inter-

tube interaction between SWNTs are dominated by the spatial arrangement that arises from the 

molecular stabilizers. We propose that the spacing between adjacent contact-pairs of SWNT 

has been altered by the different stabilizers and due to their different ways of interactions with 

SWNTs. The van Hove singularities (    and    , second order and first order inter-band 

transitions in semiconducting and metallic SWNTs, respectively) for SWNTPSS films are broader 

than that of SWNTPVP films.  
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Figure 2: (A) Optical absorption spectra of SWNT TCFs fabricated from different dispersions containing different 

composition of stabilizers. (B) Raman spectra of SWNTs TCFs containing different compositions of stabilizers. 

Excitation wavelength used for the measurement is 488 nm. 

The possible interactions for PSS with SWNTs are through hydrogen bonding, van der Waals 

forces, ionic interactions and – most importantly – from - interactions. In contrast, PVP can 

only interact with SWNTs through hydrogen bonding and van der Waals forces. Hydrogen 

bonding and ionic interactions arise from the functional moieties present in functionalized 

SWNTs and functional moieties present in molecular stabilizers. Thus, PSS has the advantage 

of interacting more with SWNTs through  electrons. Therefore, PVP is expected to wrap 

around[51] the SWNTs resulting in more isolated particles compared to the scenario, where PSS 

orients along[52]  SWNTs and bundles (Fig 3A). This was evidenced by the scanning electron 

micrographs, where we observe the relatively oriented spaghetti-like morphology in SWNTPSS 

TCFs, whereas a more spaghetti-like morphology for SWNTPVP TCFs (Fig 3B). Inter-tube 

interactions are minimized when PVP is wrapped around the SWNTs, compared to SWNTs with 

PSS as stabilizer. Hence a relative broadening of van Hove singularities is observed in 

SWNTPSS TCFs. In comparison, TCFs fabricated from dispersions containing mixture of PSS 

and PVP shows narrow van Hove singularities (    and    ). A possible explanation is that, 

due to strong interaction between PSS and SWNTs than PVP, PSS assembles next to SWNTs 

and the PVP act as spacer between SWNT-PSS stack arrangements (see Fig. 3 and schematic 

diagram in Fig 4). As a result of increases in spacing between adjacent SWNTs, the inter-tube 

interactions are further minimized. Hence the coupling between adjacent tubes becomes 

weaker, and the van Hove singularities become narrower as observed in the case of 
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SWNTPSS+PVP TCFs. Increased spacing between adjacent SWNTs and bundle is also supported 

by scanning electron micrograph of SWNTPSS+PVP TCFs, where a relatively larger gap is 

observed compared to SWNTPSS and SWNTPVP films (Fig3C). As the spacing between adjacent 

contact-pairs of SWNTs increased by employing appropriate mixtures of stabilizers, the amount 

of photons transmitted through the TCF also increases for a given sheet resistance. That could 

be a possible reason for better performance of SWNTPSS+PVP TCFs compared to the other films. 

 

 

 

Figure 3: Scanning electron micrographs of SWNT TCFs fabricated from dispersion containing different 
compositions of molecular stabilizer. (A - B) TCF with PSS as stabilizer (C-D) TCF with PVP as stabilizer; red arrow 
mark in indicated the stacking orientation of SWNTs & bundles. (E-F) TCF with combination of PSS and PVP as 
stabilizer; ratio of PSS to PVP is 2:1 wt/wt. Inset images shows the comparative representation of spatial 
arrangements in spaghetti noodles. 
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Core-level x-ray photoelectron spectra (XPS) further supports the assumption that PVP acts as 

a spacer between the SWNT-PSS stack arrangements. The stoichiometry composition was 

detected and analyzed region-specifically at two different points on the TCF films. A minimum 

possible x-ray spot size of 20µm was used, and scanned across an area of 250 µm2, in order to 

avoid overlapping of compositions of two different points of analysis in the films. 

 

 

Figure 4: Schematic representation of hypothesis of molecular scale spatial orientation in SWNT transparent 
conducting films. 

Table 2: Stoichiometric compositions obtained from x-ray photoelectron spectra of SWNT TCFs 

 

[a]. SWNTs used here, were purified by refluxing it in mixture of HNO3:H2SO4 (3:1 v/v) for 4 

hours. 

 

SWNTPSS

PVP
SWNT

SWNTPVP

SWNTPSS+PVP

S/No Points C1s N1s O1s S2p Na1s Remarks 

SWNTPSS films [a] 

1a 1 71.8 3.15 19.5 0.7 4.9 Uniform Distribution 

1b 2 72 3.4 19.2 0.7 4.7 Uniform Distribution 

SWNTPVP films [a] 

2a 1 68.7 2.7 22.12 - 6.5 Uniform Distribution 

2b 2 67.9 2.4 23.4 - 6.3 Uniform Distribution 

SWNTPSS+PVP films [a] 

3a 1 71.1 4.95 15.9 0 8.13 PVP rich 

3b 2 68.4 3 20.7 0.4 7.6 PSS rich 

 

Oriented Spaghetti Entangled Spaghetti Oriented and Entangled Spaghetti 

With increased spacing! 
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Figure 5: Core-level x-ray photoelectron spectra of SWNT TCFs containing different compositions of molecular 

stabilizers. (A – C) Core-level N1s spectra of SWNTPSS, SWNTPVP and SWNTPSS+PVP films, respectively. (D – F)  

Core-level S2p spectra of SWNTPSS, SWNT PVP and SWNTPSS+PVP films, respectively. 
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Stoichiometry compositions at two different points on a SWNTPSS+PVP TCF are measured and 

analyzed. (Fig 5C, F; Table 2, S/No. 3).  According to the S2p core-level spectra, the absence of 

sulphur in region 1 suggests that the sulphur containing PSS polymer chains does not exists in 

this region (Fig 5F). According to the N1s core-level spectra, the amount of nitrogen in region 2 

is relatively less compared to region 1, also suggests that the region 2 is PSS rich (Fig 5C). 

Moreover the amount of oxygen detected from O1s core-level spectra in PVP-rich region 1 (15.9 

at-%) is relatively less compared to 20.7 at-% detected in PSS-rich region 2. The higher amount 

of oxygen could be attributed to the SO3– groups in PSS polymer chains (Table 2, S/No. 3). 

