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ABSTRACT 

During type 1 diabetes development insulin-secreting cells are specifically destroyed by 

proinflammatory cytokines. This destruction involves the nitrooxidative stress induction, which leads 

to a severe mitochondrial dysfunction with a concomitant loss of glucose-induced insulin secretion and 

at the later stage to beta cell death. 

Mimitin is a novel mitochondrial protein, which is believed to be involved in the control of cell 

proliferation and death. Mimitin was also described as a new chaperone for the mitochondrial complex 

I, thereby modulating ATP formation.  

The main aim of this dissertation was to elucidate a possible role of mimitin in insulin-secreting 

cells. For this purpose a screening for the mimitin expression pattern in different rat and mouse tissues 

was performed, which revealed a moderate level of mimitin expression in rat and a higher level in 

mouse islets. Mimitin was expressed in all cell types in the pancreatic islets. Mimitin expression was 

decreased by proinflammatory cytokines. In the ob/ob mouse, an animal model of insulin resistance 

and obesity, mimitin expression was not altered in islets, but significantly different in other tissues 

when compared to the lean litter mates. 

To elucidate the role of mimitin in insulin-secreting cells in detail, two cell lines, one with a low 

expression level (INS1E) and the second with a higher expression level (MIN6), were selected for 

further studies. Mimitin overexpression increased proliferation of INS1E cells and counteracted its 

cytokine-mediated inhibition. The cytokine-induced activation of caspase-9 and -12 was significantly 

reduced in INS1E-mimitin cells, almost leading to the full prevention of the effector caspase-3 

activation. Mimitin overexpression did not affect cytokine-induced NFB activation and nitrite 

production. Nevertheless, it reduced the cytokine-mediated ER stress response. The ATP content was 

significantly higher in mimitin overexpressing INS1E cells and was not diminished by 

proinflammatory cytokines. In addition, the mitochondrial membrane potential was also not affected 

by cytokines. Mimitin overexpression led to a higher insulin secretion even in the presence of a basal 

glucose concentration. The glucose-induced insulin secretion was significantly higher in mimitin 

overexpressing cells, also after exposure to proinflammatory cytokines. Conversely, mimitin knock-

down in MIN6 cells resulted in the opposite effects, when compared to the overexpression. The 

cytokine-mediated caspase-3 activation was significantly increased, while ATP formation and glucose-

induced insulin secretion (both in the presence and absence of cytokines) were notably reduced.  

Overall, these results identified mimitin as a novel protective protein, preventing mitochondrial 

and ER stresses in insulin-secreting cells exposed to cytokines. Moreover, the data revealed that 

mimitin overexpression reduces the cytokine-mediated inhibition of glucose induced-insulin secretion, 

most probably through the maintenance of mitochondrial function. Nevertheless, an increased mimitin 

expression may constitute a possible threat of a mild but undesirable hypoglycaemia. This observation 
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underlines the compromise which pancreatic beta cells must make between a properly controlled 

glucose responsiveness of insulin secretion and protection against cytokine-mediated toxicity. 

Furthermore, the role of prostacyclin (PGI2) in glucose-induced insulin secretion was analyzed. 

Pancreatic beta cells express prostacyclin synthase (PGIS), the enzyme synthesizing PGI2, on a 

relatively low level. Therefore PGIS was overexpressed in insulin-secreting INS1E cells and the 

effects on beta cell function were studied. Interestingly, in contrast to other prostaglandins, 

prostacyclin was found to be a strong potentiator of glucose-induced insulin secretion. This 

potentiating effect was dependent on the release of PGI2 from the cell of origin and activation of 

prostacyclin receptors, leading to a strong rise in cAMP formation, followed by the activation of the 

PKA-independent and Epac2-mediated pathway. 

Moreover, the present study strongly suggests that a low level of nitric oxide (NO) is not 

deleterious for the pancreatic beta cells. While the high amounts of NO originating from the inducible 

NO synthase (iNOS) activity mediate the inhibitory actions of proinflammatory cytokines on beta cell 

function, the low concentrations of NO produced by the neuronal NO synthase (nNOS) seem to be 

involved in the physiology of pancreatic beta cells. Proinflammatory cytokines significantly reduced 

the expression of nNOS in insulin-secreting INS1E cells as well as in rat islets. Therefore, the 

observed modest basal level of nNOS expression in pancreatic beta cells does not mediate the cytokine 

toxicity in beta cells. 

 

 

Keywords: Diabetes, Insulin-secreting cell, Cytokines, ATP 
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ZUSAMMENFASSUNG 

Die insulinproduzierenden Betazellen werden während der Typ 1 Diabetes Entwicklung durch 

proinflammatorische Zytokine selektiv zerstört. Diese Zerstörung geht mit der Induktion des 

nitrooxidativen Stresses einher, die zu einer mitochondrialen Dysfunktion und dem damit verbundenen 

Verlust der glukoseinduzierten Insulinsekretion und letztlich zum Betazelltod führt. 

Mimitin, ein mitochondriales Protein, scheint in der Zellproliferation und beim Zelltod eine 

wichtige Rolle zu spielen. Darüber hinaus wurde Mimitin als ein neues Chaperon für den 

mitochondrialen Komplex I beschrieben, wodurch die ATP-Produktion moduliert wird. 

Das Ziel der vorliegenden Arbeit war es, die Funktion von Mimitin in insulinsezernierenden 

Zellen aufzuklären. Hierfür wurde zunächst das Expressionsmuster von Mimitin in verschiedenen 

Geweben der Ratte und Maus untersucht. Isolierte Langerhans’sche Inseln der Ratte zeigten eine 

mäßige Mimitin-Expression, wohingegen die Expression in Inseln der Maus deutlich höher war. 

Mimitin konnte in allen Zellen der Langerhans’schen Inseln nachgewiesen werden. Die Wirkung 

proinflammatorischer Zytokine reduzierte die Expression des Mimitins innerhalb der Ratteninseln. In 

pankreatischen Inseln von ob/ob Mäusen, einem Tiermodell für Insulinresistenz und Adipositas, 

konnten keine Expressionsunterschiede von Mimitin im Vergleich von übergewichtigen mit 

normalgewichtigen Tieren nachgewiesen werden. Allerdings zeigten sich bei der Mimitin-Expression 

in anderen Geweben signifikante Unterschiede im Vergleich beider Gruppen. 

Für eine detaillierte Darstellung der Rolle des Mimitins in insulinsezernierenden Zellen wurden 

zwei Betazelllinien verwendet. Die INS1E Zellen wiesen dabei ein niedriges Expressionsniveau an 

Mimitin auf, während die MIN6 Zellen eine höhere Mimitin-Expression zeigten. Die Überexpression 

von Mimitin in INS1E Zellen führte zu einer Erhöhung der Proliferationsrate und verhinderte die 

zytokinvermittelte Hemmung der Zellproliferation. Die zytokininduzierte Aktivierung der 

mitochondrialen Caspase-9 und der ER Stress-assoziierten Caspase-12 war in INS1E-Mimitin Zellen 

signifikant reduziert und infolgedessen auch die Aktivierung der Effektor-Caspase-3. Zusätzlich 

blieben jedoch die zytokininduzierte NFB-Aktivierung sowie die Nitritproduktion unverändert. 

Dennoch ergab sich eine Verminderung der zytokinvermittelten ER-Stress Antwort. Die ATP 

Konzentration war in Mimitin-überexprimierenden INS1E Zellen signifikant erhöht und wurde auch 

durch proinflammatorische Zytokine nicht beeinflusst. Zudem konnte das mitochondriale 

Membranpotential gegenüber einer zytokinvermittelten Verminderung geschützt werden. Die 

Überexpression von Mimitin führte selbst bei einer basalen Glukosekonzentration zu einer erhöhten 

Insulinsekretion. Die Mimitin-überexprimierenden Zellen wiesen auch unter dem Einfluss von 

proinflammatorischen Zytokinen eine signifikant erhöhte glukoseinduzierte Insulinsekretion auf. Ein 

„knock-down“ von Mimitin in MIN6-Zellen führte im Vergleich zu Mimitin-überexprimierenden 

Zellen zu gegenteiligen Effekten. In diesen Zellen konnte eine signifikant erhöhte Aktivierung der 
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Caspase-3 nach einer Zytokinexposition mit einer Reduktion der glukoseinduzierten Insulinsekretion 

sowie der ATP Produktion (in Abwesenheit oder Anwesenheit von Zytokinen) nachgewiesen werden. 

Diese Ergebnisse verdeutlichen die Rolle von Mimitin als neues protektives Protein, welches 

einem zytokinvermittelten mitochondrialen und ER Stress in insulinproduzierenden Zellen entgegen 

wirkt. Darüber hinaus führte eine erhöhte Expression von Mimitin zu einer reduzierten 

zytokinvermittelten Inhibierung der glukoseinduzierten Insulinsekretion, was wahrscheinlich durch die 

Aufrechterhaltung der mitochondrialen Funktion gewährleistet wird. Dennoch könnte die erhöhte 

Mimitin-Expression zu einer unerwünschten milden Hypoglykämie führen. Die Ergebnisse dieser 

Arbeit verdeutlichen, dass die Mimitin-Expression in pankreatischen Betazellen einen Kompromiss 

zwischen der Glukoseresponsivität und dem Schutz gegenüber einer Zytokintoxizität darstellt. 

Außerdem wurde die Bedeutung von Prostacyclin (PGI2) für die glukoseinduzierte 

Insulinsekretion analysiert. Pankreatische Betazellen exprimieren die Prostacyclinsynthase (PGIS), das 

PGI2-synthetisierende Enzym, auf einem relativ niedrigen Niveau. Um die Bedeutung für die 

Betazellfunktion zu untersuchen, wurde PGIS in insulinproduzierenden INS1E Zellen überexprimiert. 

Es konnte gezeigt werden, dass Prostacyclin im Gegensatz zu den anderen Prostaglandinen die 

glukoseinduzierte Insulinsekretion verstärkt. Diese Verstärkung war von der Freisetzung des PGI2 und 

Aktivierung des Prostacyclinrezeptors abhängig, wodurch es zu einer starken Erhöhung der cAMP-

Bildung und anschließenden Aktivierung des PKA-unabhängigen bzw. des Epac2-vermittelten 

Signalweges kam. 

Darüber hinaus konnte gezeigt werden, dass niedrige Konzentrationen von Stickstoffmonoxid 

(NO) keine schädliche Wirkung auf pankreatische Betazellen haben. Während hohe NO-

Konzentrationen, gebildet durch die induzierbare NO-Synthase (iNOS), die inhibierende Wirkung von 

proinflammatorischen Zytokinen auf die Betazellfunktion vermitteln, scheinen niedrige NO-

Konzentrationen, die durch die neuronale NO-Synthase (nNOS) generiert werden, in der Physiologie 

der pankreatischen Betazellen beteiligt zu sein. Die Inkubation von insulinproduzierenden INS1E 

Zellen und Ratteninseln mit proinflammatorischen Zytokinen führte zu einer signifikanten Abnahme 

der nNOS-Expression, was darauf hindeutet, dass die beobachtete moderate nNOS-Expression in 

pankreatischen Betazellen nicht die Zytokintoxizität vermittelt. 

 

 

Schlüsselwörter: Diabetes, insulinsezernierenden Zellen, Zytokine, ATP 
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1. INTRODUCTION 

One of the most essential functions of the endocrine system is to maintain body homeostasis. The 

endocrine system is composed of glands, which produce and secrete hormones directly into the 

bloodstream. Hormones serve as chemical messengers, transferring the information to target tissues 

and regulating the whole body metabolism, growth, and development as well as reproductive 

processes. The endocrine system consists of the hypothalamus, pituitary gland, thyroid, parathyroids, 

adrenal gland, pineal body, reproductive organs (ovaries and testes), and endocrine pancreas. In 

contrast to other glands the pancreas has a dual function, reflected by the presence of endocrine and 

exocrine compartments, the latter of which secretes digestive enzymes. The pancreas is responsible for 

controlling the blood glucose level. Among many disorders caused by dysfunction of the pancreas, 

diabetes is the most common one, affecting millions of people worldwide (Eisenbarth 2006). 

1.1. Physiology of the pancreatic beta cells 

The human endocrine pancreas is composed of nearly one million pancreatic islets, scattered over 

the glandular exocrine tissue (Eisenbarth & Lafferty 1996; Eisenbarth 2006; Lenzen 2011; Mandrup-

Poulsen et al. 2010; Waldhäusl & Lenzen 2007). Each of the islets of Langerhans (Figure 1), named 

after their discoverer Paul Langerhans (1869), contains around 1000-2000 secretory cells arranged in 

clusters (Ravier & Rutter 2010). Human islets, varying considerably in terms of size, comprise 1-2 % 

of the total mass of the pancreas (Eizirik et al. 2009). A capsule composed of connective tissue fibres 

and glial-like cells separates richly vascularized (the endocrine cells have direct contact with the 

bloodstream) and innervated islets from the exocrine tissue (Eisenbarth & Lafferty 1996; Eisenbarth 

2006). Approximately 60-80 % of endocrine cells present in the islets are insulin-producing beta cells, 

the rest consists of glucagon-producing alpha cells (10-20 % of the endocrine cell mass), somatostatin-

releasing delta cells (~5 %), pancreatic polypeptide-producing PP cells (< 1 %), and ghrelin-producing 

epsilon cells (Ashcroft & Rorsman 1989; Eisenbarth & Lafferty 1996; Eisenbarth 2006; Mandrup-

Poulsen et al. 2010). The communication between endocrine cells occurs either in a paracrine fashion 

or directly via gap junctions (Mandrup-Poulsen et al. 2010). The architecture of islets varies between 

the species; however, most mammalian islets have a beta cell rich core surrounded by a demarcated 

margin composed of alpha-, delta-, and PP-cells. 

