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IIKurzfassungBohrdaten-Telemetrie spielt eine wi
htige Rolle innerhalb der modernen Bohrte
hnolo-gie. Darunter werden die Verfahren zusammengefasst, die zur Erfassung von Messinfor-mation, wie z.B. Bohrlo
hgeometrie, Erdformation und Ri
htung der Bohrmeiÿel dienenund deren Übertragung von mehreren Sensoren an der Bohrlo
hsohle zu der Auswer-teeinheit an der Ober�ä
he ermögli
hen. Mud-Pulse Telemetrie ist eine spezielle Vari-ante der drahtlosen Telemetrie, die bei Bohrte
hniken zur Unterstützung von Messungenwährend des Bohrvorgangs entwi
kelt wurde. Das Übertragungsmedium ist dabei Spül�üs-sigkeit, wel
he dur
h die Spülpumpen entsteht und im Bohrstrang zirkuliert. Mit Hilfeeines Pulserventils im Berei
h des Bohrkopfs werden entspre
hend der TelemetriedatenDru
kpulse erzeugt und für die Verarbeitung zur Ober�ä
he gesendet. Aufgrund der ho-hen Zuverlässigkeit und der groÿen Rei
hweite ist der Gebrau
h der Mud-Pulse Telemetrieweitverbreitet.Das grundlegende Problem bei den auf Mud-Pulse Telemetrie basierenden Messungenwährend des Bohrvorgangs ist, dass die Telemetriedru
kpulse dur
h die um ein Vielfa
hesstärkeren Dru
ks
hwankungen des Bohrs
hlamms, ausgelöst dur
h den Pumpvorgang,überlagert werden. Dabei liegen die Pumps
hwankungen und die Telemetriedaten im gle-i
hen Frequenzberei
h. Darüber hinaus wird, besonders für ho
hratige Datenübertragungim Berei
h von 40 bit/se
, eine Kanalentzerrung vorgenommen. Die robuste bzw. zuver-lässige Übertragung der Telemetriedaten während des regulären Betriebs stellt eine groÿeHerausforderung dar. Der Grund hierfür ist, dass kein Referenzsignal für die Pumpeninter-ferenz vorhanden ist. Hinzu kommen die instabilen Pumpendrehzahl und Mehrpumpen-betrieb bei den meisten Bohrungen. Derzeitige Telemetrieverfahren sind kostenine�zientund liefern eine moderate Performanz besonders hinsi
htli
h des Tra
kings der System-parameter. In der vorliegenden Arbeit werden weiterführende Untersu
hungen für dieadaptive S
hätzung des Telemetriesignals dur
hgeführt, um die Leistungsfähigkeit bzw.die Robustheit der Telemetrieverfahren in realitätsnahen Bohrszenarien zu steigern.Die Anwendungsmögli
hkeit der auf bestimmten Eigens
haften der Interferenz- sowie desTelemetriesignals basierenden semi-blinden Verfahren werden untersu
ht und hinsi
htli
hderen Eins
hränkungen und Tra
kingansätze diskutiert.Unters
hiedli
he Empfängerstrukturen, bei denen die Nutzung der Mehrempfängersys-teme sowie einer Trainingssequenz vorliegt, werden vorgestellt. Vielverspre
hend ist dasadaptive Diversitätsverfahren mit Optimal-Kombinierung, wobei die sogenannte Co-Channel Interferenzdiversität zur Interferenzunterdrü
kung eingesetzt wird. Die Beson-derheit dieser Te
hnik liegt in dem einfa
hen und robusten Tra
kingverhalten.Dur
h Einsatz der Transform-Domain-Median-Filterung wird die Pumpeninterferenzblind entfernt und damit das Tra
king automatis
h gewährleistet. Diese Methode istni
ht nur von wirts
haftli
hem Interesse, sondern ermögli
ht sowohl nützli
he Kenntnisseüber das Übertragungsmedium zu erhalten als au
h signi�kante Verbesserung der Syn-
hronisationszuverlässigkeit zu erzeugen. S
hlieÿli
h werden hybride Empfängeransätzeeingeführt. Hierbei handelt es si
h um eine Kombination der Transform-Domain-Median-Filterung und der adaptiven Diversitätsverfahren. Sol
he hybride Empfängerstrukturenermögli
hen sowohl eine Verbesserung der Bitfehlerrate au
h als ein e�zientes und zuver-lässiges Tra
king der Systemparameter.Zum S
hluss wurden alle Verfahren Hinsi
ht ihrer E�zienz in realistis
hen Anwendungender Mud-Pulse Telemetrie eingehend untersu
ht. Mit Hilfe der Messdaten von unter-



IIIs
hiedli
hen Bohranlagen wurde die Taugli
hkeit der oben genannten Verfahren bewiesenund das optimale Empfängersystem für Mud-Pulse Telemetrie-Anwendungen spezi�ziert.S
hlagwörterMud-Pulse Telemetrie, Semi-blinde und trainingsbasierende Signalverarbeitung, Charak-terisierung von Pumpinterferenz und Kanal, Transform-Domain Interferenzunterdrü
k-ung, Mehrkanal Diversitätsverfahren, Hybride Empfänger



IVAbstra
tTelemetry is an important feature of re
ent drilling te
hnologies. It is a pro
ess of gath-ering information on the wellbore geometry, formation properties and the dire
tion of thedrill bit from multiple sensors lo
ated at the bottom of the borehole and transmittingthem to the surfa
e evaluation units. Mud pulse telemetry is a spe
ial type of wirelessdata telemetry, developed to support Measurement-While-Drilling operations in drillingte
hnologies. The transmission medium is mud, whi
h is generated by pumps and 
ir
u-lated in the drill string. The telemetry information is formed to the telemetry pressurewaves by a valve pulser near the drill bit and transmitted to the pro
essing unit at thesurfa
e. Due to the high reliability and great rea
h in mud-�lled boreholes, mud pulsetelemetry has been widely applied in drilling operations.In the appli
ation of Measurement-While-Drilling based on mud pulse telemetry, the 
om-mon problem is that the telemetry signal pressure is subje
t to the mu
h stronger pumpinterferen
e pressures in the whole operation frequen
y of mud pulse telemetry. Moreover,the distortions 
aused by the mud 
ommuni
ation 
hannel need to be equalized espe
iallyfor high data rate telemetry appli
ations. The absen
e of a referen
e signal for the pumpinterferen
e, instable behavior and the need for multiple pumps in the drilling tasks makereliable and robust data telemetry mu
h more 
hallenging during the regular operations.The 
urrent te
hnologies su�er from short
omings in terms of the installation 
osts andthe limited performan
e espe
ially in terms of system parameters tra
king and BER athigh data rates. Con
erning these issues, further studies on the adaptive telemetry signalestimation are performed to develop reliable and feasible te
hniques for real-world drillings
enarios.The appli
ation of semi-blind signal pro
essing s
hemes, where the data re
overy is solelybased on the spe
ial features of both interferen
e and telemetry signals, is proposed anddis
ussed in terms of feasibility 
onstraints and tra
king issue.Di�erent re
eiver ar
hite
tures whi
h rely on multi
hannel re
eivers and the training se-quen
e fa
ilities in the MPT system are demonstrated. An e�e
tive method of interfer-en
e reje
tion termed as the optimal adaptive diversity 
ombining is presented, wherethe 
o-
hannel interferen
e diversity is needed to re
onstru
t the telemetry data. Of greatimportan
e is the simple and straightforward tra
king 
apabilities of this s
heme.In order to ful�ll the MPT requirements on adaptive interferen
e suppression withoutrequiring any kind of knowledge on system signals, the 
on
ept of transform domain me-dian �ltering is introdu
ed. The appli
ation of transform domain median �ltering turnedout to be not only of e
onomi
al interest but also allows providing knowledge on themud 
hannel behavior and a
hieves signi�
ant improvement in terms of reliable syn
hro-nization. In addition, hybrid re
eiver-stru
tures are proposed, where the 
ombination oftransform domain median �ltering and adaptive diversity 
ombing s
hemes are investi-gated. Su
h hybrid re
eiver-systems not only improve the performan
e in terms of BERbut also provide simple and reliable tra
king of system parameters.Finally, a 
omparison between all proposed te
hniques is provided to reveal theirpra
ti
ability and e�
ien
y in real MPT appli
ations. With the help of �eld-test datameasurements, the 
apability of the above-mentioned s
hemes and the optimal MPTre
eiver-system have been found and validated.
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Chapter 1Introdu
tionAs a basis of this work, an introdu
tion to drilling te
hnology used in the oil and gasindustry and telemetry systems will be given in this 
hapter. Spe
i�
ally, the 
hara
ter-isti
s of the environment used for telemetry appli
ation is reviewed. The major problemstatement, state of the art and motivation of this resear
h will be presented. Finally theoverview of the dissertation is illustrated.1.1 Drilling te
hnologySupplying reliable energy is a life prerequisite. Fossil fuels su
h as oil and natural gasprodu
e most of the world's energy and therefore there is an appre
iable market forpetroleum oil. Petroleum deposits referred to as reservoirs are trapped in earth layerswith di�erent stone 
hara
teristi
s, therefore they have to be re
overed e�
iently bydrilling oil holes known as boreholes. The term drilling te
hnology denotes te
hniques andrelated systems for ex
avating oil or gas from the reservoir. General prin
iples of drillingte
hnology are des
ribed brie�y [78℄.The primary system of oil platforms used to �nd geologi
 reservoirs as well as to 
reateborehole in the ground is Drilling rig. The drilling rig refers to as all the drilling ma
hineryand devi
es that are used to ex
avate and extra
t oil from the ground [24℄. There are manytypes of drilling rigs 
apable of applying di�erent drilling te
hnologies and ex
avatingof thousand meters boreholes. The equipment asso
iated with a rig is to some extentdependent on the type of rig but typi
ally in
ludes at least some of the 
omponentsillustrated in Fig. 1.1 and explained subsequently.A rig is basi
ally a 
rane, on the hook of whi
h the drill string is mounted, and togetherwith travelling blo
k and drilling line 
onstitutes the hoisting system, whi
h fa
ilitatesthe lowering and lifting of the drill string into and out of the wellbore. The drill stringis referred to as a 
olumn of drill pipes, in whi
h drilling �uid 
an be pumped via themud pumps down through it and 
ir
ulated ba
k up the annulus. A steel tower knownas derri
k is used for lifting and positioning the drill string and pipe laying above thewellbore and 
ontaining the ma
hinery for turning the drilling bit around in the borehole.As the drill string goes deeper into the ground, new piping has to be s
rewed on the topof the drill string to keep the whole system working. At the end of the drill string, drillingbit is pla
ed that breaks apart and 
rushes the ro
k formations. To provide the drill bitworking at an optimum rate, it has to be pushed with a 
ertain degree of pressure relative1
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Drill bit
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Travelling block

Hook
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Fig. 1.1: Drilling rigto the stone under it. Heavy, thi
k-walled drill pipes known as drill 
ollars are used toapply weight to the drill bit [7, 24℄. To drill a borehole, a me
hani
al devi
e on a drillingrig provides torque whi
h is needed to rotate the drill string. The axial motion of drillstring and thus the weight on bit is 
ontrolled by the position of travelling blo
k on thesurfa
e. The form of the drives is dependent on the system design and 
an be a rotarytable, lo
ated under the working platform, or a top drive, suspended in the hook. A motor
alled mud motor lo
ated 
lose to the drill bit is used for fast drilling. Large mud pumps
ir
ulate mud through the drill string and up the 
asing annulus, for 
ooling, removing the
uttings and lubri
ating the drill bit during the drilling task. Depending on the boreholedepth, large quantities of mud are required for the drilling pro
ess. Therefore a rig hasusually more than one �uid pump (three pumps are usual). In addition, dire
tly above thedrill bit and the optional motor, there are the down hole tools whi
h allow us espe
ially to
ontrol the drill bit and send up the borehole geometry and formation properties. Togetherwith the drill bit and 
ollars, they 
onstitute the Bottom Hole Assembly (BHA) [7, 78℄.The su

ess of wellbore drilling operations highly depends on various real-time informationabout formation properties, wellbore geometry, drilling system orientation and me
hani
alproperties of the drilling pro
ess, obtained by multiple sensors pla
ed 
lose to the drillbit. Therefore, in drilling te
hnology, real-time telemetry is an important requirement toanalyze and explore the well, operate the rig and redu
e the 
osts. UtilizingMeasurement-While-Drilling (MWD) system responds to this demand and serves as a spe
i�
 feature of
urrent te
hniques for drilling oil and gas wells to optimize the drilling pro
ess. The termMWD denotes the pro
ess of up-linking information between the surfa
e and downhole.For example, the operator requires feedba
k from sensors lo
ated at the bottom of thehole in order to 
ontrol the dire
tion of the drill bit and ensure that the drilling pro
eeds



Chapter 1. Introdu
tion 3in a 
orre
t way [47℄.There are several data telemetry methods developed for MWD operations, e.g. ele
tro-magneti
 waves transmitted through the earth, a
ousti
 waves travelling in the drill string,ele
tri
 
urrent transmitted through 
ables mounted in the pipes and pressure waves trav-elling in the mud 
olumn. The di�eren
e between these methods 
an be expressed in termsof the telemetry 
hannel they use, the volume of information they 
an handle per unittime, and the distan
e the information 
an be transmitted. The latter method is generallyknown as Mud Pulse Telemetry (MPT) and due to its high reliability is by far the mostapplied te
hnology in drilling operations. A
hieved data rates by MPT are relative low;in return, MPT o�ers great rea
h in mud-�lled boreholes. This work is 
arried out for theMPT systems, whi
h is investigated in the next se
tion [47, 24℄.1.2 MPT systemThe 
on
ept of telemetry is understood to be a pro
ess of gathering and transmitting datafrom downhole tools in the BHA to surfa
e evaluation tools or 
omputers.
Drilling
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Fig. 1.2: The �gure to the left depi
ts the general 
on
ept of MPT system. The �gure tothe right shows idealized MPT system model used to analyze the performan
eof mud pulse telemetryAs mentioned, the MPT is the most su

essful among the telemetry systems. Its basi
prin
iples are des
ribed pre
isely next.Fig. 1.2 shows the general 
on
ept of an MPT system and idealized MPT system modelused in the analysis of the mud pulse telemetry performan
e. The mud typi
ally 
ir
ulates



Chapter 1. Introdu
tion 4through the borehole to lubri
ate the drill and removes 
uttings as well. Pumps generateand 
ir
ulate the drilling �uid (mud) in the drill string through the nozzles in the drillbit and upwards in the annulus towards the surfa
e. The long arrows indi
ate the �ow ofthe drilling �uid. A valve pulser is lo
ated near to the drill bit, whi
h generates pressurewaves a

ording to the information to be transmitted. There are two kinds of valve pulser,namely poppet and the shear valves whi
h 
hange the mud pressure by opening and
losing the valve. The di�eren
e between these valves lies in the dire
tion of the valvemotion [25℄. The telemetry pressure waves travelling in the drill string are depi
ted bytwo adja
ent small arrows. The surfa
e re
eiver system 
onsists of sensors, whi
h measurethe pressure �u
tuations, and signal pro
essing unit. On the surfa
e, the telemetry signalis measured by pressure transdu
ers and pro
essed by the signal pro
essing unit to re
overthe telemetry signal and thereby information from downhole. In this regard, MPT systemis a typi
al 
ommuni
ation system (see Fig. 1.2).The transmitter of the MPT system in
ludes 
ompression, en
oding and modulation units.First of all, the amount of data to be transmitted is redu
ed by data 
ompression. After-wards, the 
ompressed data are en
oded so that the pulser 
an generate pulses representingthese data. The en
oding 
an be performed in the form of either pulse 
ode modulation(PCM) or pulse position modulation (PPM). The en
oded data are referred to as thebaseband data. Finally the baseband data are modulated by a 
arrier to 
arry the trans-mission in higher frequen
ies. There are several modulation s
hemes su
h as amplitudeshift keying (ASK), frequen
y shift keying (FSK), phase shift keying (PSK) and also 
on-tinuous phase modulation (CPM) [11, 24℄. After the modulation, the data or telemetrysignal is ready to be transmitted.At the surfa
e re
eiver, the transmitted data through the 
hannel is measured by pres-sure transdu
ers and 
onverted in ele
tri
 signals, whi
h 
an be pro
essed to re
onstru
tthe transmitted signal. For this, the surfa
e re
eiver requires demodulator, de
oder andde
ompression units. Similar to any kind of 
ommuni
ation system, the 
ommon prob-lem in data transmission in MPT is that besides the telemetry signal, various interferingsignals su
h as the pressure �u
tuations generated by the mud pumps and being referredto as the pump signal in this work1, the ex
itation noise 
aused by the rotation of drillstring and mud motors or the drilling dynami
s 
aused by torsional os
illation of the drillstring are also re
eived at the pressure transdu
ers. Be
ause the pump signal pressure 
anbe mu
h higher than the telemetry signal pressure and pump frequen
ies are distributedover the entire telemetry spe
trum, the pump signal is a key fa
tor to deteriorate the
ommuni
ation quality in MPT [24℄.The transmission bandwidth is limited up to 100 Hz due to the strong attenuation of higherfrequen
ies by the mud and 40 bit/s is the highest data rate, whi
h 
an be a
hieved fordata transmission through the mud. The distortion 
aused by the 
ommuni
ation 
hannelis another problem to be dealt with; espe
ially for high data rate transmission there willbe severe Inter-Symbol Interferen
es (ISI). Therefore, high data rate and robust mud pulsetelemetry is a 
hallenging task due to the di�
ulty in 
hara
terizing the mud 
hannel andthe strong interferen
e inherent to the mud pulse telemetry system. A reliable estimationof the 
hannels for su
h kind of system, in whi
h the training sequen
e is immersed instrong interferen
e, seems to be a big 
hallenge. This problem and other related issueswill be dis
ussed in the sequent 
hapters.Sample measured data from test boreholes as well as 
ommer
ial ones, 
alled �eld-test1 In bore te
hnique, the pump interferen
e is also known as pump noise.
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Chapter 1. Introdu
tion 6data, fa
ilitate analyzing the interfering signals, espe
ially the pump signal, the behaviorof the transmission 
hannel, and reliable performan
e evaluation of developed algorithms.Fig. 1.3 shows the time-frequen
y representation of a �eld-test data re
orded at a testborehole.The data telemetry in real 
ommer
ial boreholes be
omes more 
hallenging due to highernumber of pumps involved in drilling task and �u
tuations of the pump signal 
aused byinstable behavior of the pumps. In addition, the signal strength is mu
h weaker and otherinterferen
e sour
es 
an appear as well. Fig. 1.4 shows the time-frequen
y representationof a �eld-test data re
orded at a 
ommer
ial borehole, whi
h 
on�rms this statement.
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Fig. 1.4: �eld-test data re
orded at a 
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 pump signal and labeled areas bandpass data signal)
1.3 Motivation and s
opeObservation of the �eld-test data in the pre
eding se
tion 
on�rms that major distortionsof the telemetry signal in an MPT system are 
aused by the mud pump, whi
h 
alled pumpsignal. The power of the pump signal is mu
h stronger than the telemetry signal and is astrong interferer in the operation frequen
y of the MPT system. Moreover the pump signalexhibits multiple harmoni
s 
hara
teristi
. The shape and period of the pump signal areunknown and 
an vary with time. The pump signal 
hanges with the required �ow rate
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tion 7at the borehole, whi
h is unpredi
table 2. Considering this fa
t to assume that the pumpsignal is known is not realisti
. The pump signal 
an be regarded as an ergodi
 pro
ess inthe pres
ribed appli
ation. Also the pump signal 
an be treated as 
o-
hannel interferen
e,arising from frequen
y reuse, for the telemetry signal. Considering that usually more thanone pump is involved in drilling operation, dealing with the pump signal poses a great
hallenge in MPT.In MPT systems, the 
ommuni
ation 
hannel (mud �ow in drill string) is some-what unusual. The drilling �uid is oil- or water-based and has the property of beingthixotropi
3[95℄. Chara
terization of the 
hannel has, up to now, been very di�
ult. Thedrill well 
an be quite long (12-14 km). Therefore the pressure pulse is strongly attenu-ated. Due to the re�e
tions in the drill string and at the surfa
e, the pulse signal su�ersfrom multipath distortions as well. ISI arisen due to delay spread is a major limitation inMPT system and has to be also dealt for telemetry signal re
overy. Another problem isthe fa
t that the underlying pressure level varies with time as the 
ontrol system on themud pumps regulates the �ow rate. The operator 
ontrolling the drilling 
an also adjustthe �ow rate as the drilling pro
ess requires it. The 
hannel properties might be subje
t tosome variations be
ause of 
hanges in mud 
hara
teristi
s and underlying pressure level.Due to the fa
t that the drilling velo
ity is very low, the mud 
hannel 
an be 
onsid-ered as time-invariant. Therefore the e�e
t of Doppler shift and Doppler spread in thetransmitted signal is not signi�
ant and 
an be negle
ted.Con
erning the abovementioned e�e
ts, the re
eived signals by two sensors are a mixtureof di�erent signals (telemetry and pump signals). The mixture is weighted and delayed
orresponding to the multiple paths through whi
h a mud pulse propagates to the re
eivers(see Fig. 1.2). Su
h a kind of mixture is 
alled 
onvolutive mixture and modeled as
y1(k) = h11(k) ∗ x1(k) + h12(k) ∗ x2(k) + v1(k)
y2(k) = h21(k) ∗ x1(k) + h22(k) ∗ x2(k) + v2(k) ,

(1.1)where xi(k), i ∈ {1, 2} are the pump and telemetry signals respe
tively. yi(k) are the
orrupted re
eived signals and vi(k) is zero-mean additive white Gaussian noise (AWGN).
hi1(k) represent the pump 
hannels and hi2(k) the telemetry 
hannels. To re
over thetelemetry signal, the signal to interferen
e ratio (SIR) of the re
eived signal has to bein
reased. This 
an be a
hieved by interferen
e suppression. Several te
hniques have beeninvestigated to suppress the pump signal, as dis
ussed later.In short, the 
ommon problem in the MPT appli
ations is that the telemetry signal pres-sure is subje
t to the mu
h stronger pump interferen
e pressures in the whole operationfrequen
y of the system. Additionally, distortions 
aused by the telemetry 
hannel arerequired to be equalized, parti
ularly in high data rate telemetry s
enarios. The absen
eof a referen
e signal for the pump interferen
e, instable behavior and the need for multiplepumps in most drilling tasks make e�
ient and robust data telemetry more 
hallengingduring the regular operations. Con
erning these matters, developing reliable and feasibledata re
overy te
hniques for real-world drilling environments are dealt throughout thisdissertation.2 Flow rate is typi
ally fairly 
onstant over long periods of time but may 
hanges at any time due to therequirements of the drilling pro
ess.3 Thixotropy is the property of 
ertain �uids whi
h form a gelled stru
ture under normal 
ondition, but�ow over time when agitated or stressed [34℄.
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tion 81.3.1 State of the art in MPT systemsIn former years, MPT systems have been further developed in terms of 
ommuni
ationproto
ols and signal pro
essing issues. The 
ommuni
ation proto
ol has a further impa
ton the robustness and telemetry e�
ien
y. Several proposals to des
ribe the 
ommu-ni
ation proto
ol have been proposed, but there is no standard spe
i�ed for the MPTappli
ation. It is of great importan
e to 
onsider the pra
ti
ability and feasibility of theutilized proto
ol in real-world drilling s
enarios. The data transmission proto
ol used inthis work is spe
i�ed by a startup sequen
e and meets the demands pres
ribed by theMPT appli
ation. The startup sequen
e in
ludes a valve-o� (VO) period, at whi
h thevalve pulser is ina
tive and a training sequen
e (TS) for telemetry signal and 
hirp signalsproposed for syn
hronization.It must be noted that su
h kind of training sequen
e is transmitted on
e with the ex
eptionof short syn
hronization 
hirps. In other words, no training sequen
e is available duringthe regular operation for the system related signals. The pro
essing te
hnique developedfor data telemetry in the MPT system has been studied 
onsidering this matter. Themost robust and e�
ient te
hnologies require installing additional sensing elements atthe pumps or employing two re
eiver sensors to remove the pump signal from the re
eivedsignal. The 
on
ept of these te
hniques is brie�y des
ribed as follows:
− The �rst te
hnique is a pump 
an
ellation approa
h based on magneti
 dete
tionand requires the pump strobe sensors to be installed in 
ertain positions at pumps.A

ording to the operational pro
edure reported in [24, 47℄, the su

essive pumpstrobes patterns are 
olle
ted, averaged and extra
ted from the measured signal.To provide the pump patterns the pump strobe sensors are to be utilized at ea
ha
tive pump. These sensors register the magneti
 
hanges, when the pump pistonis moving under them. One pump strobe sensor is required for ea
h pump. Usuallythree pumps are involved in the drilling task. This te
hnique is quite simple for asingle pump but requires high installation 
osts and expenses [24℄.
− The se
ond te
hnology based on a two-re
eiver stru
ture is more attra
tive be
auseof both e
onomi
al reason and e�
ien
y. A

ording to this approa
h [24℄, the inter-feren
e 
an
ellation is performed by pro
essing the signals of two re
eivers that areinstalled in 
ertain positions at the surfa
e of the borehole. Sin
e the re
onstru
tionof the pump signal is unwanted, to separate the telemetry signal from the pumpsignal, it is not needed to estimate the whole 
hannels of the mixing system in Eq.1.1. Using the prin
iple of superposition x̃1(k) = h11(k) ∗ x1(k) allows to estimatethe 
hannels between the re
eiver sensors ˆ̃h21(k) during the VO phase a

ording to

y2(k) = h̃21(k) ∗ y1(k) . (1.2)Based on this estimation, the pump signal 
an be subtra
ted from the measured
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y2(k)− y1(k) ∗

ˆ̃
h21(k) =

(

h22(k)−
ˆ̃
h21(k) ∗ h12(k)

)

︸ ︷︷ ︸

h(k)

∗x2(k) + v2(k)−
ˆ̃
h21(k) ∗ v1(k)equivalent to

h11(k) ∗ y2(k)− y1(k) ∗ ĥ21(k) =
(

h11(k) ∗ h22(k)− ĥ21(k) ∗ h12(k)
)

︸ ︷︷ ︸

h(k)

∗x2(k)

+h11(k) ∗ v2(k)− ĥ21(k) ∗ v1(k) .