Therefore, the stoichiometry of two different points observed in SWNTPSS+PVP films suggests that 

there are separate regions that are either rich in PSS or rich in PVP. No significant difference in 

the amount of oxygen has been detected from different regions of SWNTPSS and SWNTPVP 

TCFs. Stoichiometry compositions of two different points of analysis of SWNTPSS and SWNTPVP 

films are similar (Fig 5A, B, D and E; Table 2 S/No 1-2). Since there is no significant difference 

on the compositions of the two analyzed points, we assume that the SWNTs as well as the 

stabilizing agents PSS and PVP are uniformly distributed across the analyzed section of the 

SWNTPSS and SWNTPVP films, respectively. Though, the relatively larger x-ray spot size (20 µm) 

is limited to determine the sub-µm spatial arrangements between SWNTs, PSS and PVP 

polymer chains, the regio-specific difference in stoichiometry in SWNTPSS+PVP TCFs can be 

correlated to the molecular-scale spatial non-uniformity. Thus, the XPS results are used as a 

support to our hypothesis that PVP acts as a spacer between SWNT-PSS stack orientation, 

which was drawn from optical absorption spectroscopy and scanning electron microscopy.  
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Figure 6: Electrical and optical properties of SWNT TCFs containing different combinations of molecular stabilizers. 

SWNTs used here are purified by refluxing in HNO3. (A) Sheet resistance vs. optical transmittance of SWNT (LSNa), 

SWNT(PVA) and SWNT(LSNa+PVA) films. (B) Sheet resistance vs. optical transmittance of SWNT (LSNa), SWNT(PVP) and 

SWNT(LSNa+PVP) films. 

To investigate the feasibility of using other stabilizing agents, lignosulphonic acid sodium salt 

(LSNa) was used in combination with polyvinyl alcohol (PVA). The SWNTs used were purified 

by refluxing in nitric acid for four hours. The ratio between LSNa and PVA is kept at 2:1 wt/wt. 

The  
     

     
  of SWNTLSNa, SWNTPVA and SWNTLSNa+PVA remain unaltered at 4.5. Here again, LSNa 

interacts with SWNTs through hydrogen bonding, van der Waals forces, ionic interactions and 

most importantly through  interactions. PVA interacts in a similar way as that of PVP with 

SWNTs, i.e. through hydrogen bonding and van der Waals forces. Therefore, it is assumed that 

the PVA polymer chains wrap around the SWNTs and the LSNa polymer chains orient along the 

SWNTs. LSNa monomers are bulkier than PSS and PVA monomers are less bulky than PVP, 

hence the relatively less bulky PVA is squeezed in between SWNT-LSNa stack arrangement. 

PVA is not bulky enough to increase the spacing beyond the limit of LSNa, therefore the spatial 

manipulation does not occur here. Therefore, The performance of TCFs fabricated from 

dispersions containing both LSNa and PVA is not different from TCFs fabricated from separate 

SWNT dispersions with LSNa and PVP individually (Fig 6A). Relatively higher 
     

     
 for TCFs 

fabricated from dispersions of SWNTs purified by HNO3 for four hours, compared to 

HNO3:H2SO4 (3:1 v/v) for four hours are attributed to oxidation and effect of p-doping, which is 

described elsewhere. LSNa and PVP were used in combination to see the effect of molecular-

scale spatial manipulation; the ratio between LSNa and PVP was kept at 2:1. The SWNTs used 

were purified by refluxing in nitric acid for four hours.  

60

65

70

75

80

85

90

95

100

2 10
2

4 10
2

6 10
2

8 10
2

10
3

2 10
3

SWNT
LSNa

SWNT
PVP

SWNT
LSNa+PVP

 
dc

/ 
oc

=4.5

 
dc

/ 
oc

=2.7

T
ra

n
sm

it
ta

n
ce

 (
%

)

Sheet Resistance ( )□

(B) 



110 Results and Discussion 
 

 

 

Figure 7: Sheet resistance vs. optical transmittance of SWNT (PSS), SWNT(PVP) and SWNT(PSS+PVP) TCFs. SWNT used 
here are purified by refluxing in HNO3. 

The SWNT(LSNa+PVP) TCFs does not follow the theoretical expression that was used to fit the 

experimental data of SWNT(LSNa) and SWNT(PVP) TCFs (Fig 6B). The SWNT(LSNa+PVP) film has 

better performance compared to SWNT(LSNa) and SWNT(PVP) films(Fig 6B; Table 1, S/No. 2a, 3b 

& 4). The maximum  
     

     
 of 6.8 obtained for SWNT(LSNa+PVP)TCFs is relatively higher than the 

     

     
 of SWNT(LSNa) and SWNT(PVP) TCFs, 4.5 and 2.7 respectively. The results of combination of 

LSNa and PVP as stabilizer in SWNT TCFs, reiterates the hypothesis of molecular scale spatial 

manipulation effect. Thus, choosing right combinations of stabilizers at appropriate ratio could 

help to improve the performance of TCFs. To test the repeatability of the principle, we have 

conducted the experiment with PSS and PVP on SWNTs purified by refluxing in nitric acid for 

four hours. Similar trend that of SWNTPSS + PVP films, were observed for SWNT(PSS+PVP) films (Fig 

7). The maximum  
     

     
 of 6.7 was observed for SWNT(PSS+PVP) films compared to 4 and 2.7 for 

SWNT(PSS) and SWNT(PVP) films respectively (Table1, S/No. 3). Additional advantage of using 

the combinations of PSS and PVP in SWNT dispersions helps to improve the wettability on 

polycarbonate sheets. The results of SWNTPSS+PVP films were reproduced on PC substrate 

without any surface modification, which was not possible for SWNTPSS and SWNTPVP films 

without additional surface treatments. 
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Conclusion 

We have demonstrated that by templating the appropriate combination of stabilizers at 

appropriate ratio will increase the overall performance of transparent conducting films fabricated 

from SWNT dispersions. The SWNT TCFs prepared using combination of PSS and PVP 

exhibits better electrical and optical properties compared to TCFs prepared either with PSS or 

PVP. The underlying principle behind the effect of combination of stabilizers on the performance 

of the TCFs is analyzed. Manipulation of spatial increment between the adjacent contact-pairs of 

SWNTs is the possible mechanism. This occurs when a stabilizer with less affinity towards 

SWNTs acts as a spacer between SWNT and other stabilizer. Therefore the increment in 

spacing between the SWNTs eventually increases the transmission of photons. The effect is 

further tested with other stabilizers LSNa and PVA to check the universality of principle.  These 

new insights open up further possibilities enhancing the performance of transparent conducting 

films and technological developments. 
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4. Effect of moisture and moisture absorption induced de-doping of 

transparent conductive single wall carbon nanotube films 

 

Preface 

This section of the thesis deals with the effect of doping of transparent conducting films (TCFs) 

prepared from single wall carbon nanotube (SWNT) dispersions. From the previous two 

sections, we have understood that the intrinsic electrical properties of SWNTs are not sufficient 

for commercial applications. Therefore, it is essential to use external dopants to enhance the 

electrical properties of SWNT TCFs in order to use these films in applications such as light 

emitting displays, solar panels and touch panels. Following a suggestion from the literature, we 

have used graphene oxide as the dopant to analyze the effect of doping. The sheet resistance 

of SWNT TCFs coated with graphene oxide was improved, which is attributed to p-doping. We 

have also analyzed the stability of the doping effect at ambient conditions, under elevated 

temperatures, as well as under inert gas conditions. We have found that the doped SWNT TCFs 

are stable at inert conditions, which suggests that these materials can be used in commercia l 

applications with proper encapsulation. 

