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Abstract

Quantum key distribution is the art of distributing a secure key between remote
parties by using quantum communication. The major goal from a theoretical perspec-
tive is to prove that, under well-specified assumptions, no information about the key
has been leaked during the task. In this thesis, we extend information theoretic tools
for proving security of quantum key distribution protocols from finite-dimensional
to continuous-variable systems, present a complete finite-key security analysis for a
squeezed state protocol and address questions related to device-independent security.
Conceptually, it can be subdivided into three main parts.
The first part is devoted to an extension of the smooth min- and max-entropies to

the algebraic approach to quantum mechanics in which observables are the funda-
mental objects and described by the theory of von Neumann algebras. The smooth
entropy formalism was introduced to analyze one-shot information theory, which is
crucial to studying the security of quantum key distribution. We generalize various
properties of these entropies and extend the characterization of privacy amplification
and data compression to the situation, in which the side-information is modeled by
an arbitrary observable algebra. We further derive an entropic uncertainty relation
with quantum side-information for position and momentum observables for both
finite and infinite measurement precision.
In the second part, the optimal characterization of the extractable secure key

length by the smooth min-entropy for one-way classical post-processing is extended
to continuous-variable systems. The obtained key is composable secure and the
formalism allows the inclusion of finite-key effects due to finite rounds of quantum
communication in a protocol. Using this result, we obtain the first quantitative
finite-key analysis proving security against coherent attacks for a continuous-variable
protocol where squeezed states are measured via homodyne detection. A positive
key rate is obtained for experimentally challenging but achievable parameters. The
security proof is based on the application of the entropic uncertainty relation for
smooth min- and max-entropies. The key rate is compared with the one obtained
under the assumptions of collective attacks.
The third part addresses a fundamental question of device-independent security.

We investigate the ability of a correlation table to offer perfect security, meaning that
the outcomes of the honest parties are statistically uncorrelated with the outcomes of
any measurement an eavesdropper could perform. It turns out that such correlation
tables are exactly the ones which are extremal in the convex set of all correlation
tables. Motivated by this link, we follow an algebraic approach to construct methods
to verify extremality and present a continuous family of extremal correlation tables
in the case of two parties with two binary measurements each. Furthermore, we
elaborate on the peculiar situation where the correlation table uniquely determines
the quantum state and the observable.
Keywords: Smooth Min- and Max-Entropies, Continuous-Variable Quantum Key

Distribution, Device-Independent Security



Zusammenfassung
Quanten Schlüssel Verteilung beschreibt den Vorgang, einen sicheren Schlüssel

an räumlich getrennte Parteien zu verteilen mit Hilfe von Quantenkommunikation.
Die Herausforderung aus Sicht der Theorie ist es zu beweisen, dass wenn gewisse
Annahmen erfüllt sind, keine Information über den Schlüssel nach außen dringen
konnte. In dieser Arbeit, erweitern wir informationstheoretische Methoden der die
Sicherheitsanalyse von Quanten Schlüssel Verteilungsprotokollen, die auf endlich di-
mensionalen Systemen basieren, zu solchen, die auf kontinuierlichen Variablen Sys-
temen basieren. Wir präsentieren weiter einen konkreten Sicherheitsbeweis für ein
Protokoll, das auf gequetschten Lichtzuständen basiert und behandeln fundamentale
Fragen von geräteunabhängiger Sicherheit. Konzeptuell, besteht die Arbeit aus drei
Hauptteilen.
Der erste Teil beschäftigt sich mit der Erweiterung der Smooth Min- und Max-

Entropien auf eine algebraische Beschreibung der Quanten Mechanik, in der Observ-
ablen eine fundamentale Rolle zukommt und die mittels der Theorie von von Neu-
mann Algebren beschrieben wird. Die Smooth Min- und Max-Entropien sind einge-
führt worden, um Einzelschussinformationstheorie zu beschreiben, was notwendig ist
um Sicherheit von Quanten Schlüssel Verteilung zu studieren. Wir verallgemeinern
verschiedene Eigenschaften dieser Entropien und erweitern die Charakterisierungen
von Sicherheitsverstärkung und Datenkompression, wobei die Zusatzinformation mit-
tels allgemeiner Observablenalgebren modelliert wird. Wir leiten weiter eine entropis-
che Unschärferelation mit Quatenzusatzinformation für Ort und Impuls Observablen
her für endliche und unendlich genaue Messauflösung her.
Im zweiten Teil, wird die optimale Charakterisierung der extrahierbaren Schlüssel-

länge durch die Smooth Min-Entropie für klassische Einwegnachverarbeitung für kon-
tinuierliche Variablen Systeme gezeigt. Der so erzeuge Schlüssel ist sicher kombinier-
bar und der Formalismus erlaubt es, die Effekte aufgrund endlicher Quantenkom-
munikation zu berücksichtigen. Mit Hilfe dieses Resultats, präsentieren wir die erste
quantitative Sicherheitsanalyse die Sicherheit gegen allgemeine Attacke liefert für
ein Protokoll mit kontinuierliche Variablen Systemen, in dem gequetschte Zustände
mit homodyner Detektion gemessen werden. Eine positive Schlüsselrate ist mit den
heutigen Technologien möglich wenn auch anspruchsvoll. Der Sicherheitsbeweis baut
auf der Unschärferelation auf. Wir vergleichen die Schlüsselrate auch mit derjenigen
die man unter Annahme von kollektiven Attacken errechnet.
Der dritte Teil analysiert eine grundsätzliche Frage von geräteunabhängiger Sicher-

heit. Wir fragen nämlich was die Eigenschaften einer Korrelationstabelle ist, die
Sicherheit garantiert in dem Sinne, dass sie statistisch unabhängig von den Aus-
gängen all möglicher Messungen ist, die ein potentieller Lauscher machen könnte.
Es zeigt sich, dass solche Korrelationstabellen diejenigen sind, die in der Menge
aller möglichen extremal sind. Motiviert durch diesen Zusammenhang, benützen wir
algebraische Methoden, um Extremalität zu verifizieren und konstruieren eine kon-
tinuierliche Familie von extremalen Punkten für den Fall von zwei Partein mit je
zwei binären Messungen. Wir analysieren zudem den Spezialfall, in dem die Korre-
lationstabelle den Zustande und die Messungen eindeutig bestimmt.
Schlagwörter: Smooth Min- und Max-Entropien, Kontinuierliche Variablen Quan-

tenschlüsselverteilung, Geräteunabhängige Sicherheit
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1. Introduction

1.1. Outline

This section provides a short guideline to this thesis including a detailed outline of
the structure of the work. It should help a reader to get an overview about the con-
tent presented in this thesis. Moreover, it should enable readers which are familiar
with the topics to find quickly the particular results. This work combines material
already presented in [FFW11, BFS11, FFB+11] and [FAR11, Sect. 8]. The content of
Chapter 5 is not yet publicly available and presented in this thesis for the first time.
In the main text, we omit the explicit reference to the aforementioned papers and
preprints and instead the connection between the different topics in this thesis and
the references is given in the outline presented below. The conclusion and outlook
corresponding to the different topics are collected at the very end of this thesis in
Chapter 8.

We start in Sections 1.2, 1.3 and 1.4 with a basic and non-technical introduction
to the main topics addressed in this thesis. The idea is to discuss the basic notions
and historical developments essential to put the presented results into a bigger pic-
ture. Section 1.2 provides an overview about algebraic approaches to model quantum
mechanics. Therein also a description of the Hilbert space formalism is presented.
In Section 1.3, we discuss the role of entropy measures in information theory by
considering simple examples. It starts with the Shannon and von Neumann entropy
and proceeds with a discussion of smooth entropies used in the one-shot regime. We
close the introduction in Section 1.4 with a preliminary discussion about quantum
key distribution focused on security aspects and its connection to entropies, where
we also discuss the idea behind device-independent quantum key distribution.
Chapter 2 gives an introduction to C*- and von Neumann algebras. The goal is to

set the notation and discuss the mathematical tools used in this thesis. In Chapter 3,
we translate concepts from quantum information theory usually described in the
language of Hilbert spaces to the language of von Neumann algebras. This is based
on own work presented in [BFS11]. The first part, Section 3.1, is a repetition of the
basic operator algebra formalism of quantum mechanics. In Section 3.2, we define
multipartite quantum systems and the purification of a state on a von Neumann
algebra. Section 3.4 generalizes the purified distance from [TCR10] to von Neumann
algebras.
With the preliminary results from the previous chapter at hand, we can define and

analyze the smooth entropies on von Neumann algebras in Chapter 4 (based on own
work from [BFS11] and [FAR11, Section 6]). Section 4.2 contains the definition of the
conditional min- and max-entropies. In Section 4.3 the smooth versions thereof are
defined. The rest of this chapter is devoted to translate properties and interpretations

1



1. Introduction

of the smooth and non-smooth min- and max-entropies known for finite-dimensional
quantum systems to the case of arbitrary quantum systems modeled by von Neumann
algebras. Important for further chapters are the uncertainty relation with quantum
side-information, Section 4.7, and the result on randomness extraction in the presence
of a quantum adversary given in Section 4.8.
Chapter 5 addresses the uncertainty relation for position and momentum oper-

ators. We first introduce the differential conditional min- and max-entropies in
Section 5.2. The main result is the approximation of the differential min- and max-
entropies of continuous outcome measurements by their discrete counterparts when
increasing the measurement precision (see Section 5.2.2). The entropic uncertainty
relation with quantum side information for position and momentum measurements
of finite and infinite precision are discussed in Section 5.3.
In Chapter 6, we use the results derived in the previous two chapters to prove secu-

rity for a continuous-variable squeezed state protocol against arbitrary quantum at-
tacks (Theorem 6.3.1)(based on own work from [FFB+11]). We start in Section 6.2.1
by stating the composable security definitions and give a general formula for a secure
key length in terms of the smooth min-entropy. This key length is then computed
for a continuous-variable protocol which is based on quadrature measurements of a
two-mode squeezed state (see Section 6.3.1). The security analysis against arbitrary
quantum attacks presented in Section 6.3.3 is based on the entropic uncertainty re-
lation with quantum side-information as derived and discussed in the previous two
chapters. For comparison, the key length is computed against collective attacks in
Section 6.3.4.
A question from device-independent quantum key distribution is addressed and

analyzed in Chapter 7 [FFW11]. Section 7.2 aims to introduce the framework suitable
to study questions for a device-independent scenario. In Section 7.3, we connect the
security question in a quantum key distribution protocol to a geometric property
of the correlations of the measurement outcomes, namely, being extremal in the set
of all possible quantum correlations [FFW11]. Strategies how to find, or to check
whether correlations are extremal are then discussed in Section 7.4.
The thesis ends with a summary of the obtained results and a discussion of future

questions in Chapter 8, which is separated according to the three main topics.

1.2. Model of Quantum Mechanics

The mathematical formalism of quantum mechanics was developed in the first half
of the 19th century. Heisenberg together with Born and Jordan invented the matrix
mechanic formalism in 1925 to describe the kinematics of electrons in an atom [Hei25,
BJ25, BHJ25]. The main idea was to describe the position and momentum of elec-
trons by selfadjoint operators Qi and Pi (i = 1, .., n) satisfying the canonical commu-
tation relations [Pi, Pj ] = [Qi, Qj ] = 0 and [Pi, Qj ] = −iδij~. The obtained results
agreed with the quantization rules of Bohr and Sommerfeld proposed at the begin-
ning of the 19th century to explain the deviation of the experimental data with the
theory of classical mechanics.
In parallel, Schrödinger developed the wave mechanics [Sch26a, Sch26b], which

was also able to reproduce the energy quantization rules for the hydrogen atom. The
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1.2. Model of Quantum Mechanics

idea of Schrödinger was to replace the stationary Hamilton-Jacobi equation by a vari-
ational principle. The result was a prescription how to derive a wave equation from
the classical Hamiltonian function by replacing the conjugated phase space variables
qi and pi by the multiplication operator and the derivative −i~ ∂

∂qi
. The absolute

square of the wave function (solution of the wave equation) was later interpreted by
Born as the probability distribution of the position measurement [Bor26].
The equivalence of the matrix mechanic and wave equation formalism was realized

soon and a unified mathematical framework was developed based on operators on a
Hilbert space. The wave mechanic corresponds then to a irreducible representation
of position and momentum operators obeying the canonical commutation relations
on the Hilbert space L2(Rn). Furthermore, it turned out that for finitely many pairs
of canonically conjugated operators Qi and Pi this is the only irreducible represen-
tation up to unitary equivalence [Sto30, vN31].

Let us briefly summarize the mathematical formalism of Hilbert space quantum
mechanics by means of a generic experiment described by the three steps: prepa-
ration, evolution and measurement. With a preparation, we associate a density
operator or state1 ρ on a Hilbert space H, that is, ρ is a bounded operator on H
admitting a spectral decomposition

ρ =
∑
k=1

λk|ψk〉〈ψk| (1.1)

with eigenvalues λk ≥ 0 satisfying
∑

k λk = 1 and orthogonal normalized eigenvectors
ψk ∈ H. More formally, ρ is a positive trace-class operator with Trρ = 1. Note that
in general, different preparation devices can lead to the same density matrix.2 A
state of finest preparation in which all but one λk in Equation (1.1) are zero is called
a pure state. A state which is not pure is called mixed since it can be modeled as the
mixture (convex combination) of states of finest preparation. A measurement device
with possible outputs {xk}Nk=1 is associated with a set of positive operators {Ek}Nk=1

on H satisfying3

N∑
k=1

Ek = 1 . (1.2)

Such a set is referred to as a positive operator valued measure (POVM) or an observ-
able (c.f. [Dav76]). It is called projective or sharp if all the operators are projections.
The theory determines the probability distribution {pk} of the outcomes {xk} given
that the system is prepared in a state ρ, via

pk = TrρEk . (1.3)

One commonly identifies projective observables with selfadjoint operators where the
spectrum represents the possible outcomes and the positive projection valued mea-
sure in the spectral decomposition the measurement operators. Hence, applying the

1Later on, we use the terminology state for the functional on B(H) which is induced by ρ via
a 7→ Trρ a. In an algebraic approach these objects cannot be identified in general.

2One has to carefully distinguish the concept of a preparation device and the density opera-
tor [Kra83].

3For simplicity we consider here only measurement devices with a finite number of outcomes.

3



1. Introduction

aforementioned rules, the expectation value of the obserbable corresponding to the
selfadjoint operator O can be computed by 〈O〉ρ = TrρO.
A general and not necessarily reversible evolution is associated with a completely

positive map E : B(H) → B(H) satisfying E(1) = 1, which is called a quantum
channel in the following.4 We use the Heisenberg picture in which the evolution is
applied to the measurement operators, that is, it maps the observable {Ek}Nk=1 onto
the observable {E(Ek)}Nk=1. Hence, the set {E(Ek)}Nk=1 describes the transformed
measurement operators before the evolution of the system.

Motivated by this description of quantum mechanics, von Neumann started to
study subalgebras of operators on a Hilbert space [vN29], which led to the notion of
weakly*-closed subalgebras, nowadays called von Neumann algebras. It was shown
that such subalgebras were sufficient to enclose the projection valued measures of the
spectral decompositions of all normal operators. In fact, as realized later, it is suffi-
cient to consider the commutative norm-closed ∗-algebras generated by the normal
operators to analyze its spectral properties (see, e.g., [Seg47]). The study of norm-
closed subalgebras (C*-algebras) was initialized by Gelfand and Neumark [GN43].
It turned out that a simple condition, namely, that ‖A∗A‖ = ‖A‖2, was sufficient to
characterize general closed subalgebras of bounded operators on a Hilbert space. The
theory of C*-algebras was further developed by Segal and used to give an axiomatic
description of quantum mechanics [Seg47]. He also observed the tight connection be-
tween states and representations of a C*-algebra which is discussed in Section 2.1.2.
Since then, the theory of operator algebras emerged as an independent discipline in
modern mathematics.

The theory of C*- and von Neumann algebras in physics turned out to be neces-
sary for systems described infinitely many pairs of canonical commuting operators
Qi and Pi. In that case there exist no unique irreducible representation anymore.
This problem appears for instance in the thermodynamic limit or in quantum field
theory (see e.g. [BR79, BR81, Haa92] and references therein). In quantum statistical
mechanics the different representations of the C*-algebras are associated with differ-
ent phases of the material. In particular, an equilibrium state in the thermodynamic
limit induces a concrete representation. The von Neumann algebra is then obtained
by taking the weak* closure.

The fundamental object in an algebraic approach to quantum mechanics is the al-
gebra generated by the observables of the physical system. A C*-algebra A captures
the abstract mathematical structure of the observables independent of the repre-
sentation on a particular Hilbert space. States on a C*-algebra are linear positive
functionals ω : A → C and the expectation of an observable A is given in analogy
to the Hilbert space quantum mechanics by ω(A). The C*-algebra approach for in-
stances allows to study general properties induced by simple relations between the

4For a definition of completely positive see Section 3.1. An example of a quantum channel is
the (reversible) time evolution of a closed system. It is induced by a selfadjoint operator H,
the Hamiltonian, and the quantum channel at time t is given by Et(A) = U(t)∗AU(t), where
U(t) = exp(−iHt).
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1.3. Entropies in Quantum Information Theory

measurement observables. This is for instance used in Section 7 to analyze properties
of general correlation experiments.
Von Neumann algebras are usually used if one is interested in particular rep-

resentations of C*-algebra on a Hilbert space. They are obtained by taking the
weak*-closure of a C*-algebra. Constructively, this means that for any sequence of
observables {Ai} for which ω(Ai) is a convergent sequence for any state ω, we add
the observable A corresponding to the limit point. This is physically reasonable and
provides analytical simplifications. It for instance allows to work in a representation
in which all the states are pure that is given by vector states of the underlying Hilbert
space.
Compared to the Hilbert space quantum mechanics, the use of the algebraic ap-

proach brings the advantage that symmetries of the physical system can naturally be
incorporated in the description. Let us assume that the physical system or the state
one is interested in, is invariant under the symmetry group G. This is mathemati-
cally modelled by a unitary group representation of G acting on the set of bounded
operators on the Hilbert space associated with the system. Hence, all the relevant
observables have to be invariant under the action of the unitary group representation.
But the set of invariant operators form a subalgebra which can be weakly closed to
obtain the von Neumann algebra generated by the relevant observables.

1.3. Entropies in Quantum Information Theory

Quantum information theory studies how quantum systems and features thereof can
be beneficially used to perform information theoretic or computational tasks. One
important question is if and to which extend implementations based on quantum
systems can outperform their classical counterparts. In order to quantify the per-
formance of such tasks entropy measures play a fundamental role. This idea goes
back to the beginning of classical information theory initialized by a seminal work
of Shannon [Sha48]. In this work he addressed questions of how to quantify the
uncertainty of an information source and put it in relation with the capacity of a
channel. A classical source is in general described by a random variable X assumed
to take values in a finite alphabet X and distributed according to a probability dis-
tribution {px}x∈X . The measure of uncertainty introduced in [Sha48] is nowadays
called Shannon entropy and defined as

H(X)p = −
∑
x∈X

px log px. (1.4)

One usually measures information in bits so the logarithm log in the definition of
the entropy is taken with base 2. The quantity has the property that if the source
ejects always the same output the entropy is zero. The maximal value is given
by log |X | and attained for the uniform distribution. The Shannon entropy can be
axiomatically derived from a set of properties expected to hold for an uncertainty
measure [Sha48, Rén60].
The Shannon entropy can be seen as the expectation value of the information

function − log pk and as such, the law of large numbers implies that

− 1

n
log(px1px2 ...pxn)→ H(X)p (n→∞)
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1. Introduction

if the values xi are generated by an independent and identically distributed (i.i.d.)
source characterized by {px}dx=1. Output strings (x1, ..., xn) for which px1px2 ...pxn ≈
2nH(X)p are called typical and the number of them is approximately 2nH(X)p [CT91].
This is thus directly connected to coding problems in the sense that the number of
bits per signal (rate) which has to be stored without losing information of a source
is given by H(X)p [Sha48, CT91]. This holds in the asymptotic limit which denotes
the limit of infinite repetitions (n→∞) of an i.i.d. source under the constraint that
the probability that an error occurs tends to zero. The performance in this asymp-
totic limit is called rate. The asymptotic limit of most of the classical information
theoretic problems like various versions of data compression and channel codings can
be characterized by the Shannon entropy [Sha48, CT91].

Similar questions can now be addressed in a quantum setting. A quantum system
A is characterized by a Hilbert space HA and the source by a density matrix ρA on
HA.5 The quantum counterpart of the Shannon entropy is the von Neumann entropy
first introduced in quantum statistical physics

H(A)ρ = −TrρA log ρA . (1.5)

It can be interpreted as the minimization of the Shannon entropy over all outcome
distributions obtained by rank one measurement (see for instance [NC00, Wil11]).
Schumacher proved that in the asymptotic limit, similar to the classical case, the
numbers of qubits6 per signal needed to encode an i.i.d. source characterized by ρA
is roughly H(A)ρ [Sch95]. An i.i.d. quantum source is a resource which produces in
each run the same state ρA which is uncorrelated to all the others. Hence, after n
runs, we end up with the n-fold tensor product state ρ⊗nA = ρA ⊗ ... ⊗ ρA on the
Hilbert space H⊗nA . For large n there exists now a typical subspace K of H⊗nA with
dimension 2nH(A)ρ such that the projection of ρ⊗nA onto K fails with small probability
which goes to zero as n tends to infinity [Sch95].

An important role in information theory plays side information which describes
the instant that one has certain pre-knowledge about the source. In the classical case
such a situation can be modeled by considering two correlated random variables X
and Y jointly distributed according to p(x, y) on X × Y. Here, X characterizes the
source and Y our pre-knowledge. The distribution of the source X conditioned on
the even that the value y is known is simply the conditional distribution p(x|y) =
p(x, y)/pY (y), where pY (y) =

∑
x p(x, y) is the probability distribution of Y . For

instance, if X and Y are maximally correlated p(x, y) = 1/(|X |)δxy then the value
y completely determines the value of x described by p(x|y) = δxy. Let us consider
again the coding problem of how many bits of information one has to store in order
to recover the output of the source X given that we know Y . Thus, we have to
count the number of typical sequences for n repetitions of the i.i.d. event distributed

5We use the letters X, Y and Z to denote classical systems and A, B and C for quantum sys-
tems. In order to avoid technical issues, we use here the Hilbert space description of quantum
mechanics.

6A qubit is a quantum system with two degrees of freedom like for instance a spin-1/2 system or
the polarization of a photon.
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according to p(x, y). Let us separate the events first according to the value of Y .
Since n is large, the number of events where y occurs is given by pY (y)n which
can then be reliably encoded by compression to approximately 2pY (y)nH(X|Y=y) bits,
whereH(X|Y = y) is the Shannon entropy of the conditional probability distribution
p(x|y). Hence, the total average number of bits can be computed to be

1

n
log
(∏

y

2pY (y)nH(Y )pX

)
=
∑
y

pY (y)H(X|Y = y) . (1.6)

The right hand side is the expectation value of the entropy of X with respect to
Y and defines the conditional Shannon entropy H(X|Y ). A simple computation
shows that it can be rewritten as H(X|Y ) = H(XY )−H(Y ). This suggests that in
the asymptotic limit the information behaves “additive”. The conditional Shannon
entropy characterizes the coding problem of correlated sources known as the Slepian-
Wolf theorem [SW71], or the capacity of noisy classical channels [Sha48].
This motivates to define the quantum conditional entropy in a similar fashion. Let

A and B be two quantum systems modeled on Hilbert spaces HA and HB, and ρAB
a joint state on HAB = HA ⊗HB. We define the conditional von Neumann entropy
by

H(A|B)ρ = H(AB)ρ −H(B)ρ , (1.7)

where H(AB)ρ and H(B)ρ denote the von Neumann entropies of ρAB and ρB. This
definition can also be used for hybrid models consisting of quantum and classical
degrees of freedom. For that, one embeds the classical system X into a Hilbert space
HX = span{|x〉 x ∈ X}, where {|x〉}x∈X is an orhthonormal basis. A probability
distribution p(x) over x is then mapped to the quantum state ρX =

∑
x p(x)|x〉〈x|

which is diagonal with respect to the basis |x〉. It is easy to see that the Shannon
entropy of p(x) is equal to the von Neumann entropy of ρX . The embedding can
be extended to hybrid systems containing a classical part X and a quantum part
A characterized by ensembles (p(x), ρxA) and written as states on a Hilbert space
by ρXA =

∑
x p(x)|x〉〈x| ⊗ ρxA. In the asymptotic limit, the conditional entropy

H(X|A) characterizes for instance the coding problem if the side-information is en-
coded in the quantum states {ρxA} [DW03]. Moreover, it determines the rate by
which classical information can be sent through a quantum channel via the Holevo-
Schumacher-Westmoreland theorem [SW97, Hol98]. The fully quantum conditional
entropy H(A|B) is related to quantum stage merging [HOW05, HOW06].

The simplifying assumption to consider the limit of infinite repetitions of an
i.i.d. resource used in the asymptotic limit are justified for many scenarios. But
there are exceptions in which a non-asymptotic treatment is necessary. This is for
instance the case if one analyzes the security of cryptographic protocols where these
assumptions can offer loop holes for possible attacks. It is thus important to have
information measures which characterize the single use of a source, the so-called
one-shot scenario. Possible measures are the α-Rényi entropies which satisfy, like
the Shannon entropy, properties expected from an uncertainty measure [Rén60]. For
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a quantum state ρA and α ∈ [0,∞], they are defined by7

Hα(A)ρ =
1

1− α
log Trρα , (1.8)

where the cases α = 1,∞ are defined as the corresponding limit. In the case α = 1,
we retrieve the von Neumann entropy and α = ∞ corresponds to the min-entropy
Hmin(A)ρ = − log ‖ρA‖.
The min-entropy appeared in connection with randomness extraction in [ILL89],

where also the operational concept of entropy smoothing was introduced
(c.f. [CM96]).8 The idea was extended to a more abstract concept of smooth con-
ditional Rényi entropies by Renner and Wolf [RW04] and applied to randomness
extraction and channel coding in the one-shot regime. The idea behind entropy
smoothing is that in a one-shot regime, the success is only defined up to some error
probability. Let us for instance consider the task of randomness extraction, where
one starts with a random variable X which should be compressed to a smaller al-
phabet such that the new variable is uniformly distributed. In general, complete
uniformity is not achievable but one can make the probability ε that a malicious
party can distinguish it from the uniform distribution arbitrary small. In particular,
the statistical distance to uniform is ε if one compresses X to

` ≈ Hmin(X)−O(log
1

ε
) (1.9)

bits [ILL89].
In [RW04], they showed that a further optimization of the min-entropy over prob-

ability distributions, which cannot be distinguished from the original one with prob-
ability higher than ε′, preserves the desired properties of the entropy measure and
leads in the asymptotic limit to the von Neumann entropy. This so-called ε′-smooth
min-entropy quantifies now the extractable key length ` in Equation (1.9) with an
error ε+ε′. It further holds that the ε-smooth min-entropy deviates from all Rényi en-
tropies with α > 1 only in a term logarithmic in 1/ε and thus, concerning operational
questions, unifies the properties of all these entropies [RW04]. Same results has been
obtained for classical data compression using the α = 0 Rényi-entropy [BS94, RW04]
(c.f. Section 4.9). As a counterpart to the smooth min-entropy emerged the smooth
max-entropy which, from an operational view point, unifies the properties of the
Rényi entropies of order α < 1.
The concept of smooth entropies was generalized to the quantum and the classical-

quantum hybrid setting in [Ren05] and subsequently further analayzed and devel-
oped in [KRS09, TCR10]. In particular, a pair of smooth entropies where intro-
duced, the so-called smooth min- and max-entropy, where the min-entropy of a
classical random variable belongs to the α = ∞ and the (new) max-entropy to
the α = 1/2 Rény entropy [KRS09].9 Optimal one-shot characterization of data
compression or randomness extraction with quantum side-information and quantum

7They were first defined by Rényi for classical systems [Rén60]. The classical version are obtained
by embedding the classical system into a quantum system as described before.

