
 

 

 

Investigations on  
the Application of Complex Cell Models 

in the Simulation of Bioprocesses 
 

 

Von der Naturwissenschaftlichen Fakultät 

der Gottfried Wilhelm Leibniz Universität Hannover 

 

zur Erlangung des Grades 

 

Doktorin der Naturwissenschaften 

Dr. rer. nat. 

 

genehmigte Dissertation 

von 

M. Sc. Jin Meng 

geboren am 22.04.1979 in Tianjin, China 

 

2012  



 

 

 

 

 

 

 

 

 

Referent:   Prof. Dr.-Ing. Karl-Heinz Bellgardt  

Korreferent: Prof. Dr. rer. nat. Thomas Scheper 

Tag der Promotion: 20. 03. 2012 

 

  



 

 

 
 
 
 
 
 
 
Erklärung 
 

Hierdurch erkläre ich, dass die vorliegende Dissertation selbstständig 

verfasst und alle benutzten Hilfsmittel sowie evtl. zur Hilfeleistung 

herangezogene Institutionen vollständig angegeben wurden. 

Die Dissertation wurde nicht schon als Diplom- oder ähnliche 

Prüfungsarbeit verwendet. 

 

Hannover, März 2012 

 

Jin Meng 

  



Acknowledgments                                                                                                                   i 

 

 

Acknowledgments 

I would like to express my warmest gratitude to all of my colleagues and the people 

who helped me throughout my PhD study. Special thanks to: 

My supervisor, Prof. Dr. Karl-Heinz Bellgardt, who kindly provided me the 

opportunity to make this dissertation possible, and more importantly introduced me into 

this “metabolic engineering” field that is filled with challenges and excitement. I thank 

him for his constant guidance, encouragement, trust and patience all these years. He has 

been an incredible mentor and friend to me. Without his constant help and support, I 

cannot imagine I could have finished my research for this dissertation.  

I am grateful to Prof. Dr. Thomas Scheper for his support on my research as well as 

being my co-referee. 

I would like to thank Prof. Dr. Jürgen Alves for kindly accept my invitation to be my 

third examiner. 

I would also like to give my appreciation to Dr. Frank Stahl for the inspiration and 

support of my work. 

I would like to thank Dr. Ivo Havlik, Dr. Michael Dors and Martina Weiß for 

technique assistance and helping me to solve computer problems. 

I would like to thank all the colleagues at TCI, Angelika Behnsen, Cornelia Alic, Dr. 

Johanna G. Walter, Dr. Öznur Kökpinar, Dr. Patrick Lindner, Dr. Ran Chen, Dr. 

Yanhong Li, Yangxi Zhao, Dr. Friederike Sander, Patrick Jonczyk, Anna Glyk, etc., for 

providing a warm and comfortable working atmosphere. 

I appreciate all the help I received from TCI and Leibniz Hanover University which 

are too numerous to mention here. 

Finally, my heartfelt thank to my parents and my husband for their endless love, 

encouragement and support. This work could not be done without them. 



Abstract                                                                                                                                   ii 

 

 

Abstract 

Advances in metabolic engineering in recent years have provided thorough 
information of cellular metabolism that enables mathematical modeling and in silico 
simulation of metabolic networks. Among various analytical methods, Elementary 
Pathway Analysis is one of the efficient tools for supporting simulation and 
optimization of bioprocesses. This thesis is focused on exploring the possibility of using 
the metabolic pathway analysis in simulation of bioprocesses and characterization of 
metabolic networks. A series of case studies is performed on metabolic models of 
Saccharomyces cerevisiea. 

Firstly, a metabolic model of Saccharomyces cerevisiea is established based on 
available data from literature and inspected with the help of metabolic flux analysis.  

Secondly, a new metabolic pathway analysis based method is proposed to estimate 
and predict the flux coefficients of elementary flux modes for a metabolic model. The 
method determines an optimal combination of elementary pathways by maximizing the 
biomass production. This results in a predictive metabolic model that can be used to 
simulate various bioprocesses. The estimated reaction rates using the new method show 
good agreements with the experimental data. The method is also used to analyze the 
metabolic flux distribution on different pathways and its changing trend under varying 
growth condition. The simulation results provide meaningful information about the 
metabolic characteristics of the organism and helpful guidance for the design of 
bioprocess systems.  

Finally, visualization software of metabolic networks and pathways is developed, 
which intuitively demonstrates their structure and composition, and facilitates the 
comparison the elementary pathways under different circumstances. 

In conclusion, the presented method and software provide efficient approaches to 
analyze, simulate and visualize the metabolic reaction systems. The simulation 
framework established in this study could also provide beneficial information for 
designing future experiments or industrial productions to accelerate the development 
process. 

 

Keywords: metabolic model, flux coefficients of elementary flux modes, visualization 
of metabolic network 
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Zusammenfassung 

Fortschritte bei der Untersuchung des zellulären Stoffwechsels in den letzten Jahren 
haben umfangreiche Informationen über den Zellstoffwechsel erbracht, die eine 
mathematische Modellierung und in silico Simulation von metabolischen Netzwerken 
ermöglichen. Unter den verschiedenen Analysemethoden ist Elementary Pathway 
Analysis (Analyse elementare Stoffwechselwege) ein effizientes Werkzeug für die 
Simulation und Optimierung von Bioprozessen. Diese Arbeit beschäftigt sich mit 
Untersuchungen zur Simulation der chemischen Reaktionssysteme und 
Charakterisierung der metabolischen Netzwerke mittels Stoffwechselweganalyse. Eine 
Reihe von Fallstudien wird mit den Stoffwechselmodellen von Saccharomyces 
cerevisiea durchgeführt. 

Zunächst wird ein Stoffwechselmodell von Saccharomyces cerevisiea auf der 
Grundlage von vorhandenen Daten aus der Literatur aufgestellt und mit Hilfe der 
Stoffflussanalyse überprüft. 

Zweitens wird eine neue auf der Stoffwechselweganalyse basierende Methode 
vorgeschlagen, um die Flusskoeffizienten von elementaren Flussmoden für ein 
Stoffwechselmodell zu schätzen bzw. vorherzusagen. Diese Methode bestimmt eine 
optimale Kombination von elementaren Wegen durch Maximierung der Biomasse-
Produktion. Es ergibt ein vorhersagendes Stoffwechselmodell, das zur Simulation der 
verschiedenartigen Bioprozesse verwandt werden kann. Die mit der neuen Methode 
geschätzten Reaktionsgeschwindigkeiten zeigen gute Übereinstimmungen mit den 
experimentellen Daten. Die Methode wird auch eingesetzt, um die Stoffflussverteilung 
in verschiedenen Stoffwechselwegen und deren Variation unter verschiedenen 
Wachstumsbedingungen zu analysieren. Die Ergebnisse der Simulation stellen 
aussagekräftige Informationen über die metabolischen Eigenschaften des Organismus 
bereit und geben Hinweise auf die optimale Führung von Bioprozessen. 

Schließlich wird eine Visualisierungssoftware für metabolische Netzwerke und 
Stoffwechselwege entwickelt, die intuitiv die Struktur und Zusammensetzung des 
metabolischen Netzwerks zeigt und den Vergleich der elementaren Wege unter 
verschiedenen (Wachsturms-)Bedingungen erleichtert. 

Zusammenfassend bieten die vorgestellten Verfahren und die Software effiziente 
Ansätze, um die Stoffwechselwege zu analysieren, simulieren und visualisieren.  

Das in dieser Arbeit erstellte Simulations-Werkzeug könnte auch Hilfestellungen zur 
Planung zukünftiger Experimente oder industrieller Produktionen bieten, und dadurch 
den Entwicklungsprozess beschleunigen. 

 

Stichworte: Stoffwechselmodell, Flusskoeffizienten von elementaren Flussmoden, 
Visualisierungssoftware von metabolischen Netzwerken 
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E elementary mode matrix 
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reactions 
k number of elementary modes 
k stoichiometric coefficients 
K number of metabolites in GT matrix 
L number of reactions in GT matrix 
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P product 
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r vector of specific reaction rates 
RQ  respiratory quotient 
S  substrate 
S. cerevisiae Saccharomyces cerevisiae 
SGD Saccharomyces Genome Database 
t  time, h 
T matrix containing stoichiometric 

coefficients as specified by eq. (2.53) 
TCA Cycle Tricarboxylic Acid Cycle 

U number of metabolic products 
v  intrinsic reaction rate, C-mol•g-1

•h-1 
v vertice in a graph 
v  vector of intrinsic reaction rates 
V a set of vertices in a graph 
V volume, L 
X concentration of the biotic phase, C-mol•L-1 
Y  yield coefficient 
Y  matrix of yield coefficients 
µ  specific growth rate, h-1 
λ flux coefficients of elementary modes 
λ vector of λ 
Γ matrix containing the stoichiometric 

coefficients for the macromolecular pools 
 
 
 

Subscripts 

c calculated  
d determined 
i component index 
j  component index 
k number of rows in GT matrix 
L liquid phase 
m  measured 
met internal metabolites 
mac macromolecular pools 
max  maximum value 
n component 
O oxygen 
p  number of problematic rows in GT matrix 
P product 
S  substrate 
X cell mass, or variable of the biotic phase 
Z abiotic phase 
 
 
 

Superscripts 

I reactor inlet 
O reactor outlet 
R reservoir 
T transpose of a matrix or vector 
T transfer 
# pseudo-inverse of a matrix 
* flux for elementary mode 
’  any flux 
’’ any flux 
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1 Introduction 

Microorganisms and their cellular metabolism have since long been used for 

production of organic molecules, for example alcohols, antibiotics and amino acids. 

Since beginning of last century, researchers have been looking for ways to optimize the 

production of these bioprocesses. However, for more than half of a century, the product 

rate optimization was purely relying on ad hoc experiments and random mutation and 

selection. In 1980s, the development of genetic engineering techniques finally enabled 

researchers to directly modify the genome and thereby influence the expression of 

corresponding enzymes. These provide powerful tools to alter the metabolism of an 

organism [1–4]. Meantime, thanks for the recent advances in sequencing technologies, 

researchers can finally look at the metabolic network in a more complete picture and 

pinpoint almost every single metabolic reaction inside the cells [5–7]. But, to find the 

bottleneck steps in the swamp of metabolic reactions is not trivial. Bioinformatics tools 

are therefore needed to facilitate the reconstruction of cellular metabolism of different 

organisms based on information encoded in their genomes [7–11]. Quantitative analysis 

methods of pathway operations were developed to characterize cellular metabolism and 

explore the phenotypic capabilities of the organisms [12–15]. 

To define the cellular physiological state under a certain growth condition, the 

concept of metabolic flux is used in many quantitative analysis methods. A metabolic 

flux vector consists of the rates of all reactions in a metabolic network. To date most 

internal reaction rates can not be directly measured. Although the isotopic tracing 

technique such as using 13C-labeled substrates [16–19] has provided some hope of more 

precise reaction rate measurement, or at least of adding some extra constrains, 

metabolic fluxe estimation is still largely depending on mathematical modeling under 

some theoretically assumptions. Depending on the operation level, these analysis tools 

can be grouped into two families: reaction-level analysis and pathway-level analysis. At 

reaction level, all reactions are treated as independent units, and their reaction rates are 

directly determined using metabolic flux analysis (MFA) [19–21] or flux balance 

analysis (MBA) [22–25]. At pathway level, reactions are organized into biologically 

“meaningful” pathways, these so called Elementary Modes. These modes are used as 

the smallest units for the further analysis [26–28]. The latter family is usually called 

metabolic pathway analysis (MPA). It should be pointed out that even though the 
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differences between these two families are distinct, these analysis methods are 

developed from the same mathematical basis discussed in detail later in the text. 

Although the earliest MPA can be traced back to 1960s [29], it started to draw 

people’s attention only after the introduction of several elementary pathway extraction 

methods, namely extreme pathway enumeration [30–32] and elementary modes 

enumeration [27][33–35]. With these automatic pathway extraction methods, the 

invariant structures of the cellular metabolism can be identified using only the 

stoichiometric structure and thermodynamic constraints of reactions [36–38]. This type 

of analysis has been successfully applied to various organisms to investigate metabolic 

network structure, robustness, fragility, regulation, metabolic flux vector, and rational 

strain design [39–49]. 

In the study presented in this thesis, a new MPA-based metabolic flux vector 

estimation method is proposed, which simulates and predicts organism’s metabolic flux 

by finding the combination of elementary pathways that maximizes the biomass 

production. This is based on the hypothesis that, due to the evolutionary pressure, 

organism will always prioritize the biomass synthesis under various growth conditions. 

The proposed method results a predictive metabolic model which can be used to 

simulate a bioprocess under a given condition and predict the metabolic flux. This 

model is first validated on the simplified metabolic network of Saccharomyces 

cerevisiae while comparing with experimental data from different culture conditions. 

Then it is used to analyze the changes of metabolic flux distribution on different 

pathways under varying growth condition. At last, in-house graph visualization software 

was developed to present the elementary pathways in graphic views. 

This thesis is organized as follows: In Chapter 1 –– Introduction, a brief overview of 

this study is given. In Chapter 2 –– Metabolic Model, some background knowledge 

about metabolic modeling is first introduced, and followed by the description of models 

used in the study; finally, a new metabolic pathway analysis method is introduced and 

used to establish predictive metabolic models which are verified using experimental 

data. In Chapter 3 –– Visualization of Metabolic Pathways, an overview of common 

graph visualization method and software is first given; then a new pathway visualization 

software tool is presented; some preliminary results are also provided and compared 

with other software tools. 
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2 Metabolic Model 

2.1 Theoretical Background  

2.1.1 Cellular Metabolism 

2.1.1.1 Metabolism 

Metabolism is the collection of biochemical reactions that are behind the organism’s 

growth and reproduction. It allows the cells to maintain their structures, respond to their 

environment and reproduce itself. To some extent, metabolism equals to life, and is the 

fundamental difference between a living creature and an inanimate object, the thin line 

between living and death. Scientifically speaking, metabolism is the biochemical 

process involved in the conversion of matter and energy within cells of an organism 

[50]. Usually the transformation of energy in the organism is bidirectional. Thus the 

related metabolism can be categorized as catabolism and anabolism. Catabolic 

processes decompose complex molecules, such as carbohydrates, into simpler 

molecules and produce energy and precursor molecules, while anabolic processes 

synthesize complex biomolecules by consuming energy and precursor molecules.  

Despite the great number of the chemical reactions involved in organisms’ 

metabolism, it is easy to identify series of chemical reactions acting as an assembled 

line through which a principal chemical is modified or produced. These sequences of 

chemical reactions are known as metabolic pathways. Metabolism of organisms 

normally consists of numerous distinct pathways, which are responsible for various 

catabolic and anabolic processes. A metabolic pathway is enabled by a sequence of 

enzymes that act as catalysts for each individual reaction. In some sense, the enzymes 

characterize the metabolism. 

If an organism can be seen as a factory, then the metabolic pathways are its 

production lines and enzymes are the workers. These pathways determine which 

substances it can be fed on and what products can be expected. For example, green 

plants can use water, light and CO2 to create carbohydrate, while animals can only be 

fed on carbohydrate created by plants. However, the similarity of the basic metabolic 

pathways and components is rather high even between vastly different species [51]. For 



2  Metabolic Model                                                                                                                 4 

 

 

  
 

                                                                                                                 
 

example, glycolysis, aerobic respiration and/or anaerobic fermentation, citric acid cycle 

and oxidative phosphorylation occur within many living organisms from bacteria to 

human being. These similarities in metabolic pathways demonstrate the evolutionary 

connection between species, and also allow the knowledge learned from studying the 

metabolism of simple organism such as bacteria and yeast to be deduced to higher level 

organism. 

2.1.1.2 Metabolic Flux 

Many metabolic pathways together constitute the complex metabolic network of an 

organism. However the importance of different pathways are different, and even within 

the same cell, the roles of various pathways may change under varying grow condition. 

To characterize a complicated metabolic network, the concept of metabolic flux is 

introduced to quantify the rate of conversion among the metabolites through a pathway 

[20][52]. The flux of a path is defined by molecule turnover through the whole pathway 

per unit time under steady state (also called homeostasis, which means the reaction rate 

can be regarded as constant) [50]. The distribution of metabolic fluxes can reveal the in 

vivo physiological features and structures of the network; it is regarded as a fingerprint 

of the metabolism [20][21][52]. A direct measurement of metabolic fluxes seems 

impossible because the reaction rates are time-dependent and the concentration of many 

metabolites cannot be directly determined. However, under steady state the flux of a 

biochemical reaction can be deemed as its rate and be calculated by means of a 

mathematical model based on measurable components of the biochemical interaction 

network, such as substrates, products, and biomass [53]. In most cases, the uptake or 

production rate of these substances can be indirectly measured by monitoring their 

concentration in the culture media. Using these reaction rates as input, the unknown flux 

of an internal reaction can be determined through MFA and MPA (see below). 

The metabolic flux can be regulated by enzymes in the pathway according to the 

expression of corresponding genes, and by this, the activity of the metabolic pathway is 

adapted to different growth conditions. The analysis of metabolic pathway structure and 

flux based on metabolic homeostasis is essential for investigations of the metabolic 

network model. 
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2.1.1.3 Metabolism of Saccharomyces cerevisiae 

Saccharomyces cerevisiae (S. cerevisiae), also known as Baker's yeast, Ale yeast, 

Brewer's yeast and Top-fermenting yeast, is one of the most common species of yeast, 

and has been widely used for food and alcoholic beverage production. As unicellular 

fungi, these 5 ~ 10 micrometers wide ovoid cells were one of the most intensively 

investigated eukaryotic microorganisms in the early history of biotechnology. Since the 

development of recombinant DNA technologies in the 1980s, it has become the most 

widely used eukaryotic expression system for the productions of various biological 

products and also for many different processes within the pharmaceutical industry [54–58]. 

Meanwhile, because of a number of positive characteristics of this organism, 

S. cerevisiae is an ideal eukaryotic model system in metabolic engineering, systems 

biology and molecular biology [59–62]. Firstly, S. cerevisiae can be easily cultivated 

because it is robust with short generation time (doubling time 1.25 ~ 2 hours [63] at 

30 °C). This makes it possible to swiftly culture and maintains multiple specimen lines 

at low cost. Secondly, the relative compact genome and metabolic system makes the 

analysis of metabolic pathways and modification of the genome easier and more 

predictable. A relative small number of reactions reduces the computation effort and 

complexity. Thirdly, well-studied genome and protein sequences lay down a good 

foundation for fully understanding the metabolic network and regulation. With the first 

completely sequenced eukaryotic genome [64–66], S. cerevisiae is an ideal model 

organism for studying general cell physiology. The S. cerevisiae databases, i.e. the 

Saccharomyces Genome Database (SGD) [67] and the Munich Information Center for 

Protein Sequences (MIPS) [68], provide highly useful information for cell modeling and 

also for the investigation of eukaryotic cell processes at a whole-genome level. All these 

characteristics make S. cerevisiae the most popular organism for metabolic modeling, 

including the study presented in this thesis. 

In unicellular organisms, i.e. S. cerevisiae, catabolism and anabolism occur in a 

single cell. The central catabolic pathways of S. cerevisiae include Embden-Meyerhof-

Parnas Pathway (EMP, also known as glycolysis), Pentose Phosphate Pathway (PPP) 

and the Tricarboxylic Acid Cycle (TCA Cycle, also known as Citric Acid Cycle, Krebs 

Cycle) and produce precursor metabolites and important small molecular, such as ATP 

and NAD(P)H, which are used in anabolic metabolism. The anabolic processes mainly 

involve the synthesis of macromolecular cellular components including proteins, 
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nucleic acids (deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)), cellular 

structures, and lipids [50]. 

The metabolic flux changes of S. cerevisiae are also well studied [69–71]. As a 

facultative anaerobic organism S. cerevisiae can grow in both metabolic models, 

respiration and fermentation, according to different oxygen supply condition [71–73]. 

The aerobic growth consumes substrate glucose and produces a large amount of energy 

using oxygen as a final electron acceptor of the mitochondrial respiratory chain by 

oxidative phosphorylation. When oxygen supply is limited or absent, glucose can be 

metabolized through an alternate pathway to produce ethanol. Glucose is also reduced 

to glycerol to maintain the redox balance, which results in the formation of significantly 

less energy and different end products [74][75]. The mechanisms of NAD+/NADH 

conversion in respiratory and fermentative metabolism are illustrated in Fig. 2.1. It 

should be pointed out that, when oxygen availability is restricted, S. cerevisiae tends to 

use oxygen preferentially for oxidation of assimilatory NADH because glycerol 

production leads to net hydrolysis of ATP and loss of carbon [60][76]. 

    

Fig. 2.1 Schematic mechanism of NAD+/NADH conversion in respiratory (left) and fermentative 
(right) metabolism of S. cerevisiae. 

Under the condition of sufficient oxygen availability, the pure respiratory 

metabolism of S. cerevisiae on glucose only exists when the supply of sugar is restricted 

to a certain limit. Above this limit a mixed respiratory-fermentative metabolism will 

occur (Crabtree effect [77]), which is partly because excess glucose represses the 

synthesis of respiratory enzymes [78–80]: excess of repressive sugar causes complex 

transcriptional regulation and limits respiratory capacity, which leads to higher 

alcoholic fermentation [81]. Ethanol can also be consumed as carbon source and 
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provide energy through oxidation in the respiration chain, which is not considered in 

this thesis.  

2.1.2 Mathematical Modeling 

In this chapter, some basic concepts of metabolic modeling are introduced. Firstly, 

the concept of bioprocess is explained and its impact on biological modeling is 

discussed. Secondly, the principle of the mass balance equation is introduced to 

describe the mass exchanges in bioreactors in a mathematical language. Thirdly, the 

homogenous model of a bioreactor is extended to a structured model where the cell 

mass is divided into several intracellular compounds and functional groups. Fourthly, a 

concrete example is given to demonstrate how to convert a metabolic network to a 

stoichiometric model. Finally, a more complete roadmap of mathematical modeling is 

summarized. 

2.1.2.1 Bioprocesses and Mathematical Modeling 

As mentioned above, living cells and their metabolism can be used to obtain a 

desired product, such as alcohol or protein. This procedure is called bioprocess and can 

be seen as the foundation of biotechnology [82–84]. In a bioprocess, organisms’ 

metabolism is processed in a controlled manner to transform the given raw materials to 

the desired end-products. The cells are normally cultured in a relative stable artificial 

environment, like in bioreactors, to maximize desired output product. The typical 

reagents and products in the reactor can be liquids, gases and solid particles. Thus, for 

mathematical modeling, the bioreactor is usually divided into liquid phase, gas phase 

and solid phase. In most cases, because the size of cells is very small, the entire 

population of cells in a bioreactor is treated as a homogenous system, and the 

corpuscular character of cells is ignored. This makes it possible to quantify biomass or 

cell constituents using a simple concentration expression. However in some cases, 

especially when cells grow in flocks, or are attached to surfaces as biofilm, the system is 

evidently not a homogenous one, more complex models need to be considered to 

simulate the system. In this thesis, the latter situation is not covered (for more 

information, readers are referred to [85–89]). The bioprocess in the reactor is a dynamic 

system and the reactions can be at transient state or steady state. The culture in the 
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bioreactor can be aerobic or anaerobic, and the conversion of energy and mass under 

certain culture conditions is crucial for the production rates in the bioprocess.  

The industrial interests of maximizing the product yield and productivity of 

fermentation processes have encouraged researchers to explore various ways to 

optimize the production. The traditional methods for raising the product yield usually 

focus on improving the breed conditions in the cultivation processes by trial and error or 

based on simple process models. With the development of gene technology, the gene-

altered organisms have become an additional attracting approach [90–93]. Nevertheless, 

all these methods require a good understanding of the metabolism network of the 

organisms to eliminate numerous possible options and locate the bottleneck of a 

metabolic pathway. Mathematical modeling of the cellular metabolism naturally 

becomes a central step in the rapidly developing metabolic engineering. Through these 

models, researcher can not only interpret metabolic phenotypes of organisms but also 

predict experimental results [52][94–102]. 

Early mathematical models of metabolism only focused on the external fluxes of 

uptake and secretion and ignored intracellular reactions, the conversion of substrates to 

products was normally summarized in a single equation. Even though such black box 

models [82] have advantages (for calculation of mass balances, elemental balances and 

process variables like yields and productivities), the metabolic actions inside the black 

box have got more and more attention nowadays, because they play critical roles for 

improvement and regulation of cell metabolism [18][20][50]. The modern metabolic 

modeling normally refers to stoichiometric models of metabolism which describe the 

internal reaction network and the reaction stoichiometry in the system. They can 

integrate available biochemical information of organisms and are widely and frequently 

used in metabolic studies, especially for large networks. One of the first applications of 

a stoichiometric model for quantitative analysis of metabolic fluxes has been published 

by Rabkin and Blum in 1985 [103], which analyzes the structure of rat’s hepatocytes 

metabolic model using experimental measurements under quasi-steady-state conditions. 

With the rapid development of genomics and bioinformatics, the increasing information 

of biochemical reactions of organisms offers a powerful data foundation for metabolic 

network modeling. People have attempted to analyze the metabolic network at genome 

scale [104–106] or inter-genome scale [107–109]. It can be foreseen that based on the 

explosion of biochemical, genomic and genetic knowledge, mathematical modeling will 
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be able to more accurately describe the metabolic network structure of microorganism, 

predict the cellular behavior under different environmental conditions and guide 

technical manipulation of culture conditions [50][94][98]. 

2.1.2.2 Reactor Model, Balance Equations of a CSTR 

Based on the operation model of bioreactors, bioprocesses may be categorized as 

batch, fed batch and continuous (e.g. a continuous stirred-tank reactor (CSTR)). For the 

latter, a chemostat is commonly used for continuous culture, in which the inflow of 

substrate and outflow of medium (including cells) from the reactor are constant [110–112]. 