(1.3)
In the se
ond phase, the distortions 
aused by h(k) are to be equalized. The equal-izer estimation is performed during the training sequen
e phase. The estimation ofthe 
hannel equalizer is done by minimizing the di�eren
e between the originallytransmitted training sequen
e and the re
eived equalized training sequen
e 
allederror. By minimizing the mean square error, the Wiener-Hopf-Equation is derived.Stable fast re
ursive least square (RLS) algorithm is applied for determining the 
o-e�
ient of a Wiener �lter. Su
h kind of algorithm is numeri
ally stable and exhibitsfast 
onvergen
e 
hara
teristi
. Another advantage of the algorithm is being samplebased, so the �lter 
oe�
ient 
an be updated with every sample of the re
eivedtraining sequen
e [24℄.The drawba
k of this method is that the pump 
an
ellation is based on the initialestimation of ˆ̃h21(k) during valve-o�. By employing the superposition law, the pumpsignal 
an be removed during the regular operation. There is no possibility to updatethe initial estimation of the pump 
hannel for this method. There is no e�
ientparameterized signal model for the pump signal. In the 
ase of 
hanges in the pump
hara
teristi
 during the normal operation, the initial estimation be
omes ina

urateand a

ordingly the dete
tion performan
e de
reases. To have an update for theinitial estimation, the pulser has to be swit
hed o�, whi
h makes tra
king more
ompli
ated and 
ost ine�e
tive [24℄.The 
on
lusion is that the existing pro
essing te
hniques are reliant on either additionalsensors of 
ost-intensive installation or the initial estimation during the VO phase whi
hresults in erroneous dete
tion of telemetry data during the regular operation.1.3.2 Open issuesAs the ba
kground has shown, several open issues remain to be solved for the telemetryproblem in the MPT system. In this 
ontext, the above mentioned two-re
eiver sensorstru
ture has to be optimized for the tra
king purpose. Noti
e that no training sequen
eis available for the system signals or the training sequen
e is only available as a part ofsystem signals. Under these 
ir
umstan
es, an optimization of the 
ommuni
ation qualityin MPT is required. These requirements motivate a 
ouple of fundamental resear
h issuessummarized as follows:

− Reliable tra
king to maintain the system e�
ien
y during the regular operations
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− Optimal re
eiver arrangements being of stru
tural e�
ien
y and high performan
ein the s
heme of two-re
eiver stru
ture
− E�
ient suppression of pump interferen
e without any need of knowledge on MPTsystem signals and requirement on installing additional sensors
− Pra
ti
ally relevant estimation strategies, whi
h based on the 
hannel estimation andsubsequent equalizer identi�
ation or on the straightforward equalizer estimation1.4 Dissertation overviewThe resear
h obje
tive presented in this thesis is primarily 
on
erned with reliable sup-pression of the interferen
e (pump signal) during regular operation and equalization ofthe distortions 
aused by the multipath in the 
hannel. In this 
ontext, both blind andtraining based sequential as well as joint estimation s
hemes are proposed to developrobust re
eiver satisfying requirements of the MPT system.

Chapter 2

Statistical

signal

analysis

Chapter 4

Reference signal-

based processing

schemes

Chapter 3

Blind and semi-

blind signal

processing

Chapter 5

Adaptive interference

avoidance techniques

via transform domain

filtering and hybrid

receiversFig. 1.5: Overview of the dissertation.The overview of this dissertation in the respe
tive 
hapters and the dependen
ies amongthem are illustrated in Fig. 1.5.Chapter 2 des
ribes statisti
al 
hara
teristi
s of system signals and methods for statisti
alsignal analysis, whi
h serves as a basis for developing reliable and relevant signal pro
essingalgorithms. The statisti
al properties of both telemetry and interferen
e pump signals arestudied. In the same 
hapter, it is also shown how an estimate of fundamental period ofthe pump signal 
an be obtained. This estimation provides a priori information requiredfor semi-blind estimation algorithms in subsequent 
hapters.In Chapter 3, the most 
ommon and e�
ient blind signal de
onvolution te
hnologies areapplied to the telemetry problem for the MPT system. The advantages and drawba
ks of
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h kind of estimation methods are illustrated. The de�
ien
ies of the algorithm workingtotally blind emphasis the ne
essity of exploiting some a priori knowledge for the algo-rithm design. A semi-blind sour
e extra
tion approa
h based on the statisti
al propertyof the interferen
e is presented. In addition, a new semi-blind sour
e separation s
heme isproposed, whi
h utilizes the information on modulus or envelope of both telemetry andpump interferen
e. Furthermore the appli
ability of semi-blind methods in the 
ontext ofreleasing the re
eived signal from the interferen
e is dis
ussed.In Chapter 4, di�erent training-based algorithms are investigated, whi
h serve as a reliableestimation approa
h using a training sequen
e. Furthermore, su
h kind of algorithmsfa
ilitates tra
king by applying a de
ision feedba
k approa
h, where the dete
ted data isused in turn as a training sequen
e to update the estimation.Chapter 5 presents an e�e
tive s
heme in the sense of adaptive removal of interferen
ewithout utilizing any a priori knowledge, 
alled transform domain median �ltering. Thiss
heme 
ombined with training-based as well as semi-blind algorithms is presented. Theadvantages of 
ombined s
hemes in terms of optimal 
ombining and equalization usingavailable re
eiver diversity (two-re
eiver system) are dis
ussed. In addition, the 
ombina-tion of transform domain median �ltering and CLEAN algorithm to extra
t the 
hannelimpulse response of the mud 
ommuni
ation medium is proposed.Finally, Chapter 6 provides a general 
on
lusion with the 
ontributions of this thesis andsome resear
h issues for future work.



Chapter 2Statisti
al signal analysis
Statisti
al signal pro
essing has found a wide range of appli
ations like audio, image andarray pro
essing or digital 
ommuni
ations. It is 
onsidered as a reliable pro
essing ap-proa
h, where no training sequen
e for the signals exists or the training sequen
e is onlyavailable for a part of system signals. Furthermore, developing relevant signal pro
essingalgorithms demands the investigation of the statisti
al 
hara
teristi
s of MPT system sig-nals. Therefore, this 
hapter �rst gives a des
ription of underlying MPT system signalsand then investigates their statisti
al properties. In addition, the 
on
ept of testing thestatisti
al signi�
an
e is reviewed and utilized to derive statisti
al properties of the inter-feren
e signal. This 
hapter 
on
ludes with the methods of fundamental period estimationproposed for the interferen
e signal, whi
h provides a-priori knowledge for designing thealgorithms in the subsequent 
hapter.2.1 Analysis of telemetry signalAs stated in Chapter 1, the modulated telemetry signal is generated by the mud pulser.Among the modulation s
hemes appli
able in MPT, binary phase shift keying (BPSK) isseen as a promising s
heme. However the transmitter namely sheering valve is not ableto open and 
lose the valve instantaneously and a

ordingly to generate dis
ontinuousBPSK signals in pra
ti
e. To take the advantage of phase modulation, another bit-to-signal mapping s
heme was developed. This modulation s
heme is a modi�ed version ofBPSK modulation and 
an be des
ribed as a 
ontinuous phase modulation (CPM) thus
alled binary 
ontinuous phase modulation (BCPM)[37℄.2.1.1 Digital modulation s
hemeAn overview of PSK and CPM modulation s
hemes serves as a useful ba
kground forbetter understanding of BCPM modulation s
heme in the MPT system. The generalbaseband expression for CPM signal is given by [59, 43℄

xT (t) = ejϕT (t) , (2.1)
12
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al signal analysis 13where
ϕT (t) = αF

∞∑

k=−∞

dkq (t− kT ) , q(t) =

t∫

−∞

s (τ) dτ . (2.2)
T is the symbol duration, dk a 
omplex dis
rete valued tranmitted symbol and αF mod-ulation 
onstant. Moreover s(t) and q(t) represent respe
tively the the frequen
y- andphase impulse. The information 
arried by instantaneous frequen
y is given by

ωT (t) = αF

+∞∑

k=−∞

dks (t− kT ) . (2.3)The bandpass CPM signal is 
al
ulated by
x(t) = cos

(

2πfct+ αF

+∞∑

k=−∞

dkq (t− kT )

)

, (2.4)where fc is the 
arrier frequen
y. Re
all ωT (t) =
dϕT (t)

dt
, a rotation of 
arrier phase by ±ηπ
orresponds to a frequen
y deviation of ηπ

T
from fc. η = ∆ϕ

π
is de�ned as modulation index[59, 43℄.The 
hara
teristi
s of CPM signal depend on the modulation 
onstant and the frequen
yor phase impulse. For BCPM the modulation index equals 1. The explanations des
ribedas follows. The general baseband expression for PSK signal is given by [43, 11℄

xT (t) =
+∞∑

k=−∞

|dk| e
jθdks (t− kT ) . (2.5)Here dk is a 
omplex dis
rete valued tranmitted symbol and s(t) signal pulse shape. Thebandpass PSK signal is 
al
ulated by

x(t) =

+∞∑

k=−∞

|dk| s (t− kT ) cos (2πfct+ θdk) . (2.6)For BPSK θdk ∈ {−π, π} or dk ∈ {−1, 1}. For generation a BCPM signal, a transitionsignal with half the 
arrier frequen
y fc
2
for one 
arrier period 1

fc
is transmitted to maintainthe phase 
ontinuity and at the same time to provide ∆ϕ = ±π. A binary 1 generates aphase deviation of +π from the 
arrier, while a 0 a phase deviation of −π. It is obviousthat the transition at the beginning of ea
h symbol would be dependent on the value ofthe previous symbol. In the 
ase of identi
al adja
ent signals, there is no phase 
hangeand no need for transmission of the transition signal. Otherwise we have to transmitthe transition signal. In other words, the signal pulse shape is longer than the symbolduration T and lasts T + 1

fc
. So this 
on
erns a partial response and 
ontrol ISI 
ase.After the �rst 
arrier period of a symbol the pervious symbol has no in�uen
e on thesignal [9, 25, 59℄. An example of BPSK and BCPM modulated signal are illustrated inthe Fig. 2.1. As mentioned, in the MPT system, a BPSK signal is modi�ed so that thegenerated signal equals a BCPM signal. This is a
hieved by the spe
ial design of thesignal pulse shape. The spe
tral e�
ien
y of modulation s
heme is an important 
riterion
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Fig. 2.1: Example of bandpass BPSK and BCPM modulated signalto be 
onsidered. Sin
e there is no phase dis
ontinuity, BCPM signals, similar to CPM,have better spe
tral 
hara
teristi
s namely narrowband spe
trum and low out of band�u
tuation. Furthermore, for the 
ase that equalization is ne
essary, in 
ontrast to highorder CPM modulation s
hemes, a linear equalization 
an be used for BCPM. The major
hara
teristi
 of BCPM signal is des
ribed brie�y in the following.2.1.2 Constant modulus propertyThe applied modulation s
heme for the telemetry signal is BCPM and similar to otherphase modulated signals has the 
onstant modulus (CM) property, also 
alled 
onstantenvelope property. Su
h modulation s
hemes transmit a sinusoid of a 
onstant analyti
magnitude or modulus and of these signals, only the frequen
y or phase 
hanges over thetime. Fig. 2.2 
lari�es this property. The CM property 
an be utilized to re
onstru
t thetelemetry signal in the absen
e of the training sequen
e. The main advantage of algorithmsbased on CM property lies in their simple implementation and e�
ien
y, thus supportthe issues of this thesis [43℄.Next to the CM property, BCPM exhibits 
y
lostationarity, due to its impli
it periodi
ity.This 
an be related to its baud rate or/and 
arrier frequen
y [107℄. Note that stationarysignals have time-invariant se
ond-order statisti
s, whereas 
y
lostationary signals haveperiodi
ally time-varying se
ond-order statisti
s. Although, this feature also provides thene
essary knowledge for the re
onstru
tion in the absen
es of the telemetry signals, theestimation approa
h is 
ompli
ated, 
omplex and o�ers a 
omparable performan
e withthose using CM property [5℄. Therefore, the 
on
ept of 
y
lostationarity is not 
onsideredin this dissertation.
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onstellation2.2 Analysis of interferen
e signalAs stated, the pump signal is the main interferen
e to be dealt with in MPT systems.In this 
ontext, the interferen
e signal has to be analyzed exa
tly to derive its impor-tant 
hara
teristi
s. Interferen
e properties are seen as a-priori knowledge, whi
h 
an beutilized to develop e�
ient interferen
e extra
tion and 
an
ellation algorithms. Some ex-amples of the pump signal re
orded at a test borehole are illustrated in Fig. 2.3. Thepump signal is generated by mud pumps and 
hanges with the required �ow rate at theborehole. In other words, it is generated by some nonlinear physi
al me
hanism and hasmore or less stable inherent periodi
ity. The periodi
 pump signal is deterministi
 andpredi
table, but some variations, whi
h are not deterministi
, are also observable. Consid-ering this fa
t, we 
an 
on
lude that the pump signal belongs to a spe
ial 
lass of signals,
alled randomly modulated periodi
 signals [71, 111, 16℄.In the following the 
on
ept of randomly modulated periodi
ity is de�ned and the prop-erties of this 
lass of signals are addressed. Also the statisti
al analysis methods for su
hkind of signals are des
ribed. Finally using some pump signal measurements re
orded ata test borehole, randomly modulated periodi
ity of the pump signal is 
on�rmed.2.2.1 Randomly modulated periodi
ityThe mathemati
al de�nition of a randomly modulated periodi
 (RMP) signal x(t) ofperiod T and K harmoni
 frequen
ies fk = k
T
is given by [74, 71℄

x(t) = s0 +
1

K

K∑

k=1

[(s1k + u1k(t)) cos(2πfkt) + (s2k + u2k(t)) sin(2πfkt)] , (2.7)where s0 is the DC part, and s1k and s2k are 
onstant. The ve
tor of modulation u(t) =
{u1k(t), u2k(t) : k = 1, . . . , K} are of zero mean E [u1k(t)] = E [u2k(t)] = 0 and jointly



Chapter 2. Statisti
al signal analysis 16

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4
x 10

5

P
re

ss
ur

e 
[P

a]

Time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5
x 10

5

Time [s]

P
re

ss
ur

e 
[P

a]

Fig. 2.3: Example measurements of pump signaldependent random pro
esses with �nite moments, whi
h satisfy the following 
onditions[71℄:
• Periodi
 blo
k stationary: The joint distributions of {u(t1), . . . ,u(tm)} and
{u(t1 + T ), . . . ,u(tm + T )} are equal for all 0 < t1 < . . . < tm < T .

• Finite dependen
e: {u(t1), . . . ,u(tm)} and {u(t′1), . . . ,u(t′m)} are independent ofea
h other if tm + D < t′1 for some positive D and for all t1 < . . . < tm and
t′1 < . . . < t′m.The signal 
an be expressed as x(t) = s(t) + u(t), where

s(t) = s0 +

K∑

k=1

[s1k cos(2πfkt) + s2k sin(2πfkt)] , (2.8)and
u(t) =

K∑

k=1

[u1k(t) cos(2πfkt) + u2k(t) sin(2πfkt)] . (2.9)The mean of x(t) de�nes the periodi
 part s(t) and the zero mean sto
hasti
 part u(t)is a real-valued non-stationary pro
ess [71, 74℄. Fig. 2.4 illustrates the periodi
 andsto
hasti
 parts of the pump signal re
orded at a test borehole. As seen, the pump signalis 
hara
terized by both periodi
 and sto
hasti
 parts. In 
ase of having more pumps toprovide the required �ow rate in the borehole, we will have a sum of RMP signals referred
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Fig. 2.4: Illustration of periodi
 s(t) and sto
hasti
 u(t) 
omponents of a sample pumpsignal x(t)to as 
umulative RMP signals and des
ribed by
x(t) =

Np∑

p=1

xp(t) , (2.10)where
xp(t) = s0 +

1

K

K∑

k=1

[(s1k,p + u1k,p(t)) cos(2πfk,pt) + (s2k,p + u2k,p(t)) sin(2πfk,pt)] (2.11)and Np denotes the number of pumps. Fig. 2.5 illustrates a 
umulative RMP signal,re
orded at a test borehole and generated by two pumps.Note that the �rst 
ondition in the above de�nition means that E [u(t1)u(t2)] =
E [u(t1 + T )u(t2 + T )] if |t1 − t2| < T , but the equality is not ne
essarily valid if |t1 − t2| ≥
T , in other words if t1 and t2 are in di�erent blo
ks. Therefore, period blo
k stationary isdi�erent from 
y
lostationary or 
ovarian
e stationary [108℄. The period blo
k stationaryis a sub
lass of 
y
lostationary pro
esses. It is useful to introdu
e the 
y
li
 auto 
orrela-tion fun
tion and spe
tral 
orrelation density fun
tions. Re
alling the 
onditions made onRMP signals, the auto 
orrelation fun
tion of signal Rx(t, τ) = Rx(t + T, τ), |τ | < T ∀t
an be represented using Fourier series as [112℄:

Rx(t, τ) =
∑

α

Rα
x(τ) exp(j2παt) , (2.12)
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x(t) = x1(t) + x2(t) s1(t) u1(t) + x2(t)
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T1 = 0.5117 [s]

T2 = 0.7734 [s]

Fig. 2.5: RMP signal generated by two pumps: a) Illustration of two pumps 
umulation
x1(t) + x2(t), periodi
 part of the �st pump s1(t) with the fundamental periodof T1 = 0.5117 s and sto
hasti
 part of the �rst pump u1(t) together with these
ond pump signal x2(t), b) Illustration of sto
hasti
 part of the �rst pump
u1(t) together with the se
ond pump signal x2(t), periodi
 part of the se
ondpump s2(t) with the fundamental period of T2 = 0.7734 s and sto
hasti
 partsof two pumps u1(t) + u2(t)where Rα

x(τ) is the Fourier 
oe�
ients, known as 
y
li
 auto 
orrelation fun
tion and αits 
y
li
 frequen
y. Spe
tral 
orrelation density fun
tion (SCD) or 
y
li
 spe
trum Sα
x (f)is the Fourier Transformation of the Rα

x(τ). The spe
tral 
orrelation of a sample pumpsignal with a fundamental frequen
y of f1 = 1.25 Hz is illustrated in Fig. 2.6. The spe
tral
orrelation is pla
ed around the zero frequen
y and 
y
li
 frequen
y of α = 2.5 Hz, whi
hequals the fundamental frequen
y multiplied by two. In terms of the 
entral limit theorem,the se
ond 
ondition in the above de�nition guarantees that the summation of severalframes of the re
eived signal 
an be well approximated by a Gaussian random variable.In other words, if D << T then u(t) 
an be approximated by a stationary pro
ess withinea
h period [71, 74℄.After we introdu
ed the 
on
ept of randomly modulated periodi
ity, the next step is toprovide a measure of the amount of random variation relative to the underlying pure peri-odi
ity. Su
h a measure to quantify this variability is the signal 
oheren
e (SC) fun
tion.In order to de�ne the signal 
oheren
e, the observed signal is segmented into M frames,ea
h frame being of length T [94℄. T is the period of the periodi
 
omponent and assumed
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li
 spe
trum of a sample pump signal with a fundamental frequen
y of
f1 = 1.25 Hz and 
y
li
 frequen
y of α = 2.5 Hzto be known at �rst. From now on, a time dis
rete dis
rption is used. Note that the signalbandwidth extends the highest harmoni
 fK due to the modulations. To avoid aliasing, thesampling frequen
y must be greater than 2fK . If the sampling interval Ts =

1
2fK

, T = NTshas N dis
rete samples x(tn) and K = N
2
. The observed signal at time tn in the m-thframe is {x ((m− 1)T + tn) , n = 0, . . .N − 1} and the dis
rete Fourier transformationof this signal is given by [71, 74, 29℄

Xm(k) =

N−1∑

n=0

x ((m− 1)T + tn) exp(−j2πfktn)

= sk + Um(k), sk =
1

2
(s1k + js2k) . (2.13)and

Um(k) =
N−1∑

n=0

um(tn) exp(−j2πfktn) . (2.14)The signal 
oheren
e fun
tion measures the varian
e of Xm(k) about its mean sk. Thisdepends on the varian
e of Um(k). By the assumption of weakly stationary um(tn), itfollows that:
σ2
u(k) = E

[
|Um(k)|

2]
. (2.15)



Chapter 2. Statisti
al signal analysis 20Now, the signal 
oheren
e fun
tion for ea
h Fourier frequen
y 
an be de�ned by
γx(k) =

√

|sk|2

|sk|2 + σ2
u(k)

. (2.16)The term Um(k) is also 
alled modulation noise. We de�ne the signal to modulation noise(power) ratio (SMNR) as ρx(k) = |sk|
2
σ−2
u (k). Thus γ2

x(k) = ρx(k)
ρx(k)+1

is an in
reasingfun
tion of SMNR. The SMNR 
an be used to estimate signal 
hara
teristi
 [74, 61℄.2.2.2 Statisti
al signi�
an
e testing for randomly modulated pe-riodi
ityThe randomly modulated periodi
ity of the pump signal must be veri�ed and the 
on
eptof statisti
al signi�
an
e testing 
an be used for this demand. It is supposed that anobserved data meets the null hypothesis or another alternative hypothesis here RMP.Based on probabilities spe
i�ed for ea
h hypothesis in a de
ision rule, the validity of thesehypotheses 
an be approved. The de
ision of reje
ting the null hypothesis is referred to as astatisti
ally signi�
ant result [89, 39℄. More 
onvenient is to use the equivalent test statisti
(e.g. χ2-, t-, and F -test) instead of 
al
ulating probabilities [85℄. Therefore the well-knowntest statisti
 developed for dete
ting hidden periodi
ity in data with random amplitudeand modulation is applied. This test is also feasible to verify randomly modulated orvarying periodi
ity existing in the observed data. First of all, it has to be ensured thatthere is no other deterministi
 or sto
hasti
 trend present in the data to be tested. Beforeperforming the test statisti
 an estimation of sk and σ2
u(k) should be done in advan
e. Inthis 
ontext, it is supposed that the fundamental period T is known and the signal over

M su
h periods is 
onsidered, where {x ((m− 1)T + tn) , n = 0, . . . , N − 1} is the m-thperiod. The unbiased estimate of the signal ŝ(tn) 
an be obtained by [71, 74℄
ŝ(tn) =

1

M

M∑

m=1

x ((m− 1)T + tn) , (2.17)and
ŝk =

N−1∑

n=0

ŝ(tn) exp(−j2πfktn) (2.18)is the k-th DFT of (ŝ(0), . . . ŝ(T − 1)).From the de�nition x ((m− 1)T + tn) = s ((m− 1)T + tn) + u ((m− 1)T + tn), follows
û ((m− 1)T + tn) = x ((m− 1)T + tn)− ŝ(tn) . (2.19)The k-th DFT 
omponent of (u ((m− 1)T ) , . . . u ((m− 1)T + T − 1)), is given by
Ûm(k) =

N−1∑

n=0

û ((m− 1)T + tn) exp(−j2πfktn) . (2.20)
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ordingly, an estimation of the varian
e σ̂2
u(k) is derived by

σ̂2
u(k) =

1

M

M∑

m=1

∣
∣
∣Ûm(k)

∣
∣
∣

2

. (2.21)Now, the test statisti
 
an be pre
eded by evaluating these estimations. In terms of ŝkand σ̂2
u(k) estimates, three kinds of pro
esses are identi�able a

ordingly [73, 26℄:

− if ŝk = 0 and σ̂2
u(k) 6= 0, then the pro
ess is random with no periodi
 stru
ture.