8Similar results were developed independently in [BBR88].
9Renner introduced in [Ren05] the max-entropy as the α = 0 Rényi entropy.
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state merging by smooth conditional min- and max-entropies (see Definition 4.3.2)
are presented in [RR12, Ren05, TSSR10, Ber08]. It was shown that the smooth
min- and max-entropy converge in the asymptotic limit to the von Neumann en-
tropy [Ren05, TCR10] (c.f. Section 4.5.3), by which the results discussed before are
retrieved.

In Chapter 4, we discuss the smooth min- and max-entropy from a more algebraic
point of view by using the von Neumann algebra generated by the observables as
the fundamental object. So far they were mostly considered for finite-dimensional
quantum systems except in [Fur09] where a functional analytic approach has been
used to analyze these entropies in separable Hilbert spaces. There an approximation
was presented, which allowed to carry over results from the finite-dimensional to the
infinite-dimensional setting (c.f. Section 4.5.2). From a theory point of view, this has
the downside that it does not illuminated the algebraic properties of these entropies.
But since the min-entropy is essentially determined by the positivity structure (c.f.
Definition 4.2.1) on the von Neumann algebra an algebraic approach seems to be
natural.
In operator algebra many studies of entropy measures started from the concept of

relative entropies between two states relevant in hypothesis testing (see e.g. [HP91,
OP93] and references therein). Araki defined the relative entropy for two states in a
von Neumann algebra via the modular operator [Ara75]. Petz generalized the con-
cept to the so-called quasi-entropies [Pet85, Pet86] by considering arbitrary operator
concave functions of the modular operator. In contrast, the min-entropy leads to
a concept of a relative max-entropy [MD09] which can be written as the norm of
the non-commutative Radon-Nykodim derivative. Hence, the min-entropy cannot
be reduced to the study of quasi-entropies and thus, requires new techniques.

1.4. Quantum Key Distribution

The insight that properties of a quantum system can offer security of a key distri-
bution protocol which does not rely on computational assumptions, goes back to a
seminal paper by Bennet and Brassard in 1984 [BB84].10 It can be seen as one of the
first applications where quantum features prove to overcome limitations inherent in
any classical implementation. Quantum key distribution (QKD) denotes the task to
distribute a random bit string between two remote parties Alice and Bob by means
of quantum and classical communication which is secure against eavesdropping of a
third party called Eve (see [SBPC+09] for a survey). The idea why quantum com-
munication offers security is based on the principle that any interaction of Eve with
the quantum channel introduces a disturbance of the system [KSW08] which can
be detected. One can differ between two main categories of protocols depending on
how the quantum system is distributed. In the case where Alice prepares the state,
sends it to Bob whereupon he performs a measurement, is called a prepare and mea-
sure protocol [BB84]. Another approach introduced by Ekert in [Eke91] is based on
the preparation of an entangled state which is then distributed between Alice and
10The first idea to use quantum features goes back to Wiesner in 1983 [Wie84], who proposed

quantum money to enable security against counterfeiting.
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Bob who subsequently measure it. Such protocols are referred to as entanglement
based protocols and its conversion to prepare and measure protocols is discussed
in [BBM92].
The security analysis of entanglement based QKD protocols can for instance be

reduced to the distillation of maximally entangled qubits (singlets). In that case
the security can be inferred from the monogamy property of entanglement (see
e.g., [SP00, TKI03]). Other arguments using more information theoretical arguments
are based on the idea of the uncertainty principle [May96, Koa06, TLGR12]. For both
approaches, it is important how one quantifies the security of the generated key. For
long time, one considered a small accessible information Iac(S : E) between the key
S and the quantum system E as sufficient.11 But as shown lately in [KRBM07], this
security definition is not composobale, which means that the key can become insecure
if used in another protocol like for instance one-time pad encryption of a message.12

Composable security definitions has been presented in [BOHL+05, RK05, Ren05].
Using one-way classical post processing consisting of error correction (see Sec-

tion 4.9) and privacy amplification (see Section 4.8), the optimal lower bound on the
number of extractable composable secure bits can be characterized in terms of the
smooth min-entropy [Ren05]:13

` ≈ Hε
min(XA|E)ω − leakEC −O(log

1

ε′
) .

Here, leakEC denotes the number of bits leaked in the error correction phase and ε
,ε′ determine the failure probability of the protocol. This connects the problem of
proving security of the generated key to the challenging task of finding a lower bound
on the smooth min-entropy only based on the measured data during the protocol.

In order to estimate the knowledge of an eavesdropper (which is for instance linked
in Equation (1.4) to estimate Hε

min(XA|E)ω), one usually restricts the power of the
considered attacks. The most common restriction is that Eve is limited to apply
always the same attack to each quantum signal.14 If Eve’s output of such an attack
is classical then one calls it an individual attack. If Eve’s output is a quantum state
which she can store in a quantum memory and measure at any stage of the protocol
(even after the protocol ended and conditioned on further information), one talks
about collective attacks. The most general attacks in which Eve is only limited by
the law of quantum mechanics are called coherent attacks.
In the simplest case of individual attacks the problem of composability is similar

as in the purely classical situation, and a bound on the accessible information is
sufficient [CK78]. The collective case corresponds to an i.i.d. quantum source. Start-
ing with Equation (1.4), one can then use the asymptotic equipartition property of

11The accessible information Iac(S : E) is defined as the mutual information I(S : M(E)) =
H(S)−H(S|M(E)) optimized over the possible measurements M of Eve’s system.

12Note that a QKD protocol only generates a secure key between Alice and Bob which then enables
the encryption of a message in order to send it securely from one party to the other. Hence, a
QKD protocol which is not composable secure is redundant.

13Note that one can also use the smooth Rényi entropy of order 2 to characterize the key
length [KGR05, RGK05, AKMB11]

14With quantum signal, we denote the subsystem which leads to one measurement outcome.
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the min-entropy [Ren05, TCR09] to obtain a bound on the smooth min-entropy by
the von Neumann entropy of a single copy of the i.i.d. source. In the asymptotic
limit one then finds the Devetak-Winter rate first proven in [DW05]. In the case
of coherent attacks, one can use the exponential de Finetti theorem [Ren07] or the
post-selection technique [CKR09] to extend security against collective attacks of a
permutation symmetric protocol to security against coherent attacks. This reduces
the finite-key length compared to collective attacks by a term which vanishes in the
asymptotic limit and thus, shows that the Devetak-Winter rate also specifies the
asymptotic key rate secure against coherent attacks. A more direct way to proof
security against coherent attacks for BB84 like protocols was presented in [TLGR12]
based on an uncertainty relation with quantum side information for smooth min-
and max-entropies proved by Tomamichel and Renner in [TR11]. Another finite-key
security proof for the BB84 protocol is presented in [HT11b].

An important alternative to discrete protocols using quantum systems with a finite
number of degrees of freedom are continuous-variable protocols where the informa-
tion is encoded in the quadratures of the electromagnetic field. They are usually
based on the distribution of Gaussian states which are generally easier to prepare
than single photon states used in discrete variable protocols. The quadrature mea-
surements via homodyne or heterodyne detection can be implemented efficiently
which leads to a high data acquisition and avoids photon counters offering possible
loopholes [LAM+11]. Furthermore, they offer the possibility to use standard telecom
technologies. For further readings see for instance the latest survey in [WPGP+12].
One drawback of continuous-variable systems is that the quantum system has to

be model by an infinite-dimensional Hilbert space which rises additional technical
difficulties in security proofs. One of the first security proofs was given in [GP01]
for a squeezed state protocol based on entanglement distillation, which provided
security against coherent attacks. But it has the disadvantage that the protocol is
experimentally not feasible with nowadays technology and no explicit finite-key rate
was computed. Other security proofs relied on the assumption that the formulas for
the key rates explicitly derived for finite-dimensional quantum systems, like the one in
Equation (1.4), also hold for continuous-variable systems (see [SBPC+09, WLB+04]
for references).
Another problem is that the de Finetti theorem [Ren07] and the post-selection

technique [CKR09] do not directly apply to infinite-dimensional systems [CKMR07].
An extension of the exponential de Finetti theorem to infinite-dimensional systems
is presented in [RC09] via an “energy” bound constraining the relevant system to
a finite-dimensional subspace. Unfortunately, this technique applied to continuous-
variable protocols lead to very pessimistic bounds.15 Nevertheless, it shows that in
the asymptotic limit the optimal key rate secure against coherent attacks is equal to
the one secure against collective attacks.

In usual security proofs one trusts the measurement devices and sometimes also the

15In [Ped08], the conditions required to apply [RC09] are analyzed. It turns out that it is hard to
satisfy all the conditions at the same time. Moreover, the solution presented in [Ped08] is not
robust in the experimental parameters.
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source. This means that one assumes that the measurement devices in an experiment
can be accurately modeled by certain observables. But often, this contains already
simplifications and thus, offers loopholes for possible attacks. It is now possible to in-
fer security of a quantum key distribution protocol solely on the foot of the measured
correlations,16 which is called device-independent security. The idea behind is that
the violation of a Bell inequality forbids a local hidden variable model, which implies
that the randomness of the measurement outcomes of the remote parties cannot be
generated locally. Hence, an eavesdropper can never hold a complete description of
the generated outcomes. First results go back to Mayers and Yao [MY98] for the
noiseless case. Security against a non-signaling adversary was proven in [BHK05]
against individual attacks. A more recent result shows security against collective
attacks based on the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [ABG+07]. This was then generalized to the case of coherent attacks under the
assumption of commuting measurement devices [MPA11, HR10]. See also [H1̈0] for
a survey and further readings.
A fundamental question which arises in this context is whether one can char-

acterize the property of correlation which enables security in the sense that they
are statistically independent of any measurement of an eavesdropper.17 This is a
question about monogamy of correlations which was also discussed in the setting of
non-signaling theories in [BLM+05]. The correlation leading to a maximal violation
of the CHSH inequality can be shown to be secure in this sense (c.f. [BKP06]). The
reason is that the only quantum system which generates such correlation is essen-
tially a singlet state together with rotated Pauli Z and X measurements for both
parties [Tsi85]. Since this implies that the state is necessarily pure, any extension to
a third party must be of product form and thus leads to uncorrelated measurement
outcomes.

1.5. Contributions

This thesis starts with an extension of the smooth min- and max-entropies,
Hε

min (A|B) and Hε
max (A|B), to an algebraic approach to quantum mechanics. We

model the quantum systems by the von Neumann algebra generated by the physical
observables. This paths the way to consider non-asymptotic information theory with
quantum systems requiring infinite-dimensions, as for example continuous-variable
systems. We show that many properties of the finite-dimensional smooth min- and
max-entropies remain true in this more general framework. For instance, we analyze
the behavior of these entropies for i.i.d. quantum resources and show that they still
approximate the von Neumann entropy in the asymptotic limit (see Theorem 4.5.3).
For the non-smooth conditional min-entropy Hmin (A|B) with finite-dimensional A
system and general B system, we employ a Hahn-Banach extension theorem for pos-
itive functionals to recover the interpretation of Hmin (A|B) as maximal achievable
quantum correlations by local operations (Theorem 4.6.4). In the case where the A
system is classical this results in an intuitive interpretation of the min-entropy as
16Note that the detection loophole still remains in this setting [GM87, Lar98].
17During this thesis, we use “secure” for different aspects. But in the main text, we clearly define

what we mean by a secure key or a secure correlation table.
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the optimal guessing probability. Similar results concerning the operational inter-
pretation of the non-smooth max-entropy as the decoupling accuracy are proven in
Theorem 4.6.6.
We consider the problem of privacy amplification against an adversary with side-

information modeled on a general infinite-dimensional system. This is the crucial
result by which the generalization of the key length formula for quantum key dis-
tribution in (1.4) to continuous-variable systems is obtained. We prove a similar
characterization of the optimal extractable secure key length by the smooth min-
entropy as in the finite-dimensional case (see Theorem 4.8.3). The proof is different
to the ones given in the finite-dimensional case, have no straightforward general-
ization. We further consider the task of data compression with side-information
modeled by a general von Neumann algebra. Using the formalism of von Neumann
algebras brings the advantage that one is able to restrict the possible observables
instead of considering all measurement operators in a Hilbert space. We show that
the optimal characterization by the smooth max-entropy from the finite-dimensional
case remains true in this more general framework (see Theorem 4.9.2).
A further important result is the generalization of the entropic uncertainty rela-

tion with quantum side-information for smooth min- and max-entropies (see The-
orem 4.7.1). This relation is used to studying the uncertainty of position and
momentum-like observables with arbitrary measurement precisions. In order to study
the case of infinite precision, which leads to a continuous distribution, we define the
differential conditional min- and max-entropies.18 We show that this differential min-
and max-entropies can be approximated by their discrete counterparts by letting the
spacing go to zero. This approximation result, together with the uncertainty rela-
tion for the discrete min- and max-entropy, results to a tight entropic uncertainty
relation with quantum side-information for continuous position and momentum mea-
surements.

Based on the previous result on privacy amplification, we show that the key length
formula in (1.4) also holds in the case of continuous-variable systems. Using the ap-
proximation of the von Neumann entropy by the smooth entropies of i.i.d. quantum
resources, we set the Devetak-Winter formula for the asymptotic key rate on rigor-
ous footing for continuous-variable protocols. We then consider a two-mode squeezed
state protocol and present a security proof against coherent attacks based on the en-
tropic uncertainty relation with quantum side-information inspired by the one for the
BB84 protocol presented in [TLGR12]. We numerically compute the finite-key rate
and show that for a two-mode squeezed state with squeezing strength experimentally
demonstrated in [EHD+11b], a non-vanishing key rate is obtained (see Figure 6.2).
We also compute the key length given in Equation (1.4) under the assumptions of
collective attacks by the help of the asymptotic equipartition property of the smooth
min-entropy.

18Note that the term “differential” refers to the situation where first system A is modeled by a
continuous variable. The situation that the side-information B is described by a continuous
variable is included from the beginning since we consider general von Neumann algebras for the
B system.
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In the last part of this thesis, we characterize the secure quantum correlations
which have the property that they are uncorrelated with outcomes of any measure-
ment an eavesdropper can perform. Considering the convex set of all quantum cor-
relation tables, we show that such secure correlation tables are exactly the extremal
ones. This illustrates the properties, which have to be satisfied by a correlation table
to be useful for a device-independent quantum key distribution protocol. We further
show that whenever an extremal correlation table determines the state and the ob-
servables uniquely, also all other measurements generated by the observables of the
honest parties are independent of the outcomes of a measurement of an eavesdropper.
We introduce the universal C*-algebra corresponding to a general correlation ex-

periment to study properties of correlation tables. In the particular case of N parties
with 2 binary-measurements each, it is given by the N -fold tensor product of the
algebra of two projections. For this algebra the representation theory is well under-
stood, which crucially simplifies problems like for instance to verify that a correlation
table is extremal. The knowledge about the irreducible representations of the alge-
bra is then also employed to construct for the case of N = 2 parties an explicit
continuously parameterized family of extremal correlation tables including the one
which maximizes the CHSH inequality.
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2. Preliminaries

We use the framework of C*- and von Neumann algebras to model quantum me-
chanics. The theory of C*-algebras corresponds to the abstract theory of closed
subalgebras of the set of bounded operators on a Hilbert space. These subalgebras
are thought of as being generated by the possible observables of the physical sys-
tem. An introduction to operator algebras from a physics perspective can be found
in [BR79, BR81]. For a nice mathematical introduction see for instance [Mur90]
while for further readings, we refer to the comprehensive series by Takesaki [Tak01,
Tak02a, Tak02b].
We start with a short introduction to C*-algebras. The aim is to give the basic

definitions and set the notation. Special emphasis is put on the Gelfand-Naimark-
Siegel construction (see Section 2.1.2), which is used to show the equivalence of the
abstract definition of a C*-algebra and norm closed subalgebras of the set of bounded
operators on a Hilbert space. Section 2.2 is devoted to the discussion of a special class
of C*-algebras, namely, the von Neumann algebras. These are obtained by closing
the C*-algebra with respect to taking expectation values in the sense of quantum
mechanics. Von Neumann algebras have more structure which turns out to be useful
in the following.

2.1. C*-Algebras

2.1.1. Basic Definitions.

This part aims to set the notation used in the following and to give a self-contained
introduction to C*-algebras. We refer to the first chapters in [BR79] for more details
and proves. A ∗-algebra A is an algebra over the field C with an involution ∗ satisfying
A∗∗ = A, (AB)∗ = B∗A∗, and (λA+B)∗ = λ̄A∗ +B∗ for any A,B ∈ A and λ ∈ C.
If a norm on a ∗-algebra A is defined for which A is complete, then A is called a
Banach ∗-algebra.

Definition 2.1.1. A Banach ∗-algebra A is called a C*-algebra if ‖AA∗‖ = ‖A‖2
for all A ∈ A. Moreover, if A contains the identity element 1 it is called unital.

From now on, we always assume that the C*-algebra is unital. Let H be a Hilbert
space and B(H) the bounded (or equivalently continuous) operators on H with re-
spect to the usual operator norm

‖A‖∞ = sup
ψ∈H

‖Aψ‖
‖ψ‖

(A ∈ B(H)) . (2.1)

In the following we omit the indication of the norm and simply write ‖A‖ instead of
‖A‖∞. It is easy to check that ‖AA∗‖ = ‖A‖2 and thus, B(H) is a C*-algebra. From
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this it follows that each norm closed ∗-subalgebra of B(H) is a C*-algebra. As we
discuss later the converse is also true, namely, that each C*-algebra is isomorphic to
a norm closed ∗-subalgebra of B(H) (see Theorem 2.1.4).
An element A in a C*-algebra A is called selfadjoint if A∗ = A and a subalgebra

Ã ⊂ A is called selfadjoint if it is closed under the involution. An important role
among the selfadjoint operators is played by the positive elements A ≥ 0 in A, which
are defined through the property that there exists an operator B ∈ A such that
A = B∗B. The set of all positive elements A+ defines a closed convex cone in A.
Recall that a cone C is defined as a set for which c ∈ C implies λc ∈ C for any λ ≥ 0.
We denote by A ≤ B the fact that B −A ≥ 0, which defines a partial order relation
in A. Note that every selfadjoint operator can be composed into A = A+−A− where
A+, A− are positive. Furthermore, each operator can be written as A = A1 + iA2

for A1, A2 selfadjoint operators. Hence, the complex linear span of the positive
operators forms the entire C*-algebra A.
In order to obtain the structure theorem for C*-algebras saying that they can be

represented as closed subalgebras of the set of all bounded operators on a suitable
Hilbert space, the concept of states on a C*-algebra is crucial. Let us consider the
dual space A∗ of A consisting of all continuous functional from A to C. An element
ω ∈ A∗ is called positive and denoted by ω ≥ 0 if ω(A) ≥ 0 for all A ≥ 0. We call
now ω ∈ A∗ a state if ω ≥ 0 and ω(1) = 1. The set of all states is denoted by S∗(A).
A state ω ∈ S∗(A) satisfies the Cauchy-Schwarz inequality, that is,

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) ∀A,B ∈ A. (2.2)

The positivity structure on A∗ also induces a partial ordering via ω ≥ σ if σ−ω ≥ 0.
A state ω is called pure if σ ≤ ω implies σ = λω for all σ ≥ 0. S∗(A) is then given
as the weak* closure of the convex envelope of all pure states in S∗(A).
A ∗-homomorphism is a linear map between two C*-algebras π : A1 → A2 such

that π(AB) = π(A)π(B) and π(A∗) = π(A)∗. A representation of a C*-algebra A
is a ∗-homomorphism into the set of bounded operators on a Hilbert space B(H).
A representation is always a contraction, that is, ‖π(A)‖ ≤ ‖A‖. This implies that
it is always continuous and that the image of A under a representation is always a
closed subalgebra of B(H). We call a representation faithful if it is injective, that is,
kerπ = {0}. It follows that a representation is faithful if and only if it is isometric.
A representation π of A is called nondegenerated if there exists no ψ ∈ H \ {0} such
that π(A)ψ = 0 for all A ∈ A. Each representation can be turned into a direct sum
of a nondegenerated and a trivial representation. A vector ψ ∈ H is called cyclic
for a set U ⊂ B(H) if {Aψ | A ∈ U} is dense in H. A triple (H, π, ψ) consisting
of a representation π of A on H and a vector ψ ∈ H which is cyclic for π(A)
is called a cyclic representation of A. Note that a cyclic representation is always
nondegenerated.

2.1.2. The GNS Representation

We are now going to show that for each C*-algebra A we can find a Hilbert space H
such that A is isomorphic to a closed subalgebra of B(H). The main tool will be the
Gelfand, Naimark and Segal (GNS) construction, which assigns to each state a cyclic
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representation. Since it provides a powerful method of obtaining representations and
is a widely established tool in operator theory, we give the detailed construction. The
main result is the following.

Theorem 2.1.2. Let A be a C*-algebra and ω ∈ S(A). Then there exists a cyclic
representation (H, π, ξω) of A such that ω(A) = 〈ξω |π(A)ξω 〉. Moreover, the repre-
sentation is unique up to unitary equivalences.

The proof is given by an explicit construction (see e.g., [BR79, Theorem 2.3.16]
or [Mur90, Chapter 3.4]).

Proof. Consider A as a vector space over C and define the sesquilinear and positive
semi-definite form 〈A |B 〉 = ω(A∗B). The set N = {C ∈ A | ω(C∗C) = 0} defines
a left-sided ideal in A, that is, AC ∈ N for all A ∈ A and C ∈ N . The quotient
H̃ = A/N is therefore well defined and forms together with 〈· |· 〉 a pre-Hilbert space.
By completion this space can be turned into a Hilbert space which we denote by H.
To avoid confusion, we denote by ψA the vector in H which corresponds to A ∈ A.
We define now the representation of A on the dense subspace H̃ via π(A)ψB = ψAB.
This operator is bounded on H̃ since

‖π(A)ψB‖ = ‖ψAB‖ = ω(B∗A∗AB) ≤ ‖A‖2ω(B∗B) = ‖A‖2‖ψB‖

for any A,B ∈ A. Hence, the closure of the operator π(A) on H defines a bounded
operator on H. The fact that π satisfies the requirement of a representation can be
checked by simple calculations on the dense subspace H̃. Finally, we define ξω = ψ1
and find that 〈ξω |π(A)ξω 〉 = ω(A). It is clear that ξω is cyclic for π(A).
It remains to show uniqueness. Let (H, π, ξω) and (H′, π′, ξ′ω) be two cyclic repre-

sentations of A. We define the linear map V on H̃ via V π(A)ξω = π′(A)ξ′ω. Since
for any A,B ∈ A

〈V π(A)ξω |V π(B)ξσ 〉 = 〈π′(A)ξ′ω |π′(B)ξ′ω 〉 = ω(A∗B) = 〈π(A)ξω |π(B)ξσ 〉 ,

we have that V defines a unitary map on a dense subspace on H. But this operator
can be unitarily extended to H.

We proceed by linking pure states with irreducible representations. Let H be an
arbitrary Hilbert space and S a subspace of B(H). A subspace V ⊂ H satisfying
SV ⊂ V is called invariant subspace of S. We call a set S irreducible if the only
invariant subspaces of S are H and {0}. A representation π of A on H is called
irreducible if π(A) is irreducible. The commutant S′ of S is defined as the set
S′ = {A ∈ B(H) | [A,B] = 0 ∀B ∈ S}. Note that the commutant forms a closed
subalgebra of B(H), that is a C*-algebra, which contains at least multiples of the
identity. An important result which connects the two notions is the following:S is
irreducible if and only if S′ consists just of multiple of the identity. A proof of this
statement can be found in [BR79, Proposition 2.3.8].

Proposition 2.1.3. Let A be a C*-algebra and ω ∈ S(A). Then, the GNS repre-
sentation (H, π, ξω) of ω is irreducible if and only if ω is pure.
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The proof (see [BR79, Theorem 2.3.19]) exploits the fact that for any state which
satisfies σ ≤ λω there exists a positive operator Hσ in π(A)′ such that σ(A) =
〈ξω |π(A)Hσξσ 〉 with ‖Hσ‖ ≤ 1. The operator hσ =

√
Hσ is also called the non-

commutative Radon-Nikodym derivative of σ with respect to ω and will be discussed
later.
Let us conclude this chapter with the structure theorem for C*-algebras.

Theorem 2.1.4. Every C*-algebra is isomorphic to a closed selfadjoint subalgebra
of bounded operators on a Hilbert space.

The proof follows by considering the direct sum representation over all possible
states on A. In order to show that the representation is faithful or equivalently
isometric one uses the fact that for each A ∈ A there exists a state ω such that
ω(A∗A) = ‖A‖2. The latter result is obtained via the Hahn-Banach theorem on
Banach spaces (see e.g., [BR79, Theorem 2.3.22A]). For a complete proof we refer
to [BR79, Theorem 2.1.10].

2.2. Von Neumann Algebras

Von Neumann algebras are selfadjoint ∗-subalgebras of B(H) which are closed under
quantum mechanical expectation values (see Section 3.1 for an introduction to quan-
tum mechanics). In mathematical terminology, this means that the ∗-subalgebra is
σ-weakly closed (see Definition 2.2.1 below). Historically, their investigation initial-
ized by von Neumann [vN29] started earlier than the one of general C*-algebras.
From a technical perspective, the importance of von Neumann algebras is due to the
fact that they contain the spectral projections of any selfadjoint operator of the alge-
bra. Since the algebra is spanned by the selfadjoint operators the information about
the spectral projections determines the algebra itself. Dependent on the properties
of these projections a factor of a von Neumann algebra is called of type I, II, III,
and each type is again further categorized into subtypes. Type In is the full algebra
of operators on a n-dimensional Hilbert space and I∞ corresponds to the full algebra
of operators on an infinite-dimensional Hilbert space. The type II factors are the
ones which admit a unique finite (type I1) or semifinite (type II∞) trace, but which
are not of type I. Type III factors contain no finite projection which are not equal
to the zero-projection. See [BR79, Tak01] for a detailed description of types of von
Neumann algebras.
In the following we review the basic definitions and provide the technicalities used

in the proceeding chapters. We start with the definition of a von Neumann algebra
and introduce the set of normal states. In a next section, we discuss the standard
form of a von Neumann algebra which allows to represent each normal state as a
vector state in a cone of a suitable Hilbert space. This provides a helpful tool to
prove several statements in Chapter 4. We conclude this section by introducing the
non-commutative Radon-Nikodym derivation.