 

This section will be submitted as an original research article. The authors are Bibin T. Anto, 

Hans-C. Schwarz, Stefanie Eiden, Andreas M. Schneider and Peter Behrens. Prof. P. Behrens 

and Dr. S. Eiden provided the general advice on the direction of this work. Mr. H-C. Schwarz 

forwarded the idea to apply graphene oxide doping for the improvement of the electrical 

conductivity. He developed the method to apply the graphene oxide coating and he prepared 

the graphene oxide dispersions used in this work. Dr. A. M. Schneider actively participated in 

the discussions of the progress of this work. 
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transparent conductive single wall carbon nanotube films 
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Abstract 

Transparent conducting films (TCFs) prepared from single wall carbon nanotubes (SWNTs) are 

considered to be potential candidates for next generation flexible electronics applications. The 

absorptive nature of carbon at all optical wavelengths provides better colour neutrality to SWNT 

based TCFs compared to indium tin oxide (ITO) and conducting polymers based films. Chemical 

doping of SWNT transparent conducting films is necessary as the pristine films have below par 

electrical and optical properties with regards to several applications. We report here that 

employing graphene oxide as a chemical dopant improves the electrical and optical properties 

of TCFs; overall 60 % increase in performance of TCFs compared to un-doped TCFs. We also 

report in detail about the stability of SWNT TCFs under ambient, inert and at elevated 

temperature. The stability of TCFs can only be maintained if proper encapsulation is provided. 

The possible underlying mechanism on “moisture” and “moisture induced de-doping” of TCFs 

has been reported in detail. 

Keywords: Single wall carbon nanotubes – transparent conductors – doping – graphene oxide 

– stability  

Introduction 

Transparent conducting films are the integral part of electronic displays, touch panels and 

devices. Indium tin oxide (ITO) is the commonly used material as transparent conducting 

electrodes in the commercially available devices today. However, the brittle nature of ITO 

disembarked its possibility of usage in flexible electronic devices.[1] The scarcity of Indium in the 

recent years lead materials research towards the alternate TCFs.[2]  Other materials under 

research for the development of TCFs are: transparent conducting oxides (TCOs), [3] metal 
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nanowires,[4] conducting polymers,[5-8] conducting polymer-carbon nanotube composites,[9-11] 

graphene[12, 13] and single wall carbon nanotubes.[14-16] TCOs are also brittle in nature similar to 

ITO, which requires ultra-high vacuum for film deposition. Though, metal nanowires are solution 

, the expensive nature of this material its possibility in flexible TCFs applications. Single walled 

carbon nanotubes (SWNTs) are considered to be more suitable candidates [17, 18] due to their 

higher degree of flexibility compared to ITO,[19]  better colour neutrality compared to both ITO 

and (poly(3,4-ethylenedioxythiophene):poly(4-styrenesulphonic acid))PEDT:PSS films.[20]  ITO 

films show a tolerable yellow haze whereas the PEDT:PSS films come with blue tint. SWNTs 

have other advantages such as availability in abundance, good refractive index match, solution 

processability, printability that avoids etching with corrosive chemicals, and processability at low 

temperatures that are compatible with polymer substrates. The minimum possible sheet 

resistance at a given optical transmittance of un-doped SWNT TCFs is below the functional 

requirement for flexible electronics applications.[21] Therefore a post-treatment process of 

chemical doping on these films is necessary to enhance the electrical properties. Several 

inorganic materials such as HCl,[22] HNO3,[23] H2SO4,[24] several mixtures HNO3:H2SO4,[24] 

SOCl2,[25] Oleum,[26] HNO3 vapour,[27] SOCl2 vapour,[28] NO2 gas,[29] camphorsulfonic acid,[30, 31] 

are used as chemical dopants to enhance the electrical properties of SWNT TCFs. Kim et al 

reported a sheet resistance of 170 /□ at an optical transmittance of 93.5%  for SWNT wet 

coated films doped with HNO3 for 30 minutes.[23] Nasibulin et al reported  a sheet resistance of 

84 /□ at an optical transmittance of 90% for SWNT TCFs prepared by dry transfer technique 

and then doped by NO2 gas.[29] Most of the dopants reported in the literature are electron 

withdrawing by nature, employing p-type doping through depletion of conduction band.[32] n-type 

doping is also possible on SWNT transparent conducting films. Mistry et al reported a sheet 

resistance of 70 /□ at an optical transmittance of 75% for SWNT TCFs doped with n-type 

dopant, hydrazine (N2H2).[33] The sheet resistance of inorganic acid doped SWNT TCFs are not 

stable at ambient conditions, other dopants such as conducting polymers,[34, 35]  ultraviolet 

radiation – ozone (UV-O3)[36] graphene oxide (GO),[32, 37] triethyloxonium 

hexachloroantimonate,[38] hydrogentetrachloroaurate-trihydrate,[39] tetrafluorotetracyano-p-

quinodimethane (F4TCNQ),[40] bis(tetrafluoromethanesulfonyl)imide (TFSI),[37] m-cresol,[30, 31]  

tetraethyl orthosilicate (TEOS)[41] and potassium (K) or bromine (Br) or Iodine (I)[42, 43] have been 

investigated. Most of the doping materials used are labile and ionic in nature, which could cause 

the problem of electromigration[44] and also affect other active layers in a device. Kim et al 

reported a sheet resistance of 40 /□ at a transmittance of 84% for SWNT TCFs doped with 
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TFSI, which involves several post-fabrication processing steps including repeated cycles of 

washing and drying for hours before doping.[37]  

 

The TCFs reported in this paper are characterized by a figure of merit  
     

     
 , where       and 

      are the electrical and optical conductivities of SWNT films, respectively, which can be 

obtained from the following equation: [45, 46]  
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where, 

     is the optical transmittance of TCFs at a wavelength of 550 nm (we observed that the 

average value of the transmittance between 400 to 700 nm is same as the transmittance at 550 

nm),     is the sheet resistance of the film,    and    are the permittivity and permeability of 

free space, respectively. 
     

     
  is the ratio of electrical-to-optical conductivity and can be obtained 

by curve fitting the experimental values of    vs.     . In general, the larger the value of  
     

     
  

the better will be the performance of the TCF.  