In an ideal CSTR, the global mass balances in the liquid phase for each component i 

can be described with the convective transport part (mass inflow, �̇�𝑖
𝐼, and mass outflow, 

�̇�𝑖
𝑂), the reaction part of mass, �̇�𝑖

𝑅, and the mass flow of gas-liquid transfer, �̇�𝑖
𝑇, as 

shown in the following equation: 

𝑑𝑚𝑖(𝑡)
𝑑𝑡

= �̇�𝑖
𝐼(𝑡) − �̇�𝑖

𝑂(𝑡) + �̇�𝑖
𝑅(𝑡) + �̇�𝑖

𝑇(𝑡) 

 

where mi(t) can be represented by the product of liquid volume VL(t) and component’s 

concentration Ci(t): 

𝑚𝑖(𝑡) = 𝑉𝐿(𝑡) ∙ 𝐶𝑖(𝑡) 

Therefore the mass change rate 𝑑𝑚𝑖(𝑡)
𝑑𝑡

 is influenced by both the volume change rate 

𝑑𝑉𝐿(𝑡)
𝑑𝑡

 and the concentration change rate 𝑑𝐶𝑖(𝑡)
𝑑𝑡

 as shown in Eq. (2.3),  

𝑑𝑚𝑖(𝑡)
𝑑𝑡

= 𝑉𝐿(𝑡)
𝑑𝐶𝑖(𝑡)
𝑑𝑡

+ 𝐶𝑖(𝑡)
𝑑𝑉𝐿(𝑡)
𝑑𝑡

 

The mass inflow with concentration 𝐶𝑖𝐼  and the mass outflow for leaving the reactor 

with concentration Ci can be given by the volumetric flow rates FI and FO respectively 

as 

�̇�𝑖
𝐼(𝑡) = 𝐹𝐼(𝑡) ∙ 𝐶𝑖𝐼(𝑡) 

�̇�𝑖
𝑂(𝑡) = 𝐹𝑂(𝑡) ∙ 𝐶𝑖(𝑡) 

and the mass flows of reaction and gas-liquid transfer can be calculated from liquid 

volume VL and the volumetric rate of biological reaction Ri or of exchange gas-liquid Qi 

as  

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

inflow outflow reaction gas-liquid transfer accumulation 
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�̇�𝑖
𝑅(𝑡) = 𝑅𝑖(𝑡) ∙ 𝑉𝐿(𝑡) 

�̇�𝑖
𝑇(𝑡) = 𝑄𝑖(𝑡) ∙ 𝑉𝐿(𝑡) 

Introducing Eq. (2.3) – (2.7) into the balance Eq. (2.1) and dividing by the liquid 

volume VL gives the model equation of the liquid phase in terms of concentrations  

𝑑𝐶𝑖(𝑡)
𝑑𝑡

=
𝐹𝐼(𝑡)
𝑉𝐿(𝑡)

𝐶𝑖𝐼(𝑡) −
𝐹𝑂(𝑡)
𝑉𝐿(𝑡)

𝐶𝑖(𝑡) + 𝑅𝑖(𝑡) + 𝑄𝑖(𝑡) −
𝐶𝑖(𝑡)
𝑉𝐿(𝑡)

𝑑𝑉𝐿(𝑡)
𝑑𝑡

 

where the change of liquid volume can be written as 

𝑑𝑉𝐿(𝑡)
𝑑𝑡

= 𝐹𝐼(𝑡) − 𝐹𝑂(𝑡) 

Using the definition of the dilution rate 

𝐷(𝑡) =
𝐹𝐼(𝑡)
𝑉𝐿(𝑡)

 

and substitution of Eq. (2.9), the balance equation Eq. (2.8) can be represented for the 

concentration of a compound i: 

𝑑𝐶𝑖(𝑡)
𝑑𝑡

= 𝐷(𝑡) �𝐶𝑖𝐼(𝑡) − 𝐶𝑖(𝑡)� + 𝑅𝑖(𝑡) + 𝑄𝑖(𝑡) 

For non-gaseous substances the gas exchange rate can be neglected. 

𝑄𝑖(𝑡)  =  0 

The volumetric reaction rate Ri, which is the rate of change of unit mass of reactant per 

unit volume of reactor, can be expressed by a product of cell concentration CX and the 

specific rates ri, which is the rate of change of unit mass of reactant per unit cell mass, 

as 

𝑅𝑖 = 𝑟𝑖 ∙ 𝐶𝑋 

Therefore the Eq.  (2.12) can be written as 

𝑑𝐶𝑖(𝑡)
𝑑𝑡

= 𝐷(𝑡) �𝐶𝑖𝐼(𝑡) − 𝐶𝑖(𝑡)� + 𝑟𝑖𝐶𝑋(𝑡) 

which can be written with vector notation by using the definitions for the vector of 

concentrations C(t) and the vector of specific rates r 

 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

 (2.12) 

(2.13) 

(2.14) 
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𝐂(𝑡) = �
𝐶1(𝑡)
𝐶2(𝑡)
⋮

�    𝐫 = �
𝑟1
𝑟2
⋮
�    

as 

𝑑𝐂(𝑡)
𝑑𝑡

= 𝐷(𝑡)�𝐂𝑰(𝑡) − 𝐂(𝑡)� + 𝐫𝐶𝑋(𝑡) 

where r is given by the dynamic metabolic model as described in the following. 

2.1.2.3 Dynamic Model of Cellular Compounds, Structured Cell Model 

The mathematic model discussed so far view a bio-reactor as a homogeneous 

biomass. There are no intracellular elements or states considered, and the model does 

not include inner balances. To consider internal structural elements of the cells, the 

structured cell model is introduced, in which cell mass is structured into several 

intracellular compounds and functional groups. In a simple structured model the 

concentrations C in the liquid phase of the reactor can be separated into the 

concentration of the abiotic phase for extracellular compounds, CZ, 

𝐂𝑍 = �

𝐶𝑆
𝐶𝑂
⋮
𝐶𝑃

� 

and the concentration of the biotic phase for intracellular metabolites, storage material, 

enzymes, RNA, DNA and so on, CX, 

𝐂𝑋 = �

𝐶𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒
𝐶𝑒𝑛𝑦𝑚𝑒

⋮
𝐶𝐷𝑁𝐴

� = (𝐶𝑋𝑖) 

and thus be written as 

𝐂 = �𝐂𝑍𝐂𝑋
�. 

By partitioning the specific rate vector r as 

 𝐫 = �
𝐫𝑍
𝐫𝑋� 

the balance equation for the biotic phase becomes 

 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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𝑑𝐂𝑿(𝑡)
𝑑𝑡

= 𝐷(𝑡)�𝐂𝑋𝐼 (𝑡) − 𝐂𝑿(𝑡)� + 𝐫𝑋𝐶𝑋(𝑡) 

For the derivation the concentration of the biotic phase at the inflow from the reservoir 

can be expressed as 

𝐂𝑋𝐼 (𝑡) = 𝐶𝑋𝐼 𝐜(𝑡)  

and the concentration of the biotic phase in the reactor can be represented as 

𝐂𝑿(𝑡) = 𝐶𝑋𝐜(𝑡) 

where  

𝐜(𝑡) = 𝑐𝑖(𝑡) 

is the vector of the cell mass related intrinsic concentrations 

𝑐𝑖 =
𝐶𝑋𝑖
𝐶𝑋

 

Here the total cell mass CX is the sum of all its components CXi (1T is a row vector 

containing all ones) 

𝐶𝑋 = �X𝑖 = 𝟏T𝐂𝑋
𝑖

 

and the sum of all intrinsic components can be expressed as 

�𝑐𝑖 = 𝟏T𝐜 = 1
𝑖

 

therefore 

𝑑(𝟏T𝐜)
𝑑𝑡

= 0 

By substituting Eqs. (2.22) and (2.23) into Eq. (2.21) the balance for the cellular 

compounds can be expressed as 

𝑑𝐶𝑋(𝑡)𝐜(𝑡)
𝑑𝑡

= 𝐶𝑋(𝑡)
𝑑𝐜(𝑡)
𝑑𝑡

+ 𝐜(𝑡)
𝑑𝐶𝑋(𝑡)
𝑑𝑡

= 𝐫𝑋𝐶𝑋(𝑡) + 𝐷(𝑡)𝐜(𝑡)�𝐶𝑋𝐼(𝑡) − 𝐶𝑋(𝑡)� 

Multiplying 1T to each summand in Eq. (2.29) and using the conditions of Eqs. (2.27) 

and (2.28), the balance equation of the total cell mass can be given: 

𝑑𝐶𝑋(𝑡)
𝑑𝑡

= 𝟏𝐓𝐫𝑋𝐶𝑋(𝑡) + 𝐷(𝑡)�𝐶𝑋𝐼 (𝑡) − 𝐶𝑋(𝑡)� 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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where the factor 

𝟏𝐓𝐫𝑋 ≡ 𝜇(𝑡) 

is identical to the specific growth rate. Using the substitution of Eqs. (2.30) and (2.31) 

into Eq. (2.29) the balance equation for the intrinsic concentrations can be written as 

𝑑𝐜(𝑡)
𝑑𝑡

= 𝐫𝑋 − 𝜇(𝑡)𝐜(𝑡) 

  

2.1.2.4 Creating a Stoichiometric Metabolic Model 

Since Förster et al. reconstructed the first genome-scale metabolic network of 

S. cerevisiae [113], an increasing number of studies have started to focus on analysis of 

genome-scale metabolic models. A stoichiometric metabolic model is usually 

established based on organism physiology and biochemical information, which can be 

obtained from database or literature. Using this information, the metabolic network 

under investigation can be reconstructed and represented with a stoichiometric matrix in 

which each column represents a reaction and each row represents a metabolite. 

Corresponding to the matrix, a reaction rate vector can also be constructed where each 

component represents the rate of the reaction in the corresponding column of the matrix. 

With the stoichiometric matrix and vector of reaction rates, the steady state of 

intracellular substrates, intracellular metabolites, biomass and the products of the 

organism can then be represented by simple mathematical equations. The procedure of 

building a stoichiometric model is explained below in more details through an example 

in Fig. 2.2. 

(2.31) 

(2.32) 
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Fig. 2.2 A general scheme for establishing a stoichiometric metabolic model, illustrated by a simple 
example. 

In this example, the small metabolic network (Fig. 2.2 (c)) consists of a single 

substrate S, a single product P and four metabolites: M1 ~ M3 are internal metabolites 

and M4 is a cell component and forms a part of the biomass. In the network there are 

five reactions with rates v1 ~ v5: 

reaction 1:   S        M1 

reaction 2:   M1         M2 + M4 

reaction 3:   M2         2 M3 
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reaction 4:   2 M3        3 P  

reaction 5:   M2         M4  

The change of all the reactants can then be described by the balance equations given in 

Fig. 2.2(d), where ri is the net change rate of corresponding reactant i and vi is the rate of 

the reaction j. In matrix notation the net reaction rates can be written as  

𝐫 = 𝐘 ∙ 𝐯 

where vector r represents all net transformation rates of reactants, vector v stands for all 

the rates of intracellular reactions, and the stoichiometric matrix Y is shown in Fig. 2.2(e). 

Splitting the vector r into rS, rP, rmet and rmac, respectively, representing the vectors of 

the net transformation rates of substrate, product, internal metabolite and cell 

component, the stoichiometric matrix Y can be partitioned into four parts (as shown in 

Fig. 2.2(e)), where the matrixes AT, BT, GT and ΓT respectively represent the 

stoichiometric coefficients of substrate, product, internal metabolite and cell component. 

Therefore Eq. (2.33) can be expressed as 

𝐫𝑆 = 𝐀T ∙ 𝐯 

𝐫𝑃 = 𝐁T ∙ 𝐯 

𝐫𝑚𝑒𝑡 = 𝐆T ∙ 𝐯 

𝐫𝑚𝑎𝑐 = 𝚪T ∙ 𝐯 

where rs < 0, rp > 0 , rmet > 0  and rmac > 0, i.e. negative reaction rates for substrates, 

positive reaction rate for products. 

During a continuous culture, the net transformation rates of cell component (rmac) can 

be regarded as at stationary status, i.e.: 

𝑑𝐜𝑚𝑎𝑐
𝑑𝑡 = 𝐫𝑚𝑎𝑐 − 𝜇 ∙ 𝐜𝑚𝑎𝑐 = 0 

therefore: 

𝐫𝑚𝑎𝑐 = 𝜇 ∙ 𝐜𝑚𝑎𝑐 

This equation suggests that the rate of biomass synthesis can be estimated by measuring 

the dilution rate if cmac is known. It also indicates that the rmac is proportional to µ. 

The vector of rates v can be regarded as the flux distribution in the network. Given a 

stoichiometric matrix, the reaction rates v can in principle be determined if the 

 (2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

 (2.38) 

(2.39) 
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transformation rates of the consumption/production rs and rp are known, and vice versa. 

In some cases, the relative reaction rates, yield coefficients, are more important than the 

absolute values of reaction rates. The yield coefficient of a measured metabolite can be 

calculated using the following equation 

𝑌𝑖𝑗 =
𝑣𝑖
𝑣𝑗

 

where vi is the reaction rate of the metabolite i, vj is the reaction rates of the metabolite j. 

The respiratory quotient, RQ, 

RQ = �
𝑟CO2
𝑟O2

� 

is a special yield coefficient for characterizing aerobic cultivations. Here the absolute 

value is used (Note: 𝑟O2  < 0). RQ is frequently used as an indicator for the type of 

metabolism. 

It should be pointed out that, although a detailed model including every known 

reaction into the metabolic network can be created through annotated genome 

information analysis, it is almost impossible to determine a meaningful metabolic flux 

by such a model. This is not only because of the enormous data processing effort, but 

also due to many parallel pathways and futile cycles complicating the network and 

making it extremely hard to solve, if not impossible. Simplified stoichiometric models 

created with meaningful fluxes are more feasible for most metabolic network analysis 

cases. Using the modular approach mentioned in section 2.1.2.5, the metabolic network 

can be reduced by lumping some parts of it into a single reaction. In this approach the 

stoichiometric model can be simplified into modules and the reaction details inside each 

module are hidden. The reduced model shows a clear structure of overall metabolic 

network, if the lumping is appropriate.  

There is no standard way of simplifying a metabolic network, but the simplified 

model must satisfy the balances of metabolites. It is extremely important to ensure the 

correct balancing of some small molecules, which are widely involved in the metabolic 

network, such as ATP and NAD(P)H. During a metabolic process, the generation and 

consumption of energy and proton carriers are the essential connections between the 

catabolism and anabolism. For example in the ATP balancing, the parameter P/O ratio 

 

 (2.40) 

(2.41) 
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𝑃/𝑂 =
the number of synthesized ATP molecules 

the number of consumed oxygen atoms
 

in the oxidative phosphorylation reaction [O2 + (2) NADH  (2 P/O) ATP] should be 

carefully tuned to achieve accurate simulation, since the P/O ratio can be different 

depending on the growth conditions [114–118]. The energy production (ATP 

production) is in turn coupled with the biosynthesis, because the energy generated in the 

catabolism must match the requirement in the biosynthesis. Although it is difficult to 

model the energy consumption in the same detailed way as the energy production (some 

forms of energy consumption are not exactly tangible), the trend must be that the ATP 

consumption is proportional to the growth rate. Therefore an empirical approach is 

usually used, which establishes a relation between the rate of consumed ATP (right part 

in the following equation) and the rate of produced ATP rATP of the cell: 

𝑟ATP = 𝑌ATP ∙ 𝜇 + mATP 

Here the yield coefficient YATP represents the amount of consumed ATP during the cell 

growth, in another word for biomass synthesis. The maintenance coefficient mATP 

summarizes the ATP consumption that is not coupled with the cell growth including the 

processes for maintenance of cell structure and membrane potentials [119]. In the above 

equation, the ATP production in catabolism can be estimated very accurately, given 

accurate measurements of substrate uptake rates and product formation rates. But the 

two parameters YATP and mATP are usually estimated with empirical approach. This is 

due to the uncertainty of some cellular processes that vary with the growth rate. These 

include the decomposition and reconstruction of macromolecules, the compensation of 

membranes leak and growth coupled conservation. 

Finally, before used for metabolic flux analysis as described in next section the 

sensitivity of the stoichiometric model to small changes in reaction rates should be 

evaluated, because a well-conditioned matrix should not be influenced by small 

variations of the measurements during the calculation of flux distribution. One of the 

most used indicators for evaluating the model sensitivity is the condition number  

C(𝐆T) = ‖𝐆T‖ ∙ ‖(𝐆T)#‖  ≥  1  

where ‖⋯‖  is a matrix norm and # denotes the pseudo-inverse of a matrix. The 

condition number of a model is always higher than or equal one. The lower the number 

is, the more the model will be of good nature. Taking into account the accuracy of 

(2.42) 

(2.43) 

(2.44) 
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measurements with common culture techniques, the system is considered as well-

conditioned if the condition number is lower than 100 [120][121]. 

2.1.2.5 Roadmap of Mathematical Modeling 

While the principles of metabolic modeling introduced in previous sections seem 

simple, in real cases it is a complicated process and involves several iterative steps. And 

a mathematic model of metabolic network normally needs to be tailor made for each 

organism. In principle a mathematic model should incorporate all the available 

biochemical information of the studied organism such as stoichiometric information, 

kinetic information and dynamic regulation on the levels of enzymes and genes. Based 

on the experience in this work, a typical procedure of modern cellular mathematical 

modeling is summarized in Fig. 2.3. This roadmap can also be seen as the guideline of 

this thesis. The main contents of the current study are presented in the order as 

summarized in Fig. 2.3. The roadmap consists of seven major steps: constructing a 

detailed reaction network, simplifying the complex network, establishing a 

stoichiometric metabolic model, extracting a homeostatic metabolic pathway model, 

generating a predictive homeostatic metabolic model, extending it to a predictive 

dynamic metabolic model, and finally establishing a bioprocess model by adding the 

reactor model.  

In step 1, a complex reaction network is constructed by listing all the known reaction 

of an organism. Before, this usually relied on the collection of all potentially available 

enzymes based on textbooks or literature. Recently, annotated genome information 

together with transcriptome information was directly used to pinpoint the expressed 

genes of available enzymes, which has become an attractive alternative way to construct 

a detailed metabolic model. This may easily generate a reaction network of more than 

1000 metabolic reactions. Although it is possible to perform some analysis directly on 

these genome-scale metabolic models, many sophisticated analyses require the model to 

be simplified to reduce complexity.  
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Fig. 2.3 Seven major steps for modeling: Step 1) constructing a detailed reaction network. Step 2) 
simplifying the complex network. Step 3) establishing a stoichiometric metabolic model. Step 4) 
extracting a homeostatic metabolic pathway model. Step 5) generating a predictive homeostatic 
metabolic model. Step 6) extending it to a predictive dynamic metabolic model. Step 7) establishing 
a bioprocess model by adding the reactor model. Arrows represent the operations of every step, boxes 
represent the resulted models and diamonds represent model verification. 
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In step 2, the complicated reaction network is simplified to reduce complexity. One 

common strategy is to lump some parts of the reaction network into a single reaction 

(so-called modular approach), for example the biosynthesis of the monomers, i.e. amino 

acids, nucleotides, fatty acids, lipopolysaccharides, carbohydrates. In ideal cases, the 

number of reaction should be reduced to 100 ~ 200 or less. It should be realized that the 

lumping procedure might result in losing detailed stoichiometric information on the 

overall stoichiometry of metabolism. Therefore the simplified model needs to be 

carefully validated so that the main characteristic of the network is not influenced, for 

example the network should still cover the derived range of growth condition. If not, the 

complex network must be revisited and the lumped reactions need to be unwrapped and 

re-lumped into a different pattern. The validation and model refining is usually repeated 

several times to balance the accuracy and simplicity. 

In step 3, the simplified reaction network is converted into a stoichiometric metabolic 

model by coupling of all biosynthesis reactions and their energy consumption to the 

specific growth rate (as explained in the previous section). In this modeling step, the 

metabolic reactions of the cell are thought to be at a steady state. This situation can 

ideally be achieved in continuous culture, reducing the computation complexity and 

allowing researchers to measure the real reaction rate through experiments. This then 

enables quantitative testing of the established model. Any systematic derivation from 

the experimental data could mean there are errors during the simplification step. A new 

refining cycle then needs to be started again by revisiting the complex reaction network.  

In step 4, characteristic metabolic pathways are extracted from the stoichiometric 

metabolic network (further explained in section 2.1.4). These pathways add more 

structural restrictions to the reaction network, in addition to the reaction rates. The focus 

of these models is to study the fluxes in pathways rather than the individual reaction 

rates, which means less variables. And in step 5, these characteristic metabolic 

pathways are used to predict the metabolic flux in the organism under a certain growth 

conditions (further explained in section 2.1.4). In these two steps, the metabolism of an 

organism is usually also thought to be at a quasi-steady state (homeostatic state). This is 

because the time constants of catabolic reactions are very small compared to anabolic 

reactions and there is no accumulation of metabolites. Also enzyme kinetics (including 

regulation by activation/inhibition) is not required. Although these homeostatic 

metabolic models can predict or describe many growth phenomena of the organism, and 
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cover the rapid metabolic regulation (such as in response to changes in glucose, oxygen 

supply) on the level of enzyme activity by using the optimal strategy (see section 2.1.4), 

they lack the description of dynamics of the long-term regulation by enzyme induction 

and repression, which can be observed for example for the pathways of respiration and 

for gluconeogenesis. 

In step 6, by adding information of kinetics about substrate uptake and dynamic 

regulation (such as the induction and repression of key enzymes), predictive dynamic 

metabolic models (also called structured models) can be built to predict dynamic growth 

conditions [122]. In previous models the substrate uptake rates were assumed to be 

constant. In a dynamic bioprocess, however the substrate is usually limited, which 

requires the model to incorporate kinetics of substrate uptake. Another important fact 

that needs to be considered is the regulation of key enzyme by induction and repression. 

This dynamic regulation normally happens during microbial adaption. One example is 

switching the substrate in bioprocess. Because some key enzymes may be repressed by 

one substrate, when switching to another substrate, there is usually a lag phase until the 

synthesis of key enzymes is induced fully. To modeling such cellular behavior, 

structured models, such as the metabolic regulator approach (proposed by Bellgardt et al. 

[123]) or cybernetic models [53], can be used. These methods are based on the flowing 

general formulation.  

As enzyme can be seen as an internal metabolite, based on Eq. (2.32) the balance 

equation for the intrinsic concentrations of key enzyme becomes, 

𝑑𝑐𝑒𝑛𝑧𝑦𝑚𝑒 𝑖

𝑑𝑡
= 𝑟𝑒𝑛𝑧𝑦𝑚𝑒 𝑖 − 𝜇 ∙ 𝑐𝑒𝑛𝑧𝑦𝑚𝑒 𝑖 

where enzyme i is the enzyme for the ith reaction and 𝑟𝑖 𝑚𝑎𝑥 is proportional to 𝑐𝑒𝑛𝑧𝑦𝑚𝑒 𝑖. 

It is reasonable to assume the net enzyme synthesis rate 𝑟𝑒𝑛𝑧𝑦𝑚𝑒  follows the actual 

demand 𝑟𝑖 . Therefore, the metabolic regulator model for dynamics of enzyme 

induction/repression can be expressed in Eq. (2.46), 

𝑑𝑟𝑖 𝑚𝑎𝑥
𝑑𝑡

= 𝑘 ∙ 𝑟𝑖 − 𝜇 ∙ 𝑟𝑖 𝑚𝑎𝑥 

and  

𝑟𝑖 = min (𝑟𝑖, 𝑟𝑖 𝑚𝑎𝑥) 

(2.45) 

(2.46) 

(2.47) 
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The constant k must be big enough to enable increase of 𝑟𝑖 𝑚𝑎𝑥 if the enzymatic reaction 

is rate limiting, i.e. 𝑟𝑖 ≡ 𝑟𝑖 𝑚𝑖𝑛 . In the adapted state the above model then ensures 

𝑟𝑖 𝑚𝑎𝑥 >�  𝑟𝑖. 

The Result of adding the above conditions into the homeostatic model is a so called 

structured model that formally describes induction and repression of key enzymes of 

metabolic pathways. Unlike the homeostatic models in previous steps, the regulation on 

reaction level by inhibition/activation can seamlessly be integrated into the mathematic 

model without further assumptions due to the optimization approach. 

In step 7, further information about the reactor model is added to construct a 

complete mathematic model for bioprocesses. A reactor model describes the dynamic 

concentration changes in the gas and liquid phase of the reactor and the mass exchanges 

between gas and liquid phase. The gas phase can be further divided into dispersed gas 

phase and headspace of the reactor. These changes are usually related to initial 

conditions, manipulating variables, and reactions microorganisms. The reactor models 

provide the concentrations of substrates, products and cells as input variables to the 

models of the biotic phase (results from previous steps). On the other hand, the reactor 

model also relies on the actual reaction rates as output of the biological models 

described above [124]. Besides a reactor model, in some special situation, a population 

model is required to describe an in-homogeneous population by adding one or more 

independent variables in addition to time. The additional variables are usually mass, 

volume, or age of a single cell. All the differential equations described in previous 

sections then become partial differential equations. Such models are usually very 

complicated as the catabolism also involves cell cycles, which implies the metabolic 

pathways will be different from those in previous models. Together with the other 

metabolic model for stoichiometry of growth (from step 5) and the regulation model for 

metabolic long-term regulation (from step 6), these three parts constitute a complete 

dynamic bioprocess model that can simulate complicated behaviors of bioprocesses. 

Further discussion of the regulation model, reactor model and population model is out 

of the scope of this thesis, interested readers are referred to [53][102][124] for more 

detailed discussions. 
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2.1.3 Metabolic Flux Analysis 

2.1.3.1 Introduction 

As a crucial tool in metabolic engineering, metabolic flux analysis (MFA) is used for 

over ten years [19][20][125]. With the help of measured experimental data, metabolic 

flux analysis can depict the distribution of the fluxes along the metabolic pathways 

using a stoichiometric model according to the mass balance of metabolites [20][125]. 

MFA makes it possible to evaluate the degree of engagement of each reaction in the 

metabolic network and obtain comprehensive knowledge of the metabolic state of an 

organism. Studying the flux changing under various environmental conditions could 

provide theoretical guidance to optimize the culture condition in the bioreactors.  

MFA is based on the assumption that the bioprocess inside the chemostat can be seen 

as dynamic system in steady state, i.e. the production and consumption of metabolites 

then stay balanced. As described in section 2.1.2.3, the balance equation of the internal 

metabolites can be written as: 

𝑑𝐜𝑚𝑒𝑡
𝑑𝑡 = 𝐫𝑚𝑒𝑡 − 𝜇 ∙ 𝐜𝑚𝑒𝑡 

where cmet is the vector of intrinsic concentrations for internal metabolites and rmet their 

specific rate vector. 

At steady state, the concentration of all metabolites is constant, so the above Eq. (2.48) 

is equal to zero. This model then becomes the foundation of metabolic flux analysis 

discussed in the rest of this chapter. It is important to notice that, at steady state in a 

chemostat, the specific growth rate (i.e. biomass formation rate) µ in the cell mass 

balance is equal to the dilution rate, i.e. 𝜇 ≡ 𝐷. This implies that the specific growth 

rate of the cells can be directly controlled by setting a proper dilution rate. In addition, 

as the concentration of internal metabolites is usually very low, cmet can be set to zero. 