2.2.1. Three Equivalent Definitions

There are three equivalent ways to define a von Neumann algebra. One is topological
in nature and the other two are more algebraical. We start by discussing various
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topologies on B(H) for a Hilbert space H. We denote by τ(H) the set of trace class
(also called nuclear) operators in B(H) for which the trace is finite. Furthermore,
we let K(H) be the set of compact operators. Note that both sets are ideals in B(H)
and that the relations K(H)∗ = τ(H) and τ(H)∗ = B(H) hold [RS78]. Here, S∗

stands for the dual space of S and should not be confused with the one used for
the involution. We introduce different locally convex topologies on B(H) induced by
different set of seminorms.

Definition 2.2.1. Let H be a Hilbert space.

• The locally convex topology on B(H) induced by the seminorms A 7→ | 〈ψ |Aψ 〉|
for ψ ∈ H is called the weak operator topology.

• The locally convex topology on B(H) induced by the seminorms A 7→ |η(A)| for
η ∈ τ(H) is called the σ-weak or weak* topology.

• The locally convex topology on B(H) induced by the seminorms A 7→ ‖Aψ‖ for
ψ ∈ H is called the strong operator topology.

• The locally convex topology on B(H) induced by the seminorms
A 7→

(∑∞
k=1 ‖Aψk‖2

)1/2 for ψk ∈ H such that
∑

k ‖ψk‖ < ∞ is called the
σ-strong topology.

Every convex subset C of B(H) has the following property: C is σ-weakly closed if
and only if it is σ-strongly closed. Furthermore, if Br(H) defines the ball of radius
r, then equivalent are C is σ-weakly closed, C ∩ Br(H) is weakly operator closed for
any r > 0, and C ∩ Br(H) is strongly operator closed for any r > 0.
We give now the algebraical definition of a von Neumann algebras and state their

equivalent topological characterization.

Definition 2.2.2. Let H be a Hilbert space. A von Neumann algebra M acting on
H is a ∗-subalgebraM⊂ B(H) which satisfiesM′′ =M.

In the following M denotes always a von Neumann algebra. It is easy to see
that if A ∈ M then also A+, A− and |A|. We call Z(M) = M∩M′ the center
of M and M a factor if Z(M) consists only of multiples of the identity. Each
von Neumann algebra can be decomposed into the direct some of factors [Tak01,
Chapter V, Theorem 1.19]. This is easily obtained by taking a maximal family {pi} of
orthogonal projections in the center ofM, for which one finds thatM =

⊕
i piMpi.

For any subset C ⊂ B(H) the commutant C′ is closed in all topologies defined in
Definition 2.2.1. Hence, a von Neumann algebra M is closed with respect to these
locally convex topologies. The converse is called the double commutant theorem.

Theorem 2.2.3. Let A be a nondegenerated, selfadjoint subalgebra of B(H). Then
we have that A is a von Neumann algebra, i.e., A′′ = A if and only if A is σ-weakly
closed.

The details as well as the proof can for instance be found in [BR79, Chapter 2.4.2]
or [Mur90, Chapter 4.1].
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The last definition is due to Sakai and can be stated in the category of C*-algebras.
A von Neumann algebraM is a C∗-algebra with the property that it is the dual space
of a Banach space. Due to historical reasons this is also called a W ∗-algebra. The
Banach space N (M) such that N (M)∗ = M, often denoted by M∗, is called the
predual of M. Let us consider for simplicity M = B(H) for a Hilbert space H.
Then, according to the discussion before, we know that N (M) = τ(H) the set of
trace class operators on H which is of course a Banach space as it is the dual space of
the compact operators. Furthermore, it consists exactly of the σ-weakly continuous
functionals onM. The same holds now for arbitrary von Neumann algebras. Namely,
the set N (M) is the set of all σ-weakly continuous functionals onM equipped with
the norm inherited fromM∗. According to the Hahn-Banach theorem it is also clear
that for each ω ∈ N (M) exists a ρ ∈ τ(H) such that

ωρ(x) = Tr(ρx) = ω(x) ∀x ∈M . (2.3)

The cone of positive elements in N (M) ⊂M∗ is denoted by N+(M) and elements
in N+(M) are called normal. It is worth to mention that ‖ω‖ = ω(1) for all ω ∈
N+(M). We call functionals ω ∈ N+(M) with the property ‖ω‖ ≤ 1 subnormalized
states and denote the set of all subnormalized states by S≤(M). Moreover, we say
that ω ∈ S≤(M) is a normalized state if ‖ω‖ = 1, and set S(M) = {ω ∈ S≤(M) :
‖ω‖ = 1}.1 Since each positive functional in N (M) admits a positive extension to
whole B(H), there exists for every ω ∈ S≤(M) a positive trace class operator ρ such
that (2.3) holds. Such an operator ρ is called a density matrix.
Given two commuting von Neumann algebras M and M̂ acting on the same

Hilbert space H, we define the von Neumann algebra generated by M and M̂ as
M∨ M̂ = (M∪ M̂)′′, whereM∪ M̂ = span{xy ; x ∈ M , y ∈ M̂}. According to
the bicommutant theorem [BR79, Lemma 2.4.11],M∨M̂ is just the σ-weak closure
ofM∪M̂.

2.2.2. The Standard Form of a von Neumann Algebra

The standard form a von Neumann algebraM refers to a uniquely defined faithful
representation π ofM on H for which a self-dual cone P ⊂ H exists which contains
for any normal state ω onM a vector representative in P, that is, a vector ξω ∈ P
with the property that

ω(a) = 〈ξω |aξω 〉

for all a ∈ M. It further admits a unitary involution J , that is, an anti linear
isometry with J2 = 1 which connectsM with its commutator via JMJ =M′ and
leaves the cone invariant, Jξ = ξ for all ξ ∈ P. Since the representation is faithful
we simply identified π(M) andM.

Definition 2.2.4. A standard form of a von Neumann algebraM is a tuple (H, π, J,P)
consisting of a Hilbert space H, a faithful representation π of M on H, an unitary
involution J , called modular conjugation, and a self-dual cone P ⊂ H satisfying (i)

1Note the ambiguity between the definitions of states for a C*-algebra and for a von Neumann
algebra. This is because we only consider normal states as physical relevant states for von
Neumann algebras.
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JMJ = M′, (ii) Jξ = ξ for all ξ ∈ P, (iii) aJaJP ⊂ P for all a ∈ M and (iv)
JaJ = a∗ for all a ∈ Z(M). Here, we identifiedM with π(M).

It holds that every von Neumann algebra exists a Standard form. This follows from
the fact that every von Neumann algebra M admits a faithful semi-finite normal
weight [Tak02a, Chapter VII, Theorem 2.7] and that the GNS construction with
respects to this weight generates a standard form of M. The modular conjugation
is obtained by identifying M with the von Neumann algebra generated by the left
Hilbert algebra associated to the faithful semi-finite normal weight. For further
readings see [Tak02a] or for the Tomita-Takesaki modular theory also [BR79].

2.2.3. Noncommutative Radon-Nikodym Derivative

A non-commutative Radon-Nikodym Derivative derivative is the generalization of
the concept of the Radon-Nikodym derivative from measure theory, which can be
interpreted as the theory of states and weights on abelian von Neumann algebras, to
non-commutative von Neumann algebras. Sakai proved in [Sak65] that for two nor-
mal positive functionals ω and σ on a von Neumann algebraM, where σ majorazes
ω (i.e., ω ≤ λσ for an appropriate λ ≥ 0) holds that there exists a t ≥ 0 inM with
ω(a) = σ(tat) for any a ∈M.
Let (πω,Hω, |ξω〉) and (πσ,Hσ, |ξσ〉) be cyclic representations ofM with ξω and ξσ

vector representatives of ω and σ. We then define the linear and bounded operator
D : Hσ → Hω via Dπσ(a)|ξσ〉 = πω|ξω〉. A straightforward computation shows that
Dπσ(a) = πω(a)D for all a ∈M. We further find that

‖D∗D‖ = sup
a∈M

〈πσ(a)ξσ |D∗Dπσ(a) ξσ 〉
〈πσ(a)ξσ |πσ(a) ξσ 〉

= sup
a∈M

ω(a∗a)

σ(a∗a)
.

Let us define the max-relative entropy of ω with respect to σ by

Dmax (ω ||σ) = inf {µ ∈ R : ω ≤ 2µ · σ} .

We then easily find that

log ‖D∗D‖ = Dmax (ω ||σ) . (2.4)

We call D the non-commutative Radon Nykodim derivative of ω with respect to σ.
Let us consider now a finite ensemble of normal positive functionals ωx ∈ N+(M)

enumerated x ∈ X where X denotes a finite alphabet. Assume that σ ∈ N+(ME)
such that ωxE ≤ σ for all x ∈ X and set further ω =

∑
x ω

x. We use the notation
above and let Dx and D be the non-commutative Radon Nykodim derivatives of ωx

and ω with respect to σ. It then follows that

〈πσ(a)ξσ |πσ(b)
∑
x∈X

D∗xDxξσ 〉 =
∑
x∈X
〈Dxξσ |πσ(a∗b)Dxξσ 〉 =

∑
x

ωxE(a∗b)

= ω(a∗b)

= 〈πσ(a)ξσ |πσ(b)D∗Dξτ 〉 ,
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for all a, b ∈M. Using that (πσ,Hσ, |ξσ〉) is cyclic we obtain

πσ(a)
∑
x∈X

D∗xDxξσ = πσ(a)D∗Dξσ , (2.5)

for any a ∈M.
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von Neumann Algebras

This chapter aims to discuss the language and techniques which are used while work-
ing with general von Neumann algebras instead of all bounded operators on a Hilbert
space. We assume that the reader is familiar with the standard Hilbert space formu-
lation of quantum mechanics and quantum information theory and place emphasis
on the peculiarities for von Neumann algebras. This section is of importance for
Chapter 4 where the smooth entropies are discussed.

3.1. The Formalism of Quantum Mechanics

With every physical system we associate a von Neumann algebraM⊂ B(H) which
contains the possible observables. An observable is given by a positive operator val-
ued measure (POVM), which consists of a measurable space (X,Σ) with σ-algebra
Σ defining the values of the possible outcomes together with a σ-additive function
E : Σ → M+ such that E(X) = 1. In the following the possible outcomes are
chosen such that X ⊂ Rn. We call an observable projective (or sharp) if the POVM
is a projective-valued measure. By spectral theory, every selfadjoint operator gives
rise to a projective observable. Since we consider general properties of a quantum
mechanical system, we do not specify which observables inM are physically relevant
meaning that they correspond to a property of the system which can be measured in
an experiment. We call an apparatus which measures the observalbe E a measure-
ment of the observable E.

The state of a physical system modeled on a von Neumann algebra M is given
by an element ω ∈ S(M), that is, a normal positive functional on M such that
ω(1) = 1. In the case of M = B(H), we also write S(H) instead of S(M) and
use the identification with density matrices ωρ(a) = Trρa (see Eq. (2.3)). If the
state of the system is ω, then the measurement distribution of the POVM E is given
by ω(dE(x)). We are mostly considering the case of a finite number of outcomes
X = {1, 2, ..., n} with the point measure in which an observable is given by a set of
positive operators E = {Ex} with

∑
xEx = 1. Then, the probability to measure

outcome x is ω(Ex). Let M act on H. We then call a state ωξ(a) = 〈ξ |aξ 〉 with
ξ ∈ H a vector state and denote it by |ξ〉. Note that in the case where M is not
B(H) the vector ξ ∈ H is not uniquely determined by ωξ and in general not pure.
Moreover, as seen in section 2.2.2, the standard form of a von Neumann algebraM
is such that every state is a vector state.

In the language of von Neumann algebras, evolutions are naturally defined in the
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Heisenberg picture. For example if one considers a quantum system with Hamil-
tonian H, we have that the spectral projections of H lies in M. Hence, the time
evolution operator U(t) = exp itH is inM and the map t 7→ U(t)AU(t)∗ for A ∈M
defines an endomorphism from M onto M. If the system is in interaction with its
environment and the interaction is not explicitly included in the model, the evolution
are described by completely positive, unital, linear maps between possibly different
von Neumann algebras E : MB → MA. Such a map is called a quantum channel
(see for instance [Dav76, Pau02] for more details).

Definition 3.1.1. Let A and B be unital C*-algebras. A map φ : A → B is called
unital if φ(1) = 1 and positive if φ(A+) ⊂ B+. The map φ is called completely
positive if the extension φ⊗ id : A⊗Mn → B ⊗Mn is positive for all n ∈ N. Here,
Mn denotes the matrix algebra B(Cn) and φ⊗ id(

∑
k ak ⊗ xk) =

∑
k φ(ak)⊗ xk.

Note that a unital positive map between C*-algebras is always a contraction
(i.e. ‖φ(A)‖ ≤ ‖A‖) and ‖φ‖ = ‖φ(1)‖ [Pau02, Cor 2.9].

3.2. Multipartite Systems and the Concept of Purification

Let us consider two physical systems denoted by A and B which are space like
separated. If such systems are modeled by von Neumann algebrasMA andMB on
the same Hilbert space, then they necessarily commute because of the non-signaling
principle. The composite system is then described by the von Neumann algebra
MAB = MA ∨MA. In the case where the two systems are modeled on different
Hilbert spaces HA and HB, we consider the natural embedding ofMA andMB into
B(HA ⊗HB) and describe the compostion again by MA ∨MB. This construction
is naturally generalized to more than two parties. We indicate the subsystems by
subscripts, that is, ωABC denotes a state on a multipartite systemMABC and ωAB
is the restriction of ωABC ontoMAB.
The concept of a purification is standard in quantum information theory [NC00].

The goal is to generalize the notion of a purification for systems described on a general
von Neumann algebra. If one considers a state ωA on a type I factorMA = B(HA),
one calls any vector state |φ〉 ∈ HA ⊗HB for suitable HB with restriction onto HA
equal to ωA a purification of ωA. Let us denote the state corresponding to |φ〉 by
ωAB. This extension has the property that it is a pure state on MA ∨MB where
MB = M′A = B(HB). A pure state has the property that any further extension is
uncorrelated [Tak02a, Section IV, Lemma 4.11]: if ω̃ ∈ S(M̃) withM ⊂ M̃ and ω̃
restricted toM is a pure state ω onM, then it follows that ω̃(xy) = ω̃(x)ω̃(y) for
all x ∈M and y ∈M′ ∩ M̃.
For a general von Neumann algebra it is not possible to find always an extension

of a state such that it can be understood as a pure state on a bipartite system
MA ∨ MB. This is only possible if the state is a factor state, that is, its GNS-
construction is a factor [Wor72]. In order to see this, let us consider a state ωA on
MA for which the GNS construction (H,Π, ξ) is not a factor. Denoting π(MA) again
byMA andMB =M′A, we consider the restriction of ωξ ontoMA∨MB denoted by
ωAB. Since this is also a GNS representation of ωAB and (MA ∨MB)′ is not trivial
because Z(MA) ⊂ (MA∨MB)′, Proposition 2.1.3 tells us that the state is not pure
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onMA ∨MB. Nevertheless ωξ defines a pure state on B(H). We therefore use the
following weaker definition of a purification, which still ensures that it contains the
maximal amount of correlations accessible by another space like separated party.

Definition 3.2.1. LetM be a von Neumann algebra and ω ∈ S≤(M). A purification
of ω is defined as a triple (π,H, |ξ〉), where π is a representation ofM on a Hilbert
space H, and ξ ∈ H is such that ω(x) = 〈ξ |π(x)ξ 〉 for all x ∈ M. Moreover,
we call π(M) the relevant and π(M)′ the complementary system of the purification
(π,H, |ξ〉).

We first note that by the GNS-construction, every state admits a purification.
Furthermore, that the notion coincides with the standard terminology for type I
von Neumann algebras. For simplicity, we say that ωA′B is a purification of ωA ∈
S≤(MA), if there exists a purification (π,H, |ξ〉) of ωA such that MA′ = π(MA),
MB = π(MA)′ and ωA′B(x) = 〈ξ |xξ 〉 for all x ∈ MA′B. As discussed before,
such a purification ωA′B is in general not a pure state onMA′B, although the vector
state ωξ(x) = 〈ξ |xξ 〉 on B(H) is. Another important property of a purification
(π,H, |ξ〉) of ωA ∈ S(MA) is that π is not required to be faithful on the entireMA

but only on the part ‘seen’ by the state ωA. This means thatMA is in general not
isomorphic to π(MA) and the systems cannot be identified, wherefore we denoted
π(MA) by A’ instead of A. Beside the mathematical convenience, this is justified
because a purification is just a theoretical construct without direct physical relevance,
and can therefore chosen to be state dependent.1 Recall also the standard form of
a von Neumann algebra introduced in Section 2.2.2, which says that there exists a
representation in which all states are purified.
A purification is of course not unique, but they are all connected by partial isome-

tries. This property will assure that the concept is compatible with the definition of
the entropies.

Lemma 3.2.2. Let M be a von Neumann algebra, ω ∈ S≤(M), and (πi,Hi, |ξi〉)
with i = 1, 2 two purifications of ω. Then there exists a partial isometry V : H1 →
H2 such that V |ξ1〉 = |ξ2〉 and V intertwines with the representations πi, that is,
V π1(x) = π2(x)V for all x ∈M.

Proof. We construct an explicit partial isometry V . Define V on {π1(x)|ξ1〉 : x ∈M}
via V π1(x)|ξ1〉 = π2(x)|ξ2〉. This defines V uniquely on the closed subspaceHω1 ⊂ H1

given by the closure of {π1(x)|ξ1〉 : x ∈ M}. On the orthogonal complement of Hω1 ,
we set V equal to zero. One can now verify that the constructed V satisfies the
required properties.

3.3. Classical-Quantum States

A classical system is described by a classical random variable X. For the sake of
simplicity, we restrict our attention to the case where the random variable can only

1In finite dimension, a purification is often chosen to be state dependent as well. Given a density
operator ρA on a Hilbert space HA, a purification of ρA is a rank one density operator ρA′B on
some Hilbert space HA′ ⊗HB , such that ρA′ = ρA. But note that |A| ≥ |A′| ≥ rank(ρA), and
not necessarily |A′| = |A|.
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takes values in a countable set which, for convenience, is also denoted by X. An
extension to continuous alphabets is given in Section 5.2.1. A classical random vari-
able X can be associated to the abelian von Neumann algebra of bounded complex
valued functions on X, denoted by `∞(X) = `∞(X,C). Elements λ in `∞(X) can
be represented as sequences (λx)x∈X with λx ∈ C, and the norm is the supremum
norm ‖λ‖∞ = supx |λx|. We often use the abbreviation `∞|X| for `

∞(X) justified by
the simple fact that `∞(X) is isomorphic to `∞(Y ) if X and Y have the same car-
dinality. The set of normal states on `∞(X) is formed by positive and absolutely
converging sequences (px) in `1(X) = `1|X| satisfying

∑
x px = 1. Hence, a state

defines a probability distribution of X. Henceforth, we usually use the symbols X,
Y , Z to denote classical systems.

A bipartite system consisting of a classical part X and a quantum part B, is then
described by the von Neumann algebraMXB = `∞|X| ⊗MB. This can be identified
with the set of sequences (ax)x∈X , ax ∈MB, equipped with the norm

‖(ax)‖`∞(MB) = sup
x∈X
‖ax‖MB

, (3.1)

denoted by `∞|X|(MB) or also `∞(X,MB). The set of normal functionals on `∞|X|⊗MB

is consequently `1|X| ⊗ N (MB). States on `∞|X| ⊗MB are called classical quantum
(cq-) states, and can be written as ωXB = (ωxB)x∈X , where ωxB ∈ S≤(MB) such
that ωXB(a) =

∑
x ω

x
B(ax) for all a = (ax) ∈ MXB. The norm inherited from

`1|X| ⊗N (MB) is then given by

‖(ωx)‖`1(N (MB)) =
∑
x∈X
‖ωx‖N (MB) . (3.2)

Note that `∞|X| ⊗MB can be identified with
⊕

x∈XMB, and that states can also
be written as ωXB = ⊕x∈XωxB. Hence, we can think of `∞|X|(MB) as embedded into
the quantum system M|X|(MB) as the algebra of diagonal matrices with entries in
MB. This allows us to embed classical systems into quantum systems described by a
matrix algebra. More concretely, let {|x〉}x∈X be an orthonormal basis which spans
the Hilbert space HX . We denote by ex the state which corresponds to the density
matrix |x〉〈x| and thus satisfies ex(|y〉〈y|) = δxy. We identify a classical quantum
state ωXB = (ωxB) with the state on B(HX)⊗MB given by∑

x

ex ⊗ ωxB (3.3)

which we also denote by ωXB. The operators (ax) of the classical quantum sys-
tems `∞|X|⊗MB are then consistently identified by

∑
|x〉〈x| ⊗ ax such that

∑
x ex⊗

ωxB(
∑
|x〉〈x| ⊗ ax) =

∑
x ω

x
B(ax).

Cq-states can be interpreted as post-measurement states, where the outcome is
treated as a random variable. Since we consider only measurements with finite
alphabets, the classical part of the resulting cq-state is finite. Let us assume that
we start with a bipartite state ωAB ∈ S(MAB) on which we perform a measurement
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on the system A represented by the observable {Ex}x∈X ⊂ MA. The normalized
post-measurement states onMB conditioned on the outcome x ∈ X, are described
by 1

ωxB(1)ω
x
B, where ω

x
B(a) = ωAB(Exa) for all a ∈ MB. Note that ωxB(1) is just

the probability to measure the outcome x. Hence, if we treat the outcome as a
random variable, the post-measurement state is the cq-state ωXB = (ωxB)x∈X . The
map ωAB 7→ (ωxB)x∈X describes a quantum channel fromMA to the classical output
space `∞|X|. Conversely, for any cq-state ωXB = (ωxB)x∈X on MXB, we can find a
state ωAB ∈ S(MA∨MB) with suitableMA and an observable {Ex} ⊂ MA, which
give rise to ωXB. The measurement operators Ex can for instance be chosen as
the non-commutative Radon-Nikodym derivative of ωxB with respect to

∑
x ω

x
B (see

Sectoin 2.2.3).

3.4. Distance Measures on the State Space

Distance measures on S(M) or S≤(M) are important tools to quantify how close
two different states are. The common distance measure on S(M) is the one induced
by the norm on S(M) via d(ω, η) = 1

2‖ω − η‖. For type I factors M = B(H)
it is usually referred to as the trace distance, since for any ρ, σ ∈ S(H) we get
‖ωρ − ωσ‖ = ‖ρ − σ‖1 = Tr|ρ − σ|. The advantage of this distance measure is its
operational interpretation as the success probability to distinguish the two states
with the optimal measurement.
The trace distance is often hard to compute and it is sometimes easier (especially

if one of the states is pure) to use the fidelity to quantify the closeness of states. The
fidelity or generalized transition probability was introduced and discussed for von
Neumann algebras by Bures in [Bur69]. We define the fidelity according to Uhlmann
[Uhl76] as

FM(ω, σ) = sup
π
| 〈ξπω |ξπσ 〉|2, (3.4)

where the supremum runs over all representations π ofM for which, simultaneously,
purifications |ξπω〉 and |ξπσ 〉 of ω and σ exists. In the sequel, the subscriptM denoting
the von Neumann algebra is omitted if it is clear from the context. Furthermore,
if M ⊂ B(H) and ω a vector state state on M represented by |ξω〉 ∈ H, we define
FM(|ξω〉, σ) = FM(ω, σ). If one chooses a particular representation π on H in which
ω, σ can be represented as vector states, and one takes arbitrary representatives
|ξω〉, |ξσ〉 ∈ H of them, the fidelity can be expressed as [Alb83]

F (ω, σ) = sup
U∈π(M)′

| 〈ξω |Uξσ 〉|2 , (3.5)

where the supremum is taken over unitaries U in π(M)′. Since the optimization can
be extended over the σ-weakly compact set of all U with ‖U‖ ≤ 1, and the map
U 7→ 〈ξω, Uξσ〉 is σ-weakly continuous, we know that the supremum is attained.
Note that the optimization over all unitaries in the commutant is equivalent to the
optimization over all possible purifications of σ in H. From this it follows that
FB(H)(|ψ〉, |φ〉) = |〈ψ|φ〉|2 for all |ψ〉, |φ〉 ∈ H. Another important property of the
fidelity is the monotonic behavior under a quantum channel E [Alb83]

F (ω, σ) ≤ F (E(ω), E(σ)) . (3.6)
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As a special case, we obtain that FM(ω, σ) ≥ FN (ω, σ) forM⊂ N .

Based on the fidelity one can define distance measures, like for instance the Bures
distance [Bur69] which is obtained via

inf
π
‖|ξ〉ω − |ξ〉σ‖ =

√
ω(1) + σ(1)− 2

√
F (ρ, ω)

where the infimum on the left hand side runs over all representation in which vector
states for ρ and ω exists. The obtained metric is known as the Bures distance.

Generalized Fidelity and Purified Distance. In the following we extend the con-
cept of the generalized fidelity as introduced for finite-dimensional Hilbert spaces
in [TCR10] to general von Neumann algebras. This quantity will then be used to
define another metric on S≤(M), which turns out to be suitable in the context of
smooth entropies. We start by introducing the concept of a projective embedding of
a von Neumann algebra. LetM,N be two von Neumann algebras. We say that N
admits a projective embedding ofM, denoted byMyN , if there exists a projector
p in N such that pNp is isomorphic to M.2 Note that this is equivalent to the
existence of a projector p in N and a faithful representation π of M into N such
that π(M) = (1 − p) ⊕ pNp. This concept allows us to interpret subnormalized
states as the result of an incomplete measurement. In particular, given ω ∈ S≤(M)
and MyN with M ∼= pNp, there exists an extended state ω̄ ∈ S(N ) such that
ω̄(pxp) = ω(x) for x ∈ N , where we identifiedM and pNp.3 We then interpret each
measurement in M as incomplete and complete it by adding the no event (1 − p),
which leads to the same results as considering the state ω onM. Based on the con-
cept of a projecting embedding, the generalized fidelity can now be defined similarly
as in the finite-dimensional case [TCR10].

Definition 3.4.1. Let M be a von Neumann algebra, and ω, σ ∈ S≤(M). The
generalized fidelity between σ and ω is defined as

FM(ω, σ) = sup
MyN

sup
ω̄,σ̄∈S(N )

FN (σ̄, ω̄) , (3.7)

where the second supremum runs over all extended normalized states on N such that
ω̄(p · p) on pNp ∼=M corresponds to ω and similarly for σ̄.

Due toMyM⊕C, the generalized fidelity can be simplified as follows [TCR10].

Lemma 3.4.2. LetM be a von Neumann algebra, and ω, σ ∈ S≤(M). Then

FM(ω, σ)
1
2 = FM̂(ω̂, σ̂)

1
2 = FM(ω, σ)

1
2 + (1− ω(1))

1
2 (1− σ(1))

1
2 , (3.8)

where M̂ =M⊕ C, ω̂ = ω ⊕ (1− ω(1)) and σ̂ = σ ⊕ (1− σ(1)).
2Note that if M ⊂ B(H) and V : H → H′ is an isometry, it follows that MyB(H′) with the
projector p = V V ∗ [TCR10].