 

     

     
  is found to be in a wider range, starting from close to zero up to values larger than 50, as 

reported in literature for SWNT TCFs. The differences are attributed to various parameters of 

SWNTs, e.g. chirality and the electronic properties (semiconducting or metallic tubes, or the 

mixture of both) and variations in purification and processing methods applied in the fabrication 

of TCFs. Han et al reported a 
     

     
  of 20.5 for SWNT TCFs doped with graphene oxide (GO); 

the SWNT films were prepared from dispersion containing copious amount of surfactant (1% 

sodium dodecyl benzene sulphonate, SDBS), and were repeatedly washed to remove the 

surfactants.[32]  Graphene oxide is a p-type dopant, electron withdrawing in nature due to the 

presence of oxygen containing moieties. It also has an additional advantage, that the ability to 

support charge transport through the available sp2 hybridized carbon atoms. Moreover, handling 
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of GO is much simpler than handling highly corrosive inorganic materials that are detrimental to 

environment and machinery equipment.  

In order to use SWNT TCFs in flexible electronics applications they are expected to have a 

stable sheet resistance and optical transmittance. Few reports highlight the stability of SWNT 

TCFs chemically doped by HNO3,[47, 48] SOCl2,[48] N2H2[33] and Triethyloxonium 

hexachloroantimonate[38]. These doped SWNT TCFs are not stable under the circumstances 

reported therein, e.g. N2H2 doped films are not stable under inert conditions. [33] Here, we reveal 

that the stability of GO doped SWNT TCFs can be maintained under inert conditions. We also 

report in detail about the possible doping and “moisture induced de-doping” mechanism of 

doped SWNT TCFs. The “moisture induced de-doping” refers to the increase in sheet resistance 

of films due to the absorption of moisture through functional moieties, which suppress the effect 

of doping.  

Experimental 

Purification of SWNTs and preparation of dispersion: poly(sodium 4-styrene sulfonate) 

(PSS, Mw ≈ 70000), is purchased from sigma-aldrich. SWNTs, produced by arc-discharge 

method, are purchased from Fraunhofer IWS, Dresden. 20g of SWNTs were purified by 

refluxing in 200 mL HNO3 (65%) for 2 hours, in a round bottom flask. The mixture was allowed 

to cool down to room temperature, and was washed with 2 L of deionized (DI) water. At pH > 1 a 

portion of SWNTs become dispersible (IEP = 1.0) [49]. The residue was collected separately. The 

supernatant was acidified to pH < 1.0 to precipitate the suspended SWNTs and combined with 

the residue obtained before.  During the process, SWNTs were kept in wet conditions (with 

minimum amount of water) as the dry SWNTs tend to agglomerate and therefore are difficult to 

redisperse in water. Afterwards, the acid treated SWNT mixture was dialyzed against DI water 

until the pH of DI water becomes 7.0 in order to remove all excess ions and impurities. Finally, 

the purified SWNT mixture was sonicated in DI water together with stabilizers using a Branson 

Sonifier 450 (80W, 30 min) to produce a better dispersion. The mixture was then centrifuged 

(3500 rpm/30 min) to remove undispersed materials. Then the supernatant – the SWNT 

dispersion – was collected and used for further characterization and film fabrication. Details of 

optimum purification conditions reported elsewhere.[49] Typical concentration of dispersions used 

for testing and characterization were 0.2 to 0.3 wt% SWNT. The pH of the dispersions was kept 

between 3 - 3.5, in order to avoid overlapping of pH induced transformations in SWNT TCFs.  
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Preparation of GO dispersion: Preparation procedures of graphene oxide dispersions are 

adapted from literature.[32, 50]  Graphene oxide powder is obtained from Leibniz University of 

Hannover, which is prepared as follows: 15 g of KMnO4 was added slowly to a stirring mixture of 

2.5 g of graphite and 330 mL of H2SO4:H3PO4 (9:1 v/v) in a round bottom flask. The mixture is 

stirred continuously for 12 hours at 50 °C after the addition of KMnO4. Later, 300 mL of DI 

water-ice mixture is added and stirred for 10 minutes in an ice-bath. Then 3 mL of H2O2 (30%) 

solution and 500 mL of DI water is added and stirred further for 2 hours at room temperature. 

The precipitate from the mixture was centrifuged (at 18000 g) and washed with DI water 

repeatedly. Then the mixture was washed with 150 mL of ethanol to obtain graphene oxide. 

Finally, the graphene oxide mixture was added with 300 mL of DI water and freeze-dried under 

vacuum to obtain the graphene oxide powder (designated as GO1).  

Alternatively, 15 g of KMnO4 is added slowly to a stirring mixture of 5 g of graphite and 115 mL 

of H2SO4 in a round bottom flask. The mixture is stirred continuously for 2 hours in an ice-bath 

after the addition of KMnO4. Afterwards, the mixture is stirred continuously for 4 days at room 

temperature. Then, 230 mL of DI water is added and stirred for 10 minutes in an ice-bath. 13 mL 

of H2O2 (30%) solution is added and stirred further for 2 hours at room temperature. The 

precipitate from the mixture was centrifuged and washed with DI water and finally freeze-dried 

under vacuum to obtain the GO powder (designated as GO2).  

In another method, 15g of KMnO4 is added to slowly to a stirring mixture of 5g of graphite and 

115 mL of H2SO4. The mixture is stirred further for one hour. Then, 13 mL of H2O2 is added and 

stirred continuously. The resulting precipitate is centrifuged, washed and freeze-dried under 

vacuum to obtain GO powder (designated as GO3). 

Dispersions of GO are prepared by sonicating 40 mg of GO powder (Branson 450; 120W, 1 

hr)in 100 mL of DI water. Then the mixture was centrifuged at 18000g for 1 hour and the 

supernatant is collected to have GO sheets of size < 500nm. These dispersions are bar coated 

onto the SWNT TCFs, for chemical doping.  

Fabrication of transparent conductive films (TCFs):   TCFs were fabricated on glass slides 

using the Meyer rod coating method (doctor blading). The films were annealed at 120 ± 10 °C 

for 1 min. Multilayered coatings were prepared to reach low sheet resistance values (< 500 

Ω/□), typically 3 to 4 layers. All the data were repeated 2 to 3 times to confirm the 

reproducibility.  
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Electrical and optical properties:  Sheet resistance of TCFs was measured using 2 point 

probe method, across square area, i.e. 1 x 1 cm2, with a probe dimension of 1 cm2. The 

standard error, if any, involved in the measurement of sheet resistance is uniform throughout all 

the measurements. 