This indicates that the net formation rate of internal metabolites is zero. The metabolic 

system then can be treated as a linear algebraic matrix equation and the flux balance for 

internal metabolites then simplifies to  

𝐫𝑚𝑒𝑡 = 𝐆T ∙ 𝐯 = 𝟎 

For a matrix GT with K metabolites by L reactions, if K < L (this is mostly the case 

in metabolic models), Eq. (2.49) is not solvable for v. Strictly speaking there is no 

(2.48) 

(2.49) 
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unique solution for v, because, from a linear algebra point of view, there are fewer 

equations than unknowns. However if some reaction rates can be measured, the 

unknown components of vector v become less, the linear equation can then be solved, 

depending on the number of measured rates of independent reactions J. According to 

linear algebra, if J = L – K, Eq. (2.49) is a determined system and there will be a unique 

solution for v (given |GT|≠0); if J > L – K, the solution will be overdetermined, an 

approximate solution can be probably found; otherwise, i.e. J < L – K, it is an 

underdetermined system and there will be infinite possible solutions. In the last situation, 

if there are additional restrictions and bounding conditions for example several reaction 

rates cannot be negative, an optimal solution may still be found by using linear 

programming (as discussed below). In the following, it will be further explained how to 

solve this equation under different situations. 

2.1.3.2 Linear Model 

First, Eq. (2.49) is reorganized to separate the measured reaction rates vm from the 

other to-be-determined reaction rates vc as shown in Eq. (2.50), 

𝐆T ∙ 𝐯 = (𝐆mT ⋮ 𝐆cT)�
𝐯m
⋯
𝐯c
� = 𝐆mT 𝐯m + 𝐆cT𝐯c = 0 

where Gm and Gc are their corresponding coefficient matrices respectively. [20] For the 

determined system, the matrix 𝐆cT is a K by K square matrix, and is usually invertible (if 

|GT|≠0), thus the unknown flux vc can be easily calculated through the Eq. (2.51), 

𝐯c = −(𝐆cT)−1𝐆mT 𝐯m 

For the overdetermined system, the 𝐆cT is a K × (L – J) matrix. This makes the Eq. (2.51) 

unsolvable, as there are more equations than unknowns (K > L – J). But the system can 

be approximately solved as least square problem by replacing the inverse of 𝐆cT with its 

pseudo-inverse as given in Eq. (2.52), 

(𝐆cT)# = (𝐆𝐜𝐆cT)−1𝐆𝐜 

It is worth noticing that the measured reaction rates are not necessary to be treated as 

known variables, instead they can remain unknown, while the measurements are added 

as extra equations to the balance equation as shown in Eq. (2.53),   

�𝐯m0 � = �𝐈 𝟎
𝐆T � 𝐯 = 𝐓𝐯 

(2.50) 

(2.51) 

(2.52) 

(2.53) 
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where I is an identity matrix and its dimension is equal to the number of measured 

fluxes J. [20] For a determined system, T is a L by L square matrix, and for 

overdetermined systems, T is a (J + K) × L matrix with (J + K > L). v can be calculated 

by using the pseudo-inverse matrix of  T as shown in Eq. (2.54), 

𝐯 = 𝐓#𝐯 = (𝐓T𝐓)−𝟏𝐓T �𝐯m𝟎 � 

However, in v new values for vm will also be calculated. This, in theory, increases the 

flexibility of the model to tolerate measurement errors.  

Eq. (2.54) can be further improved by taking into account the variance of measuring 

errors. A variance-covariance-matrix F, 

𝐅 =  �
𝐅m
𝟎
𝟎
𝐅d
� 

where Fm is J × J dimension submatrix for measurement error of fluxes, 

           Fd is K × K dimension submatrix for the error of metabolite balance equations,  

is used as weighting factor of the least square solution as shown in Eq. (2.56) [20][126] 

𝐯 = (𝐓T𝐅−1𝐓)−1𝐓T𝐅−1 �𝐯m𝟎 � 

The measurement error of fluxes is inevitable in reality, thus the latter two methods 

provide a more thorough foundation for the metabolic flux analysis in circumstances 

where a relative large number of measurements were performed. 

For the underdetermined system, v has infinite solutions if only the mass balance 

equation is given. However, in most metabolic models, several additional constraints, 

may apply to the system and result in a bounded solution space of all feasible fluxes. 

The most common examples of additional constraints are thermodynamic constraints, 

which allow some reactions only to proceed in the appropriate direction, i.e. they are 

irreversible. These constraints can be expressed by inequality as in Eq. (2.57), 

v𝑖 ≥ 0 

where vi is the reaction rate of reaction i. Yet, the bounded solution space under the 

condition of the Eq. (2.49) and Eq. (2.57) that describes the capacity of the metabolic 

network, cannot provide a unique solution of v. Nevertheless, an optimum solution of 

the system can be searched for by using a suitable objective function, for instance, 

maximizing a certain product. These types of optimization problems can be solved with 

(2.54) 

(2.55) 

(2.56) 

(2.57) 
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the help of a linear programming method. The above process is known as flux balance 

analysis. It is evident, that the predictive capability of this approach relies on whether 

the defined objective function could adequately represent the cellular metabolism under 

the given growth condition [127]. 

It should be mentioned that flux balance analysis identifies only one optimal solution 

while alternative optimal solutions or suboptimal solutions can exist. In general, flux 

balance analysis can calculate metabolic flux vectors based on limited experimental data, 

but requires specification of objective functions for cellular metabolism. The more 

reaction rates can be measured, the more accurate the flux vector estimation will be. 

However, the metabolic flux vector may not be unique. 

2.1.3.3 Error Correction 

As mentioned above, the experimental data usually contains measurement noise 

(random errors), and in some cases even systematic errors. While random error can be 

overcome by repeating measurement multi-times, systematic errors must be identified 

before the values are used for MFA, as they may cause severe deviation on the 

estimated flux and ruin the metabolic model. One way of finding measurement errors is 

to check the material balances and data consistency. It is evident that in the metabolic 

system, mass is conserved in the overall reaction of substrates to metabolic products and 

biomass. In a black box model (if the whole metabolic network is lumped into one 

reaction: substances  products + biomass), the elements, for example carbon, entering 

the system via the substrates must equal the elements flowing out of the system via 

products and biomass. A carbon balance can be represented by Eq. (2.58) 

1 + �ℎ𝑃,𝑖𝑌𝑋𝑃𝑖

U

𝑖=1

−�ℎ𝑆,𝑖𝑌𝑋𝑆𝑖

N

𝑖=1

= 0 

where U and N are the numbers of the metabolic products and substrates, and ℎ𝑃,𝑖 and 

ℎ𝑆,𝑖 represent their carbon content (C-mol/mol). 𝑌𝑋𝑃𝑖 and 𝑌𝑋𝑆𝑖, respectively, stand for the 

yield coefficients of the ith metabolic product and substrate in relation to the specific 

rate of biomass formation. Eq. (2.58) can be multiplied with µ. According to the 

definition of the yield coefficients, the carbon balance can be rewritten in the form of 

specific rates as Eq. (2.59): 

(2.58) 
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𝜇 + �ℎ𝑃,𝑖𝑟𝑃,𝑖

U

𝑖=1

−�ℎ𝑆,𝑖𝑟𝑆,𝑖

N

𝑖=1

= 0 

Using the above Eq. (2.59), the consistency of experimental data can be conveniently 

checked, because an inconsistency will result in unbalance between the carbon in the 

substrates and the carbon in the biomass and metabolic products. For example Nielsen 

and Villadsen [128] discovered the classical data of von Meyenburg [129] did not meet 

the carbon balance. Through a more elaborate data analysis, they revealed that the 

measurements of ethanol were inaccurate, which might be caused by evaporation due to 

intense aeration of the bioreactor. 

While looking at the magnitude of the residual can suggest whether a large error(s) is 

present in the measurements, it cannot indicate where the error comes from. A 

procedure of measurement elimination is suggested in [20], to quickly determine the 

probable source of a systematic error. This procedure is carried out by eliminating one 

measurement at a time from the given set of data and using the rest to compute a new 

residual. As it is an overdetermined system, the Eq. (2.54) can still be solved. If the 

elemental residual is reduced significantly when eliminating a certain measurement, it 

strongly suggests a presence of an unignorable systematic error in the measurement that 

was eliminated.  

 Besides the material balances, a certain interdependence may exist between two 

rates due to some fundamental biochemical and physiological relationships. Some of 

these linear correlations are very useful to correlate growth data, especially those 

obtained from steady state continuous cultures. One example is the energy and electrons 

balance that involves balancing ATP, NADH and NADPH production and consumption. 

In a simple aerobic process without metabolite formation, the reaction uptake rate of 

glucose and oxygen and the production rate of CO2 can be expressed as: 

𝑟𝑔𝑙𝑐 = 𝑌𝑥𝑠𝑡𝑟𝑢𝑒𝜇 + m𝑠 

𝑟𝑂2 = 𝑌𝑥𝑜𝑡𝑟𝑢𝑒𝜇 + m𝑜 

𝑟𝐶𝑂2 = 𝑌𝑥𝑐𝑡𝑟𝑢𝑒𝜇 + m𝑐 

In the above equations, the coefficient Y is the true yield rate of each element for 

biomass production and m is the coefficient that represents the element consumed or 

produced for maintenance purposes. In a bioprocess, these three equations are not 

(2.59) 

(2.60) 

(2.61) 

(2.62) 
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independent from each other because the energy and electrons balance which means the 

required ATP and NADPH for biomass synthesis have to be supplied by the catabolic 

pathways, and the NADH formed in the biosynthetic reactions has to be reoxidized by 

transfer of electrons to oxygen via the electron transport chain. Careful investigations 

reveal there is a linear corrletation between these three reaction rates that can be 

sumerized as follow: 

𝑟𝑔𝑙𝑐 = (𝑎 + 1.261)𝜇 + 𝑏 

𝑟𝑂2 = (𝑎 + 0.229)𝜇 + 𝑏 

𝑟𝐶𝑂2 = (𝑎 + 0.261)𝜇 + 𝑏 

where 

𝑎 =
𝑌 − 0.458 𝑃/𝑂
0.667 + 2 𝑃/𝑂

 

𝑏 =
m𝐴𝑇𝑃

0.667 + 2 𝑃/𝑂
 

The derivation steps can be found in [20] chapter 3.4. Note: Eqs. (2.63) – (2.67) are 

based on the metabolic model for P. chrysogenum as presented by Nielsen [130]. Here 

they serve only as an example to demonstrate the linear relationship between reaction 

rates. For different models the coefficients may be different but there will be similar 

linear relationships. 

The above linear equations can be used not only to correlate experimental data, but 

also to evaluate the key parameters YATP and the P/O ratio. The latter is usually done by 

estimating the true yield and maintenance coefficients of Eqs. (2.60) – (2.62) (by 

linearly regressing experimental data for the glucose, oxygen, and carbon dioxide rates 

against the specific growth rate), and then substitute the values of a and b into 

Eqs. (2.66) and (2.67). More examples of error correction using energy and electrons 

balance can be found in [20] chapter 3.4. 

2.1.4 Metabolic Pathway Analysis  

2.1.4.1 Introduction 

In contrast to the metabolic flux analysis discussed above, metabolic pathway 

analysis (MPA) does not focus on providing a unique flux vector of the metabolic 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 
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model under a certain steady state, but identifies the topology and properties of the 

cellular metabolism networks. The fundamental step of MPA is to extract biologically 

“meaningful” pathways from an intricate metabolic network. These so-called elementary 

flux modes/pathways represent a set of all possible routes that involve the minimum 

number of enzyme to achieve steady states and can be used as smallest units for the 

further calculation, such as identifying the structure of a metabolic network or 

determining the metabolic flux vector of the specific cellular physiological state under a 

given growth condition [33][131–134]. For MPA, the calculation is only based on the 

stoichiometric Eq. (2.49) and thermodynamic constraints (Eq. (2.57)) without requiring 

additional measurement of any flux rates or imposing any objective function for cellular 

metabolism. With the development of the related disciplines, the studies of metabolic 

pathways has gradually become a very important tool for study of metabolic network 

structure, robustness, regulation, metabolic flux vector, and rational strain design 

[45][133–136].  

2.1.4.2 Determine Elementary Flux Modes 

Finding simplest biologically meaningful pathways from a metabolic network is an 

essential step for MPA. Although the literal meaning sounds rational, its mathematical 

definition is non-trivial. First of all, the elementary pathway should satisfy the 

stoichiometric Eq. (2.49) and inequality constraints (Eq. (2.57)) i.e. some reactions are 

irreversible. However, as discussed in previous sections, the number of all possible 

solutions is usually infinite. Thus, additional constraints such as non-decomposability 

and systematic independence are required to select a finite set of simplest solutions. 

Different definitions of “simplest” result in different applications of these additional 

constraints, thereby leads to different techniques for metabolic pathway analysis, for 

example elementary mode analysis [27] and extreme pathway analysis [28]. 

In elementary mode analysis after Schuster and Hilgetag [27], a flux v* is called 

elementary mode if and only if v* fulfills the simplicity condition, i.e. there exists no 

couple of vector v’ and v” with the following properties: 

(i) v* is a non-negative linear combination of v’ and v” 

(ii) v’, v” are the solution to Eq. (2.49) and inequality (Eq. (2.57)) 

(iii) both v’ and v” contain at least the same number of zero elements as v* and at 

least one of them contains more zero elements than v*. 
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(iv) for all indices i corresponding to boundary reactions, the components are not 

of opposite sign. 

In another words, an elementary flux mode is the solution for a possible route with 

maximum number of zeros. The more zeros, the less number of reactions are involved 

in the route. As a cellular system usually consists of many possible routes, several 

elementary modes satisfying the above conditions will be found. 

Mathematically speaking, the solutions of Eq. (2.49) and inequality (Eq. (2.57)) 

constitute a convex polyhedral cone [137]. And the elementary flux modes of an 

irreversible metabolic network (all reactions are irreversible) are the edges (generating 

vectors) of the cone [27]. This converts the elementary mode searching problem to 

enumerating extreme rays of polyhedral cones, which has been used as the foundation 

of many computer algorithms to extract the complete set of elementary modes. 

Extreme pathway analysis utilizes the same criteria as elementary mode analysis, but 

in addition, it imposes a systematic independence constraint, which requires an extreme 

pathways cannot be expressed as a non-trivial non-negative linear combination of the 

other pathways [28]. Both extreme pathway analysis and elementary mode analysis will 

extract the same set of pathways if all the reactions are irreversible, i.e. the cone is 

located in the positive orthant of n-dimension space (n is the number of reactions). 

However, if there are reversible reactions, extreme pathway analysis will generate a 

smaller number of extreme pathways than the number of elementary modes, while all 

extreme pathways will also be included in the elementary modes. [26] This follows, 

because reversible reactions extend the convex cone to the negative orthants, in another 

words, the new convex is created by merging two half-cones in the positive and 

negative orthants. The problem comes from the shared edges between the two 

half-cones, as they are now located in the middle of faces of the new cone, or even 

inside the cone if more than one reversible reactions are related with them. By definition, 

extreme pathway analysis will discard these pathways as extreme pathways, however 

for elementary mode analysis they will still be kept in the results. Fig. 2.4 gives a 

symbolic geometric illustration of difference of flux analysis, elementary modes and 

extreme pathways. Let the flux cone (see Fig. 2.4A) represents the null space of 

Eq. (2.49), i.e. all possible pathways that satisfy the stoichiometry balance, then the five 

vectors on the edges of the cone represent five extreme pathways (as the circles shown 

in Fig. 2.4A and C). However elementary modes (see circles and squares in Fig. 2.4A 
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and C) are not guaranteed to lie on the face and edges of the cone, sometimes they can 

be inside the cone (as the squares shown in Fig. 2.4A and C). Metabolic flux analysis 

normally results in a single vector that lies anywhere in the cone (e.g. the green star 

shown in Fig. 2.4B). Theoretically, extreme pathway analysis is mathematically more 

sound as it defines the minimum sets of pathways to span the convex cone space, 

however, in practice, elementary modes could make further analysis much easier, as it is 

easier to interpret a single elementary pathway rather than a linear combination of two 

or several extreme pathways. [33] 

                        
A. admissible flux cone                      B. Metabolic Flux Analysis      C. Metabolic Pathway Analysis 
Fig. 2.4 Geometric interpretation of flux cone. Green star: a flux from MFA; purple circles and red 
squares: elementary modes; purple circles: extreme pathways. 

Algorithms and Software 

Although the definition of an elmentary mode seems intuitive, finding all the EMs in 

a metabolic system is not straightforward. Several method based on extreme ray 

enumeration algorithms from computational geometry have been proposed. Among 

them, the double description method is the most used method in many available 

software. A detailed introduction of this algorithm can be found in [138]. In most 

applications, the performance and memory requirements are both critical aspects. A 

nullspace initial matrix proposed by Wagner [139] was proved to be a successful 

strategy to simplify the algorithm and improve performance. Subsequently, binary 

vectors for flux value storing and rank computations for testing elementarity were 

proposed by Gagneur and Klamt [140] and Klamt et al. [141], which boosted the 

performance even further. More recent reviews of variants of the double description 

method can be found in [141][142]. 

Based on various EM enumeration algorithms, several available tools for extracting 

EMs are summarized in Tab. 2.1. 
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Tab. 2.1 EM algorithms and software. 

Algorithm 
Software 

Ref. Remark 
Name Environment Version & Year 

Original approach METATOOL C  1999 [143]  

GEPASI & COPASI C 2006 [144]  

FluxAnalyzer Matlab 2003 [26]  
Null space 
approach 

SNA (MATHEMATICA) Mathematica 2006 [145] SNA in Mathematica 
METATOOL >=5 C, Matlab 2006 [146]  
YANA& YANAsquare Java 2005 [147] based on METATOOL; 

user-friendly interface 
Binary approach FluxAnalyzer 5.1 / 

 CellNetAnalyzer 
Matlab 2004 / 2007 [140] optionally use METATOOL 

& efmtool for em 

Bit pattern tree efmtool Java, Matlab 2008/2009 
(v4.7.1) 

[142]  

In this study, only software based on Matlab are tested. During the tests, 

METATOOL and Efmtool generate different sets of EMs even on the same model. 

While the results from Efmtool seem most reasonable, METATOOL usually generates 

more EMs than Efmtool. 

2.1.4.3 Applications of Metabolic Pathway Analysis 

Firstly, the elementary mode analysis can be used to identify the most efficient 

pathways from the given substrate (S) to the product (P). It is straightforward to 

calculate the relative molar yields of the product with an elementary mode i (EMi) with 

the equation YEMi = rp/rs where rs and rp is the reaction rate of related reactions within 

the elementary mode that consume S or produce P. As any steady state can be expressed 

by the non-negative linear combination of elementary modes, the highest YEMi then 

represents the highest molar yields potential of the underlying metabolic network. One 

among the first real-biological-system applications was reported in [12] by Liao et al., 

where elementary mode analysis was used to optimize of the production of 3-deoxy-D-

arabino-heptulosonate-7-phoshpate (DAHP) in E. coli. Liao et al. first identified the 

most efficient DAHP producing pathway through elementary mode analysis, then 

optimized the key reactions by over-expressing the corresponding enzymes. Eventually, 

the achieved molar yield of DAHP is very close to the theoretically predicted value. 

Secondly, the elementary modes can be used to compute the metabolic flux of a 

steady state under a specific grow condition. As, by definition, any flux v can be 

expressed as a weighted sum of all elementary modes, a steady state can be seen as an 

overlap of several extreme/elementary pathways. To determine the weighting factors, 
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additional constrains have to be introduced. Similar to the flux balance method 

discussed in a previous section, the problem can again be seen as an optimization 

problem where the goal is to achieve optimized biomass production, energy 

consumption or difference between measured and predicted fluxes. One example is 

published by Carlson and Srienc [39], who identified four most efficient glucose-to-

energy pathways in E. coli by studying the weighting factors of elementary modes 

under varying oxygen levels. In their study, the optimization goal is both biomass-

producing efficiency and energy-producing efficiency, as they argued “evolutionary 

pressures under carbon-limited growth conditions likely select organisms that utilize 

highly efficient pathways”. The experimental results confirmed that the computed flux 

vectors under different oxygen limitation agree well with the measured parameters.  

Thirdly, metabolic pathway analysis allows better understanding of the metabolic 

network properties. As the huge number of chemical reactions collapses to individual 

elementary pathways, it is easier to understand the metabolic network at inter- and intra- 

pathway level. Within each elementary mode, the effect of one or several knock off 

genes can be predicted, thereby characterizing the robustness and fragility of the 

metabolic networks [148][149]. On the other hand, at inter-pathway level, the 

functionality and efficiency of different pathways can be compared and the key 

reactions that are involved in several pathways can be identified [150–152]. More 

important, by comparing the flux distribution in different pathways under different 

growth conditions, the regulation pattern of the cellular metabolism can be investigated 

[153–155]. At an even higher level, comparing the elementary pathways between 

different species will help researchers to find the genetic footprint of evolution and 

predict the best living condition of organisms or, even further, design new species using 

gene-altering techniques. With the knowledge of all unique pathways existing in a 

metabolic network researchers can eliminate inefficient pathways, and force the new 

strains to process substrate only through efficient pathways [47][48], or introduce 

foreign pathways by insert new enzymes genes to the host and boost the production rate 

[48]. 

2.2 Stoichiometric Metabolic Model of S. cerevisiae 

Although the main goal of this study is to construct metabolic pathway models of 

S. cerevisiae, many efforts were made to prepare reliable stoichiometric metabolic 
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models, as it is the foundation of further pathway analysis. This chapter describes 

methods that are corresponding to step 1 ~ 3 in the modeling roadmap (see Fig. 2.3 in 

section 2.1.2.5). 

2.2.1 Establishing Stoichiometric Metabolic Models 

All the investigations/case-studies presented in this thesis were based on metabolic 

networks of S. cerevisiae. A simplified stoichiometric model (Model 1 with 40 

metabolites and 35 intracellular reactions) were established based on data from the 

internet databases KEGG [156] and literature [157–160], and simplified using the 

modular approach described in literature [50]. The metabolic network structure of 

Model 1 is demonstrated in Fig. 2.5. 

 

 

Fig. 2.5 Schematic illustration of metabolic Network for simplified metabolic model (Model 1) of 
S. cerevisiae. 
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2.2.1.1 From Reaction Network to Initial Stoichiometric Model 

The simplified network was converted into an initial stoichiometric model based on 

C-mol stoichiometry. The metabolic network of Model 1 is constituted by thirty-five 

reactions, which are given in Tab. 2.2. All the stoichiometric coefficients in this 

network are on C-mol basis. In this stoichiometric model, H+ und H2O are not included 

because they cannot be measured by instruments and their balances are not important 

for the remaining reactions of the model. For simplification the cell compartments are 

not considered, i.e. no differentiation is made between NADH in cytosol and NADH in 

mitochondria. For the pair of cofactors namely ATP/ADP, NAD+/NADH and 

NADP+/NADPH, only one of each pair (ATP, NADH and NADPH) is considered in the 

model, since their roles in reactions are opposite and exchange rates can be easily 

calculated to substitute one with the other. The proton carriers FADH2 and Ubiquinol-6 

are pooled together with NADH, while NADPH is considered separately. Ten of 

thirty-five reactions are considered as reversible. The reversibility of reactions is shown 

as “<==>” in the reactions. In Model 1, there are forty metabolites involved (listed in 

Tab. 2.3). The stoichiometric matrix Y of Model 1 is a 40 × 35 matrix as shown in the 

appendix (section 6.2.1, Tab. 6.3). In this stoichiometric model, glucose and oxygen can 

be regarded as substrates; CO2, ethanol, glycerol and biomass are produced; however, 

because only the external CO2 in the bioreactor (shown as “co2extern” in the models) is 

measurable, a CO2 transport reaction is added (reaction 29). In this way, the CO2 inside 

cells is treated as internal metabolite. Among all metabolites, twenty-nine metabolites 

are considered as internal metabolites, thereby GT is a 29 × 35 matrix as shown in 

Tab. 2.4.  
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Tab. 2.2 Biochemical reactions of Model 1 for S. cerevisiae in C-mol stoichiometry. 
No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p + (0.1667) atp --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu + (0.2) atp --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 + (0.26087) 

atp --> (0.3913) 5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
31 dna (0.4579) 5aic + (0.4371) gln + (0.0842) mfh4 + (0.3313) asp + (0.2544) r5p + (0.4625) atp + 

(0.0509) nadph --> dna + (0.4371) glu + (0.1278) fum + (0.1540) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.0568) mfh4 + (0.2993) asp + (0.2400) r5p + (0.4890) atp --> 

rna + (0.5271) glu + (0.1073) fum + (0.1348) nadh + (0.0568) nadph 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + (0.0623) 

e4p + (0.0935) pep + (1.0396) atp + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + 
(0.0117) gap + (0.1054) co2 + (0.0165) mfh4 + (0.0188) 5aic + (0.0725) nadh 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.4) atp + (0.7111) nadph --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
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Tab. 2.3 Metabolites in Model 1 of S. cerevisiae. 

No. Abbreviation Full name of metabolites 

1 glc Glucose 
2 atp Adenosine triphosphate 
3 g6p Glucose 6-phosphate 
4 f6p Fructose 6-phosphate 
5 pol Polysaccharide 
6 r5p Ribose 5-phosphate 
7 nadh Nicotinamide adenine dinucleotide - reduced 
8 nadph Nicotinamide adenine dinucleotide phosphate - reduced 
9 co2 Carbon dioxide 

10 co2extern Carbon dioxide (extern) 
11 e4p Erythrose 4-phosphate 
12 gap Glyceraldehyde 3-phosphate 
13 dhap Dihydroxyacetone phosphate 
14 g3p Glycerol 3-phosphate 
15 glyc Glycerol 
16 3pg 3-Phosphoglycerate 
17 ser Serine family 
18 pep Phosphoenolpyruvate 
19 pyr Pyruvate 
20 oxac Oxaloacetate (cytosol) 
21 oxam Oxaloacetate (mitochondrion) 
22 asp Aspartate 
23 acald Acetaldehyde 
24 etoh Ethanol 
25 ace Acetate 
26 akg alpha-Ketoglutarate 
27 mal Malate 
28 glu Glutamate 
29 actcoa Acetyl-CoA 
30 gln Glutamine 
31 fum Fumarate 
32 5aic 5-AICAR 
33 mfh4 Methylenetetrahydrofolate (Methyl-FH4) 
34 dna Deoxyribonucleic acid 
35 rna Ribonucleic acid 
36 prot Protein 
37 lip Lipid 
38 iso Isocitrate 
39 succ Succinate 
40 o2 Oxygen 
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Tab. 2.4 GT matrix of Model 1 with 29 internal metabolites (rows) and 35 reactions (columns). 