3Choose for instance ω̄(x) = ω(pxp) + σ((1 − p)x(1 − p)) with σ ∈ S≤(N ) such that σ(1 − p) =
1− ω(p).
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Proof. The proof for finite-dimensional Hilbert spaces is given in [TCR10, Lemma 3].
Let N be such thatMyN with p the corresponding projector such thatM∼= pNp.
Furthermore let ω̄, σ̄ be extensions of ω, σ on N satisfying the required properties.
According to the definition of the fidelity we have that FN (ω̄, σ̄) = sup | 〈ξπω̄ |ξπσ̄ 〉|2,
where the supremum runs over all representations admitting a purification of ω̄, σ̄.
Now note that all such representations π are also representations of M, that ξπω =
π(p)ξπω̄ is a purification of ω, and that the same also holds for ξπσ = π(p)ξπσ̄ . We can
then use the Cauchy-Schwarz inequality to compute

| 〈ξπω̄ |ξπσ̄ 〉| = | 〈ξπω |ξπσ 〉|+ | 〈(1− p)ξπω̄ |(1− p)ξπσ̄ 〉|

≤ | 〈ξπω |ξπσ 〉|+
√
‖(1− p)ξπω̄‖‖(1− p)ξπσ̄‖

≤ | 〈ξπω |ξπσ 〉|+
√

(1− ω(1))(1− σ(1)) .

Since this holds for all π, we have that FN (ω̄, σ̄)
1
2 ≤ FM(ω, σ)

1
2 + (1 − ω(1))

1
2 (1 −

σ(1))
1
2 for all N such thatMyN and all suitable ω̄, σ̄ on N . Hence, we get

FM(ω, σ)
1
2 ≤ FM(ω, σ)

1
2 + (1− ω(1))

1
2 (1− σ(1))

1
2 .

Finally it is easy to check that the specific choice M̂ together with ω̂ and σ̂ achieves
equality.

The purified distance is defined as follows [TCR10].

Definition 3.4.3. Let M be a von Neumann algebra, and ω, σ ∈ S≤(M). The
purified distance between ω and σ is defined as4

PM(ω, σ) =
√

1−FM(ω, σ) . (3.9)

Like for the fidelity, we omit the indication of the von Neumann algebra whenever
it is clear from the context and write PM(ω, σ) = PM(|ξ〉, σ) if |ξ〉 is a purification
of ω. For P(ω, σ) ≤ ε we also use the notation ω ≈ε σ, and say that ω and σ are
ε-close. A detailed discussion of the properties of the purified distance can be found
in [TCR10]. Although their scope is restricted to finite-dimensional Hilbert spaces,
most of the properties follow in the same way for the more general setting of von
Neumann algebras. It is for instance easy to see that the purified distance defines a
metric on S≤(M). The following Lemma shows the equivalence to the norm distance
on N (M).

Lemma 3.4.4. LetM be a von Neumann algebra, and ω, σ ∈ S≤(M). Then

√
‖ω − σ‖+ |ω(1)− σ(1)| ≥ PM(σ, ω) ≥ 1

2

(
‖ω − σ‖+ |ω(1)− σ(1)|

)
. (3.10)

4The name purified distance comes from the finite-dimensional case, where the purified distance
between two states corresponds to the minimal trace norm between purifications. It is straight-
forward to see that the same result also holds in the case of a von Neumann algebra, namely,
PM(ω, σ) = 1

2
infπ ‖|ξπω〉〈ξπω | − |ξπσ 〉〈ξπσ |‖1, where the infimum runs over all representations ofM

in which ω and σ have a vector representation denoted by |ξπω〉 and |ξπσ 〉, respectively.
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Proof. The proof follows directly from the inequalities

1−
√
F (ω, σ) ≤ 1

2
‖ω − σ‖ ≤

√
1− F (ω, σ) .

shown in [Bur69] and [Uhl76]. See [TCR10] for more details.

An important property which follows directly from the way how the generalized
fidelity is defined, is the monotonicity under completely positive, contractions.

Lemma 3.4.5. LetM be a von Neumann algebra, ω, σ ∈ S≤(M), and E completely
positive contraction. Then

P(ω, σ) ≥ P(E∗(ω), E∗(σ)) . (3.11)

Proof. The proof in the finite-dimensional case can be found in Tomamichel09. It is
a direct consequence of the definition of the generalized fidelity and equation (3.6),
from which it follows that F(ω, σ) ≤ F(E(ω), E(σ)).

An important property of the purified distance is the following.

Lemma 3.4.6. Let ωAB ∈ S≤(MAB) and (π,H, |ξω〉) a purifications of ωAB with rel-
evant systemMAB and complementary systemMC . For any state σAB ∈ S≤(MAB)
there exists a purification (π,H, |ξσ〉) such that 5

P(σAC , ωAC) ≤ P(σAB, ωAB) , (3.12)

where σAC and ωAC denote the restriction of |ξσ〉 and |ξω〉 ontoMAC .

Proof. Let us assume that ωAB and σAB are normalized. Otherwise the same argu-
ment applies to ω̂AB and σ̂AB defined in Lemma 3.4.2. According to the definition
of the fidelity in Equation (3.4) there exists a purification (π,H, |ξσ〉) of σ such that
FMAB

(σAB, ωAB) = FB(H)(|ξσ〉, |ξω〉). Using the definition of the purified distance,
we obtain

PMAB
(σAB, ωAB) = PB(H)(|ξσ〉, |ξω〉) ≥ PMAC

(σAC , ωAC) , (3.13)

where we applied the monotonicity under quantum channels (3.11) in the last in-
equality.

5We can always assume that H is large enough that every state onMAB admits a purification.
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von Neumann Algebras

4.1. Introduction

The smooth conditional min- and max-entropies, Hε
min (A|B)ω and Hε

max (A|B)ω, for
finite-dimensional systems A and B were introduced in [Ren05, KRS09, TCR10].
Their importance stem mostly from their operational significance (see Section 1.3
for a discussion of the role of entropies in information theory). They are used to
characterize quantum information theoretic tasks in the non-asymptotic regime and
depend on a smoothing parameter ε which, in an operational sense, is related to
a failure probability or an allowed error. Such an error is due to the probabilistic
nature of the problem and is required to vanish if rates in the asymptotic limit are
considered.1 The ε-smooth min-entropy Hε

min (A|B)ω of a state ωAB is defined as
the maximization of the min-entropy (ε = 0) over states which are indistinguishable
from ωAB up to a probability of order ε.2 The same applies to the ε-smooth max-
entropy Hε

max (A|B)ω with the minimization of the ε = 0 case. The smooth min-
and max-entropy are connected via purification, that is, if ωABC is a pure state
then Hε

min (A|B)ω = −Hε
max (A|C)ω. This is called the duality relation. This feature

is shared with other entropic quantities, for instance the von Neumann entropy is
self-dual and α-Rényi entropies are dual for 1/α+ 1/β = 2 (see e.g., [CCYZ12]).
The conditional min-entropy of a classical quantum state has the intuitive and

useful interpretation of being the logarithm of the guessing probability [KRS09].
The max-entropy of a classical quantum state can be associated with the distance
to a secure key [KRS09]. The smooth entropies have been used to characterize
various problems in information theory like for instance data compression [RW04,
RW05, RR12], channel coding problems [DBWR10, Ber08, RWW06, MD09, BD10c,
WR12, RR11, HD11], and privacy amplification [Ren05, TSSR10]. Moreover, similar
quantities are used in entanglement theory [Dat09, BD10b, BD10a, BD11, BD09].
From the one-shot results, the asymptotic limit can be obtained via the asymptotic
equipartition property were the von Neumann entropy emerges [TCR09, Ren05] (c.f.
Section 4.5.3).
In the following sections, we define the smooth min- and max-entropies for states

ωAB, where the first system A is given by the von Neumann algebra of all operators
on a separable Hilbert space and the conditional system B is modeled by an arbi-
trary von Neumann algebra. This setting is sufficient for most of the operational
applications including the one given in Chapter 6. An extension of the smooth min-

1For a discussion of the information theory in the asymptotic limit see Section 1.3 and references
therein.

2This means that using the best possible measurements the succeed probability to distinguish the
two states is of order ε.
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and max-entropy to infinite-dimensional systems which is based on a more analyt-
ical approach is considered in [FAR11] (c.f. Section 4.5.2). Furthermore, we prove
that most of the properties known from the finite-dimensional setting as well as the
operational interpretations for smooth and non-smooth min- and max-entropies can
be extended to this more general setting.

4.2. Definition of Min- and Max-Entropy

In the following we consider multipartite systemsMABC =MA ∨MB ∨MC with
the restriction that system A is always a type I factor, that is,MA ' B(HA). Since
B(HA) is nuclear we can unambiguously write the system as the tensor product
MABC = B(HA)⊗MBC . The conditional min-entropy is defined similarly as in the
case of finite-dimensional Hilbert spaces [Ren05, KRS09].

Definition 4.2.1. Let MAB = B(HA) ⊗MB with MB a von Neumann algebra,
and ωAB ∈ S≤(MAB). The min-entropy of ωAB conditioned on B is defined as

Hmin (A|B)ω = − log inf
σB∈S(MB)

inf{λ | λ τA ⊗ σB ≥ ωAB} , (4.1)

where τA denotes the trace in HA, i.e. τA(x) = Tr(x) for all x ∈ B(HA).

The unconditional min-entropy is obtained for trivial side informationMB ' C.
If the state ωA on MA ' B(HA) can be written with the density operator ρA via
ωA(a) = TrρAa, then the unconditional min-entropy is given by the quantum Rényi
entropy of order ∞ [FAR11]

Hmin(A)ω = − log ‖ρA‖ , (4.2)

and thus determined by the largest eigenvalue of ρA. The unconditional min-entropy
is always positive and 0 if and only if ω is a pure state. Moreover, if HA is a
dA-dimensional Hilbert space then the maximal entropy is log dA and attained for
the maximally mixed state ρA = (1/dA)1A. This is in analogy to the von Neumann
entropy and expected by a reasonable entropy measure. If we assume for the moment
that MA ' MB ' B(H) with H a d-dimensional Hilbert space, then we find that
Hmin (A|B) = − log d is the minimal possible entropy and attained for the maximally
entangled state

|Ψ〉 =

d∑
k=1

|ak, bk〉 , (4.3)

where |ak〉 and |bk〉 are orthonormal bases of H.3 Hence, for d-dimensional systems
the range of the conditional min-entropy lies between − log d and log d.
The min-entropy can be rewritten in the more compact form

Hmin (A|B)ω = − log inf{σB(1), | τA ⊗ σB ≥ ωAB, σB ∈ S(MB) } . (4.4)

3Note that the same holds for the conditional von Neumann entropy
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by combining the two optimizations. Similar to the von Neumann entropy (see e.g.,
[OP93]), the min-entropy can be written in terms of a relative entropy, namely, the
relative max-entropy [Dat09]

Dmax (ω ||σ) = inf {µ ∈ R : ω ≤ 2µ · σ} . (4.5)

By means of the relative max-entropy the min-entropy simply reads

Hmin (A|B)ω = − inf
σB

Dmax (ω || τ ⊗ σB) .

We define the conditional max-entropy of a state ωAB onMAB as the dual of the
min-entropy [KRS09].4

Definition 4.2.2. Let MAB = B(HA) ⊗MB with MB a von Neumann algebra,
and ωAB ∈ S≤(MAB). The max-entropy of ωAB conditioned on B is defined as

Hmax (A|B)ω = −Hmin

(
A′|C

)
ω
, (4.6)

with ωA′B′C an arbitrary purification (π,K, |ξ〉) of ωAB with MA′B′ = π(MAB) the
relevant system such that MA′ ' B(HA′) for a suitable H′A, and MC = π(MA′B′)

′

the complementary system.

For the sake of simplicity, we often use a purification (π,K, |ξ〉) such that π(MA)
is isomorphic toMA and write againMA for π(MA). The next Lemma shows that
the conditional max-entropy is well defined, that is, independent of the choice of the
purification.

Lemma 4.2.3. Let MAB = B(HA) ⊗MB with MB a general von Neumann al-
gebra, ωAB ∈ S≤(MAB), and (πi,Ki, |ξi〉), i = 1, 2, two purifications of ωAB with
πi(MA) =MAi and complementary systemsMCi . Then it follows that

Hmin (A1|C1)ω1 = Hmin (A2|C2)ω2 , (4.7)

where ωiAiCi is the restricted state corresponding to |ξi〉.

Proof. The proof follows the same line of reasoning as the one given in [TCR10,
Lemma 13] for finite-dimensional Hilbert spaces. According to Lemma 3.2.2, we
know that there exists a partial isometry V : K1 → K2 with |ξ2〉 = V |ξ1〉 and
V π1(a) = π2(a)V for all a ∈MAB. Then it follows for all x ∈MA2 ⊗MC2 that

ω2
A2C2

(x) = 〈ξ2 |xξ2 〉 = 〈ξ1 |V ∗xV ξ1 〉 (4.8)

= ω1
A1C1

(V ∗xV ) , (4.9)

where we used in the last equality that V ∗xV ∈MA1 ⊗MC1 . This follows from the
fact that (MAi ⊗MCi)

′ = πi(MB) and for all |φ〉, |ψ〉 ∈ K1 and y ∈MB

〈φ |V ∗xV π1(y)ψ 〉 = 〈φ |V ∗xπ2(y)V ψ 〉 = 〈φ |V ∗π2(y)xV ψ 〉 = 〈φ |π1(y)V ∗xV ψ 〉 .

4The definition of the max-entropy here is different to the one used in [Ren05].
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From (4.8) we obtain that ω1
A1C1

≤ τA1⊗σC1 implies ω2
A2C2

≤ V (τA1⊗σC1)V ∗, where
we used the notation V (τA1⊗σC1)V ∗(x) = τA1⊗σC1(V ∗xV ) adopted from the density
matrix formalism. But since V commutes with π2(MA), it is of the form VA ⊗ VC
such that V (τA ⊗ σC1)V ∗ = VAτA1V

∗
A ⊗ VBσC1V

∗
B. Because of Ṽ σC1V

∗(1) ≤ σC1(1)
and VAτA1V

∗
A ≤ τA2 , we can conclude that Hmin (A1|C1)ω1 ≤ Hmin (A2|C2)ω2 . Since

the argument was symmetric, we get equality.

The unconditional max-entropy of a state ωA onMA ' B(HA) represented by the
density matrix ρA is shown to be equal to the quantum 1/2-Rényi entropy [FAR11]

Hmax(A)ω = 2 log Trρ
1
2 .

Hence, we obtain as for the min-entropy that the unconditional max-entropy is equal
to 0 for pure states and log dA for the maximally mixed state on a dA-dimensional
Hilbert space. Similar to the min- and von Neumann entropy follows that for d-
dimensional A and B systems the minimal conditional entropy is given by − log d
and attained for the maximally entangled state given in Equation (4.3).

4.3. Definition of Smooth Min- and Max-Entropies

The smooth entropies are obtained from the plain entropies by optimizing over a
set of states which are close to the relevant state. The basic idea of smoothing is
that in a single shot scenario a task can in general just be satisfied up to a small
failure probability. As discussed in Section 1.3, allowing to optimize the entropies
over states which cannot be distinguished up to a probability in the same order as
the failure probability results usually in a tighter characterization of the task. The
optimization is done over a set of states which are close in the purified distance (see
Definition 3.4.3).

Definition 4.3.1. Let M be a von Neumann algebra, ω ∈ S≤(M), and ε ≥ 0. We
define the smoothing set around ω as

BεM(ω) = {σ ∈ S≤(M) : PM(ω, σ) ≤ ε} . (4.10)

We usually omit the indication of the von Neumann algebra in the subscript of
the smoothing set whenever it is clear from the context.

Definition 4.3.2. Let MAB = B(HA) ⊗MB with MB a von Neumann algebra,
ωAB ∈ S≤(MAB) and ε ≥ 0. The ε-smooth min-entropy of ωAB conditioned on B is
defined as

Hε
min (A|B)ω = sup

ω̄AB∈Bε(ωAB)
Hmin (A|B)ω̄ , (4.11)

and the ε-smooth max-entropy of ωAB conditioned on B as

Hε
max (A|B)ω = inf

ω̄AB∈Bε(ωAB)
Hmax (A|B)ω̄ . (4.12)
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Note that the non-smoothed min- and max-entropy are retrieved for ε = 0. The
ball BεM(·) is chosen in such a way that the smooth conditional min-entropy is unaf-
fected by freedoms which could potentially stem from the non-uniqueness of purifica-
tions. This can be seen as the smooth analogue of Lemma 4.2.3, and is connected to
the fact that the smooth min-entropy is independent under a projective embedding
of the physical system into a larger one (see Section 3.4.

Lemma 4.3.3. Let MAB = B(HA) ⊗ MB with MB a von Neumann algebra,
ωAB ∈ S≤(MAB) and ε ≥ 0. Moreover, let (π1,K1, |ξ1〉) and (π2,K2, |ξ2〉) be two pu-
rifications of ωAB with relevant systemMAi = πi(MA) and complementary systems
MCi such thatMAi ' B(HAi). Then it follows that

Hε
min (A1|C1)ω1 = Hε

min (A2|C2)ω2 , (4.13)

where ωiAiCi is the restricted state corresponding to |ξi〉.

Proof. We use ideas from [TCR10] in which the analog for the finite-dimensional
case was proven. First, we observe that due to the symmetry of equation (4.13), it
is sufficient to show inequality in one direction. According to Lemma 3.2.2, we know
that there exists a partial isometry V : K1 → K2 with |ξ2〉 = V |ξ1〉 and V π1(a) =
π2(a)V for all a ∈MAB. Furthermore, we know from the proof of Lemma 4.2.3 that
for all σA1C1 ∈ S≤(MA1C1) the subnormalized state V σA1C1V

∗(x) = σA1C1(V ∗xV )
on MA2C2 satisfies Hmin (A1|C1)σ ≤ Hmin (A2|C2)V σV ∗ and V ω1

A1C1
V ∗ = ω2

A2C2
.

Hence,

Hε
min (A1|C1)ω1 = sup

σA1C1
∈Bε(ω1

A1C1
)

Hmin (A1|C1)ω

≤ sup
σA1C1

∈Bε(ω1
A1C1

)

Hmin (A2|C2)V σV ∗ ,

and the only thing which is left to prove is that V σA1C1V
∗ ∈ Bε(ω2

A2C2
) for all

σA1C1 ∈ Bε(ω1
A1C1

). But this is equivalent to show that

F(ω1
A1C1

, σA1C1) ≤ F(V ω1
A1C1

V ∗, V σA1C1V
∗) .

Let p = V V ∗ be the projector onto the image of V . Since pMA2C2p is a von
Neumann algebra and V ωA1C1V

∗, V σA1C1V
∗ have support projection p, we can use

Definition 3.4.1 to compute

FMA2C2
(V ω1

A1C1
V ∗, V σA1C1V

∗) = FpMA2C2
p(V ω

1
A1C1

V ∗, V σA1C1V
∗)

= sup
pMA2C2

p yN̂
sup
ω̄,σ̄

FN (ω̄, σ̄)

≥ FM̂A1C1
(ω̂1
A1C1

, σ̂A1C1)

= FMA1C1
(ω1
A1C1

, σA1C1) ,

where M̂A1C1 , ω̂1
A1C1

and σ̂A1C1 are as defined in Lemma 3.4.2. Note that the
inequality follows from pMA2C2p yM̂A1C1 via the isometry V ⊕ 1 and the fact that
ω̂1
A1C1

, σ̂A1C1 are valid extensions of V ω1
A1C1

V ∗, V σA1C1V
∗.
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Next we show that the duality relation also holds for the smooth min- and max-
entropies.

Proposition 4.3.4. Let MAB = B(HA) ⊗MB with MB a von Neumann algebra,
ωAB ∈ S≤(MAB), (π,K, |ξ〉) an arbitrary purification of ωAB with relevant system
π(MA) ' MA and complementary system MC = π(MAB)′, and ε ≥ 0. Then it
follows that

Hε
max (A|B)ω = −Hε

min (A|C)ω . (4.14)

Proof. The ideas for the proof are adapted from [TCR10]. Because of Lemma 4.3.3
we can assume that π together with K is a standard form of M such that each
state inMAB admits a purification in K. According to the definitions of the smooth
entropies, we have to show that

sup
σAB∈Bε(ωAB)

Hmin (A|C)|ξσ〉 = sup
ηAC∈Bε(ωAC)

Hmin (A|C)η , (4.15)

where |ξσ〉 ∈ K is a purification of σAB. From Lemma 4.2.3, we know that the min-
entropy does not depend on the particular choice of the purification |ξσ〉. We can
therefore choose |ξσ〉 such that FMAB

(ωAB, σAB) = FB(H)(|ξ〉, |ξσ〉) and thus,

PMAB
(ωAB, σAB) = PB(H)(|ξ〉, |ξσ〉) ≥ PMAC

(|ξ〉, |ξσ〉) ,

from which ‘≤ ’ in (4.15) follows. In order to prove inequality in the other direc-
tion, we observe that there exists a von Neumann algebra N ⊂ B(K̃) such that
MABC yN and each state ηAC has a purification ξη in K̃.5 Let p be the projector
such thatMABC is isomorphic to pNp and identify pK̃ with K. Hence, we can find
a purification |ξ〉 of ωAB in K̃ with p|ξ〉 = |ξ〉. Moreover, we know that for all ηAC
exists a |ξη〉 ∈ K̃ with PMAC

(ηAC , ωAC) = PB(K̃)(|ξ〉, |ξη〉). It therefore follows that

sup
ηAC∈Bε(ωAC)

Hmin (A|C)η = sup
‖|χ〉‖≤1,PB(K̃)(|ξ〉,|χ〉)≤ε

Hmin (A|C)|χ〉

= sup
‖|χ〉‖≤1,PB(K̃)(|ξ〉,|χ〉)≤ε

Hmin (A|C)p|χ〉 ,

where the last equality is due toMABC
∼= pNp, and therefore |χ〉 and p|χ〉 induce

the same states on MABC . Since PB(K̃)(|ξ〉, |χ〉) ≥ PMAB
(|ξ〉, |χ〉) and each ηAB

admits a purification in K, we find ‘≥ ’ in (4.15).

4.4. Smooth Min- and Max-Entropies of
Classical-Quantum States

As discussed in Section 3.3, we model a classical-quantum system with classical
degrees of freedom described by a countable set X correlated with an arbitrary

5We can choose the standard form to be K = H⊗2
X ⊗H

φ
B with HφB ,M

φ
B a standard form ofMB

and H⊗2
X = HX ⊗HX . We then have that the complementary system isMC = HX ⊗ (Mφ

B)′.
Hence, we can choose K̃ = H⊗4

X ⊗H
φ
B and N = B(H⊗4

X )⊗Mφ
B ∨ (Mφ

B)′.
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system MB by the von Neumann algebra `∞(X) ⊗MB.6 Let us denote by HX
a Hilbert space spanned by a orthonormal basis {|x〉}x∈X . We can then embed
`∞(X) ⊗MB into B(HX) ⊗MB in such a way that a state ωXB = (ωxB) can be
identified by

ωXB =
∑
x

ex ⊗ ωxB (4.16)

where ex is the pure state corresponding to the density matrix |x〉〈x| (see Sec-
tion 3.3). The state ωXB can therefore be seen as a state on B(HX) ⊗MB and
Definitions 4.2.1, 4.2.2 and 4.3.2 of the non-smooth and smooth min- and max-
entropies apply.
Using this embedding and Definition 4.3.2 of the smooth min- and max-entropy,

we optimize the min- and max-entropy over states in S(B(HX) ⊗MB) which are
ε-close to ωXB. This includes states which are not in S≤(`∞(X) ⊗MB) and are
therefore not conform with the considered system. But as shown in the following,
there exists always a classical quantum state which attains the optimum in the
definitions of the smooth min- and max-entropy. Hence, the smoothing formalism is
compatible with the embedding of a classical system `(X)⊗MB into the quantum
system B(HX)⊗MB.

Lemma 4.4.1. LetMB be a von Neumann algebras, X a countable set, and ωXB ∈
S≤(`∞(X)⊗MB). Then, it holds that

Hε
min (X|B)ω = sup

ω̄XB∈Bεcq(ωXB)
Hmin (X|B)ω̄

Hε
max (X|B)ω = inf

ω̄XB∈Bεcq(ωXB)
Hmax (X|B)ω̄ ,

where Bεcq(ωXB) := {σXB ∈ S≤(`∞(X)⊗MB)| P(ωXB, σXB) ≤ ε}.

Proof. The proof can be carried over from the finite-dimensional case, where it was
discussed in [Ren05, Remark 3.2.4] for the min-entropy, and in [RR12, Lemma 3]
for the max-entropy. For the sake of completeness, we sketch the idea. Let HX be
the closure of the span of the orthonormal bases {|x〉}x∈X and let E : `∞(X) →
B(HX) be the quantum channel which embeds `∞(X) into the diagonal algebra with
respect to this basis. For an arbitrary ω̄XB ∈ BεM|X|⊗MB

(ωXB), it then follows from
equation (3.11) that E ⊗ id(ω̄XB) ∈ Bεcq(ωXB), and a straightforward calculation
shows that Hmin (X|B)ω̄ ≤ Hmin (X|B)E⊗id(ω̄). This proves the part for the min-
entropy.
For the max-entropy, we take a purification {|ξ〉, π,H} of ω̄XB on a Hilbert space
H = H⊗2

X ⊗ HB, where MB acts on HB and the complementary system of MXB

is given by MX′C = B(HX) ⊗ π(MB). By the duality between the min- and
max-entropy, it is sufficient to show that Hmin (X|X ′C)ω̄ ≤ Hmin (X|X ′C)EXX′⊗id(ω̄)

for EXX′ the projection onto the subspace given by PXX′ =
∑

x∈X |x〉〈x| ⊗ |x〉〈x|,
while the cq-state given by the restriction of EXX′ ⊗ id(ω̄XBC) ontoMXB is still in
BεM|X|⊗MB

(ωXB). But this follows in complete analogy to [RR12, Lemma 3].

6Note that sinceMB is an arbitrary von Neumann algebra it can also be an abelian one describing
a classical system.
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In the following we indicate classical systems by capital letters X, Y and Z in
contrast to quantum systems A, B and C. But this notation can lead to some
ambiguity. Consider the max-entropy of a classical quantum state ωXB defined via
its purification which can be without loss of generality chosen to be a vector state in
the Hilbert space HX⊗HX′⊗HB⊗HB′ where HX′ (HB′) is isomorphic to HX (HB)
and HB is the Hilbert space of a standard form ofMB. Denoting the purification by
ωXX′BB′ , we can write Hmax (X|B)ω = Hmin (X|X ′B′)ω. But by a simple calculation
one can convince oneself that the state ωXX′B′ is in general not a classical quantum
state on B(HX)⊗MX′B′ and cannot be written as a sequence (ωX′B′)x∈X . Hence, in
spite of Hmax (X|B)ω being the entropy of a classical quantum state, Hmin (X|X ′B′)ω
is not.