Pancreatic beta cells secrete insulin, which is the most potent anabolic hormone (Eisenbarth & 

Lafferty 1996; Eisenbarth 2006; Lenzen 2011). Insulin production by beta cells represents almost 

50 % of their total protein production (Schuit et al. 1988). Insulin biosynthesis is regulated by various 

factors like glucose, amino acids, cytokines, and insulin itself. In some animals two insulin genes are 

present; however, in most of them (including humans) only one gene is found. The human insulin gene 

is located on chromosome 11 and encodes 3 exons and 2 introns (Owerbach et al. 1980). The final 

spliced messenger RNA transcript is 446 base pairs (bp) long. Insulin mRNA is translated to the pre-
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proinsulin. The formation of proinsulin from pre-proinsulin takes place in the rough endoplasmic 

reticulum upon the cleavage of the N-terminal signal peptide. Proinsulin contains a 21 amino acid-long 

alpha and a 30 amino acid-long beta chain, which are linked by a highly charged C-peptide 

(Eisenbarth & Lafferty 1996; Eisenbarth 2006; Owerbach et al. 1980). Proinsulin is transported 

through the Golgi apparatus where it is further processed in the maturing granule to insulin and stored 

in complexes with zinc. Transformation from proinsulin into insulin occurs via excision of the 

C-peptide carried out by the endopeptidases PC1 and PC2 (prohormone convertases) and 

carboxypeptidase H (Eisenbarth & Lafferty 1996; Eisenbarth 2006). The biologically inactive 

C-peptide is co-secreted in equimolar amounts with insulin from the mature secretory granule. In the 

bioactive insulin both alpha and beta chains are linked intramolecularly by two disulfide bridges. The 

third disulfide bridge is located on the alpha chain. The molecular weight of insulin is 5.8 kDa.  

Pancreatic beta cells secrete insulin in response to increased circulating levels of glucose. Released 

insulin exerts its action via binding to and following by the activation of its highly specific and high-

affinity cell-surface receptors which are virtually present on all cells of the body, including pancreatic 

beta cells themselves (Hirayama et al. 1999). Consequently, insulin influences the function of almost 

all tissues. However, the major insulin-sensitive tissues (target tissues) are liver, adipose tissue, and 

skeletal muscle. 

 

 

Figure 1 Structure of a pancreatic islet of Langerhans [adapted from (Waldhäusl & Lenzen 2007)]. 
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1.2. Glucose-induced insulin secretion 

Glucose is the most potent stimulator of insulin secretion (Malaisse et al. 1977; Matschinsky & 

Ellerman 1968). Additionally, several other nutrients act as insulin secretagogues, including some 

amino acids and non-esterified fatty acids (Broca et al. 2003; MacDonald et al. 2005; Newsholme et 

al. 2005). Pancreatic beta cells are responsible for maintaining the body’s glucose concentration within 

a very narrow range to preserve euglycaemia (Bonner-Weir 2000). Moreover, insulin action on its 

target tissues, mainly on liver and muscle, enables a tight control of blood glucose level and 

metabolism. 

Since the intra-islet glucose concentration reflects the glucose concentration in the extracellular 

fluid and closely follows the blood glucose concentration within its physiological range (Matschinsky 

& Ellerman 1968), the insulin secretory and biosynthetic activity of pancreatic beta cells is thought to 

be primarily regulated by the glucose concentration in the circulation (Lenzen & Panten 1988). In 

insulin-producing pancreatic beta cells glucose plays a dual role of fuel and physiological stimulus for 

the initiation of insulin secretion and the regulation of insulin biosynthesis (Ashcroft 1980; Lenzen & 

Panten 1988; Schuit et al. 2002; Welsh et al. 1986). The stimulatory effect of glucose on insulin 

biosynthesis is achieved via concentration-dependent recruitment of pancreatic beta cells to 

biosynthetic activity (Schuit et al. 1988; Schuit et al. 2002; Weksler-Zangen et al. 2008). The 

pancreatic beta cell population seems to be composed of cells which differ in their sensitivity to the 

stimulatory action of glucose. This heterogeneity explains the sigmoidal concentration-response curve 

for the glucose-induced total protein and proinsulin biosynthesis (Schuit et al. 1988).  

In rodent beta cells glucose is transported across the plasma membrane via the high capacity, low-

affinity glucose transporter GLUT2, using the mechanism of facilitated diffusion (Lenzen & Panten 

1988; Maechler 2002; Newgard & McGarry 1995). However, in human beta cells GLUT2 is only 

moderately expressed, while the expression of another glucose transporter GLUT1 is predominant (De 

Vos et al. 1995; Schuit 1997). GLUT1 is characterized by high-affinity for glucose (Boden et al. 

1994). Glucose is quickly phosphorylated by the low-affinity glucose phosphorylating enzyme 

glucokinase (GK) (Ferber et al. 1994; Moukil et al. 2000; Newgard & McGarry 1995; Purrello et al. 

1993). This step leads to the production of glucose-6-phosphate (Glc-6P) and determines the rate of 

glycolysis and pyruvate generation (Matschinsky 1990; Matschinsky 1996; Newgard & McGarry 

1995; Wiederkehr & Wollheim 2006). GK activity is present only in the liver and in the islets of 

Langerhans of the pancreas, where its expression is restricted to beta cells (Iynedjian et al. 1989; 

Jetton & Magnuson 1992; Johnson et al. 1990; Lenzen & Panten 1988; Magnuson & Shelton 1989). 

When the blood glucose concentration is high, the rate of glycolysis in the beta cell increases. Electron 

transfer from the tricarboxylic acid (TCA) cycle to the mitochondrial respiratory chain facilitated by 

NADH and FADH2 enables the generation of ATP, which is then exported into the cytosol. An 

increase in the cytosolic ATP/ADP ratio causes closure of ATP-sensitive K
+
 (KATP) channels, which in 
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turn depolarizes the plasma membrane. This results in the opening of voltage-sensitive Ca
2+

 channels 

and evokes Ca
2+

 to enter into the cell. In the presence of ATP, Ca
2+

 stimulates exocytosis of insulin-

containing secretory granules (Lang 1999). Although an increase in cytosolic Ca
2+

 is the main trigger 

for exocytosis, glucose is also capable of stimulating insulin secretion in a manner not involving KATP 

channels and Ca
2+

 influx (Henquin 1988; Lenzen & Panten 1988). However, the exact mechanism 

underlying the KATP-channel independent pathway is still unclear (Sato & Henquin 1998). The current 

hypothesis involves an increased level of cytosolic long-chain acyl-CoA forms, glutamate export from 

mitochondria, elevated ATP, GTP, and DAG binding protein concentrations as well as activation of 

PKA and PKC (Bratanova-Tochkova et al. 2002; Prentki 1996; Straub & Sharp 2002). The KATP-

dependent and -independent insulin secretion both require mitochondrial metabolism (Detimary et al. 

1994; Taguchi et al. 1995; Wiederkehr & Wollheim 2006). The KATP-dependent pathway of glucose-

induced insulin secretion in pancreatic beta cells is illustrated in Figure 2. 

 

Figure 2 KATP-dependent pathway of glucose-induced insulin secretion in pancreatic beta cells 

[adapted from (Maechler 2002)]. 

- Glucose (Glc) is taken up by low-affinity GLUT2 glucose transporter in response to hyperglycaemia. 

- Glucose is rapidly phosphorylated to glucose-6 phosphate (Glc-6P) by low-affinity glucose phosphorylating 

enzyme glucokinase (GK) and further converted to pyruvate (Pyr) by glycolysis (Walter & Ron 2011). 

- Pyruvate preferentially enters the mitochondrion and fuels the TCA (Krebs) cycle, leading to the generation of 

ATP through electron transport chain (ETC), which in turn causes an increase of the ATP/ADP ratio. 

- The increased cellular ATP/ADP ratio closes KATP-sensitive channels, resulting in membrane depolarization, 

followed by Ca
2+

 influx through voltage-gated-Ca
2+

 channels. 

- A raise in cytosolic Ca
2+

 concentration triggers exocytosis of insulin. 

Insulin secretion occurs in two phases, though there are significant differences across the species 

(Grodsky et al. 1967; Henquin et al. 2002; Lenzen 1979; Rorsman et al. 2000). This biphasic response 

consists of an immediate first phase followed by a sustained second phase. The immediate transient 

release begins after a short period of 1 to 2 minutes and upon reaching the peak it declines rapidly. The 

long lasting second phase of insulin secretion begins within 5 minutes after glucose stimulation and is 
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characterized by a gradual increase of insulin secretion to a plateau level, though there are significant 

species differences (Lenzen 1979). Insulin released in the first immediate phase originates from the 

readily releasable pool of mature granules, whereas the second phase release involves induction of 

insulin biosynthesis (Bratanova-Tochkova et al. 2002; Henquin 2000; Schuit et al. 2002). 

1.3. Role of mitochondria 

Mitochondria are rod-shaped organelles surrounded by a double membrane present in most 

eukaryotic cells (with the exception of the red blood cells). The number of mitochondria present 

within a cell depends on its metabolic requirements and can vary significantly (Robin & Wong 1988; 

Wallace 1999). With 4 % the mitochondrial volume is rather low in the beta cells (Dean 1973; Lenzen 

& Panten 1988). The unique mitochondrial genome in the form of circular DNA is transcribed and 

translated within the mitochondrion. Human mitochondrial DNA (mtDNA) comprises only 37 genes 

(16 569 bp), the most important of which are those encoding subunits of the electron transport chain 

(Wallace 1999). Therefore any defect in mitochondrial DNA results in an impaired oxidative 

phopshorylation (de Andrade et al. 2006; Jacobsen et al. 2009; Jacobson et al. 1993; Kennedy et al. 

1998; Marchetti et al. 1996; Wiederkehr & Wollheim 2006). Other enzyme subunits as well as 

mitochondrial proteins are encoded by the nuclear genome (Maechler & Wollheim 2001; Wiederkehr 

& Wollheim 2006). In contrast to nuclear DNA mtDNA consists only of coding sequences, and is not 

protected by histones. Additionally its repair mechanisms are very poor, which makes it highly 

susceptible to mutation and oxidative stress (Maechler & Wollheim 2001). 

Mitochondria represent the central crossroad of metabolic pathways and are the main source of 

energy, primarily ATP, which is required for the maintenance of transmembrane ion gradients, protein 

synthesis, and vesicular transport (Green & Reed 1998; Maechler & Wollheim 2000; Maechler & 

Wollheim 2001; Maechler 2002; Maechler & de Andrade 2006; Newmeyer & Ferguson-Miller 2003; 

Skulachev 1999). Three classes of fuel are able to activate mitochondria: amino acids, fatty acids, and 

carbohydrates, the latter of which are fundamental in pancreatic beta cells under normal physiological 

conditions (Maechler & Wollheim 2001). The principal mitochondrial substrate pyruvate, essentially 

generated by glycolysis, is transported to the mitochondria and provides substrates to the Krebs cycle. 

This in turn leads to the production of the reducing equivalents, NADH and FADH2, in the 

mitochondrial matrix, which are used by complexes I and II in the mitochondrial electron transport 

chain (ETC). Both complexes I (NADH) and II (FADH2) enable electrons to enter the respiratory 

chain (Maechler & Wollheim 2001) (Figure 3). Consequently, complexes I, III, and IV of the 

respiratory chain create an electrochemical proton gradient across the inner mitochondrial membrane. 

The condensation of ADP with inorganic phosphate is catalyzed by the ATP synthase (complex V). As 

a result ATP is generated via a process which is powered by the diffusion of protons back into the 

matrix through the ATP synthase. The adenine nucleotide translocator facilitates the transfer of ATP to 

the cytoplasm in exchange of ADP. The second complex of the respiratory chain in the mitochondrion, 
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namely the FADH2/succinate dehydrogenase, is also an integral part of the Krebs cycle (Maechler & 

Wollheim 2001). The entire process is regulated not only by substrate flux, but also by the Ca
2+ 

concentration, which is able to increase the activity of several mitochondrial dehydrogenases. 

 

Figure 3 Mitochondrial electron transport chain [adapted from (Brownlee 2005)]. 

The enzyme complexes I-V are located in the inner mitochondrial membrane. The flux of electrons along the 

respiratory chain enables complexes I, III and IV to create an electrochemical proton gradient across the inner 

mitochondrial membrane. This gradient serves as a source of energy to drive ATP synthesis via a process which 

is powered by the diffusion of protons back to the matrix through the ATP synthase (complex V). 

Mitochondria are of particular importance for pancreatic beta cell function. They play an essential 

role in insulin secretion, coupling nutrient metabolism to insulin secretion (Duchen et al. 1993; Lenzen 

& Panten 1988; Maechler 2002; Maechler et al. 2010; Mehmeti et al. 2011; Wiederkehr & Wollheim 

2006; Wollheim 2000). This crucial importance is underscored by the fact that a defective respiratory-

chain activation as well as the loss of mitochondrial ATP production lead to the inhibition of glucose-

induced insulin release (Maechler & de Andrade 2006; Maechler et al. 2010; Sakai et al. 2003; 

Soejima et al. 1996; Tsuruzoe et al. 1998). 