Typically, four to five measurements were taken for each data point and the average of the 

measurements was calculated. Standard deviation of the data points was calculated to be ≤ 7%. 

Optical transmittance of the TCFs was recorded using Cary 50 UV-Vis spectrometer (Varian).  

Raman spectroscopy:  Raman spectra of SWNT films were recorded using  Induram (Horiba 

Jobin-Yvon) spectrometer, coupled with confocal laser scanning microscope. Excitation 

wavelength used for the all the measurements is 488 nm. Films for the measurements were 

prepared by drop-casting corresponding SWNT dispersions on to a glass slide and annealed at 

120°C for 1min. 

Thermo Gravimetric Analysis (TGA):  TGA of SWNT and GO samples were performed using 

Metler Toledo - TGA/SDTA851e analyzer, under 20% O2 in Ar (flow rate: 80 mL-min–1). 

Temperature profile for the samples are kept between 27 °C  and 500 °C, at a ramp rate of 5 

°C/min. 175 µL of SWNT dispersions (0.3 wt-%)and 26 mg of GO powder was used for 

measurements. As a standardization procedure, all the samples were kept at 27 °C for 30 

minutes, before starting the measurement. 

Results and Discussion: 

We first investigate the effect of chemical doping of SWNT TCFs by GO dispersions. Films were 

fabricated by coating a GO layer on top of every SWNT layer in a film in order to maximize the 

possibility of doping the SWNTs that are within the film. Synergistic effect is observed for the 

SWNT TCFs after doped with different GOs. Summary of the results are given in Table1.   The 

figure of merit is improved up to 60%: 
     

     
      is observed for SWNT TCFs doped by GO1 

(SWNT/GO1) compared to  
     

     
      for SWNT TCFs without GO doping (Fig 1A, Table 1).  

     

     
       is observed for SWNT/GO2 TCFs, which is 36.5% higher than the pristine SWNT 

TCFs; 
     

     
       is observed for SWNT/GO3 TCFs, which is 31.7.% higher than the pristine 

SWNT TCFs. An increment of 58.5% in 
     

     
  for SWNT/GO1 films is higher than SWNT TCFs 

doped with other GO dispersions described here. We attribute this effect to p-doping of SWNTs 

by graphene oxide. p-type doping is supported by Raman spectroscopy, where an upshift in 
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tangential mode can be observed for doped SWNT TCFs compared to pristine SWNT films. The 

upshift in tangential mode is due to the electron withdrawing GO species that lead to the 

softening of SWNT lattice.[51]  From the Raman spectra, the tangential mode signature is 

centered at    = 1601.2 cm–1 for SWNT/GO1,    = 1600 cm–1 for SWNT/GO2 and    = 

1599.6 cm–1 for SWNT/GO3 films = 1601.2 cm–1 compared to the    = 1594.6 cm–1 for un-

doped SWNT films (Fig 1B; Table 2, S/No 1 & 2). We see that the overall upshift in tangential 

mode is    ≥ 5 cm–1 for p-doped SWNT TCFs. The effect of p-doping from GO layers is 

further supported by optical absorption spectroscopy, where the disappearance of 

semiconducting inter-band transition (   ) in SWNT/GO2 films are observed, compared to 

SWNT films (Fig. 3A and B). Intra band transition arises from the p-doping effect of depletion of 

the conduction band due to the electron withdrawing groups in GO layers, will have transition 

energy range in infra-red regions.[52]  

Table1: Summary of figure of merit of doped SWNT TCFs 

 

[a] % Increase for doped films is calculated  with respect to SWNT TCFs 

The observed difference in 
     

     
 of SWNT/GO1, SWNT/GO2 and SWNT/GO3 TCFs are 

explained as follows. The SWNT/GO1 TCFs have the larger 
     

     
 = 2.4 compared to 

SWNT/GO2 and SWNT/GO3 TCFs. Raman spectra of SWNT/GO1 TCFs shows a larger upshift 

of 6.6 cm–1 compared to the other two GO doped films.    = 5.4 cm–1 for SWNT/GO2 and 5 

cm–1 for SWNT/GO3 films are observed from the Raman spectra (Fig 1B; Table 2). This 

indirectly suggests that the effect of p-doping achieved through GO1 dispersions is greater than 

the p-doping achieved by GO2 and GO3 dispersions. Therefore, SWNT/GO1 TCFs has higher 

     

     
  compared to other GO doped TCFs.  

 

S/No. TCFs   % Increase[a] 

1 SWNT 4.1 - - 

2 SWNT/GO1 6.5 2.4 58.5 

3 SWNT/GO2 5.6 1.5 36.5 

4 SWNT/GO3 5.4 1.3 31.7 
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Figure 1: (A) Electrical and optical properties of as prepared and different GO doped SWNT TCFs; (B) Raman 

spectra of as prepared and different GO doped SWNTs TCFs. Excitation wavelength used for the measurement is 

488 nm. 

Table 2: Summary of vibrational properties of SWNT/GO films 

 

[a]. Signature of tangential mode vibrations in single wall carbon nanotubes [51] 

[b]. Signature of disordered band vibrations in single wall carbon nanotubes[51] 

60

65

70

75

80

85

90

95

100

10
2

10
3

SWNTs

SWNT/GO1

SWNT/GO2

SWNT/GO3

 
d.c.

/ 
o.c.

= 4.1

 
d.c.

/ 
o.c.

= 6.5

 
d.c.

/ 
o.c.

= 5.6

 
d.c.

/ 
o.c.

= 5.4

T
ra

n
sm

it
ta

n
ce

 (
%

)

Sheet Resistance ( )□

1300 1400 1500 1600 1700

SWNT
SWNT/GO1
SWNT/GO2
SWNT/GO3

In
te

n
si

ty
 (

a.
u

.)

Wavenumber (cm
-1

)

0.5
1570 1580 1590 1600 1610 1620 1630 

S/No. Notation  (cm–1)[a]  (cm–1)  (cm–1) [b] 

1 SWNT 1594.6 - 1371 

2 SWNT/GO1 1601.2 6.6 1369.3 

3 SWNT/GO2 1600 5.4 1373.1 

4 SWNT/GO3 1599.6 5 1364.2 



Results and Discussion 125 
 

 

 

 

Figure 2: Stability of single wall carbon nanotube transparent conducting films under ambient conditions: (A) 
Electrical and optical properties of as prepared SWNT TCFs, with respect to time. (B) Electrical and optical 
properties of GO doped films, SWNT/GO1, with respect to time. Inset in (A) and (B) shows the regression of figure of 
merit with respect to time for SWNT TCFs. 