4.5. Properties of Smooth Min- and Max-Entropies

This section is aimed to list the most important properties of the smooth and non-
smooth min- and max-entropies which are needed in the proceeding chapters. Note
that all the properties which hold for the smooth min- and max-entropies also hold
for the non-smoothed ones, by setting the smoothing parameter ε = 0. Most of the
results were first proven in the context of finite-dimensional Hilbert spaces. For a
more comprehensive discussion of properties of the smooth min- and max-entropy in
the finite-dimensional setting we refer to [Tom12].

4.5.1. Data Processing Inequality

An important property of the smooth min- and max-entropy is, that local operations
on the conditional system B can never decrease the uncertainty about the system A.
This is called the data processing inequality, and is shown for the finite-dimensional
case in [TCR10].

Proposition 4.5.1. LetMA ' B(HA), MB and MC von Neumann algebras, ωAB ∈
S≤(MAB), E :MC →MB a quantum channel, and ε ≥ 0. Then, it follows that

Hε
min (A|B)ω ≤ Hε

min (A|C)idA⊗E∗(ω) (4.17)
Hε

max (A|B)ω ≤ Hε
max (A|C)idA⊗E∗(ω) . (4.18)

Proof. The proof is based on the same ideas as the one for finite-dimensional Hilbert
spaces [TCR10]. We first consider the case for the conditional min-entropy for
ε = 0. Because E is completely positive, we have that ωAB ≤ τA ⊗ σB implies
idA⊗E∗(ωAB) ≤ τA⊗E∗(σB). Furthermore, since E is unital, we find that E∗(σB) ∈
S≤(MC) whenever σB ∈ S≤(MC). Together with the definition of the conditional
min-entropy, the inequality follows. For ε > 0, the inequality follows straightfor-
wardly by using the fact that the purified distance is monotonically decreasing under
quantum channels (3.11). Now we lift the property from the smooth conditional
min- to the smooth conditional max-entropy via the duality. For that we take a
purification (H, π, |ξ〉) of ωAB on H = HA ⊗HA′ ⊗HB with HA′ isomorphic to HA
such that π(MA) = B(HA) and π(MB) ⊂ B(HB). We remark that the concatena-
tion Ê = π ◦ E is a completely positive, unital map fromMC onto π(MB). Due to
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Stinespring’s dilation theorem [Pau02], there exists a Hilbert space HC = HR⊕HB,
a representation πE of MC on HC , and an isometry V : HB → HC such that
Ê(a) = V ∗πE(a)V for all a ∈MC . Hence, for all y ∈MAC

[idA⊗E∗(ωAB)](y) = ωAB(idA⊗E(y)) = 〈ξ |(1AA′ ⊗V ∗)(idA⊗πE)(y)(1AA′ ⊗V )ξ 〉 ,

which implies that (H, πE ,1AA′ ⊗ V |ξ〉) is a purification of idA ⊗ E∗(ωAB). If we
denote MB′ = π(MB)′, MC′ = πE(MC) and MV (C′) = V ∗πE(MC)′V , we obtain
from V ∗πE(MC)V ⊂ MB thatMB′ ⊂ MV (C′). Because the map x → V ∗xV from
MC′ into V (MC′) is unital and completely positive, the restriction on a subalgebra
is a quantum channel and 1⊗ V ∗V |ξ〉 = |ξ〉, we obtain via the duality

Hε
max (A|C)idA⊗E∗(ω) = −Hε

min

(
A|A′C ′

)
1⊗V |ξ〉 ≥ Hε

min

(
A|A′V (C ′)

)
|ξ〉

≥ −Hε
min

(
A|A′B′

)
|ξ〉 = Hε

max (A|B)ω .

A special case of the data processing inequality is obtained if one considers restric-
tions onto subsystems. In particular, for von Neumann algebrasMC ⊂MB the in-
equality yields Hε

min (A|B)ω ≤ Hε
min (A|C)ω, as well as Hε

max (A|B)ω ≤ Hε
max (A|C)ω.

Hence, we get the chain of inequalities

Hε
min(A)ω ≥ Hε

min (A|B)ω ≥ Hε
min (A|BC)ω = −Hε

max(A)ω ,

for ωABC being a purification of ωAB ∈ S≤(MAB). The same applies to the max-
entropy and we find that

Hε
max(A)ω ≥ Hε

max (A|B)ω ≥ −Hε
min(A)ω .

Recall that the non-smooth unconditional min-entropy Hmin(A)ω corresponds to the
quantum ∞-Rényi entropy, that is, if ρω is the corresponding density matrix of ω,
then Hmin(A)ω = − log ‖ρω‖. The non-smooth max-entropy is given by the quantum
1/2-Rényi entropy Hmax(A)ω = 2 log Trρ

1
2 . Hence, we can conclude that for ε > 0

the smooth entropies are always finite. This is due to the fact that we can always find
a state ω̄ with finite-dimensional support projection which is ε close in the purified
distance to ω, and for such a state the max-entropy is finite.7 This is not true for
ε = 0, because density matrices ρ exist for which Trρ

1
2 is infinite.

4.5.2. Finite-Dimensional Approximation for Type I Factors

Let us consider the case whereMAB = B(HA)⊗B(HB) with HA and HB separable
Hilbert spaces. A convenient way to transport properties from finite-dimensional
to infinite-dimensional Hilbert spaces is by using finite-dimensional approximations.
Such a tool was developed in [FAR11] for the min- and max-entropies. Since we
consider the full algebra of bounded operators on a Hilbert space, we can work with
density matrices ρAB ∈ S(HA ⊗HB).

7Note that the unconditional min-entropy is always finite.
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Theorem 4.5.2. Let (PAk )k ⊂ B(HA) and (PBk )k ⊂ B(HB) be two sequences of
projectors which converge in the weak operator topology to the identity, and set Pk =
PAk ⊗ PBk . For any density matrix ρ ∈ S(HA ⊗HB) holds that

Hmin(A|B)ρ = lim
k→∞

Hmin(A|B)PkρPk (4.19)

Hmax(A|B)ρ = lim
k→∞

Hmax(A|B)PkρPk . (4.20)

For a prove of this result and further details we refer to [FAR11].

4.5.3. The Quantum Asymptotic Equipartition Property

As discussed in Section 1.3 the von Neumann entropy characterizes most of the quan-
tum and classical information theoretic tasks in the asymptotic limit. We thus want
that in this limit the smooth min- and max-entropy approach the von Neumann
entropy. Recall that the asymptotic limit is the error free case in the limit of infinite
repetition of an i.i.d. resource. Hence, we expect that the limit n→∞ followed by
the limit ε → 0 of 1

nHε
min(An|Bn)ω⊗n and 1

nHε
max(An|Bn)ω⊗n is equal to H(A|B)ω.

This was shown for classical and finite-dimensional systems in [Ren05, TCR09] and
shows a necessary property expected from a one-shot counterpart of the von Neu-
mann entropy. We address now the question if this can be extended to an infinite-
dimensional setting and find under an affirmative answer under certain constraints.
For a more general case, we find only inequality in one direction, but which nev-
ertheless, turns out to be the relevant for applications in quantum key distribution
(c.f. Section 6.3.2).
In the following we do not consider general von Neumann algebras but restrict

ourselves to the case where the systems are type I factorsMAB = B(HA)⊗B(HB).
This allows us to work unambiguously with density matrices. The conditional von
Neumann entropy is now defined via the relative entropy [Kle31, Lin73, Lin74, HS10],
given for ρ, σ ∈ S≤(H) as

H(ρ‖σ) :=
∑
jk

|〈aj |bk〉|2(aj log aj − aj log bk + bk − aj) , (4.21)

where {|aj〉}j is an arbitrary orthonormal eigenbasis of ρ with corresponding eigen-
values aj , and analogously for {|bk〉}k, bk, and σ. The relative entropy is always
positive, possibly +∞, and equal to 0 if and only if ρ = σ [Lin73]. For states ρAB
with H(A)ρ < +∞, the conditional von Neumann entropy is defined to be [Kuz11]

H(A|B)ρ := H(A)ρ −H(ρAB‖ρA ⊗ ρB). (4.22)

Note that under the same conditions as in Theorem 4.5.2, the conditional von Neu-
mann entropy can similarly be approximated by means of finite-dimensional trunca-
tions [Kuz11]. In particular, for any density operator ρAB ∈ S(HA ⊗HB) satisfying
H(A)ρ <∞ holds that

lim
k→∞

H(A|B)PkρPk = H(A|B) (4.23)
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for any sequence of projectors of the form Pk = PAk ⊗ PBk converging in the weak
operator topology to the identity. Using this result the ordering

Hmin (A|B)ρ ≤ H(A|B)ρ ≤ Hmax (A|B)ρ (4.24)

follows directly from the finite-dimensional case [TCR09].

Theorem 4.5.3. Let ρ ∈ S≤(HA⊗HB) be such that H(A)ρ <∞. For any ε > 0, it
follows that

1

n
Hεmin(An|Bn)ρ⊗n ≥ H(A|B)ρ −

1√
n

4 log(η)

√
log

2

ε2
, (4.25)

and
1

n
Hεmax(An|Bn)ρ⊗n ≤ H(A|B)ρ +

1√
n

4 log(η)

√
log

2

ε2
. (4.26)

for n ≥ (8/5) log(2/ε2), and η = 2−
1
2

Hmin(A|B)ρ + 2
1
2

Hmax(A|B)ρ + 1. Here An and Bn

denotes the n-fold copy of the A and B system.

Let us fix some notation before we prove Theorem 4.5.3. In all what follows {PAk }
and {PBk } denote sequences of projectors which converge in the weak operator topol-
ogy to the identity. Note that this also implies that (PAk )⊗n and (PBk )⊗n converge
weakly operator to the identity. For any state ρAB ∈ S(HAB) we define the normal-
ized sequence of states

ρ̂kAB :=
1

qk
PAk ⊗ PBk ρABPAk ⊗ PBk , (4.27)

where qk = Tr(PAk ⊗ PBk ρABPAk ⊗ PBk ). As shown in [FAR11], the approximation
as given in Theorem 4.5.2 also holds for the sequence ρ̂kAB. We need the following
Lemma to prove Theorem 4.5.3.

Lemma 4.5.4. Let ρAB ∈ S(HA⊗HB) and ρ̂kAB as defined in Equation (4.27). For
any fixed 1 > t > 0, there exists a k0 ∈ N such that

Hε
min (A|B)ρ ≥ Htεmin(A|B)ρ̂k , ∀k ≥ k0. (4.28)

Proof. In the following let t ∈ (0, 1) be fixed. According to the definition of the
smooth min-entropy in Equation (4.11), it is enough to show that Btε(ρ̂kAB) ⊆
Bε(ρAB) for all k ≥ k0. Note that the purified distance is compatible with trace
norm convergence, i.e., ‖ρAB − ρ̂kAB‖1 → 0 implies that P (ρ̂kAB, ρAB) → 0. Hence,
there exists a k0 such that P (ρ̂kAB, ρAB) < (1 − t)ε for all k ≥ k0. For k ≥ k0 and
ρ̃AB ∈ Btε(ρ̂kAB), we therefore find P (ρ̃AB, ρAB) ≤ P (ρ̃AB, ρ̂

k
AB) + P (ρ̂kAB, ρAB) < ε,

such that ρ̃AB ∈ Bε(ρAB).

Proof. (Theorem 4.5.3) Let ρ̂kAB be again defined as in Equation (4.27). If we fix
1 > t > 0 and n ∈ N, it follows by Lemma 4.5.4 that we can find a k0 ∈ N such that
Hεmin(An|Bn)ρ⊗n ≥ Hεmin(An|Bn)(ρ̂k)⊗n for every k ≥ k0. Since Equation (4.25) is
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valid for the finite-dimensional case [TCR09], we can apply it to Hεmin(An|Bn)(ρ̂k)⊗n

to obtain

1

n
Hεmin(An|Bn)(ρ̂k)⊗n ≥ H(A|B)ρ̂k −

1√
n

4 log(ηk)

√
log

2

(tε)2

for any n ≥ (8/5) log(2/(tε)2), and ηk = 2
− 1

2
Hmin(A|B)

ρ̂k + 2
1
2
Hmax(A|B)

ρ̂k + 1. Hence,
we find that

1

n
Hεmin(An|Bn)ρ⊗n ≥ H(A|B)ρ̂k −

1√
n

4 log(ηk)

√
log

2

(tε)2
(4.29)

for all k ≥ k0. Since the left hand side of Equation (4.29) is independent of k we can
use (4.23) and Proposition 4.5.2, to find

1

n
Hεmin(An|Bn)ρ⊗n ≥ lim

k→∞

{
H(A|B)ρ̂k −

1√
n

4 log(ηk)

√
log

2

(tε)2

}
= H(A|B)ρ −

1√
n

4 log(η)

√
log

2

(tε)2
.

We finally take the limit t → 1 in the above inequality, as well as in the condition
n ≥ (8/5) log(2/(tε)2) to obtain the first part of the proposition.

For the second part we use the duality of the conditional von Neumann entropy,
i.e., H(A|B)ρ = −H(A|C)ρ for a purification ρABC [Kuz11]. This, together with the
duality relation for smooth min- and max-entropy (4.14) yields (4.26).

If the Hilbert space HA of the first system is finite-dimensional, we obtain the
whole quantum asymptotic equipartition property for the min- and max-entropy.

Corollary 4.5.5. Let HA be a finite-dimensional and HB a separable Hilbert space.
Then, for any density operator ρAB ∈ S(HA ⊗HB) follows that

lim
ε→0

lim
n→∞

1

n
Hεmin(An|Bn)ρ⊗n = H(A|B)ρ (4.30)

and
lim
ε→0

lim
n→∞

1

n
Hεmax(An|Bn)ρ⊗n = H(A|B)ρ . (4.31)

This statement follows simply from a continuity argument for the conditional von
Neumann entropy.

Proof. Let ε > 0 be sufficiently small, ρ̂kAB be defined as in Equation (4.27) and
σAB ∈ Bε(ρAB). Furthermore, we set σkAB = PAk ⊗ PBk σABPAk ⊗ PBk and σ̂kAB =
(1/TrσkAB)σkAB. By using Hmin(A|B)σk = Hmin(A|B)σ̂k + log TrσkAB and the re-
lation (4.24), we find Hmin(A|B)σk ≤ H(A|B)σ̂k . Since H(A|B)σ̂k is effectively
finite-dimensional, we can use Fannes’ inequality [AF04] to obtain (for k sufficiently
large) H(A|B)σ̂k ≤ H(A|B)ρ̂k + 4∆k log dA + 4Hbin(∆k), with dA = dim(HA),
∆k = ‖ρ̂kAB − σ̂kAB‖1, and Hbin(t) = −t log t− (1− t) log(1− t). Due to the general
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relation ‖ρ−σ‖1 ≤ 2P (ρ, σ) (see Lemma 6 in [TCR10]), we have ‖ρAB−σAB‖1 ≤ 2ε
for all σAB ∈ Bε(ρAB), which yields limk→∞∆k = ‖ρAB − σ̂AB‖1 ≤ 4ε, where
σ̂AB = σAB/Tr(σAB). Combined with (4.23) this leads to

Hε
min (A|B)ρ = sup

σAB∈Bε(ρAB)
lim
k→∞

Hmin(A|B)σk (4.32)

≤ H(A|B)ρ + 16ε log dA + 4Hbin(4ε) (4.33)

Applied to an n-fold tensor product we thus obtain

1

n
Hε

min(ρ⊗nAB|B
n) ≤ H(ρAB|B) + 16ε log dA +

4

n
Hbin(4ε) . (4.34)

Equation (4.30) follows by combining (4.34) with the lower bound in (4.25), taking
the limits n→∞ and ε→ 0. Equation (4.31) follows directly by the duality of the
conditional von Neumann entropy [Kuz11] together with the duality of the smooth
min- and max-entropy (4.14).

4.5.4. Chain Rules and Bounds for Smooth Entropies

The following properties are needed in Section 4.9 and 6.2.2. We start with a simple
chain rule for the smooth min-entropy.

Lemma 4.5.6. LetMABC = B(HA)⊗ B(HB)⊗MC withMC a general von Neu-
mann algebra and dimHB = n finite, and ωABC ∈ S(MABC). Then it follows
that

Hε
min(AB|C)ω ≤ Hε

min(A|BC)ω + log(n) .

For the sake of completeness we give a proof of the statement, although it is similar
to the one in the finite-dimensional case [RR12, Lemma 5].

Proof. For any δ1 > 0, there exists ω̄ABC ∈ Bε(ωABC) such that Hε
min(AB|C)ω ≤

Hmin(AB|C)ω̄ + δ1, and for any δ2 > 0, there exists σC ∈ S(MC) such that
Hmin(AB|C)ω̄ ≤ −Dmax(ωABC‖τAB⊗σC), where τAB denotes the trace onMm⊗Mn.
Now we calculate

Hε
min(A|BC)ω + log(n) ≥ Hmin(A|BC)ω̄ + log(n)

≥ −Dmax(ω̄ABC‖τA ⊗
τB
n
⊗ σC) + log(n)

= −Dmax(ω̄ABC‖τAB ⊗ σC) ≥ Hmin(AB|C)ω̄ − δ2

≥ Hε
min(AB|C)ω − δ1 − δ2 ,

and since that holds for any δ1, δ2 > 0, the claim follows.

Next we show that discarding classical information can only decrease the min-
entropy.

Lemma 4.5.7. LetMAXB = B(HA)⊗ `∞(X)⊗MB withMB a general von Neu-
mann algebra, X a set of finite cardinality |X|, and ωAXB ∈ S≤(MAXB). Then it
follows that

Hε
min (AX|B)ω ≥ Hε

min (A|B)ω . (4.35)
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4. Smooth Min- and Max-Entropies on von Neumann Algebras

Proof. For ε = 0, the proof from [Ren05, Lemma 3.1.9] is also valid for von Neumann
algebras. For ε > 0, we proceed as follows. For all δ > 0, there exists a cq-
state ω̄AB ∈ Bε(ωXB) such that Hε

min (A|B)ω ≤ Hmin (A|B)ω̄ + δ. We then take a
purification (H, π, |ξ〉) of ωAXB such that there exists also a purification (H, π, |η〉)
of ω̄AB in H. Now, by the definition of the purified distance (Definition 3.4.3), we
can even find a purification |η〉 of ω̄AB such that PMAB

(ωAB, ω̄AB) = PB(H)(|ξ〉, |η〉).
Hence, if we denote by ω̄AXB the state induced by |η〉, we get that ω̄AXB ∈ Bε(ωAXB).
We can then estimate

Hε
min (A|B)ω ≤ Hmin (A|B)ω̄ + δ ≤ Hmin (AX|B)ω̄ + δ ≤ Hε

min (AX|B)ω + δ ,

where we used the result for ε = 0. Since this holds for any δ > 0, the proof is
completed.

We conclude this section with a bound for the smooth max-entropy.

Lemma 4.5.8. LetMABX = B(HA)⊗MB ⊗ `∞(X) withMB a general von Neu-
mann algebra, X a set of finite cardinality, and ωABX ∈ S≤(MABX). Then it follows
that

Hmax (A|BX)ω ≥ Hmax (A|B)ω − log |X| . (4.36)

Proof. We follow the proof from the finite-dimensional case [RR12, Lemma 4], and
express Equation (4.36) in terms of the conditional min-entropy by means of the
duality relation (Proposition 4.3.4). Let us write ωABX = (ωxAB)x∈X and take a
representation π of MAB on some Hilbert space H for which each ωxAB admits a
purification |ξx〉 ∈ H. We denote the complementary system byMR. It then follows
that |ξ〉 =

∑
x |ξx〉 ⊗ |x〉 ⊗ |x〉 in H⊗ C|X| ⊗ C|X| is a purification of ωABX . Hence,

Equation (4.36) turns into

Hmin(A|RXX ′)ω ≥ Hmin(A|RX ′)ω − log |X| , (4.37)

with ωABRXX′ the state corresponding to |ξ〉. Note that X,X ′ do not refer to
classical systems anymore, but to a finite dimensional quantum system of dimension
|X|. If we define ωx,x

′

ABR as the functional onMABR given by a 7→ Tr(a|ξx〉〈ξx′ |) one
finds that (4.37) is equivalent to

Hmin(A|RX)ω ≥ Hmin(A|RX)ω̃ − log |X| ,

where ωARX = (ωx,x
′

AR )xx′ and ω̃ARX = (ωx,x
′

AR δx,x′)xx′ . This inequality now follows
from the definition of the conditional min-entropy (Definition 4.2.1) and the fact
that ωARX ≤ |X| · ω̃ARX . In order to see that the latter property holds, note that
for any positive operator E = (Exx′)xx′ ∈MARX the matrix ME =

(
ωx,x

′

AR (Exx′)
)
xx′

is positive, and thus,

ωARX(E) = Tr [(1)xx′ ·ME ] ≤ ‖(1)xx′‖ · Tr [ME ]

= ‖(1)xx′‖ · ω̃ARX(E)

≤ |X| · ω̃ARX(E) ,

where (1)xx′ denotes the matrix with all entries equal to 1.
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4.6. Operational Approach to Min- and Max-Entropy

The definition of good entropy measures in information theory is justified by their
operational significance, thus, if they can be linked to a particular task or a particular
meaning. The min-entropy Hmin(X) of a classical random variable gives the loga-
rithm of the probability to correctly guess the outcome of a random experiment dis-
tributed according to X. This is extended to side information for Hmin (X|B) which
is just the guessing probability of the outcome of X given the side-information en-
coded in B (see [KRS09] for the finite-dimensional case and Proposition 4.6.5 for the
generalization). In the fully quantum case where the A system is finite-dimensional
Hmin (A|B) characterizes roughly speaking the distance to a maximally entangled
state [KRS09]. The proof given here is based on a generalized Hahn-Banach theo-
rem for positive functionals on an ordered unit vector space (Theorem 4.6.1). It is
different to the one given in [FAR11] for infinite-dimensional systems which is based
on the finite-dimensional approximation technique (see Section 4.5.2).
The max-entropy Hmax(X)p of a classical random variable X measures the degree

of uniformity. If X takes value in a finite alphabet of seize d and uX denotes the
uniform distribution of X, we find that Hmax(X) = log dF (p, uX). In the classical
quantum case, Hmax (X|B), this generalizes to the distance to a secure state, that
is, a state which is uniformly distributed on X and uncorrelated to B [KRS09].
This result can be derived from the interpretation of the min-entropy via the duality
between min- and max-entropy. We start with some basics on ordered vector spaces.

4.6.1. Preliminaries on Ordered Vector Spaces

The techniques we employ here are based on the theory of ordered vector spaces and
nicely developed in a work by Paulsen et al. [PT09]. Let V be a vector space over R
and V + ⊂ V a pointed cone, that is, a subset closed under addition which satisfies
λV + ⊂ V + for all λ ≥ 0 and V + ∩ −V + = {0}. Such a tuple (V, V +) is called an
ordered real vector space. A cone introduces a partial ordering in V via v ≥ w if
v − w ∈ V +. We call elements in V + positive, and say that v majorizes w if v ≥ w.
A cone V + is called a full cone if V + ∪ −V + = V , and in such a case we have a
complete ordering. A subspace E ⊂ V is said to majorize V + if for all v ∈ V + exists
a z ∈ E such that z ≥ v.
Given an ordered real vector space (V, V +), a linear functional f : V → R is

called positive if f(v) ≥ 0 for all v ∈ V +. We denote the set of all linear bounded
functionals by V ∗ and write g ≥ 0 if g ∈ V ∗ is positive. We are interested in a
Hahn Banach like extension theorem for positive functionals. It turns out that the
positivity condition impose bounds on possible extensions. Let in the following V +

be a full cone, E a subspace of V which majorizes V + and f : E → R a positive
linear functional. We define upper and lower bounds for any v ∈ V via

uf (v) := inf{f(z) | z ≥ v, z ∈ E} (4.38)
lf (v) := sup{f(z) | v ≥ z, z ∈ E}. (4.39)

The following result is the content of Lemma 2.13 and Theorem 2.14 from [PT09].
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Theorem 4.6.1. Let V be an ordered real vector space with a full cone V +, E ⊂ V
a subspace which majorizes V +, and f : E → R a positive functional on E. Then
there exists a positive extension f̃ on V and any such extension satisfies

uf (v) ≤ f̃(v) ≤ uf (v) , v ∈ V. (4.40)

Moreover, for any v ∈ V there exists a positive extension of f such that one of the
inequalities in Eq. (4.40) turns into equality.

Using the definition of uf (v) we obtain for any positive function f : E → R

inf{f(z) | z ≥ v, z ∈ E} = sup{g(v) | g ∈ V ∗ , g ≥ 0 , g|E ≡ f} . (4.41)

Note that this can be seen as a duality relation between the minimization over the
subcone E ∩ V + and the convex optimization over positive functionals g ≥ 0 with
g|E ≡ f . This can now directly be used to reformulate the min-entropy.

4.6.2. Min-Entropy and Quantum Correlations

In the following we restrict to the case in which the A system is finite-dimensional,
that is,MAB = Mn⊗MB withMB an arbitrary von Neumann algebra. We consider
the real ordered vector space given by the hermitian functionals V = N h(MAB) with
cone V + = N+(MAB). It is then clear that V + is indeed a full cone. We define
the subspace E = {ηAB | ηAB = τA ⊗ ηB , ηB ∈ N h(MB)} of V , and note that
E majorizes V +. On E we define the linear positive functional f1 via f1(ηAB) =
1
nηAB(1) = ηB(1) where ηAB = τA ⊗ ηB. Using this notation and Equation (4.4),
we can rewrite the min-entropy of a state ωAB ∈ S≤(MAB) as

2−Hmin(A|B)ω = inf{f1(σAB) | σAB ≥ ωAB, σAB ∈ E} = uf1(ωAB) ,

where the last equality is simply the application of the definition (4.38). Hence,
the min-entropy is the solution of an optimization problem over the subcone of
positive functionals of the form τA ⊗ σB. According to Eq. (4.41), we can rewrite
it as the supremum over positive extensions g on V of f1 such that g|E = f1.
Since V ∗ is simplyMAB = Mn(MB), the possible extensions are positive operators
M = (Mij) ∈MAB such that for all ηAB = τA ⊗ ηB

ηAB(M) =
∑
i

ηB(Mii) = f1(ηAB) = ηB(1). (4.42)

Hence, the condition that the restriction onto E is f1 translates into
∑

iMii = 1.
This leads to the following assertion.

Lemma 4.6.2. Let MAB = Mn ⊗ MB with MB a von Neumann algebra, and
ωAB ∈ S≤(MAB). Then

Hmin (A|B)ω = − log sup{ωAB(M) |M = (Mij) ∈Mn(MB)+,
∑
i

Mii = 1} .

(4.43)
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In order to simplify Eq. (4.43) such that we obtain the expression known for sep-
arable Hilbert spaces [KRS09, FAR11], we use the identification between positive
operators in Mn(MB) and completely positive maps E : Mn → MB. This corre-
spondence between states onMn(MB) and completely positive maps E :MB →Mn

is discussed in details in [Pau02, Chapter 6].