− if ŝk 6= 0 and σ̂2
u(k) = 0, then the pro
ess is periodi
 (deterministi
) plus stationaryand ergodi
 noise.

− if ŝk 6= 0 and σ̂2
u(k) 6= 0, then the pro
ess is a randomly modulated periodi
 pro
ess.This means that some variation in the periodi
 stru
ture about ŝk will remain,re�e
ting variation in the phase and amplitude of the spe
tral density fun
tion.Randomly modulated periodi
ity hypothesis is veri�ed by applying the test statisti
 onmany measurements of the pump signal obtained from a test borehole. For example, theresult of randomly modulated periodi
ity test is demonstrated in Fig. 2.7.

0 10 20 30 40 50 60 70
0

5

10

15
x 10

4

|ŝ
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fk [Hz]Fig. 2.7: Veri�
ation of RMP for a sample measurement of the pump signalHaving the estimations of both ŝk and σ̂2
u(k), the signal 
oheren
e fun
tion 
an be alsoobtained by

γ̂x(k) =

√

|ŝk|
2

|ŝk|
2 + σ̂2

u(k)
, (2.22)
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h again 
on�rms the varying periodi
ity present in the pump signal as seen inFig. 2.8.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
γ

x
(f

k
)

fk [Hz]Fig. 2.8: Signal 
oheren
e estimate for a sample measurement of the pump signalNext to the SC fun
tion, the estimate of SMNR given by
Z(k) =

M

N

|ŝk|
2

σ̂2
u(k)

(2.23)
=

M

N
ρ̂x(k) ,provides the ne
essary statisti
al measure to perform test statisti
 for the sto
hasti
 partof pump signal. We pre
ede by evaluating the distribution of Z(k). If the sto
hasti
term, modulation noise, is stationary, then the distribution of ea
h Z(k) is approximatelydistributed as Chi-Square χ2

2(λk), where λk = M
N
ρ̂2x(k). A sample measurement of thepump signal is used to analyze the distribution of ea
h Z(k). The result in Fig. 2.9illustrates an estimate of the distribution for a sample Ẑ(k) and veri�es the stationarymodulation noise hypothesis.Sin
e χ2

2(λk) are asymptoti
ally independently distributed over the frequen
y band, thedistribution of the sum statisti
s given by [73, 86℄
Ŝ =

K∑

k=1

M

N
ρ̂x(k) . (2.24)
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Fig. 2.9: Illustration of the modulation noise stationarity veri�ed by the Chi-Squaredistribution of a sample Ẑ(k)is approximately Chi-squared χ2
K(λ) for large values of M , where λ =

K∑

k=1

λk. Note that
Ŝ provide not only the statisti
al measure for the above mentioned test statisti
, but also
an be used to dete
t the periodi
ity present in the signal [72℄. This issue is dis
ussed inmore detail in the following.2.2.3 Methods of estimating fundamental period in randomlymodulated periodi
 signalsSo far, it is assumed that the fundamental frequen
y or period of RMP signal is known,whi
h does not hold in pra
ti
e. Whereas many methods exist to estimate the fundamentalperiod, only a few of them 
an be used for spe
ial 
lass of signals 
onsidered in this thesis.In this 
ontext, two s
hemes are proposed to obtain the fundamental period of RMPsignals.The prin
iples that some a-priori knowledge 
an be used to perform blind adaptationby maximizing some relevant 
orrelation fun
tion [57, 41℄ is used here but in a di�erentway. The �rst of these is to �nd the maximum 
orrelation between two signals, with
onstraints, by applying the least mean square (LMS) s
heme. These two signals are there
eived signal x(t) and a delayed version of it, used to 
al
ulate the mean square error(MSE) as follow:

e = E
[
|x(t)− x(t− τ)|2

]
. (2.25)The range of delays depends on the pump type applied in the �eld and is do
umented
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tions manual. An estimate of the fundamental period 
an be obtained by
al
ulating ei for ea
h delay τi and �nding the least mean square error (LMSE) a

ordingto
T̂ = argmin

i

ei . (2.26)The performan
e of this approa
h is tested on measurements produ
ed by one pump withvariable �ow rate (see Fig. 2.10). Fig. 2.11 demonstrates 
apability of the algorithmto estimate and tra
k the fundamental period of the pump in Fig. 2.10. The estimatione�
ien
y depends on the a

ura
y of 
onstraints in spe
ifying the range of delays orthe length of estimation window. Long sized estimation windows not only in
rease thepro
essing time but also result in false dete
tion of the fundamental period.
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Fig. 2.10: A sample pump signal measurement with variable �ow rateThe se
ond prin
iple is to apply the Chi-squared statisti
s for dete
ting the presen
e ofa hidden periodi
ity in the signal [73℄. Traditionally, for the estimation a sweep of trialfundamental frequen
ies is made over the frequen
y band to �nd the maximum value ofsum of modulation noise in frequen
y domain Ŝ. The frequen
y, at whi
h the maximumyields, delivers the estimate of the fundamental period. Here, a range of trial fundamentalperiods Ti ∈ {Tmin, Tmax} instead of a sweep of trial fundamental frequen
ies, is used forthe straightforward estimation. Now, the estimation pro
ess 
an be done by estimating
Ŝi for ea
h trial period Ti and �nding the maximum as des
ribed by

T̂ = argmax
i

Ŝi . (2.27)
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Fig. 2.11: Estimation/tra
king results of fundamental period for a sample pump signalmeasurement with variable �ow rateThe estimation result 
an be approved by 
al
ulating the p-value1 tail probability of themaximum. If the p-value of the maximum S is small enough, then we 
an 
laim that thesignal is RMP and its fundamental frequen
y is dete
ted 
orre
tly.All des
ribed methods have their own advantages and drawba
ks. Whereas the se
ondapproa
h promises su

essful dete
tion of single and multiple pump fundamental periodseven in the presen
e of the telemetry signal and other noise signals, the �rst s
heme o�erssimple implementation and 
omparable e�
ien
y, but its appli
ability is limited to thedete
tion of the fundamental period of a single pump signal.The estimation performan
e of the approa
h based on Chi-squared statisti
s is testedusing some pump signal measurements. Note that the measurements are performed witha 
onstant �ow rate. At �rst, the fundamental period is obtained for sample measurements
onsisting of the pump signal and measurement noise (AWGN). The estimation results interms of frequen
y/
ounts of the maximum illustrated in Fig. 2.12 verify the presen
eof periodi
ity giving an estimate of fundamental period. Also the estimation is performedfor sample measurements of the pump signal generated by two pumps plus measurementnoise. A

ording to the estimation results shown in Fig. 2.13 the periodi
ity is 
ausedby two RMP pro
esses giving an estimate of their fundamental periods.Finally Fig. 2.14 shows the estimation result of the fundamental period for the 
ase thatthe measured signal is a 
onvolutive mixture of the telemetry and pump signals. For thisexperiment the telemetry to pump signal ratio is -10 dB and the 
arrier frequen
y and1 The p-value measures, how mu
h statisti
al eviden
e exists. For example, the p-value of a test ofhypothesis is the smallest value that might lead to reje
t the null hypothesis or to support the alternativehypothesis [31℄.
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Fig. 2.14: Estimation of the fundamental periods for a sample measurement of the pumpsignal from the 
onvolutive mixture of telemetry and pump signals
2.2.4 SummaryThe modulation s
heme and statisti
al property of the telemetry signal is reviewed in this
hapter. It has been shown that the interferen
e pump signal is a RMP signal and hasdeterministi
 periodi
 and sto
hasti
 random parts. Based on this investigation the esti-mation methods of fundamental period of RMP pump signal are proposed and evaluated.Whereas the measurements evaluation has shown the e�e
tiveness of proposed methodsin providing a reliable estimation, both s
hemes have an estimation delay of at least 10s. Therefore it is a 
hallenging task to provide a 
ontinuous estimate of the fundamentalperiod as well as to tra
k its fast �u
tuations. Although both s
hemes 
an be applied forestimating the pump fundamental period, the trade-o� between estimation a

ura
y andestimation delay has to be taken 
are of.The estimate of the interferen
e fundamental period and the knowledge on important
hara
teristi
s of both telemetry and interferen
e signal provides some basis for developingsignal extra
tion and separation algorithms in Chapter 3. This in
ludes the algorithmdesign based on the single and/or two-re
eiver stru
tures.



Chapter 3Blind and semi-blind signal pro
essing
As stated, little or no priori information on the MPT system and related signals is avail-able. When starting the proje
t related with this dissertation the utilized proto
ol wasspe
i�ed by a startup sequen
e, in
luding no training sequen
e for the telemetry signal.Even though su
h kind of fa
ility is meanwhile embedded in the startup sequen
e, it isnot supported during the regular operation. Moreover by using a blind approa
h, there isno need for training sequen
e, and thus the transmission data rate 
an be in
reased. Fromthe signal pro
essing point of view, blind sour
e separation and extra
tion algorithms areseen as the enabling te
hnology needed to solve the underlying signal dete
tion problem.Therefore, this 
hapter gives at �rst a brief introdu
tion on the 
on
ept of blind signal pro-
essing and demonstrates its feasibility 
onstraints in the MPT appli
ation. Apart fromthat, the investigations in Chapter 2 lead to the development of semi-blind methods, whi
hwill be dealt with in this 
hapter. In this 
ontext, two 
onse
utive strategies are proposed,in whi
h both telemetry and interferen
e 
hara
teristi
s are utilized. Consequently, viameasurements obtained from test boreholes, the performan
e and pra
ti
ability potentialof the proposed s
hemes for telemetry signal estimation purposes in the MPT s
enario isdemonstrated and 
ompared.3.1 Blind signal pro
essing methods and restri
ted ap-pli
abilityBlind te
hniques whi
h follow a separation or extra
tion1 pro
edure �nd appli
ation inthe s
enario, where ea
h re
eived signal at a sensor array 
ontains a mixture of signalsfrom di�erent sour
es and is pro
essed to re
over the sour
e signals from the mixed ob-servation. The term blind refers to that the 
hara
teristi
s of the transmission mediumand the sour
e signals are not known a priori. There are various areas, where blind pro-
essing te
hnology is utilized, e.g. biomedi
al signal pro
essing, spee
h pro
essing, data
ommuni
ations, and sonar and radar te
hnology. In many 
ases, it is desired to re
overall sour
e signals or at least one from the re
eived mixtures. Moreover, it may be desiredto �nd out how the sour
e signals are mixed to obtain information about the transmissionmedium [68℄. As mentioned in Chapter 1, an MPT system 
an be 
onsidered as a 
on-volutive mixture of telemetry and pump signal. Therefore the problem of separating and1 Parallel or serial signal re
overy 28
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essing 29extra
ting a 
onvolutive mixture is 
onsidered. Note that estimating the mixing pro
ess ingeneral introdu
es not only the ill-posed estimation problem2 but also the instable matrixinversion problem [79℄. Therefore, re
overy of the signals based on blind estimation ofthe mixing pro
ess is not advantageous espe
ially in pra
ti
al appli
ation. In the MPTs
enario, sin
e the main obje
tive is to re
over the telemetry signal, it is su�
ient toestimate the separation or extra
tion �lters. In general, there are two estimation 
riteriabased on se
ond-order statisti
s (SOS) and higher-order statisti
s (HOS) [17℄. The esti-mation task requires some assumption on the sour
e signals. The general assumption isthat the sour
e signals are independent of ea
h other or at least un
orrelated, in additionto the assumption on the spatial diversity required in 
onvolutive mixtures [62, 28, 106℄.The estimation methods based on HOS minimize se
ond and fourth-order dependen
eamong the sour
e signals and additionally require the 
ondition of non-Gaussianity forsu

essful separation of the underlying signals [79, 2, 3℄. Among several HOS estimationmethods kurtosis is a popular measure of non-Gaussianity.Several blind estimation methods based on SOS and HOS have been developed and appliedto audio separation tasks [96, 50, 83℄. Among them a frequen
y-domain SOS-based s
hemeemploying non-stationarity and a time-domain HOS-based method using least squarekurtosis �ts also to the MPT system [17, 18℄. It is useful to note that the SOS-basedestimation using 
y
lostationary belongs also to relevant s
hemes but the performan
eis poor [79℄. The key 
on
epts of these methods are des
ribed in [17, 18℄. Main issuessu
h as performan
e evaluation of the proposed algorithms in terms of SIR, the 
hoi
eof optimal separation �lter length and 
onvergen
e are studied. The results are shownthat the SOS-based s
heme is stable, but su�ers from slow 
onvergen
e. In 
ontrast, theHOS-based s
heme 
onverges very fast, but is instable and thus not suitable for pra
ti
alappli
ations. More important is the poor performan
e of both s
hemes in very low SIRs
enarios of MPT, where the estimation of telemetry signals in
ludes some residual pumpsignal [17, 18℄.Therefore, blind estimation te
hnologies using either SOS or HOS are not feasible forreliable signal re
overy in the MPT appli
ations. It is reasonable to apply algorithmsutilizing additional a priori information about the 
hara
teristi
 of the system signals,whi
h will be dis
ussed in more detail in the following.3.2 Semi-blind signal pro
essing methods using spe
ialproperties of system signalsThe ine�
ien
y and moderate performan
e of totally blind s
hemes provide the motivationto further investigate semi-blind signal pro
essing issues in MPT appli
ation s
enarios.The term semi-blind denotes that a priori information about the transmitted signal isavailable and 
an be utilized for signal re
overy. Su
h a kind of algorithm 
omes fromthe �eld of mobile 
ommuni
ations, where the transmitted signal is modulated and thushas some spe
ial features in 
ontrast to audio signals. Based on the spe
ial properties ofMPT system signals investigated in Chapter 2, semi-blind estimation methods are pro-posed in this 
hapter. The 
onstant envelope property of the telemetry signal motivates2 Ill-posed problems refer to as problems whi
h solution either is not unique or does not depend 
on-tinuously on the data. If a problem is ill-posed, then it is 
hallenging to obtain a numeri
al solution[77℄.



Chapter 3. Blind and semi-blind signal pro
essing 30investigation of 
onstant modulus algorithm (CMA). A

ording to the ability of CMAof 
orre
ting the multipath and 
o-
hannel distortions on 
onstant modulus (envelope)signals, their appli
ation in the mud pulse environment is investigated. A

ording to theMulti-Input Multi-Output MIMO stru
ture of MPT system, this 
hapter gives an intro-du
tion on 
onstant modulus (CM) array �ltering. A

ordingly a MIMO de
orrelationCM array �ltering, whi
h utilize both CM telemetry property and knowledge about thepump fundamental period, is proposed and its e�
ien
y in terms of joint sour
e separa-tion and 
hannel equalization is demonstrated. Based on the investigation in Chapter 2,it is possible to provide an estimation for fundamental period of the pump signal. Hav-ing su
h knowledge, leads to the development of a semi-blind signal extra
tion approa
h.Afterwards, the e�
ien
y and pra
ti
ability of this approa
h in the 
ontext of MPT ap-pli
ations is demonstrated. This 
hapter 
on
ludes with a performan
e 
omparison of thesemi-blind signal pro
essing methods.3.2.1 Constant modulus algorithm: a telemetry-based propertyrestoration s
hemeOne of the most famous algorithms for semi-blind signal re
onstru
tion is the 
lass of
onstant modulus algorithms (CMA's). One issue would be to apply the CMA for adjust-ing a �nite impulse response (FIR) �lter adaptively in su
h a manner that the output ofthe �lter provides a 
orre
ted re
eived signal. Another issue would be the appli
ation ofCMA for separation of 
o-
hannel signals by an adaptive array [52, 32℄. Sin
e distortionsof the telemetry signal is mainly 
aused by the 
o-
hannel pump signal, the �rst issue isbrie�y reviewed, whi
h serves as a ba
kground for the main investigation of the se
ondissue in this se
tion. In this 
ontext, the key 
on
ept of CMA is des
ribed. Afterwardsthe algorithm performan
e in terms of 
onvergen
e and stability is investigated via bothsimulations and �eld-test data.3.2.1.1 Key 
on
eptThe 
lass of CMA is usually based on an instantaneous gradient-sear
h routine for mini-mizing a sto
hasti
 
ost fun
tion, whi
h penalizes the modulus deviation of the re
eivedsignal y(k) with respe
t to the known modulus of the transmitted signal x(k), whi
h isassumed to be s
aled so that |x(k)| = 1. The blo
k diagram of Fig. 3.1 shows the generalstru
ture of the CMA.Referring to the notation in Fig. 3.1, the 
ost fun
tion is de�ned by [69, 52℄
J =

1

4
E
[(
|z(k)|2 − 1

)2
]

. (3.1)Here E denotes statisti
al expe
tation and the �lter output z(k) (
omplex in general) isexpressed by z(k) = Y T (k)w(k), where Y (k) = [y(k) y(k − 1) · · · y(k − L+ 1)]T , (.)Tdenotes transpose and w(k) is a L × 1 ve
tor in
luding the �lter 
oe�
ients at the timeinstant k. The �lter 
oe�
ients are adjusted so as to minimize the 
ost fun
tion using asto
hasti
 gradient de
ent method:w(k + 1) = w(k)− µ∇wJ (3.2)
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Fig. 3.1: General stru
ture of the 
onstant modulus adaptive algorithmwith
∇wJ = 1

2
E
[(
|z(k)|2 − 1

)
∇w (w(k)HY ∗(k)Y T (k)w(k)

)]

= E
[(
|z(k)|2 − 1

)
Y ∗(k)Y T (k)w(k)

]

= E
[(
|z(k)|2 − 1

)
z(k)Y ∗(k)

]
.