Metabolites Reactions 
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2.2.1.2 Modeling of Biomass Components 

In the above model, the biomass is represented by five components: DNA, RNA, 

polysaccharide, lipid and protein. To simplify calculation, Model 2α (as shown in 

Fig. 2.6 and Tab. 2.5) is built from Model 1 by adding a pseudo-reaction representing 

the formation of biomass: 

𝑘1 DNA + 𝑘2 RNA + 𝑘3 polysaccharide + 𝑘4 lipid + 𝑘5 protein +  𝑘6 ATP → biomass 

Here the stoichiometric coefficients kn (k1, k2, …, k5) represent the proportions of 

different components in the cellular structure (biomass). Eq. (2.68) can be interpreted as 

that DNA, RNA, polysaccharide, lipid and protein are consumed to build up the cell 

structure. Therefore they can be regarded as internal metabolites. The stoichiometric 

matrix GT of Model 2α then become a 34 × 36 matrix as shown in Tab. 2.6 (The 

corresponding Y matrix is listed in appendix Tab. 6.4). The coefficient k6 can also be 

seen as YATP, which represents the sum of ATP consumption for all biomass 

components, while the ATP consumptions in the individual synthetic reactions of DNA, 

RNA, polysaccharide etc. are removed. The coefficients kn are determined by using the 

data of Nissen et al. [157] to estimate the proportion of biomass components. YATP 

together with P/O value in the oxidative phosphorylation reaction are estimated using 

the measured O2, CO2 and glucose reaction rates. It should be noticed that the 

proportion of different components of biomass may vary slightly under different growth 

conditions. This variation is ignored in the model for simplicity. 

(2.68) 



2  Metabolic Model                                                                                                                 40 

 

 

  
 

                                                                                                                 
 

 

Fig. 2.6 Schematic illustration of metabolic Network for Model 2α of S. cerevisiae. The red dash 
arrow represents the additional pseudo-reaction of biomass synthesis compared to Model 1. 
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Tab. 2.5 Biochemical reactions of Model 2α for S. cerevisiae in C-mol stoichiometry. Compared to 
Model 1, Model 2α has an additional pseudo-reaction of biomass synthesis (shown with grey background) 
and ATP consumption for all biomass components is summarized in the pseudo-reaction using the yield 
coefficient YATP, while the ATP consumptions in the individual synthetic reactions of DNA, RNA, 
polysaccharide etc. were removed. 

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 --> (0.3913) 

5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
31 dna (0.4579) 5aic + (0.4371) gln + (0.0842) mfh4 + (0.3313) asp + (0.2544) r5p + (0.0509) nadph --

> dna + (0.4371) glu + (0.1278) fum + (0.1540) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.0568) mfh4 + (0.2993) asp + (0.2400) r5p --> rna + (0.5271) 

glu + (0.1073) fum + (0.1348) nadh + (0.0568) nadph 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + (0.0623) 

e4p + (0.0935) pep + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + (0.0117) gap + 
(0.1054) co2 + (0.0165) mfh4 + (0.0188) 5aic + (0.0725) nadh 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.7111) nadph --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
36 biomass (0.000117103) dna + (0.001757709) rna + (0.01386991) pol + (0.000966667) lip + 

(0.017876333) prot + (YATP) atp --> biomass 
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Tab. 2.6 GT matrix of Model 2α with 34 internal metabolites (rows) and 36 reactions (columns). The parts with grey background represent the differences compared to 
Model 1.  

Metabolites Reactions 
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By introducing the pseudo-reaction of biomass synthesis, cell biomass is seen as a 

final “product” of the metabolic network. This makes the next maximization step of 

specific biomass formation rate much easier in practice, as now only one reaction rate 

needs to be maximized. This is theoretically reasonable because the proportion among 

different components of the cell structure (biomass) shows less variation under different 

growth conditions. To verify the equivalency of the proposed method and conventional 

methods, MFA were performed on Model 2 and Model 2A. Model 2 is an improved 

version of Model 2α after calibrating the YATP coefficient and removing some 

invalidated constrains. (Improving steps are described in the next section). Model 2A is 

modified from Model 2, in which the pseudo-reaction is removed and different biomass 

components are calculated independently (The detailed biochemical reactions and 

stoichiometric matrixes of Model 2 and Model 2A can be found in appendixes 6.3.1 and 

6.3.2). This pair of models is used to simulate the anaerobic, glucose-limited continuous 

cultures using data published by Nissen et al. in [157]. Through MFA, the reaction flux 

v computed from Model 2 given the dilution rate is almost identical to the one 

computed from Model 2A given several measured reaction rate. Tab. 2.8 shows one 

example of one state of Model 2, where by introducing the pseudo-reaction of biomass 

synthesis, the dilution rate D can be directly used as the reaction rate of the 

pseudo-reaction (see the column of given rate in Tab. 2.8). The individual components 

of biomass, such as nucleic acid, protein, lipid and carbohydrate, now become internal 

metabolites, thereby the need of determining the synthesis rates of those individual 

components is eliminated. Tab. 2.7 shows the minimum number of reactions needed to 

be measured to solve the stoichiometric Eq. (2.49) in different models. The more 

measurements are needed, the higher is the risk of introducing errors into the calculation. 

Using the biomass reaction can not only simplify the calculation but also increase the 

robustness of the model. 

Tab. 2.7 Dimension of stoichiometric matrixes of internal metabolites (GT) for Model 1, Model 2α, 
Model 2 and Model 2A. Model 1 and Model 2A are without explicit biomass reaction, while Model 2α 
and Model 2 are with pseudo-reaction of biomass synthesis. 

  Model 1 Model 2α Model 2 Model 2A 

Reactions  35 36 36 36 

Internal Metabolites  29 34 33 28 

Free columns 
(minimum needed measured data)  6 2 3 8 
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Tab. 2.8 Flux distribution of Model 2 and Model 2A in anaerobic growth. Model 2A is Model 2 
without the pseudo-reaction of biomass synthesis. The numbers with dark background are the given rates 
vm. vc represent calculated rates. The results of Model 2A are generated via flux balance analysis with 
non-weighted multiple objective functions or weighted single objective function. (Complete results can 
be found in appendixes 6.4.1.) 

Reaction Given Rate 
C-mol/(gh) 

Reaction Rates 
in Model 2 
C-mol/(gh) 

 

Reaction Rates in Model 2A  
C-mol/(gh) 

No. Designation Multiple objective 
functions  Single objective 

function 

1 glc 0.0333     0.0333     0.0333     0.0333 

10 glyc 0.00286  0.00312  7.2E-15  0.00312 

18 etoh 0.01756  0.01756  0.00740  0.01756 

29 co2 0.0095  0.00931  0.00370  0.00931 

35 respiration 0                0                0                0 

36 biomass/YATP 0.10302  0.10217  (YATP) 1.2E-16  (YATP) 0.00762 

µ   0.10217  0.71303  0.10217 

The rate of the pseudo-reaction of biomass synthesis here serves as a convenient 

objective function for flux balance analysis using the underdetermined system when the 

number of given reaction rates is less than needed as shown in Tab. 2.7 (see 

section 2.1.3.2). Since it is reasonable to assume that growth and reproduction have the 

highest priority in organisms, maximizing the biomass synthesis rate can be added as a 

profit function in addition to the stoichiometry equation. In this study, flux balance 

analyses were carried out on Model 2 and Model 2A while using the measured glucose 

and oxygen uptake rate as given parameters. For Model 2, the object function was set to 

maximize the rate of the pseudo-reaction. For Model 2A, several object functions 

(multi-objective function) were used to maximize the production of each biomass 

component simutaneously. The difference between optimizing the biomass synthesis 

and optimizing individual biomass component is explained in the following. As shown 

in Tab. 2.8, when optimizing the biomass synthesis rate in Model 2 resulted in a relative 

close solution compared to the given reaction rates. The measured reaction rates and the 

estimated reaction rates by optimizing the biomass are very close, which are 

respectively 0.00286 C-mol/(gh) and 0.00312 C-mol/(gh) for glycerol, 0.0095 C-mol/(gh) 

and 0.00931 C-mol/(gh) for CO2, 0.10302 C-mol/(gh) and 0.10217 C-mol/(gh) for 

biomass. On the other hand, optimizing all the biomass components in Model 2A 

resulted in irrational reaction rates, the estimated reaction rates of glycerol, CO2 and 

biomass are respectively 7.2E-15 C-mol/(gh), 0.00370 C-mol/(gh) and 1.2E-16 C-mol/(gh), 

as shown in Tab. 2.8. These errors in latter model may be due to the unjustified 

weighting factor of different component in the object function, as optimizing biomass 
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components separately is mathmatically equal to optimize a single function: 1 DNA + 

1 RNA + 1 polysaccharide + 1 lipid + 1 protein + 1 ATP. If a rational object function 

(0.0001053927 DNA + 0.0015819381 RNA + 0.012482919 polysaccharide + 

0.0008700003 lipid + 0.0160886997 protein + 0.0746 ATP) is designed to use the right 

weighting factor from the biomass synthesis on each biomass component, the 

optimizing results of Model 2A (the last column in Tab. 2.8) show the same flux 

distribution as Model 2. Here the weighting factor for each biomass component is 

identical to the coefficients (kn) in the pseudo-reaction of biomass synthesis, so the 

simulated results are also identical to Model 2. Nevertheless, these results, to some 

extent, prove that using the pseudo-reaction of biomass synthesis does not influence the 

simulation accuracy and also provides a convenient way for optimizing biomass. 

It is worth mentioning, the theoretical coefficients (kn) of different component in the 

pseudo-reaction cannot be directly used to calculate the specific growth rate µ. A 

system error of 10% was found during optimization using MFA (cf. Fig. 2.7) and was 

deducted from the coefficients, i.e. kn′ = kn × 0.9. This system error may be due to the 

model simplification or deviation of parameter i.e. YATP. However it should not affect 

the integrity of the established models as the proportional change of kn only affect the 

rate of biomass synthesis reaction. In Tab. 2.9 shows the estimated biomass coefficients 

in Model 2 based on the available data of biomass component from literature [157], and 

the calibrated coefficients. This system error is model specific therefore, for other 

metabolic network this correction needs to be re-determined. 

 
Fig. 2.7 Biomass formation rates of S. cerevisiae during anaerobe growth. Model 2B is a model with 
original kn for biomass components and is detailed in section 6.3.3. The calculation of flux distribution in 
Model 2B and Model 2 is used determined system by giving uptake rates of glucose and oxygen and 
produced rate of ethanol. 

0.084 

0.088 

0.092 

0.096 

0.1 

0.104 

Reference Model 2B with original kn Model 2 with calibrated kn 

sp
ec

ia
l g

ro
w

th
 ra

te
 µ

  (
C

-m
ol

/g
h)

 



2  Metabolic Model                                                                                                                 46 

 

 

  
 

                                                                                                                 
 

Tab. 2.9 Calculation and calibration of the biomass components coefficients (kn). The values of 
biomass share are from the literature [157] and the calibrated kn is original kn × 90%. Since it is difficult 
to determine the mol weight of the ash in biomass, kns are calculated without ash.  

 
Mol weight 

g/c-mol 
Biomass share 

g/g original kn * calibrated kn 

carbohydrate 29.34409799 0.407 0.01386991 0.012482919 
DNA 34.15789474 0.004 0.000117103 0.000105393 
RNA 35.84210526 0.063 0.001757709 0.001581938 

protein and 
amino acid 25.78828619 0.461 0.017876333 0.0160887 

lipid 30 0.029 0.000966667 0.00087 
ash  0.05   

sum with ash  1.014   
sum without ash  0.964 0.034587723 0.03112895 

*: The original kn are computed from “biomass share” divided by “mol weight”. 

2.2.2 Improving the Consistency of the Stoichiometric Metabolic Models 

Preliminary tests suggested that the initial metabolic model (Model 2α) created 

above are incomplete or contain potential errors. An improvement step was then carried 

out to refine the models. Measured reaction rates, which were acquired from the 

experiment described in [157] and evaluated with least square method, were used to 

find a more consistent stoichiometric matrix GT. The improvement strategy is based on 

the metabolic flux analysis, in which J measured reactions are selected as the input to 

compute the remaining measurable reaction rates. The optimization goal is to 

minimizing the difference between computed reaction rates and measured reaction rates 

from experimental data. This resulted in an improved metabolic model (Model 2) which 

was used for further investigations. For the convenience of the discussion, the final 

improved model (Model 2) is given here first (see Tab. 2.10 and section 6.3.1 in 

appendixes). Compared with Model 2α, Model 2 has no methyl-FH4 balance constrain, 

i.e. a row vector is removed from GT, and the coefficients of ATP were also adjusted in 

Model 2 according to some calibration steps. The details of the data evaluation and 

matrix adjustment steps are presented in the flowing sub-sections. Because these two 

aspects (methyl-FH4 balance and ATP balance) will both contribute to the errors in 

Model 2α, in the follow discussions, to demonstrate the effects of each of them, 

Model 2 is used as a reference while the problematic methyl-FH4 balance and ATP 

balance are added back respectively. 
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Tab. 2.10 GT matrix of Model 2 with 33 internal metabolites (rows) and 36 reactions (columns). The parts with grey background represent the differences compared to 
Model 2α and Model 2 has no methyl-FH4 balance (a row vector less than GT of Model 2α). 

Metabolites Reactions 
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2.2.2.1 Experimental Data Collection and Evaluation 

For calculation of the flux distribution of the stoichiometric models, three groups of 

measured reaction rates were used in the investigations, which were collected from 

different literature. For example, Nissen et al. published reaction rates in anaerobic, 

glucose-limited continuous cultures in [157]. Reaction rates during aerobic culture in 

chemostat were taken from [71] and calibrated using a least square method based on the 

linear system constraints by carbon and electron balances (see section 2.1.3.3). The 

corrected reaction rates were then used for estimation of unknown stoichiometric 

coefficients in the stoichiometric matrix GT as explained below. The details of these 

data can be found in the appendix section 6.1. 

The measured reaction rates in this study include the specific uptake rate of glucose 

and oxygen, the specific production rate of ethanol, glycerol, CO2, and also protein, 

nucleic acid, lipids, carbohydrates.  

2.2.2.2 Adjustment of the Stoichiometric Matrix GT 

To detect the source of error in the stoichiometric matrix, metabolic flux analysis 

(MFA) on matrix GT was performed while excluding one metabolite at a time. 

Problematic metabolites and related reactions were then identified if the predicted 

reaction rates became close to the measured reaction rates. The possible errors were 

then further investigated and corrected via reversed prediction. 

In the reversed prediction, the problematic coefficients in GT were treated as 

unknown variables. First, the vector v is calculated by solving Gk-p
T • v = 0, where 

Gk-p
T is a sub-matrix of GT without the rows containing the problematic coefficients. In 

the current study, Gk-p
T • v = 0 is an overdetermined system and can be solve with least 

square method. Thus v is substituted into the equation Gp
T • v = 0 where Gp

T are the 

rows of GT that contain unknown coefficients. The problematic coefficients are finally 

calculated by solving the second equation.  

Using the model improvement strategy described above, several problematic 

stoichiometric coefficients were identified and corrected. These metabolites include 

ATP and methyl-FH4. After removing the methyl-FH4 balance (a row vector in GT 

matrix) and adjusting the ATP coefficients in Model 2α, the improved model, Model 2 
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was created and used for various experiments in the rest chapters. In the following 

sub-sections, the refining process is further discussed. 

2.2.2.2.1 Calibrating ATP Balance  

When the original ATP coefficients (given in [157]) are used and the ATP balance is 

included in the stoichiometric equation, the calculated reaction rates tend to have great 

errors compared to the measured reaction rates. This is demonstrated through Model 2C 

(see Tab. 6.12 in section 6.3.4), which is a replicate of Model 2 where the ATPs appear 

in each synthesis reaction of biomass components and their coefficients are assigned to 

the original coefficients (given in [157]). Two experiments were designed. One used the 

measured glucose and oxygen uptake rates and ethanol production rates (plus CO2 

production rate in Model 2C) as known variable to predict the rest reactions rates via 

MFA (determined system). The other used only glucose and oxygen uptake rates to 

predict the rest reactions rates via flux balance analysis (underdetermined system). As 

shown in Tab. 2.11, if ATP balance is enforced, the predicted rates is far from accurate, 

glycerol production rate became negative (-0.00437 C-mol/(gh)) and biomass synthesis 

rates (0.37118 C-mol/(gh)) are far from the measured values (0.10302 C-mol/(gh)). For 

determined system, i.e. given enough measured reaction rates, it can be solved by 

simply removing the ATP balance and giving one more measured value. For example, 

in the column of Model 2C without ATP balance in Tab. 2.11, the simulated reaction 

rates of glycerol and biomass are closer to the given reaction rates. However for 

underdetermined systems using biomass maximization will lead to irrational results. For 

example in Model 2C when the ATP balance constraint was removed, biomass 

synthesis rate became unreasonable high (0.48801 C-mol/(gh)). 

Tab. 2.11 Flux distribution of Model 2C in anaerobic growth. Model 2C is Model 2 without energy 
summary (YATP • µ) in the pseudo-reaction of biomass synthesis. The numbers with dark background are 
the given rates vm. (Complete results can be found in appendixes 6.4.2.)  

Reaction 
Given Rate 

 
Reaction Rates in Model 2C 

C-mol/(gh) 

No. Designation 
C-mol/(gh)  with ATP balance  without ATP balance 

 Determined Underdetermined Determined  Underdetermined 

1 glc 0.0333     0.0333     0.0333     0.0333      0.0333 

10 glyc 0.00286  -0.00437  0.00613  0.00312  0.01494 

18 etoh 0.01756   0.01756  0.01309   0.01756  2.54E-16 

29 co2 0.0095  0.00810  0.00759   0.00931  0.00256 

35 respiration 0                0                0                 0                0 

36 Biomass 0.10302  0.37118  0.20041  0.10217  0.48801 
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To overcome this problem, the ATP coefficients were calibrated using the measured 

reaction rates. A possible reason that causes the ATP coefficient error can be the 

simplifications process (Step 2 in Fig. 2.3) that caused overestimate/underestimate of 

ATP production/consumption, especially in those reactions where biomass components 

are produced. Because there are many reactions involved in each synthesis pathway of 

those biomass components, proteins for example, it is very difficult, if not impossible to 

locate the error. To solve this problem, the ATP consumption in those reactions is 

moved into the pseudo biomass synthesis reaction (represented by YATP) and its 

coefficient is optimized via MFA. As discussed in section 2.2.1.2, since the proportion 

of biomass components is assumed to be constant, it is evident that the ATP 

consumption to build one unit of biomass should also be constant. The benefit of 

lumping all ATP consumption into one reaction is that it simplifies the coefficient 

calibration process as now there is only one parameter YATP instead of several 

stoichiometric coefficients in different reactions. As it is not necessary to know how 

much ATP is consumed in each individual component production, the simplification is 

reasonable when the biomass composition remains constant. 

It should be pointed out that in reality the P/O ratio in reaction 35 of Model 2 and 

reaction 16 of Model 3 varies under different growth conditions. This is because in the 

simplified models the series of reaction involved in the oxidative phosphorylation is 

replaced by a single linear equation, in which the P/O ratio is used to represent the 

number of synthesized ATP by consumed oxygen for each pair of electrons. Under 

aerobic conditions (see Tab. 6.2 in section 6.1), the estimated value of these two 

parameters are YATP = 0.1168 mol/g and P/O = 1.394. For anaerobic conditions (see 

Tab. 6.1 in section 6.1) the optimized YATP was determined as 0.0746 mol/g, which is 

used for further calculation in metabolic flux analysis and pathway analysis. Although 

the YATP and P/O ratio may vary under different specific growth rates [161], in this 

study, the changes under the same growth condition (either anaerobic or aerobic 

growth), were ignored. 

The consumed ATP for cell maintenance (mATP) is also ignored in these models, 

because the proportion of mATP is very small compared to YATP • µ if µ is not too low 

and the difference by including this extra reaction is negligible. Tab. 6.13 in section 6.3.5 

shows the reactions of Model 2D including the ATP-maintenance reaction. Compared 
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with the measured reaction rates, including this additional reaction does not increase the 

correlation between the simulated results and measurement. 

2.2.2.2.2 Effect of Methyl-FH4 Balance 

Methyl-FH4 was also found causing errors in the simulated results. Tab. 2.12 

demonstrates the simulated flux distributions in Model 2E (where the balance of 

methyl-FH4 was added back to Model 2) under anaerobic growth condition. Three 

methods, determined system MFA, overdetermined system MFA and overdetermined 

system MFA with F-matrix were tested to estimate the metabolic flux by giving proper 

number of measured rates as input. Due to the methyl-FH4 restriction, all the reaction 

rates related to biomass synthesis tend to zero when solved as a determined system 

given enough measured reaction rates (e.g. the result for determined system of Model 2E 

in Tab. 2.12). Further investigation by using an overdetermined system where all 

measured rates were given revealed the estimated flux is deflected most by the reactions 

involving methyl-FH4. The value of defect for methyl-FH4 (see Fig. 2.8) is calculated 

from the dot product of the row vector of GT corresponding to methyl-FH4 and the 

estimated flux vector v. This value means the net residual (positive or negative) of 

methyl-FH4 which should be zero in ideal cases. It is worth mentioning that a defect of 

10-5 is not ignorable because the flux distribution rates are normally in the range of 

10-2 ~ 10-5. The problem with methyl-FH4 balance is again confirmed by the flux 

determination with the advanced method using F-Matrix (Eq. (2.55) on page 25) for the 

same overdetermined system (see Tab. 2.12). The calculation with F-Matrix reduces the 

effect of the deviation of vm and fulfills the balances of internal metabolites as much as 

possible. When using F-Matrix, the defect of methyl-FH4 balance is adjusted to 

3.64E-11 C-mol/(gh) (see Fig. 2.8), but all the biomass synthesis related fluxes tend to 

zero (2.21E-07 C-mol/(gh) in Tab. 2.12) again. The sensitivity analysis of this model 

(see explanation in section 2.2.2.4) reveals the condition number of GT matrix for 

Model 2E is also extremely high, which suggests the Model 2E with methyl-FH4 

balance is unstable and very sensitive to variations of measurement. All these results 

implied that there is problem with the methyl-FH4 balance.  

The reason of methyl-FH4’s unbalancing maybe due to the fact that it appears in 

several highly integrated reactions (reaction 31 ~ 33 in Model 2) in the simplified model. 

Error may occur during the simplification procedure (Step 2 in Fig. 2.3) and it is 

difficult to locate it. Removing this metabolite is less harmful than removing the ATP 
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restrictions because those three reactions (reaction 31 ~ 33) have been highly 

constrained by many other involved metabolites. Therefore, the balance of methyl-FH4 

is ignored in Model 2.  

Tab. 2.12 Flux distribution Model 2E (with methyl-FH4 balance) in anaerobic growth. The numbers 
with dark background are the given rates vm. For the overdetermined system of Model 2E two calculation 
methods were performed: one with only matrix GT (overdetermined (GT)) and the other also using matrix F 
(overdetermined (F)), which are covered in Eq. (2.52) on page 24 and Eq. (2.56) on page 25 respectively. 
(Complete results can be found in appendixes 6.4.3.) 

Reaction 
Given Rate 

 
Rate in Model 2E (with methyl-FH4 balance) 

C-mol/(gh) 

No. Designation C-mol/(gh)  determined overdetermined (GT) overdetermined (F) 

1 glc 0.0333      0.0333     0.0333    0.03345 

3 pol   0  0.00128  2.75E-09 

10 glyc 0.00286  0.01846  0.00312  0.00898 

18 etoh 0.01756  0.00784  0.01756   0.01692 

29 co2 0.0095  0.00700  0.00931  0.00755 

31 dna   0  1.22E-05  2.63E-11 

32 rna   0  0.00016  3.51E-10 

33 protein   0  0.00164  3.55E-09 

34 lipid   0  8.89E-05  1.92E-10 

35 respiration 0                0                 0   -0.00240 

36 biomass 0.10302  0  0.10217  2.21E-07 

 

 
Fig. 2.8 Distribution defect of methyl-FH4 balance using different MFA methods for Model 2E. The 
first defect is for determined system; the second and third defects are determined as overdetermined 
system and calculated respectively by simple method (using only matrix GT) and advanced method (with 
matrix F).  
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2.2.2.3 Effects of Model Simplification 

Modeling with the modular approach usually means several reactions are integrated 

to a single one in order to simplify the system and make it solvable and easily 

manipulatable. In this study, a more simplified model, Model 3, was also tested as an 

attempt to further simplify calculations. Model 3 is a highly simplified version and has 

more abstractly combined reactions than Model 2 (see Fig. 2.9). Several metabolic 

stages of Model 2 such as EMP, TCA Cycle and PPP are replaced with integrated single 

reactions in Model 3 (cf. Tab. 2.13 and Tab. 6.7 in section 6.3.1) and NADPH is 

replaced with NADH. The dimension of its GT matrix is almost half size of Model 2 

(GT of Model 3 is a 14 × 18 matrix, see Tab. 2.15). Although Model 3 could provide 

useful information in some simulation or prediction tasks, the accuracy is compromised 

due to simplification. By comparing flux distribution of Model 2 and Model 3 in Tab. 2.16, 

the effect of reaction combination can be partly shown. In Tab. 2.16, the reaction rates 

under three different growth conditions were determined as underdetermined system by 

providing the uptake rates of substrate and oxygen (from [71]). The underdetermined 

systems were solved by maximizing the specific growth rate using linear programming 

optimization on Matlab. The same parameters of YATP and P/O were used for both 

models. 

 
Fig. 2.9 Network of highly simplified metabolic model (Model 3) of S. cerevisiae.  
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Tab. 2.13 Biochemical reactions of Model 3 for S. cerevisiae in C-mol stoichiometry. The abbreviations 
of metabolites are lised in Tab. 2.14. 

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 

2 pol g6p --> pol 

3 g6p-co2 g6p --> co2 

4 g6p-r5p g6p + (0.1667) atp --> r5p 

5 g6p-gap g6p + (0.1667) atp <==> gap 

6 glyc gap + (0.3333) nadh --> glyc  

7 gap-3pg gap <==> 3pg + (0.3333) nadh + (0.3333) atp 

8 ser 3pg --> ser 

9 3pg-pyr 3pg --> pyr + (0.3333) atp 

10 asp (0.857) pyr + (0.143) co2 + (0.214) atp --> asp 

11 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 

12 etoh acald + (0.5) nadh --> etoh 

13 lip acald --> lip 

14 glut (1.2) pyr + (0.2) atp --> glu + (0.4) nadh + (0.2) co2 

15 pyr-co2 pyr --> co2 + (1.6667) nadh + (0.3333) atp 

16 respiration (2) nadh + o2 --> (2 P/O) atp 

17 co2 co2 --> co2extern 

18 biomass (0.0083) pol + (0.00531) r5p + (0.00145) ser + (0.00743) asp + (0.00115) lip + (0.00538) glu + 
(YATP) atp --> biomass 

 

Tab. 2.14 Metabolites in Model 3 of S. cerevisiae. 

No. Abbreviation Full name of metabolites 

1 glc Glucose 
2 o2 Oxygen 
3 co2 Carbon dioxide 
4 co2extern Carbon dioxide (extern) 
5 etoh Ethanol 
6 glyc Glycerol 
7 pol Polysaccharide 
8 r5p Ribose 5-phosphate 
9 ser Serine family 

10 asp Aspartate (Aspartate- and Pyruvat- and aromatic Family) 
11 lip Lipid 
12 glu Glutamate 
13 g6p Glucose 6-phosphate 
14 atp Adenosine triphosphate 
15 gap Glyceraldehyde 3-phosphate 
16 nadh Nicotinamide adenine dinucleotide - reduced 
17 3pg 3-Phosphoglycerate 
18 pyr Pyruvate 
19 acald Acetaldehyde 
20 biomass Biomass 
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Tab. 2.15 GT matrix of Model 3 with 14 internal metabolites (rows) and 18 reactions (columns). 