Lemma 4.6.3. There is a one-to-one correspondence between positive operators
M = (Mij) in Mn(MB) and completely positive maps E : Mn → MB via the
relation E(|i〉〈j|) = Mij. Furthermore, the map E corresponding to (Mij) is unital
and therefore a quantum channel, if and only if

∑
iMii = 1.

Proof. LetMB acting on HB. We show only one direction, namely, that the map E
defined via E(|i〉〈j|) = Mij for a positive operator (Mij) is completely positive. The
opposite direction can be shown by a similar calculation. Note that it is enough to
prove that E is positive on Mn ⊗Mn. Any positive operator A ∈ Mn ⊗Mn can be
decomposed as

A =
∑

i,k,l,m,n

c̄ik,mc
i
l,n|k,m〉〈l, n| ,

with coefficients cik,m in C. A small computation shows that for any state |Ψ〉 =∑
k |k〉 ⊗ |ψk〉 in C⊗HB holds that 〈Ψ |E(A)Ψ 〉 = 〈Φ |MΦ 〉 ≥ 0, where

|Φ〉 =
∑
i,k,m

cik,m|ψk〉.

The unitality of E for operators satisfying
∑

iMii = 1 is clear.

If we take an operator (Mij), the dual of the corresponding completely positive
map E is simply given as E∗(ω) =

∑
i,j ω(Mij)|j〉〈i|, where we use the identification

of states and density operators in Mn. Using Lemma 4.6.3, we find that we can
rewrite Lemma 4.6.2 in the following form [KRS09, FAR11].

Theorem 4.6.4. LetMAB = Mn⊗MB withMB a von Neumann algebra, ωAB =
(ωijB) ∈ S≤(MAB), and |ΦAA′〉 =

∑n
i=1 |φi〉 ⊗ |ψi〉, where {|φi〉} and {|ψi〉} are

orthonormal bases of Cn. Then8

Hmin (A|B)ω = − log sup
E∗

F ((idA ⊗ E∗)(ωAB), |ΦAA′〉) , (4.44)

where the supremum is taken over all quantum channels E : Mn →MB.

The quantity in the logarithm of the right hand side of (4.44) is referred to as the
quantum correlation in [KRS09, FAR11] and, divided by n, it measures how close
ωAB can be brought to the maximally entangled state by means of local operations
on the B system.

8The difference of a square in comparison to [KRS09, FAR11] is due to the different definition of
the fidelity.
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Proof. The theorem is obtained via the relation

F ((idA ⊗ E∗)(ωAB), |ΦAA′〉) =
∑
ij

ωijB(Mij) , (4.45)

where (Mij) is the positive operator corresponding to the quantum channel E as
given in Lemman 4.6.3. Here, we have chosen the basis for |ΦAA′〉 such that it is
compatible with E∗, that is, we set E∗(ω) =

∑
i,j ω(Mij)|ψj〉〈ψi|.

The Guessing Probability The analogue of Proposition 4.6.2 for classical quantum
systems leads to the guessing probability [KRS09]. We start with a classical quantum
state ωXB = (ωxB)x∈X on `∞(X)⊗MB, where the classical part X is given to Alice
and the quantum partMB to Bob who are space-like separated. Bob wants to guess
the value of the random variable X by performing the optimal measurement. The
guessing probability characterizes the probability that Bob’s guess is correct and can
be expressed by the formula

pguess(X|B)ω = sup{
∑
x∈X

ωxB(Ex) : Ex ∈MB, Ex ≥ 0,
∑
x

Ex = 1} . (4.46)

Proposition 4.6.5. LetMXB = `∞(X)⊗MB withMB be a von Neumann algebra,
and ωXB ∈ S(MXB). Then

Hmin (X|B)ω = − log pguess(X|B)ω , (4.47)

with pguess(X|B)ω as defined in (4.46).

This result is just the classical version of Proposition 4.6.2, and the prove can be
adapted from it.

4.6.3. Max-Entropy and Decoupling Accuracy

We use the result from the previous section together with the duality between min-
and max-entropy and show the link between the smooth conditional max-entropy of
ωAB to its distance to a state which is completely mixed on A and decoupled from
B [KRS09, FAR11]. We measure the distance by means of the fidelity

ddec(A|B)ω := sup
σB∈S(MB)

F (ωAB, τA ⊗ σB) (4.48)

and call it the decoupling accuracy of ωAB with respect to B [KRS09]. Note that
the measure scales with the dimension of the A system since τA is the trace in Mn

and therefore not normalized. Hence, for the normalized state ωAB = τA/n⊗σB the
decoupling accuracy is n.

Theorem 4.6.6. Let MAB = Mn ⊗MB with MB a von Neumann algebra. For
any state ωAB = (ωijB) ∈ S≤(MAB), it follows that

Hmax (A|B)ω = log ddec(A|B)ω . (4.49)
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The proof is a simple adaption from the ones given in [KRS09, FAR11] and based
on the operational interpretation of the min-entropy.

Proof. Recall that each state in MAB can be purified in the standard form, that
is, in Mn ⊗ Mn ⊗ Mφ

B, where Mφ
B is a standard form of MB. We denote the

purifying system by MA′B′ since it consists of a copy of the A-system MA′ = Mn

and the commutantMB′ = (Mφ
B)′ of the system B. Thus,MABA′B′ ⊂ B(K) with

K = C2n⊗Hφ. Let now ξω ∈ K be a purification of ωAB and |ΦAA′〉 a non-normalized
maximally entangled state onMAA′ as in Theorem 4.6.4, thus a purification of τA.
Then with ησ ∈ Hφ a purification of σ ∈ S(MB), we find that

F (ωAB, τA ⊗ σB) = sup
U∈MA′B′

| 〈ξω |U(ΦAA′ ⊗ ησ) 〉|2

= sup
U∈MA′B′

FB(K)(Uξω,ΦAA′ ⊗ ησ)

≤ sup
U∈MA′B′

FMAA′ (Uξω,ΦAA′ ⊗ ησ) ,

where the supremum is taken over unitaries U inMA′B′ . According to Stinespring‘s
dilation theorem [Pau02], applying a unitary followed by a restriction of the state is a
quantum operation, such that the state onMAA′ described by Uξω can be obtained
by applying a quantum operation EU : N (MA′B′) → N (MA′) on ωAA′B′ . Hence,
together with Theorem 4.6.4 we obtain that

F (ωAB, τA ⊗ σB) ≤ sup
U
FMAA′ ((idA ⊗ EU )(ωAA′B′ ,ΦAA′)

≤ 2−Hmin(A|A′B′)ω = 2Hmax(A|B)ω .

Taking the supremum over all σB ∈ S(MB) we find the inequality in one direction.
In order to show the other direction, we note that according to Theorem 4.6.4, there
exists for all δ > 0 a quantum operation E : N (MA′B′)→ N (MA′) such that

2Hmax(A|B)ω ≤ F ((idA ⊗ E)(ωAA′B′), |ΦAA′〉) + δ . (4.50)

Let now |ξωE 〉 be a purification of (idAB ⊗ E)(ωABA′B′), which can always be found
on the extended system MAA′CBB′ , where MC = Mn2 . With an arbitrary |θ〉 ∈
Cn2 ⊗Hφ, we obtain

F ((idA ⊗ E)(ωAA′B′), |ΦAA′〉) = sup
U∈MDBB′

| 〈ξωE |U(ΦAA′ ⊗ θ) 〉|2

≤ sup
U∈MDBB′

FMAB
(|ξωE 〉, |ΦAA′〉 ⊗ |Uθ〉) .

Since the reduced state of |ξωE 〉 onMAB is ωAB, and there exists for all σB ∈ S(MB)
a purification of the form |Uθ〉 with U unitary inMDBB′ , we conclude that

2Hmax(A|B)ω ≤ sup
σB∈S(MB)

F (ωAB, τA ⊗ σB) + δ . (4.51)

Because this holds for any δ > 0, we found the inequality in the other direction.
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Let us consider the special case where we have a classical-quantum systemMXB

given by the discrete alphabetX and the von Neumann algebraMB (see Section 3.3).
It then follows from Equation (4.49) that it can be written as

Hmax (X|B)ω = 2 log sup
{∑

x

√
F (ωxB, σB)

∣∣∣ σB ∈ S(MB)
}
. (4.52)

This form will be useful to generalize the max-entropy to continuous alphabets in
Section 5.2.

4.7. Entropic Uncertainty Relation for Smooth Min- and
Max-Entropies

Entropic uncertainty relations quantify the inherent statistical ignorance of measure-
ment outcomes of two non-commuting observables. The first rigorous proof of such
an uncertainty relation goes back to Maassen and Uffink in 1988 [MU88] and was
formulated for dual pairs of Rényi entropies including the case of the von Neumann
entropy in the limit α → 1. For a review about entropic uncertainty relations and
further reading see the nice surveys [WW10, BBR11] and references therein. Let us
assume that we have a resource described by the quantum state ωA and we can per-
form two different measurements modeled by POVM’s {Ex}x∈X and {Fy}y∈Y with
discrete sets X and Y . Let us denote the classical system describing the outcome of
the measurements also by X and Y . The distribution of the random variables ωX
and ωY satisfy the inequality

Hα(X)ω + Hβ(Y )ω ≥ − log c , (4.53)

where (1/α) + (1/β) = 2 and

c = sup
x,y
‖
√
Ex
√
Fy‖2. (4.54)

The constant c determines the complementary of the measurements. In the case
where a measurement operator Ex commutes with one Fy we obtain c = 0 and the
inequality becomes trivial. For a d-dimensional system measured by two maximally
complementary rank-one measurements the constant is c = 1

d .
Recently, it was realized that a similar relation holds when access to correlated

quantum systems B is given [BCC+10, RB09]. In fact, it revealed a subtle inter-
play between uncertainty and entanglement and reads for the von Neumann entropy
as [BCC+10]

H(X|B)ω + H(Y |B)ω ≥ − log c+ H(A|B)ω (4.55)

where H(X|B) (resp. H(Y|B)) is the conditional von Neumann entropy of the out-
come distribution X (resp. Y ) given the quantum system B (the measurements
act only on system A). This can be turned into a tripartite version via a simple
purification argument and reads

H(X|B)ω + H(Y|C)ω ≥ − log c (4.56)

50



4.7. Entropic Uncertainty Relation for Smooth Min- and Max-Entropies

where ωABC is an arbitrary tripartite state and again {Ex}x∈X and {Fy}y∈Y are
POVM’s on A.
Such entropic uncertainty relations with quantum side information were lately also

proven for other entropies [TR11, CYGG, CYZ11], among them the smooth min-
and max-entropies and the α-Rényi entropies. We generalize this in the following
to a setting were states on arbitrary von Neumann algebras can be measured. This
is for instance relevant in the case of position and momentum operators which will
be discussed in Section 5.3 and used to prove security of the continuous-variable
quantum key distribution protocol considered in Section 6.3.

Theorem 4.7.1. Let MABC be a tripartite system described by arbitrary von Neu-
mann algebras MA, MB and MC , ωABC ∈ S≤(MABC), {ExA}x∈X and {F yA}y∈Y
POVM’s onMA with discrete outcomes X and Y , and ε ≥ 0. Then

Hε
min (X|B)ω + Hε

max (Y |C)ω ≥ − log max
x,y

∥∥∥√ExA ·√F yA∥∥∥2
, (4.57)

where ωXB = (ωxB) with ωxB(·) = ωAB(ExA·), and ωY C = (ωyC) with ωyC(·) = ωAC(F yA·)
are cq-states onMB andMC , respectively.

The proof is different to the one in [TR11] and uses the form of the min-entropy
derived in Section 4.6.2.

Proof. We first prove the inequality for ε = 0. Without loss of generality, we can
assume thatMABC is already in standard form acting on a Hilbert space by H. Let
|ξ〉 ∈ H be a purification of ωABC and denote byMD =M′ABC the complementary
system. The first step is the application of the duality relation to the max-entropy.
For that, we note that |F

1
2
y ξ〉 is a purification of ωyC such that

∑
y |y, y, F

1
2
y ξ〉 is a

purification of ωY C on HY ⊗H′Y ⊗H with complementary systemMY ′ABD. Here we
used the notation HY ' H′Y ' C|Y | and MY ′ = M|Y ′| for the operators acting on

HY ′ . Let us denote the state induced by |y, F
1
2
y ξ〉〈y′, F

1
2
y′ξ| onMY ′ABCD by ωy,y

′

Y ′ABCD

and set ωY Y ′ABCD = (ωy,y
′

ABCD)y,y′ . By the definition of the max-entropy, we have
that Hmax (Y |C)ω = −Hmin (Y |Y ′ABD)ω and can rewrite the inequality (4.57) as

Hmin (X|B)ω ≥ Hmin

(
Y |Y ′ABD

)
ω
− log c ,

where c is defined in equation (4.54). Using Proposition 4.6.5 and 4.6.2, the inequality
above yields

pguess(X|B)ω (4.58)

≤ c sup
{∑
y,y′

ωy,y
′

Y ′ABD(My,y′)
∣∣∣ (My,y′) ∈M|Y |(MY ′ABD)+,

∑
y

Myy = 1

}
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Starting with the guessing probability and using
∑

y Fy = 1, we can compute

pguess(X|B)ω = sup
{Nx}

∑
x

ωxB(Nx) = sup
{Nx}

∑
x

ωABCD(E
1
2
xNxE

1
2
x )

= sup
{NX}

∑
y,y′,x

ωABCD(FyE
1
2
xNxE

1
2
x Fy′)

= sup
{NX}

∑
y,y′

ωy,y
′

Y ′ABCD(
∑
x

|y〉〈y′| ⊗ F
1
2
y E

1
2
xNxE

1
2
x F

1
2
y′ )

= sup
{NX}

∑
y,y′

ωy,y
′

Y ′ABCD(My,y′(Nx)),

where the supremum is taking over {Nx} ⊂ (MB)+ with
∑

xNx ≤ 1 and the
operator My,y′({Nx}) ∈MY ′ABD introduced in the last equality is defined as

My,y′({Nx}) =
∑
x

|y〉〈y′| ⊗ F
1
2
y E

1
2
xNxE

1
2
x F

1
2
y′ .

In order to proof the inequality in (4.58), the positivity of (My,y′({Nx}))y,y′ in
M|Y |(MY ′ABD) and that

∑
yMy,y′({Nx}) ≤ c1 has to be shown. The positivity is

obvious from the rewriting My,y′({Nx}) =
∑

x(Rxy)∗Rxy with Rxy = 〈y| ⊗N
1
2
x E

1
2
x F

1
2
y .

The latter is obtained by the estimation∑
y

My,y′({Nx}) =
∑
x,y

|y〉〈y| ⊗ F
1
2
y ExF

1
2
y Nx

≤ max
x,y
‖F

1
2
y ExF

1
2
y ‖
∑
x,y

|y〉〈y| ⊗Nx

≤ max
x,y
‖F

1
2
y ExF

1
2
y ‖ ,

where we used that Nx commutes with Ex and Fy and that
∑
Nx ≤ 1. This

completes the proof for ε = 0.
Let us know assume that ε > 0. We define the isometries UF : H → H ⊗ HY Y ′

and UE = H → H⊗HXX′ for HY ' HY ′ ' C|Y | and HX ' HX′ ' C|X| by

UF =
∑
y∈Y
|y, y〉 ⊗ F

1
2
y and UE =

∑
x∈X
|x, x〉 ⊗ E

1
2
x .

As shown in Lemma 4.4.1, there exists a state ω̃Y C ∈ Bεcq(ωY C) for which
Hε

max (Y |C)ω = Hmax (Y |C)ω̃. Let us take a purification ω̃Y Y ′ABCD of it such that
(cf. Lemma 3.4.6)

P(ωY Y ′ABCD, ω̃Y Y ′ABCD) = P(ωY C , ω̃Y C) ≤ ε. (4.59)

We can now apply the uncertainty relation to the state ω̃ABC given by
a 7→ ω̃Y Y ′ABCD(UFaU

∗
F ) for a ∈MABC . The state ω̃XB is then simply given by b 7→

ω̃Y Y ′ABCD(UFU
∗
EbUEU

∗
F ) for b ∈ MXB. Since E(b) = UFU

∗
EbUEU

∗
F is a completely

positive contraction and ω̃XB = E∗(ω̃Y Y ′ABCD) as well as ωXB = E∗(ωY Y ′ABCD), we
can apply Lemma 3.4.5 and find from Equation (4.59) that P(ωXB, ω̃XB) ≤ ε. Fi-
nally, we use that the smooth min-entropy is obtained as the supremum over ε-close
states and the desired inequality follows.
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4.8. Privacy Amplification against Quantum Adversaries

Let us consider the situation where we have a classical random variable X which
might be correlated with another system E not further specified at the moment.9

The goal of privacy amplification is to process the variable X in such a way that the
new generated random variable K is (almost) uniformly distributed and (almost)
uncorrelated to the system E. This is of importance for many cryptographic tasks
like for instance quantum key distribution. The case without side-information E
was first analyzed in [BBR88, ILL89] and then extend to classical side-information
in [BBCM95, RW05]. The security in the case where the E system is modeled
by a finite-dimensional quantum system was discussed in [KMR05, RK05, Ren05,
TSSR10]. The generalization to finite-dimensional separable Hilbert spaces can be
obtained by approximation techniques from [FAR11] as presented in [Fur09].
The striking property is that the post-processing, independently whether the side-

information is quantum or classical, consists always of applying a hash function to
a smaller alphabet drawn at random from a special family satisfying certain prop-
erties. The size of the alphabet of the new random variable is determined by the
security parameter which quantifies how uniform and uncorrelated the final random
variable should be and the initial state. This size can be optimally characterized by
the smooth min-entropy of the inital state [ILL89, Ren05, TSSR10].

We consider in the following the case where the side-information E is modeled by
a von Neumann algebra ME . This generalizes the result of privacy amplification
to the most general situation. Let us assume that the initial state is the classical
quantum state ωXE . The ideal state which one aims for is

1

|K|
τK ⊗ ωE ,

where τK = (1, . . . , 1) ∈ `1(K). In general, one can only hope to obtain an “almost”
ideal state, why we introduce a security parameter quantifying the closeness to the
ideal state. We use the following composable security definition [RK05].

Definition 4.8.1. Let ME be a von Neumann algebra, K a countable finite set,
ωKE ∈ ⊗S≤(`∞(K) ⊗ME) a classical quantum state and ε ≥ 0. We call ωKE an
ε-secure key with respect to E if

‖ωKE −
1

|K|
τK ⊗ ωE‖`1K(N (ME)) ≤ ε ,

where ωE is the reduced of ωKE onME.

Henceforth, we omit the subscript `1X(N (ME)) for the norm. The idea of how to
achieve an ε-secure key from the initial state ωXE is to randomly combine several
indices x into a single one, and thereby reducing the alphabet from X to K with
|K| < |X|. This can be accomplished by drawing the functions at random from a
family of two-universal hash functions which ensure that the collision of two values
in X is small enough.

9We use here the letter E in perspective of cryptography in which an eavesdropper is usually called
Eve.
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Definition 4.8.2. Let X,K be sets of finite cardinality such that |K| ≤ |X|. A
family of {X,K}-hash functions is a set {F ,PF}X,K , where every element f ∈ F is
a function f : X → K, called hash function, and PF is a probability measure on the
set F . A family of {X,K}-hash functions is called two-universal if for all x, y ∈ X
with x 6= y

PF (f(x) = f(y)) ≤ 1

|K|
. (4.60)

The existence of two-universal hash families in the case |K| ≤ |X| was shown
in [CW79, WC81]. We denote the operator corresponding to a function f : X → K
which maps classical-quantum states onMXE to classical-quantum states onMKE

by Tf . Formally, it maps `1(X)⊗N (ME) to `1(K)⊗N (ME) and is given by

Tf (ωXE) =
( ∑
x∈X:f(x)=i

ωxE

)
i∈K

, (4.61)

for i ∈ K and ωXE = (ωxE)x∈X . We are now ready to state the main theorem of this
section.

Theorem 4.8.3. Let ME be a von Neumann algebra, X and K two sets of finite
cardinality with |K| ≤ |X|, {F ,PF}X,K a family of two-universal {X,K}-hash func-
tions, and ωXE = (ωxE)x∈X a classical-quantum state in S≤(`∞(X)⊗ME). It then
follows that 〈

‖Tf (ωXE)− 1

|K|
τK ⊗ ωE‖

〉
F
≤
√
|K| · 2−Hmin(X|E)ω , (4.62)

where 〈·〉F denotes the expectation value over the functions f with respect to PF and
ωE =

∑
x ω

x
E ∈ S≤(ME) is the reduced state of ωXE onME.

The proof is different from the finite dimensional ones in [Ren05, TSSR10] and is
close to the arguments used in the classical case [BBR88, ILL89, BBCM95]. It uses
the non-commutative Radon-Nikodym derivative as introduced in Section 2.2.3.

Proof. Because the alphabet X is finite, so is the value of Hmin (X|E)ω and we can
assume that there exists a σE ∈ S(ME) such that ωxE ≤ λ · σE for all x ∈ X and
suitable λ > 0. Let (H, π,P, J) be a standard form of M on H with cone P and
modular conjugation J (see Section 2.2.2). As usual we identify π(M) with M.
There exist now vector representatives ξx, ξω and ξσ in P for ωxE (x ∈ X), ωE =∑

x ω
x
E and σE . Moreover, since σ majorizes ωxE there are non-commutative Radon-

Nikodym derivatives Dx ∈ M′ such that |ξx〉 = Dx|ξσ〉 (x ∈ X) (see Section 2.2.3).
The same holds for ωE , that is, there is an operator D ∈ M′ with D|ξσ〉 = |ξω〉
which additionally satisfies (see Equation (2.5))∑

x∈X
D∗xDx|ξσ〉 = D∗D|ξσ〉 . (4.63)

According to the definition of the norm on `1(N (ME)) (see Equation (3.2)) and
the definition of TF (see Equation (4.61)), the left hand side of Equation (4.62)
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corresponds to the expectation value of∑
i∈K

sup
ai∈ME ,‖ai‖=1

∣∣∣ ∑
x∈X:f(x)=i

ωxE(ai)−
1

|K|
ωE(ai)

∣∣∣ . (4.64)

Using the notation above, we can rewrite the terms in the absolute value by∑
x∈X:f(x)=i

ωxE(ai)−
1

|K|
ωE(ai)

=
∑

x∈X:f(x)=i

〈ξσ |D∗xDx aiξσ 〉 −
1

|K|
〈ξσ |D∗Daiξσ 〉

= 〈
( ∑
x∈X:f(x)=i

D∗xDx −
1

|K|
D∗D

)
ξσ |aiξσ 〉 ,

where in the last step, we employed that ai ∈ M and Dx, D are elements of M′
and thus commute with ai. We now insert this expression into (4.64), take the
expectation value over the family F and employ that for any vectors ϕi,f , ψi,f ∈ H
the inequality〈∑

i∈K
| 〈ϕi,f |ψi,f 〉|

〉
F
≤
√〈∑

i∈K
〈ϕi,f |ϕi,f 〉

〉
F

√〈∑
i∈K
〈ψi,f |ψi,f 〉

〉
F .

holds, which follows by applying two times the Cauchy-Schwarz inequality. This
then yields 〈

‖Tf (ωXE)− 1

|K|
τK ⊗ ωE‖

〉2

F

≤ |K|
〈∑
i∈K
〈ξσ |

( ∑
x∈X:f(x)=i

D∗xDx −
1

|K|
D∗D

)2
ξσ 〉
〉
F
,

where we used that∑
i∈K

sup
ai∈ME ,‖ai‖=1

〈ξσ |a∗i aiξσ 〉 ≤
∑
i∈K

sup
ai∈ME ,‖ai‖=1

‖ai‖2 ≤ |K| .

Using the relation given in Equation (4.63), we can compute〈∑
i∈K
〈ξσ |

( ∑
x∈X:f(x)=i

D∗xDx −
1

|K|
D∗D

)2
ξσ 〉
〉
F

=
〈∑
i∈K
〈ξσ |

( ∑
x∈X:f(x)=i

D∗xDx

)2
ξσ 〉
〉
F
− 1

|K|
〈ξτ |D∗DD∗Dξσ 〉 , (4.65)

where we applied the identity〈∑
i∈K

∑
x∈X:f(x)=i

〉
F
≡
∑
x∈X

.
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We focus now on the first term in line (4.65). Note first that we can write the
quadratic term by( ∑

x∈X:f(x)=i

D∗xDx

)2
=

∑
x∈X:f(x)=i

∑
y∈X:f(y)=i

D∗xDxD
∗
yDy

=
∑
x∈X

∑
y∈X

(1− δx,y) δf(x)=i δf(y)=i D
∗
xDxD

∗
yDy

+
∑

x∈X:f(x)=i

D∗xDxD
∗
xDx .

Next we have to take the expectation value over the family of two-universal hash
functions. For that, we first note that by the definition of two-universal (see Defini-
tion 4.8.2) the relation〈∑

i∈K
(1− δx,y) δf(x)=i δf(y)=i

〉
F
≤ 1

|K|
,

holds. Moreover, we use the property that the modular conjugation J leaves the
cone P invariant, i.e., |ψ〉 = J |ψ〉 for all ψ ∈ P, and that JMJ ⊂ M′ to conclude
that

〈ξσ |D∗xDxD
∗
yDyξσ 〉 = 〈ξσ |JD∗xJDxD

∗
yDyξσ 〉 = 〈ξσ |JDxJD

∗
yJD

∗
xJDyξσ 〉

= 〈ξσ |D∗yJDxJJD
∗
xJDyξσ 〉 ≥ 0 .

Hence, we get the following bound for the quadratic term in (4.65),〈∑
i∈K
〈ξσ |

( ∑
x∈X:f(x)=i

D∗xDx

)2
ξσ 〉
〉
F
≤
∑
x∈X
〈ξσ |D∗xDxD

∗
xDxξσ 〉

+
1

|K|
〈ξσ |D∗DD∗Dξσ 〉 ,

where we again used (4.63). Inserting this into (4.65), we see that the second term
is canceled, and thus we are left with the bound〈

‖Tf (ωXE)− 1

|K|
τK ⊗ ωE‖

〉2

F
≤ |K|

∑
x∈X
〈ξσ |D∗xDxD

∗
xDxξσ 〉 .

The expression on the right hand side can be estimated further, since we know that
due to the Lemma ?? and the definition of Radon-Nikodym derivatives
〈ξσ |

∑
x∈X D

∗
xDxξσ 〉 = ωE(1) ≤ 1. Hence, we find∑
x∈X
〈ξσ |D∗xDxD

∗
xDxξσ 〉 ≤ max

x∈X
‖D∗xDx‖ 〈ξσ |

∑
x∈X

D∗xDxξσ 〉

≤ 2Dmax(ωXE ||τX⊗σE) ,

where the last step follows from Equation (2.4). This yields the final bound〈
‖Tf (ωXE)− 1

|K|
τK ⊗ ωE‖

〉
F
≤
√
|K| · 2Dmax(ωXE ||τX⊗σE) .
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Finally, since our considerations are valid for all suitable σE ∈ S(ME), the assertion
follows easily by taking the infimum over this set and inserting the definition of the
min-entropy of classical quantum states.