(3.3)Here µ is the step size, (.)∗ and (.)H are 
omplex 
onjugate and 
omplex 
onjugate trans-pose operators. The adaptation algorithm whi
h minimize the 
ost fun
tion mentionedabove with respe
t to w is obtained by repla
ing the true gradient ∇wJ with an instan-taneous gradient estimate ∇̂wJ =
(
|z(k)|2 − 1

)
z(k)Y ∗(k) as follows [52, 12℄:w(k + 1) = w(k)− µ

(
|z(k)|2 − 1

)
z(k)Y ∗(k) . (3.4)The CMA is typi
ally applied on the equivalent baseband signal (after demodulation),or with 
omplex �lter 
oe�
ients before demodulation. Under real system 
onsiderationpres
ribed by the appli
ation s
enario, it is desirable that the CMA a

epts real data inputand real �lter 
oe�
ients. On this a

ount, a version of CMA employing real arithmeti
is also 
onsidered, whereas the analyti
al re
eived signal is generated and used for theupdating of the �lter 
oe�
ients. In the 
ontext of real CMA, the 
onstant modulusrefers as the 
onstant envelope. The 
ost fun
tion for the real CMA 
ase 
an be writtenas [69℄

J =
1

4
E
[(
|z+(k)|

2 − 1
)2
]

; z+(k) = z(k) + jẑ(k) , (3.5)where z+(k) denotes the analyti
al des
ription of the re
eived signal and is generated bymeans of Hilbert Transformation [63℄. The update equation for real CMA is expressed byw(k + 1) = w(k)− µ
(
|z+(k)|

2 − 1
)
z(k)Y (k) . (3.6)Sin
e some modulation s
hemes e.g. BPSK modulated signals have the 
onstant envelopeproperty at least at the baud intervals, envelope is measured only at the baud intervals,known at the re
eiver [33, 53℄. In other words, a 
ognitive 
onstant envelope 
orre
tionis 
ondu
ted, due to the fa
t that some information available at the re
eiver, namelytransmission data rate and sampling rate, are used in the adaptation pro
ess.
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Fig. 3.2: Error 
ourse in MSE and 
ost fun
tion of CMAUsually mean square error (MSE) between the transmitted signal and the estimated ver-sion is used as the measure of the performan
e. This is impossible in real appli
ations
enarios, where the transmitted signal is unknown. Thus the 
ost fun
tion in Eq. 3.5serves as a measure of CMA performan
e [23℄. In 
ase of global 
onvergen
e, the 
ourseof error in MSE equals to the one in CMA 
ost fun
tion (see Fig. 3.2).3.2.1.2 CMA Performan
e in terms of 
onvergen
e and stabilityIn this se
tion a brief summary of CMA performan
e to 
ompensate the disrupted signalby multipath and additive interferen
e is presented.Multipath The ability of CMA to 
orre
t multipath distortions 
aused by the 
an-nel has been addressed in many papers [51, 14, 75℄, in whi
h the s
enario where the
hannel mostly 
onsists of only a few paths is 
onsidered. The performan
e of CMA is
hannel-dependent. To verify this, the algorithm is simulated for frequen
y-�at and sele
-tive fading 
ases and the performan
e fun
tion J is plotted as a fun
tion of adaptationtime in Fig. 3.3. As seen, the algorithm 
annot e�e
tively 
ompensate the e�e
t of mul-tipath for di�erent fading 
ases. The algorithm requires a few number of equalizer tapsand indi
ates high 
onvergen
e rate in frequen
y �at fading 
hannels. In 
ontrast, in fre-quen
y sele
tive multipath 
hannels, a higher number of equalizer taps is required andthe 
onvergen
e speed is low [52, 75℄.More evaluation of the algorithm property is performed on a set of low data rate �eld-test measurements. The bit error rate (BER) results are analyzed in some 
ases. First,the CMA performan
e 
ompared with the equalization method using a fat-
hirp of 2 s
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Fig. 3.3: Error 
ourse as a fun
tion of J vs. adaptation time for di�erent fadingsduration as a referen
e signal to 
on�rm whether or not CMA a
tually 
ompensates forthe 
hannel e�e
ts. From the results in Fig. 3.4 it is seen that the CMA algorithmdelivers the same BER performan
e as the 
hirp-based one and even better for some �eld-test data. The reason for the poor performan
e of 
hirp-based equalization s
heme is theinsu�
ient 
hirp duration used for the training [98℄. The se
ond step in evaluating theCMA performan
e is to show how adaptation 
onstant µ and �lter length L adjustmenta�e
t the performan
e of CMA. The examination results are illustrated in Fig. 3.4. It
an be observed that the algorithm is stable for very small step size/adaptation 
onstantand it is unknown for what values of step size and equalizer length the algorithm be
omesunstable [52, 75℄.The advantages of CMA are the adaptive tra
king and simple implementation. The draw-ba
ks of CMA are the phase roll3 problem and appropriate 
hoi
e of adaptation 
onstant,whi
h is a big 
hallenge to pra
ti
al appli
ations.Additive interferen
e The 
on
ept of 
onstant modulus approa
h 
an be usedto deal with some kinds of interferen
es as well [52, 98℄. Of parti
ular interest are in-terferen
es 
aused by additive white Gaussian noise (AWGN) and pump signals. At �rstthe behavior of CMA in the presen
e of AWGN at di�erent SNRs is examined and illus-trated in Fig. 3.5. As seen, the initial 
onvergen
e performan
e is not a�e
ted severelyby AWGN at the re
eiver, but the amount of modulus variation whi
h 
an be redu
ed islimited. In other words, the residual error is in
reased at lower SNRs [52℄.Examination of CMA's properties in the presen
e of pump signal (Fig. 3.6) shows that3 The 
onstant modulus pro
essor 
an introdu
e an arbitrary phase shift to the signal of whi
h the
onstant modulus 
riterion is still satis�ed [52℄.
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Fig. 3.4: Overall performan
e evaluation of CMA algorithm (a) BER 
omparisonbetween the 
hirp-based equalization and CMA , b) , 
) and d) the e�e
t of stepsize and �lter length adjustment on the BER performan
e)not only the redu
tion amount of modulus variation, but also the initial 
onvergen
eperforman
e is a�e
ted at di�erent SIRs [52, 54, 98℄.The reason is that the underlying pump interferen
e as shown in Chapter 2 
onsists ofmultiple sinusoidal interferers. Generally, for su
h interferers the CMA performan
e is
onstrained by signal 
apture e�e
ts due to the nonlinear nature of the algorithm. If theinterferer be
omes stronger than the desired signal, the algorithm tends to 
apture theinterferer and reje
t the desired signal [52℄. Therefore, applying CMA in realisti
 systems
enarios like MPT with strong interferers requires external 
ontrol and additional utili-ties, e.g. a prior information about the interferen
e or multiple re
eiver stru
ture to mergethe CM 
on
ept with the spatial diversity s
heme [109, 92, 54℄. Another phenomenon tobe noti
ed in this 
ontext is the not
hing 
ompromise, where the algorithm avoids to
ompletely not
h out the interferer and attempts to 
ompromise between redu
tion inmodulus variation 
aused by the interferer and distortion of desired signal due to thenot
hing [52℄.Sin
e the main target in MPT systems is to suppress the strong pump interferen
e signal,in the following the issue of CM array �ltering is addressed brie�y and extended usingadditional knowledge of the pump signal.
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ourse as a fun
tion of J vs. adaptation time in the presen
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essing 363.2.2 A multi
hannel semi-blind sour
e separation method usingenvelope property of telemetry and interferen
eAs the ba
kground has shown, both multipath propagation and additive interferen
e dis-rupt the 
onstant envelope property of the re
eived signal. In addition, the 
apability ofCMA in 
apturing telemetry or suppression of the interferer depends on SIR, the �lterinitial 
ondition and the adaptation 
onstant. Of parti
ular importan
e is the tenden
yof the algorithm in 
apturing the strongest signal. Based on the motivation in Subse
tion
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Fig. 3.7: Con
eptual s
heme: a) CM array �ltering, b) Extended MIMO de
orrelation �ltering3.2.1.2, an extended version of CMA is proposed by utilizing a two-re
eiver stru
ture andspe
ifying a new 
ost fun
tion [46, 52, 84℄. As shown in Chapter 2 the main part of thepump signal namely deterministi
 part 
an be estimated. The details on the estimationpro
edure will be demonstrated in the sequel. A

ordingly, we have an estimate of thepump signal envelope. The basi
 idea is introdu
ed by a 
ombined 
ost fun
tion, whi
hon one hand penalizes the deviation from the 
onstant modulus of the telemetry signalas well as known modulus (KM) of the pump signal and on the other hand minimizesthe 
ross 
orrelation between the re
onstru
ted telemetry and pump signals [56, 53℄. Theproposed semi-blind sour
e separation (BSS) approa
h 
an be seen as the extension of
onstant modulus array �ltering and 
onsidered as a kind of joint interferen
e reje
tionand signal re
onstru
tion s
heme [109, 23℄. Multiple re
eiver array appli
ations aim to�nd methods of training the array to have high gain towards the signal of interest, whi
his done blindly based on CM property of the signal of interest and where the array isadapted to minimize the deviation from the 
onstant modulus [46, 4℄. The 
on
ept ofboth CM array �ltering and the extended MIMO de
orrelation s
heme is illustrated inFig. 3.7.
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essing 37For better understanding the mathemati
al des
ription of the proposed s
heme, the re-
eiver stru
ture is modeled as a linear 2× 2 MIMO-system (see Fig. 3.8). We denote by

x2(k)

v1(k)

y1(k)x1(k)

z2(k)

h11
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z1(k)

v2(k)

h21

h22
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w22

w12

w11

y2(k)

+

+

+

+

+

Fig. 3.8: linear 2× 2 MIMO-system model of the extended MIMO de
orrelation s
heme
xj(k), j ∈ {1, 2} the j-th transmitted signal. yi(k), i ∈ {1, 2} are the 
orrupted signalsat 
hannel output i and vi(k) is zero-mean additive white Gaussian noise at the i-th re-
eiver. zj(k) is the j-th equalizer output at time instant k. hij , j ∈ {1, 2} , i ∈ {1, 2}are N × 1 ve
tors standing for the 
hannel of length N from the input j to the output i.wij, j ∈ {1, 2} , i ∈ {1, 2} are L × 1 ve
tors 
ontaining the equalizer 
oe�
ients of the
i-th re
eiver to j-th equalizer output. The dis
rete-time signal re
eived at the i-th re
eiverand the j-th equalizer output 
an be expressed as below respe
tively [56, 38, 20℄:

yi(k) =

N∑

n=1

2∑

j=1

hij,nxj(k − n) + vi(k) ,hij = [hij,1, . . . , hij,N ]
T
, i ∈ {1, 2} , (3.7)and

zj(k) =
L∑

l=1

2∑

i=1

wij,lyi(k − l) ,wij = [wij,1, . . . , wij,L]
T
, j ∈ {1, 2} . (3.8)Sin
e the telemetry signal has the 
onstant envelope and the envelope of the pump signal

|A(k)| 
an be estimated, the 
ost fun
tion to be minimized 
an be expressed as [56, 38, 20℄
J = E

[(
|z1(k)|

2 − |A(k)|2
)2
]

+ E
[(
|z2(k)|

2 − 1
)2
]

+ 2

2∑

l,n=1,n 6=l

τ2∑

τ=τ1

|Rln(τ)|
2

, (3.9)where Rln(τ) is the 
ross-
orrelation between the re
onstru
ted telemetry signal z2(k)and the pump signal z1(k), de�ned as Rln(τ) = E [zl(k)z
∗
n(k − τ)]. τ1 and τ2 are integersto in
lude the available delays between the two signals. The �rst two terms of the 
ostfun
tion penalize the deviation from the modulus, while the last term penalizes the 
or-relation between the re
onstru
ted signals. The 
ost fun
tion J 
an be minimized usinga sto
hasti
 gradient des
ent method as follows [12℄:W(k + 1) =W(k)− µ∇WJ , (3.10)
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essing 38where µ is a positive step size and ∇ is the gradient operator. W represents the matrixof equalizer 
oe�
ients given by W =

[ w11 w12w21 w22

]W whi
h minimize the 
ost fun
tion 
an be obtained by 
al
ulating
∇WJ =

[
∂J

∂w11

∂J
∂w12

∂J
∂w21

∂J
∂w22

]

as follows, whereof a simpli�ed des
ription of zj(k) =
2∑

i=1

Y T
i (k)wij with Yi(k) =

[y(k) y(k − 1) · · · y(k − L+ 1)]T is used [56, 38, 20℄ (see Appendix. A):
∂J

∂wi1
= 4E

[(
|z1(k)|

2 − |A(k)|2
)
z1(k)Y

∗
i (k)

]
+ 4

2∑

n=1,n 6=j

τ2∑

τ=τ1

Rjn(τ)E [zn(k − τ)Y ∗
i (k)](3.11)and

∂J

∂wi2

= 4E
[(
|z2(k)|

2 − 1
)
z2(k)Y

∗
i (k)

]
+ 4

2∑

n=1,n 6=j

τ2∑

τ=τ1

Rjn(τ)E [zn(k − τ)Y ∗
i (k)] (3.12)The step size should be small; otherwise the algorithm might be instable. Note that, ifmore than one pump signal is involved in drilling pro
ess, the 
ost fun
tion has to berevised to 
onsider sum pump signal envelopes.The performan
e of both CM array �ltering and the extended MIMO de
orralation ap-proa
h in 
apturing the telemetry signal and reje
ting the pump interferen
e signal isexamined on low data rate �eld-test measurements. Two 
ases 
onsidered here: the �rst,shown in Fig. 3.9 is to examine a �eld-test data of high SIR and has demonstrated 
om-parable performan
e of both s
hemes; the se
ond is the evaluation of a �eld-test datahaving low SIR. As seen in Fig. 3.10 the extended MIMO approa
h delivers an estimateof the telemetry signal, while CM array �ltering 
apture the pump signal, whi
h has ahigher power.Moreover the algorithm property in terms of 
onvergen
e time is examined on �eld-testdata of both high and low SIR. Here the dete
tion performan
e is plotted as a fun
tionof time. As seen in Fig. 3.11, the 
onvergen
e rate for the data with higher SIR is faster.Further examination of the algorithm is 
arried out on high data rate �eld-test data. Thefrequen
y-domain presentation of the exemplary re
eived and pro
essed data in Fig. 3.12shows that the separation task is not a
hieved 
ompletely and residual pump signal isobservable in the estimated telemetry signal.Consequently, despite robustness and e�e
tiveness of the proposed approa
h in in-terferen
e reje
ting over the 
onventional CM beamforming s
heme, the ill 
onver-gen
e/divergen
e problem in high data rate s
enarios is not solved. Availability of somea priori knowledge about the interferen
e signal and its asso
iation in CM array �lteringmotivate the investigation in the next se
tion.
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Fig. 3.9: Performan
e 
omparison of the CM array �ltering and MIMO-CM methods inthe present of the pump signal for high SIR 
ase (both methods 
apture thetelemetry signal)3.2.3 A single 
hannel semi-blind sour
e extra
tion method basedon interferen
e propertiesRMP 
hara
teristi
 of the pump signal motivates the development of an interferen
e 
an-
elling s
heme 
alled time-domain averaging and subtra
ting (TD-AS). The observationsof the pump signal have shown that the main part of distortions in the telemetry signalis 
aused by the periodi
 
omponent of the pump signal. The idea is to estimate theperiodi
 part of the interferen
e for a 
ertain observation time and extra
t it from there
eived signal. Afterwards either linear or nonlinear equalization methods (e.g. CMA)
an be applied to equalize the inter-symbol interferen
e introdu
ed by the transmission
hannel. The �rst step is to determine the fundamental period of the pump signal knownas averaging period T using one of two methods presented in Subse
tion 2.2.3. The se
-ond step is to sele
t the duration of the re
eived signal to be averaged, 
alled averaginglength M . The averaging length has to be sele
ted 
orre
tly. If averaging length is tooshort, a part of the telemetry signal might be removed after the pro
essing. Otherwise,the interferen
e might not be removed e�e
tively. So the e�e
tiveness of the averagingdepends on the signal to interferen
e ratio (SIR) and the algorithm 
an be optimized bya 
oarse estimation of SIR. After determining the averaging period and averaging length,the observed signal is divided into M frames, ea
h having the length of averaging period
T = NTs, Ts = 1. Fig. 3.13 des
ribes the system stru
ture of TD-AS approa
h. An
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Fig. 3.10: Performan
e 
omparison of the CM array �ltering and MIMO-CM methods inthe present of the pump signal for low SIR 
ase (CM-based array �ltering
aptures the pump signal)estimate of the deterministi
 part of the interferen
e ŝ(k) is obtained as follows
ŝ(k) =

1

M

M∑

m=1

y(k + (m− 1)N), k = 0, . . . , N − 1 . (3.13)where y(k) denotes the re
eived signal at time instant k. By subtra
ting ŝ(k) from y(k),we 
an remove the main part of the interferen
e and z(k) = y(k) − ŝ(k) in
ludes thetelemetry signal a�e
ted by the mud 
hannel and residual sto
hasti
 part of the pumpsignal. By equalizing z(k) we 
an 
ompensate the possible distortions of the signal 
ausedby the transmission 
hannel as well and dete
t the signal 
orre
tly. The best averagings
heme shown in Fig. 3.14 is to build up the averaging from the previous and in
omingneighborhood frames. In this way, the signal dis
ontinuity 
aused by the time-domainsubtra
tion 
an be eliminated or redu
ed. The semi-blind sour
e extra
tion (BSE) s
hemebased on TD-AS is analyzed in some respe
ts. The �rst step is to investigate how theaveraging length a�e
ts the dete
tion of the telemetry signal in the 
ase of low SIR. Theexaminations are 
arried out on �eld-test data as well as simulated data. The evaluationresult of a set of �eld-test data is illustrated in Fig. 3.15. It is seen that if the averagingis performed over M = 21 frames, the residual sto
hasti
 term of the pump signal isstrong enough to 
ause the erroneous dete
tion of the telemetry signal as shown in thelabeled area of the �gure. To demonstrate the performan
e dependen
y on SIR, the BERis plotted as a fun
tion of SIR for averaging lengths of di�erent value. The results in Fig.3.16 show that the averaging length a�e
ts the algorithm performan
e at very low or veryhigh SIRs. Besides, the averaging length spe
i�es the width of area to be not
hed out. In
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Fig. 3.11: Convergen
e time of MIMO-CM methods in the present of the pump signal forhigh and low SIRs (the Convergen
e is faster at high SIR)
0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

 

 

P
ow

er
  (

no
rm

al
iz

ed
 to

 1
)

Frequency (Hz)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

P
ow

er
  (

no
rm

al
iz

ed
 to

 1
)

 

 

Received signal

Processed signal

Residual pump signal

Fig. 3.12: Poor performan
e of the MIMO-CM approa
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ŝ(k)

Fig. 3.14: Averaging pro
edure
0 5000 10000 15000

−1.5

−1

−0.5

0

0.5

1

1.5

x
2
(k

)

k

0 5000 10000 15000
−1

−0.5

0

0.5

1

 

 

z
(k

)

k

M = 21
M = 5

Fig. 3.15: E�e
t of averaging length on the dete
tion performan
e in an example of�eld-test datafa
t, for small values of averaging length not
hing pro
ess begins to distort the telemetrysignal as well. In this regard, a 
oarse estimation of the SIR is useful for appropriateparameter 
on�guration in TD-AS s
heme.
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Fig. 3.16: E�e
t of averaging length on the simulative dete
tion performan
e as afun
tion of BER vs. SIRThe se
ond step in examining of the algorithm's performan
e is to demonstrate whetheror not the algorithm a
tually suppresses the pump interferen
e signal. This is performedby testing the algorithm on a �eld-test data of a 
arrier frequen
y fc = 30 Hz and datarate R = 5 bit/s. The estimated fundamental period is N̂ = 585 samples and M = 21frames.The frequen
y-domain baseband presentation of the re
eived and pro
essed signals illus-trated in Fig. 3.17 shows that the algorithm not
hes the main part of the interferen
e.From the time-domain baseband presentation of the re
eived and pro
essed signals inFig. 3.18 it is seen that an apparent redu
tion in the amount of erroneous data dete
tion
an be a
hieved by the TD-AS method.3.3 Pra
ti
ability and performan
e evaluation of semi-blind s
hemesTo illustrate the performan
e of proposed algorithms in Subse
tions 3.2.2 and 3.2.3, weanalyze both simulative and �eld-test data from test boreholes. These investigations alsoin
lude evaluating the method using pump strobe sensors to get an assessment of theappli
ability of proposed methods in the MPT system. This se
tion ends up by 
omparingthe simulated results with the measured ones. However it is impossible to estimate the SIRduring the regular operation, a rough estimate of SIR 
an be obtained during the startupsequen
e. The power of the pump signal 
an be measured during the valve-o� period.Afterwards, the SIR 
an be 
al
ulated during a time slot equal to valve-o� duration,
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Fig. 3.17: Spe
trum of the re
eived sensor signal y(k), the estimated periodi
 pumpsignal ŝ(k) and the pro
essed signal z(k) in basebandwhere a training sequen
e for the telemetry signal is transmitted as follows
ˆSIR = 10 log10

E [y2(k)]− E [y2V O(k)]

E [y2V O(k)]
. (3.14)The SIR estimation shown in Fig. 3.19 is performed for �eld-test data sets to be analyzedand provides some information about the frequen
y and amount of SIRs en
ountered inreal MPT appli
ations. Moreover, su
h information 
an be used for more realisti
 
on�g-uration of simulation parameters. As stated in Subse
tions 3.2.2 and 3.2.3 an estimate ofthe fundamental period of the pump signal is required by the proposed s
hemes. In thisregard, the estimation method based on 
orrelation maximization in 2.2.3 is applied toestimate the fundamental period for ea
h �eld-test data set to be analyzed. The estima-tion is 
arried out during both valve-o� and regular operation time. The results in Fig.3.20 provide not only an estimate of fundamental period but also illustrate the 
apabilityof the estimation method during regular operation. It 
an be seen that the estimationresults are similar, ex
ept of trivial variation in sample.In the �rst step, the simulative evaluation based on the MPT-system in Eq. 1.1 is per-formed. Time-invariant frequen
y-�at fading 
hannels are 
onsidered to model the 
han-nels of the MPT-system. AWGN and the pump signal represents the additive systeminterferen
es, whi
h disrupt the telemetry signal at most and 
ause erroneous data dete
-tion. The aim of this simulation is to determine the e�
ien
y of the proposed s
hemesin dete
ting a BCPM modulated telemetry signal with the 
arrier frequen
y of 40 Hzand a data rate of 40 bit/s for the 
ase when the re
eived signal is a�e
ted by randomlygenerated �at fading 
hannels, Gaussian noise and interferen
e pump signal. Thereforewe perform for di�erent media noise with the same SNR 100000 Monte-Carlo trials. The
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Fig. 3.20: Estmation results of fundamental period during valve o� and regular operationrange of SNRs is from 0 dB to 30 dB. The pump signal re
orded at the test borehole isused to model the interferen
e, thus the simulations 
orrespond with the real situations.Using the statisti
s on the value of SIR provided in Fig. 3.19, SIR of -15 dB is 
onsideredin the simulation and the results are thus related to a moderate situation.The parameter setup for the proposed s
hemes are summarized in Table 3.1.Sampling rate fs = 1024 [Hz℄Filter length L = 31 [ms℄Range of delays τ1 = −20 [ms℄ and τ2 = −τ1Step size µ = 10−4Adaptation time 20 [s℄Averaging length M = 21, 5Table 3.1: Simualtion parameter setup for the proposed semi-blind pro
essing s
hemesThe simulations results are provided in Fig. 3.21 as BER vs. SNRs and 
ompared tothe situation where no pro
essing is performed as well as to the situation where thepro
essing is 
arried out by the pump 
an
ellation method based on pump strobe sensors.As expe
ted, MIMO semi-blind sour
e separation s
heme yields best performan
e andhelps not only in suppressing the pump interferen
e signal but also in 
hannel equalizingand de-noising the re
eived signal from the Gaussian noise. Obviously, the BER resultsare improved as the SNR in
reases. From the BER results, no signi�
ant di�eren
es are
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Fig. 3.21: Simulative performan
e analysis of the proposed semi-blind pro
essings
hemes in terms of BER vs. SNR at SIR = −15 dBnoti
ed between the TD-AS s
heme withM = 21 and the approa
h based on pump strobesensors.In the se
ond step, �eld-test data sets are analyzed to experimentally verify the perfor-man
e of the algorithms as well as the appli
ability of the simulations regarding realsituations. In this part, the BER 
ount or frequen
y is used as the performan
e measure.
84 �eld-test data sets 
orresponding to 60000 bits are involved in the evaluation. A sum-mary on evaluated �eld-test data is given in Table 3.2 and the parameter 
on�gurationis the same as in Table 3.1.Low data rate s
enario R = 5 [bps℄ 30000 bitsHigh data rate s
enario R = 20, 25, 30, 35, 40 [bps℄ 30000 bitsTable 3.2: Field-test data setup involved in the evaluation of semi-blind s
hemesThe evaluation results illustrated in Fig. 3.22 are in a

ordan
e to the simulation ones.The performan
e is not signi�
antly di�erent from ea
h other for all the dis
ussed algo-rithms and all methods deliver almost 
omparable performan
e. Further �eld-test databased evaluations shown in Fig. 3.23 indi
ates that a signi�
ant performan
e improve-ment 
an be a
hieved by 
ombining single 
hannel TD-AS and CMA s
hemes. The blo
kdiagram of Fig. 3.24 demonstrates the stru
ture of 
ombining single 
hannel semi-BSEbased on the TD-AS and semi-blind CMA.
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Fig. 3.22: Field-test data based performan
e analysis of the proposed semi-blindpro
essing s
hemes
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e 
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hannelsemi-BSS and the single 
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CMAFig. 3.24: Con
ept blo
k diagram of 
ombining single 
hannel semi-BSE based on theTD-AS and CMA3.4 Summary and 
on
lusionIn this 
hapter, two semi-blind estimation s
hemes based on telemetry and/or interfer-en
e properties were proposed mainly to support interferen
e suppression en
ounteredin MPT appli
ations: one uses modulus/envelope properties of both telemetry and in-terferen
e signals, and the other expli
itly spe
ial properties of RMP interferen
e signal.The appli
ation of both algorithms requires a-priori information about the fundamentalperiod of the pump interferen
e signal. Depending on the applied data rate, we 
an pro-
eed from the narrowband or wideband system assumption. A

ordingly, the amount ofinterferen
e being taken in the transmission bandwidth is also varied. Both approa
hesare analyzed using simulation as well as �eld-test data measurements and 
ompared toone that utilized pump strobe sensors installed at pumps to remove the pump signal. Inthe simulation part, the analysis was for a high data and AWGN system s
enario usingreal pump measurements and �at-fading 
hannels. In the se
ond part, the measurementsfrom the test boreholes in
lude �eld-test data of di�erent data rates possibly a�e
ted bythe multipath mainly at high data rates. The results indi
ate that although MIMO semi-blind sour
e separation method using envelope property of telemetry and interferen
eyields best performan
e, it is less robust than the semi-blind sour
e extra
tion methoddue to the possible divergen
e phenomenon espe
ially for the wideband/high data ratetransmission 
ase. Another reason for 
hoosing extra
tion s
heme over the separation one,is its simple single re
eiver stru
ture and signi�
ant performan
e improvement a
hievedby CMA post-pro
essing. Next to this, additional resear
h 
ould further examine thelatter in the 
ontext of two-re
eiver stru
ture. Even though these methods work in realenvironments, estimating and spe
ially tra
king of required a-priori information about theinterferen
e signal not only introdu
es a big 
hallenge to pra
ti
al appli
ations but alsoin
reases system 
omplexity. Based on this investigation, an extension proposal 
apable ofextra
ting interferen
e without employing any a priori knowledge about the interferen
eshould be studied. Furthermore, the two re
eiver stru
ture available in the MPT systemar
hite
ture o�ers further resear
h aspe
ts to be dealt with in this dissertation.