The difference in p-doping achieved on the SWNT TCFs is further supported by the core-level x-

ray photoelectron spectroscopy. We found the following stoichiometry for the treated films:  

C64.7O32.8S1.3N1.2 for GO1, C68.1O30.5S0.7N0.6Na0.2 for GO2 and C63.7O31.6S1.4N1.6Na1.7 for GO3.   As 

it is difficult to fully dehydrate the GO samples, the oxidation rate deduced from stoichiometry 

may contain errors. From the O1s core level spectra, we detected that the GO1 samples have 

higher oxygen content (32.8 at-%) compared to the GO2 and GO3 samples that have 30.5 at-% 

and 31.6 at-% respectively.  These results imply that comparatively more oxygen containing 
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functional moieties (e.g. carboxylate, hydroxyl, and carbonyl) are introduced into the GO1 

samples through the oxidation process than the GO2 and GO3 samples. Our observations are 

consistent with Marcano et al, who have reported a strongly oxidized GO synthesized using the 

mixture of H2SO4:H3PO4 (9:1 v/v).[50] The p-doping occurs due to the oxygen containing moieties 

that are electron withdrawing by nature. Therefore the effect of p-doping by GO1 samples is 

larger than the other two GOs. The contributions from N1s and Na1s on the stoichiometry are 

possibly due to the presence of impurities in graphite powder, which is used as a precursor.  

Both GO2 and GO3 samples are prepared by oxidizing the graphite powder in H2SO4 for 96 

hours and 1 hour, respectively. A slight difference is observed on the 
     

     
  of SWNT TCFs 

doped with GO2 & GO3 (5.6 and 5.4 respectively). This result is in accordance with the Raman 

spectra where the upshift in tangential mode signatures of SWNT/GO2 and SWNT/GO3 TCFs 

are also slightly different. The tangential mode difference,   = 0.4 cm–1 between the 

SWNT/GO2 and SWNT/GO3 films are observed. These results indirectly suggest that the longer 

oxidation duration of graphite in H2SO4 did not introduce significantly enough electron 

withdrawing functional moieties compared to the shorter oxidation time. 

Table 3: Summary of stoichiometry of GOs from x-ray photoelectron spectra 

 

Our results on SWNT TCFs doped with graphene oxide  to enhance the performance of TCFs is 

consistent with other literature results where an increase in 
     

     
 of TCFs attributed to p-doping 

arises from the electron withdrawing groups in graphene oxide layers.[32, 53-55] The maximum 

increment in 
     

     
 of 58.5% on our GO doped SWNT TCFs is in the same regime as the increase 

in 
     

     
  of 63% reported on GO doped films by Han et al[32].  

  

 

S/No. Notation Conditions 
Duration 

(hrs) 
XPS Stoichiometric ratio 

C1s N1s O1s S2P Na1s 

1 GO1 H2SO4:H3PO4 12 64.7 1.2 32.8 1.3 - 

2 GO2 H2SO4 96 68.1 0.6 30.5 0.7 0.2 

3 GO3 H2SO4 1 63.7 1.6 31.6 1.4 1.7 
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Figure 3: Optical transition transformation spectroscopy: Optical absorption spectra of (A) SWNT TCF at different 
time (   = 220Ω/□;      = 69%) and (B) SWNT/GO1 TCFs (   = 200Ω/□;      = 73%).  (C) and (D) Evolution of 
semiconducting (   ) and metallic (   ) inter-band transitions of SWNT and SWNT/GO2 TCFs, respectively.  

In addition, the stability of SWNT TCFs under ambient conditions was investigated. SWNT TCFs 

and GO doped TCFs are not stable under ambient conditions as described further. The  
     

     
  of 

both undoped and GO doped SWNT TCFs are decreasing with respect to time under ambient 

conditions. Sheet resistance      of the TCFs increases with respect to time exhibiting a drastic 

increase in    within the first 3 – 4 days from the date of fabrication (Fig 2A and B). The 

increase in    with respect to time is consistent with other reports, where SWNT films were 

doped with HNO3,[47, 48, 56] SOCl2,[48] HNO3 & SOCl2,[48] hydrazine[33] and Triethyloxonium 

hexachloroantimonate.[38] The effect of storing the materials under ambient conditions on the 

stability of TCFs is monitored by optical absorption spectroscopy. We observed a drastic 

restoration of semiconducting inter-band transition (   ) after 3 days in ambient conditions, 
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which possibly arises due to the de-doping of TCFs, after 3-4 days for both SWNT and 

SWNT/GO1 TCFs. Only a marginal increase in integrated absorption cross-section of     bands 

is noticed beyond 4 days for both un-doped and GO doped SWNT TCFs (Fig 3). Minor change 

in metallic inter-band transition (   ) is observed, as p-doping does not influence the metallic 

transitions.[52] These absorption spectroscopic results are consistent with the stability of  
     

     
 of 

TCFs under ambient conditions. Therefore, the drastic increase within the    on the first 3 – 4 

days is possibly due to the moisture absorption by the hygroscopic oxygen containing moieties 

on SWNTs. The effect of p-doping on SWNTs by the electron withdrawing groups is possibly 

suppressed by the water molecules absorbed the functional moieties. After 3 – 4 days, the rate 

of moisture absorption by the functional moieties might have decreased. Thus, the increase in 

   has slowed down after 3 – 4 days  

In contrast, it was found that both undoped and GO doped SWNT TCFs are stable under inert 

conditions as described further. The SWNT TCFs and SWNT/GO3 samples are stored in a 

glove bag, which is continuously purged with nitrogen gas. The TCFs are found to be stable with 

respect to time, and no changes in 
     

     
 for both undoped and GO doped SWNT TCFs (Fig 4) 

are detected. The stability of the TCFs is again monitored by optical absorption spectroscopy. 

The integrated absorption cross-sections of semiconducting inter-band transitions (   ), of both 

undoped and GO doped TCFs remain unchanged over a period of 10 days in inert conditions 

(Fig 5).  

In a subsequent experiment, after storing the TCFs under inert conditions for ten days, they 

were exposed overnight to ambient conditions and then restored under inert conditions. A 

drastic decrease in 
     

     
 of the TCFs is observed after the exposure to ambient conditions. The  

     

     
  of both undoped and GO doped SWNT TCFs decreased by 20% and 25%, respectively 

(Fig. 4). Optical absorption spectra of the TCFs show that the semiconducting inter-band 

transition (   ) of both undoped and GO doped TCFs evolved significantly after the exposure to 

ambient conditions (Fig. 5). We ascribe these results of decrease in 
     

     
 and evolution of     

bands are due to the moisture absorption induced de-doping that arise from the hydrophilic 

electron withdrawing moieties present in TCFs. The absorbed moisture by these functional 

moieties further suppresses the effect of doping. This could be a possible reason for the 
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evolution of     bands, which disappeared due to the depletion of conduction band through the 

doping process. 