The result in Theorem 4.8.3 can be generalized to the smooth min-entropy.

Corollary 4.8.4. For the same conditions as in Theorem 4.8.3 and ε ≥ 0, it holds
that 〈

‖Tf (ωXE)− 1

|K|
τK ⊗ ωE‖

〉
F
≤
√
|K| · 2−Hεmin(X|E)ω + 4ε ,

where < · >F denotes the expectation value over the family of two-universal hash
functions and ωE =

∑
x ω

x
E ∈ S(ME).

Proof. The idea of the proof is the same as in [Ren05, TSSR10], but we repeat the
argument for completeness. Using the definition of the smooth conditional min-
entropy (Defintion 4.3.2), we know that for any δ > 0 we can find ω̄XE ∈ Bε(ωXE)
such that

Hmin(X|E)ω̄ ≥ Hε
min(X|E)ω − δ .

By Lemma 3.4.4, ω̄XE ∈ Bε(ωXE) implies ‖ω̄XE −ωXE‖ ≤ 2ε, and moreover, by the
monotonicity of the norm under (quantum) channels, it follows that

‖Tf (ω̄XE)− Tf (ωXE)‖ ≤ 2ε .

Using the triangle inequality and Theorem 4.8.3, we can conclude that〈
‖Tf (ωXE)− 1

|K|
τK ⊗ ωE‖

〉
F
≤
〈
‖(Tf (ω̄XE)− 1

|K|
τK ⊗ ω̄E‖

〉
F

+
〈
‖Tf (ω̄XE)− Tf (ωXE)‖

〉
F

+ ‖ω̄E − ωE‖

≤
√
|K| · 2−Hmin(X|E)ω̄ + 4ε

≤
√
|K| · 2−Hεmin(X|E)ω+δ + 4ε .

Because this holds for any δ > 0, the claim follows.

The procedure in a privacy amplification step goes now as follows. Let us assume
that that the initial state ωXE ∈ `1(X) ⊗ S(ME) is and that we want to generate
an ε-secure key. Then, we choose K = {0, 1}` with

` = sup
0≤ε′≤ε/4

⌊
Hε
′

min(X|E)ω − 2 log
1

ε− 4ε′

⌋
, (4.66)

and apply a hash function chosen from a two-universal family of {X,K}-hash func-
tions according to the distribution PF . A straightforward calculation shows that by
Corollary 4.8.4, we get an ε-secure key with respect toME of ` bits. This is optimal
up to terms of order O(log 1/ε). Let us first consider the ideal case.
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Proposition 4.8.5. Let ME be a von Neumann algebra, X,K sets of finite cardi-
nality with |K| ≤ |X|, and f : X 7→ K. If a classical quantum state ωXE = (ωxE)x∈X
in S(`∞(X)⊗ME) satisfies Tf (ωXE) = 1

|K|τK ⊗ σE for some σE ∈ S(ME), then

log |K| ≤ Hmin(X|E)ω .

Proof. The idea of the proof is exactly the same as in [TSSR10], but we repeat the
argument for completeness. By the definition of the guessing probability (4.46), it
is easily seen that the probability for the adversary to guess K can not be smaller
than the probability to guess X, that is,

pguess(X|E)ω ≤ pguess(K|E)ω .

Furthermore, pguess(K|E) = 2− log |K| and by the operational interpretation of the
min-entropy of classical quantum states as the guessing probability, Proposition 4.6.5,
we conclude that

Hmin(X|E)ω = − log pguess(X|E)ω ≥ − log pguess(K|E)ω = log |K| .

Hence, for any given classical quantum state ωXE , it is impossible to extract more
than Hmin(X|E)ω bits of perfect key. We generalize this to the case of an ε-perfect
key (see also [Tom12])

Corollary 4.8.6. LetME be a von Neumann algebra, X,K sets of finite cardinality
with |K| ≤ |X|, and f : X 7→ K. If a classical quantum state ωXE = (ωxE)x∈X in
S(`∞(X)⊗ME) satisfies ‖Tf (ωXE)− 1

|K|τK ⊗σE‖ ≤ ε for some σE ∈ S(ME), then

log |K| ≤ H
√
ε

min(X|E)ω .

Proof. Let us denote Tf (ωXE) by ωf(X)E and write for arbitrary states η1 ≈ε η2 if the
purified distance between them satisfies P(η1, η2) ≤ ε. According to Lemma 3.4.4,
‖ωf(X)E − 1

|K|τK ⊗ σE‖ ≤ ε then implies that

ωf(X)E ≈√ε
1

|K|
τK ⊗ σE .

Furthermore, by the definition of the smooth min-entropy, Definition 4.3.2, there
exists for any δ > 0 a classical-quantum state ω̄KE ∈ B

√
ε(ωf(X)E) with

Hmin(K|E)ω̄ ≥ H
√
ε

min(K|E)ω − δ .

We define T̃f : N (M|X|) → `1(K) as the concatenation of the measurement in the
diagonal basis |x〉〈x|, x ∈ X, and applying the function f on x. If we show that there
exists a preimage ω̄XE of ω̄KE under T̃f which satisfies ω̄XE ≈√ε ωXE , we obtain

H
√
ε

min(X|E)ω ≥ Hmin(X|E)ω̄ ≥ Hmin(K|E)ω̄ ≥ H
√
ε

min(K|E)ω − δ ≥ log |K| − δ ,
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where the second inequality is due to Proposition 4.8.5. Because this holds for
any δ > 0, the claim follows. Hence, it remains to prove the existence of such
a state ω̄XE . T̃f is a quantum channel, thus completely positive and unital, and
it has a Stinespring dilation [Pau02], VX : C|X| → C|K| ⊗ C|X|, which is given
by VX =

∑
x |f(x)〉K ⊗ |x〉〈x|X′′ . Here, the ancilla of the dilation is denoted by

X ′′. Applied on a state σEX ∈ S(M|X| ⊗ME), this means that T̃f (σXE) is the
restriction of the state V ∗XσXBVX(a) = σXB

(
(V ∗X ⊗ 1E)x(VX ⊗ 1)

)
onto system

K and E, where a ∈ MX ⊗ME . Now let ωXX′EE′ be a purification (π,H, |ξω〉)
of the cq-state ωXE , where H = C|X| ⊗ C|X| ⊗ HEE′ . Then it follows that |ξVω 〉 =
VX⊗1X⊗1EE′ |ξω〉 is a purification of ωKE in H′ = C|K|⊗H, since the restriction of
ωKX′′X′EE′ = V ∗XωXX′EE′VX onto system K and E is ωKE . Now we take ω̄KE ≈√ε
ωKE as defined above and note that this implies F (ωKE , ω̄KE) ≥ 1 − ε. We can
chose the representation π and the Hilbert space HEE′ in such a way that ω̄KE has
a purification |ξω̄〉 in H′ (see Section 2.2.2). Then we obtain by the definition of the
fidelity

F (ωKE , ω̄KE) = sup
U∈π(MKE)′,‖U‖≤1

FB(H′)(|ξVω 〉, U |ξω̄〉) .

Let p = V ∗XVX be the projector onto the image of VX and observe that for all
U ∈ π(MKE)′

F (p|ξVω 〉, U |ξω̄〉) = F (|ξVω 〉, pU |ξω̄〉) .

We can therefore conclude that the optimum is attained for a purification |ξopω̄ 〉 in
pH′. Because V : H → pH′ is unitary, and the fidelity is invariant under unitary
transformation, we obtain

1− ε ≤ F (ωKE , ω̄KE) = FB(pH′)(|ξVω 〉, |ξ
op
ω̄ 〉)

= FB(H)((V
∗
X ⊗ 1)|ξω〉, (V ∗X ⊗ 1)|ξopω̄ 〉)

≤ F (ωXE , ω̄XE) .

where ω̄XE is the restriction ontoMXE of the state corresponding to (V ∗X ⊗1)|ξopω̄ 〉.
Note that the last equality is due to the monotonicity of the fidelity (3.6). By
construction T̃f maps ω̄XE to ω̄KE and therefore we have found the desired state.

4.9. Classical Data Compression with Quantum Side
Information

The coding question of how much a classical random variable can be compressed is
one of the most fundamental tasks in classical information theory, and the answer
goes back to the pioneering work of Shannon [Sha48] (see Section 1.3). We consider
here the situation in which a classical random variable X in Alice’s lab is correlated
with the system B in Bob’s lab, and ask how many bits Alice needs to send to Bob,
such that he can recover X. In the asymptotic limit of an i.i.d. source the problem
is given by the so-called classical Slepian Wolf theorem [SW71] if the B system is
classical and generalized by Devetak and Winter for the quantum case [DW03]. In
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both cases the optimal achievable rate is given by the conditional Shannon entropy
H(X|B) where B can be either classical or quantum. The optimal characterization
for the one-shot case was recently given in [RR12] and linked to the conditional
smooth max-entropy.
All theses results assume explicitly that the quantum system can be modeled on

a finite-dimensional Hilbert space. We show that these result carry over to the case
when that Bob’s observable algebra is given by a general von Neumann algebra.
This is of particular interest as this allows for instance to restrict Bob’s measure-
ment by symmetry constraints rather then just considering all possible observables
on a Hilbert space. The discussion as well as the proof follow similar reasoning as
in [RR12].

Let ωXB ∈ S(`∞|X| ⊗MB) be the classical-quantum state shared between Alice
and Bob. By X we denote the classical random variable and by the von Neumann
algebraMB the quantum system at Bob’s site. A one-way classical communication
protocol to transmit the random variable X from Alice to Bob then consists of a
classical encoding map E : `1(X) → `1(C) on Alice’s side, and a decoding map
D : `1(C)⊗N (MB)→ `1(X) on Bob’s side, where the classical alphabet C specifies
the number of bits, log |C|, that are transmitted. The decoding map can be written
as D = {Dc}c∈C , where the quantum channel Dc onto the classical outcome X can
be described by a POVM {Dc

x}x∈X . In particular, this means that if Bob receives
the value c ∈ C from Alice he performs the measurement {Dc

x}, and declares the
measurement outcome to be his guess of the value hold by Alice. In the following
every such protocol is specified by the triple (E ,D, C).

Definition 4.9.1. LetMB be a von Neumann algebra, X a set of finite cardinality
|X|, and ωXB ∈ S(`∞|X| ⊗MB). Then, the error probability of a protocol (E ,D, C)
for ωXB is given by

perr(ωXB; E ,D) = 1−
∑
x

ωxB(DE(x)
x ) , (4.67)

and a protocol is called ε-reliable if perr(ωXB; E ,D) ≤ ε.

The main result of this section is the following quantification of the achievable
error probability, as it was shown for the finite-dimensional case in [RR12].

Theorem 4.9.2. Let MB be a von Neumann algebra, X a set of finite cardinality
|X|, and ωXB ∈ S(`∞|X| ⊗MB). Then there exist for any alphabet C with |C| ≤ |X|,
an encoding map E and a decoding map D, such that the protocol (E ,D, C) satisfies

perr(ωXB; E ,D) ≤

√
1

|C|
· 2Hmax(X|B)ω+3 . (4.68)

The protocol for which the bound is achieved, is in complete analogy to the finite-
dimensional version [RR12]. We start by sketching the idea. For the encoding we
employ the property of a family of two-universal hash functions F (Definition 4.8.2).
In particular, we show that the averaged error probability over a family of two-
universal hash functions F is bounded as in Equation (4.68). From this we can then
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conclude that there exists a function f ∈ F suitable as an encoding map. Now
assume that Alice holds the value x and sends the message c = f(x) to Bob. Bob
then knows that x ∈ f−1(c), and applies as the decoding map a measurement which
is appropriate to distinguish between the states ωxB for x ∈ f−1(c). For that, he uses
a POVM {Dc

x′;f}x′∈X with Dc
x′;f = 0 if x′ /∈ f−1(c), which we choose as an adapted

‘pretty good measurement’ [HW94] to distinguish the ensemble {ωxB}x∈f−1(c).
The proof is based on the two following technical results. The first is an operator

inequality proven in [HN03].

Lemma 4.9.3. [HN03, Lemma 2] Let M be a von Neumann algebra, S, T ∈ M+,
and S ≤ 1. If (S + T ) is invertible inM,10 then it holds that

1− (S + T )−
1
2S(S + T )−

1
2 ≤ 2(1− S) + 4T. (4.69)

The next lemma was first proven in the finite-dimensional setting [ACMT+07],
and then generalized to von Neumann algebras [Oga10].

Lemma 4.9.4. Let M be a von Neumann algebra, φ, η ∈ S≤(M), s+ the support
projection onto the positive part of φ− η, and s− = 1− s+. Then

φ(s−) + η(s+) ≤ F(φ, η)
1
2 . (4.70)

Proof. The statement follows directly from [Oga10, Corollary 1.1]. In order to see
this we note that the relative modular operator ∆η,φ in a standard form {M,H,P, J}
ofM satisfies ∆η,φ|ξφ〉 = |ξη〉 for |ξφ〉, |ξη〉 ∈ P purifications of φ and η, respectively.
Hence, by the definition of the generalized fidelity

‖∆1/2
η,φξφ‖ = 〈ξφ |∆η,φξφ 〉 = 〈ξφ |ξη 〉 ≤ F(φ, η)

1
2 .

Furthermore, we observe that

φ(1) + η(1)− |φ− η|(1) = φ(1) + η(1)− (φ− η)(s+) + (φ− η)(1− s+)

= 2(φ(s−) + η(s+)) .

We are now ready to prove the main result of this section.

Proof. (Theorem 4.9.2) The proof follows the same arguments as in the finite-
dimensional case [RR12]. Let {F ,PF}X,C be a family of two-universal hash functions
from the alphabet X onto C (Definition 4.8.2). We define Πx to be the support pro-
jection onto the positive part of ωxB − 2−m−1ωB, where ωB =

∑
x ω

x
B. Note that

Πx ∈MB for all x ∈ X.
Since the Hilbert space HB on whichMB acts is in general infinite-dimensional,

we have to introduce some regularizing terms, parameterized in ε, in order to apply

10In the finite-dimensional case this requirement can be neglected by taking the inverse on the
support of S + T .
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Lemma 4.9.3.11 For any f ∈ F and c ∈ C, we define for ε > 0 and x ∈ f−1(c) the
two families of operators

Scx;f (ε) :=
Πx + ε1

1 + ε|f−1(c)|

and

T cx;f (ε) :=
( ∑
x′∈X

Πx′δx′c + ε|f−1(c)|1
)
− Scx;f (ε) .

It is straightforward to see that Scx;f (ε) + T cx;f (ε) is invertible for any ε > 0 and
x ∈ f−1(c). By the help of these operators, we now define an ε-family of decoding
measurements {Dc

x;f (ε)}x∈X conditioned on the fact that the encoding map is f ∈ F
and the obtained message is c via

Dc
x;f (ε) =

(
Scx;f (ε) + T cx;f (ε)

)− 1
2Scx;f (ε)

(
Scx;f (ε) + T cx;f (ε)

)− 1
2 ,

if x ∈ f−1(c) and Dc
x;f (ε) = 0 else. For any ε > 0 it is true that Dc

x;f (ε) is a positive
operator in MB and

∑
xD

c
x;f (ε) ≤ 1. Hence, {Dc

x;f (ε)}x∈X defines a valid but
possibly incomplete measurement. On the other side, one can check that by setting
S = Scx;f (ε) and T = T cx;f (ε) the conditions in Lemma 4.9.3 are satisfied, from which
we obtain that

1−Dc
x;f (ε) ≤ 2(1− Scx;f (ε)) + 4T cx;f (ε) . (4.71)

Now, the idea is to define the particular measurements Dc
x′;f of the decoding map as

the limit of Dc
x;f (ε) for ε→ 0. For that, we consider the sequence {Dc

x;f (1/n)}∞n=1 in
MB and observe that it is bounded due to the fact that the elements are measurement
operators. In particular, the sequence lies in the unit sphere of B(HB). We can
therefore apply the Banach-Alaoglu theorem [RS78, Theorem VI.26], which says
that there exists a σ-weakly converging subsequence Λ ⊂ N of {Dc

x;f (1/n)}∞n=1. The
limit of this subsequence is now used to define the appropriate measurements at the
decoder

Dc
x;f = σ − lim

Λ3n→∞
Dc
x;f (1/n) .

SinceMB is σ-weakly closed, we know that Dc
x;f ∈MB, and hence defines a possible

measurement inMB. Because positivity is preserved under taking the σ-weak limit,
we obtain from Equation (4.71) that

1−Dc
x;f ≤ 2(1−Πx) + 4

∑
x′ /∈x

Πx′δx′c , (4.72)

for all x ∈ X. The right hand side of the inequality is obtained by taking the σ-weak
limit of Scx;f (ε) and T cx;f (ε). If we denote the decoding map corresponding to the
measurements {Dc

x;f}x∈X by Dcf , we can bound the expectation value of the error

11This is in contrast to the finite-dimensional case, where Lemma 4.9.3 is applied directly.
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via 〈
perr(ωXB, f,Dcf )

〉
F

=
〈∑

x

ωxB(1−Df(x)
x;f )

〉
F

≤
∑
x

ωxB

(
2(1−Πx) +

4

|C|
∑
x′

Πx′

)
= 2
[∑

x

ωxB(1−Πx) +
2

|C|
∑
x

ωB(Πx)
]

= 2
[
ωXB

(
(1−Πx)x∈X

)
+

2

|C|
τX ⊗ ωB

(
(Πx)x∈X

)]
.

The first inequality is obtained via the inequality (4.72) and the defining prop-
erty (4.60) of a family of two-universal hash functions. Finally, we apply Lemma 4.9.4
with φ = ωXB and η = 2/|C|τX ⊗ ωB to obtain〈

perr(ωXB, f,Dcf )
〉
F
≤ 2F

(
ωXB,

2

|C|
τX ⊗ ωB

)1/2 ≤√ 1

|C|
· 2Hmax(X|B)ω+3 ,

where the last inequality is due to the operational interpretation of the max-entropy
as shown in Theorem 4.6.6. This shows the existence of a suitable f ∈ F for which
the bound is achieved, and thus completes the proof.

This theorem can be extended to the smooth max-entropy.

Corollary 4.9.5. Let MB be a von Neumann algebra, X a set of finite cardinality
|X|, ωXB ∈ S(`∞|X| ⊗MB), and ε ≥ 0. Then there exist for any alphabet C with
|C| ≤ |X|, an encoding map E and a decoding map D, such that the protocol (E ,D, C)
satisfies

perr(ωXB; E ,D) ≤

√
1

|C|
· 2Hεmax(X|B)ω+3 + 2ε . (4.73)

Proof. The idea of the proof is exactly the same as in [RR12], but we repeat the
argument for completeness. In the following we fix the alphabet C. Let Pω(E,D)(x, x

′)
be the joint probability distribution of the value x hold by Alice and the guess of Bob
x′, if they use the protocol (E ,D), and the source is given by ωXB. A straightforward
computation shows that

perr(ωXB, E ,D) =
1

2
‖(ωxB(1)δxx′)x,x′ − (Pω(E,D)(x, x

′))x,x′‖`1(X×X) .

For any δ > 0, we can find a classical-quantum state ω̄XB ∈ Bε(ωXB) such that
Hε

max (X|B)ω ≥ Hmax (X|B)ω̄ − δ. If (Ē , D̄) is a protocol for which Theorem 4.9.2
applies for the state ω̄XB, we can use the triangle inequality to estimate

perr(ωXB, Ē , D̄) ≤ perr(ωXB, Ē , D̄) +
1

2
‖(ωxB(1))x − (ω̄xB(1))x‖`1(X)

+
1

2
‖Pω̄(Ē,D̄)(x, x

′))x,x′ − Pω̄(Ē,D̄)(x, x
′))x,x′‖`1(X×X)

≤

√
1

|C|
· 2Hεmax(X|B)ω+δ+3 + ‖ω̄XB − ωXB‖ ,
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where we used in the last inequality that the trace distance can only decrease if one
applies a quantum channel. Using Lemma 3.4.4 we can finally bound ‖ω̄XB−ωXB‖ ≤
2ε, from which the result then follows.

Let us assume that the state shared between Alice and Bob is given by ωXB ∈
S(`∞(X)⊗MB) and that they aim to transmit the Alice’s information to Bob with
success probability higher than 1−ε. Then, Corollary 4.9.5 means that theoretically,
there is a decoding and encoding strategy such that the number of bits Alice has to
send is given by

` = inf
0≤ε′≤ε/2

⌈
Hε′

max (X|B)ω + 2 log
1

ε− 2ε′
+ 6
⌉
. (4.74)

This length is optimal up to a term of order O(log 1/ε).

Lemma 4.9.6. Let MB be a von Neumann algebra, X a set of finite cardinality
|X|, ωXB ∈ S(`∞|X| ⊗MB), and (E ,D, C) be protocol with perr(ωXB, Ē , D̄) ≤ ε for
some ε > 0. Then

log |C| ≥ H
√

2ε
max (X|B)ω . (4.75)

Proof. The idea of the proof is exactly the same as in [RR12], but we repeat the ar-
gument for completeness. Because of perr(ωXB, Ē , D̄) ≤ ε, we know that Pω(E,D)(x, x

′),
as defined in the proof of Corollary 4.9.5, satisfies ‖Pω(E,D) − Pid‖`1(X×X) ≤ ε, where
Pid(x, x′) = ωxB(1)δxx′ . Bounding the purified distance by the `1-norm (Lemma 3.4.4)
and using that Hmax (X|X ′)Pid

= 0 we obtain

H
√

2ε
max (X|BC)ω ≤ H

√
2ε

max

(
X|X ′

)
ω
≤ Hmax

(
X|X ′

)
Pid

= 0 ,

where the data processing inequality (4.18) is applied in the first inequality. For
any δ > 0 we can find a classical-quantum state ω̄XBC ∈ B

√
2ε(ωXBC) such that

H
√

2ε
max (X|BC)ω ≥ Hmax (X|BC)ω̄ − δ. Hence, with Lemma 4.5.8

log |C| ≥ Hmax (X|B)ω̄ − δ ≥ H
√

2ε
max (X|B)ω − δ ,

where the last inequality is due to P(ωXB, ω̄XB) ≤
√

2ε. Because this holds for all
δ > 0, we found the desired result.

64



5. Uncertainty Relation for Position
and Momentum Operators

5.1. Introduction

The idea of the uncertainty principle goes back to an exposition by Heisenberg
in 1927 [Hei25]. The first rigorous formulation for position and momentum oper-
ators Q and P was stated in terms of the standard deviations of their distributions,
σQ =

√
〈Q2 − 〈Q〉2〉 and σP =

√
〈P 2 − 〈P 〉2〉, and reads [Ken27, Hei27]

σQσP ≥
1

2
. (5.1)

The units are chosen such that ~ = 1. But the formulation of the uncertainty
principle by means of the standard deviation has some serious drawbacks (see for
instance [Deu83, BBR11]), which are removed by using entropies as measures of un-
certainty. The first entropic uncertainty relation in terms of the differential Shannon
entropy [Sha48] was derived by Hirschman in [HJ57] and later improved in [Bec75,
BBM75] for pure states. If H(Q) and H(P ) denote the differential Shannon entropy
of the position and the momentum distribution, the inequality is given by

H(Q) +H(P ) ≥ log c , (5.2)

for c = 2π for mixed states and c = eπ for pure states. The uncertainty relation for
mixed states can be further strengthened to [FL11]

H(Q) +H(P ) ≥ log 2π +H(ρ) , (5.3)

where H(ρ) denotes the von Neumann entropy of the measured state.
In [BB06] an entropic uncertainty relation for dual pairs of Rényi entropies (1/α+

1/β) is presented. For the unconditional min- and max-entropy, that is, α =∞ and
β = 1/2, it is given by

Hmin(Q) + Hmax(P ) ≥ log 2π . (5.4)

We introduce in Section 5.2 the concept of a conditional differential min- and max-
entropy and show that the same inequality holds for arbitrary side-information (see
Theorem 5.3.3).
The idea is to start first with the experimentally relevant setting of a finite mea-

surement accuracy (c.f. [BBR11]). We introduce a finite spacing of the real line which
quantifies the precision of the used measurement devices. This leads to a discretized
outcome distribution for which the uncertainty relation derived in Section 4.7 ap-
plies. The measurement overlap can be computed using Fourier theory [LP64]. By
an approximation statement for the differential min- and max-entropies derived in
Section 5.2.2, the continuous version is then obtained by letting the measurement
precision go to infinity.
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5.2. Min- and Max-Entropy for Continuous Variables

5.2.1. Definition of Differential Min- and Max-Entropy

Before we define the differential min- and max-entropies, we discuss the mathematical
framework needed to describe classical quantum states for continuous distributions.
We again use the framework of von Neumann algebras as the basic mathematical
object to describe such systems. In the following, X stands for a measure space
given by a triple (X,Σ, µ), where Σ is a σ-algebra of subsets of X and µ a measure.
In the following, we always assume that X is locally compact and µ is a Radon
measure. For a survey about measure theory see for instance [RS78]. Every abelian
von Neumann algebra can be associated to L∞(X) for a suitable measure space X
(see for instance [Tak01, Chapter 3.1]). Here, we denote by L∞(X) the algebra of
the measurable functions f : X → C together with point wise multiplication which
are bounded with respect to the norm

‖f‖L∞(X) = essupx|f(x)| . (5.5)

L∞(X) is then obtained as the quotient L∞(X)/ ∼ where f ∼ g if ‖f−g‖L∞(X) = 0.
We are interested in the combination of a classical and a quantum system. This is
modeled by the tensor product L∞(X)⊗MB, X is a measure space andMB a von
Neumann algebra describing the quantum system. It is now useful to think about
operators on L∞(X) ⊗MB as functions E : X → MB. Here, E ∈ L∞(X,MB) is
just a measurable function which takes values in the von Neumann algebraMB with
bounded supremum norm

‖E‖L∞(X,MB) := essupx‖E(x)‖; , (5.6)

where ‖ · ‖ is the norm on MB. Note that most of the measure theory can be
generalized to functions which take values in a Banach space. In [Tak01, Chapter
4.7] it is shown that L∞(X,MB) is isomorphic to L∞(X) ⊗ MB. The normal
functionals on it are given by L1(X)⊗N (MB) ' L1(X,N (MB)), where the latter
denote the equivalence classes1 of measurable functions η : X → N (MB) equipped
with the norm

‖η‖L1(X,N (MB)) :=

∫
X
‖η(x)‖dµ(x) . (5.7)

It is convenient to write the arguments for functions which take value in N (MB) as
x 7→ η(x). We use the abbreviation MXB for classical-quantum systems L∞(X) ⊗
MB. Since the norms defined in Equation (5.6) and (5.7) are the canonical norms
onMXB and S(MXB), we omit the subscribed whenever it is clear from the context.