Chapter 4Referen
e signal-based pro
essings
hemes
The semi-blind signal pro
essing s
hemes proposed in Chapter 3 demand a-priori in-formation and show moderate performan
e. These de
rease their usefulness in pra
ti
alappli
ations. Therefore, the training sequen
e fa
ility embedded in the startup sequen
e isutilized for algorithm development. Sin
e available te
hnology based on the two-re
eiverstru
ture is of e
onomi
al and e�
ien
y interests, this 
hapter 
on
entrates on 
on
ep-tualizing estimation s
hemes based on a referen
e signal 
ombined with the two-re
eiverstru
ture available in MPT. In this 
ontext, the reliability and e�
ien
y of 
hannel esti-mation is dis
ussed. Afterwards, di�erent re
eiver stru
tures and estimation 
on
epts areproposed to provide e�
ient estimation and tra
king fa
ility to update the estimation dur-ing the regular operation. Consequently, the e�
ien
y and pra
ti
ability of the proposedalgorithms in estimating the telemetry signal is tested and 
ompared using �eld-tests dataa
quired from di�erent rigs.4.1 Inferior 
hannel estimationIt is di�
ult to reliably estimate the 
hannel be
ause of substantial strong pump inter-feren
e inherent to the MPT system. However, for high signal to interferen
e ratios itis still possible to a
hieve good 
hannel estimation, but reliable 
hannel estimation inMPT system, in whi
h the referen
e signal is almost immersed in strong interferen
e, is
hallenging.The problem of reliable 
hannel estimation 
an be dealt with either by removing theinterferen
e in advan
e and pre
eding the 
hannel estimation or estimating the 
hannelin the presen
e of interferen
e [49℄. The �rst approa
h is ine�
ient be
ause of the 
on-
omitant distortion of the transmitted signal, whi
h indu
es an ina

urate 
hannel esti-mation/equalization as well. Di�erent estimation methods based on the se
ond s
hemeare also investigated and 
ompared in [99℄. Results reported in [99℄ demonstrate the lim-ited and SIR-dependent performan
e of these methods as well. Moreover, due to the la
kof a training sequen
e for the pump signal, it is not possible to exploit the stru
tureproperty of MIMO 
hannel o�ered by the MPT system ar
hite
ture and a

ordingly there
eiver stru
ture is redu
ed to a Single-Input Multi-Output (SIMO) system. In addition,it is shown in [99, 49℄ that a layered equalization s
heme, where the 
o-
hannel pump50
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e signal-based pro
essing s
hemes 51interferen
e is subtra
ted out from all re
eived data and ea
h re
eived data is equalizedthereafter, is mu
h more e�
ient.It should be noti
ed that, in the subsequent 
hapter a reliable method of 
hannel esti-mation is developed to extra
t 
hannel impulse responses (CIR), supporting simulationstudies of this work. In this 
hapter a di�erent estimation and dete
tion approa
h for theMPT system with the two-re
eiver stru
ture is proposed, where the fo
us is on 
an
ellingthe interferen
e while simultaneously dete
ting the desired telemetry signal.4.2 Straightforward signal estimationConventional interferen
e 
an
ellation is performed by feeding a referen
e of interferer toa re
eiver having stru
ture as shown in Fig. 4.2 [40℄. Sin
e no referen
e signal is avail-able for the pump interferen
e, the two-re
eiver stru
ture of MPT system is utilized toful�ll the task of 
an
elling interferen
e [24℄. Two-re
eiver based interferen
e 
an
ellationte
hnique presented in [24℄ was shown to be highly e�e
tive in suppressing the inter-feren
e, working without any knowledge of the interfering signal and any pump strobesensors. The major drawba
k of this s
heme is the inability of adaptation. Therefore, there
eiver stru
ture has to be optimized to in
lude both adaptive interferen
e 
an
ellationand 
hannel equalization features. To this end, two kinds of adaptive re
eivers have beenproposed. The �rst, 
alled here 
as
ade interferen
e 
an
ellation and equalization, has the
Transmitter Channel Receiver

Noise

Interference

Data Data

Reference

signalFig. 4.1: Con
eptual diagram of 
onventional interferen
e 
an
ellation in a
ommuni
ation systemsame re
eiver stru
ture as presented in [24, 80℄. The se
ond s
heme, termed joint interfer-en
e 
an
ellation and equalization, involves a multi
hannel adaptive re
eiver algorithm.Both of these re
eiver algorithms utilize a referen
e signal to adaptively not
h out theinterferer and extra
t the telemetry signal. The adaptive pro
essing 
an be a

omplishedby applying the well-known adaptive weighting s
hemes su
h as sample matrix inversion(SMI), least mean square (LMS), and re
ursive least square (RLS) [100℄. The referen
esignal is usually provided by transmitting a training sequen
e known a priori to re
eiver.Su
h kind of signal is also referred to as temporal referen
e and 
an be a data signal orother appropriate signal su
h as 
hirps proposed for the syn
hronization [67, 42℄ 1.1 Knowledge on signal arrival dire
tion is 
alled spatial referen
e.



Chapter 4. Referen
e signal-based pro
essing s
hemes 52The 
urrent MPT system provides training sequen
e fa
ility in the form of data signal aswell as syn
hronization 
hirp. Providing a referen
e signal during the regular operationposes a great 
hallenge. One possibility to form a referen
e signal after terminating thetraining sequen
e is the re-modulation of the demodulator de
ision i.e., the so-
alled de
i-sion feedba
k (DF) operational mode [67℄. Provided de
ision error rates lower than 10−2,the obtained referen
e signal is still of su�
ient quality to allow e�
ient tra
king [67℄.An alternative approa
h to avoiding su
h errors is to deploy periodi
 training sequen
ee.g. syn
hronization 
hirp [67℄. Thus both s
hemes proposed in this se
tion are 
apable oftra
king using the referen
e signal generation approa
hes.In the next two se
tions, the dis
ussion and the realization of both approa
hes are basedon realisti
 MPT environment and 
ommuni
ation 
hannels.4.2.1 Cas
ade interferen
e 
an
ellation/equalizationIn this se
tion, the two-re
eiver stru
ture available in the MPT system and the spe
ialfeature of startup sequen
e is utilized to perform traditional interferen
e 
an
ellationbased on a referen
e signal [40℄. As shown in Fig. 4.2, this s
heme 
onsists of a 
as
adearrangement of interferen
e 
an
ellation and equalization se
tions.
EqualizationInterference cancellation

+
y1(k) x̂2(k)

y2(k)

e(k)

~h1

¡

~h¡1
2

Received

signals

Error

signal

Telemetry signal

estimate

Fig. 4.2: Blo
k diagram of the 
as
ade interferen
e 
an
eller/equalizerThe interferen
e 
an
ellation algorithm is initially adjusted during the VO period of thestartup sequen
e to not
h out the interferen
e. Residual signal distortions mostly 
ausedby the 
ommuni
ation 
hannels are to be 
ompensated at the equalization se
tion. Theequalizer initial adjustment is a
hieved using the training sequen
e of the startup sequen
e[24℄. However, the 
as
ade interferen
e 
an
ellation/equalization o�ers simple re
eiver ar-
hite
ture and low 
omputational e�orts, but su�ers from two important problems [40, 70℄.The �rst one is the interferen
e adaptation. In other words, the adjustment of the inter-feren
e 
an
ellation se
tion pres
ribes VO phase, whi
h is not supported by the systemduring the regular operation. The se
ond one, whi
h limits the performan
e of the 
as-
ade interferen
e 
an
ellation/equalization during the regular operation, is the presen
eof the telemetry signal in both re
eivers [40℄. In this 
ase, not only the interferen
e butalso parts of the telemetry signal 
an be removed by the interferen
e 
an
eller and 
ausedperforman
e redu
tion of the system.
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e signal-based pro
essing s
hemes 53An alternative estimation s
heme, 
alled here joint adjustment of interferen
e and equal-ization se
tions, is proposed to deal with tra
king problems of the 
as
ade stru
ture.The initial adjustment of both interferen
e and equalization se
tions is performed in thetraining phase, whi
h in turn fa
ilitates tra
king during regular operation.Re
alling the mathemati
al des
ription of the interferen
e removal s
heme based on two-re
eiver stru
ture inEq. 1.3 the 
orresponding equations for the 
as
ade re
eiver stru
tureand adaptive joint estimation approa
h are derived as follow:
y2(k)− h̃1(k) ∗ y1(k) = h̃2(k) ∗ x2(k) + ṽ(k) , (4.1)or
y2(k) = h̃1(k) ∗ y1(k) + h̃2(k) ∗ x2(k) + ṽ(k) , (4.2)where h̃1(k) = h̃21(k), h̃2(k) = h22(k)− h̃21(k) ∗ h12(k), ṽ(k) = v2(k)− h̃21(k) ∗ v1(k), and

y1(k), y2(k) and x2(k) are the re
eived and training signals respe
tively. v1(k) and v2(k)are zero-mean additive white Gaussian noise. It should be noted that Eq. 4.1 is used todeliver the estimation for the telemetry signal, whereas Eq. 4.2 
an be used to estimatethe parameters required by Eq. 4.1.
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~h

~h1

~h2

Fig. 4.3: Con
eptual diagram of joint estimation for the 
as
ade re
eiver stru
tureA simpli�ed blo
k diagram for the estimation strategy is illustrated in Fig. 4.3, where
ŷ2(k) is the output of the adaptive �lter and the di�eren
e e(k) = ŷ2(k)− y2(k), betweenthe re
eived and �lter output signals is applied to the adaptation algorithm. The ve
torrepresentation is suited to demonstrate the adaptation pro
edure. Assuming that the �lterlength equals to L, the ve
tor representation of ŷ2(k) at time index k is given by

ŷ2(k) =

L−1∑

l=0

h̃1(l)y1(k − l) + h̃2(l)x2(k − l)

= h̃T
φ(k) , (4.3)where h̃ =

[

h̃1,0, h̃1,1, · · · , h̃1,L−1, h̃2,0, h̃2,1, · · · , h̃2,L−1

]T and φ(k) =

[y1(k), · · · , y1(k − L+ 1), x2(k) · · · , x2(k − L+ 1)]T .
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e signal-based pro
essing s
hemes 54The �lter 
oe�
ient are adjusted so as to minimize the performan
e fun
tion, whi
h willbe de�ned in the sequel, by employing simple adaptation algorithms su
h as standardRLS, whi
h has good numeri
al stability [10℄. Sin
e the signal as well as environment
hara
teristi
s 
ould be time-variant, the use of an adaptive pro
essing s
heme is preferred.Re
ursive least square algorithm is a 
lass of adaptive algorithms based on the leastsquares (LS) 
riterion, in whi
h the 
ost fun
tion to minimize is a sum of squared errorsgiven by [10, 110℄
JLS(k) =

k∑

i

ρi |e(k − i)|2 , for 1 ≤ i ≤ k . (4.4)Sin
e both 
urrent and all past inputs samples are involved in the estimation, the algo-rithm o�ers fast 
onvergen
e at the 
ost of in
reased 
omplexity. The forgetting fa
tor ρis purposed to assign di�erent weighting for the 
urrent and previous errors in the 
ostfun
tion. The minimization of the the LS 
ost fun
tion is a
hieved by setting its gradientto zero (∇h̃JLS(k) = 0) [110, 70℄.
∇h̃JLS(k) = ∇h̃ k∑

i

ρi
∣
∣
∣y2(k − i)− h̃T

φ(k − i)
∣
∣
∣

2

= ∇h̃ k∑

i

ρi
[

y2(k − i)− h̃T
φ(k − i)

] [

y2(k − i)− h̃T
φ(k − i)

]∗

= ∇h̃ k∑

i

ρi
[

|y2(k − i)|2 − 2h̃T
φ(k − i)y∗2(k − i) + h̃T

φ(k − i)φH(k − i)h̃∗
]

=

k∑

i

ρi
[

−2φ(k − i)y∗2(k − i) + 2φ(k − i)φH(k − i)h̃]
= −2p(k) + 2Rφφ(k)h̃ , (4.5)where

Rφφ(k) =

k∑

i

ρiφ(k − i)φH(k − i)

p(k) =

k∑

i

ρiφ(k − i)y∗2(k − i) .The minimum of the LS 
ost fun
tion is obtained byh̃(k) = R−1
φφ(k)p(k) . (4.6)The LS solution 
an be obtained by rewriting Eq. 4.4 in a re
ursive manner as follows:

JLS(k) = JLS(k − 1) + |e(k)|2 . (4.7)A

ordingly Rφφ(k) and p(k) 
an be 
al
ulated re
ursively by:
Rφφ(k) = ρRφφ(k − 1) + φ(k)φH(k)
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p(k) = ρp(k − 1) + φ(k)y∗2(k) . (4.8)The 
oe�
ient ve
tor h̃ 
an be 
a
ulated with a matrix inversion of Rφφ(k) by solvingEq. 4.6. To avoid the time 
onsuming matrix inversion operation, the matrix inversionlemma (Haykin, 1996)

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1is used [110, 24℄. By repla
ing A = ρRφφ(k − 1), B = φ(k), C = 1 and D = φ(k)H ,
Rφφ(k)

−1 
an be 
a
ulated with Eq. 4.7 dire
tly.
R−1

φφ(k) = ρ−1
(
R−1

φφ (k − 1)−G(k)φH(k)R−1
φφ(k − 1)

)
, (4.9)where G(k), also known as Kalman gain ve
tor or adaptation gain ve
tor, is de�ned by

G(k) =
R−1

φφ(k − 1)φ(k)

ρ+ φH(k)R−1
φφ(k − 1)φ(k)

. (4.10)The adaption equations is derived by inserting Eq. 4.9 and Eq. 4.8 into Eq. 4.6 asbelow: h̃(k) = ρR−1
φφ (k)p(k − 1) +R−1

φφ (k)φ(k)y
∗
2(k)

= h̃(k − 1)−G(k)φH(k)h̃(k − 1) +G(k)y∗2(k)

= h̃(k − 1)−G(k)
(

φH(k)h̃(k − 1)− y∗2(k)
)

= h̃(k − 1)−G(k)e∗(k) (4.11)An estimate of h̃ delivers required update for interferen
e 
an
ellation as well as equalizerse
tions of the 
as
ade system. Whereas the estimation for the interferen
e 
an
ellationse
tion is fed dire
tly to the system, the estimation for the equalization se
tion has to beinversed to obtain the equalizer 
oe�
ient. This 
an be performed by a time- or frequen
y-domain approa
h. It must be noti
ed that di�erent stru
ture of dete
tion and estimationpro
edures introdu
es a pro
essing delay to the system as well.On 
omparing the VO-based and training-based (TB) estimation s
hemes, the impulseresponse of the interferen
e 
an
eller and the equalizer output are 
onsidered. Fig. 4.4shows the interferen
e 
an
eller estimate based on both VO and training sequen
e atdi�erent data rates. It is seen that TB s
heme delivers the same estimation result of the
hannel impulse response as the VO-based approa
h. A

ordingly, the estimation a

ura
yof the interferen
e 
an
eller se
tion is a�rmed.The e�
ien
y of the equalizer se
tion in re
onstru
ting the distorted signal at di�erentdata rates is illustrated in Fig. 4.5. It is observed that the equalized signal exhibits fewerdistortions, whi
h is also a veri�
ation of the estimation a

ura
y for the equalizer se
tion.The spe
trogram of the re
eived and pro
essed signals in Fig. 4.6 and Fig. 4.7 show thefa
t that despite of the joint estimation the algorithm still attempts to remove the desiredtelemetry signal. Under this 
ir
umstan
e the joint estimation s
heme might also delivererroneous results [40℄. In other words, the solution is not unique.
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Fig. 4.4: VO-based and TB impulse response estimation of interferen
e 
an
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ases
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Fig. 4.5: Examining the fun
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asesThis 
an be dealt with by parameter initialization during VO period, whi
h 
an support
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Fig. 4.6: Spe
togram of the unpro
essed re
eived signals
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Fig. 4.7: Spe
togram of the pro
essed signal using 
as
ade interferen
e 
an
eller/equalizerproper and faster 
onvergen
e. To in
rease the estimation trustfulness a re
ursive s
heme
an be followed, where a part of training sequen
e is used to obtain an estimate of theequalizer and the equivalent 
hannel impulse response. This estimation serves as a param-eter initialization and assists to provide an update for interferen
e 
an
eller using anotherpart of the training sequen
e. The idea is borrowed from turbo 
oding and is promisingprovided that the 
hannels do not 
hange rapidly. A

ordingly, a re
ursive 
hannel iden-ti�
ation and telemetry signal estimation 
an be used to solve the 
hannel identi�
ationwith regular operation.Another short
ome of the 
as
ade s
heme is that the performan
e of this method is highlydependent on the �lter length. Thus a priori knowledge on the 
hannel length is ne
essaryfor e�
ient work of this s
heme.
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hemes 584.2.2 Joint interferen
e 
an
ellation/equalizationThe main issue to be dis
ussed in this se
tion is to mitigate signal distortion subje
t to
hannel and interfering signals jointly. The problems inherent in the 
as
ade interferen
e
an
ellation/equalization provide the motivation to re
onsider the re
eiver ar
hite
ture.An alternative is to use a joint interferen
e 
an
ellation/equalization stru
ture [40, 81℄.Su
h re
eiver arrangement does not exhibit basi
ally the de�
ien
ies of the previous stru
-ture. In this s
heme both re
eived signals are fed to the so-
alled multi
hannel adaptive
+

y1(k)

x2(k)e(k)

y2(k)
~w

x̂2(k) bits

Training

sequence

+

Fig. 4.8: Blo
k diagram of the joint interferen
e 
an
eller/equalizerequalizer and pro
essed jointly to re
over the desired telemetry signal. In other words, thespa
e diversity re
eption available in the system o�ers deploying spatial signal pro
essingte
hnologies, where the signal of di�erent re
eivers are 
ombined to 
ombat the 
hannele�e
ts due to multipath and redu
e the potential interferen
es [55, 60, 48, 82℄. To thisend, two well-known s
hemes are proposed: diversity 
ombining and adaptive arrays, alsoknown as smart arrays. In this regard, the 
on
ept of optimal 
ombining is introdu
edaiming to maximize the signal-to-interferen
e-noise-ratio (SINR) at the re
eiver outputs[67, 55℄.Traditionally adaptive arrays are deployed in environments featuring no fading and ableto suppress an interfering signal, provided the angular separation between the interfererand signal of interest is large enough [55℄. However in the MPT system similar to mobileradio systems due to the multipath the phase of signals is independent of ea
h other, ifthe distan
e between the re
eivers/transmitters is greater than half of a wavelength [55℄.Sin
e the interferen
e sour
e (pump signal) is at the surfa
e and the telemetry signalat the down hole, the aforementioned 
ondition on the distan
e among the transmittersholds true in the MPT system. Thus, although the MPT environment di�ers from thatof typi
al adaptive arrays system, appli
ation of adaptive arrays or optimal 
ombiningte
hnologies is yet of distin
t advantages [67, 55℄.An extensive performan
e evaluation of optimal 
ombining s
hemes for 
oherent dete
-tion of PSK signals subje
t to �at fading (Rayleigh 
hannels) is given in [55℄. The re-sults reported in [55℄ in
lude both analyti
al and simulative evaluations and illustratethe superior BER performan
e of the optimal 
ombining over the traditional diversity
ombining s
hemes e.g. maximum ratio 
ombining (MRC) with 
o-
hannel interferen
es.A

ordingly the performan
e gain a
hieved by optimal 
ombining is a fa
tor of 5-10 [dB℄[55, 87, 40℄. Sin
e the statisti
 of mud 
hannels is not yet spe
i�ed, it is extremely di�
ultto provide an analyti
al performan
e evaluation for optimal 
ombining s
hemes in MPT
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hemes 59systems. Therefore, the performan
e evaluation is based upon simulation and �eld-testsdata measurements obtained from di�erent boreholes. The joint interferen
e 
an
ellationand equalization is referred to as the optimal 
ombining s
heme proposed in this work.The straight forward signal re
overy of the joint s
heme provides simpli
ity and dire
tnessfor the tra
king task. Similarly, the multi
hannel adaptive equalizer is initially adjustedduring the training pro
edure. The multi
hannel adaptive equalizer 
an be tra
ked eitherby a de
ision feedba
k approa
h or using periodi
ally transmitted signals (e.g. syn
hro-nization 
hirps). A blo
k diagram of the proposed re
eiver is depi
ted in Fig. 4.8. Theproposed s
heme pro
esses the re
eived signals so as the telemetry signal 
omponents
orrelated with the temporal referen
e are enhan
ed and un
orrelated ones are removed.Therefore interferen
e and noise 
an be suppressed in this way. Furthermore the proposedoptimal 
ombining s
heme is able to redu
e the e�e
ts of dispersive or frequen
y sele
tive
hannels. This relies on the assumption that the auto
orrelation fun
tions of telemetrydata and referen
e signals are 
lose to ea
h other [67℄.Equalizer optimization based on adaptation 
riteria is a tradeo� between the stru
tural
omplexity and the measure of 
ommuni
ation quality generally in terms of BER. Con-
erning this matter, the MSE 
riterion in spite of simple adaptation stru
ture results ininferior BER performan
e and a