Metabolites Reactions 

 
 

Because some reactions of Model 2 are not handled in Model 3, Tab. 2.16 compares 

the simulation results from Model 2 and Model 3 using MFA when given one or two 

measured reaction rates as known variable. Under three different growth conditions the 

flux distribution of two models are very close, however some noticeable small 

deviations can be found between them. In Model 3 the fluxes for biomass synthesis 

show higher values than those in Model 2 (The real biomass synthesis rate should be 0.1, 

0.24 and 0.34 C-mol/(gh) for anaerobic, oxidative and aerobic fermentative growth 

respectively). The reason may be the extensive simplification process of biomass 

synthesis system left out some detail constraints. The ignored NADPH in Model 3 

might also be a possible reason. 

Tab. 2.16 Comparison of flux distribution in Model 2 and Model 3 under different growth conditions. 
The numbers with dark background are the given rates vm. All the rates are determined by linear 
programming using underdetermined system. The used measured data can be found in Tab. 6.1 and 
Tab. 6.2 in section 6.1. The columns of “difference” are absolute values of differences between two 
models. 

 Rate in Anaerobic Growth 
C-mol/(gh)  Rate in Oxidative Growth 

C-mol/(gh) 
Rate in Aerobic Fermentative Growth 

C-mol/(gh) 

Reaction Model 2 Model 3 Difference  Model 2 Model 3 Difference  Model 2 Model 3 Difference 

glc    0.0333    0.0333   0.01679 0.01679   0.05299 0.05299  

pol 0.00128 0.00092 0.00036  0.00312 0.00230 0.00082  0.00319 0.00216 0.00103 

glyc 0.00312 0.00248 0.00064  2.51E-11 1.56E-15 2.51E-11  2.96E-16 7.40E-16 4.44E-16 

ser 0.00059 0.00016 0.00043  0.00145 0.00040 0.00105  0.00148 0.00038 0.00110 

asp 0.00097 0.00082 0.00015  0.00238 0.00206 0.00032  0.00242 0.00193 0.00049 

pyr-acald 0.02644 0.02774 0.00130  0.00027 0.00048 0.00021  0.03990 0.04165 0.00175 

etoh 0.01756 0.01837 0.00081  7.87E-16 1.11E-15 3.23E-16  0.02642 0.02747 0.00105 

lip 8.89E-05 0.00013 3.83E-05  0.00022 0.00032 0.00010  0.00022 0.00030 0.00008 

glut 0.00049 0.00059 0.00010  0.00121 0.00149 0.00028  0.00123 0.00140 0.00017 

o2              0               0   0.00865 0.00963 0.00098  0.00507 0.00507  

co2 0.00931 0.00925 6.67E-05  0.00869 0.00876 7.00E-05  0.01832 0.01798 0.00034 

biomass 0.10217 0.11057 0.00840  0.25021 0.27673 0.02652  0.25517 0.25986 0.00469 
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The phosphorylated form of NADH, coenzyme NADPH is used in anabolism, e.g. in 

the reactions for lipid and nucleic acid synthesis, as reducing agent to provide electrons 

and protons, while NADH is gained from TCA Cycle and glycolysis in catabolism and 

is oxidized in the respiratory chain to produce ATP. Despite of this difference, both of 

them participate in metabolism as reducing force. Sometimes, for simplifying models 

the NADPH can be considered as NADH like in Model 3. To determine how the 

lumping of NADPH into NADH affects the metabolic models, Model 2F, in which 

NADPH is substituted by NADH, was used to test the simulation accuracy. Tab. 2.17 

compares the estimated metabolic flux in Model 2F and Model 2. If a determined 

system is used, the result still agrees with the Model 2, but the result from 

underdetermined system (with less measured data) has a little deviation in the reactions 

of pentose phosphate pathway (see rates of reaction 4 ~ 6 for underdetermined system 

of Model 2F in Tab. 2.17) and the synthesis of lipid and biomass (see rates of 

reaction 34 and 36 for underdetermined system of Model 2F in Tab. 2.17). These results 

imply that, even though the lumping of NADH and NADPH is practically convenient 

and computational equivalent in determined systems, it influences the integrity of the 

model and its predictive capability due to less internal restriction.  

Tab. 2.17 Flux distribution of Model 2 and Model 2F in anaerobic growth. In Model 2F, NADPH is 
substituted with NADH. The numbers with dark background are the given rates vm. (Complete results can 
be found in appendixes 6.4.4.) 

Reaction Given Rate 

C-mol/(gh) 

Rate in Model 2 
C-mol/(gh)  Rate in Model 2F 

C-mol/(gh) 

No. Designation determined Underdetermined  determined underdetermined 

1 glc 0.0333            0.0333            0.0333            0.0333           0.0333 

3 pol   0.00127537  0.00127536  0.00127538  0.00146662 

4 g6p-r5p   0.00200394  0.00200393  0.00200337  5.17E-12 

5 r5p-e4p   0.0011056  0.0011056  0.00110529  -8.72E-06 

6 e4p-gap   0.0007647  0.0007647  0.00076442  -0.00027285 

10 glyc 0.00286  0.00312477  0.00312479  0.00312474  0.0012893 

18 etoh 0.01756  0.01755576  0.01755574  0.01755576  0.01865136 

29 co2 0.0095  0.00931336  0.00931336  0.00931336  0.00955744 

31 dna   1.0768E-05  1.0768E-05  1.0768E-05  1.24E-05 

32 rna   0.00016162  0.00016162  0.00016163  0.00018586 

33 protein   0.00164376  0.00164376  0.00164378  0.00189027 

34 lipid   8.8887E-05  8.8887E-05  8.8888E-05  0.00010222 

35 respiration 0                     0                     0                      0                      0 

36 biomass 0.10302  0.10216887  0.1021687  0.10216976  0.1174903 
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2.2.2.4 Sensitivity of Models 

As an index of sensitivity evaluation for models, the condition number (the ratio of 

the largest to the smallest eigenvalue) of GT matrices was calculated on Matlab for all 

the studied models. A condition number larger than 100 indicates the model is 

ill-conditioned and requires rechecking of all the above steps. Fig. 2.10 shows the 

comparison of the condition numbers of GT matrix for aforesaid models. The 

differences of the derivative models are summarized in Tab. 2.18. Except for Model 2α 

and Model 2E, the matrix GT of all other models have reasonable condition numbers 

lower than 100 (note: the lower the number is, the more stable the model will be), which 

can be considered as insensitive systems against the variations of measurements. The 

increased condition number of Model 2α and Model 2E maybe due to the unjustified 

methyl-FH4 balance. As discussed in section 2.2.2.2.2, the coefficients of methyl-FH4 

are questionable and do not fit the model well. The non-appropriate methyl-FH4 balance 

made the model unstable and very sensitive to the errors of measured data. Although 

Model 1 also contains the methyl-FH4 balance, it does not enforce the fixed linear 

relationship among biomass components related to the pseudo-reaction of biomass 

synthesis, thus the sensitivity measurement is not elevated (note: it does not mean 

Model 1 is accurate). 

The condition number of the GT matrix is a very convenient index for evaluating and 

adjusting the models. Combined with proper model tuning strategy, it can be helpful to 

locate the key elements and transform an ill-conditioned model into an eligible model. 

Tab. 2.18 Overview of the investigated models. 

Model name Differences among Models Condition number 

Model 1 an initial simplified stoichiometric model 75 

Model 2α Model 1 with an additional pseudo-reaction of biomass synthesis 16635 

Model 2 Model 2α with adjusted coefficients of biomass components and ATP, 
Model 2α without methyl-FH4 balance 

21 

Model 2A Model 2 without the pseudo-reaction of biomass synthesis 17 

Model 2B Model 2 with original kn in the pseudo-reaction of biomass synthesis 21 

Model 2C Model 2 without energy summary (YATP •µ) in the pseudo-reaction of 
biomass synthesis 

81 

Model 2D Model 2 with mATP reaction 22 

Model 2E Model 2 with methyl-FH4 balance 18492 

Model 2F NADPH in Model 2 substituted with NADH 20 

Model 3 further simplified version of Model 2 7 
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Fig. 2.10 Condition number of GT matrix for the investigated models. For better visual perception the 
y-axis is drawn on a logarithmic scale of the condition number. 

2.3 Homeostatic Metabolic Pathway Model 

MFA can be used to analyze a steady state of the organism under a certain growth 

condition, however, it is difficult to directly observe the flux changes under different 

growth conditions, because there are so many reactions. With metabolic pathway 

analysis, since reactions are organized into pathway, it is easier to observe the alteration 

of the flux distribution in different pathways, while facilitates understanding the 

behavior of S. cerevisiae under different growth condition.  

In this thesis, the studies of metabolic pathway analysis focused on exploring the 

variation of fluxes on different pathways using the elementary (flux) modes (EMs). As 

explained in section 2.1.4.2, the EMs includes all basic metabolically meaningful 

pathways of a model. The metabolic flux coefficients of the elementary modes can be 

determined by optimizing the specific formation rate of biomass using linear 

programming. The analysis and simulation was based on the established models of 

S. cerevisiae, which are described above. In the following part of this section, it will be 

explained how the EMs of the models are generated. 

2.3.1 Determination of Elementary Flux Modes 

To calculate the elementary flux modes, software Efmtool (version: 4.7.1) [162] was 

used, which is based on double description method algorithm. The coefficients of 

components in each pathway were normalized in relation to the first reaction (glucose 

uptake rate).  
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During some preliminary tests, it was noticed that the number of extracted 

elementary flux modes might vary if different P/O value and YATP were given. A series 

of elementary modes extractions were performed by varying both P/O value and YATP in 

a reasonable range.  

2.3.2 Elementary Flux Modes of S. cerevisiae 

Tab. 2.19 lists all the elementary modes of stoichiometric model GT for Model 2 with 

P/O = 1.65 and YATP = 0.0746 mol/g, this pair of parameters is seleted according to the 

validation step described in section 2.1.3.3, but also considering that the number of 

elementary flux modes should be maximized (discussed below). The calculated 

elementary flux modes with Efmtool are normalized according to the glucose uptake 

rate. This implies that all the elementary modes are assumed to have the same substrate 

uptake rate, therefore their biomass production/yielding rate can be easily expressed by 

the normalized biomass synthesis reaction rate. The elementary modes are classified in 

three groups representing three different growth conditions. The first four elementary 

modes (EM1 ~ EM4) correspond to anaerobic growth, the five elementary modes in the 

middle (EM5 ~ EM9) correspond to oxidative growth and the last four elementary 

modes (EM10 ~ EM13) correspond to aerobic fermentation. EM1, EM5, EM10 are three 

major pathways with high biomass yield and represent three growth states respectively. 

The remaining elementary modes are derived pathways with differences in one or two 

reactions. 

The above classification of different elementary modes is based on the observation of 

relevant reaction rates. If the rate of the oxidative phosphorylation reaction is zero, then 

the elementary mode is regarded as anaerobic metabolic pathway. The remaining modes 

are divided into oxidative pathways and aerobic fermentative pathways according to the 

production rate of ethanol. In each group one main elementary mode can be identified. 

In the anaerobic metabolic group and the aerobic fermentative group, the main 

elementary modes are identified by finding the pathways where the reaction rates of 

TCA Cycle (reaction 23 ~ 25) are zero; in the oxidative group, the main elementary 

mode is identified by finding the pathway which has no Glycerol production. It is easy 

to notice these main elementary modes are all the classic pathways found in textbooks. 
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Tab. 2.19* Elementary flux mode of Model 2 with P/O = 1.65 and YATP = 0.0746 mol/g. 

Reaction for anaerobic growth  for oxidative growth  for aerobic fermentative growth 

No. Designation EM1 EM2 EM3 EM4  EM5 EM6 EM7 EM8 EM9  EM10 EM11 EM12 EM13 
1 Glc 1 1 1 1  1 1 1 1 1  1 1 1 1 
2 g6p-f6p 0.90155286 0.97250698 0.98229149 0.98254404  0.538176315 0.828478884 0.861324947 0.925555161 0.926930989  0.850255281 0.88082249 0.949818818 0.950972695 
3 Pol 0.03828749 0.02003757 0.01752092 0.01745596  0.238989413 0.115088346 0.101069654 0.073656214 0.073069011  0.058237848 0.086859384 0.049649592 0.049027305 
4 g6p-r5p 0.06015965 0.00745546 0.00018759 0  0.222834272 0.05643277 0.037605399 0.000788625 0  0.091506872 0.032318126 0.00053159 0 
5 r5p-e4p 0.03319097 0.00402233 0 -0.00010382  0.122363014 0.030663899 0.020288673 0 -0.00043459  0.050485689 0.01743611 0 -0.0002916 
6 e4p-gap 0.02295693 0 -0.0031657 -0.00324745  0.066956252 0.00680569 0 -0.01330847 -0.01359354  0.034919039 0 -0.00897087 -0.00912089 
7 f6p-gap 0.93677282 0.97492037 0.98018089 0.98031667  0.656233857 0.851414576 0.87349815 0.916682403 0.917607421  0.903827217 0.891284156 0.94383794 0.944716837 
8 dhap-gap 0.37440086 0.17398632 0.14634932 0.14563597  0.327014273 0 -0.03699978 -0.10935256 -0.11090237  0.451644909 0 0 0 
9 dhap-g3p 0.09398555 0.31347386 0.34374112 0.34452236  0.001102656 0.425707288 0.473748856 0.567693759 0.569706083  0.000268699 0.445642078 0.47191897 0.472358418 

10 Glyc 0.0938089 0.31338141 0.34366028 0.34444182  0 0.425176291 0.473282538 0.567353922 0.569368956  0 0.445241324 0.471689896 0.472132215 
11 gap-3pg 0.85101618 0.66174867 0.63564883 0.63497516  0.681051592 0.429711114 0.401273387 0.345663639 0.344472463  0.916075239 0.446951885 0.469677677 0.470057738 
12 Ser 0.01778608 0.00930826 0.00813917 0.008109  0.111020203 0.05346317 0.046950923 0.034216277 0.033943497  0.027053825 0.040349681 0.023064234 0.022775157 
13 3pg-pep 0.8443464 0.65825807 0.63259665 0.63193429  0.639419016 0.409662425 0.383666791 0.332832535 0.331743652  0.905930055 0.431820755 0.461028589 0.461517054 
14 pep-pyr 0.83973244 0.65584338 0.63048523 0.6298307  0.610618844 0.395793342 0.371487074 0.323956361 0.322938241  0.898911919 0.421353492 0.455045409 0.455608864 
15 pyr-oxac 0.02573443 0.01346839 0.01177691 0.01173325  0.160636122 0.077357183 0.06793465 0.049508964 0.049114281  0.039143802 0.058383122 0.033372607 0.032954337 
16 Asp 0.02911709 0.01523828 0.01332441 0.01327501  0.18174803 0.087523041 0.076862026 0.056014497 0.055567938  0.04428905 0.066055319 0.037757804 0.037284564 
17 pyr-acald 0.79415625 0.58393824 0.55494935 0.5542011  0.020801175 0.010017066 0.008796907 0.006410894 0.006359785  0.829587471 0.109657119 0.240996899 0.243193392 
18 etoh 0.52724222 0.38814888 0.36896802 0.36847294  0 0 0 0 0  0.549706525 0.068068101 0.157791553 0.159292065 
19 Ace 0.00222176 0.00116275 0.00101671 0.00101294  0.013868143 0.006678378 0.005864898 0.004274143 0.004240069  0.003379442 0.0050403 0.00288108 0.00284497 
20 actcoa 0.00222176 0.00116275 0.00101671 0.00101294  0.013868143 0.006678378 0.005864898 0.004274143 0.004240069  0.003379442 0.0050403 0.00288108 0.00284497 
21 pyr-iso 0.02239084 0.12384165 0.13783164 0.13819274  0.852203207 0.64778688 0.62465835 0.579430695 0.578461907  0.034057974 0.536832149 0.39057801 0.388132093 
22 iso-akg 0.01919209 0.10614963 0.11814101 0.11845052  0.730457457 0.555244046 0.535419658 0.496653226 0.495822839  0.029192452 0.460140308 0.334780036 0.332683542 
23 akg-succ 0 0.08008793 0.09113199 0.09141705  0.508883977 0.414628642 0.403964194 0.383109951 0.382663247  0 0.347167322 0.258243693 0.256756556 
24 succ-mal 0 0.06407034 0.07290559 0.07313364  0.407107181 0.331702914 0.323171355 0.30648796 0.306130598  0 0.277733857 0.206594954 0.205405245 
25 mal-oxam 0 0.06407034 0.07290559 0.07313364  0.407107181 0.331702914 0.323171355 0.30648796 0.306130598  0 0.277733857 0.206594954 0.205405245 
26 oxac-oxam 0.0127948 0.00669649 0.00585554 0.00583384  0.079867297 0.038461943 0.033777166 0.024616121 0.024419889  0.019461748 0.029028138 0.016593038 0.016385077 
27 akg-glu 0.06760048 0.03537837 0.03093497 0.03082028  0.421960202 0.203200222 0.178448791 0.130047564 0.129010797  0.102824865 0.153359109 0.087661422 0.086562711 
28 glu-gln 0.01484284 0.00776792 0.0067923 0.00676712  0.092648562 0.044616076 0.039181477 0.028554161 0.028326522  0.022576953 0.033672609 0.019247561 0.01900632 
29 co2 0.27969687 0.2465263 0.24195211 0.24183404  0.380469498 0.276480255 0.264714471 0.241706575 0.24121374  0.299324499 0.261524885 0.241811578 0.241481898 
30 r5p-5aic 0.00434626 0.00227459 0.00198891 0.00198154  0.027129225 0.013064418 0.011473066 0.00836119 0.008294533  0.006610953 0.009859967 0.005636044 0.005565405 
31 Dna 0.00032326 0.00016918 0.00014793 0.00014738  0.002017776 0.000971686 0.000853326 0.000621876 0.000616918  0.000491699 0.00073335 0.000419189 0.000413935 
32 Rna 0.00485211 0.00253933 0.00222039 0.00221216  0.030286703 0.014584941 0.012808377 0.009334321 0.009259906  0.007380379 0.011007535 0.006292004 0.006213143 
33 protein 0.04934711 0.02582556 0.02258196 0.02249824  0.308023225 0.148332443 0.130264351 0.094932341 0.094175521  0.075060269 0.111949342 0.063991234 0.063189195 
34 Lipid 0.00266846 0.00139652 0.00122112 0.0012166  0.01665643 0.008021112 0.007044076 0.005133489 0.005092564  0.004058902 0.006053687 0.003460341 0.003416971 
35 respiration 0 0 0 0  0.377587305 0.204237788 0.184624289 0.146270248 0.145448695  0.023788688 0.152247474 0.083716834 0.082570745 
36 biomass 3.06719063 1.60519875 1.40359125 1.39838748  19.1453147 9.219666163 8.096636215 5.900560106 5.853519587  4.665402993 6.958259051 3.977402383 3.927551295 

*: All the values are normalized with glucose uptake rates.
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Beside those main pathways, there are also some alternative pathways in each group. 

This is usually because there exist circles in a metabolic network, and some subsidiary 

pathways can go around the circle from another side. For example in Tab. 2.19, under 

anaerobic growth, EM1 goes through the reaction 4 ~ 6 of pentose phosphate pathway 

(PPP) (see Fig. 2.11A), while EM2 ~ EM4 include one reaction less respectively in PPP 

as shown in Fig. 2.11B ~ D. 

A. B.  

C. D.  

Fig. 2.11 Schematic illustration of active pathways in PPP of elementary flux mode of Model 2. A, B, 
C and D show partial pathways of EM1, EM2, EM3 and EM4 respectively. Red solid arrows represent 
active reactions, and black dash arrows represent inactive reaction in a pathway. 

Another finding in this study is that when the stoichiometric matrix GT is changed by 

the alteration of P/O ratio and YATP value, the number of elementary modes of GT will 

also change. The number of flux pathways (i.e. the column number of EM matrix) 

normally decreases while decreasing P/O ratio and keeping the YATP constant (see 

Tab. 2.20). The disappearing elementary modes are usually the subsidiary pathways and 

involve the reactions of pentose phosphate pathway and production of glycerol. A 

similar phenomenon happens when altering YATP and keeping P/O ratio constant. The 

number of elementary modes decreases with increasing YATP value (see Tab. 2.20). The 

disappearing modes are secondary elementary modes in the oxidative growth group and 

aerobic fermentation group. This can again be explained by the increasing ATP 

consumption for biomass synthesis, which expels the consumption in other reactions. 
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From a geometrical paint of view, it can be explained as the rotation of the null space of 

GT causing the edge of the convex cone to change, because the convex cone is the 

intersection of the null space and the inequalities in Eq. (2.57). 

Tab. 2.20 The number of elementary modes of Model 2 under variation of P/O ratio and YATP value. 
The circled item represents the condition that was used in the following simulation tests. This pair of P/O 
ratio and YATP value is the most close to the valiadated Model 2 while the model still contains thirteen 
elementary modes.  

YATP 
 PO 

3 2 1.65 1.39 1. 21 1.06 1 

0.05  13 13 13 13 13 13 13 
0.0746  13 13 13 12 12 9 9 
0.088  13 13 12 12 9 9 9 
0.117  13 12 9 9 9 8 8 
0.14  13 9 9 8 8 8 8 
0.2  9 8 8 8 8 8 8 
0.3  8 8 8 8 8 8 8 

2.4 Predictive Homeostatic Metabolic Model 

In this chapter, a biomass-maximizing metabolic pathway analysis algorithm was 

tested to extent the pathway model from previous step to a predictive homeostatic 

metabolic model. It was first validated using the experimental data set, and then utilized 

to simulate the flux changes of S. cerevisiae under various growth conditions. 

2.4.1 Algorithms for Flux Regulation Coefficients  

The non-negative linear combinations of the EMs provide all possible states of the 

metabolic network. An arbitrary flux of the network can be expressed as in Eq. (2.69) 

𝐯 = �𝜆𝑖𝐄𝑖 = 𝐄 ∙ 𝛌,
k

𝑖=1

     𝜆𝑖 ≥ 0 

where v is a n-dimensional flux vector. The linear combinations of k EMs in the EM 

matrix E (including k vector Ei) are regulated by non-negative coefficients (λi). The 

vector λ represents all the flux coefficients λi. For a normalized matrix E, the sum of 

these coefficients should equal one, since λi represents the relative contribution of the 

flux modes. 

 

(2.69) 
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�𝜆𝑖

k

𝑖=1

= 1 

Given the measured/expected reaction rate of certain substrate(s) rs and oxygen ro 

(optional) and a predefined EM matrix E, the flux coefficients λ can be determined by 

maximizing the biomass production rate (µ), using a linear programming method, as 

illustrated in Eq. (2.71)  

𝜇𝑚𝑎𝑥 =  𝑚𝑎𝑥 �𝐜𝜇𝛌 � 𝜆𝑖 ≥ 0 ∩�𝜆𝑖

k

𝑖=1

= 1 ∩  𝐜𝑠𝜆 = 𝑟𝑠 ∩ 𝐜𝑜𝜆 = 𝑟𝑜�  

where cµ is the row vector of matrix E corresponding to biomass synthesis and cµi is the 

reaction rate of biomass synthesis in Ei. cs and co are row vectors representing the 

reaction rates that involve substrate and oxygen respectively in matrix E.  

With this approach, the changes of metabolic flux distribution on different pathway 

under different growth conditions can be determined with very few measurable 

parameters. In the following section the estimated flux distribution will be compared 

with the experimental data and the results of metabolic flux analysis.  

2.4.2 Growth Condition Simulations  

In this study, the growth of S. cerevisiae at steady state in chemostat was simulated 

using the biomass-maximizing metabolic pathway analysis algorithm described in the 

previous section. This is driven by the hypothesis that a cell, no matter under what 

condition, will always prioritize the growth, i.e. biomass synthesis. To validate this 

hypothesis, a series of case studies were performed on Model 2 to simulate the flux 

distribution on different pathway under various growth conditions.  

The principle of these studies is using the uptake rates of glucose and oxygen from 

literature data [71][157] and the above optimization algorithm to determine the flux 

coefficients of elementary modes of the yeast under aerobic or anaerobic growth.  

Using the reaction rates taken from [71] (see Tab. 6.2 in section 6.1) the oxidative 

growth and aerobic fermentative growth of S. cerevisiae were simulated with various 

dilution rates. Two oxidative growth simulations were conducted at D = 0.1 and 0.24 h-1, 

where the glucose uptake rates were set to 0.00636 and 0.01679 C-mol/(gh) respectively. 

Five aerobic fermentative growth simulations under D = 0.26, 0.28, 0.3, 0.34, 0.4 h-1 

(2.70) 

(2.71) 
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were conducted by setting the glucose uptake rates to 0.02223, 0.02893, 0.03663, 

0.05299, 0.07775 C-mol/(gh) respectively and the oxygen uptake rates to 0.00757, 

0.00694, 0.00632, 0.00507, 0.0032 C-mol/(gh) respectively. All the simulations were 

performed on the elementary modes of Model 2 with P/O = 1.65 and YATP = 0.0746 mol/g 

(see Tab. 2.19 on page 60). With the determined flux coefficients of each elementary 

mode, the reaction rates of each reaction can be computed. In all the simulations, the 

computed reaction rates (Ethanol, Glycerol and CO2) were then compared with the 

unused reaction rates from [71] (see Tab. 6.2 in appendixes 6.1) to validate the biomass 

maximization method. 

It is known that the growth of S. cerevisiae is purely oxidative and only limited by 

the substrate uptake rate when the glucose uptake rate is under a certain threshold and 

oxygen supply is high. Therefore, the flux coefficients of elementary modes would be 

determined by normalizing the substrate glucose uptake rate. When the substrate uptake 

rate is higher than the threshold, the growth of S. cerevisiae turns into a mixture of 

respiratory fermentation (Crabtree effect) as introduced in section 2.1.1.3. At this stage 

of growth the oxygen uptake rate could be used besides the glucose uptake rate to 

determine the flux coefficients of elementary modes. 