Besides having a pivotal role in ATP generation, an increasing amount of evidence also points to 

the involvement of mitochondria in the regulation of the programmed cell death (Duchen 2004; Green 

& Reed 1998; Lee & Wei 2000; Newmeyer & Ferguson-Miller 2003; Petit et al. 1996). This has been 

demonstrated by disruption of the electron transport, oxidative phosphorylation, and ATP production 

as well as by a release of proteins (such as cytochrome c) triggering the activation of caspases and 

alteration of cellular redox potential. For most cells the mitochondrial outer membrane 

permeabilization (MOMP) is the actual point of no return for cell survival, as cells die irrespective of 

the following caspase activation (Gottlieb et al. 2003). Moreover, it has been demonstrated that in 
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nearly all cells MOMP can initiate from a defined point or points in the cell and further proceed in a 

wave-like manner across all mitochondria (Bhola et al. 2009; Lartigue et al. 2008; Rehm et al. 2003; 

Tait & Green 2010). A collapse of the mitochondrial transmembrane potential contributes to cell death 

mainly via loss of mitochondrial functions: ATP synthesis, ion homeostasis, and protein transport into 

the mitochondrial matrix (Tait & Green 2010). Discontinuity of the outer mitochondrial membrane 

causes a release of intermembranous proteins including cytochrome c and apoptosis-inducing factor 

(AIF). After translocation from mitochondria to the cytosol cytochrome c binds to the apoptosis-

protease activating factor-1 (APAF-1). In the presence of ATP the so-called apoptosome is formed, 

which in turn recruits procaspase 9. The initiator caspase-9 becomes activated and released upon 

proteolytic cleavage from a multimeric complex. The active caspase 9 then activates the effector 

caspase-3 and caspase-7. 

Permeabilization of the outer mitochondrial membrane and the subsequent release of cytochrome c 

from the intramembraneous space are firmly regulated by the Bcl-2 family of proteins (Newmeyer & 

Ferguson-Miller 2003). The Bcl-2 protein family comprises pro- and antiapoptotic members (Wang et 

al. 2011). Although the exact mechanisms responsible for cell death controlled by Bcl-2 proteins 

remain elusive, it appears that the fate of cells exposed to apoptotic stimuli is determined by the 

interaction between the Bcl-2 family proteins. 

The mitochondrial respiratory chain has been defined as the main source of reactive oxygen species 

(ROS) formation within the cell (Lee & Wei 2000; Maechler & de Andrade 2006; Turrens 2003). 

Under normal conditions only 0.1 % of the total oxygen consumption leaks to ROS generation, which 

results from an imperfect electron transport (Chance et al. 1979; Raha & Robinson 2000). However, it 

has been demonstrated that the magnitude of this leak increases in ageing tissues and in a variety of 

pathological conditions (Beckman & Ames 1998). Under physiological conditions ROS are effectively 

scavenged by different components of the antioxidative defence, often restricted to particular cell 

compartments. Superoxide radicals were identified as the initial ROS species formed continually by 

the mitochondrial electron transport chain through the one-electron reduction of molecular oxygen. 

Even though superoxide radicals are not very toxic, they are precursors of most other ROS. 

Mitochondria are not only the main source of ROS, they are also the primary target of their action. A 

number of distinct factors (e.g. UV radiation, proinflammatory cytokines, and environmental toxins) 

may disturb the equilibrium between production and scavenging of ROS causing a significant increase 

of the ROS intracellular concentration. A persistent imbalance between excessive formation of ROS 

and a limited antioxidant defence leads to oxidative stress which eventually damages mitochondria and 

causes cell death (Crawford et al. 1998; Gehrmann et al. 2010; Maechler & de Andrade 2006; 

Mandrup-Poulsen 2001). 

Beta cells are known for their limited antioxidant capacity, which makes them particularly 

susceptible to oxidative damage (Lenzen et al. 1996; Lenzen 2008; Tiedge et al. 1997). This 

vulnerability mainly relates to beta cell mitochondria characterized by a modest antioxidant defence 
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capacity (Lenzen 2008). It has been shown that mitochondria are the main source of cytokine-derived 

ROS formation (Gurgul et al. 2004; Maechler et al. 2010) and also the main targets of cytokine 

toxicity (Azevedo-Martins et al. 2003; Drews et al. 2010; Green & Reed 1998; Grunnet et al. 2009; 

Gurgul-Convey et al. 2011; Lortz et al. 2005). 

1.4. Diabetes mellitus 

Diabetes mellitus is a chronic metabolic disorder, developing when the beta cells of the pancreas 

are unable to meet the insulin demand of the body (Hutton & Eisenbarth 2003), and characterized by 

hyperglycaemia resulting from defects in insulin secretion, insulin action or both. Over the past 50 

years the incidence of diabetes mellitus has been doubled in Western societies (Hutton & Eisenbarth 

2003).  

The two main forms of diabetes mellitus, type 1 and type 2 (T1DM and T2DM respectively; Table 

1) are characterized by a progressive beta cell dysfunction and loss (Chandra et al. 2001; Cnop et al. 

2005). Although the mechanisms involved in T1DM and T2DM development are different, apoptosis 

is the predominant mode of beta cell death (Chandra et al. 2001; Mandrup-Poulsen 2001). It has been 

shown that augmented oxidative damage as well as inadequate antioxidant defence significantly 

contribute to the pathogenesis of diabetes (West 2000). 

 

Type 1 diabetes mellitus (T1DM) Type 2 diabetes mellitus (T2DM) 

- autoimmune disease 

- absolute lack of insulin (beta cell 

destruction) 

- obligatory and permanent insulin 

substitution 

- 5-10 % of all diabetics 

- insulin resistance and/or beta cell 

dysfunction 

- relative insulin deficiency in late disease 

stages, when reduced beta cell mass occurs 

(insulin substitution) 

-     90-95 % of all diabetics 

Table 1 The two main forms of diabetes mellitus [based on (Lenzen 2011)]. 

Type 1 diabetes mellitus, also known as insulin-dependent diabetes mellitus, is a polygenic 

autoimmune disorder and accounts for around 5-10 % of all cases (Daneman 2006). It results from a 

cellular-mediated autoimmune destruction of beta cells in the pancreas, which leads to the absolute 

deficiency of insulin secretion (Atkinson & Maclaren 1994; Donath et al. 2003; Hutton & Eisenbarth 

2003). This complete lack of endogenous insulin production makes a life-long insulin substitution the 

absolute requirement for T1DM patients. The susceptibility to T1DM is inherited (Atkinson & 

Maclaren 1994) indicating a strong genetic background. However, environmental factors were also 

described as relevant in the aetiology of T1DM (Donath et al. 2003). Moreover, some nutritional 

factors such as early exposure to cow’s milk protein, or gluten may also contribute to the development 

of type 1 diabetes (Virtanen & Knip 2003). 
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T2DM is characterized by the combination of resistance to insulin action and an inadequate insulin 

secretory response (Gehrmann et al. 2010; Greenberg & McDaniel 2002; Pickup & Crook 1998). The 

loss of beta cells in T2DM is much slower than in T1DM and is typically preceded by a long phase of 

beta cell dysfunction characterized by a defective insulin secretion in response to glucose (Lenzen 

2011; Newgard & McGarry 1995). Insulin resistance accompanied by normal glucose levels, glucose 

intolerance, and clinical diabetes are the three recognized stages described in the development of 

T2DM with the first two being reversible (Durruty & Garcia de los Rios 2001). The diminished 

responsiveness to insulin in the periphery, particularly in muscle, adipose tissue, and liver, seems to be 

the first demonstrable abnormality in the development of T2DM (Häring & Mehnert 1993). The risk 

of developing T2DM increases with age, obesity, and lack of physical activity (Ammon 1997; Durruty 

& Garcia de los Rios 2001). T2DM is also genetically influenced (Bonnefond et al. 2010; Cauchi & 

Froguel 2008; Froguel et al. 1992; Hertel et al. 2008; Lyssenko et al. 2007; McCarthy 2010; McCarthy 

2011), as it has been shown in the study carried out in 200 pairs of identical twins (Barnett et al. 1981). 

Besides the types described above there are also several other specific forms of diabetes. A few of 

them are associated with a monogenic defect in beta cell function. They are referred to as maturity-

onset diabetes of the young (MODY). MODY is a monogenic autosomal dominant early onset form of 

non-insulin dependent diabetes mellitus, which was first described in 1975 (Tattersall & Fajans 1975). 

It is characterized by an impaired insulin secretion with minimal or no defects in insulin action and 

accounts for only 1-2 % of all diabetic cases (Gardner & Tai 2012). 

Latent autoimmune diabetes in adults (LADA), also known as diabetes type 1.5, is characterized by 

the presence of islet antibodies with simultaneous slow progression of autoimmune beta cell failure 

(Grant et al. 2010; Stenström et al. 2005; Tuomi et al. 1993). Therefore, LADA patients are not 

requiring insulin at least during the first 6 months after diagnosis (Stenström et al. 2005). The 

prevalence of LADA was assessed to be around 10 % among incident case subjects of diabetes aged 

40-75 years (Nambam et al. 2010; Wroblewski et al. 1998). Although LADA is initially well 

manageable with diet and oral hypoglycaemic agents, beta cell function becomes severely impaired 

within years, which eventually leads to insulin dependency in most patients (Naik et al. 2009; Tuomi 

et al. 1993; Zimmet et al. 1994). 

1.4.1. Type 1 diabetes mellitus 

Type 1 diabetes has been classified as a chronic autoimmune disease (Castaño & Eisenbarth 1990; 

Pipeleers et al. 2001). In this form of diabetes insulin producing beta cells are selectively destroyed by 

the autoimmune process (Eizirik et al. 2009; Nerup et al. 1994). In contrast endocrine islet cells 

secreting glucagon, somatostatin, or pancreatic polypeptide are preserved (Atkinson & Maclaren 1994; 

Newgard & McGarry 1995). 

Type 1 diabetes occurs mainly in childhood and adolescence; however, it can also occur at a later 

age (then typically as LADA). The classic manifestation of type 1 diabetes mellitus appears late in the 
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course of the disease after most of the beta cells have been destroyed (Atkinson & Maclaren 1994). 

Pathological studies of subjects recently diagnosed with T1DM indicate that the symptoms of this 

disease appear when ~ 70-80 % of beta cells are destroyed (Cnop et al. 2005; Eizirik et al. 2009; 

Foulis et al. 1986; Klöppel et al. 1985). Since at the time of the onset of T1DM or shortly after most 

islets are deficient in beta cells and they are characterized by an abnormally small size (Klöppel et al. 

1985). The remaining beta cell-positive islets contain cells with enlarged nuclei and variable numbers 

of degranulated beta cells (Klöppel et al. 1985). 

It has been speculated that a developing pattern of epitope-specific autoantibodies, which are 

detectable at the time of diagnosis, predicts future development of insulin-dependent diabetes in 

individuals at risk (Mandrup-Poulsen et al. 1985; Pihoker et al. 2005; Roep & De Vries 1992; Roep 

2000; Taplin & Barker 2008). Those markers of the immune destruction of beta cells include islet cell 

autoantibodies (ICAs), autoantibodies to insulin (IAAs), autoantibodies to glutamic acid 

decarboxylase (GAD65), and autoantibodies to the thyrosine phosphatase IA-2 (Atkinson et al. 1986; 

Pihoker et al. 2005). The presence of multiple autoantibodies is considered to have the highest positive 

predictive value for T1DM (Pihoker et al. 2005). 

Both genetic and environmental factors were found to play a role in T1DM development. T1DM is 

a polygenic disease and the genetic susceptibility to this form of diabetes is conferred by loci closely 

related to immune-response genes (Pociot & McDermott 2002). The major susceptibility to T1DM lies 

in the major histocompatibility complex (MHC) localized on chromosome 6 in the region associated 

with the genes for the highly polymorphic immune-system-recognition molecules HLA (Bluestone et 

al. 2010; Pirot et al. 2008). Autoimmune destruction of beta cells is also considered to be related to 

environmental factors (Castaño & Eisenbarth 1990). For instance viral infections, toxins, and certain 

dietary proteins were found as possible contributors in the pathogenesis of T1DM (Jun & Yoon 2001; 

Yoon & Jun 1999). 

Most of the pathological processes occurring in the early phase of T1DM take place in the islets 

and pancreas draining lymph nodes (Eizirik et al. 2009). Pancreatic islets of patients with T1DM are 

infiltrated with immune cells, a condition referred to as insulitis (Atkinson & Maclaren 1994). CD8
+
 

cells, CD4
+
 cells, B lymphocytes, macrophages, and natural killer (NK) cells are the major 

constituents of this inflammatory infiltrate (Atkinson & Maclaren 1994). Among them macrophages 

are the main antigen presenting cells, which infiltrate the islets first and induce the beta cell apoptosis 

via release of proinflammatory cytokines such as IL-1 and TNF as well as nitric oxide and other 

free radicals (Eizirik & Mandrup-Poulsen 2001). Furthermore, increasing evidence indicates that 

macrophages provide important costimulatory signals for T-cell activation (Jun et al. 1999; Jun et al. 

1999). T-cells, following macrophages during insulitis, produce upon activation proinflammatory 

cytokines in particular IL-1, TNF, and IFN (Mosmann & Coffman 1989; Rabinovitch 1998; 

Rabinovitch & Suarez-Pinzon 1998). Moreover, they also express the ligand of the Fas receptor (FasL) 

present on beta cells and the tumour necrosis factor related apoptosis inducing ligand (TRAIL) both of 
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which are able to induce apoptosis via the activation of effector caspases-3 and -7 (Kreuwel & 

Sherman 2001). 