ordingly is not quali�ed [87, 36℄. To this end, the adap-tation algorithm based on RLS 
riterion is also applied here to adjust the 
oe�
ient ofmulti
hannel adaptive equalizer. By spe
ifying the error signal as e(k) = x̂2(k) − x2(k)with x̂2(k) = w̃Tφ(k), φ(k) = [y1(k), · · · , y1(k − L+ 1), y2(k) · · · , y2(k − L+ 1)]T theequalizer update equation is obtained as follow:w̃(k) = w̃(k − 1)−G(k)e(k)∗ , (4.12)where w̃ = [w̃1,0, w̃1,1, · · · , w̃1,L−1, w̃2,0, w̃2,1, · · · , w̃2,L−1]
T . Similarly G(k) is de�nied byEq. 4.10.It should be noti
ed that the multi
hannel equalizer is a simpli�ed version of the jointinterferen
e 
an
ellation/equalization stru
ture proposed in [40℄ and solely 
onsists of feedforward transversal �lters. The most important issue to be emphasized is that the pro-
essing pro
edure is identi
al for the involved signals in the joint s
heme. To this end,the 
on
ept of re
eivers splitting into the referen
e and re
eived signals in the 
as
adestru
ture is abstra
ted in the joint stru
ture [40℄. The spe
i�
ation to be implied is thatthe multi
hannels have to provide new information about the interferen
e or/and teleme-try signals. The multi
hannel adaptive equalizer has the ability of reje
ting narrowbandinterferen
es without any requirement on having referen
e for the interfering signals. Su
hequalization s
heme employs available diversity in systems with parallel fading 
hannelsto redu
e the e�e
t of interferen
e 
orrelated from 
hannel to 
hannel [87℄. In other words,available diversity required for fading prote
tion is sa
ri�
ed in order to suppress the in-terferen
e. Sin
e the 
ommuni
ation quality is mainly degraded by the pump interferen
e,the arisen diversity loss is of less importan
e in the 
ontext of MPT multi-signal system.A better performan
e 
an be a
hieved by in
reasing the number of re
eivers to attainadditional 
hannels at the 
ost of 
omputational e�ort [55, 40℄. However, providing therequired diversity in the MPT system might be restri
ted. In one hand, due to 
ertainhousing of rigs, re
eiver pla
ing is spatially limited. In the other hand, installing additionalre
eivers results in additional 
osts and is �nan
ially less attra
tive.The spe
trogram presentation of the re
eived signals in Fig. 4.6 and the pro
essed ones
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Fig. 4.9: Spe
togram of the pro
essed signal applying optimum 
ombining jointinterferen
e 
an
eller/equalizerin Fig. 4.7 and Fig. 4.9 shows the improvement of the signal strength and veri�es thesuperior performan
e of the optimal 
ombining s
heme promised by the theory.The 
onvergen
e behavior of the joint multi
hannel s
heme at di�erent SIRs is analyzed.The results in Fig. 4.10 show that the initial 
onvergen
e performan
e is not a�e
tedseriously by SIR at the re
eiver, but the residual error is in
reased at poorer SIRs. Inthis regard, the amount of training sequen
e required for the estimation with a 
onstant�lter length 
an be redu
ed. This means less redundan
y, higher data rate as well as fasttra
king.E�
ient suppression of interferen
es whose power is mu
h greater than that of the teleme-try signals and/or those of large numbers might require applying larger �lter lengths anda

ordingly larger amounts of referen
e signal. Fig. 4.11 shows the 
onvergen
e rate orthe amount of training sequen
e required by the algorithm at di�erent �lter lengths.As stated in previous 
hapters, more than one pump is involved in the drilling pro
ess. The
onsequen
e is twofold: in
reasing the number and the bandwidth of in-band interferen
e.Thus examining the ability of the algorithm in reje
ting multiple pump interfering signalsis of great interest. On this a

ount �eld-test data from a borehole running two pumps is
onsidered. The spe
trogram of the re
eived and pro
essed data in Fig. 4.12 and Fig.4.13 shows that a distin
t improvement of the signal strength (SINR) 
an be a
hieved.
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Fig. 4.10: Convergen
e evaluation of the joint multi
hannel s
heme for di�erent SIRs regimes
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Fig. 4.11: Convergen
e evaluation of the joint multi
hannel s
heme for di�erent setup of�lter lengths4.3 Pra
ti
ability and performan
e evaluationThe performan
e evaluations en
lose both simulative as well as �eld-test data measure-ments.



Chapter 4. Referen
e signal-based pro
essing s
hemes 62
F

re
qu

en
cy

 [H
z]

Time [s]

Unprocessed

 

 

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50
Power [dB]

−60

−50

−40

−30

−20

−10

0

Fig. 4.12: Spe
trogram of the unpro
essed re
eived signal distorted by a widebandtwo-pump interferen
e
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Fig. 4.13: Spe
trogram presenting the ability of optimum 
ombining joint interferen
e
an
eller/equalizer in reje
ting wideband two-pump interferen
e
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hemes 63The �rst step in analyzing proposed algorithms in Se
tions 4.2.1 and 4.2.2 is to providea 
omparative study on their stability and robustness. The aim of this study is to showwhether a parameter readjustment is required for every measurement and/or rig envi-ronments. Su
h requirement makes the algorithms, even with a promising performan
e,unattra
tive for real MPT appli
ations. Sin
e the performan
e of the algorithms dependson the �lter length setup, the BER vs. the �lter length L is used to show the stabilityanalysis. To evaluate the stability, sample �eld-test data of di�erent data rates (R =5,20bit/s) are 
onsidered.
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Fig. 4.14: Stability study of 
as
ade and joint re
eiver stru
ture on low data rate�eld-test measurementsThe evaluation results are illustrated in Fig. 4.14 and Fig. 4.15. The optimal �lterlength is spe
i�ed by that given the lowest BER on the �gures. It 
an be seen that theBER performan
e of the joint interferen
e 
an
elation and equalization s
heme for bothhigh and low data rate 
ases is almost not a�e
ted by the �lter length setup. However,the 
as
ade interferen
e 
an
elation and equalization s
heme requires 
ertain �lter lengthadjustment to deliver best performan
e. Therefore, the results of stability analysis showthe bene�t of the joint s
heme in MPT appli
ations.Initial performan
e study is 
arried out in a simulation environment, whi
h o�ers more�exibility and pre
ise algorithm study. The simulation environment is arranged a

ordingto the MPT system model presented in Chapter 1, with extra
ted CIRs from both testand 
ommer
ial boreholes (see Appendix. B.1 and Appendix. B.2). The related issuesto CIR extra
t will be dis
ussed in depth in the following 
hapter.The aim of the simulations is to provide a quantitative/qualitative 
omparison of proposed
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Fig. 4.15: Stability study of 
as
ade and joint re
eiver stru
ture on high data rate�eld-test measurementsalgorithms in dete
ting a BCPM of fc = 40 Hz and R = 40 bit/s at 
ertain SIRs andSNRs. For di�erent media noise (AWGN) with the same SNR, 100000 Monte-Carlo trailsare performed. The range of SNR is from 0 dB to 35 dB. The pump signal measured ata test borehole is used to model the interferen
e. Based on the investigation in Chapter3.3, a SIR of -15 dB is 
onsidered. The training sequen
e and �lters are of 13 s and 0.25s duration respe
tively. The simulation results are provided in Fig. 4.16 and Fig. 4.17as a fun
tion of BER vs. SNRs and 
ompared with the situation where no pro
essing isperformed. Additionally the results are 
ompared with the existing methods based on two-re
eiver as well as single 
hannel and equal gain 
ombining (EGC) equalization based onRLS. In EGC s
heme the re
eived signals are pro
essed individually and then 
ombined.It 
an be seen that the joint s
heme has a superior BER performan
e and o�ers a gainof about 10 dB over the other s
hemes, for both test and 
ommer
ial boreholes s
enarios.On 
omparing the joint s
heme with the 
as
ade one, it 
an be 
on
luded that in thepresen
e of noise the joint strategy is superior to that of 
as
ade.In addition to the simulations, �eld-test data a
quired from di�erent rigs are analyzed toexamine the performan
e of the algorithms experimentally and to verify the simulationresults. Here the BER frequen
y/
ounts is used as the measure of performan
e. 60 �led-test data sets are involved in the evaluations. The evaluation results illustrated in Fig.4.18 are in agreement with the simulation results and verify the superior performan
e ofthe joint multi
hannel s
heme. It should be noted that the �lter length of TB 
as
ades
heme has to be adjusted for ea
h data set and a

ordingly is of less pra
ti
ability.A

ording to theoreti
al analysis in
reasing the number of re
eivers 
an lead to a 
on-siderable performan
e improvement. To verify performan
e gain a
hieved by additional
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Fig. 4.16: Simulative performan
e analysis in terms of BER vs. SNR using CIRsobtained from a test borehole
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Fig. 4.17: Simulative performan
e analysis in terms of BER vs. SNR using CIRsobtained from a 
ommer
ial borehole
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Fig. 4.18: Field-test data based performan
e analysis of the referen
e signal-based s
hemesre
eiver installation in MPT appli
ations a simulation environment of a three-re
eiverstru
ture is arranged. The 
hannel impulse responses are obtained from a 
ommer
ialborehole with three-re
eiver stru
ture (Appendix. B.3). Su
h simulations enable to de-liver a performan
e 
omparison in a quantitative point of view. It should be noted that allevaluations are 
arried out with the same simulation setup. The evaluation is twofold: InFig. 4.19 the BER performan
e is plotted versus SNR and Fig. 4.20 shows the perfor-man
e gain in terms of BER vs. SIR. In both 
ase a performan
e improvement of almost6 dB 
an be a
hieved. Sin
e there are not su�
ient �eld-test re
ords of three-re
eiverstru
tures, the real data analysis is limited to a data set of di�erent 
arrier frequen
iesand data rates. The evaluation results in terms of BER [%℄ and 
al
ulated SNR [dB℄ isgiven in Table 4.1. As seen the three-re
eiver stru
ture outperforms any other optionaltwo-re
eiver stru
tures. The explanation for the inferior performan
e of three-re
eiverstru
ture at fc = 40 Hz and R = 40 bit/s is the higher ISI to be 
ombated.The �nal step in examining the joint multi
hannel s
heme, so far the most promisings
heme, is to evaluate the e�
ien
y with di�erent types of referen
e signals available inthe MPT system. In the previous evaluations, the referen
e signal used in the evaluation isa training sequen
e of data symbols having the same 
arrier and data rate as the telemetrysignal. Another possibility is to use the syn
hronization 
hirps so-
alled fat-
hirps (FC)as the referen
e signal. The analysis is performed for �eld-test data re
orded at di�erentrigs and plotted in Fig. 4.21 as a fun
tion of BER 
ounts. The BER performan
e offat-
hirp-based s
heme at higher data rates is lower than that of training-based (TB) asre�e
ted in the results. The reason is twofold: First the available 0-40 Hz fat-
hirp doesnot 
over the whole spe
trum at a higher data rate and as a referen
e signal is of lesspower 
omparing to the TB alternative. Se
ond the auto
orrelation fun
tion of FC is notas 
lose to that of a telemetry signal and thus the assumption required to redu
e the
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fc [Hz℄, R [bit/s℄ Rx {1, 2, 3} Rx {1, 2} Rx {1, 3} Rx {2, 3}BER SNR BER SNR BER SNR BER SNR

9, 3 0 19.29 0 15.04 0 17.33 0 15.96
10, 5 0 15.33 0 12.64 0 15.24 1.84 5.85
15, 5 0 18.70 0 16.06 0 19.55 0 14.76
30, 10 0 20.79 0 17.66 0 20.80 0 17.27
20, 20 0 11.52 0.19 9.63 0.09 8.99 4.45 5.77
40, 40 12.59 4.10 13.54 3.58 6.91 4.43 12.88 3.57Table 4.1: Performan
e gain due to spatial diversity in �eld-test data based evalutiondelay spread of the dispersive 
hannel is not ful�lled. However a 
omparable performan
e
an be still a
hieved with alternative referen
e signals. Moreover, a larger referen
e signallength 
an be o�ered utilizing both TB and FC possibilities.
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Fig. 4.21: Field-test data based performan
e evaluation of joint multi
hannel s
hemewith alternative referen
e signals
4.4 Summary and 
on
lusionIn this 
hapter, the 
as
ade and joint re
eiver ar
hite
tures are presented and analyzedfrom di�erent perspe
tives. Both approa
hes deploy a training sequen
e, transmitted forthe telemetry data at the beginning of drilling operation, to adjust the re
eiver parameters
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hemes 69initially. Su
h re
eiver stru
tures fa
ilitate the parameter readjustment or the tra
kingtask during the regular operation using the estimated signal as a new training sequen
e.The main a
hievement is to 
an
el the pump interferen
e without requiring any kind ofknowledge about the interferen
e. The interferen
e reje
tion ability is provided by themulti
hannel re
eiver stru
ture. A simulative and real-data 
omparison of the proposedmethods is 
ondu
ted. It is shown that the joint interferen
e and 
an
ellation s
heme hasthe best performan
e in terms of BER as well as stability. Based on this investigation,alternative interferen
e avoidan
e algorithms will be presented in the next 
hapter, whereneither multi
hannel re
eiver stru
ture nor knowledge on the pump signal is required.Hen
e, the system performan
e 
an be improved by utilizing the multi
hannel re
eiverstru
ture to perform 
hannel equalization expli
itly. In addition, it might be interestingto 
ombine the algorithms proposed in this 
hapter and semi-blind s
hemes to improvethe system performan
e as well as to support the tra
king task.



Chapter 5Interferen
e avoidan
e te
hniques viatransform domain �ltering
The proposed approa
hes in the previous 
hapters prin
ipally aim the signal re
onstru
-tion without expli
it 
onsidering the 
ause of distortions. This 
hapter fo
uses on individ-ual investigation and pro
essing of signal distortions. As dis
ussed, the pump interferen
eof non-stationary 
hara
ter damages the telemetry data at most. Therefore, �rst of allthe interferen
e 
aused by the pumps is to be removed. Afterwards, ISI indu
ed by themud 
hannel at high data rate transmission is to be equalized. The requirement to beful�lled is that the interferen
e reje
tion has to be performed without any information onpump and telemetry signals and thus should be adjustable. Further investigations of this
hapter 
on
ern di�erent proposals on hybrid algorithm development to a
hieve e�
ient,robust and simple data re
overy in MPT appli
ations. The above-mentioned issues aredis
ussed in depth in the following se
tions.5.1 A review on transform domain �ltering issuesThe pump signal analysis in Se
tion 2.2 demonstrates that the pump signal is a kind ofnon-stationary narrowband interferen
e relative to the mud pulse telemetry signal. Similarinterferen
e signals are en
ountered in di�erent �eld of appli
ations su
h as 
ommuni
ationsystems, digital synthesis of musi
al sound and biomedi
al signal pro
essing. There aremany publi
ations about the suppression of su
h narrowband interferen
es espe
ially indire
t-sequen
e spread spe
trum 
ommuni
ation systems [1, 30, 44, 6, 45, 64℄.An e�e
tive and widely applied s
heme to suppress narrowband interferen
es in a wide-band system is not
h �ltering. Traditionally su
h kind of �lters is realized in time domainand fund out to be infeasible 
on
erning aspe
ts su
h as tunability, e�
ien
y, et
. [102℄.Re
ent appli
ation of this approa
h is performed dire
tly in frequen
y domain by meansof Fourier transforms. Su
h transformations usually require additional prepro
essing su
has segmentation and windowing to avoid spe
tral leakage [102℄. Frequen
y domain not
h�ltering does not exhibit de�
ien
ies and is of several advantages 
on
erning 
ompli
atedpro
essing issues [102℄. E�
ient interferen
e suppression applying not
h �lters relies onthe assumption of known interferen
e. The 
on
ept of adaptive not
hing investigated in[103, 6℄ is a promising s
heme. However, the not
h �ltering en
ounters di�
ulties in thepresen
e of multiple-tone interferen
es if only one not
h �lter is used. On the other hand,70



Chapter 5. Interferen
e avoidan
e te
hniques via transform domain filtering71the desired signal might be distorted in the absen
e of the interferen
e. Besides, the not
h�ltering usually does not work well if the interferen
e is of non-stationary nature [6, 103℄.
Original picture Salt and pepper noise Median filtered picture

Fig. 5.1: Image restoration using median �lterThe problem en
ountered in MPT is that, the non-stationary pump signal is strong, im-pulsive, of multiple tones in the frequen
y domain, while the telemetry signal is very weakand of wide bandwidth. Thus, the traditional not
h �ltering fails to work e�
iently. Inimage pro
essing, the median �lter (MF) is widely used to suppress impulsive noises su
has �salt and pepper� noise in a 
orrupted image in Fig. 5.1, while preserving the �nedetails of the image by smoothing relevant signals [35℄. Similarly, re
ent 
ommuni
ationsystems based on dire
t-sequen
e spread spe
trum pro�t from the median �lters to reje
tnon-stationary narrowband interferen
es. Utilizing median �lters for interferen
e suppres-sion is motivated by the fa
t that in the transform domain narrowband interfering signalsexhibit large and impulsive 
omplements 
ompared to the data signal [93℄. On this a
-
ount, the problem dis
ussed in this thesis is similar to that exposed in image pro
essingand thus the idea of median �ltering will be investigated in this 
hapter [97℄.5.2 Appli
ation of transform domain median �lteringLinear �lter have been widely used in signal and image pro
essing. However, linear �ltersare often ine�
ient in the presen
e of non-additive or signal dependent noise, in systemsexposing non-linearities and non-Gaussian statisti
s [8℄. The de�
ien
ies 
an be over
omesomehow by utilizing various types of non-linear �lters. Median �lter (MF), a non-linear�lter proposed by Tukey (1977) [13℄ is deployed in several areas of digital signal pro
essing.The major appli
ation �eld of median �ltering is to enhan
e and de-noise the 
orruptedimage information. The MF has the ability to remove narrowband and impulsive noisefrom 
orrupted pixels, whereas the image details are retained. Along with the superiorperforman
e of MF over linear smoothing approa
hes, MFs might result in additionalsignal distortions, espe
ially if the applied �lter length is large. Moreover, impulse likeimage information 
an be removed as well [35, 104℄. In past de
ades, the MFs have beenextended and improved in terms of 
apability and e�
ien
y. Max/median, multistagemedian, weighted median and median �lters with 
ontinuously adjustable �lter lengthhave been developed [104, 76℄. Additionally, in physiologi
al monitoring e.g. heart rateand blood pressure monitoring, the appli
ation of a hybrid MF is re
ommended by [88℄
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e avoidan
e te
hniques via transform domain filtering72to �lter out the measurement artifa
ts. The proposed method utilizes both temporal andspatial diversities (Fig. 5.2) to align the artifa
ts. A

ording to [88℄ the spatial median�lter requires at least three-re
eiver stru
ture and is able to suppress artifa
ts if themeasurements of one re
eiver is 
orrupted. However the proposed temporal-spatial hybrids
heme in [88℄ works with two-re
eiver stru
ture, but is 
apable to remove spe
ial typesof artifa
ts present in more than one re
eiver.
y1(t)

y2(t)

y3(t)

(a) Temporal median filter (b) Spatial median filter

median fy(t¡ 2) y(t¡ 1) y(t)g medianfy3(t) y2(t) y1(t)g

Fig. 5.2: Di�erent realizations of median �lteringThe median �lter is a lo
al pro
essor, in whi
h the input sequen
e is slotted by the �lterlength of Nf and at ea
h position the output is the median value of the samples withinthe slot as
zi = median {yj|j = i− k, · · · , i+ k} .As mentioned, the non-linear median �ltering is of twofold e�e
ts: �rst the signal withsmoother transitions is retained, se
ond the signals elements narrower than k =

Nf−1

2
areremoved [102, 104℄.Con
erning the MPT problem des
ription, the 
on
ept of median �lter is realized inthe frequen
y domain and simpli�es suppression of the narrowband interferen
es. Thesuppression pro
edure as demonstrated in Fig. 5.3 in
ludes the following steps:

FFT
Transform 

domain

MF

IFFT

y(k) Y (fk) z(k)Z(fk) = medianfY (fk)gFig. 5.3: Con
ept diagram of transform domain median �ltering- The re
eived signal y(k) is transformed to the frequen
y domain using Fast FourierTransformation (FFT)



Chapter 5. Interferen
e avoidan
e te
hniques via transform domain filtering73- Fourier magnitude transform of the re
eived signal Y (fk) is pro
essed by MF- M(fk) is the MF output of an odd sized �ltering window with the length Nf- The output of median �lter is transformed to the time domain using Inverse FastFourier Transformation (IFFT)It should be noti
ed that overlap add prepro
essing is a part of suppression pro
edure.As long as the signals to be pro
essed exhibits a smooth frequen
y response, the above-mentioned method is an e�
ient interferen
e removal s
heme and does not indu
e addi-tional distortions due to the undesired smoothing of the signal of interest. However, mostof the signals, e.g. pseudo-noise (PN) random binary sequen
es, used in 
ommuni
ationsystems just as in MPT systems do not satisfy the smooth spe
tral 
ondition. On thisa

ount, some modi�
ation of MF approa
h is required to deal with the signals with jitter-ing or non-smooth spe
trum. A 
onditional median �lter (CMF) is proposed in [93, 102℄,where the signal 
omponents having values 
lose to their median is not 
hanged and onlyimpulsive 
omponents of large magnitude are removed. The pro
essing pro
edure is givenby
Z(fk) =

{
M(fk) if |Y (fk)−M(fk)| > C(fk)
Y (fk) otherwisewhere Y (fk) and Z(fk) are the �lter input and output signals respe
tively, M(fk) is themedian value and C(fk) is a variable threshold. Large impulses will be reje
ted if theirduration in transform domain is narrower than Nf−1

2
. The median �lter length Nf spe
i�esthe maximum bandwidth of the impulsive interferen
e en
ountered and 
an be removed.The minimum magnitude of the impulse 
an be 
ontrolled by the parameter C(fk). Someparti
ular features of this s
heme 
an be summarized as below [93, 102℄:- The frequen
y and bandwidth of the impulsive interferen
e is not required- No adaptation time after the transform is in
luded and thus it is suited for removingnon-stationary interferen
es- Removing multiple interferen
es is performed automati
ally- Real-time realizations of this te
hnique are feasibleIt is of great importan
e to spe
ify C(fk) properly to avoid possible distortions resulted bythe undesired signal smoothing. Sin
e C(fk) has to be set individually at ea
h frequen
y,it is 
hallenging to de�ne the threshold 
ondition. In other words, the threshold has to beadjusted with respe
t to the signal strength. On this a

ount, the normalized 
onditionalmedian �lter (NCMF) is proposed, where C(fk) is substituted by a 
onstant thresholdvalue C in the following equation:

Z(fk) =

{

M(fk) if |Y (fk)−M(fk)|
M(fk)