Fig. 2.12 schematically illustrates the distribution of the flux coefficients λ from the 

elementary flux mode analysis during the aerobic growth. It can be seen that, when the 

dilution rate D in the Chemostat is between 0.1 h-1 and 0.24 h-1, the glucose uptake rates 

do not reach the threshold and the organism is in a purely oxidative growth, i.e. only the 

main oxidative pathway EM5 is active (note: the flux coefficient λ5 is close to one and 

others are near zero). When the glucose uptake rate goes above the threshold and the 

dilution rate is within 0.26 h-1 to 0.4 h-1, the growth turns into aerobic fermentation. The 

contribution of EM5 decreases, while the main pathway for aerobic fermentation EM10 

increases, (cf. λ5 and λ10 in Fig. 2.12). These flux-changing trends coalesce closely with 

the known beheavior of S. cerevisiae.  
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Fig. 2.12 Estimated flux coefficients for simulated aerobic chemostat growth of S. cerevisiae at 
steady state referring corrected reaction rates taken from [71]. Only two EMs (EM5, and EM10) are 
active during the growth, while the flux coefficients of the other eleven EMs are near zero, which are not 
shown in this figure. 

Fig. 2.13 compares some key reaction rates of glucose, ethanol, glycerol, oxygen and 

carbon dioxide changing over the tested range of growth rates. Note that, except for the 

uptake rate of glucose and oxygen, the remaining measured reaction rates were not 

fixed / preset in the simulation. The experimental data from literature [71] are shown as 

points for comparison with the estimated reaction rates (lines). The overall agreement 

between the estimated reaction rates and measured reaction rates are rather good despite 

of some small deviations. In the purely oxidative growth state, (D = 0.1 h-1  0.24 h-1) 

the consumption rate of oxygen increases when the uptake rate of glucose increases, and 

has almost the same value as the carbon dioxide production rate, since the respiration 

quotient RQ should be around one. The pathways for production of ethanol and glycerol 

are not active in the pure oxidative growth. For higher dilution rates (i.e. when D is 

between 0.26 h-1 and 0.4 h-1), with increasing glucose uptake, the energy demand for the 

growth can no longer be fulfilled by the respiratory chain, in turn causing increasing 

aerobic fermentative metabolism with higher carbon dioxide and ethanol production. 

Note that the estimated ethalnol production rates are higher than the measured data, 

which agrees with the Nielsen and Villadsen’s finding that the ethanol rates are 

underestimated (see section 2.1.3.3). From the perspective of optimizing biomass 

formation, the ideal growth with sufficient oxygen should not produce glycerol as 

suggested in the simulation result described above. However, small amounts of glycerol 
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are measured during experiments in [71]. One possible explanation is that glycerol is 

produced to compensate the reduced force and achieve redox balance. As discussed 

previously, suppressing the enzymes involved in the glycerol production might be 

helpful to increase the production of biomass.  

 
Fig. 2.13 Growth simulation of S. cerevisiae at steady state in aerobic chemostat culture according 
corrected reaction rates taken from [71]. rS(EM), rE(EM), rG(EM), rO2(EM) and rCO2(EM) stand 
respectively for the calculated formation rates of glucose, ethanol, glycerol, oxygen and carbon dioxide 
with EMs and they are represented as lines, while rS, rE, rG, rO2 and rCO2 are corrected reaction rates 
taken from [71].  

In the anaerobic growth, the simulations focused on the metabolism flux at three 

dilution rates D (D = 0.1, 0.2 and 0.3 h-1). The glucose uptake rates under these three 

dilution rates were set to 0.0333, 0.0667 and 0.1042 C-mol/(gh) respectively according 

to experimental data of Nissen et al. [157] (see Tab. 6.1 in section 6.1). The oxygen 

uptake rates were all set to zero for the strict anaerobic growth of Nissen’s experiments. 

The flux of Model 2 constantly goes through the EM1 no matter at what dilution rate 

(see Tab. 2.21). The relation between the estimated reaction rates and the dilution rates 

therefore is linear. This also agrees well with the measured reaction rates as listed in 

Tab. 2.22. 
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Tab. 2.21 Estimated flux coefficients for simulated anaerobic growth of S. cerevisiae at stationary 
state referring experiment data from Nissen’s study [157]. 

D (h-1) 0.1 0.2 0.3 

λ 1 1 1 1 

λ 2 2.17E-12 9.03E-10 3.44E-10 

λ 3 1.59E-12 2.26E-09 1.51E-09 

λ 4 1.58E-12 2.28E-09 1.54E-09 

λ 5 4.74E-14 7.86E-11 3.13E-10 

λ 6 1.16E-14 1.15E-10 3.69E-10 

λ 7 3.61E-15 1.05E-10 2.96E-10 

λ 8 2.89E-15 1.68E-11 6.79E-12 

λ 9 3.22E-15 1.33E-11 6.19E-13 

λ 10 8.65E-16 8.89E-09 2.15E-08 

λ 11 7.05E-15 8.41E-11 2.36E-10 

λ 12 7.11E-14 1.68E-13 7.65E-10 

λ 13 7.28E-14 3.24E-12 8.01E-10 

Tab. 2.22 Comparison of the determined flux distributions by elementary flux mode analysis with 
the experiment data from [157]. 

 
Difference of Rates (C-mol/(gh)) 

D r(glycerol)  r(ethanol)  r(carbon dioxide)  r(biomass) 

1/h Exper. data EM rate  Exper. data EM rate  Exper. data EM rate  Exper. data EM rate 

0.1 0.00286 0.00312  0.01756 0.01756  0.0095 0.00931  0.10302 0.10214 

0.2 0.00574 0.00626  0.03315 0.03517  0.01814 0.01866  0.20634 0.20458 

0.3 0.00896 0.00977  0.05179 0.05494  0.02834 0.02914  0.32235 0.3196 

 

2.4.3 Flux Coefficient Changes under Oxygen Limitation 

To study the changes of flux coefficients under oxygen limitation, the glucose uptake 

rate was fixed as 0.05299 C-mol/(gh), while varying the oxygen reaction rate. The 

biomass maximization scheme as described above was applied to find the flux 

coefficients. Eventually, the determined flux coefficients were plotted over the oxygen 

reaction rate to demonstrate the flux changes on every pathway. Fig. 2.14A shows the 

alteration of the flux distributions on different pathways under different oxygen supply 

conditions (by varying the oxygen consuming rate: reaction 35 of Model 2). λi is 

corresponding to the coefficient for the ith column of the EM matrix. The changes of λ 

affirm the main pathways are the characteristic elementary modes (i.e. λ1 for anaerobic 

EM1, λ5 for oxidative EM5 and λ10 for aerobic fermentative EM10) while the 

contributions of remaining elementary modes can be ignored, since their λ values are all 

near zero. The predicted flux coefficients clearly depict the changes of the flux 
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distributions under varying oxygen limitations. The first main EM for the flux of 

anaerobic growth is the only active pathway (EMi is considered non-active if λi < 108) 

when there is no oxygen supply. As the oxygen uptake increases, the metabolic 

pathways change from anaerobic fermentation via aerobic fermentative stage, to the 

oxidative growth pathway, (note: the corresponding changes of λ1, λ5 and λ10 of those 

pathways). This pathway shifting can directly be seen by comparing the pathway 

distribution graphs of the anaerobic fermentation (Fig. 2.15 on page 70) and oxidative 

respiration (Fig. 2.16 on page 71) states. 

With the determined flux coefficients of elementary modes, the individual reaction 

rates of v in Eq. (2.69) can be calculated. Fig. 2.14B illustrates the variation of some 

key reactions with the increasing oxygen supply under the hypothesis of constant 

substrate glucose uptake rate. The y-axis indicates the yield (ri/rs×100%), where rs is the 

fixed glucose uptake rate. As the oxygen supply increases, the production rates of 

biomass (red) and carbon dioxide (purple) increase; ethanol (green) and glycerol 

(yellow) decrease. At 0.0201 C-mol/(gh) the oxygen uptake rate reaches saturation and 

the organism can be seen at fully oxidative growth. The specific growth rate µ also 

increases with oxygen supply while the respiration quotient RQ decreases (see 

Fig. 2.14C). 

In reality, the glucose uptake rates will change when yeast is cultured under different 

oxygen supply conditions, so will the distribution of the flux on different pathways. 

Using relative reaction rates to glucose (as shown in Fig. 2.14B) intuitively shows the 

relations and tendencies of the key reactions.  
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Fig. 2.14 Simulation of S. cerevisiae growth under different oxygen supply conditions (the same 
glucose uptake rate is assumed). X-axis in all three figures represents the varying oxygen uptake rate 
(note: from 0 to 0.0001 logarithmic scale is used, after 0.0001 linear scale is used), the maximum oxygen 
uptake rate is 0.0201mol/gh). A. Predicted flux coefficients of three main EMs. λ1 (blue) corresponding 
to flux coefficients of EM1 stands for anaerobic growth; λ5 (green) corresponding to flux coefficients of 
EM5 stands for oxidative growth; λ10 (red) corresponding to flux coefficients of EM10 stands for aerobic 
fermentative growth, which can be seen as transitional phase from anaerobic to oxidative growth. The rest 
flux coefficients are near zero and not shown in this figure. B. Predicted yield to substrate (ri/rs×100%). 
YSG, YSE, YSC, YSO and YSX represent respectively the yield of glycerol, ethanol, carbon dioxide, 
oxygen and biomass to substrate glucose. C. Predicted Specific growth rate (µ) and respiration 
quotient (RQ). For better visual perception the right y-axis is drawn on a logarithmic scale of RQ. When 
the oxygen uptake rate approaches zero, RQ tends to explode and is not covered here. 
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Fig. 2.15 Schematic illustration of the metabolic flux for anaerobic growth of S. cerevisiae. The blue 
fluxes indicate active metabolic pathways, while the purple fluxes are non-active pathways and do not 
participate in cell metabolism under the certain growth condition. This graph is created using GraphView 
which will be introduced in Chapter 3. 
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Fig. 2.16 Schematic illustration of the metabolic flux for oxidative growth of S. cerevisiae. The green 
fluxes are active metabolic pathways, while the purple fluxes are non-active pathways. This graph is 
created using GraphView which will be introduced in Chapter 3. 
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2.4.4 Contributions and Limitations 

In this study, a new metabolic pathway analysis based on biomass-maximizing is 

proposed. The new method was tested using measured data of reaction rates, and used 

to simulate the metabolic changes of yeast under various growth conditions. This 

method can be conveniently used to predict the optimal condition for bioprocess, or find 

the missing pathway or bottle neck enzyme and guide the genetic engineering to 

improve the production rates.  

Compared with other existing metabolic analysis methods introduced in section 2.1.4.3, 

this approach has several advantages:  

Firstly, the calculation is relative simpler than most other pathway analysis methods. 

For example, Carlson and Srienc [39] set the optimization goal to maximize both 

biomass-production and energy-generation, as they argued “the energy generating 

pathways do not involve synthesis of biomass” and “energy can be produced 

independently from the biomass pathway reactions”. And in the thermodynamics 

method, Wlaschin et al. [49] proposed solving the pathway coefficients in classical 

thermodynamics as an open system in a near equilibrium steady state [163][164]. In 

these systems, researchers pay a lot attention to the energy efficiency. Although it is 

reasonable as “evolutionary pressures under carbon-limited growth conditions likely 

select organisms that utilize highly efficient pathways”. Mathematically, the energy-

generation is positively related to the relative biomass synthesis rate (to the substrate 

uptake rates). Therefore, maximizing the biomass could approximately indicate the 

energy efficiency through this implicit relation. 

Secondly, the new method results a predictive model for simulating the metabolic 

flux under any condition and provide an intuitive delineation of the flux shifting trend 

under varying simulation conditions. Unlike MFA, the MPA can not only analyze one 

state of cell metabolites, but also simulate the flux changing during bioprocesses and 

predict the behavior of cell in the bioreactor. Another strength of metabolic pathway 

analysis is to present the flux as a combination of several pathways rather than many 

individual reactions. This makes it easier to comprehend the changes between different 

growth conditions. Moreover, these simulations provide useful tool for finding the 

optimal growth to achieve maximum yield rate of a certain product. 
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Thirdly, through the flux-shift plotting, the essential elementary pathways can be 

detected. As illustrated in Fig. 2.14A, the yeast metabolic system consists of three main 

essential pathways (EM1, EM5 and EM10). Flux gradually shifts from EM1 via EM10 to 

EM5 while the ratio of Oxygen/Glucose uptake rates steady increase. It is important to 

notice that the real number of significant/meaningful elementary pathways is far less 

than the computed elementary modes. This is because the mathematically existing 

pathways may be too inefficient to contribute to the microorganism growth, i.e. they are 

not biological meaningful. It should be pointed out, some authors have proposed several 

metabolic pathway analysis method based on minimizing/maximizing the number of 

elementary modes [165] or minimizing the square sum of flux coefficients [43][166]. 

These methods may provide some information for understanding the metabolic structure 

from a mathematical point of view, cautions should be taken when interpreting the 

individual role of each pathway. 

The proposed method of maximizing biomass formation rate also suffers from some 

drawbacks. The main prominent limit is that the established predictive model is based 

on linear equation and is very sensitive to the accuracy of coefficients in the 

stoichiometric matrix. Therefore it requires extra matrix adjustment step as discussed in 

section 2.2.2.2. Another limit is the difficulty to handle complicated models. For a large 

metabolic network, the total number of elementary modes can reach several millions. 

Although theoretically the above calculation can still be carried out, the plotting and 

analysis step will be very difficult, if not impossible. One possible solution to such 

situation is to set some criteria to quickly screening the mathematically generated 

elementary modes and eliminating biologically ineligible or inefficient pathways. It is 

worth mentioning the pathways found in simplified models could suggest clues for 

narrowing the screening condition. A from-coarse-to-fine approach could be an 

attractive way of modeling a genome-scale metabolic network.  

In conclusion, the proposed approach of metabolic pathway analysis is a simple and 

efficient method for analyzing cell metabolism physiological state under a given 

condition and simulating cell behavior in a dynamic process. It not only determines the 

character of different metabolic pathways but also is helpful for studying the structure, 

function of elementary pathways and their dynamic relationship in complex cellular 

networks. The alteration of the flux coefficients expresses the changing of the metabolic 

pathways under varying growth conditions, which reveals the character of cell 
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metabolism and provides meaningful information for further metabolic regulation. 

Using the mutual information of the in silico simulation and metabolite pool 

measurement, a more comprehensive understanding of the proteom status of yeast can 

be hopefully achieved. 

 



3  Visualization of Metabolic Pathways                                                                               75 

 

 

3 Visualization of Metabolic Pathways 

3.1 Theoretical Background 

Metabolic flux analysis and pathway analysis provide convenient tools for dealing 

with metabolic networks from a quantitative perspective. However their matrix or 

vector formats are very hard to comprehend for an ordinary biologist and make it 

extremely difficult to compare different elementary modes by showing only two 

columns of numbers. Graphical representations of different metabolic pathways 

therefore become an ideal and important tool for further analysis. As human brain is 

very efficient for pattern recognization, converting matrices to graphs could facilitate 

depicting the topology of the network and identifying common and different parts of 

different pathways, especially for increasingly large and complex biological networks. 

Although static manually-drawn pathway graphs have long been used as an essential 

tool for bioprocess analysis [167] and could work very well on small networks, 

producing such graph is a very time-consuming task especially for large networks, and 

cannot be repeated very frequently. Therefore, it is not suitable for dynamic high-

throughput pathway analysis encountered in this study. The following sections primarily 

focus on dynamic metabolic network visualization techniques, which can automatically 

generate a graph layout of all the pathways with reasonable aesthetic criteria from 

numerical inputs. Some tools also allow the graph to be updated according to the 

corresponding data changes, which can be used to demonstrate the flux changes under 

different growth conditions.  

3.1.1 Graphic Representation of Reactions  

In a manually created pathway graph, a reaction is conventionally represented by 

putting metabolites on both ends and connecting them with lines. This pattern is very 

similar to a mathematical definition of graph, which consists of edges and nodes, and 

nodes are connected with edges. However, simply defining metabolites as nodes and 

reactions as edges could cause ambiguity when one reaction involves more than a pair 

of metabolites and lead to complicated patterns, as shown in the example of Fig. 3.1A. 

To avoid this complexity and handle bifurcation in reactions, the representation of a 
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reaction with a bipartite graph is usually used in metabolic pathway visualization 

software, where reactions can also be considered as nodes during planning the layout 

when a reaction involves more than one pair of metabolites. An edge is added between 

two nodes and one reaction can be represented by one or more edges drawn together. 

The reaction nodes themselves are usually not shown in order to give an equivalent 

visual effect close to the man-made patterns. An example is given in Fig. 3.1B. Through 

this modification the reaction matrix (m × n) can then be transformed to a graph 

representation G = (V, E), where V is a set of vertices (m metabolites + some reaction 

nodes) and E is a set of edges (pairs of metabolites and reactions). Taking Fig. 3.1B as 

an example, in this graph G the set V includes seven nodes (v1 to v7), where v1 to v5 are 

metabolite nodes and v6, v7 are reaction nodes, and in the set E there are six edges (e1 to 

e6). 

A.              B.  
Fig. 3.1 Reaction drawing for those involve more than a pair of metabolites. A. Reactions are not 
considered as a node. B. Reaction nodes are hidden as a point to give a clear visual. The vertices are 
represented as vi and edges ei. 

3.1.2 Generating Layout 

Given the description of a graph G = (V, E), the next step is to compute geometric 

positions for the graph elements for the final drawing step. To facilitate the human 

interpretation, the layout has to satisfy a set of aesthetic criteria and constraints. The 

most common rules include no overlap of nodes, minimal edge crossing, rational 

distance (closer when connect to the same reaction, further apart when not related) and 

maximal symmetry. Besides these aesthetic criteria, it is also attracting, although 

difficult, for the metabolic pathway drawing software to follow some not well-defined, 

conventions as can be found in some relevant biochemistry textbooks [20][50][168] (for 

example Fig. 3.2), because biologists are so used to the textbook representations. These 

requirements impose a big challenge for software developers. According to available 
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literature, so far there is still no automatic software that meets all these explicit and 

implicit rules, and network visualization remains a bottleneck of metabolic pathway 

analysis. In the following, some prominent efforts towards solving the problem are 

briefly summarized. Considering the great number of publications in this field, this 

summary is far from complete, but is supposed to cover the most common and basic 

methods in literature. 

 
Fig. 3.2 Typical metabolic network graph in textbooks. 

 

Hierarchy layout 

A hierarchy layout draws the metabolic network as a tree shape or cascade (as shown 

in Fig. 3.3). This layout, if drawn properly, can emphasize the chain connection from 

reactants to products, therefore is the most commonly used visualization model for 

metabolic pathway analysis. Another reason for its popularity is because the drawing 

rules are straightforward and many mature drawing algorithms have been established 

for non-biological applications, since hierarchy structure is one the most seen structures 

of many data sets. Three key steps are normally involved in producing a hierarchy 

layout. First step is to convert graph G to a hierarchy structure form, which can be done 

using breadth first search (BFS) or depth first search (DFS). BFS and DFS are two 

graph search algorithms with different graph traversal techniques. BFS starts at a given 

node and travels all the nodes with priority of neighboring nodes (as the order of nodes 

shown in Fig. 3.3), while DFS travels the nodes with priority of branch nodes. [169–172] 



3  Visualization of Metabolic Pathways                                                                               78 

 

 

The second step for producing a hierarchy layout is to minimize the crossing. This is 

usually solved by using the iterative permutation method such as published in [173]. 

The last step is locally adjustment of nodes positions. One of the most common methods 

is force-directed layout, which mimics a physical system by considering nodes as 

masses (or particles) and edges as springs (or magnetic forces). The final position is 

decided when the repulsion between nodes and attraction on the edges achieve an 

equilibrium.  

 

Fig. 3.3 Drawing network with hierarchy layout. The nodes were traveled with breadth first search. 

 

Circular layout  

Beside hierarchic components, in many manually drawn metabolic network figures, 

circular structures are also often seen, which represent a group of reactions that 

normally happen in a recurrent way. However the circle is defined by using some 

profound biochemical knowledge that cannot be explicitly expressed by rules. This 

raises a lot of difficulties for automatic software to identify such structures. The first 

attempt to detect these cyclic paths was reported in [174], where a depth first search is 

carried out on those strongly connected components (“subgraphs in which every two 

nodes are reachable from each other”). This results in the largest circle to be detected 

first, which usually is not the desired result, especially when side substrates, like NADH, 

are considered in the network. In [175], the circle detection method was replaced by the 

breadth first search method, which in most cases generates the smallest circles. Another 

contribution of this paper is to introduce a joint circle model in which two circle paths 

share one or more reactions on their border. These strategies lead to better visual results. 
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In addition to establishing the circular structure, the direct-related metabolites (e.g. 

substrates or products of the circle metabolites) outside of a circle need also to be 

positioned around this circle so that the edges crossing the circle are minimized. 

Therefore the circular layout is usually combined with the hierarchy layout to generate 

the whole metabolic network.  

Grid layout 

In hierarchy and circular layouts, the nodes can be placed at any distance to each 

other. Even when the force-directed layout algorithm is used to optimize the node 

positions, the inter-node distance can vary very much from a few pixels to hundreds and 

thousands pixels, giving the network an odd uneven looking. To overcome these 

drawbacks, a grid layout was proposed by Li and Kurata [176]. In a grid layout, the 

nodes can only be placed on a square grid and interact according to a specified cost 

function that is designed based on the topological structure of the network. As in the 

force-directed system, closely related nodes will be attracted towards each other and 

remotely related nodes are repulsed from each other. The size of cells in a grid limits the 

minimum distance between nodes and intrinsically results in an “organized” looking. 

Additional benefit is, as the possible positions are limited, the computation of force 

equilibrium is simplified. This allows more complicated restrictions like edge crossing 

etc. to be incorporated into optimization function [177–179]. 

3.1.3 Drawing and User’s Interaction 

After the layout is generated, the final step of metabolic network visualization is to 

draw the graph on to the screen. Although it is relative easier compared to the previous 

step, cautions should be taken to avoid confusion. The most important consideration is 

to control how many details to show to the user. In large metabolic networks, showing 

all side reactants could easily cause distraction and confusion. On the other hand, when 

zooming into several closely related reactions, it is essential to provide detailed 

information about side reactants and even involved enzymes. Another useful feature is 

to highlight or distinguish different pathways in a network. For pathway analysis it will 

improve user perception if different color or opacity is applied on different sets of 

reactions.  
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Despite many metabolic network visualization methods exists, there is no software 

that can provide satisfactory results without user interventions. Therefore, to allow 

user’s interaction during the graph layout is essential to produce easy-understandable 

graphic representation of metabolic pathways or networks. An advanced graph 

visualization software should not only allow users to reposition nodes and edges, but 

also be able to spontaneously adjust the surrounding nodes accordingly to reduce the 

needs of user input. 

In conclusion, metabolic network visualization is an important tool for metabolic 

pathway analysis and yet a bottleneck that requires more theoretical and practical 

innovation. In the next section several software packages tested during this work are 

briefly summarized and a number of improvements will be introduced afterwards. 

3.1.4 Available Software 

Using the algorithms presented above and their variants, a great number of computer 

software was designed for metabolic network visualization. Due to different analysis 

focus and visualization purpose, the output from different software can be very different. 

Some of them were designed to generate intuitive pathway patterns of small graphs, and 

others were focusing on showing the complicated metabolite mesh at a large scale, in 

some case, even using 3D models to demonstrate the relationship between metabolites. 

In this section several available software suitable for this study are briefly reviewed. For 

a more complete review of different visualization software, the reader is referred to 

[180–182].  

Graphviz -- Graph Visualization Software 

Graphviz is open source graph visualization software. It supports a range of graph 

shapes and layout setting including hierarchical layout, spring model layout, circular 

layout, etc. The Graphviz layout program reads graph descriptions in a simple text 

language, and saves the graphs into a variety of output formats (PostScript, PDF, SVG, 

annotated text, and so on), or displays it in another interactive graph browser. A 

programmable (in a language inspired by EZ [3]) widget was designed to display graphs 

and allow the user to interactively modify them with the mouse. Some additional useful 

features for concrete diagrams include options for colors, fonts, node layouts, line styles, 

hyperlinks and custom shapes. 
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It should be pointed out that a tool for visualizing biochemical network “Biograph” 

in the Bioinformatics Toolbox of Matlab wrapped up some essential functions of 

Graphviz and simplified the graph description input and graph output. This makes the 

procedure of generating graphs much easier than in the native Graphviz environment. 

The drawback of Biograph is that the user is lack of control of the position of nodes and 

edges. Once the graph is generated, the user can only change some appearance 

properties, such as color and size, but not the position. 

SimWiz 

SimWiz is one of the pioneer software tools that attempted to represent the reaction 

circles on metabolic pathways. Similar to the method proposed by Becker et al. [15] 

SimWiz divided the pathway to cyclic and hierarchical structures. The cyclic structures 

are then drawn in a circle layout and the hierarchical structures are drawn in a 

hierarchical layout with the help of a force-directed algorithm. For small networks, 

SimWiz can generate nice graphics representations that are close to manually created 

flow graphs, however its ability to handle medium or large network is limited by its 

performance. 

MetaViz 

Metavis is a network visualization software tool focusing to present the topology of 

metabolic networks. Unlike other topology analysis software, it simultaneously depicts 

the metabolic pathway information in an intuitive way using a similar approach as 

SimWiz. In this software, Bourqui et al. [183] proposed a clustering step to divide the 

metabolic network to a largest set of independent pathways and sub-pathways based on 

the rules of minimizing the shared metabolites and reactions between pathways. The 

resulting graph clustering is drawn in a planar graph to demonstrate the topology of the 

network, while for each pathway or sub-pathway, metabolites and reactions are drawn 

using specific drawing algorithms (hierarchical and circular ones). An additional 

attracting feature of this software is users can provide a set of predefined pathways that 

have been recognized using human knowledge. These pathways will then be draw as 

clusters entirely. 

LucidDraw 

LucidDraw is a Matlab-based visual analysis tool using a grid layout algorithm. Its 

features include great speed and user interactivity. It usually takes LucidDraw only a 
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few seconds to draw a typical biological network with several hundreds of nodes and 

the resulting drawings are interactively modifiable. Users can also control layout styles 

and incorporation of other available information. However, some preliminary 

experiments suggest that the generated graph is not intuitive for pathway analysis. Many 

edge crossing may occur. Moreover the nodes sometime may overlap with edges, and 

cause confusion of the starting and ending points of edges. It is possible to manually 

adjust the result, but it is too time consuming to solve all the problems. 

BioLayout 3D 

BioLayout Express3D is a new tool for the visualization and analysis of networks 

using a 3D graph representation. Unlike other visualization tools, BioLayout 3D 

arranges nodes in a 3D space rather than a 2D plane. This is an interesting attempt, 

however, at this stage it is still difficult to find its advantage over other 2D projected 

methods. In the future, with addition of intuitive layout rules, this approach may be able 

to provide additional information that is hard to perceive in 2D graphs.  

3.2 Materials and Methods 

To facilitate the comparison and understanding of the flux changing under various 

growth conditions, in this study several different visualization methods and tools were 

tested. 