Proinflammatory cytokines are thought to be direct mediators and main effectors of pancreatic beta 

cell apoptosis (Grunnet & Mandrup-Poulsen 2011; Nerup et al. 1994). Their cytotoxic effects were 

reported to be counteracted by the antiinflammatory cytokine-mediated reduction of nitrosative stress, 

which indicates that the balance between pro- and antiinflammatory cytokines plays a crucial role in 

the prevention of pancreatic beta cell destruction (Souza et al. 2008). The beta cell damage and 

apoptosis occurring during T1DM development are induced by IL-1β, TNFα, and IFNγ (Mandrup-

Poulsen et al. 1985). Although IL-1β was found to be the most beta cell toxic cytokine being able to 

inhibit beta cell function and often sufficient to promote apoptosis (Corbett et al. 1992; Jörns et al. 

2005; Maedler et al. 2002; Mandrup-Poulsen et al. 1987; Nerup et al. 1988; Sandler et al. 1987), the 

massive induction of pancreatic beta cell death usually requires a combination of IL-1β, TNFα, and 

IFNγ (Cetkovic-Cvrlje & Eizirik 1994; Nerup et al. 1994; Saldeen 2000). The signal transduction by 

these proinflammatory cytokines involves binding and activation of specific receptors, triggering the 

signal via cytosolic kinases and/or phosphatases, and mobilization or de novo synthesis of various 

transcription factors, which next up- or down-regulate gene transcription (Delaney et al. 1997; Eizirik 

et al. 1996; Eizirik & Mandrup-Poulsen 2001; Mandrup-Poulsen 2003; Rabinovitch 1998; Rabinovitch 

& Suarez-Pinzon 1998; Rabinovitch et al. 1999). The cytokine crosstalk in pancreatic beta cells is 

shown in Figure 4. 

 

Figure 4 Signal cascades initiated by proinflammatory cytokines in pancreatic beta cells [adapted 

from (Cnop et al. 2005; Donath et al. 2003; Eizirik & Mandrup-Poulsen 2001)]. 

The beta cell damage and apoptosis occurring during T1DM development are induced by three proinflammatory 

cytokines, namely IL-1, TNFand IFN. IL-1 activates the transcription factors NFB and MAPK, which 

further regulate the gene expression. IL-1 leads to the induction of mitochondrial and ER stress in beta cells. 

TNF signals via activating NFB. Moreover, TNF can directly induce the caspase-8 activation. TNF 
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contributes to the mitochondrial stress. IFN signalling leads to the activation of the JAK/STAT pathway. IFN 

contributes to ER stress. 

Beta cells express both IL-1 receptors, namely IL-1R1 and IL-1R2 (Dinarello 1997; Eizirik & 

Darville 2001). Three major pathways are involved in signal transduction induced by IL-1β: the 

activation of nuclear factor B (NFB), the activation of mitogen-activated protein kinase (MAPK), 

and the activation of protein kinase C (PKC) (Eizirik & Mandrup-Poulsen 2001). MAPKs comprise 

extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) (Eizirik & 

Mandrup-Poulsen 2001; Larsen et al. 2005). ERK, p38, and JNK have been suggested as crucial for 

excitatory effects of cytokines in beta cells (Eizirik & Mandrup-Poulsen 2001). They regulate 

cytokine-induced nitric oxide production. However, MAPK signalling was also implicated in nitric 

oxide independent events (Eizirik & Mandrup-Poulsen 2001; Makeeva et al. 2006; Mokhtari et al. 

2008; Saldeen & Welsh 2004; Størling et al. 2005). Upon IL-1 binding conformational changes occur 

and IL-1R1-activated kinase (Tsuruzoe et al. 1998) is recruited to the receptor complex. IRAK 

recruitment is thought to be crucial for IL-1β-induced signalling, since it interacts with and activates 

the TNF-receptor-associated factor 6 (TRAF6). TRAF6 activates nuclear factor-κB (NFκB) inducing 

kinase (NIK), which in turn leads to the activation of inhibitory κB (IκB) kinase (IKK). This causes 

phosphorylation and eventually degradation of the inhibitory subunits of the NFκB complex, called 

IκB, which results in the release of active NFκB. NFκB is composed of one of two members of a 

family comprising five proteins that form homo- or heterodimers, depending on stimulus and cell type 

(Larsen et al. 2005; Ortis et al. 2006; Ortis et al. 2008). Active NFB is then translocated to the 

nucleus, where it induces gene transcription. NFκB is for instance required for cytokine-induced 

inducible nitric oxide synthase expression (Cetkovic-Cvrlje & Eizirik 1994; Corbett & McDaniel 

1995; Eizirik & Darville 2001). It was shown that IL-1β can also activate phosphatidylinositol-3 

kinase (PI3K), which similarly to NFκB and AP-1 activation can affect the PKC and protein kinase B 

(PKB) activity. IL-1 can also induce mitochondrial and ER stress in pancreatic beta cells (Gurzov et 

al. 2009; Lee et al. 2010) (Figure 4). 

The TNF signalling occurs through the two different receptors p60 and p80 (Figure 4). Whereas 

the p60 receptor is ubiquitously expressed in all cell types the p80 is restricted to immune and 

endothelial cells. The two receptors share a similarity of extracellular domains, but have different 

intracellular domains. The cytosolic portion of p60 contains the death domain (DD) crucial for 

transmitting the death signal, while p80 lacks it (Rath & Aggarwal 1999). After ligand binding the p60 

receptor undergoes conformational changes and trimerizes. The DD of the activated receptor interacts 

with the TNF-receptor-associated death domain (TRADD) which subsequently recruits the Fas-

associated death domain (FADD). As a consequence TNF-receptor-associated factor 2 (TRAF2) and a 

receptor-interacting protein bind to the p60/TRADD/FADD complex (Saklatvala et al. 1999). 

Eventually TNF signalling leads to the activation of phospholipases and sphingomyelinases, 
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activation of NFB through NFB-inducing kinase (NIK-NFB), and stimulation of the JNK and p38 

MAP/SAPK pathways, which are also activated by IL-1(Andersen et al. 2000). Moreover, TNF is 

also capable of directly activating the caspase cascade triggered by FADD activation of caspase-8, 

eventually leading to the final effector caspases (Rath & Aggarwal 1999) (Figure 4). TNFalso 

contributes to mitochondrial stress (Cnop et al. 2005; Gurgul-Convey et al. 2011) (Figure 4). 

In contrast to IL-1 signalling interferon-IFN) exerts its action more straightforward. IFN 

binds to the IFN receptor 1 (IFNR1), which leads to dimerization of the receptors. Subsequently two 

identical membrane-associated accessory factor proteins (IFN receptor 2, IFNR2) are recruited. 

Both, IFNR1 and IFNR2 are on their cytoplasmic side associated with the Janus tyrosine kinases 1 

and 2 (JAK1/2). When after complex formation two IFN receptors are brought into close proximity, 

JAK1/2 becomes activated via auto-phosphorylation and trans-phosphorylation. This further allows 

docking of two signal transducers and activators of transcription 1 molecules (STAT1), which are next 

phosphorylated by JAK2. Activated STAT1 homodimerizes and translocates into the nucleus, where 

through binding to DNA at -activated sites, it regulates the expression of more than a hundred 

different genes (Eizirik & Mandrup-Poulsen 2001; Stephanou et al. 2000; Tau & Rothman 1999). 

Moreover, STAT1 binds to and activates members of the interferon regulatory factor (IRF) family of 

transcription factors (Stark et al. 1998; Tau & Rothman 1999). The activation of STAT1 as a 

consequence of the IFN action was found to occur upon cytokine incubation in both insulin-secreting 

and primary islet cells (Heitmeier et al. 1999; Stark et al. 1998). STAT1 modulates caspase expression 

and thus regulates the cellular response to pro-apoptotic stimuli (Stephanou et al. 2000). JAKs in turn 

can activate the extracellular signal-regulated kinase (ERK) MAPK, PI3K, and phospholipase A2 

(PLA2), which accounts for a crosstalk with the IL-1 signalling pathway (Stark et al. 1998). 

The number of known cytokine-responsive beta cell genes has recently increased to more than 100 

by the use of DNA microarrays (Cardozo et al. 2000). Moreover, nearly 20 of them, several with a 

putative pro-apoptotic role, seem to be NFκB-regulated (Cardozo et al. 2001), which suggests an 

important role of this transcription factor in the process of beta cell death. 

An increasing amount of evidence indicates that mitochondrial stress plays a crucial role in 

proinflammatory cytokine-induced beta cell death (Figure 4). Mitochondria are known to be the major 

source of ROS production (Green & Reed 1998) and the main intracellular target of ROS toxicity (Lee 

& Wei 2000; Turrens 2003). The cytokine-induced mitochondrial dysfunction mediated by ROS has 

been identified as the central event in beta cell death (Gurgul-Convey et al. 2011; Mehmeti et al. 

2011). The extraordinary sensitivity of pancreatic beta cells to oxidative stress results from the low 

expression of antioxidant enzymes (Lenzen et al. 1996; Lenzen 2008; Tiedge et al. 1997), especially 

those detoxifying H2O2. Moreover, it was shown that proinflammatory cytokines influence the 

expression as well as activities of antioxidant enzymes and by that are able to further promote the 

imbalance in redox status of insulin-producing cells (Bigdeli et al. 1994; Borg et al. 1992; Lortz et al. 
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2005; Sigfrid et al. 2003; Souza et al. 2008). The synergism between NO and reactive oxygen species 

(ROS) action in pancreatic beta cell death has recently been confirmed (Gurgul-Convey et al. 2011). 

Generation of peroxynitrite from NO and superoxide radicals was commonly thought to be the main 

cause of cytokine toxicity (Delaney & Eizirik 1996; Lakey et al. 2001; Suarez-Pinzon et al. 1997; 

Suarez-Pinzon et al. 2001). However, recent studies demonstrated that it is the nitro-oxidative stress-

mediated hydroxyl radical formation in the mitochondria that underlies the proinflammatory cytokine-

mediated beta cell death during T1DM development (Gurgul-Convey et al. 2011). 

Lately published reports implicate that the crosstalk between the mitochondrial intrinsic pathway of 

apoptosis and the endoplasmic reticulum (ER) stress plays a role in the cytokine induced beta cell 

death (Verma & Datta 2012). The ER accounts for half of the total protein production in pancreatic 

beta cells and is an important cellular compartment for insulin biosynthesis (Fonseca et al. 2011). The 

great secretory demand of beta cells requires a very well developed and highly active endoplasmic 

reticulum (Eizirik et al. 2008; Eizirik & Cnop 2010; Laybutt et al. 2007). Recent studies indicate that 

the ER stress response (Figure 5) is involved in the pathogenesis of diabetes, contributing to pancreatic 

beta cell loss and insulin resistance (Eizirik et al. 2008; Gurzov et al. 2009; Linssen et al. 2011; 

Oyadomari et al. 2002; Tabas & Ron 2011). 

 

 

Figure 5 Endoplasmic reticulum stress signal transduction [adapted from (Fonseca et al. 2011; Verma 

& Datta 2012; Walter & Ron 2011)]. 

Accumulation of misfolded proteins leads to their aggregation within the ER lumen. The ER chaperone Bip 

dissociates from the luminal side of the ER stress transducer proteins namely IRE1, ATF6, and PERK, leading to 

their activation. IRE1 splices the mRNA encoding XBP1 and by this generates XBP1s mRNA which in turn 

encodes the transcription factor regulating the expression of chaperone proteins as well as components of ER-

associated degradation (ERAD). ATF6 induces transcription of ER chaperones and XBP1. Activation of the 

PERK pathway induces overexpression of ATF4 and consequently leads to the induction of transcription factor 

CHOP. Exposure to cytokines and NO deplete ER calcium stores, leading to ER stress, accompanied by 

increased levels of IRE1, CHOP and ATF4. 
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Accumulation of misfolded proteins, resulting from an imbalance between the protein folding 

capacity of the ER and the protein load, leads to their aggregation within the ER lumen (Cnop et al. 

2012; Eizirik & Cnop 2010; Kim et al. 2008; Oslowski & Urano 2010). This causes the loss of ER 

homeostasis, also known as unfolded protein response (UPR) (Szegezdi et al. 2006; Walter & Ron 

2011). The aim of UPR, serving as an adaptive mechanism, is to alleviate ER stress, restore ER 

homeostasis, and prevent cell death (Cnop et al. 2012; Eizirik et al. 2008). To achieve this UPR 

induces: a) a decrease in the arrival of new proteins into the ER (prevention against additional protein 

misfolding and overloading of the organelle); b) an increase in the amount of ER chaperones 

(augmentation of the folding capacity of the ER); c) an increase in the extrusion of irreversibly 

misfolded proteins from the ER (Cnop et al. 2012; Eizirik et al. 2008). Accumulation of unfolded or 

misfolded proteins in the lumen of the ER induces the activation of three transmembrane ER proteins, 

which mediate signalling from the ER to the nucleus. Those so-called ER stress transducers, the 

inositol-requiring enzyme 1 (IRE1), the PKR-like ER kinase (PERK), and the activating transcription 

factor 6 (ATF6), trigger the main pathways of UPR. Under nonstressed conditions they remain 

inactive due to binding to the ER chaperone BiP (immunoglobulin heavy chain binding protein). 