> C

Y (fk) otherwiseThe self-adaptive thresholding provided here is based on the examinations of probabilitydistribution fun
tion (PDF) of the magnitude of the Fourier transform of the signal of
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Telemetry data sampleFig. 5.4: Illustration of Fourier magnitude transform distribution in telemetry datainterest. A method of threshold establishment 
an be obtained if ea
h sample of thesignal spe
trum is respe
tively 
ompared and normalized with the expe
ted value of thesignal spe
trum. In the 
ontext of NCMF, the expe
ted value is repla
ed by the medianvalue. In the MPT system a PN sequen
e is modulated to form the telemetry signal. Asshown in Fig. 5.4 the PDF of Fourier magnitude spe
trum of the telemetry signal isapproximately Rayleigh. The mean value of Rayleigh distributed signals is roughly 1.5times of the median value re�e
ted in the NCMF equation [93℄. The above-mentionedthresholding 
on
ept is drained by repla
ing the expe
ted value with the median valueand for the threshold value the 1.5 fa
tor is 
onsidered.
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e avoidan
e te
hniques via transform domain filtering75For testing the appli
ability of NCMF in removing pump interferen
e a s
enario is 
on-sidered, where a sample data of BCPM modulated telemetry signal of 1000 bits, 
arrierfrequen
y of fc = 10 Hz and data rate of R = 5 bit/s is transmitted. The pump signalpower is 10 dB higher than that of the telemetry signal. The parameter setup of median�lter is Nf = 25 sample and FFT length of 25 s. The frequen
y-domain presentation of there
eived and pro
essed signals in bandpass is displayed in Fig. 5.5. It is noti
eable thatthe signal at the frequen
y 
orrupted by the pump is smoothed without any requirementon a-prior knowledge. A pro
essing gain of SIR+ = 9.5 dB is a
hieved utilizing NCMFs
heme. Also the time-domain representation of the re
eived and median-�ltered signalsin Fig. 5.6 demonstrates the improvement of dete
tion performan
e in terms of BER.
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Fig. 5.6: Time-domain demonstration of NCMF ability in pump interferen
e reje
tionSome results on general residual error analysis of CMF and NCMF reported in [103℄indi
ate superior performan
e of these te
hniques 
omparing to that of the not
h �lterings
heme. In the 
ontext of MPT, the interferen
e reje
tion ability is examined in somerespe
ts. In the �rst step, the pro
essing gain a
hievable by NCMF at di�erent SIRs isdetermined. For the above-mentioned s
enario the SIR at the output of median �lterSIRout is plotted vs. the one at its input SIRin. The results in Fig. 5.7 submit that asSIRin de
reases, the SIR+ in
reases.The se
ond part of examinations, whi
h 
on
erns the impa
t of parameter setup on theperforman
e results, is twofold: �rst the window size of overlap add pre-pro
essing, se
ondthe smoothing length Nf . The evaluations with di�erent setups of window size and �lterlength is performed on a data set obtained from a borehole. The evaluation results in termsof BER and 
al
ulated SNR vs. window size as well as �lter length Nf are displayed inFig. 5.8 and Fig. 5.9.
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Fig. 5.7: Pro
essing gain (SIR+ = SIRout − SIRin) a
hieved by NCMF

5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Window size [s]

B
E

R

 

 
5 10 15 20 25 30 35

5

6

7

8

9

10

11

S
N

R
 [d

B
]

 

 

BER

SNR

Fig. 5.8: BER/SNR performan
e vs. window size applied in overlap add pre-pro
essing(better BER/SNR at larger window size)It is noti
eabe that appropriate parameter settings are of great importan
e and allow the
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Fig. 5.9: BER/SNR performan
e vs. median �lter length (better BER/SNR at smallerwindow size)algorithm to deliver best performan
e. Better performan
e is provided by a larger windowsize or FFT length, whi
h again indu
es a larger pro
essing delay. As mentioned beforethe �lter length 
omplies the bandwidth of interferen
e to be suppressed. In other words,the wider the interferen
e bandwidth is, the larger the �lter length will be. The inferiorperforman
e of NCMF with larger �lter lengths in Fig. 5.9 indi
ates the short
oming ofNCMF in 
an
elling wideband interferers.5.2.1 Simulation and experimental resultsIn this se
tion a more 
omprehensive performan
e study of NCMF is provided, whereboth simulative and �eld-test data from di�erent boreholes are analyzed.
NCMF Decoder

Bandpass

filter and

demodulationy(k) z(k) bits

Received  

signal

Processed

signalFig. 5.10: Re
eiver arrangement 
onsidered in the evaluations of NCMF



Chapter 5. Interferen
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e te
hniques via transform domain filtering78To get an assessment of the e�
ien
y of proposed s
heme in MPT appli
ations, the methodusing pump strobe sensors is also used in the investigations. Finally the evaluation resultsare 
ompared and dis
ussed. However the three-re
eiver stru
ture fa
ility in MPT systemalso o�ers deploying the spatial NCMF, but the performan
e of this s
heme is ratherpoor. Be
ause the spatial NCMF is unable to remove interfering signals, if two or allof the re
eived signals are a�e
ted. In this regard, a Single-Input Single-Output (SISO)system stru
ture given in Fig. 5.10 is 
onsidered in the evaluations.Similar to the previous 
hapters, an initial performan
e study is 
arried out in a simula-tion environment arranged a

ording to the MPT system model presented in Chapter 1.Extra
ted CIRs from a test borehole (see Appendix. B.1) are used in the simulations.The simulation setup is summarized in Table 5.1.Modulation type BCPMCarrier frequen
y fc = 40 [Hz℄Data rate R = 40 [bps℄Sampling rate fs = 1024 [Hz℄SNR range 0− 30 [dB℄Table 5.1: Simualtion parameter setup in the evaluation of NCMFFor di�erent media noise with the same SNR 100000 Monte-Carlo trials are performedin the simulations. The parameter setup for NCMF s
heme is given in Table 5.2 andapplies to all evaluations in this se
tion.Se
tioning and windowing method Overlap addWindow type HammingWindow size 25 [s℄FFT size 25 [s℄Window shift per
ent 40%Median �lter length (Nf) 25 [sample℄ or 1 [Hz℄Table 5.2: Parameter setup of NCMFIn the simulative part of studies, an interferen
e free s
enario is 
onsidered, where thetelemetry signal is a�e
ted expli
itly by the mud 
hannel and AWGN. The performan
eresults are provided in Fig. 5.11 as a fun
tion of BER vs. SNR and 
ompared withthe one, where no pro
essing is performed. It is seen that the resulting BER by NCMFapproa
hes the one without pro
essing. Similar result has been reported in [93℄ as well,where the data signal has been subje
t to a Rayleigh fading. In other words, the NCMFs
heme does not degrade the system performan
e in the presen
e of the mud 
hannel.In addition to the simulations, �eld-test data obtained from di�erent rigs are analyzedto examine the performan
e of the proposed algorithm experimentally and to have a
omparison with the performan
e of pro
essing utilizing pump strobe sensors.
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Fig. 5.11: BER vs. SNR results in absen
e of the pump interferen
eFirst, the e�
ien
y of NCMF in removing the pump interferen
e is 
ompared to that usingpump strobe sensors by means of spe
trogram presentation of the re
eived and pro
essed�eld-test sample data. Fig. 5.12 and Fig. 5.13 
on�rm the narrowband interferen
esuppression ability of NCMF promised by the theory. Furthermore, the spe
trogram ofpro
essed data in Fig. 5.13 and Fig. 5.14 demonstrates an even better e�
ien
y of theNCMF in 
omparison to the s
heme using pump strobe sensors.Similarly 60 �eld-test data sets are involved in the evaluations and the BER fre-quen
y/
ounts is used as the performan
e measure. The evaluation results illustratedin Fig. 5.15 show the ability of NCMF pro
essing approa
h in removing the pump inter-feren
e. However the BER performan
e (lower than 10−3) of the method based on pumpstrobe sensors is partly better than that of NCMF, but in total both s
hemes are of 
om-parable e�
ien
y, espe
ially for the BER around 10−2. This is due to the fa
t that, theNCMF is not able to avoid the interferen
e 
omponents with SIR ≈ 0. In other words, ifthe FFT magnitude value of the interferen
e 
omponent is 
omparable with that of thetelemetry data, it 
annot be re
ognized as the interferen
e and removed by the NCMF.This might result in erroneous data dete
tion.It must be noti
ed that a better performan
e utilizing NCMF 
an be a
hieved by overallparameter optimization with respe
t to all �eld-test data, e.g. pre
ise knowledge on themaximum bandwidth of pump interferen
e en
ountered in MPT systems. Be
ause of noneed on any kind of a-priori knowledge and 
ost-e�
ien
y, NCMF attains great attra
tionin MPT appli
ations. By deploying NCMF as a prepro
essing fun
tion to in
rease the SIR,not only the syn
hronization task but also the reliability of 
hannel estimation and signaldete
tion 
an be greatly improved.On this a

ount, it is also of great importan
e to investigate the e�e
t of NCMF on
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h are used for the syn
hronization and CIR extra
tion. A

ordingly, theimpa
t of the NCMF on the signal shape and the auto
orrelation property of FC isdemonstrated in Fig. 5.16. Sin
e the FFT magnitude of FC signal is of less os
illation,as expe
ted the NCMF does not indu
e notable distortions to the FC signal, whereasthe pump interferen
e is removed. Espe
ially the auto-
orrelation fun
tion, an importantfun
tion of syn
hronization and 
hannel estimation methods, is almost una�e
ted byNCMF. Sin
e syn
hronization is not the s
ope of this work, it is not further explored.Referring to the above-mentioned dis
ussion, a reliable prepro
essing s
heme for removingthe strong pump signal interferen
e is provided by NCMF. Sin
e the FC signal appliedfor the 
hannel extra
tion does not experien
e any additional distortions, more pre
iseCIR estimation 
an be delivered. The CIR extra
tion issue is dis
ussed in depth in thefollowing se
tion.
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Fig. 5.16: The impa
t of NCMF on the shape and the auto
orrelation 
hara
teristi
 ofFC signal
5.3 Hybrid s
hemesThe issues of this se
tion are motivated by the investigations of the previous 
hapters.The strong pump signal inherent in MPT systems is the major di�
ulty in a

urate
hannel estimation and telemetry data re
onstru
tion. By now, it is fo
used mainly onthe signal re
overy without distin
t investigation of the distortions 
ause. The appli
ationof NCMF provides the fa
ility to explore the interferen
e and 
hannel e�e
ts individually.
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ts, signal re
onstru
tion strategies 
an be developed mu
h more e�
ientlyand reasonably. This se
tion investigates deployment of hybrid s
hemes, namely NCMFin 
ombination with other s
hemes proposed in this thesis. In this regard, the following
ontributions are delivered in this se
tion:- Suggestion of s
hemes based on hybrid NCMF and 
lean algorithm to extra
t themud 
hannel impulse response and deliver some knowledge on 
hara
teristi
s of thetransmission medium.- Investigation of NCMF in 
ombination with adaptive diversity 
ombing s
hemes;where s
hemes based on a training sequen
e as well as semi-blind approa
hes are
ondu
ted.- Real-world evaluation and 
omparison of the proposed s
hemes using �eld-test dataobtained from di�erent boreholes.5.3.1 Mud CIR extra
t via 
ombined NCMF and CLEAN algo-rithmAs stated, the MPT 
hannel extra
tion in this work is performed to support the simu-lation experiments. So far, 
onventional 
hannel estimation methods alone are not suf-�
ient to ful�ll a

urate 
hannel extra
tion and deliver reliable information on behaviorof the transmission medium. Therefore, the deployment of additional signal pro
essing isreasonable to in
rease the reliability of 
hannel estimation s
hemes. In this regard, the
ombination of NCMF and 
lean algorithm seems to be a suitable 
onstru
tion. In gen-eral, the 
hannel extra
tion 
an be performed by applying a time- or frequen
y-domainte
hnique or a sliding 
orrelator [105℄.In this thesis, time-domain s
hemes are mainly used for the signal pro
essing and thus the
hannel extra
tion is also based on a time-domain s
heme. The CLEAN algorithm is awell-known time-domain s
heme for the 
hannel estimation, espe
ially in ultra-widebandsystems. Among the algorithms proposed for the 
hannel estimation, the CLEAN algo-rithm due to its simpli
ity and high-resolution 
apability is seen as a promising approa
h[101℄. The reason is that, the CLEAN algorithm dire
tly 
ompares the 
ross-
orrelationfun
tion (CCF) and auto-
orrelation fun
tion (ACF) of the re
eived and transmitted sig-nals to extra
t the CIR. As shown in Se
tion 5.2.1 the ACF of the FC signal is una�e
tedafter applying NCMF and thus is a reliable 
hara
teristi
 to derive the CIR.The CLEAN algorithm is basi
ally a de
onvolution method, where the CIR is providediteratively. The basi
 algorithm is proposed in [90℄ for the narrowband 
hannel assumptionand is further enhan
ed to be appli
able in wideband 
hannel 
hara
terization [91℄. Themajor feature of the CLEAN de
onvolution s
heme is that the estimate of CIR ĥ(τ) ismodeled as a dis
rete FIR �lter. To extra
t the CIR, the availability of a signal knownto the re
eiver, also known as the template is assumed. The ACF and CCF propertiesof the template a�e
t the performan
e of this s
heme. The syn
hronization 
hirps (FCs)imbedded in the MPT system serve as a template and 
an be deployed to extra
t theCIR.The CLEAN algorithm is des
ribed in many publi
ations [101, 19℄ and di�erent realizationof this approa
h are proposed. In the following, the pro
edure of CLEAN algorithm applied
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hniques via transform domain filtering84to the MPT system is demonstrated. If xFC(k) is the template signal and yFC(k) there
eived signal, ea
h iteration of the CLEAN algorithm to �nd the CIR involves thefollowing steps [101℄:1. A temporary 
hannel impulse ve
tor is de�nied by ck(τ) and initialized by zeros
c0(τ) = 0.2. The auto-
orrelation of the template and the 
ross-
orrelation of the re
eived signaland the template is 
a
ulated as follows:

RxFCxFC(τ) = E [xFC(k)xFC(k + τ)]

RyFCxFC(τ) = E [yFC(k)xFC(k + τ)]3. A temporary ve
tor dk(τ) is de�ned and initialized with the CCF as d0(τ) =
RyFCxFC(τ)4. The relative time delay τ̂k = argmax

τ

|RyFCxFC(τ)| and the normalized amplitude
α̂k = RyFCxFC(τ̂k) are 
al
ulated.5. The CIR is re
overed by ck(τ) = ck−1(τ) + α̂kδ(τ − τ̂k)6. The temporary CCF ve
tor is updated by dk(τ) = dk−1(τ)− α̂kRxFCxFC(τ − τ̂k).7. If the 
orrelation peak α̂k is below a set threshold value (e.g. −20 dB in this thesis)the algorithm stops and goes to step 8, otherwise it returns to step 4.8. The CIR is ĥ(τ) = ck(τ).As stated, the above steps are repeated till the signal energy des
end below a prede�nedthreshold. The threshold of the peak path strength spe
i�ed in many publi
ations is inthe range of 15 - 25 dB. It must be noted that an optimal threshold is 
hosen by takingthe energy 
apture ratio (ECR) and the relative error (RE) into a

ount. In the following,the de�nition of ECR and RE is given [65℄:

ECR =
‖ŷFC(k)‖2
‖yFC(k)‖2

RE =
‖ŷFC(k)− yFC(k)‖2

‖yFC(k)‖2 .In the MPT system, to extra
t the CIR, measurements of the boreholes 
onsidered, wherein 
ertain intervals of around 3.5 minutes a FC transmitted. The basi
 
hannel extra
tionpro
edure is demonstrated in Fig. 5.17. As seen, the pro
edure in
ludes three steps:�rst the pump distortions are removed utilizing NCMF, se
ond a 
oarse syn
hronizationis performed to �nd the re
eived template, and �nally the 
lean algorithm is appliedto extra
t the mud 
hannel, namely the 
hannel from the drill bit to the surfa
e. The
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Fig. 5.17: Blo
k diagram of the 
hannel extra
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Fig. 5.18: Sample CIR extra
ted from �eld-test measurementsthreshold amounts 20 dB and is determined using ECR and RE. A sample extra
ted CIRis shown in Fig. 5.18, with ECR = 0.857 and RE = 0.175.Moreover, the extra
ted CIRs for all FCs of the measurements provides some information,e.g. how mud 
hannel 
hanges over time. An example of extra
ted CIRs is illustrated inFig. 5.19. As seen, the variation of the sample 
hannel over the time is marginal andthus the assumption of time-invariant 
hannel is eligible.In the �nal step of the examinations, the 
hannel frequen
y response (CFR) of di�erentmeasurements is explored. Based on our observations exemplary shown in Fig. 5.20, it
an be 
on
luded that the mud 
hannel has a similar fun
tion of a low pass �lter and at-tenuates higher frequen
y. Also, a frequen
y sele
tive behavior of the 
hannel is expe
ted.As observed, the maximum delay τmax or the meaningful duration of the 
hannel mightbe up to 1 s. If this ex
eeds the symbol duration of transmitted data, due to the 
hannel
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ĥ
(τ

)

τ [s]

 

 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−1

0

1

ĥ
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Fig. 5.19: Observation of 
hannel behavior over the timefrequen
y sele
tivity ISI distortions are 
aused. Therefore, for high data rates distortions
aused by the mud 
hannel are of the same importan
e as those 
aused by pump inter-feren
e. In this 
ase, the 
hannel equalization is ne
essary for error free dete
tion of thetelemetry data.Moreover, an estimate of some important parameters to des
ribe the mud 
hannel 
har-a
teristi
s e.g. the mean delay τ̄ and the root mean square (rms) delay spread τrms 
anbe obtained 1. An estimate of τ̄ and τrms for sample borehole measurements are given inTable 5.3.1 τ̄ =

kτmax∑

k=1

τk|ĥ(τk)|
2

kτmax∑

k=1

|ĥ(τk)|
2

, and τrms =

kτmax∑

k=1

(τk−τ̄)2|ĥ(τk)|
2

kτmax∑

k=1

|ĥ(τk)|
2

[15℄.
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ial 0.1584 0.1347Table 5.3: Estimated τ̄ and τrms for sample boreholes
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Frequency [Hz]Fig. 5.20: Sample CFRs extra
ted from �eld-test measurementsBased on the investigations within the realms of the possibility, it 
an be stated, that themud 
hannel is approximately time-invariant and exhibits frequen
y sele
tive property. Itmust be noti
ed that providing a 
hannel model for mud transmission medium requiresspe
ial �eld-test measurements and goes beyond the s
ope of this thesis.5.3.2 Combined NCMF and adaptive diversity 
ombinings
hemesThis se
tion deals with hybrid s
hemes aiming e�
ient signal re
onstru
tion. Signal dis-tortions 
aused by the interferen
e and the 
hannel in MPT systems are 
ompensatedindividually. In other words, a two-step sequential pro
edure is followed; �rst the signaldistortions 
aused by the pump interferen
e are suppressed utilizing NCMF, se
ond thedistortions 
aused by the mud 
hannel and/or by any other sour
e are equalized. By thismeans, however, the automati
 ta
king of interferen
e avoidan
e se
tion is ensured. Butfor the equalization se
tion the ne
essity as well as the strategy of tra
king has to be inves-tigated. In fa
t, development of a robust and 
ost-e�
ient re
eiver is pursued a

ordingto the MPT requirements in pra
ti
al appli
ations.Some fusion methods for hybrid signal re
onstru
tion s
hemes using NCMF and adaptivediversity 
ombing are suggested. These te
hniques rely on the multi
hannel CMA semi-blind and the TB joint multi
hannel algorithms of Chapter 3 and Chapter 4. In thefollowing, these methods are des
ribed and the advantage and drawba
k of ea
h s
hemeis dis
ussed.
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hannel blind s
hemesThe 
ombination of NCMF and multi
hannel semi-blind s
hemes has the potential ofbeing a desired fusion method for MPT appli
ations in terms of automati
 tra
king duringthe regular operation. Su
h re
eiver ar
hite
ture provides the fa
ility of 
ompensation ofboth interferen
e and 
hannel e�e
ts without requiring any a-priori information. A blo
kdiagram of the re
eiver ar
hite
ture based on hybrid NCMF and a multi
hannel semi-blinds
heme is illustrated in Fig. 5.21. Be
ause no VO and/or referen
e signal is required bythe proposed hybrid s
heme, it is of great attra
tion in real-time MPT appli
ations.
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Fig. 5.21: Blo
k diagram of hybrid NCMF and multi
hannel semi-blind s
hemeAs shown in Chapter 3, the multi
hannel (MC) blind and semi-blind signal re
overys
hemes are not e�
ient for both 
hannel equalization and/or interferen
e 
an
elation.After removing the interferen
e, the multi
hannel s
heme 
an be utilized to deal withthe 
hannel distortions. Provided the 
hannels are independent from one another, blindmulti
hannel equalization is almost feasible with robust and a

urate estimation. Themulti
hannel stru
ture, also known as SIMO system, is provided whether by the spa
ediversity e.g. two-re
eiver stru
ture of the MPT system or/and by the time diversitye.g. oversampling. A

ording to [58℄, global 
onvergen
e of HOS-based te
hniques (e.g.CMA) is proved in MC systems. Also, SOS of the re
eived signals is su�
ient for blindequalization having MC stru
ture [58℄. As is generally known, two estimation poli
ies
an be utilized: estimate the 
hannels and apply either a nonlinear equalizer (e.g. Viterbialgorithm) or linear FIR equalizer e.g. Zero-For
ing (ZF)/ Minimum Mean Square Error(MMSE) to re
over the transmitted signal, or bypass the 
hannel estimation step andestimate the equalizer, in other words, the signal dire
tly [22℄. Due to the high robustnessand advantages for low 
omplexity online demodulation, the dire
t equalizer estimationis the most preferred s
heme.In general, three kinds of MC equalizer estimations methods are available [58℄; Linearpredi
tion (LP) method, signal subspa
e (SS) method and mutually referen
ed equalizer(MRE) method. The latter is of good estimation a

ura
y, moderate 
omputational, 
losedform solution, globally 
onvergent, adaptive implementable and robust to SNR and ill-de�ned equalizer length. Therefore it is preferred at most in pra
ti
e.MC MRE s
heme is investigated 
omprehensively in [21, 22℄ and 
ompared with the MCCMA s
heme. However, the performan
e results of MC MRE approa
h is 
omparable to
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hniques via transform domain filtering89that of MC CMA, even partly better in terms of 
onvergen
e rate, but is less reliable dueto the stri
t assumption of independent 
hannels. Sin
e MC CMA is also supported bysignal property restoration, it is seen as a more reliable approa
h in MPT appli
ations.To explore the signal 
orrelation in the MPT 
hannel, the 
orrelation between the re
eivedsignals 
an be observed. Large re
eiver separation leads to spatially un
orrelated 
hannels.As mentioned before, the re
eiver spa
ing in MPT system is restri
ted and results in higher
orrelation. The 
orrelation 
oe�
ients obtained from an example of �eld-test data inTable 5.4 
on�rm this 
laim.
fc [Hz℄, R [bps℄ 
orrelation 
oe�
ient
9, 3 0.7455
10, 5 0.8135
15, 5 0.7831
20, 20 0.5188
30, 10 0.6055
40, 40 0.3968Table 5.4: Correlation 
oe�
ients in a representative �eld-test measurementTherefore, the MC MRE s
heme solely relying on the assumption of un
orrelated 
hannelsis less e�
ient. Moreover, usually the system is redu
ed to a SISO system and as expe
ted,the MC CMA also su�ers from the existen
e of lo
al minima and poor 
onvergen
e asshown in Chapter 3.The main drawba
k of the proposed fusion method lies on the multi
hannel CMA semi-blind equalization se
tion. As mentioned, instability, divergen
e possibility and parameter-reliant performan
e of semi-blind CMA in
rease the BER of telemetry system and makethe algorithm ine�
ient in pra
ti
e.5.3.2.2 Hybrid NCMF and TB multi
hannel diversity 
ombining adaptives
hemesA more robust and reliable hybrid estimation approa
h is o�ered by realizing the equal-ization se
tion based on a training sequen
e s
heme. In this regard, two 
onse
utive ar-
hite
tures are 
on
eivablle, dis
ussed within this se
tion.Pre-NCMF and multi
hannel adaptive diversity 
ombining post-equalizationA

ording to the �rst proposal for the MPT re
eiver stru
ture, interferen
e avoidan
eby deploying NCMF on ea
h re
eived signal is 
arried out �rst. Afterwards the 
hannele�e
ts are equalized by exploiting the two-re
eiver stru
ture and training sequen
e fa
ilityin the MPT system. Note that automati
 ta
king is provided solely in the interferen
e
an
ellation part. The equalization se
tion is of adaptive stru
ture and 
an be tra
kedeither by a de
ision feedba
k approa
h or using periodi
ally transmitted signals (e.g.syn
hronization 
hirps). The blo
k diagram of su
h re
eiver ar
hite
ture is illustrated inFig. 5.22.
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Fig. 5.22: Blo
k diagram of hybrid pre-NCMF and multi
hannel post-equalizationThe 
on
ept of diversity and multi
hannel pro
essing is quite often used together. Ina multi
hannel system, the situation, where multiple repli
as of the same signals areobserved through multiple independent 
hannels, is des
ribed as diversity. Improved signalre
onstru
tion quality (e.g. lower BER) and in
reased 
hannel 
apa
ity or data rate areindi
ated as diversity gain [58℄.As generally known, there are di�erent pro
essing strategies for multi
hannel systems asbelow [58℄:- Sele
tive 
ombining, where the equalization is based on the best 
hannel. Despitesimpli
ity, this approa
h en
ounters with the problem of best 
hannel de�nition inthe 
onvolutive systems.- Separate pro
essing and post-
ombining, where the equalization is performed sep-arately for ea
h 
hannel and then fed into an equal gain 
ombiner or maximumratio 
ombiner. This pro
edure maximizes SNR of desired signal in the presen
e ofAWGN.- Joint pro
essing, where the equalization is performed by joint pro
essing of there
eived signals to re
onstru
t the desired signal. This approa
h provides the bestperforman
e gain.In MRC, ea
h bran
h is s
aled prior to the 
ombining. In dire
t equalizer estimation,bran
h gains are obtained in a di�erent way than that in 
onventional MRC, where knowl-edge on the 
hannel and the SNR is required. As shown in Fig. 5.23, in the proposedMRC s
heme the pro
essed bran
hes are s
aled by the 
orresponding bran
h gains and
ombined thereafter. The output of su
h separate pro
essing and post 
ombining basedon MRC is given by [66℄
zMRC(k) =