An in-house software (PathView) based on hierarchy-layout method and breadth-first 

searching was first developed. Later, a more advanced visualization software –– 

GraphView was developed to replace PathView. GraphView uses a modified version of 

“Biograph” program of the bioinformatics toolbox in Matlab to generate the layout. 

3.2.1 Design of PathView 

In this visualization software, reactions are represented as metabolite pairs. An edge 

is added between two metabolites when they are involved on different sides in the same 

reaction. Reversible reactions are drawn with bi-direction arrows. This hierarchy-layout 

method consists of three steps:  

1．Generating a tree structure from a given substrate (usually glucose) using the 

breadth-first searching. 
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2．Reorder the node positions on horizontal level so that the metabolite that is 

involved in the most reactions is set in the middle and metabolites that have fewer 

reactions are set further outside. Meanwhile reducing crossing is another goal of this 

reordering operation. 

3．Drawing edges using the routing method [184], which is usually used in electrical 

wiring, is used in the software to further reduce the edge crossing while drawing. 

3.2.2 Design of GraphView 

In GraphView, a reaction is represented by a bipartite graph (section 3.1.1) i.e. 

metabolites and reactions are all represented as nodes. Metabolites are connected to a 

reaction if they are all involved in that reaction. While drawing, the reaction nodes are 

shown as small dots and the metabolites are shown as rectangular or circular boxes. 

“Biograph” as one function of the bioinformatics toolbox in Matlab, was designed 

for general purpose bio-network visualization. While using it for generating hierarchical 

layout in this application, the nodes distribution generally meets the basic aesthetic rules. 

However, to further emphasize on pathway illustration and comparison, several 

extensions are introduced. 

1. Add more control of nodes size to allow user to hide the reaction nodes.  

2. Add more control of edge and arrow properties, and allow the program to control 

how to show arrows (single, double, none) on each individual edge.  

3. Add more control of weight labels on each edge, and allow to show/hide weight 

labels on any edge. 

Other strategies to facilitate the comparison of pathways include: hiding side 

metabolites namely ATP, CO2, NAD(P)H, assigning different colors to different 

pathways reaction groups, hiding certain paths, etc. 

3.2.3 Testing Environment  

All the algorithms presented in this thesis were implemented in Matlab (Version 

7.6.0.324 (R2008a), The MathWorks Inc., Natick, Massachusetts, U.S.A.). The 

additional toolboxes and packages used in this thesis includes: optimization toolbox and 

bioinformatics toolbox. The in silico analyses and experiments were preformed on a 
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personal computer (AMD Athlon™ 64 × dual core processor 3800+ 2.00 GHz, 1.96 GB 

RAM, with Windows XP 32 bit installed). 

3.3 Results and Discussion 

In this section, the results of metabolic pathway analysis in chapter 2 are presented 

using the in-house visualization software PathView and GraphView. Their advantages 

and limits are also further discussed. 

3.3.1 Metabolic Pathways Visualized with PathView Software 

Fig. 3.4 shows an example pathway graph generated from the PathView software. 

Starting from glucose, it searches all the reactions that take glucose as substrate and put 

all the products of any those reactions on the second row. The software goes on to 

search the direct products from all the metabolites on the second row, and in turn lists 

them on the third row. This iterative searching stops when all the metabolites are found. 

The order of metabolites on a row can be changed to minimize the crossing of reaction 

lines. 

The advantage of the above layout method is, it can clearly demonstrate the “distance” 

between key metabolites, for example how many reactions are needed to convert 

glucose to ethanol. However, it should be pointed out that in these graphs some small 

molecular metabolites namely NADH, ATP, CO2 have to be removed, otherwise most 

metabolites will be drawn on the level beneath those molecules. Another feature 

included into this software is a routing method to reduce the edge crossing. Fig. 3.4A 

and B compare the results of visualization with and without routing method. Apparently, 

with help of the routing method, the reaction 16 in Fig. 3.4A goes around other nodes 

and edges and avoids crossing.  

A big problem with this software is that it represents reaction as pairs of metabolites, 

so-called paired-metabolite-method, which means one reaction that involves more than 

one substrate or product will introduce more than one edge on the graph. For instance, 

in Fig. 3.5, reaction 11 (pyr  (0.6667) acald + (0.3333) co2) has been shown as two 

edges in the graph: pyr  acald going down and pyr  co2 going up. This will cause 

complicated patterns, especially when the model becomes a little more complicated 

such as from Model 3 to Model 2. It also makes it difficult to recognize reactions. 
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Another problem with the graph generated from breadth first search is, the final product 

biomass may end up in upper layers in some pathways, as shown in Fig. 3.5, in which 

biomass is shown in the 4th layer of all seven layers. 

Overall, PathView is relative simple and immature compared with some existing 

software and the GraphView software, which will be discussed below. 

 

A.           B.  
Fig. 3.4 Visualization of Model 3 using PathView software developed in this project. In Model 3 the 
biomass synthesis reaction is omitted. A. using routing method; B. without routing method. 

 
Fig. 3.5 Visualization of Model 3 using PathView software. Biomass appears on the 4th row and 
cause many crossing. 
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3.3.2 Metabolic Pathways Visualized with GraphView Software 

Fig. 2.15 on page 70 shows an example pathway graph generated from the 

GraphView software, which is based on the “biograph” function in the Matlab 

bioinformatics toolbox. Unlike the PathView software, in GraphView bipartite 

presentation is used on reactions that involve more than two metabolites. Those 

reactions are recognized as nodes and drawn as small dots between substrates and 

products. This representation leads to a layout that is closer the manually created 

metabolic pathway graph (e.g. Fig. 2.5 on page 34). However bipartite representation 

may cause unnecessary zigzag shape in the case where a reaction only has one substrate 

and one product, because the layout algorithm will often put such three nodes (two 

metabolites nodes and one reaction node) in a triangle shape instead on a single line. To 

overcome such defect, a hybrid reaction representation strategy is introduced in this 

study, which also uses the same paired-metabolite-method as in PathView to represent 

those simple reactions (one to one). 

3.3.2.1 Modification of the “biograph” Function 

The “biograph” function, which is based on the GraphViz package, provides three 

types of layout: hierarchical, radial and equilibrium. Examples of different layout 

patterns are shown in Fig. 3.6. It is obvious that the hierarchical layout is the best choice 

for metabolic pathway visualization. However, using the original “biograph” algorithm 

to draw metabolic pathways has several shortcomings that will violate the aesthetic 

criteria: 

Firstly, it only provides global control of some import drawing settings, such as 

show/hide arrows and weight label of edges. (In this software, this label is used to show 

the reaction No. and/or reaction rates.) 

Secondly, it does not allow drawing double arrows on an edge. To show a reversible 

reaction, two edges in opposite directions have to be drawn, which can easily cause 

confusion and increase the number of edge-crossings. 

Thirdly, adding/removing edges and nodes will change the layout dramatically. As 

the purpose of the visualization software is to facilitate the comparison of different 

pathways. It is essential to keep the position of relevant metabolites in the same place 

while some reactions are added or removed. 
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Therefore several modifications are made to the original “biograph” files. These 

changes are summarized in Tab. 3.1 and discussed in more detail below. 

   
 

       

Fig. 3.6 Model 3 is visualized with three types of layout style provided by “biograph” tool. A. 
hierarchical layout; B. radial layout; C. equilibrium layout. 

 

A. B. 

C. 
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Tab. 3.1 Summary of modification to “biograph” and their functionalities. 

New functions Modified files Original biograph 

Change style of single edge (line, 
arrow etc.) Show/hide weight label 
of single edge 

bioinfo/@biograph/@edge/hgUpdate.m 

 

Show/hide arrows and weight label of edges 
are public properties and must be changed 
together. 

Show edge as double arrow, back 
arrow, or hide edge. 

 

bioinfo/@biograph/@edge/hgUpdate.m 

bioinfo/@biograph/@edge/schema.m  

There are only two styles of edge: line and 
front arrow. A reversible reaction will be 
showed by two edges in opposite directions. 

Show selected nodes as points and 
the edges connected to the nodes 
can joint to the point. 

bioinfo/@biograph/@biograph/private/ 
createdotfile.m 

bioinfo/@biograph/@node/hgUpdate.m 

The minimum size of node is limited and 
node cannot reduced to a point.  

 

(1) Drawing Reaction Nodes 

A.                     B.  
Fig. 3.7 Comparison of drawing reaction node. A. the original “biograph” cannot draw reaction node 
as a point. B. the modified version can draw the nodes as a point and makes the graph neater. 

As discussed before, in some reactions, the reaction itself is treated as a node. 

However the original “biograph” tool allows showing the node’s name in the middle of 

a node, but its minimum size cannot smaller than the character size. Even though the 

node can be hidden by assigning it the background color, it is not possible to fill the gap 

between the neighboring edges (see Fig. 3.7A). After the modification, the reaction 

nodes are drawn as small dots (see Fig. 3.7B) and make the graph more easily to 

understand. 

(2) More flexible edge and arrow drawing control 

In the modified version of “biograph”, more flexible arrow drawing function is 

introduced. First, double arrow function on an edge is added, this solves the problem 

with reversible reactions which can now be expressed by a single edge between two 

nodes (c.f. Fig. 3.8). Secondly, a new function is added to control whether to show the 

arrow or not on each individual edges (c.f. Fig. 3.9). This make the bipartite 

representation of reactions look neater. Thirdly, a function to hide edges is added, which 
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is later used for comparing different pathway in the same metabolic network (see more 

detail in section 3.3.2.3). 

A.                                 B.  
Fig. 3.8 Comparison of results for edge modified version. A. the original “biograph” does not support 
bidirectional arrows. When drawing a reversible reaction, double edge is used instead. B. After introducing 
the double arrow edges, the graph looks more succinct. 

A.    B.  
Fig. 3.9 Comparison of results for edge modified version. A. the original “biograph” only allows 
showing/hiding arrow being set globally. B. after hiding the arrows on some of the edge from substrates 
to the reaction nodes, the graph looks neater. 

 

(3) More flexible control over weight labels 

In this software the weight labels are used to show the reaction rates or reaction 

number. As the reactions are treated as nodes, one reaction is now divided into several 

segments of edges. In the original “biograph” tool, the weight label can only be set to 

show/hide globally, and weight labels are printed multiple times (c.f. Fig. 3.10). After 

adding more flexible control of the appearance of weight labels, these duplications are 

eliminated. 

A.                                       B.  
Fig. 3.10 Comparison of showing weight label A. an example shows the weight label is printed on 
every edges. B. the correct display of weight label after modification and for one reaction only one label 
is shown. 
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3.3.2.2 Show Metabolic Pathway with Different Level Details 
 

   

 
Fig. 3.11 Comparison of small molecular showing for Model 3. A. only one node for each small 
molecule; B. use multiple node copies for the small molecules; C. small molecules are shown in different 
color and shape; D. all small molecules are hidden. 

In the GraphView software users are allowed to control how much detail they want 

to see in the graph. Besides, drawing/hiding labels, nodes and edges, a list of small 

molecular metabolites can be defined, for example ATP, CO2, NADH and NADPH. 

A. B. 

C. D. 
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Such substances are usually involved in many reactions, if they are treated equally to 

other metabolites, i.e. one node for each metabolite, the graph will be distorted (c.f. 

Fig. 3.11A). In the GraphView software, instead these side substrate nodes can have 

multiple copies across the graph (Fig. 3.11B), therefore results more meaningful graph-

drawing. This side substances list can be manually altered. Because the graph 

generating only takes a few seconds the user can interactively simplify the graph to a 

certainly level. The side substrates are shown in different color and shape in the 

resulting graph (c.f. Fig. 3.11B and D), but the user can also choose to hide them all (c.f. 

Fig. 3.11C and D) for further simplification. 

3.3.2.3 Comparing Different Pathways 

One important goal of this software is to visualize the difference of several pathways 

in a same metabolic network. 

However, the graphic representation of different pathway generated from the 

“biograph” function may vary dramatically, even if only one or two nodes are 

added/removed. The strategy to overcome this problem is to generate the layout for the 

whole metabolic network first (see Fig. 3.12) and then hide some reaction and 

metabolites that are not included in a certain pathway (c.f. Fig. 3.13). In addition, when 

comparing two pathways, the software can draw the different reactions in different 

colors and draw the overlapped part in a third color (see Fig. 3.14). 

 
Fig. 3.12 The graph of the metabolic network of Model 3. 
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Fig. 3.13 Graphic representation of different pathway of Model 3 (elementary mode matrix is listed 
in Tab. 6.20 in section 6.5). A ~ D correspond to EM1 ~ EM4 which are anaerobic pathways; E ~ G 
correspond to EM5 ~ EM7 which are oxidative pathways (see next page); H corresponds to EM8 which is 
aerobic fermentative pathway (see next page).  

 

 

 

 

 

 

 

A. B. 

C. D. 
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Fig. 3.13 Graphic representation of different pathway of Model 3 (elementary mode matrix is listed 
in Tab. 6.20 in section 6.5) (continues last page). A ~ D correspond to EM1 ~ EM4 which are anaerobic 
pathways (see last page); E ~ G correspond to EM5 ~ EM7 which are oxidative pathways; H corresponds 
to EM8 which is aerobic fermentative pathway.  

 

 

 

 

 

E. F. 

G. H. 
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Fig. 3.14 Comparison of two pathways in Model 3 using GraphView. Overlapped parts of two 
pathways are shown in purple. Blue reactions belong to the anaerobic growth pathway in Fig. 3.13A, 
while green reactions belong to the oxidative growth pathway in Fig. 3.13E.  

3.3.2.4 Comparison with Other Software 

Compared with other metabolic pathway/network visualization software, GraphView 

generates a hierarchy layout that is similar to many manually created metabolic graphs 

in textbook. This allows most biologists quickly understand the graphics representations, 

while most other software requires special training to perceive the meaning. Fig. 3.15 

compares the visualization result from GraphView and some other available software 

using Model 2 as an example. 

Another advantage of GraphView is its ability to visualize the difference among 

pathways, which makes it especially suitable for studying elementary modes of small or 

medium size metabolic network. This function is usually unsupported in most available 

software. 

Some limits of Graph view need also to be addressed. First of all, the ability of 

GraphView to handle large metabolic networks is relative limited because the 

complexity of a network increases sharply as the node number increase. Although it can 

be partly solved by dividing a big network into small sub-groups, this procedure 

requires many user interventions using the current software. Another limit is lacking of 
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suitable representation for circular reaction chains. Becker et al. [174] have proposed 

several circular structure searching and drawing methods. These techniques should later 

be incorporated into the GraphView software to produce even more intuitive graphs. 

Nevertheless, to this stage, GraphView is so far the best available software to 

visualize elementary modes. 

A.  

B.  
Fig. 3.15 Visualization results of Model 2 from several software. A. visualization with LucidDraw;    
B. visualization with Graphviz. 



4  Conclusions                                                                                                                         96 

 

 

4 Conclusions 

In this work, a framework for bioprocess modeling is established which contains a 

series of systemtic steps to convert the common used stoichiometric models/MFA models 

to predictive bioprocess models. The problems of metabolic pathway visualization are 

also addressed. A new MPA-base flux simulation algorithm and metabolic network 

visualization software are proposed and tested using simplified metabolic models for 

S. cerevisiea. 

Firstly, two metabolic models for S. cerevisiea are established using simplified 

reaction network from literature and problematic coefficients of stoichiometric matrix 

are detected and calibrated with metabolic flux analysis using experimentally measured 

reaction rates.  

Secondly, the resulting models were then used to generate homeostatic metabolic 

pathway models by generating the elementary flux modes. These models are further 

extended to predictive metabolic pathway models by including a new MPA-based 

metabolic flux vector estimation method that determines an optimal combination of 

elementary modes by maximizing the biomass production. In the following experiments, 

these predictive models were validated by comparing the experimentally measured 

reaction rates with the simulated metabolic flux of yeast under various culture 

conditions. The new MPA achieved satisfactory accuracy in these preliminary tests.  

The validated predictive metabolic pathway models were also used to simulate the 

changes of metabolic flux distribution on different pathways under varying growth 

condition. Three out of thirteen mathematically selected elementary modes were found 

to be biological “meaningful” under various growth conditions. 

Compared with other existing metabolic analysis methods, the proposed approach of 

metabolic pathway analysis has the advantages of computational simplicity, intuitive 

illustration and ability of simulating cell behavior in a dynamic process. It can not only 

determine the character of different metabolic pathways but also is helpful for studying 

the structure and function of elementary modes and their dynamic relationship in 

complex cellular networks. The alteration of the flux coefficients expresses the 

changing activity of the metabolic pathways under varying growth conditions, which 

reveals and predicts the character of cell metabolism. These advantages make the 
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proposed method an attractive approach for simplifying complicated metabolic models 

and simulating sophisticated bioprocess. The predictive homeostatic metabolic model 

created with the proposed method could also provide a good foundation for further 

building dynamic metabolic model and biopross models. 

Finally, in-house software, GraphView was developed to visualize the elementary 

modes and compare their differences. GraphView generates a hierarchy layout that is 

similar to many manually created metabolic graphs in textbook. This allows most 

biologists quickly understand the graphics representations, while most other software 

requires special training to perceive the meaning. These graph representations made it 

easier to analysis the character of the matebolic network as it generates a hierarchy 

layout that is similar to many manually created metabolic graph in textbook. The 

drawing program was also configured to facilitate the visualization of the difference 

among pathways, which makes it especially suitable for studying elementary modes of 

metabolic network and study the flux changes among different pathways in a dynamic 

process. 

Combining all the above steps results a complete chain of software for MPA-based 

metabolic analysis and simulation of different organisms. Using both the quantitative 

information of the in silico simulation and the intuitive interpretation of pathway 

visualization, a more comprehensive understanding of the metabolome status of yeast 

and its dynamic changes can hopefully be achieved. The simulation framework 

established in this study could also provide beneficial information for future 

experiments or industrial productions to avoid futile attempt. 

Future work includes adding information of kinetics and dynamic regulation, to 

make the predictive metabolic model more complete, as in the current models the 

enzyme suppression and induction are ignored. Furthermore a reactor model needs also 

to be added to construct a complete mathematic model for bioprocesses. Another task to 

consider in the future is to generalize both the MPA framework and pathway 

visualization software to handle large metabolic networks. One possible solution is to 

develop a from-coarse-to-fine approach where the information gathered in a simplified 

model could be used to screen elementary modes for biologically eligible pathways in a 

more complicated model. The ultimate goal is to automatically convert a genome-scale 

metabolic network to a manageable and perceivable bioprocess model. 
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6 Appendixes 

6.1 Measured Data from Literature 

Tab. 6.1 Calculated reaction rates in anaerobic, glucose-limited continuous cultures based on data 
from Nissen et al. [157].  

Reaction 
 Reaction Rate (C-mol/(gh)) 

D 0.1 (1/h) 0.2 (1/h) 0.3 (1/h) 
1 glc  0.0333 0.0667 0.1042 

10 glyc  0.00286 0.00574 0.00896 
18 etoh  0.01756 0.03315 0.05179 
27 co2  0.0095 0.01814 0.02834 
36 biomass  0.10302 0.20634 0.32235 

Tab. 6.2 Corrected reaction rates in aerobic chemostat culture based on reaction rates taken from 
[71] with calibration of glucose and ethanol. 

Reaction 
 Rate (C-mol/(gh)) 

D 0.1 (1/h) 0.24 (1/h) 0.26 (1/h) 0.28 (1/h) 0.3 (1/h) 0.34 (1/h) 0.4 (1/h) 
1 glc  0.00636 0.01679 0.02223 0.02893 0.03663 0.05299 0.07775 

10 glyc  0 0 0.00034 0.00084 0.00187 0.00332 0.00517 
18 etoh  0 0 0.00229 0.00565 0.01252 0.02223 0.03469 
27 co2  0.0035 0.00791 0.0089 0.01146 0.01403 0.01916 0.02686 
35 respiration  0.0035 0.00791 0.00757 0.00694 0.00632 0.00507 0.0032 

 

6.2 Stoichiometric Matrixes 

The stoichiometric matrix is the kernel of the metabolic models. In this section the 

stoichiometric matrix for all metabolites (matrix Y) of several models will be shown. 

The involved metabolites are indicated with abbreviation. 
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6.2.1 Stoichiometric Matrix Y of Model 1 

Tab. 6.3 Matrix Y of Model 1 with 40 metabolites (rows) and 35 reactions (columns). 

Metabolites Reactions 
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6.2.2 Stoichiometric Matrix Y of Model 2α 

Tab. 6.4 Matrix Y of Model 2α with 41 metabolites (rows) and 36 reactions (columns). Compared to Model 1, matrix Y of Model 2α has one more metabolite (biomass) 
and one more reaction (pseudo-reaction of biomass formation).  

Metabolites Reactions 
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6.2.3 Stoichiometric Matrix Y of Model 2 

Tab. 6.5 Matrix Y of Model 2 with 40 metabolites (rows) and 36 reactions (columns). Compared to Model 2α, matrix Y of Model 2 has one less metabolite (Methyl-FH4) 
and the coefficients in the pseudo-reaction of biomass synthesis are adjusted. 

Metabolites Reactions 
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6.2.4 Stoichiometric Matrix Y of Model 3 

Tab. 6.6 Matrix Y of Model 3 with 20 metabolites (rows) and 18 reactions (columns). 

Metabolites Reactions 

 

 

6.3 Overview of the Models 

In section 2.2 several derivative models are involved. The details of the models are 

listed here for ereference and comparison.  

6.3.1 Model 2 

Model 2 is the final improved metabolic model from Model 1 and Model 2α. 

Compared with Model 2α, Model 2 has no methyl-FH4 balance constrain and the 

coefficients of ATP and biomass components were also adjusted. 
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Tab. 6.7 Biochemical reactions of Model 2 for S. cerevisiae in C-mol stoichiometry. The parts with 
grey background represent the different reactions compared to Model 2α. The abbreviations of 
metabolites are lised in Tab. 6.8. 

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 --> (0.3913) 

5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
31 dna (0.4579) 5aic + (0.4371) gln + (0.3313) asp + (0.2544) r5p + (0.0509) nadph --> dna + (0.4371) 

glu + (0.1278) fum + (0.1540) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.2993) asp + (0.2400) r5p --> rna + (0.5271) glu + (0.1073) 

fum + (0.1348) nadh + (0.0568) nadph 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + (0.0623) 

e4p + (0.0935) pep + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + (0.0117) gap + 
(0.1054) co2 + (0.0188) 5aic + (0.0725) nadh 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.7111) nadph --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
36 biomass (0.0001053927) dna + (0.0015819381) rna + (0.012482919) pol + (0.0008700003) lip + 

(0.0160886997) prot + (YATP) atp --> biomass 

 

 

 



6  Appendixes                                                                                                                        113 

 

 

  
                                                                                                                        

 

Tab. 6.8 Metabolites in Model 2 of S. cerevisiae. 

No. Abbreviation Full name of metabolites 

1 glc Glucose 
2 atp Adenosine triphosphate 
3 g6p Glucose 6-phosphate 
4 f6p Fructose 6-phosphate 
5 pol Polysaccharide 
6 r5p Ribose 5-phosphate 
7 nadh Nicotinamide adenine dinucleotide - reduced 
8 nadph Nicotinamide adenine dinucleotide phosphate - reduced 
9 co2 Carbon dioxide 

10 co2extern Carbon dioxide (extern) 
11 e4p Erythrose 4-phosphate 
12 gap Glyceraldehyde 3-phosphate 
13 dhap Dihydroxyacetone phosphate 
14 g3p Glycerol 3-phosphate 
15 glyc Glycerol 
16 3pg 3-Phosphoglycerate 
17 ser Serine family 
18 pep Phosphoenolpyruvate 
19 pyr Pyruvate 
20 oxac Oxaloacetate (cytosol) 
21 oxam Oxaloacetate (mitochondrion) 
22 asp Aspartate 
23 acald Acetaldehyde 
24 etoh Ethanol 
25 ace Acetate 
26 akg alpha-Ketoglutarate 
27 mal Malate 
28 glu Glutamate 
29 actcoa Acetyl-CoA 
30 gln Glutamine 
31 fum Fumarate 
32 5aic 5-AICAR 
33 dna Deoxyribonucleic acid 
34 rna Ribonucleic acid 
35 prot Protein 
36 lip Lipid 
37 iso Isocitrate 
38 succ Succinate 
39 o2 Oxygen 
40 biomass Biomass 
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6.3.2 Model 2A 

Model 2A is a model without the pseudo-reaction of biomass synthesis and the 

energy consumption of biomass formation is lumped together and represented with YATP 

in reaction 18 (see Tab. 6.9).  

Tab. 6.9 Biochemical reactions of Model 2A for S. cerevisiae in C-mol stoichiometry. Model 2A does 
not contain the lumped reaction of biomass and instead of it a reaction for YATP is used. 

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 --> 

(0.3913) 5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
31 dna (0.4579) 5aic + (0.4371) gln + (0.3313) asp + (0.2544) r5p + (0.0509) nadph --> dna + 

(0.4371) glu + (0.1278) fum + (0.1540) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.2993) asp + (0.2400) r5p --> rna + (0.5271) glu + (0.1073) 

fum + (0.1348) nadh + (0.0568) nadph 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + 

(0.0623) e4p + (0.0935) pep + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + 
(0.0117) gap + (0.1054) co2 + (0.0188) 5aic + (0.0725) nadh 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.7111) nadph --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
36 YATP (YATP) atp --> biomass 
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Tab. 6.10 Stoichiometric matrix for internal metabolites GT of Model 2A with 28 internal metabolites (rows) and 36 reactions (columns). 

Metabolites Reactions 
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6.3.3 Model 2B 

In Model 2B the biomass coefficients kn are original values calculated from the 
available data of biomass component from literature [157] (see Tab. 2.9 on page 46), 
while in Model 2 the calibrated kn is used.  

Tab. 6.11 Biochemical reactions of Model 2B for S. cerevisiae in C-mol stoichiometry. Compared to 
Model 2, in Model 2B the original kn in the pseudo-reaction of biomass synthesis are used (shown with 
grey background). 

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 --> 

(0.3913) 5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
31 dna (0.4579) 5aic + (0.4371) gln + (0.3313) asp + (0.2544) r5p + (0.0509) nadph --> dna + 

(0.4371) glu + (0.1278) fum + (0.1540) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.2993) asp + (0.2400) r5p --> rna + (0.5271) glu + (0.1073) 

fum + (0.1348) nadh + (0.0568) nadph 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + 

(0.0623) e4p + (0.0935) pep + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + 
(0.0117) gap + (0.1054) co2 + (0.0188) 5aic + (0.0725) nadh 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.7111) nadph --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
36 biomass (0.000117103) dna + (0.001757709) rna + (0.01386991) pol + (0.000966667) lip + 

(0.017876333) prot + (YATP) atp --> biomass 
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6.3.4 Model 2C 

In Model 2C the consumed ATPs for biomass synthesis appear in each synthesis 

reaction of biomass components and their coefficients are assigned to the original 

coefficients (given in [157]), while in Model 2 they are lumped together as YATP • µ in 

the pseudo-reaction of biomass synthesis. 