However, in the presence of ER stress mediators the expression of BiP is decreased and its binding to 

luminal misfolded proteins is increased, which in turn activates the above mentioned transducers 

(Bertolotti et al. 2000; Oyadomari et al. 2002). In case the UPR fails to solve ER stress, it generates 

pro-apoptotic signals to eliminate the diseased cell (Oyadomari et al. 2002). A prolonged and 

excessive ER stress may trigger apoptosis by various pathways, including activation of some of the 

key regulators of the UPR. Among them IRE1α was shown to recruit the adaptor molecule TNF 

receptor-associated factor 2 (TRAF2) and activate c-Jun N-terminal kinase (JNK) (Urano et al. 2000). 

The IRE1α/TRAF2 complex can cause NFκB activation, which leads to the activation of proapoptotic 

mechanisms in pancreatic beta cells (Ortis et al. 2006). Moreover, the IRE1α/TRAF2 association is 

also required for the activation of procaspase 12, specifically related to ER stress (Morishima et al. 

2002; Nakagawa et al. 2000). Under ER stress conditions activated IRE1 cleaves an intron from the 

mRNA encoding X-box protein binding 1 (XBP1) (Oslowski & Urano 2010; Yoshida et al. 2001). The 

spliced variant of XBP1 mRNA (XBP1s) encodes a transcriptional factor, which regulates the protein 

expression of chaperones and components of ER-associated degradation, ERAD (Lee et al. 2003). 

ATF6 induces transcription of XBP1 (Oslowski & Urano 2010; Yoshida et al. 2001). 

Beta cell death can also be induced via the activation of the PERK pathway leading to 

overexpression of the activating transcription factor 4 (ATF4) and consequently to the induction of 

C/EBP homologous protein (CHOP). CHOP, also known as GADD153, is a member of the C/EBP 

family of transcription factors (Ron & Habener 1992). Under normal physiological conditions this 

putative regulator of ER stress-mediated apoptosis is either not expressed or its expression level is 

very low (Lawrence et al. 2007; Wang & Ron 1996). Suppression of the pro-survival protein Bcl-2 

and induction of oxidative stress are the most widely cited mechanisms implicated in the CHOP-
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induced apoptosis (Marciniak et al. 2004; McCullough et al. 2001; Tabas & Ron 2011). Studies 

performed in beta cells demonstrated that a blockade of NO formation partially prevented IL-1-

induced CHOP expression (Kacheva et al. 2011; Oyadomari et al. 2001). In contrast TNF and IFN 

are not involved in the induction of CHOP expression in beta cells (Kacheva et al. 2011). 

 1.5. Mimitin 

Mimitin, a Myc-induced mitochondrial protein, has been discovered in human glioblastoma cells 

and has been shown to be involved in cell proliferation (Tsuneoka et al. 2005). Human mimitin is a 

small 20 kDa protein, comprising 169 amino acids, the sequence of which is highly conserved between 

human and mouse (80 % homology), suggesting an important function of mimitin in mammals 

(Tsuneoka et al. 2005). A specific c-myc binding site was identified in the promoter region of the 

mimitin gene, which clearly indicates that mimitin is a direct transcriptional target of c-myc (Tsuneoka 

et al. 2005). Mimitin contains an ATP/GTP binding motif and a domain called Complex 1_17_2 kDa. 

The latter was found in the NADH-ubiquinone oxidoreductase subunit B17.2, originally identified as a 

subunit of complex I involved in oxidative phosphorylation in bovine heart mitochondria (Tsuneoka et 

al. 2005). Mimitin is thought to play the role of a molecular chaperone for assembly of the 

mitochondrial complex I (Ogilvie et al. 2005) and to be involved in ATP metabolism in mitochondria 

(Tsuneoka et al. 2005). Studies performed in human hepatoma cells (HepG2) confirmed the 

mitochondrial association of mimitin and revealed that mimitin may modulate cell death (Wegrzyn et 

al. 2009). It was shown that upon exposure to IL-1β and IL-6 the level of mimitin expression in 

HepG2 cells was increased more than 1.6-fold, with the highest level achieved after 18-24 hours of 

cytokine addition (Wegrzyn et al. 2009).The NFB signalling pathway did not appear to be involved 

in the IL-1β-dependent activation of the mimitin gene, while the MAP kinase pathway was identified 

as being involved in cytokine-induced stimulation of mimitin. Among human tissues the heart was 

found to contain the highest level of mimitin mRNA followed by considerably lesser amounts detected 

in the liver, skeletal muscle, and kidney (Wegrzyn et al. 2009). Furthermore, reduction of mimitin 

expression by the siRNA approach had no direct effects on the basal activities of caspase-3 and -7. 

However, when apoptosis was induced by TNFα and cycloheximide, mimitin knock-down led to a 

significant increase in apoptosis (Wegrzyn et al. 2009). Consistently, overexpression of mimitin 

resulted in a 2-fold decrease of caspase-3 and -7 activities in HepG2 cells treated with TNFα and 

cycloheximide (Wegrzyn et al. 2009). The mimitin knock-down slightly decreased the rate of DNA 

replication and cell proliferation in HepG2 cells, whereas mimitin overexpression did not seem to 

influence cell proliferation (Wegrzyn et al. 2009). 
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Figure 6 A possible place of mimitin action in the cell [adapted from (Brownlee 2005)]. 

1.6. Prostacyclin 

Prostacyclin belongs to the family of eicosanoids, lipid mediators and signalling molecules (Hatae 

et al. 2001). It is produced by the action of a specific prostacyclin synthase (Hatae et al. 2001; Wu & 

Liou 2005). Prostacyclin serves as a crucial vasodilator (Hatae et al. 2001) and prevents platelet cloth 

formation (DeWitt et al. 1983; Weiss & Turitto 1979). Stable analogues have been successfully used 

to treat patients with hypertension (Miyata et al. 1996; Otsuki et al. 2005). 

Prostacyclin has been reported to provide beneficial effects during islet isolation and 

cryopreservation (Arita et al. 1997; Arita et al. 1998; Arita et al. 1999; Arita et al. 2001; Yegen et al. 

1994). The molecular mechanisms underlying the protective effect of PGI2 were recently clarified 

(Gurgul-Convey & Lenzen 2010). They involve the prevention of the cytokine-induced mitochondrial 

and ER stress responses (Gurgul-Convey & Lenzen 2010). The protective action of prostacyclin is 

strongly mediated by inhibition of the cytokine-activated NFB pathway (Gurgul-Convey & Lenzen 

2010). 

Many arachidonic acid metabolites have been shown to act as negative regulators of glucose-

induced insulin-secretion (Tran et al. 1999), but the role of PGI2 in this context is unclear. 

1.7. Neuronal NO-synthase (nNOS) 

Under normal physiological conditions NO is present at low concentrations and plays a role of the 

messenger molecule, mediating diverse biological functions (Hill et al. 2010; Zhou & Zhu 2009). 

Three types of nitric oxide synthase (NOS) serve as a source of NO, generated by the conversion of L-

arginine to L-citrulline (Zhou & Zhu 2009). They comprise two constitutively expressed isoenzymes, 

namely neuronal NO synthase (nNOS) and endothelial NO synthase (eNOS), as well as inducible NO 

synthase (iNOS), the expression of which is stimulated in the presence of different cytokines and 

endotoxin (Zhou & Zhu 2009). The eNOS and nNOS account for the production of low concentrations 

of NO, which are relevant under physiological conditions (Zhou & Zhu 2009), whereas the large 
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amounts produced by iNOS over prolonged time are attributed to pathological situations (Holohan et 

al. 2008). During T1DM development proinflammatory cytokines induce iNOS expression in 

pancreatic beta cells (Cnop et al. 2005; Eizirik & Pavlovic 1997; Gurgul-Convey et al. 2011). The 

nNOS isoform, expressed preferentially in the brain, was also shown to be present in insulin secreting 

cells, where it was suggested to regulate the beta cell response to glucose (Lajoix et al. 2001; Liu et al. 

2000). Moreover, NO may regulate gene transcription and nearly 50 % of the genes modified by 

cytokines and related to beta cell death were shown to be NO-dependent, clearly indicating the pivotal 

role of this free radical in cytokine-mediated cell toxicity (Kutlu et al. 2003; Li & Mahato 2008; Liu et 

al. 2000). Noteworthy it has been shown that NO contributes to cytokine-induced beta cell death via 

its interaction with hydrogen peroxide in beta cell mitochondria, leading to the production of highly 

toxic hydroxyl radicals (Gurgul-Convey et al. 2011). 
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1.6. The aims of the study 

During T1DM development proinflammatory cytokines cause pancreatic beta cell dysfunction and 

death by affecting several signalling and metabolic pathways, exerting their deleterious effects in all 

cell compartments. 

Mitochondria play a central role in the regulation of glucose-induced insulin secretion and are 

therefore of crucial importance for pancreatic beta cell function. During type 1 diabetes development 

proinflammatory cytokines cause pancreatic beta cell dysfunction and destruction through nitro-

oxidative stress, induced mainly in the mitochondria. Mitochondrial dysfunction also occurs during 

development of other diabetes subforms, especially with regard to an impaired ATP generation. 

Mimitin was reported to be a new chaperone for the mitochondrial complex I, to modulate ATP 

production, and to be involved in the control of cell proliferation and death. So far there has been no 

information about mimitin in pancreatic beta cells. 

Thus, the aims of this study regarding mimitin were: 

1. to uncover mimitin expression regulation by proinflammatory cytokines in insulin-secreting 

cells, 

2. to analyze the role of mimitin in beta cell function with special reference to the regulation of 

glucose-induced insulin secretion,  

3. to elucidate the molecular mechanisms underlying mimitin effects on beta cell function, 

4. to confirm the findings in primary islet cells, 

5. to investigate mimitin expression in the mouse model of insulin resistance and obesity, the 

ob/ob mouse. 

Moreover, the current study attempted to compare the beneficial effects of mimitin and 

prostycyclin synthase (PGIS) overexpression. 

Furthermore, the role of neuronal NOS (nNOS) in cytokine-mediated beta cell dysfunction and 

death was analyzed. 
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3. RESULTS AND DISCUSSION 

The present work provided the analysis of the role of three different proteins, namely mimitin, 

PGIS and nNOS, in deleterious effects of proinflammatory cytokines against pancreatic beta cells. 

These three proteins are distinct in their subcellular localizations and their mechanisms of action as 

well as intracellular functions. They exert their effects against cytokine toxicity by distinct 

mechanisms; however, they share the common final outcome, namely the beta cell protection. 

Mimitin is a novel mitochondrial protein, involved in the control of cell proliferation and death 

(Tsuneoka et al. 2005; Wegrzyn et al. 2009). It has been shown that mimitin may act as a molecular 

chaperone for the assembly of the mitochondrial complex I and be implicated in ATP production in 

mitochondria (Tsuneoka et al. 2005). In pancreatic beta cells the formation of ATP is essential for 

glucose-stimulated insulin secretion (GSIS) (Ashcroft et al. 1973; Rodriguez Candela & Garcia-

Fernandez 1963). During type 1 diabetes development proinflammatory cytokines inhibit ATP 

synthesis, leading to the impairment of GSIS (Ashcroft et al. 1973; Delaney & Eizirik 1996). 

Mitochondrial metabolism is also affected by chronic hyperglycaemia and hyperlipidemia (Jitrapakdee 

et al. 2010). Until now there has been no information regarding the role of mimitin in pancreatic beta 

cell function and in diabetes development and the present study was therefore aiming to elucidate this 

issue. 

Prostacyclin synthase is a cytoplasmic heme-thiolate enzyme catalysing the conversion of PGH2 

into prostacyclin (Siegle et al. 2000) and has been reported to be modestly expressed in pancreatic beta 

cells (Gurgul-Convey et al. 2012). Prostacyclin analogues as well as PGIS overexpression in insulin-

secreting cells provide protection against environmental insults as well as proinflammatory cytokines 

(Gurgul-Convey & Lenzen 2010). Many prostaglandins have been previously shown to act as negative 

regulators of glucose-induced insulin secretion (Tran et al. 1999). Until now the role of PGI2 in 

glucose-induced insulin secretion remained unclear. 

The neuronal NO-synthase is a constitutive isoform of NOS localized in the cytoplasmic 

compartment and responsible for the production of low concentrations of NO (Zhou & Zhu 2009). It 

has been recently shown that nNOS plays a protective role against lipotoxicity in pancreatic beta cells 

(Bachar et al. 2010). The role of nNOS in cytokine toxicity to pancreatic beta cells is unknown. 

3.1. Mimitin in pancreatic beta cells 

Mimitin expression was analyzed in different rat and mouse tissues with a special focus on primary 

pancreatic islets. The results revealed a lower expression level of mimitin in rat compared to mouse 

tissues. Further studies demonstrated that beta cell function and susceptibility towards 

proinflammatory cytokines were both influenced by the mimitin expression level. Moreover, 

expression of mimitin was shown to vary significantly between different tissues from ob/ob mice, a 

model of insulin resistance and obesity, compared to their lean litter mates. Therefore, it is proposed 
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that mimitin exerts its action as a modulator of beta cell function and its impact seems to differ in type 

1 and type 2 diabetes situations. 