D∑

d=1

λdzd(k) ,where λd represents the bran
h gain of the d-th bran
h and D is the number of diversitybra
hes. There are some alternatives to provide an estimate of bran
h gains. In the �rstapproa
h 
alled here MRC (Type I), the bran
h gains are estimated during the training
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z2(k)

 2Fig. 5.23: Separate pro
essing and post-
ombining based on MRCphase by 
al
ulating the 
orrelation 
oe�
ient of the pro
essed signals and the trainingsequen
e at ea
h bran
h as below:
λd =

ρ2d
D∑

d=1

ρ2d

,where d ∈ {1, 2} and
ρd =

K∑

k=1

(zd(k)− z̄d) (x2(k)− x̄2)

√
K∑

k=1

(zd(k)− z̄d)
2

√
K∑

k=1

(x2(k)− x̄2)
2stands for the 
orrelation 
oe�
ient of the 
orresponding bran
h, whereas zd(k) and x2(k)are the equalized signal of the d-th bran
h and the training sequen
e respe
tively. z̄d and x̄2are the mean values of K samples of the equalized and training signals. Another approa
hproposed in [66, 27℄ and here referred to as MRC (Type II), utilizes the normalizedvarian
e of the pro
essed/equalized signal samples to obtain the bran
h gains given by

λd =

K−1∑

k=1

(zd(k)− z̄d)
2

Kmax (zd(k))
.Usually the bran
h gains are normalized prior to the 
ombining as follows:

λd =
λd

λmax

,where λmax is the largest bran
h gain. In the following se
tion, a 
omparison of proposedMRC s
hemes are provided by analyzing a set of �eld-test data.It should be noti
ed that due to the relative higher 
orrelation observed in telemetry 
han-nels, both separate and joint pro
essing s
hemes might deliver 
omparable performan
e[36℄.The main a
hievement is that both re
eiver se
tions operate without any knowledge aboutthe interferen
e and thus tra
king task regarding the interferen
e avoidan
e is ful�lled.
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Schematic of sample field-test recording frames

: FC

: DataFig. 5.24: The stru
ture of �led-test data re
ord to 
larify the pro
edure of tra
kingexaminationTo explore if the proposed re
eiver arrangement requires tra
king and how often thishas to be 
arried out, the alternative referen
e signals, FCs, are utilized to adapt theequalization se
tion. In the �rst part of evaluations, the equalizer adjustment is performedfor all data of ea
h �eld-test re
ord, having the stru
tute as in Fig. 5.24. In the se
ondpart of examinations, the equalizer is adjusted only on
e and is used for all data of the
orresponding �eld-test re
ord.
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Fig. 5.25: Field-test data based performan
e evaluation to explore the tra
king ne
essityin pre-NCMF and multi
hannel adaptive diversity 
ombining re
eiver-systemThe performan
e loss observed in the re
eiver system without regular parameter re-adaptation in 
omparison to that with regular tra
king is marginal. Therefore the proposedfusion stru
ture is bene�
ial in terms of tra
king. In other words, a frequent tra
king ofequalizer se
tion is not required and it would be su�
ient to renew the estimation o

a-sionally.



Chapter 5. Interferen
e avoidan
e te
hniques via transform domain filtering93Multi
hannel optimal 
ombining and post-NCMF The su

ess of joint inter-feren
e 
an
elation and equalization s
hemes is demonstrated in Chapter 4 and termed asoptimal 
ombining. The MPT re
eiver arrangement at the surfa
e of the drilling rig resultsin diversity in interferen
e 
hannels and a

ordingly delivers superior performan
e over
onventional diversity 
ombining s
hemes su
h as MRC with 
o-
hannels interferen
es.The e�
ien
y of multi
hannel optimal 
ombining with 
o-
hannel interferen
es motivatesanother alternative 
on
ept for the MPT re
eiver design. A

ordingly, both interferen
eand 
hannel e�e
ts are removed jointly by exploiting optimal 
ombining, where the re-
eived signals are pro
essed in an adaptive manner so that telemetry signal 
omponents
orrelated with the temporal referen
e are enhan
ed and un
orrelated 
omponents areeliminated. Afterwards 
omplementary interferen
e reje
tion is performed by NCMF to
ombat with residual 
omponents of the pump interferen
e. The blo
k diagram of su
hre
eiver ar
hite
ture is illustrated in Fig. 5.26.
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Fig. 5.26: Blo
k diagram of hybrid multi
hannel adaptive diversity 
ombining andpost-NCMFSimilarly, sin
e no knowledge about the interferen
e is required by the optimal 
ombiningmethod, the tra
king task 
an be a

omplished during the regular operation. As statedin Chapter 4, both interferen
e and 
hannel distortions are treated jointly by the op-timal 
ombiner. The telemetry 
hannels are approximately time-invariant and thus theequalization of these distortions requires no tra
king. However, due to the unpredi
table
hanges of pump signal, the interferen
e 
hara
teristi
s are subje
t to some 
hanges overthe time. Therefore, a need for the tra
king is expe
ted.For tra
king examination, the optimal 
ombiner adjustment is performed using FC signalsin front of ea
h data. Similarly, �rst the optimal 
ombiner is adjusted before ea
h datatransmission in �eld-test re
ords. In other words, the data dete
tion is supported byregular tra
king. In the se
ond step of evaluations, the optimal 
ombiner is estimatedonly on
e and is not updated for the rest of �eld-test data.From the evaluation results in Fig. 5.27, it 
an be seen that, the dete
tion performan
ewith regular parameter re-adjustment is partly better than that without tra
king. Con-sequently, the tra
king is seen to be of mu
h more importan
e in the proposed fusion
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Fig. 5.27: Field-test data based performan
e evaluation to explore the tra
king ne
essityin multi
hannel optimal 
ombining and post-NCMF re
eiver-systemmethod. In other words, it would be bene�
ial in terms of BER performan
e to renewthe estimation of optimal 
ombiner in 
ertain periods of time. Thereon, there are twopossibilities to a

omplish the tra
king task:- Initial adjustment of adaptive optimal 
ombiner using a training sequen
e of datatype and tra
king by swit
hing to the de
ision feedba
k mode during the regularoperation.- Initial estimation of adaptive optimal 
ombiner utilizing an alternative trainingsequen
e su
h as syn
hronization FC signals and updating the estimation usingperiodi
ally transmitted syn
hronization signals.5.4 Overall performan
e evaluationThe performan
e evaluations of this se
tion are mainly based on �eld-test data. Similarly,the BER frequen
y/
ounts is 
onsidered as the performan
e measure.Firstly, to demonstrate that the fusion of NCMF and multi
hannel CMA semi-blinds
hemes is of less e�
ien
y in terms of BER, 40 �eld-test data sets are pro
essed to
ompare NCMF and hybrid NCMF and multi
hannel CMA semi-blind s
heme. As seenin Fig. 5.28 the performan
e improvement of proposed hybrid s
heme is not 
onsiderableand 
on�rms the statements in Subse
tion 5.3.2.1.In the rest of evaluations, 60 �eld-test data sets are 
onsidered. The proposed methodsin Subse
tion 5.3.2.2 are evaluated in some respe
ts. First, all proposed s
hemes are 
om-
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Fig. 5.28: Field-test data based performan
e evaluation of hybrid NCMF andmulti
hannel CMA semi-blind re
eiver-arrangementpared 
on
erning their performan
e with the 
urrent estimation s
heme. Finally the moste�
ient re
eiver stru
ture is spe
i�ed and dis
ussed 
on
erning 
omplementary improve-ments.By now the best performan
e of MPT system is delivered by 
ombining the methodsbased on pump strobe sensors and two-re
eiver VO-based 
as
ade s
heme. As mentioned,in the �rst part of examinations, the re
eiver part with interferen
e 
an
ellation basedon pump strobe sensors is repla
ed by the NCMF and 
ompared with the original fusionstru
ture. The performan
e results illustrated in Fig. 5.29 demonstrate the 
omparableperforman
e of both fusion s
hemes. A

ordingly, the re
eiver part utilizing expensivepump strobe sensors 
an be su

essfully substituted by the e
onomi
 NCMF.Next step is to examine the algorithms based on hybrid pre-NCMF and multi
hanneladaptive diversity 
ombining post-equalization. First, the fusion of NCMF and separatepro
essing and post-
ombining s
hemes su
h as EGC and MRC proposed in Subse
tion5.3.2.2 are evaluated and 
ompared. The evaluation results in Fig. 5.30 show that thefusion of NCMF followed by MRC (Type II) outperform other hybrid alternatives.Se
ond, the separate pro
essing part of the proposed hybrid s
heme is repla
ed by thejoint pro
esser. The performan
e of the most e�
ient hybrid s
heme based on separatepro
essing namely 
ombining based on MRC (Type II) is 
ompared with the one based onjoint pro
essing. As stated, the telemetry 
hannels of MPT system are highly 
orrelatedand o�er marginal diversity. Therefore, the performan
e of hybrid s
heme based on MRCseparate pro
essing is partly better due to SNR maximization as seen in Fig. 5.31.Finally, the multi
hannel optimal 
ombining and post-NCMF s
heme is evaluated and
ompared with all previous hybrid s
hemes. From the evaluation results in Fig. 5.32, it
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Fig. 5.29: Field-test data based performan
e 
omparison of the 
urrent VO-based
as
ade MPT re
eiver with pump strobe sensors and NCMF
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Fig. 5.30: Field-test data based performan
e 
omparison of hybrid pre-NCMF andseparate pro
essing s
hemes
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Hybrid pre−NCMF and RLS equalization MRC (Type II)
Hybrid pre−NCMF and RLS joint equalization 

Fig. 5.31: Field-test data based performan
e 
omparison of hybrid pre-NCMF with bothMRC (type II) separate and joint pro
essingis seen that the multi
hannel optimal 
ombining and post-NCMF s
heme is of superiorperforman
e 
ompared to other hybrid s
hemes. However, the performan
e di�eren
e isnot remarkable.Consequently, among the proposed hybrid methods, the one with simple and e�
ienttra
king fa
ility is of pra
ti
al interest in MPT appli
ations. Re
alling the dis
ussion onthe e�
ien
y of the optimal 
ombining with alternative referen
e signal in Subse
tion5.3.2.2, the results of this s
heme are also valid in all hybrid stru
tures of this approa
h.Con
erning the investigations on the tra
king issue in this se
tion, it seems that, despitethe superior performan
e of multi
hannel optimal 
ombining and post-NCMF s
heme, thefusion of pre-NCMF and separate pro
essing based on MRC (Type II) mostly 
omplieswith the requirements on tra
king and thus is seen as a promising re
eiver stru
ture inMPT pra
ti
al appli
ations. Furthermore, �eld-test data observations have been shownthat the syn
hronization failed, provided no pump interferen
e suppression in advan
e.This implies the importan
e of pre-NCMF for further pro
essing and reliable dete
tion oftelemetry data.Another observation is that, unlike the 
urrent MPT re
eiver stru
ture all proposed re-
eiver stru
tures 
an be realized in baseband as illustrated in Fig. 5.33 and provide asimple and straightforward tra
king.



Chapter 5. Interferen
e avoidan
e te
hniques via transform domain filtering98

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

BER [%]

F
re

qu
en

cy
/C

ou
nt

s

 

 

Fusion of VO−based cascade and NCMF schemes
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Fig. 5.32: Field-test data based performan
e analysis of the most relevant hybrid s
hemes
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Fig. 5.33: Blo
k diagram of the baseband realization of the proposed hybridre
eiver-arrangements5.5 SummaryIn this 
hapter, the NCMF widely used to reje
t the nonstationary narrowband inter-feren
e in dire
t sequen
e (DS) 
ommuni
ation systems is applied for MPT appli
ationsand adjusted to meet the system requirements. The installation of expensive pump strobesensors is not needed by applying NCMF with 
omparable e�
ien
y. Therefore, NCMFinterferen
e suppression s
heme is not only of e
onomi
al interests but also provides thefa
ility to extra
t a

urate CIR of mud medium if 
ombined with the CLEAN algorithmand to obtain useful information on the behavior of mud 
hannels. This is also an en-
ouragement to derive a model for mud telemetry 
hannels by gathering large amountsof �eld-test measurements, though this goes beyond the s
ope of this work.Next to this, in
reasing the system reliability in terms of syn
hronization is seen as asigni�
ant 
ontribution of the NCMF s
heme. The syn
hronization e�
ien
y will further



Chapter 5. Interferen
e avoidan
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hniques via transform domain filtering99progress utilizing the median �ltering s
heme in both time- and frequen
y-domains. TheMF removal property of impulsive shaped signals 
an be used to determine the noise andany kind of wideband artifa
ts, whi
h interfere in the impulsive ACF of FC signal. Thepro
edure of the syn
hronization proposal as shown in Fig. 5.34 in
ludes three steps: �rstthe NCMF is applied in frequen
y domain mainly to remove the pump interferen
e, se
ondthe 
ross-
orrelation of the FC re
eived signal and the template is obtained, and �nally atime-domain MF is applied on the 
ross-
orrelation and the MF output is subtra
ted fromthe 
ross-
orrelation signal. In this manner the dete
tion performan
e of syn
hronization
hirps 
an be greatly in
reased.
Template

Received FC

signal CCFNCMF

MF

Correct chirp 

position

Artifact

Fig. 5.34: Syn
hronization pro
edure based on time- and frequen
y domain median �lteringFurthermore, the design, realization and �eld-test data evaluation of hybrid re
eiver stru
-tures in the MPT system are presented and the main resear
h goals formulated in Se
tion5.3 are a
hieved. In this 
ontext, two important performan
e 
riterions have been followedto allow a realisti
 deployment of the hybrid s
hemes in MPT systems. First, the designfusion s
heme is e�
ient and robust. Se
ond, reliable tra
king is a
hievable.It is shown that the fusion of NCMF and multi
hannel blind s
heme is not feasible in pra
-ti
al MPT appli
ations. An e�
ient re
eiver is introdu
ed, where NCMF and TB adaptives
hemes are 
ombined. This hybrid stru
tures in
rease not only the system performan
eand robustness but also fa
ilitate simple and straightforward tra
king. In addition, a real-world 
omparison of these hybrid s
hemes is 
ondu
ted to verify the superior performan
eof them. Based on this investigation, the most e�
ient hybrid stru
ture in terms of BERperforman
e and reliable tra
king is 
ommitted. A more 
omprehensive study on the needof tra
king is re
ommendable and 
an be a

omplished by re
ording long observations of�eld-test data.



Chapter 6Con
lusion and outlook
In this dissertation, the telemetry signal extra
tion problem in MPT is addressed ande�
ient solutions are provided for reliable data re
overy. This is a big 
hallenge 
onsider-ing the MPT system requirements and the multipath 
hannel of the mud 
ommuni
ationmedium. It has been shown that the 
urrent te
hnologies su�er from serious short
omingssu
h as installations expenses, 
ompli
ated and ine�
ient tra
king fa
ilities. Through-out this dissertation, the basi
 stru
ture and the MPT system 
on�guration have beenenhan
ed for pra
ti
al MPT appli
ation. In this 
ontext, the re
eiver arrangement andestimation 
on
epts are optimized under realisti
 system 
onditions to a
hieve best per-forman
e in terms of BER and reliable tra
king. Therefore, the statisti
al 
hara
teristi
sof underlying MPT system signals have been investigated in Chapter 2 to develop relevantalgorithms supporting parti
ularly the tra
king task. Based on these investigations, twosemi-blind estimation s
hemes have been proposed in Chapter 3, whi
h utilize telemetryand/or pump interferen
e properties and mainly deal with interferen
e suppression. Ithas been shown that these s
hemes are not e�
ient in pra
ti
e due to the requirement ona-priori knowledge and individual parameter adjustment in ea
h �eld-test measurement.To 
ope with the demands of real MPT appli
ations, the two-re
eiver stru
ture and thereferen
e signal fa
ility for telemetry data available in the MPT system ar
hite
ture areutilized. In this 
ontext, both 
as
ade and joint s
hemes based on two-re
eiver stru
tureshave been developed in Chapter 4. It has been shown that the 
as
ade stru
ture is de�
ientin both stru
ture and performan
e. The joint re
eiver stru
ture, also 
alled multi
han-nel or optimal diversity 
ombining s
heme, delivers best performan
e in 
an
elling theinterferen
e without requiring any information on the interferen
e signal. Furthermore,the spe
i�
 multi
hannel stru
ture of the joint s
heme provides 
onvenient and simpletra
king following a de
ision feedba
k approa
h. Real-world �eld-test measurements haveshown that the e�
ien
y and robustness of the system 
an be greatly improved 
omparedto 
urrent relevant te
hnology. Furthermore, it has been shown that in
reasing the num-ber of re
eivers thus by providing more diversities, leads to a 
onsiderable performan
eimprovement at the 
ost of some 
omputational e�ort.To further in
rease the BER performan
e and to provide automati
 tra
king espe
iallyin removing the pump interferen
e, the 
on
ept of hybrid re
eivers has been 
ondu
tedin Chapter 5. The proposed hybrid re
eiver-stru
tures aim to deal with the distortions
aused by both the interferen
e and the multipath 
hannel. In this 
ontext, the NCMFhas been proposed in Chapter 5, where the interferen
e reje
tion is performed without anyinformation on pump and/or telemetry signals and thus adjustable. In other words, the100
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lusion and outlook 101automati
 tra
king in terms of interferen
e reje
tion has been a
hieved. Real-world �eld-test measurements have shown that the appli
ation of NCMF is of several advantages; �rstthe investigation on the 
hara
teristi
s of the mud telemetry 
hannel has been enabled,se
ond the robustness and performan
e of MPT system has been enhan
ed with di�erentdevelopment of hybrid re
eivers. It has been demonstrated in Chapter 5 that the fusionof NCMF and TB adaptive multi
hannel signal pro
essing not only improves the BERperforman
e but also provides simple and reliable tra
king of system parameters, andlastly signi�
ant improvement of the system reliability in terms of syn
hronization hasbeen a
hieved by NCMF. The time- and frequen
y-domain median �ltering proposal o�ersfurther possibility of the syn
hronization task. Moreover, not only the pump interferen
ebut also any other interferen
e sour
es of narrowband 
hara
teristi
 
an be remedied byusing NCMF strategies.This dissertation has 
ontributed to the �eld of re
eiver design based on hybrid s
hemesunder the aspe
t of robustness and e�
ien
y in di�
ult MPT appli
ations. The poten-tial of proposed fusion stru
tures has been 
on�rmed by the real-world �eld-test dataevaluations and a
knowledged as the new te
hnology of data re
overy in MPT systems.Furthermore, it has been shown that the 
urrent 
ommuni
ation proto
ol does not fullysatisfy the requirement of reliable and robust data transmission in the MPT system. Thus,the transmission proto
ol is to be optimized referring to proposed re
eiver stru
tures inthis dissertation. Sin
e there is no need for the valve-o� period and the long time trainingsequen
e, the startup sequen
e is to be spe
i�ed e�
iently. Moreover, mu
h more systemrobustness and reliability 
an be o�ered by periodi
ally transmitting short time trainingsequen
es or proper syn
hronization 
hirps, at the 
ost of in
reased redundan
y.From a resear
h viewpoint, a 
ouple of open issues remain, whi
h are the subje
t of futureinvestigations in MPT systems. This in
ludes a 
omprehensive study on possibility ofin
reasing the number of re
eivers and their e�
ient pla
ement, so that su�
ient diversityis provided to improve the system performan
e. In addition, based on a large number ofspe
ial �eld-test measurements, a 
hannel model 
an be derived to des
ribe the behaviorof the mud transmission medium. Su
h kind of model provides simpli
ity and qui
kness inunderstanding e�e
ts en
ountered in the MPT system and e�
ient algorithm developmentbased on simulative data and dire
t appli
ation on real data. Finally, the feasibility ofthe passive vibro-a
ousti
al �lters in the outlet of the pump de
oupling the MPT systemfrom the pump interferen
e might be subje
t to future resear
h.
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Appendix BSimulation 
hannels
The simulative studies of this work are 
arried out with measured 
hannel impulse re-sponses (CIR) attained from both test and 
ommer
ial rigs. In the following, extra
tedCIRs in di�erent rigs and re
eiver stru
tures are illustrated.B.1 Simulation 
hannel AThe simulation 
hannels are provided from a test borehole with two-re
eiver stru
ture.The CIR is obtained by the layered median �ltering and 
lean algorithm s
heme [101, 65℄.The extra
t CIRs are illustrated in Fig. B.1.
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Fig. B.1: CIRs of a test rig with two-re
eiver stru
ture: (a) Pump 
hannels, and (b)Telemetry 
hannels 104



Appendix B. Simulation 
hannels 105B.2 Simulation 
hannel BThe simulation 
hannels are provided from a 
ommer
ial borehole. The re
eiver stru
tureand the estimation method is the same as in B.1. The obtained CIRs are shown in Fig.B.2.
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Fig. B.2: CIRs of a 
ommer
ial rig with two-re
eiver stru
ture: (a) Pump 
hannels, and(b) Telemetry 
hannels



Appendix B. Simulation 
hannels 106B.3 Simulation 
hannel CThe simulation 
hannels are provided from a 
ommer
ial borehole with three-re
eiverstru
ture. The 
orresponding CIRs are illustrated in Fig. B.3.
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