Tab. 6.12 Biochemical reactions of Model 2C for S. cerevisiae in C-mol stoichiometry.  

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p + (0.1667) atp --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu + (0.2) atp --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 + (0.26087) 

atp --> (0.3913) 5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
31 dna (0.4579) 5aic + (0.4371) gln + (0.3313) asp + (0.2544) r5p + (0.4625) atp + (0.0509) nadph --> 

dna + (0.4371) glu + (0.1278) fum + (0.1540) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.2993) asp + (0.2400) r5p + (0.4890) atp --> rna + (0.5271) glu 

+ (0.1073) fum + (0.1348) nadh + (0.0568) nadph 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + (0.0623) 

e4p + (0.0935) pep + (1.0396) atp + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + 
(0.0117) gap + (0.1054) co2 + (0.0188) 5aic + (0.0725) nadh 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.4) atp + (0.7111) nadph --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
36 biomass (0.0001053927) dna + (0.0015819381) rna + (0.012482919) pol + (0.0008700003) lip + 

(0.0160886997) prot --> biomass 
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6.3.5 Model 2D 

In Model 2D the consumed ATP for cell maintenance (mATP) is considered and 

represented as a reaction for mATP (see reaction 30 in Tab. 6.13). 

Tab. 6.13 Biochemical reactions of Model 2D for S. cerevisiae in C-mol stoichiometry. 

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa 
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu --> gln 
29 co2 co2 --> co2extern 
30 mATP atp --> 
31 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 --> (0.3913) 

5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
32 dna (0.4579) 5aic + (0.4371) gln + (0.3313) asp + (0.2544) r5p + (0.0509) nadph --> dna + (0.4371) 

glu + (0.1278) fum + (0.1540) nadh 
33 rna (0.5112) 5aic + (0.5271) gln + (0.2993) asp + (0.2400) r5p --> rna + (0.5271) glu + (0.1073) 

fum + (0.1348) nadh + (0.0568) nadph 
34 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + (0.0623) 

e4p + (0.0935) pep + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + (0.0117) gap + 
(0.1054) co2 + (0.0188) 5aic + (0.0725) nadh 

35 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.7111) nadph --> lip 
36 respiration o2 + (2) nadh --> (2 P/O) atp 
37 biomass (0.000117103) dna + (0.001757709) rna + (0.01386991) pol + (0.000966667) lip + 

(0.017876333) prot + (YATP) atp --> biomass 
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6.3.6 Model 2E 

Compared to Model 2, Model 2E is a model with methyl-FH4 balance, i.e. Model 2E 

has one more metabolite (methyl-FH4).  

Tab. 6.14 Biochemical reactions of Model 2E for S. cerevisiae in C-mol stoichiometry. Model 2E has 
one more metabolite (shown with grey background) compared to Model 2. 

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadph + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadph 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.083333335) nadh + (0.083333335) nadph 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadph --> glu 
28 glu-gln glu --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 --> (0.3913) 

5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadph 
31 dna (0.4579) 5aic + (0.4371) gln + (0.0842) mfh4 + (0.3313) asp + (0.2544) r5p + (0.0509) nadph --

> dna + (0.4371) glu + (0.1278) fum + (0.1540) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.0568) mfh4 + (0.2993) asp + (0.2400) r5p --> rna + (0.5271) 

glu + (0.1073) fum + (0.1348) nadh + (0.0568) nadph 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + (0.0623) 

e4p + (0.0935) pep + (0.1579) nadph --> prot + (0.4927) akg + (0.0413) fum + (0.0117) gap + 
(0.1054) co2 + (0.0165) mfh4 + (0.0188) 5aic + (0.0725) nadh 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.7111) nadph --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
36 biomass (0.0001053927) dna + (0.0015819381) rna + (0.012482919) pol + (0.0008700003) lip + 

(0.0160886997) prot + (YATP) atp --> biomass 
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6.3.7 Model 2F 

In Model 2F, NADPH is considered as NADH and is written as NADH in the 

NADPH-related reactions. 

Tab. 6.15 Biochemical reactions of Model 2F for S. cerevisiae in C-mol stoichiometry.  

No. Designation Biochemical Reactions 

1 glc glc + (0.1667) atp --> g6p 
2 g6p-f6p g6p <==> f6p 
3 pol g6p --> pol 
4 g6p-r5p g6p --> (0.8333) r5p + (0.3333) nadh + (0.1667) co2 
5 r5p-e4p r5p <==> (0.6) f6p + (0.4) e4p 
6 e4p-gap (0.5556) r5p + (0.4444) e4p <==> (0.6667) f6p + (0.3333) gap 
7 f6p-gap f6p + (0.1667) atp <==> (0.5) gap + (0.5) dhap 
8 dhap-gap dhap <==> gap 
9 dhap-g3p dhap + (0.3333) nadh --> g3p 

10 glyc g3p --> glyc 
11 gap-3pg gap <==> 3pg + (0.3333) atp + (0.3333) nadh 
12 ser (0.375) 3pg + (0.625) glu --> (0.375) ser + (0.625) akg + (0.125) nadh 
13 3pg-pep 3pg <==> pep 
14 pep-pyr pep --> pyr + (0.3333) atp 
15 pyr-oxac (0.75) pyr + (0.25) co2 + (0.25) atp --> oxac 
16 asp (0.4444) oxac + (0.5556) glu --> (0.4444) asp + (0.5556) akg 
17 pyr-acald pyr --> (0.6667) acald + (0.3333) co2 
18 etoh acald + (0.5) nadh --> etoh 
19 ace acald --> ace + (0.5) nadh 
20 actcoa ace + atp --> actcoa  
21 pyr-iso (0.42857) pyr + (0.57143) oxam --> (0.85714) iso + (0.142857) co2 + (0.142857) nadh 
22 iso-akg iso --> (0.833333) akg + (0.16666667) co2 + (0.16666667) nadh 
23 akg-succ akg --> (0.8) succ + (0.2) nadh + (0.2) co2 + (0.2) atp 
24 succ-mal succ <==> mal + (0.25) nadh 
25 mal-oxam mal <==> oxam + (0.25) nadh 
26 oxac-oxam oxac + (0.25) atp <==> oxam 
27 akg-glu akg + (0.2) nadh --> glu 
28 glu-gln glu --> gln 
29 co2 co2 --> co2extern 
30 r5p-5aic (0.21739) r5p + (0.43478) gln + (0.130435) ser + (0.173913) asp + (0.043478) co2 --> (0.3913) 

5aic + (0.43478) glu + (0.173913) fum + (0.043478) nadh 
31 dna (0.4579) 5aic + (0.4371) gln + (0.3313) asp + (0.2544) r5p --> dna + (0.4371) glu + (0.1278) 

fum + (0.1031) nadh 
32 rna (0.5112) 5aic + (0.5271) gln + (0.2993) asp + (0.2400) r5p --> rna + (0.5271) glu + (0.1073) 

fum + (0.1916) nadh 
33 protein (0.0404) r5p + (0.609) glu + (0.2078) gln + (0.2153) asp + (0.338) pyr + (0.1182) ser + (0.0623) 

e4p + (0.0935) pep + (0.0854) nadh --> prot + (0.4927) akg + (0.0413) fum + (0.0117) gap + 
(0.1054) co2 + (0.0188) 5aic 

34 lipid (0.8326) actcoa + (0.0662) g3p + (0.1012) ser + (0.7111) nadh --> lip 
35 respiration o2 + (2) nadh --> (2 P/O) atp 
36 biomass (0.0001053927) dna + (0.0015819381) rna + (0.012482919) pol + (0.0008700003) lip + 

(0.0160886997) prot + (YATP) atp --> biomass 

 

 



6  Appendixes                                                                                                                        121 

 

 

  
                                                                                                                        

 

6.4 Complete Simulation Results 

6.4.1 Modeling of Biomass Components 

Tab. 6.16 Flux distribution of Model 2 and Model 2A in anaerobic growth. Model 2A is Model 2 
without the pseudo-reaction of biomass synthesis. The numbers with dark background are the given rates 
vm. vc represent calculated rates. The results of Model 2A are generated via flux balance analysis with 
non-weighted multiple objective functions or weighted single objective function.  

Reaction 
Given Rate 

Reaction Rates in Model 2 
C-mol/(gh)  Reaction Rates in Model 2A  

C-mol/(gh) 

No. Designation 
C-mol/(gh) determined 

Under- 
determined  

Underdetermined 

µ as vm µ as vc 
Multiple objective 

functions 
Single objective 

function 

1 glc 0.0333    0.0333    0.0333     0.0333     0.0333   0.0333 

2 g6p-f6p  0.02998 0.03002  0.03002  0.01110 0.03002 

3 pol   0.00129 0.00128  0.00128  0.02219 0.00128 

4 g6p-r5p   0.00203 0.00200  0.00200  1.1E-06 0.00200 

5 r5p-e4p   0.00112 0.00111  0.00111  6.3E-07 0.00111 

6 e4p-gap   0.00078 0.00076  0.00076  4.3E-07 0.00076 

7 f6p-gap   0.03117 0.03120  0.03119  0.01110 0.03119 

8 dhap-gap   0.01258 0.01247  0.01247  0.00556 0.01247 

9 dhap-g3p   0.00300 0.00313  0.00313  7.7E-15 0.00313 

10 glyc 0.00286 0.00300 0.00313  0.00312  7.2E-15 0.00312 

11 gap-3pg  0.02845 0.02834  0.02834  0.01110 0.02834 

12 ser  0.00060 0.00060  0.00059  3.0E-07 0.00059 

13 3pg-pep  0.02822 0.02812  0.02812  0.01110 0.02812 

14 pep-pyr   0.02807 0.02796  0.02796  0.01110 0.02796 

15 pyr-oxac   0.00086 0.00086  0.00086  4.6E-07 0.00086 

16 asp   0.00098 0.00097  0.00097  4.9E-07 0.00097 

17 pyr-acald   0.02657 0.02644  0.02644  0.01110 0.02644 

18 etoh 0.01756 0.01764 0.01756  0.01756  0.00740 0.01756 

19 ace   7.5E-05 7.4E-05  7.4E-05  5.3E-15 7.4E-05 

20 actcoa   7.5E-05 7.4E-05  7.4E-05  5.3E-15 7.4E-05 

21 pyr-iso   0.00069 0.00075  0.00075  4.3E-07 0.00075 

22 iso-akg   0.00059 0.00064  0.00064  3.7E-07 0.00064 

23 akg-succ   -4.7E-05 -9.3E-09  3.5E-11  1.5E-14 1.1E-17 

24 succ-mal   -3.7E-05 -7.5E-09  2.6E-11     0 1.1E-13 

25 mal-oxam   -3.7E-05 -7.5E-09  3.1E-11  0 1.1E-13 

26 oxac-oxam   0.00043 0.00042  0.00043  2.5E-07 0.00043 

27 akg-glu   0.00227 0.00225  0.00225  1.2E-06 0.00225 

28 glu-gln   0.00050 0.00049  0.00049  2.2E-07 0.00049 

29 co2 0.0095 0.00933 0.00931  0.00931  0.00370 0.00931 

30 r5p-5aic   0.00015 0.00014  0.00014  1.7E-16 0.00014 

31 dna   1.1E-05 1.1E-05  1.1E-05  1.7E-15 1.1E-05 

32 rna   0.00016 0.00016  0.00016  3.5E-08 0.00016 

33 protein   0.00166 0.00164  0.00164  9.5E-07 0.00164 

34 lipid   8.9E-05 8.9E-05  8.9E-05  6.4E-15 8.9E-05 

35 respiration 0              0              0              0              0             0 

36 biomass/YATP 0.10302 0.10302 0.10217  0.10217  (YATP) 1.2E-16 (YATP) 0.00762 

µ  0.10302 0.10217  0.10217  0.71303 0.10217 
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6.4.2 Calibrating ATP Balance 

Tab. 6.17 Flux distribution of Model 2 and Model 2C in anaerobic growth. Model 2C is Model 2 
without energy summary (YATP • µ) in the pseudo-reaction of biomass synthesis. The numbers with dark 
background are the given rates vm. 

Reaction 
Given Rate 

Reaction Rates in Model 2 
C-mol/(gh) 

 
Reaction Rates in Model 2C 

C-mol/(gh) 

No. Designation 
C-mol/(gh) 

Determined Underdet. 
 with ATP balance  without ATP balance 

 Determined Underdet. Determined  Underdet. 

1 glc 0.0333      0.0333     0.0333     0.0333     0.0333     0.0333      0.0333 

2 g6p-f6p  0.03002  0.03002  0.01996  0.02687  0.03002  0.01764 

3 pol  0.00128  0.00128  0.00463  0.00250  0.00128  0.00609 

4 g6p-r5p  0.00200  0.00200  0.00871  0.00393  0.00200  0.00957 

5 r5p-e4p  0.00111  0.00111  0.00481  0.00217  0.00111  0.00528 

6 e4p-gap  0.00076  0.00076  0.00349  0.00150  0.00076  0.00365 

7 f6p-gap  0.03119  0.03119  0.02517  0.02917  0.03119  0.02324 

8 dhap-gap  0.01247  0.01247  0.01694  0.00844  0.01247  -0.00335 

9 dhap-g3p  0.00313  0.00313  -0.00435  0.00615  0.00313  0.01497 

10 glyc 0.00286 0.00312  0.00312  -0.00437  0.00613  0.00312  0.01494 

11 gap-3pg  0.02834  0.02834  0.03076  0.02356  0.02834  0.00958 

12 ser  0.00059  0.00059  0.00215  0.00116  0.00059  0.00283 

13 3pg-pep  0.02812  0.02812  0.02995  0.02312  0.02812  0.00852 

14 pep-pyr  0.02796  0.02796  0.02939  0.02282  0.02796  0.00778 

15 pyr-oxac  0.00086  0.00086  0.00311  0.00168  0.00086  0.00409 

16 asp  0.00097  0.00097  0.00352  0.00190  0.00097  0.00463 

17 pyr-acald  0.02644  0.02644  0.02674  0.01985  0.02644  0.00053 

18 etoh 0.01756  0.01756  0.01756   0.01756  0.01309   0.01756  2.54E-16 

19 ace  7.40E-05  7.40E-05  0.00027  0.00015  7.40E-05  0.00035 

20 actcoa  7.40E-05  7.40E-05  0.00027  0.00015  7.40E-05  0.00035 

21 pyr-iso  0.00075  0.00075  -0.00397  0.00146  0.00075  0.00356 

22 iso-akg  0.00064  0.00064  -0.00340  0.00125  0.00064  0.00305 

23 akg-succ  -9.33E-09  3.49E-11  -0.00477  8.25E-17  -2.13E-08  9.90E-17 

24 succ-mal  -7.47E-09  2.64E-11  -0.00381  7.28E-12  -1.70E-08  -2.84E-14 

25 mal-oxam  -7.47E-09  3.09E-11  -0.00381  -5.46E-12  -1.70E-08  -2.84E-14 

26 oxac-oxam  0.00043  0.00043  0.00155  0.00084  0.00043  0.00204 

27 akg-glu  0.00225  0.00225  0.00818  0.00442  0.00225  0.01076 

28 glu-gln  0.00049  0.00049  0.00180  0.00097  0.00049  0.00236 

29 co2 0.0095 0.00931  0.00931  0.00810  0.00759   0.00931  0.00256 

30 r5p-5aic  0.00014  0.00014  0.00053  0.00028  0.00014  0.00069 

31 Dna  1.08E-05  1.08E-05  3.91E-05  2.11E-05  1.08E-05  5.14E-05 

32 Rna  0.00016  0.00016  0.00059  0.00032  0.00016  0.00077 

33 protein  0.00164  0.00164  0.00597  0.00322  0.00164  0.00785 

34 Lipid  8.89E-05  8.89E-05  0.00032  0.00017  8.89E-05  0.00042 

35 respiration 0                0                 0                0                0                 0                0 

36 Biomass 0.10302 0.10217  0.10217  0.37118  0.20041  0.10217  0.48801 
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6.4.3 Effect of Methyl-FH4 Balance 

Tab. 6.18 Flux distribution of Model 2 (without methyl-FH4 balance) and Model 2E (with methyl-FH4 
balance) in anaerobic growth. The numbers with dark background are the given rates vm. For the 
overdetermined system (overdet.) of Model 2E two calculation methods were performed: one with only 
matrix GT (overdet. (GT)) and the other also using matrix F (overdet. (F)), which are covered in Eq. (2.52) 
on page 24 and Eq. (2.56) on page 25 respectively. 

Reaction Given Rate 
Rate in Model 2 

C-mol/(gh)  
Rate in Model 2E (with methyl-FH4 balance) 

C-mol/(gh) 

No. Designation C-mol/(gh) determined  underdet.  determined overdet. (GT)  overdet. (F) 

1 Glc 0.0333   0.0333    0.0333      0.0333    0.0333  0.03345 

2 g6p-f6p  0.03002  0.03002  0.03498  0.03002  0.03296 

3 Pol  0.00128  0.00128  0  0.00128  2.75E-09 

4 g6p-r5p  0.00200  0.00200  -0.00168  0.00200  0.00049 

5 r5p-e4p  0.00111  0.00111  -0.00093  0.00111  0.00027 

6 e4p-gap  0.00076  0.00076  -0.00084  0.00076  0.00025 

7 f6p-gap  0.03119  0.03119  0.03386  0.03119  0.03329 

8 dhap-gap  0.01247  0.01247  -0.00153  0.01247  0.00766 

9 dhap-g3p  0.00313  0.00313  0.01846  0.00313  0.00898 

10 Glyc 0.00286 0.00312  0.00312  0.01846  0.00312  0.00898 

11 gap-3pg  0.02834  0.02834  0.01512  0.02834  0.02439 

12 Ser  0.00059  0.00059  1.24E-18  0.00059  1.28E-09 

13 3pg-pep  0.02812  0.02812  0.01512  0.02812  0.02439 

14 pep-pyr  0.02796  0.02796  0.01512  0.02796  0.02439 

15 pyr-oxac  0.00086  0.00086  2.79E-08  0.00086  -6.35E-09 

16 Asp  0.00097  0.00097  0  0.00097  2.10E-09 

17 pyr-acald  0.02644  0.02644  0.01176  0.02644  0.02538 

18 etoh 0.01756 0.01756  0.01756  0.00784  0.01756  0.01692 

19 Ace  7.40E-05  7.40E-05  0  7.40E-05  1.60E-10 

20 actcoa  7.40E-05  7.40E-05  0  7.40E-05  1.60E-10 

21 pyr-iso  0.00075  0.00075  0.00783  0.00074  -0.00230 

22 iso-akg  0.00064  0.00064  0.00671  0.00064  -0.00197 

23 akg-succ  -9.33E-09  3.49E-11  0.00560  -1.16E-06  -0.00164 

24 succ-mal  -7.47E-09  2.64E-11  0.00448  -9.28E-07  -0.00132 

25 mal-oxam  -7.47E-09  3.09E-11  0.00448  -9.32E-07  -0.00132 

26 oxac-oxam  0.00043  0.00043  2.79E-08  0.00043  -7.28E-09 

27 akg-glu  0.00225  0.00225  0  0.00225  4.86E-09 

28 glu-gln  0.00049  0.00049  0  0.00050  1.07E-09 

29 co2 0.0095 0.00931  0.00931  0.00700  0.00931  0.00755 

30 r5p-5aic  0.00014  0.00014  0  0.00015  3.19E-10 

31 Dna  1.08E-05  1.08E-05  0  1.22E-05  2.63E-11 

32 Rna  0.00016  0.00016  0  0.00016  3.51E-10 

33 protein  0.00164  0.00164  0  0.00164  3.55E-09 

34 Lipid  8.89E-05  8.89E-05  0  8.89E-05  1.92E-10 

35 respiration 0               0                0               0                0  -0.00240 

36 Biomass 0.10302 0.10217  0.10217  0  0.10217  2.21E-07 
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6.4.4 Effects of Model Simplification 

Tab. 6.19 Flux distribution of Model 2 and Model 2F in anaerobic growth. In Model 2F, NADPH is 
substituted with NADH. The numbers with dark background are the given rates vm. The last three 
columns were calculated by giving different measured data. 

Reaction  Rate in Model 2 
C-mol/(gh)  Rate in Model 2F 

C-mol/(gh) 

No. Designation  determined Underdetermined determined 
 underdetermined System 

v1 and v35 as vm v1,v18,v35 as vm v1,v29,v35 as vm 

1 Glc           0.0333           0.0333             0.0333           0.0333         0.0333        0.0333 

2 g6p-f6p  0.0300207  0.03002071  0.03002126  0.03183338  0.0319853  0.031977 

3 Pol  0.00127537  0.00127536  0.00127538  0.00146662  0.0013147  0.001323 

4 g6p-r5p  0.00200394  0.00200393  0.00200337  5.17E-12  1.333E-14  6.48E-15 

5 r5p-e4p  0.0011056  0.0011056  0.00110529  -8.72E-06  -7.82E-06  -7.87E-06 

6 e4p-gap  0.0007647  0.0007647  0.00076442  -0.00027285  -0.000245  -0.000246 

7 f6p-gap  0.03119389  0.03119389  0.03119406  0.03164624  0.0318176  0.0318081 

8 dhap-gap  0.01246629  0.01246627  0.0124664  0.01452705  0.0128656  0.0129571 

9 dhap-g3p  0.00313065  0.00313068  0.00313063  0.00129607  0.0030432  0.002947 

10 Glyc  0.00312477  0.00312479  0.00312474  0.0012893  0.0030371  0.0029409 

11 gap-3pg  0.02833734  0.02833732  0.02833745  0.03028135  0.0287127  0.0287991 

12 Ser  0.00059246  0.00059246  0.00059246  0.0006813  0.0006107  0.0006146 

13 3pg-pep  0.02811517  0.02811515  0.02811527  0.03002586  0.0284837  0.0285686 

14 pep-pyr  0.02796148  0.02796146  0.02796158  0.02984912  0.0283253  0.0284092 

15 pyr-oxac  0.00085722  0.00085722  0.00085723  0.00098577  0.0008836  0.0008893 

16 Asp  0.0009699  0.0009699  0.00096991  0.00111534  0.0009998  0.0010061 

17 pyr-acald  0.02644333  0.0264433  0.02644333  0.0281033  0.0264467  0.026538 

18 etoh  0.01755576  0.01755574  0.01755576  0.01865136  0.0175558  0.0176161 

19 Ace  7.4007E-05  7.4007E-05  7.4008E-05  8.51E-05  7.629E-05  7.68E-05 

20 actcoa  7.4007E-05  7.4007E-05  7.4008E-05  8.51E-05  7.629E-05  7.68E-05 

21 pyr-iso  0.00074583  0.00074584  0.00074605  0.00085769  0.0015005  0.0014651 

22 iso-akg  0.00063928  0.00063929  0.00063947  0.00073516  0.0012861  0.0012558 

23 akg-succ  -9.332E-09  3.4895E-11  1.3867E-07  3.37E-11  0.0005226  0.0004938 

24 succ-mal  -7.466E-09  2.6375E-11  1.1093E-07  3.94E-11  0.0004181  0.0003951 

25 mal-oxam  -7.466E-09  3.0923E-11  1.1093E-07  3.17E-11  0.0004181  0.0003951 

26 oxac-oxam  0.0004262  0.0004262  0.0004262  0.00049011  0.0004393  0.0004421 

27 akg-glu  0.00225179  0.00225178  0.00225181  0.00258947  0.0023212  0.0023359 

28 glu-gln  0.00049442  0.00049442  0.00049442  0.00056856  0.0005097  0.0005129 

29 co2  0.00931336  0.00931336  0.00931336  0.00955744  0.0092991  0.0093134 

30 r5p-5aic  0.00014477  0.00014477  0.00014478  0.00016649  0.0001492  0.0001502 

31 Dna  1.0768E-05  1.0768E-05  1.0768E-05  1.24E-05  1.11E-05  1.12E-05 

32 Rna  0.00016162  0.00016162  0.00016163  0.00018586  0.0001666  0.0001677 

33 protein  0.00164376  0.00164376  0.00164378  0.00189027  0.0016944  0.0017052 

34 Lipid  8.8887E-05  8.8887E-05  8.8888E-05  0.00010222  9.163E-05  9.22E-05 

35 respiration                     0                     0                      0                      0                   0                   0 

36 biomass  0.10216887  0.1021687  0.10216976  0.1174903  0.105317  0.1059875 
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6.5 Elementary Flux Mode of Model 3 

Tab. 6.20* Elementary flux mode of Model 3 with P/O = 1.65 and YATP = 0.0746 mol/g. 
 

 

Anaerobic Growth  Oxidative Growth Aerob. F. G. 

No. Designation EM 1 EM 2 EM 3 EM 4  EM 5 EM 6 EM 7 

 

EM 8 

1 glc 1 1 1 1  1 1 1 
 

1 
2 pol 0.027559551 1.85081E-05 0 0  0.182259674 0 0 

 
0.037847326 

3 g6p-co2 0 0.666152344 0.666538865 0  0 0 0.959668054 
 

0 
4 g6p-r5p 0.017631472 1.18407E-05 0 0  0.116602273 0 0 

 
0.024213169 

5 g6p-gap 0.954808978 0.333817307 0.333461135 1  0.701138053 1 0.040331946 
 
0.937939505 

6 glyc 0.074436337 0 0 0.545290897  0 0.817861189 0 
 

0 
7 gap-3pg 0.880372641 0.333817307 0.333461135 0.454709103  0.701138053 0.182138811 0.040331946 

 
0.937939505 

8 ser 0.00481462 3.23334E-06 0 0  0.031840545 0 0 
 
0.006611882 

9 3pg-pyr 0.875558021 0.333814074 0.333461135 0.454709103  0.669297507 0.182138811 0.040331946 
 
0.931327623 

10 asp 0.024670779 1.65681E-05 0 0  0.163155347 0 0 
 
0.033880197 

11 pyr-acald 0.832978481 0.333785479 0.333452799 0.36382728  0.037877376 0 0 
 
0.872853458 

12 etoh 0.551528262 0.222532214 0.222312981 0.242563647  0 0 0 
 
0.576687494 

13 lip 0.003818492 2.56437E-06 0 0  0.025252846 0 0 
 
0.005243907 

14 glut 0.017863902 1.19968E-05 0 0  0.118139403 0 0 
 
0.024532363 

15 pyr-co2 0 0 8.33632E-06 0.090881824  0.349828716 0.182138811 0.040331946 
 

0 
16 o2 0 0 0 0  0.432002297 0.045842243 0.040331946 

 
0.017042218 

17 co2 0.277676587 0.777403074 0.777687019 0.212145456  0.362749911 0.182138811 1 
 
0.290983662 

18 biomass 3.320427802 0.002229886 0 0  21.95899686 0 0 

 

4.559918803 

*: All the values are normalized with glucose uptake rates. 
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