3.1.1. Mimitin in conditions simulating T1DM 

Proinflammatory cytokines IL-1, TNF and IFN play a crucial role in T1DM development 

(Grunnet & Mandrup-Poulsen 2011; Mandrup-Poulsen et al. 1985; Mandrup-Poulsen 1990). Insulin-

secreting INS1E cells are known for their particular sensitivity to proinflammatory cytokines 

(Kacheva et al. 2011). According to gene expression studies INS1E cells were characterized by the 

lowest endogenous level of mimitin expression among all insulin-secreting rat cell lines that were 

examined. This low level of mimitin makes them well suited for investigations on the effects of 

mimitin overexpression in pancreatic beta cells. Therefore, the cDNA coding of human mimitin was 

introduced and several positive clones were obtained. Insulin-secreting INS1E cells transfected with a 

vector lacking insert were used as control cells. 

3.1.1.1. Mimitin and mitochondrial stress 

Ectopic expression of mimitin significantly decreased cytokine-induced caspase-3 activation in 

INS1E cells (Hanzelka et al. 2012). Moreover, it attenuated the cytokine-mediated decrease of 

mitochondrial membrane potential and caspase-9 activation (Hanzelka et al. 2012). Interestingly, 

caspase-8 triggering the extrinsic apoptotic pathway was also significantly downregulated by mimitin 

overexpression (caspase-8 after 24 h, INS1E-control: IL-1172 ± 17, cytokine mixture 146 ± 8; 

INS1E-mimitin IL-1 103 ± 5, cytokine mixture 103 ± 10 % vs. untreated 100 %, p < 0.05). Mimitin 

overexpression also improved cell viability of INS1E cells treated with cytokines (Table 2). A 24 h 

incubation of insulin-secreting INS1E control cells with cytokines caused ~45 or 60 % of cell viability 

loss after exposure to IL-1alone or to a cytokine mixture, respectively (Table 2). Those findings are 

in line with results previously obtained in INS1E cells (Kacheva et al. 2011), pointing to the high 

sensitivity of this cell line towards proinflammatory cytokines. Mimitin overexpression resulted in a 

protection against cytokine-induced viability loss in all analyzed clones, with the most pronounced 

effect reported in the clone with the highest mimitin expression level, namely INS1E-mimitin K3 

cells. While mimitin overexpression provided a nearly-full prevention of cytokine-induced caspase-3 

activation, it afforded only a partial protection against the cytokine-mediated loss of cell viability in 

the MTT assay. This implies that a necrotic component of beta cell death cannot be prevented by 

mimitin action. 
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INS1E cell clone Untreated IL-1 Cytokine mixture 

INS1E-control 1 100 ± 12 (10)   56 ± 3 (10)
*
 48 ± 3 (10)

*
 

INS1E-control 2 100 ± 10 (13)   55 ± 5 (13)
*
 43 ± 5 (13)

*
 

INS1E-mimitin K1         100 ± 10 (6) 68 ± 5 (6)
*
           58 ± 6 (6)

*
 

INS1E-mimitin K2         100 ± 8   (8)    75 ± 4 (8)
*#§

           64 ± 7 (8)
*
 

INS1E-mimitin K3         100 ± 7   (8)   84 ± 3 (8)
 #§

 67 ± 6 (8)
 #§

 

Table 2 Effects of mimitin overexpression in insulin-secreting INS1E cells on cell viability after 

exposure to IL-1 alone or to a cytokine mixture (Hanzelka 2012, unpublished). 

INS1E insulin-secreting cells overexpressing mimitin as well as control cells were incubated with IL-1 (600 

U/ml) or a cytokine mixture (60 U/ml IL-1, 185 U/ml TNF, and 14 U/ml IFN) for 24 h. The viability of the 

cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and expressed 

as a percentage of the untreated cells. Data are means ± SEM with the number of independent experiments in 

parentheses, each measured in at least three repetitions. *p < 0.05 vs. untreated; #p < 0.05 vs. control clone 1 

treated in the same way; §p < 0.05 vs. control clone 2 treated in the same way; ANOVA followed by Bonferroni. 

Recent studies performed on animal models of T1DM underlined apoptosis as the main form of 

beta cell death occurring in this disease (Jörns et al. 2004; Jörns et al. 2005; Lenzen et al. 2001; 

Mauricio & Mandrup-Poulsen 1998). Apoptosis was also demonstrated to be the predominant form of 

cytokine-induced beta cell death in human islets, although necrosis could also be involved (Delaney et 

al. 1997; Eizirik & Darville 2001; Eizirik & Mandrup-Poulsen 2001; Liu et al. 2000; Pipeleers et al. 

2001; Saldeen 2000). Mimitin overexpression prevented cytokine-induced caspase-3 activation. Those 

data confirm previous findings based on studies in hepatoma (HepG2) cells, where overexpression of 

mimitin significantly decreased cytokine-induced apoptosis (Wegrzyn et al. 2009). Furthermore the 

observed protective effect of mimitin overexpression corresponds with reports demonstrating that 

defects in human complex I of the respiratory chain account for many energy generation disorders and 

may be implicated in disturbed apoptosis signalling (Lazarou et al. 2007; Ogilvie et al. 2005). 

Proinflammatory cytokines induce nitrosative and oxidative stresses, collectively known as nitro-

oxidative stress, which contributes to pancreatic beta cell death during T1DM development (Bast et al. 

2002; Eizirik et al. 1996; Eizirik & Mandrup-Poulsen 2001; Gurgul-Convey et al. 2011; Gurgul et al. 

2004; Lortz et al. 2000; Lortz & Tiedge 2003; Storling et al. 2005). Since mitochondria represent the 

main source and target of the hydroxyl radical formation and action, playing the fundamental role in 

this stress response, we have examined whether mimitin overexpression affects overall oxidative and 

nitrosative stress in INS1E cells. For this purpose the widely used fluorescent ROS indicator 

dichlorodihydrofluorescein diacetate (DCFDA-H2) was employed. DCFDA-H2 is a cell-permeable 

fluorogenic probe cleaved by esterases within the cell (Eruslanov & Kusmartsev 2010). In the 

presence of different ROS (hydroxyl radical, peroxyl radical, hydrogen peroxide, and superoxide 

anion) and RNS (peroxynitrite anion and nitric oxide) DCFDA-H2 is rapidly oxidized to its fluorescent 

form DCF (Degli Esposti 2002). Incubation of control as well as mimitin overexpressing INS1E cells 

with IL-1significantly induced oxidation of DCFDA-H2 to DCF (173 % and 206 % respectively, vs. 
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untreated cells set as 100 %; Figure 7). Correspondingly, the exposure to the cytokine mixture also 

caused a significant increase in DCFDA-H2 oxidation, clearly indicating an increasing oxidative and 

nitrosative stress response. Noteworthy, the combination of cytokines augmented DCFDA-H2 

oxidation to a greater extent than exposure to IL-1β alone. DCFDA-H2 oxidation was comparable in 

control and mimitin overexpressing cells (INS1E-control 185 %, INS1E-mimitin K3 229 % vs. 100 % 

untreated; Figure 7). These results indicate that the protective action of mimitin in beta cells is not due 

to prevention of oxidative stress. 
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Figure 7 Effects of mimitin overexpression on cytokine-stimulated DCFDA-H2 oxidation in insulin-

secreting INS1E cells (Hanzelka 2012, unpublished). 

INS1E cells were incubated for 72 h with 600 U/ml IL-1β (striped bars) or a cytokine mixture (60 U/ml IL-1, 

185 U/ml TNF, 14 U/ml IFN) (black bars). The overall oxidative and nitrosative stress was estimated by the 

DCFDA-H2 oxidation assay and expressed as a percentage of untreated cells. Results were normalized to cell 

viability estimated by MTT assay. Data are means ± SEM from 5 independent experiments; each measurement 

was performed in at least three repetitions and is reported as the percentage of untreated cells, set as 100 %. 

*p<0.05 vs. untreated; #p<0.05 vs. control clone treated in the same way; ANOVA followed by Bonferroni. 

The results obtained in this study also show no beneficial effects of mimitin overexpression against 

cytokine-induced nitrooxidative stress. Mimitin overexpression did not prevent the cytokine-

stimulated NFB activation (Hanzelka et al. 2012) and as a consequence failed to reduce cytokine-

induced iNOS expression (Figure 8). The analysis of iNOS protein expression revealed a comparable 

induction by cytokines in control and mimitin overexpressing cells (Figure 8). Moreover, the 

concentrations of accumulated nitrite in control and mimitin overexpressing cells were similar 

(Hanzelka et al. 2012). Overall, because mimitin overexpression did not downregulate the cytokine-

induced NFB-iNOS pathway, those findings provide further evidence that mimitin action cannot 

prevent a necrotic component of beta cell death. The results suggest that other yet uncovered 

mechanisms must be involved in the protective action of mimitin.  

 



Results and Discussion 

 54 

 

Figure 8 Effects of mimitin overexpression on iNOS protein expression in insulin-secreting INS1E 

cells (Hanzelka 2012, unpublished). 

Insulin-secreting INS1E cells were incubated with either IL-1 alone (600 U/ml) or with a cytokine mixture (60 

U/ml IL-1, 185 U/ml TNF, 14 U/ml IFN) for 24 h and thereafter 40 μg of total protein was resolved in 7.5 % 

SDS polyacrylamide gel electrophoresis and then electroblotted onto membranes. Shown is a representative 

Western blot of 6 independent experiments.  

Since cytokines only slightly affected the proliferation rate of insulin-secreting INS1E cells highly 

overexpressing mimitin, the protective action of mimitin cannot only result from a decreased cell death 

rate but also from preserved proliferative capacity. The increased proliferative activity found in 

mimitin overexpressing cells compared to control cells may arise from an increased mitochondrial 

metabolism. This in turn was demonstrated by a significantly higher ATP content in mimitin 

overexpressing cells. The correlation between ATP production and proliferative capacity was 

previously shown in pancreatic beta cells (Xu et al. 2008). Moreover, the results are also in agreement 

with data obtained in hepatoma (HepG2) cells, where reduction of mimitin expression by the siRNA 

approach inhibited cell proliferation (Wegrzyn et al. 2009). This indicates a relevant role of mimitin in 

cell proliferation. The elevated ATP content in mimitin overexpressing cells, implying their increased 

rate of ATP production, correlates well with the formerly reported role of mimitin as a molecular 

chaperone for the assembly of the mitochondrial respiratory chain complex I (Tsuneoka et al. 2005). 

Accordingly, an increased mimitin expression level may favour oxidative phosphorylation and thus 

enhance ATP production. ATP synthesis in pancreatic beta cells is of crucial importance in the 

regulation of glucose-induced insulin secretion and may protect accurate insulin secretory 

responsiveness (Ashcroft et al. 1973; Eliasson et al. 1997; Moreira et al. 1991; Panten et al. 1986; 

Rodriguez Candela & Garcia-Fernandez 1963; Xu et al. 2008). Studies performed on permeabilized 

insulin-secreting cells have clearly indicated that withdrawal of ATP from the cytoplasmic 

compartment results in a strong (~90 %) inhibition of exocytosis (Regazzi et al. 1995). In line with 

those findings insulin-secreting INS1E cells overexpressing mimitin demonstrated an improved insulin 

secretory responsiveness to glucose. It is noteworthy that insulin secretion stimulated by 25 mM KCl, 

which causes an increase in the cytosolic Ca
2+

 concentration independently of the mitochondrial 

activation, did not differ between control and mimitin overexpressing cells (Hanzelka et al. 2012). 
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Because the expression of the Ins2 gene as well as the insulin content were similar in both control and 

mimitin overexpressing rat cells, it seems that INS1E-mimitin cells do not generate more insulin, but 

instead secrete it more rapidly upon glucose stimulation. Furthermore, the protective effect of mimitin 

against cytokine-mediated inhibition of glucose-induced insulin secretion was accompanied by a 

preservation of ATP content (Hanzelka et al. 2012). Therefore mimitin overexpression protects against 

detrimental cytokine effects most probably via its chaperone function-mediated conservation of ATP 

production. 

Aside from the above described favourable effects of mimitin overexpression it is important to 

emphasize that an increased basal insulin secretion at low glucose concentration (3 mM), as found in 

INS1E-mimitin cells, may constitute a possible threat of hypoglycaemia episodes. Thus, the observed 

rather moderate level of mimitin expression found in primary beta cells seems to be necessary to avoid 

hypoglycaemic episodes, though on the other hand it may account for the remarkable vulnerability and 

sensitivity of the pancreatic beta cells (Lenzen 2008). 

To confirm the role of mimitin in the protection against cytokines and as a modulatory factor in 

GSIS, another beta cell line with a high mimitin expression level was analyzed. The MIN6 cell line 

has been extensively used for studies unravelling mechanisms involved in insulin secretion in 

pancreatic beta cells, since it is characterized by a notable ability to respond to glucose (Ishihara et al. 

1993; Minami et al. 2000; Miyazaki et al. 1990). Mimitin knock-down in insulin-secreting MIN6 cells 

caused opposite effects to those obtained in the overexpression studies. A decreased mimitin 

expression augmented sensitivity to proinflammatory cytokines in MIN6 cells (Hanzelka et al. 2012), 

known for their weak sensitivity to cytokine toxicity. An increased cytokine-induced caspase-3 

activation in MIN6-shRNA-mimitin cells is consistent with previous findings obtained in hepatoma 

cells, according to which a reduction of mimitin expression by the siRNA approach potentiated 

cytokine-induced apoptosis (Wegrzyn et al. 2009). Moreover, knock-down of mimitin reduced ATP 

formation which was accompanied by a decrease in glucose-induced insulin secretion in the absence 

and presence of cytokines. The differences in the amount of secreted insulin in response to glucose 

between MIN6-shRNA-control and MIN6-shRNA-mimitin cells could not be ascribed to differences 

in the insulin content, which was comparable in both cases (Hanzelka et al. 2012). However, it should 

be pointed out that the decreased ability to secrete insulin in MIN6-shRNA-mimitin cells was not 

associated with the full loss of glucose responsiveness, since these cells exhibited glucose-induced 

insulin secretion in a concentration-dependent manner (Hanzelka et al. 2012).  