 

 
Figure 4: (A) Stability of single wall carbon nanotube transparent conducting films under nitrogen environment. (A) 

Electrical and optical properties of as prepared SWNT TCFs, with respect to time. (B) Electrical and optical 

properties of GO doped films, SWNT/GO3, with respect to time. Inset in (A) and (B) shows figure of merit with 

respect to time for SWNT and SWNT/GO3 TCFs, respectively.  
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Figure 5: Optical transition transformation spectroscopy: Optical absorption spectra of (A) SWNT TCF at different 

time (   = 200Ω/□;      = 67%) and (B) SWNT/GO2 TCFs (   = 200Ω/□;      = 74%).  (C) and (D) Evolution of 

semiconducting (   ) and metallic (   ) inter-band transitions of SWNT and SWNT/GO2 TCFs, respectively.  

An Increment in 
     

     
 is observed when the TCFs are restored to inert conditions. The samples 

were continuously purged with nitrogen under inert conditions. The 
     

     
 of undoped SWNT 

TCFs is fully recovered to its initial value of 4. However the  
     

     
 GO doped TCFs did not 

recovered fully to its initial value of 5.5; the maximum  
     

     
 = 5.2 is observed for the GO doped 

TCFs after exposed to inert conditions for two or more days (Fig 4). The optical absorption 

spectra of undoped SWNT TCFs show that the     band is slightly suppressed, after restored to 

inert conditions. On the other hand, the     band of GO doped TCFS did not suppress after 

restored to inert conditions (Fig 5). The increment in 
     

     
 of both undoped and GO doped TCFs 
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can be attributed to the removal of loosely bound water molecules by continuous purging of 

nitrogen.  The highly hygroscopic GO probably have strongly bound water molecules on the 

films, which are difficult to remove by continuous purging of nitrogen. These observations on 

stability of both un-doped and GO doped SWNT TCFs under inert conditions gives the new 

insights that the instability is possibly triggered by the moisture absorption and moisture 

absorption induced de-doping. Therefore, doped SWNT TCFs can be used for commercial 

applications, if a proper encapsulation is provided.  

  

  
Figure 6: Stability of TCFs at elevated conditions: Deterioration of TCFs at different elevated pressure and 

temperatures, (A) SWNT/GO3 TCFs, (B) SWNT TCFs. (C) Electrical and optical properties of SWNT and SWNT/GO 

TCFs annealed at 400 °C / 4 hours, replotted for clarity. (D) Optical absorption spectra of SWNT and SWNT/GO (   

= 205 and 225 Ω/□, respectively) TCFs, annealed at 400 °C/4 hours. 

The stability of SWNT TCFs under vacuum and at elevated temperatures was investigated. The 

motivation is to remove the strongly absorbed water molecules from the TCFs.  SWNT/GO3 

TCFs are kept at 60 °C under vacuum (≈10 mbar for 6 hours), in order to completely remove 

the sorbed moisture to restore the 
     

     
 = 5.2 to its initial value of 5.5. But the 

     

     
 of the TCFs 
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after vacuum exposure further deteriorated to 3.8 (Fig. 6A). This could be possibly due to the 

decomposition of graphene oxide. It is known form the literature that the decomposition of GO 

starts at temperature as low as 70 °C.[57, 58] During the decomposition process of GO, the 

electron withdrawing functional moieties decomposes. This will affect the effect of p-doping that 

results in decrement of 
     

     
 . Hence, the complete removal of sorbed water molecules can occur 

only at the expense of doping effects. The SWNT/GO3 samples were then annealed at   200 °C 

for 5 minutes at ambient conditions; 
     

     
 of SWNT/GO3 TCFs is further reduced to 2.8. For 

comparison, un-doped SWNT TCFs are also annealed at 200 °C for 5 minutes at ambient 

conditions; the 
     

     
 decreased from 2.5 from its initial value of 4 (Fig. 6A & B). These results are 

supported by the thermogravimetric analysis of GO and SWNTs. The thermogravimetric 

analysis of GO shows a gradual decomposition of GO, about 29.5% weight loss, at temperature 

below 170 °C is observed. Then a drastic weight loss (65.2 %) is observed at a temperature 

between 170 and 180 °C (Figure 7A). For SWNTs, a gradual weight loss occurred between 100 

to 200 °C, approximately about 25% (i.e. from 0.4 wt% to 0.3 wt%). The weight loss of more 

than 99% in SWNT profile is observed due to the presence excess amount of water; the 

samples used for measurement is a SWNT dispersion with a concentration of 0.3 wt% (Figure 

7B). These effects are consistent with those mentioned in the literature; desorption products 

such as H2O, CO and CO2 from decomposition of GO are observed between a temperature 

range from 70 to 300 °C.[57, 58] We attribute these results to the decomposition of functional 

moieties in GO and in SWNTs that occurs at wide range of temperatures 70 – 200 °C.  
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Figure 7: Thermo Gravimetric Analysis: (A) Weight loss profile of graphene oxide between 27 to 500 °C (B) Weight 

loss profile of SWNT dispersions (0.3 wt%) between 27 to 500 °C. Temperature ramp rate for the measurements are 

5 °C/min. 

Interestingly 
     

     
 of SWNT and SWNT/GO3 TCFs increased by ≈10 %, when annealed further 

at 400 °C for 4 hours. The optical transmittances of the films are larger than 90 % and the sheet 

resistance increased by app. one order of magnitude order (Fig. 6 A, B and C). The effect of  

doping is expected to be completely removed after annealing at 400 °C, as all the electron 

withdrawing functional moieties desorb at this temperature.[59] The effect of complete removal of 

doping is further supported by optical absorption spectroscopy, where the salient features of 

inter-band transitions (    and    ) reappeared strongly compared to doped SWNT and 

SWNT/GO3 TCFs (Fig. 5D). We observe a weight loss in SWNT films from the TGA, where a 

weight loss of about 33 % (0.3 wt% to 0.2 wt% between 200 and 400 °C) is observed (Figure 

7B). We attribute this effect to the loss of traces of functional moieties along with amorphous 

carbon and polymer surfactants present in it TCFs undergo thermal decomposition processes at 

≈ 400 °C that involve loss of carbon along with functional moieties, [57, 59] and loss of surfactant 

(PSS) that contributes to ≈ 12 vol-%. Loss of materials from the matrix leads to a film 

contraction, which results in thinner film with high optical transmittance. The increment in sheet 

resistance could possibly due to the cracks developed during the annealing process at 400°C, 

which affects the percolation network.  From the optical absorption spectra, blue-shift of 17 nm 

in     band for SWNT/GO3 TCFs (667 nm) compared to SWNT TCFs (684 nm) and blue-shift 
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of 6 nm in     band for SWNT/GO3 TCFs (906 nm) compared to SWNT TCFs (912 nm) are 

observed (Fig. 6D). These effects can be attributed to the interaction between GO and SWNTs. 