Overall, our findings indicate that mimitin only potentiates glucose-induced insulin secretion. 

Expression of mimitin is not obligatory for GSIS, since INS1E cells, which are characterized by a low 

endogenous mimitin expression, still respond normally to glucose and display a classical pattern of 

insulin secretion (Hanzelka et al. 2012). Thus, mimitin is not a mandatory component, but only a mild 

regulator of the glucose-induced insulin secretion pathway. 
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Immunofluorescence analysis of the mimitin distribution in primary rat islets revealed an evident 

expression of mimitin in all cell types (Hanzelka et al. 2012). Mimitin expression in beta cells was 

lower when compared with alpha cells. The magnitude of mimitin expression was decreased by 

cytokine treatment (Hanzelka et al. 2012). The observed reduction in mimitin expression may 

represent an additional deleterious element in the action of cytokines. The cytokine-mediated decrease 

in mimitin expression may render beta cells more vulnerable to cytokine-induced GSIS impairment 

and mitochondrial damage. 

3.1.1.2. Mimitin and ER stress 

Proinflammatory cytokines were shown to induce ER stress (Allagnat et al. 2012; Eizirik et al. 

2008). ER stress is believed to contribute to the cytotoxic effects of cytokines in pancreatic beta cells 

(Cardozo et al. 2005; Eizirik et al. 2008); however, only to some extent (Akerfeldt et al. 2008; 

Chambers et al. 2008; Gurgul-Convey & Lenzen 2010; Mehmeti et al. 2011; Satoh et al. 2011). 

Therefore, the effects of mimitin overexpression on cytokine-induced ER stress in insulin-secreting 

INS1E cells were also examined in this study. 

Caspase-12 localized mainly on the cytoplasmic side of the ER, specifically mediates the apoptosis 

pathway downstream of this organelle (Lamkanfi et al. 2004; Momoi 2004). Its activation occurs upon 

ER stress conditions comprising the disruption of ER calcium homeostasis and the accumulation of 

excess proteins in the ER (Nakagawa et al. 2000). It has been shown that prevention of caspase-12 

activation only partially counteracts cytokine toxicity in beta cells (Gurgul-Convey & Lenzen 2010). 

For this reason it is believed that the ER stress pathway contributes to cytokine-induced pancreatic 

beta cell death, but it is not able to induce it in the absence of activation of other stress pathways 

(Akerfeldt et al. 2008). Cytokines caused a significant induction of caspase-12 activity in INS1E-

control cells (IL-1 155±7, cytokine mix 204±16 % vs. untreated 100 %; Figure 9A). In contrast, 

mimitin overexpression greatly reduced cytokine-mediated caspase-12 activation (IL-1 107±6, 

cytokine mix 115±13 %; Figure 9A). The protective effect of mimitin was specific for cytokine-

mediated toxicity, because the activation of this ER stress related caspase by camptothecin (0.5 µM) 

did not differ between INS1E-control and INS1E-mimitin cells (Figure 9A). 

Since mimitin overexpression caused a significant prevention of caspase-12 activation, in the next 

step the expression of ER stress markers was analyzed. The basal expression of the ER chaperone Bip 

in INS1E-mimitin cells was significantly higher in comparison to INS1E-control cells (Figure 9B). 

The high secretory capacity of insulin-secreting cells requires a very well developed ER. An increased 

expression of Bip would support the proper function of ER in beta cells. The incubation with 600 U/ml 

IL-1 or a cytokine mixture for 24 h caused a significant decrease in the Bip transcription in both 

INS1E-control as well as INS1E-mimitin cells (Figure 9B). Those findings correspond with previous 

observations, demonstrating that cytokines significantly diminish the expression of Bip (Kacheva et al. 

2011; Pirot et al. 2006).  
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The transcription factor CHOP is considered to be a crucial component of ER stress-induced 

apoptosis (Gupta et al. 2010; Pirot et al. 2007). In untreated control as well as mimitin overexpressing 

INS1E cells an extremely low expression level of CHOP was observed (Figure 9C), which is in 

agreement with earlier studies (Kacheva et al. 2011; Oyadomari & Mori 2004). Proinflammatory 

cytokines induced CHOP transcription in INS1E-control cells (IL-1: 2-fold induction, cytokine mix: 

6.5-fold induction) (Figure 9C), thus confirming earlier reports (Kacheva et al. 2011; Kharroubi et al. 

2004). Interestingly, this cytokine-stimulated CHOP gene expression was either significantly 

abolished (incubation with IL-1 alone) or strongly reduced (cytokine mix: 2.5-fold induction) in 

mimitin overexpressing cells (Figure 9C). 

Although it has been shown that inhibition of the NFB activation may lead to a reduction of ER 

stress (Chambers et al. 2008; Tonnesen et al. 2009), the present results show that cytokine-induced ER 

stress in insulin-secreting cells may be effectively inhibited without simultaneous NFB blockade 

(Hanzelka et al. 2012).  

It remains unclear how the mitochondrial protein mimitin is able to counteract the cytokine-

induced ER stress in beta cells. One of the possible mechanisms involved could be an interaction with 

the ER stress related microtubule-associated protein 1S (MAP1S). Recent studies performed in 

hepatoma HepG2 cells identified MAP1S as one of the proteins interacting with mimitin (Wegrzyn et 

al. 2009). This potential partner protein for mimitin is a proapoptotic cytoplasmic protein, which was 

shown to be upregulated upon cytokine treatment (Zou et al. 2008). Cytokine treatment led to a 

significant increase in MAP1S expression in insulin-secreting cells (Gurgul-Convey 2009). Moreover, 

it was also reported that MAP1S may be involved in ER stress induction and caused swelling of 

mitochondria (Xie et al. 2011). Therefore, it seems possible that mimitin may downregulate cytokine-

mediated ER stress in insulin-secreting cells via inhibition of the MAP1S action. It is assumed to be 

possible that this interaction may serve as a potential link between mitochondrial and cytoplasmic 

stress responses and eventually modulate cell death. However this hypothesis still requires further 

investigation. 
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Figure 9 Effects of mimitin overexpression on cytokine-induced ER stress in insulin-secreting INS1E 

cells (Hanzelka 2012, unpublished). 

INS1E cells were incubated with either IL-1 alone (600 U/ml) (striped bars) or with a cytokine mixture (60 

U/ml IL-1, 185 U/ml TNF, 14 U/ml IFN) (black bars) or camptothecin (0.5 M) (chequered bars) for 24 h 

and thereafter: A. Caspase-12 activation was analyzed by flow-cytometry; B. Bip gene expression was estimated 

by quantitative Real-Time PCR; C. Chop gene expression was measured by quantitative real-time PCR. The 

CHOP gene expression in each cell clone under untreated control conditions was set as 100 %. The data were 

normalized to the expression of the house-keeping gene -actin. The sequences of the primers used are: rat Chop 

FW: CAGCAGAGGTCACAAGCAC, REV: CGCACTGACCACTCTGTTTC, rat Bip FW: 

CCACCAGGATGCAGACATTG, REV: AGGGCCTCCACTTCCATAGA; rat -actin FW: 

GAACACGGCATTGTAACCAACTGG, REV: GGCCACACGCAGCTCATTGTA. Data are mean values from 

6 independent experiments. p* < 0.05 vs. untreated, #p < 0.05 vs. INS1E-control cells treated in the same way; 

ANOVA followed by Bonferroni. 
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3.1.2. Mimitin in conditions simulating T2DM 

To study a possible role of mimitin in the T2DM situation mimitin expression was analyzed in the 

animal model of insulin resistance and obesity, the ob/ob mouse. Mimitin expression was detected in 

mouse pancreatic islets. These ob/ob mice carry a genetic mutation resulting in an inability to express 

functional leptin protein (Lam et al. 2004; Lindström 2007). Leptin is an adipocyte-derived hormone, 

which, by transferring information to the appetite centres in hypothalamic regions of the brain, 

regulates energy intake and expenditure (Ahima & Flier 2000; Flier 1997; Friedman 1997; Friedman 

& Halaas 1998; Lam et al. 2004; Trayhurn et al. 1999; Tritos & Mantzoros 1997; Zhang et al. 1994). 

Both the increased food intake as well as the reduced energy expenditure of ob/ob mice is a direct 

consequence of leptin deficiency. The ob/ob mice are spontaneously hyperglycaemic, 

hyperinsulinemic, and grossly overweight (Campfield et al. 1995; Garthwaite et al. 1980; Halaas et al. 

1995; Hellman 1965; Lenzen & Panten 1980; Mayer et al. 1953; Pelleymounter et al. 1995). 

Moreover, their pancreatic islets are relatively large and contain a high proportion of insulin-producing 

beta cells (Hellman 1965; Lindström 2007). Therefore, ob/ob mice are often used as a source of 

pancreatic islets in order to investigate beta cell function. The present study did not reveal any 

significant difference considering mimitin expression levels between islets from ob/ob mice and their 

lean litter mates (Hanzelka et al. 2012). Conversely, pronounced variation in mimitin expression was 

observed in other analyzed tissues, indicating a potential regulation of this protein in ob/ob mice and 

its role in the development of metabolic disorders.  

Since mimitin is involved in the synthesis of ATP a variation of its expression level may influence 

the AMP-activated protein kinase (AMPK). AMPK is one of the intracellular energy sensors and was 

proposed to provide a link in metabolic defects underlying progression to the metabolic syndrome 

(Carling 2004; Hardie et al. 1998; Kumar & Peers 2006). Impairment of AMPK function is associated 

with metabolic alterations, insulin resistance, obesity, hormonal disorders, and cardiovascular disease 

(Kumar & Peers 2006; Lage et al. 2008). AMPK acts as a “fuel gauge” and is activated by an 

increasing cellular AMP/ATP ratio, indicating a decrease in energy, resulting either from diminished 

ATP production or from augmented ATP consumption (Fryer & Carling 2005; Hardie et al. 1998). 

Once activated the enzyme switches off anabolic and triggers catabolic pathways, resulting in the 

generation of ATP (Hardie 2011). The control of AMPK activity provides an attractive target for the 

development of new therapeutic strategies in metabolic disorders such as obesity and T2DM (Rutter & 

Leclerc 2009; Viollet et al. 2007; Zhang et al. 2009). 

AMPK was shown to be one of the main elements involved in leptin signalling (Frühbeck 2006; 

Sweeney 2002). An increase in its hypothalamic activity causes enhanced food intake and decreased 

energy expenditure, while inhibition of AMPK in the brain by leptin leads to opposite effects 

(Andersson et al. 2004; Kim et al. 2004; Minokoshi et al. 2004; Small et al. 2004). The present study 

showed a reduced mimitin level in the brain of ob/ob mice. Therefore, the lower mimitin expression 
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seems to potentiate the consequences of the lack of leptin by increasing AMPK activity resulting in 

higher food intake.  

Liver AMPK controls glucose homeostasis mostly by reducing gluconeogenesis (Horike et al. 

2008; Lage et al. 2008; Viana et al. 2006; Zhang et al. 2009). Moreover, it was demonstrated that 

AMPK activation mediated by the antidiabetic drug metformin suppresses glucose production and 

improves insulin sensitivity in hepatocytes (Viollet et al. 2006; Zhang et al. 2009; Zhou et al. 2001). 

The observed reduced level of mimitin found in the liver of the ob/ob mouse may contribute to AMPK 

activation and preserve glucose homeostasis in liver as an adaptive response. Those findings may open 

new therapeutic perspectives, since AMPK activation in liver has recently been shown to be a useful 

approach for the treatment of hyperglycaemia and diabetes (Rutter & Leclerc 2009). 

AMPK is highly expressed in the kidney, where it is involved in the regulation of many 

physiological and pathological processes, including ion transport and diabetic renal hypertrophy 

(Hallows et al. 2010; Lee et al. 2007). AMPK activity was reported to be reduced in the diabetic 

kidney (Guo & Zhao 2007). Moreover, recent studies strongly indicate that a high-fat diet decreases 

renal AMPK activity which eventually leads to the initiation of kidney disease (Declèves et al. 2011). 

In view of those findings an increased level of mimitin in ob/ob mouse kidney, when compared to 

their lean litter mates, may contribute to renal dysfunction reported in this mouse model (Sharma et al. 

2002).  

The role of AMPK in the heart is of particular relevance, because of its high energy demand (Dyck 

& Lopaschuk 2006). AMPK phosphorylates and activates phosphofructokinase-2, thus enhancing 

glycolytic flux (Fryer & Carling 2005; Marsin et al. 2000). This pathway is suggested to be 

responsible for the increased rate of glycolysis in the heart during ischemic conditions (Marsin et al. 

2000). The activation of AMPK may raise energy production and inhibit apoptosis, thereby protecting 

the heart during the ischemic stress (Dyck & Lopaschuk 2006). The higher mimitin expression in the 

heart of ob/ob mice compared with their lean litter mates may indicate increased ATP synthesis. An 

elevated ATP content in turn depresses the AMP/ATP ratio in the cells, which eventually could 

diminish AMPK activity.  