The increment in 
     

     
 of both TCFs after annealing at elevated temperature is possibly due to 

the removal of insulative species like residual amorphous carbon and polymer surfactants. 

Relatively higher 
     

     
 for SWNT/GO3 films compared to the SWNT TCFs (

     

     
 = 0.4) could be 

attributed to the presence of sp2 hybridized carbon atoms from the graphene oxide layers in the 

film. These graphite / graphene layers facilitate charge transfer between SWNTs, which 

suggests that GO improves the performance of TCFs not only through p-doping, but also 

through effective charge transfer through conjugated  electron system.  

 

Conclusion 

We have demonstrated that graphene oxide can be used as a p-dopant for SWNT TCFs to 

enhance the overall performance, which is in agreement with other literatures. The maximum 

increment of ≈60% on the 
     

     
  for graphene oxide doped SWNT TCFs is achieved. The effect 

of doping on the SWNTs is analyzed and studied using Raman spectroscopy and optical 

absorption spectroscopy. The stability of both un-doped and GO doped SWNT TCFs is under 

ambient and inert conditions are studied in detail. The effect of moisture and moisture induced 

de-doping of TCFs are also probed. The stability of TCFs at elevated temperatures and the 

effect of doping under elevated conditions are also probed. The TCFs are observed to be stable 

under inert conditions, which suggest that these materials can be used in commercial 

applications if proper encapsulation is provided. These new insights can open up further 

possibilities for research and technological developments. 
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5. Summary and outlook 
 

The work in this thesis focusses more on the scientific insights on the development of stable 

transparent conductive films (TCFs) using single wall carbon nanotubes. We have demonstrated 

that the figure of merit  
     

     
  of TCFs can be controlled by treating them with an acid treatment 

(HNO3) procedure for a desired duration. This effect of acid treatment on SWNTs addresses that 

the pre-treatment of tubes are essential step to the production process of TCFs in order to 

remove the metal impurities. We have also learned that the dispersibility of tubes, which is good 

for solution processable techniques, has improved through the oxidation induced functional 

moieties on the SWNTs. We have shown that the  
     

     
  of TCFs can be fine-tuned to their 

maximum by increasing the pH of the dispersions of SWNTs, from which the films are 

fabricated. This enables us to address the fundamental understanding on the surface charge 

mediated spatial distribution of SWNTs on the nanoscale network formation in TCFs. The better 

spatial distribution without affecting the percolation paths SWNTs on a nanoscale network film 

results in better transmission of photons at a given sheet resistance. 

Secondly, our work shows that the 
     

     
  of SWNT TCFs can be improved by employing a proper 

mixture of stabilizers. We have demonstrated that the TCFs fabricated with mixture of poly(4-

styrene sulphonic acid) (PSS) and poly(vinyl pyrrolidone) (PVP) as stabilizers have shown better 

     

     
 compared to the  TCFs fabricated with single stabilizers (e.g. PSS or PVP). The universality 

of this effect was confirmed from further investigations with a mixture of Ligno(4-sodium 

sulphonic acid) (LSS) + poly(vinyl alcohol) (PVA) and a mixture of LSS + PVP. We have tried to 

propose a hypothesis behind these effects on molecular scale engineering of SWNTs through 

supramolecular forces (e.g. van der Waals forces, hydrogen bonding, ionic bonding and - 
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interactions). The stabilizers that have more affinity towards the SWNTs orients closer to the 

tubes and the other stabilizers orient as a spacer molecules. In this way a better spatial 

distribution can be achieved on nanotube films. As we have drawn conclusions from the 

spectroscopic and scanning electron microscopic evidences, further scope of work lies with high 

resolution microscopic investigation on these films or TCFs. 

Thirdly, we have demonstrated that the stability of doped films can be improved by employing a 

proper encapsulation. The graphene oxide doped SWNT TCFs have shown better 
     

     
 

compared to the as prepared SWNT TCFs. The electrical conductivity of these films deteriorates 

at the ambient conditions, probably due to the absorption of moisture, which was evidenced 

from the spectroscopic data. However, when the films are kept under inert (nitrogen) conditions, 

the stability in electrical properties was observed.  

Further scope of work on the SWNT TCFs lies on improving the electrical properties, which can 

be useful in display applications (e.g. LEDs, solar cells, flat panel displays). The lowest sheet 

resistance observed for SWNT TCFs from this work is ~ 200 /□ at an optical transmittance of 

~ 80%. However, the functional requirement of sheet resistance for the display applications is < 

100 /□ at an optical transmittance of >90%.1 The SWNT TCFs fabricated in this work are via 

bar-coating; typically 3 to 4 layers are deposited from a SWNT dispersion concentration of 0.2 – 

0.3 wt% and each layer is annealed before the deposition of next layer. It would be interesting to 

see the effect of doping by 6 - 12M HNO3 on each layers. The required duration of doping 

process by immersion in HNO3 need to be obtained experimentally.  Most of the  literatures  

employ  the doping process on the final SWNT TCFs,   

1. Mackey, B., Invited Paper: Trends and Materials in Touch Sensing. SID Digest. 

Tech. Papers 2011, 42, 617-620 
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by immersing it in HNO3 or other dopants.2,3 By doping the each layer one after the other, we 

are expected to achieve the maximum possible doping on the whole SWNT TCF comprising 

multiple layers. In this way the effect of doping can be improved, so as the electrical conductivity 

of the film.  

In this thesis work, the doping experiments were performed on the TCFs fabricatted from SWNT 

dispersions of low pH values (~3). In this way, the effect of doping and the effect of pH of the 

dispersions was clearly distinguished. Further scope of work on this area lies on bringing these 

two effects of doping and pH of SWNT dispersions together  to see if there is any synergystic 

end results.  

2. Grüner, G., Carbon nanotube films for transparent and plastic electronics. 
J. Mater. Chem. 2006, 16, 3533-3539. 

3. Hu, L.; Hecht, D. S.; Grüner, G., Carbon nanotube thin films: Fabrication, 
properties, and applications. Chem. Rev. 2010, 110, 5790-5844. 
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