It has been shown that AMPK contributes to the regulation of insulin secretion as well as insulin 

gene expression in pancreatic beta cells (Rutter & Leclerc 2009). Overexpression of AMPK in those 

cells was reported to impair beta cell function and enhance cell death through apoptosis (Kefas et al. 

2003; Richards et al. 2005; Rutter & Leclerc 2009). Furthermore, activation of AMPK in isolated 

rodent and human islets was demonstrated to suppress glucose metabolism and glucose-induced 

insulin secretion (da Silva Xavier et al. 2000; da Silva Xavier et al. 2003; Eto et al. 2002; Leclerc et al. 

2004). The pancreatic beta cells of ob/ob mice were reported to respond adequately to most stimuli 

(Hellman 1965; Lenzen & Panten 1980). Their proper function correlates with a similar level of 

mimitin expression in islets isolated from ob/ob mice and their lean litter mates indicating comparable 

AMPK activity. 



Results and Discussion 

 61 

The data obtained from spontaneously hyperglycaemic ob/ob mice imply that mimitin is involved 

in the development of metabolic disorders. Thus, the present study opens new avenues to understand 

the complexity of mechanisms involved in the pathogenesis of metabolic disorders. 

3.1.3. Mimitin action in beta cells 

In summary the present study demonstrates that the novel mitochondrial protein mimitin may act as 

a mild modulator of beta cell function. The current findings indicate that mimitin is not an obligatory 

component of GSIS, but only potentiates it. Furthermore an increased mimitin expression level 

prevents inhibition of GSIS in the presence of cytokines. Overexpression of mimitin counteracts 

mitochondrial and ER stress and the preservation of mitochondrial integrity in conjunction with ER 

stress down-regulation underlie the protective anti-apoptotic effect of mimitin in beta cells. On the 

other hand, mimitin overexpression did not seem to counteract the necrotic component of cytokine 

toxicity and this was related to the lack of prevention of the cytokine-induced NFB-iNOS pathway.  

It remains unclear how mimitin overexpression inhibits the ER stress response and whether 

mimitin affects other cytokine-dependent signalling pathways in beta cells. A mechanistic model of 

mimitin action in pancreatic beta cells is shown in Figure 10. 
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Figure 10 Mimitin overexpression protects pancreatic beta cells against cytokine toxicity. 

Mimitin overexpression protects insulin-secreting cells against cytokine-induced mitochondrial and ER stress: 

cytokine-induced caspase-9 activation is inhibited; mitochondrial membrane potential (Δ) is not affected by 

cytokines, the ATP content is not reduced by cytokines, cytokine-stimulated caspase-12 activation and cytokine-

mediated induction of CHOP expression are reduced, basal expression of BiP is increased. Moreover 

overexpression of mimitin results in augmented basal insulin secretion and protects cells against cytokine-

mediated suppression of glucose-stimulated insulin secretion (GSIS). Black arrows: cytokine-mediated effects, 

red arrows: mimitin action. Abbreviations: cyt c-cytochrome, ETC-electron transport chain. 

3.2. Protective strategies, comparison between mimitin and prostacyclin synthase   

overexpression 

The two main forms of diabetes mellitus T1DM and T2DM are both characterized by a progressive 

beta cell failure and apoptosis is considered to be the main form of beta cell death (Cnop et al. 2005). 

Over the last decades research efforts focused on searching for potential protective strategies that 

could counteract the action of pathological factors leading to beta cell dysfunction and death. Pancreas 

transplantation, correlated with surgical morbidity and the detrimental effects of chronic 

immunosuppression, is not the method of choice in diabetic patients, especially since the reservoir of 
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pancreases for transplantation is restricted. Therefore, there is a need for alternative approaches to 

restore functional beta cell mass in patients with diabetes. Currently the strategy of transplantation of 

insulin-secreting cells generated in vitro either from autologous adult stem cells or from 

nonautologous embryonic stem cells is extensively studied (Portha et al. 2011). Moreover, the 

attempts to promote regeneration of beta cell function from patients’ endogenous sources have also 

been made (Portha et al. 2011; Robertson 2000). 

Nitro-oxidative stress plays a critical role in the impairment of pancreatic beta cell function and 

cytokine-induced beta cell death occurring during diabetes development (Gurgul-Convey et al. 2011). 

Low antioxidant capacity of beta cells, particularly with respect to the H2O2-detoxifying enzymes, 

renders them extraordinarily sensitive towards oxidative stress and cytokine toxicity (Azevedo-

Martins et al. 2003; de Andrade et al. 2006; Drews et al. 2010; Green & Reed 1998; Gurgul-Convey et 

al. 2011; Lenzen 2008; Lortz et al. 2005; Maechler & de Andrade 2006; Petit et al. 1996; Turrens 

2003). Therefore, improving the antioxidant defence presents a promising strategy to slow down the 

progression of diabetes. Studies employing insulin-secreting cell lines and animal models of diabetes 

provided a strong support for this therapeutical approach (de Cavanagh et al. 2001; Green et al. 2004; 

Hotta et al. 1998; Wolff 1993). It has been demonstrated that overexpression of antioxidant enzymes 

(particularly H2O2-detoxifying) in the mitochondrial compartment protects insulin-secreting cells 

against cytokine-induced oxidative stress (Gurgul et al. 2004). 

The fundamental characteristic of pancreatic beta cells is their ability to secrete insulin in response 

to glucose. Therefore, maintenance of physiological GSIS is of particular importance in developing 

new strategies to treat diabetes.  

The present study identified the novel mitochondrial protein, mimitin, as a protective factor 

diminishing cytokine-mediated mitochondrial and ER stress (Hanzelka et al. 2012). Mimitin 

overexpression was also shown to reduce cytokine-induced inhibition of GSIS, most probably by 

preserving the mitochondrial function. A similar protection against cytokine-induced mitochondrial 

and ER stress was recently demonstrated via overexpression of the enzyme prostacyclin synthase 

(PGIS) in insulin-secreting cells (Gurgul-Convey & Lenzen 2010). PGIS synthesizes the 

antiinflammatory prostaglandin I2 (PGI2), also known as prostacyclin. After being released, 

prostacyclin binds to specific cell surface receptors (IP receptors), leading to their activation and 

production of cAMP (Sprague et al. 2008). PGI2 can also influence the metabolism and cell function 

by directly affecting intracellular pathways, without being released from the cell of origin. Likewise in 

mimitin overexpressing cells, also in those with PGIS overexpression, cytokine-induced activation of 

caspase-9 and caspase-12 was significantly diminished, which was further associated with the 

prevention of caspase-3 activation. However, in contrast to mimitin overexpression, the protective 

effect of PGIS overexpression was reported to be strongly dependent on the inhibition of the NFB 

signalling pathway (Gurgul-Convey & Lenzen 2010). Consequently, stimulation of the inducible NO 

synthase promoter significantly declined, resulting in a reduced iNOS protein expression and nitrite 
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production (Gurgul-Convey & Lenzen 2010). The enhancement of glucose-induced insulin secretion, 

resulting from higher mimitin and PGIS expression, was in both cases accompanied by an increased 

intracellular ATP content. In mimitin overexpressing cells the observed increased ATP content 

originated from improved electron transport chain activity, as mimitin was shown to be a part of the 

mitochondrial complex I. On the other hand, a significantly higher rate of glucose oxidation, 

previously demonstrated in insulin-producing RINm5F cells overexpressing PGIS, may explain the 

ATP elevation triggered by PGI2 (Gurgul-Convey & Lenzen 2010). A high ATP content also enables 

an efficient generation of cAMP in PGIS overexpressing cells. cAMP is a well-established potentiator 

of GSIS (Ammälä et al. 1993; Eliasson et al. 2003; Gromada et al. 1997; Hanna et al. 2009; 

MacDonald et al. 2005; Renström et al. 1997). It has been demonstrated that PGI2 acts via specific IP 

receptors, leading to the activation of adenyl cyclase and resulting in cAMP production (Gurgul-

Convey et al. 2012). Therefore, an increased formation of cAMP was the major factor responsible for 

the potentiation of glucose-induced insulin secretion in PGIS overexpressing cells. A detailed analysis 

of cAMP action in INS1E-PGIS cells revealed that its enhancing effects on insulin secretion are 

exerted via the PKA-independent pathway (Gurgul-Convey et al. 2012). The Epac2 protein is crucially 

involved in this process (Gurgul-Convey et al. 2012). A similar mechanism of potentiation of GSIS 

has been described for GLP-1 (Holst 2007; Kielgast et al. 2009; Portha et al. 2011; Vilsbøll & Garber 

2012). 

In contrast to insulin-secreting INS1E-mimitin cells, INS1E cells overexpressing PGIS were 

characterized by a higher insulin (Ins2) transcript level as well as insulin content, compared to INS1E 

control cells. The insulin content remained elevated along with a rising level of glucose 

concentrations. These findings implicate that PGIS overexpression may influence the transcription 

and/or translation of insulin. Protection against cytokine-induced ER stress previously demonstrated in 

insulin-secreting RINm5F cells overexpressing PGIS (Gurgul-Convey & Lenzen 2010) additionally 

supports this hypothesis, pointing to the possible role of PGIS in maintaining ER biosynthetic 

capacity. A similar increase in Bip expression, however to a lesser extent, was also observed in 

mimitin overexpressing INS1E cells.  

Moreover, overexpression of PGIS does not pose a threat of hypoglycaemic episodes, the risk of 

which was implied in the case of a high mimitin expression level. The magnitude of insulin secretion 

at the basal glucose concentration (3 mM) was comparable in INS1E-control and PGIS-overexpressing 

INS1E cells, while INS1E cells overexpressing mimitin demonstrated significantly increased basal 

insulin secretion (Gurgul-Convey et al. 2012; Hanzelka et al. 2012). 

Furthermore, in line with the proven correlation between beta cell proliferation and ATP 

production, an increased ATP content improved proliferative capacity in PGIS- and mimitin-

overexpressing cells. In conclusion, prostacyclin seems to represent a more favourable approach to 

maintain the insulin secretory responsiveness of beta cells when compared with mimitin 

overexpression. 
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3.3. The nNOS in pancreatic beta cells 

At low concentrations NO plays a role in a number of physiological processes involving different 

tissues of nervous, cardiovascular and immune system. The constitutive forms of NOS synthases 

account for these small amounts of NO, however from among them only nNOS was shown to be 

present in pancreatic beta cells. The second constitutively expressed NOS isoform, namely eNOS was 

shown to be exclusively expressed in secretory granules of glucagon- and somatostatin-secreting cells 

(Spinas et al. 1986). The results obtained in this study further confirmed the presence of nNOS in 

insulin-secreting cells, which is in agreement with previous reports (Lajoix et al. 2001). The 

expression of nNOS was shown to be decreased upon cytokine treatment in INS1E cells as well as in 

rat islets, although the latter one was characterized by a lower expression level of this enzyme. 

According to recent studies the activation of the JNK pathway can cause the reduction of nNOS 

protein expression (Wang et al. 2011). Therefore the decrease in the enzyme protein level observed 

after treatment with a cytokine mixture may, at least to a certain extent, stem from the JNK activation 

evoked by cytokines. Those mediators of pancreatic beta cell death lead also to the induction of iNOS 

expression, resulting mainly from the activation of transcription factor NFB. This in turn is caused 

primarily by IL-1, since TNF has been shown to prompt only moderate induction of NFB. 

Consequently, it seems possible that during the late stages of islet infiltration, in the course of T1DM 

development and characterized by the presence of all three proinflammatory cytokines, pancreatic beta 

cells are exposed to large amounts of NO. Subsequently, the reaction between NO and the hydrogen 

peroxide is boosted, causing the formation of highly toxic hydroxyl radicals, which eventually leads to 

pancreatic beta cell death (Gurgul-Convey et al. 2011). NO formation originating from the induction 

of iNOS was also demonstrated to inhibit glucose-induced insulin secretion, with a parallel decrease in 

insulin content (Henningsson et al. 2002). Those findings were confirmed in the present study, 

pointing to the potent deleterious effects of IL-1, further potentiated by TNF. Overall the present 

study strongly indicates that NO production induced by cytokines originates solely from the activity of 

iNOS, without concomitant contribution of any other NOS isoform. Further, our findings provide a 

clear implication that a low basal level of NO, synthesized by nNOS, does not exert detrimental effects 

on pancreatic beta cells. The nNOS is able to prevent iNOS induction in some cell types and its partial 

knock down increased JNK phosphorylation and CHOP production, eventually leading to apoptosis 

(Bachar et al. 2010). Therefore it seems possible that a reduction of nNOS expression, caused by 

cytokines might be adverse for pancreatic beta cells. 
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3.4. Conclusions 

The results presented in this study provide new knowledge about the action of proinflammatory 

cytokines in pancreatic beta cells. This work confirms the importance of mitochondrial and, to a lesser 

extent, ER stresses in cytokine toxicity. It describes for the first time a new modulator of pancreatic 

beta cell function, mimitin.  

Moreover, the study presents a novel powerful potentiator of glucose-induced insulin secretion, 

prostacyclin, and shows that its stable analogues, already commonly used to treat hypertension, could 

serve as potential anti-diabetic drugs. 

The results show also the existence of a firm balance between the activity of nNOS and iNOS and 

its important role for pancreatic beta cell life and death.  

Thus, the present study opens new therapeutic perspectives for the treatment of T1DM. 
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