Note that abelian algebras on separable Hilbert spaces are generated by selfadjoint
operators [Tak01, Chapter 3.1]. The case of a discrete classical variable as discussed
in Section 3.3 corresponds to an operator with a point spectrum. If there are contin-
uous parts of the spectrum the classical alphabet is continuous. Let us for instance
take the position operator Q on the Hilbert space H = L2(R). The spectrum of Q

1As in the case of L∞(X) we obtain L1(X) by identifying functions which are similar almost every
where, that is, up to a set of measure 0.
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is R and using the functional calculus it can be written with respect to a projective
POVM µQ as

Q =

∫
R
xdµQ(x). (5.8)

We are now ready to define the differential conditional min- and max-entropies.
They are obtained by straightforward generalizations of their operational interpre-
tations given in Equation 4.47 and 4.52.

Definition 5.2.1. Let MXB = L∞(X) ⊗MB with MB a von Neumann algebra
and (X,Σ, µ) a locally compact measure space X with Radon measure µ, and ωXB ∈
S≤(MXB). The conditional min-entropy of X given B is defined as

Hmin (X|B)ω = − log sup

{∫
X
ω

(x)
B (EB(x))dµ(x) : E ∈ L∞(X,MB)+

}
. (5.9)

Furthermore, the conditional max-entropy of X given B is defined as

Hmax (X|B)ω = 2 log sup

{∫
X

√
F (ω

(x)
B , σB)dµ(x) : σB ∈ S(MB)

}
. (5.10)

Note that the conditional min-entropy is well defined since x 7→ ω(x)(E(x)) is
measurable [Tak01, Chapter 4.7] and since the state is positive the integral can be
bounded by ∫

ω
(x)
B (EB(x))dµ(x) ≤ ‖E‖

∫
X
‖ω(x)

B ‖dµ(x) = ‖E‖ · ‖ωXB‖ .

Since F (ω
(x)
B , σB) ≤ ‖ω(x)

B ‖, we find that x 7→
√
F (ω

(x)
B , σB) is measurable and2

∫
X

√
F (ω

(x)
B , σB)dµ(x) ≤

∫
X
‖ω(x)

B ‖dµ(x) .

Note that in the case where µ is a singular point measure, we retrieve the min-
and max-entropy of a classical quantum state as given in Equation 4.47 and 4.52.
In the case of trivial side information, i.e., MB = C and ω(x) ∈ L1(X), we
find that Hmin(X)ω = − log ‖ω(x)‖L∞(X) and Hmax(X)ω = 2 log

∫ √
ω(x)dµ(x) =

log ‖ω(x)‖L1/2(X). These correspond to the differential Rényi entropy of order∞ and
1/2.

Smooth versions of the above entropies are given by a variation over close states.
Note that the definitions of distance measures in Section 3.4 are introduced for
general von Neumann algebras why they also hold for continuous variables. The
only difference is that the embedding of the classical system to the quantum system
is different such that the smoothing set has to be adjusted.

Definition 5.2.2. Let MXB = L∞(X) ⊗MB with MB a von Neumann algebra
and X a measure space, ωXB ∈ S≤(MXB) and ε ≥ 0. Furthermore, we define the

2Note that this is simply the data processing inequality.
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smoothing set Bεcq(ωXB) := {σXB ∈ S≤(MXB) | P(ωXB, σXB) ≤ ε}. The smooth
differential conditional min-entropy of X given B is defined as

Hε
min(X|B)ω = sup

ω̄∈Bεcq(ωXB)
Hmin(X|B)ω̄ ,

and the smooth differential conditional max-entropy of X given B as

Hε
max(X|B)ω = inf

ω̄∈Bεcq(ωXB)
Hmax(X|B)ω̄ .

The smooth differential min- and max-entropies satisfy the data processing in-
equality (c.f. Proposition 4.5.1)

Proposition 5.2.3. Let MXBC = L∞(X) ⊗MBC with X a measure space and
MBC = MB ∨MC a composite system of two commuting von Neumann algebras.
For all states ωXBC ∈ S≤(MXBC) follows that

Hε
min(X|BC)ω ≤ Hε

min(X|B)ω

Hε
max(X|BC)ω ≤ Hε

max(X|B)ω .

Proof. We consider first the case ε = 0. The inequality for the min-entropy is
obtained by using that any E ∈ POVM(X,MB) lies also in POVM(X,MBC) and
ωxB(Ex) = ωxBC(Ex). For the max-entropy one exploits the fact that the fidelity can
only increase when restricting to a subsystem, that is, F (ωBC , σBC) ≤ F (ωB, σB).
Let us turn to the case of ε > 0. Using that P(ωXBC , ω̄XBC) ≥ P(ωXB, ω̄XB) [],
we find the inequality for the smooth min-entropy directly from the ε = 0 case. It
is little more involved for the max-entropy as we have to take the infimum over the
smoothing set. Note that for all δ > 0, there exists a ω̄XB ∈ Bεcq(ωXB) such that
Hε

max(X|B)ω + δ ≥ Hmax(X|B)ω̄ ≥ Hmax(X|BC)ω̄ where the last equation holds for
any norm preserving positive extension ω̄XBC of ω̄XB. It is therefore enough to show
that for all ω̄XB ∈ Bεcq(ωXB) exists an extension ω̄XBC in Bεcq(ωXBC). Without loss
of generality we can assume that the states are normalized. We go to the standard
representation ofMXBC on the Hilbert space H, which we also denote byMXBC .
Let ξω ∈ H be the vector representation of ωXBC in the positive cone and ξω̄ ∈ H an
arbitrary vector representation of ωXB. Then there exists a unitary U ∈M′XB such
that F (ωXB, ω̄XB) = | 〈ξω |Uξω̄ 〉|2. If we define ω̄XBC to be the state corresponding
to Uξω̄ we find that

F (ωXBC , ω̄XBC) = sup
V ∈M′XBC

| 〈ξω |V Uξω̄ 〉|2 ≤ sup
V ∈M′XB

| 〈ξω |V Uξω̄ 〉|2

= F (ωXB, ω̄XB),

where the suprema are taken such that ‖V ‖ ≤ 1. But this implies by definition of
the purified distance (Defintion 3.4.3) that ω̄XBC ∈ Bεcq(ωXBC).

5.2.2. Approximation of Differential Min- and Max-Entropy

In the following (X,Σ, µ) is always a measure space where X is locally compact and
µ a complete Radon measure.3 First, we introduce the concept of a partition.

3A complete measure space is a space in which every subset of a set of measure zero is measurable.
Every measure space admits a completion.
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Definition 5.2.4. Let (X,Σ, µ) be a measure space. We call a collection of mea-
surable subsets {Ik}k∈Λ such that Λ is countable, X =

⋃
k∈Λ Ik and µ(Ik ∩ Il) = 0

for all k 6= l ∈ Λ a (discrete) partition of X. Given two partitions P1 = {Ik}
and P2 = {Jk}, we say that P1 is finer than P2 if for any Ik exists a Jl such that
Ik ⊂ Jl and denote it by P1 ≥ P2.4 The fineness of the partition P is defined as
λ(P) = supk µ(Ik).

We address in the following the question under what conditions the conditional
min- and max-entropies of a classical quantum state ω ∈ L1(X,N+(MB)) can
be approximated. Let P = {Ik}k∈Λ be a partition of X. For a state ωXB ∈
L1(X,N+(MB)) given by the map x 7→ ω(x), we define the discretized classical
quantum state (ωPk )k∈Λ via

ωPk =

∫
Ik

ω dµ . (5.11)

and denote the min- and max-entropy of it by Hmin (X(P)|B)ω and Hmax (X(P)|B)ω.
In the following, we omit the indication P in ωPk and simply write ωk if it is clear
from the context. We are interested whether the entropies Hmin (X(P)|B)ω and
Hmax (X(P)|B)ω converge to the the corresponding entropies of ωXB, if the fineness
goes to zero. In this limit, the entropies have to be regularized by a term which is
logarithmic in the order of the fineness of the partition. We find that in the case of the
max-entropy under specific assumption on the measure space X the approximation
holds (see Theorem 5.2.11). For the min-entropy a further condition on the state ωXB
has to be assumed (see Corollary 5.2.14). For X = Rn the result can be combined
to the following main statement.

Theorem 5.2.5. LetMB be a von Neumann algebra, X = Rn, µ the Lebesgue mea-
sure, ω ∈ L1(X,MB) essentially bounded and Pn = {Ink }k∈Λn a monotone sequence
of partitions P1 ≤ P2 ≤ ... into intervals with equal length δn such that δn → 0. If
Hmax(X(Pn)|B)ω is finite for any n, then it follows that

lim
n→∞

(
Hmax(X(Pn)|B)ω + log δn

)
= Hmax(X|B)ω. (5.12)

If for any ε > 0 a compact subset K ⊂ X with finite measure exists such that∫
X\K ‖ω‖dµ ≤ ε, then it follows that

lim
n→∞

(
Hmin(X({Ink })|B)ω + log δn

)
= Hmin(X|B)ω. (5.13)

The proof of the statement is given separately for the min- and max-entropy in
the following two paragraphs. The results are derived for a general measure space
X.

Approximation of the Max-Entropy. Let ω ∈ L1(X,M) be a state. If we assume
that the fineness is constant, i.e., λ(Ik) = λ for all k, the regularized max-entropy of

4It is easy to see that ≥ defines a partial order on the set of all partitions.

69



5. Uncertainty Relation for Position and Momentum Operators

(ωk)k∈Λ is given by

Hmax(X({Ik})|B)ω + log λ = 2 log sup
σ

∑
k

√
λF (ωk, σ)

1
2

= 2 log sup
σ

∑
k

√
µ(Ik)F (ωk, σ)

1
2 .

Hence, the goal is to show that for any sequence of partitions Pn = {Ink } with
P1 ≤ P2 ≤ P3 ≤ ... and λ(Pn)→ 0 (n→∞), it holds that

lim
n→∞

sup
σ

∑
k

√
µ(Ink )F

(∫
Ink

ω dµ, σ
) 1

2
= sup

σ

∫
F
(
ω(x), σ

) 1
2 dµ(x). (5.14)

We first show that this holds for compact X and then extended it to locally compact
spaces. Let us neglect the supremum over σ in (5.14) at the moment. We show at the
end that limit and supremum can be interchanged. We start with the observation of
a simple property of the fidelity.

Lemma 5.2.6. LetM be a von Neumann algebra and ω1, ω2, σ ∈ N+(M). It holds
that

F (ω1 + ω2, σ)
1
2 ≤ F (ω1, σ)

1
2 + F (ω2, σ)

1
2 . (5.15)

Proof. Take a Hilbert space H such that vector representatives of ωi and σ exists. If
|ξ1〉 and |ξ2〉 are particular vector states of ω1 and ω2, we have that |φ〉 = |1, ξ1〉 +
|2, ξ2〉 on C2 ⊗H is a vector state representation of ω1 + ω2. Hence, we obtain

F (ω1 +ω2, σ)
1
2 = sup

ησ
〈φ|ησ〉 ≤ sup

ησ
〈1, ξ1|ησ〉+ sup

ησ
〈2, ξ2|ησ〉 = F (ω1, σ)

1
2 +F (ω2, σ)

1
2 ,

where the supremum is taken over all possible vector state representatives of σ on
C2 ⊗H.

We proceed with a technical statement which is the basic ingredient in the following
main statements [Kiu].

Lemma 5.2.7. Let (X, dX) be a metric space, (Y, ‖ · ‖) a normed space, µ a finite
Borel measure on X, g : X → Y norm-bounded uniformly continuous, and f : Y →
R+ uniformly continuous on g(X) such that there exists a monotonically increasing
function p : R+ → R+ with f(y) ≤ p(‖y‖) for any y ∈ Y . Then, for any ε > 0 there
exists a δ > 0 such that for any discrete partition {Ik} with supx,y∈Ik dX(x, y) ≤ δ
for any k, it holds that∣∣∣∑

k

µ(Ik)f
( 1

µ(Ik)

∫
Ik

g dµ
)
−
∫
f ◦ g dµ

∣∣∣ ≤ ε. (5.16)

Proof. Observe first that the sum is finite. Since µ(X) is finite, this follows from
f(g(x)) ≤ p(‖g(x)‖) as well as ‖ 1

µ(Ik)

∫
Ik
g dµ‖ ≤ supx ‖g(x)‖ together with the

monotonicity of p and boundedness of g. Taking an arbitrary xk ∈ Ik, we can bound
the left hand side of Equation (5.16) by∑

k

µ(Ik)
(∣∣f( 1

µ(Ik)

∫
Ik

g dµ
)
− f(g(xk))

∣∣+
1

µ(Ik)

∫ ∣∣f ◦ g − f(g(xk))
∣∣dµ). (5.17)
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Because f is uniformly continuous on g(X), we can choose a δ1 ≥ 0, such that for any
y1, y2 ∈ g(X) with |y1 − y2| ≤ δ1, it holds that |f(y1)− f(y2)| ≤ ε/(2µ(X)). Since g
is uniform continuous, we can find a δ > 0 such that ‖g(x1)− g(x2)‖ ≤ δ1 whenever
dX(x1, x2) ≤ δ. Given that the partition {Ik} satisfies supx,y∈Ik dX(x, y) ≤ δ, we
therefore conclude that∥∥ 1

µ(Ik)

∫
Ik

g(x) dµ(x)− g(xk)
∥∥ ≤ 1

µ(Ik)

∫
Ik

∥∥g(x)− g(xk)
∥∥dµ(x) ≤ δ1

such that the first term in the sum in Equation (5.17) can be bounded by ε/(2µ(X))
for any k. The same holds for the second term in the sum by which we obtain the
desired result.

By Lusin’s Theorem [Lus12] the above statement can be extended to essentially
bounded functions on compact spaces.

Theorem 5.2.8. LetM be a von Neumann algebra, (X, d) a compact metric space
with complete and finite Radon measure µ. For any σ ∈ M, ω ∈ L1(X,N+(M))
essentially bounded and ε > 0, there exists a δ > 0 such that for any partition {Ik}
with supx,y∈Ik d(x, y) ≤ δ for all k follows that∣∣∣∑

k

√
µ(Ik)F

( ∫
Ik

ω dµ, σ
) 1

2 −
∫
F (ω(x), σ)

1
2 dmu(x)

∣∣∣ ≤ ε . (5.18)

Proof. According to Lusin’s Theorem [Lus12], there exists for any ε̃ > 0 a compact
subsetK ⊂ X such that ω is continuous onK and µ(X\K) ≤ ε̃. The strategy is now
to apply Lemma 5.2.7 onto the support ofK and find bounds for the remaining parts.
We first note that the possibly infinite sum in Equation (5.18) is well defined. This is
due to F (η, σ)1/2 ≤ ‖η‖1/2 together with the condition that ω is essentially bounded,
which leads to an upper bound of the sum given by µ(X)‖ω‖∞. For a partition {Ik},
let us define IKk = Ik ∩K and I0

k = Ik ∩ (X \K), such that
∑

k µ(IKk ) = µ(K) and∑
k µ(I0

k) = µ(X \K) ≤ ε̃. Using Lemma 5.2.6, we can bound

F
( ∫

Ik

ω dmu , σ
) 1

2 = F
( ∫

IKk

+

∫
I0
k

ω dµ , σ
) 1

2 ≤ F
( ∫

IKk

ω dµ , σ
) 1

2 + F
( ∫

I0k

ω dµ , σ
) 1

2 .

Hence, the sum in Equation (5.18) can be estimated by∑
k

√
µ(Ik)F

( ∫
Ik

ω dµ , σ
) 1

2 ≤
∑
k

√
µ(Ik)F

( ∫
IKk

ω dµ , σ
) 1

2

+
∑
k

√
µ(Ik)F

( ∫
I0
k

ω dµ , σ
) 1

2

≤
∑
k

√
µ(IKk )F

( ∫
IKk

ω dµ , σ
) 1

2

+
∑
k

√
µ(I0

k)F
( ∫

IKk

ω dµ , σ
) 1

2

+
∑
k

√
µ(Ik)F

( ∫
I0
k

ω dµ , σ
) 1

2 .
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The first sum can now be treated using Lemma 5.2.7 because ω is continuous on the
compact set K and η → F (η, σ) is continuous and upper bounded by p(η) = ‖η‖1/2.
The second sum can be bounded by the Cauchy-Schwarz inequality

∑
k

√
µ(I0

k)F
(∫

IKk

ω dµ , σ
) 1

2 ≤
∑
k

√
µ(I0

k)

∫
IKk

‖ω‖ dµ

≤
(∑

k

µ(I0
k)
) 1

2
(∑

k

∫
IKk

‖ω‖ dµ
) 1

2

≤ ε̃
1
2 ‖ω‖

1
2
1 .

The third sum can also be estimated with the Cauchy-Schwarz inequality

∑
k

√
µ(Ik)F

( ∫
I0
k

ω dµ , σ
) 1

2 ≤
∑
k

√
µ(Ik)

(∫
I0
k

‖ω(x)‖ dµ(x)
) 1

2

≤
(∑

k

µ(Ik)
) 1

2
(∑

k

∫
I0
k

‖ω(x)‖dµ(x)
) 1

2

≤ µ(X)
1
2 ε̃

1
2 ‖ω‖

1
2∞ .

Hence, for a given ε > 0, we first choose a ε̃ such that

ε̃ ≤ ε2/(3‖ω|1/21 + 2(µ(X)‖ω|∞)1/2)2

and ε̃ ≤ ε/(3‖ω‖∞) holds. Then we choose K according to Lusin’s theorem such
that µ(X \K) ≤ ε̃. Using that |a− b| ≤ |a− b1|+ |b2| whenever b ≤ b1 + b2, we can
use the estimations above to bound∣∣∣∑

k

√
µ(Ik)F

( ∫
Ik

ω dµ , σ
) 1

2 −
∫
F (ω(x), σ)

1
2 dµ

∣∣∣
≤
∣∣∣∑
k

√
µ(IKk )F

( ∫
IKk

ω dµ , σ
) 1

2 −
∫
k
F (ω(x), σ)

1
2 dµ

∣∣∣+
2ε

3
.

Choosing now δ such that Lemma 5.2.7 is satisfied with ε/3 for the restriction of ω
onto K completes the proof.

Let us summarize the findings so far. In the case that X is a compact space, µ a
finite measure on X, and P1 ≤ P2 ≤ ... a sequence of discrete partitions, Pn = {Ink },
such that there exists a zero sequence δn with supx,y∈Ink

d(x, y) ≤ δn for all k, we
have that

lim
n→∞

∑
k

√
µ(Ink )F

( ∫
Ink

ω dµ , σ
) 1

2 =

∫
F(ω(x), σ)

1
2 dµ (5.19)

for any essentially bounded ω(x) and any σ ∈ S(M). We use the abbreviation

γ(n, σ|ω) :=
∑
k

√
µ(Ink )F

( ∫
Ink

ωdµ , σ
) 1

2 (5.20)
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for any sequence of partitions satisfying the condition above. The limit in Equa-
tion (5.19) can be replaced by an infimum. In order to see this, we employ the
concavity of the fidelity. Let m ≤ n and observe that due to Pm ≤ Pn, we can find
for any l sets Inkl such that Iml =

⋃
kl
Inkl and

⋃
l,k I

n
kl

= X (almost). Hence,

γ(m,σ|ω) =
∑
l

µ(Iml )F
(∑

k

(µ(Inkl)

µ(Iml )

) 1

Inkl

∫
Inkl

ω dµ , σ
) 1

2 (5.21)

≥
∑
l,k

µ(Ikl)F
( 1

µ(Inkl)

∫
Inkl

ω dµ , σ
) 1

2 (5.22)

= γ(n, σ|ω) , (5.23)

for all m ≤ n. Thus, γ(n, σ|ω) is monotonously decreasing in n.
We can now generalize Theorem 5.2.8 to non-compact measure spaces. Let us

start with some definitions.

Definition 5.2.9. Let (X,Σ, µ) be a locally compact measure space with complete
Radon measure µ and P = {Ik}k∈Λ a partition of X. We call P an essentially
compact partition of X if for any subset ∆ ⊂ Λ of finite cardinality

⋃
k∈∆ Ik is

compact. Furthermore, we call P an essentially finite-measure partition of X if for
any subset ∆ ⊂ Λ of finite cardinality µ(

⋃
k∈∆ Ik) is finite.

As an example, Rn admits a sequence of essentially compact and finite-measure
partitions so that Theorem 5.2.5 is a special case of the following statement.

Corollary 5.2.10. Let (X, d) be a metric space with complete Radon measure µ
such that it admits a sequence of essentially compact and finite-measure partitions
Pn = {Ink }k∈Λn, with P1 ≤ P2 ≤ ... and

δn := sup
k

sup
x,y∈Ink

d(x, y)

is a zero sequence. Moreover, let ω ∈ L1(X,N+(M)) be essentially bounded and
assume that there exists a n0 ∈ N with γ(n0, σ|ω) finite. Then, for any σ ∈ S(M)
and ε > 0 there exists a N0 ≥ n0 such that∣∣∣∑

k

√
µ(Ink )F

( ∫
Ink

ω dµ, σ
) 1

2 −
∫

F(ω(x), σ)
1
2 dµ(x)

∣∣∣ ≤ ε . (5.24)

for any n ≥ N0.

Proof. Let us assume that n0 = 1. Otherwise, we just consider the statement for
Pn0 ≤ Pn0+1 ≤ .... Let us fix ε > 0. Since γ(1, σ|ω) is finite, there exists a subset
∆1 ⊂ Λ1 of finite cardinality with∑

k∈Λ1\∆1

√
µ(I1

k)F
( ∫

I1
k

ω dµ, σ
) 1

2 ≤ ε/3 .

Because the partition P1 is essentially compact and finite-measure, we have

J =
⋃
k∈∆1

I1
k (5.25)
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is compact and of finite measure. Because of P1 ≤ Pn, there exists for every n a
subset ∆n ⊂ Λn such that J =

⋃
k∈∆n

Ink . Using the same argument as in (5.21), we
find for every n∑

k∈Λn\∆n

√
µ(Ink )F

( ∫
Ink

ω dµ, σ
) 1

2 ≤
∑

k∈Λ1\∆1

√
µ(I1

k)F
( ∫

I1k

ω dµ, σ
) 1

2 ≤ ε

3
.

This means that independently of n, we have that the sum over the set J is ε/3 close
to the total sum. From the monotonicity argument in (5.21), we can also conclude
that ∫

X\J
F (ω(x), σ)

1
2 dµ(x) ≤ ε

3
.

Since J is compact and of finite measure, we can now apply Theorem 5.2.8 and find
a δ such that for every n with δn ≤ δ∣∣∣ ∑

k∈∆n

√
µ(Ink )F

( ∫
Ink

ω dµ, σ
) 1

2 −
∫

J
F(ω(x), σ)

1
2 dµ(x)

∣∣∣ ≤ ε

3
.

Choosing N0 such that δn ≤ δ for all n ≥ N0, and combining the different estimates
proves the claim.

The following statement proves the part for the max-entropy in Theorem 5.2.5.

Theorem 5.2.11. LetM be a von Neumann algebra, (X, d) a locally compact metric
space, µ a complete Radon measure on X and ω ∈ L1(X,N+(M)) µ-essentially
bounded. For any sequence of discrete partitions Pn = {Ink } of X satisfying the same
conditions as in Corollary 5.2.10, it follows that

lim
n→∞

sup
σ∈S(M)

∑
k

√
µ(Ink )F

(∫
Ink

ωdµ, σ
) 1

2
= sup

σ∈S(M)

∫
F
(
ω(x), σ

) 1
2 dµ(x). (5.26)

Furthermore, if λn = inf{µ(Ink ) |µ(Ink ) 6= 0} is such that λn > 0 for all n, we get that

lim
n→∞

(
Hmax(X({Ink })|B)ω + log λn

)
≤ Hmax(X|B)ω, (5.27)

and equality holds if µ(Ink ) = λn for all n and k. Here, we denotedM =MB.

Note that the inequality in the opposite direction of (5.27)

Hmax(X|B)ω ≤ Hmax(X({Ink })|B)ω + log λn

follows directly from the monotonicity of γ(n, σ|ω) shown in (5.21). The proof of the
theorem is based on Sion’s minimax theorem [Sio58].

Proof. According to the discussion before, we have to show

inf
n

sup
σ
γ(n, σ|ω) = sup

σ
inf
n
γ(n, σ|ω). (5.28)

The proof is a simple application of Sion’s minimax theorem [Sio58]. It says that
if X is a compact convex subset of a topological space, Y a convex subset of a
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linear topological space, and f : X × Y → R a function such that (1) f(x, ·)
is upper semi-continuous (u.s.c.) and quasi-concave for every x and (2) f(·, y) is
lower semi-continuous (l.s.c.) and quasi-convex for every y, then minx supy f(x, y) =

supy minx f(x, y). We are applying it to the function f(λ, σ) := γ(d 1
λe, σ|ω) where

dλe denotes the ceiling function, and f(0, σ) := limn→∞ γ(n, σ|ω). We have that
X = [0, 1] is compact and convex and Y = S≤(M) is convex. Moreover, since the
fidelity is concave and continuous, condition (1) is satisfied. Note that f(σ, ·) meets
condition (2) because γ(n, σ|ω) is monotonically decreasing in n and we take it at
d 1
λe. Hence, we can apply Sion’s minimax theorem and obtain Equality (5.28). The

second statement follows now directly by the definition of the max-entropy.

Approximation of the Min-Entropy. Let us assume for the moment that the par-
tition P = {Ik} of X is such that µ(Ik) = δ for all k. The min-entropy of a state
ω ∈ L1(X,M) with respect to the partition P is then given by

Hmin(X({Ik})|B)ω + log δ

= − log sup
{∑

k

ωk(
1

δ
Ek) |Ek ∈M+,

∑
k

Ek ≤ 1

}
= − log sup

{∫
ωx(E(x))dµ(x) |E ≥ 0 is {Ik}-simple ,

∫
E dµ ≤ 1

}
,

where the {Ik}-simple functions are the ones which can be written as
∑

k Ek1Ik ,
with 1I the indicator function on I. Hence, it follows directly that

Hmin(X({Ik})|B)ω + log δ ≥ Hmin(X|B)ω . (5.29)

For the following it is convenient to introduce the notation

M(ω) := sup
{∫

ωx(E(x)) |E ∈ L∞(X,M) ,

∫
E dµ ≤ 1

}
. (5.30)

Lemma 5.2.12. Let (X, d) be a metric space, µ a finite measure on X and ω ∈
L1(X,M) uniformly continuous. Then, for any ε > 0 there exists a δ > 0 such
that for any partition {Ik}k∈Λ with supk supx,y∈Ik d(x, y) ≤ δ, there exists a positive
{Ik}-simple function F with∫

ωx(F (x)) dµ(x) ≥M(ω)− ε. (5.31)

Proof. According to the definition of M(ω), there exists E ∈ L∞(X,M) such that∫
ωx(E(x)) dµ(x) ≥M(ω)− ε

2
. (5.32)

Due to the uniform continuity of ω, we can find a δ > 0 such that for any x, y ∈ X
with d(x, y) ≤ δ holds that ‖ωx−ωy‖ ≤ ε/(2µ(X)‖E‖∞). Let {Ik} be a partition of
X such that supx,y∈Ik d(x, y) ≤ δ. We define the {Ik}-simple function η =

∑
ηk1Ik

with values in N+(M), where ηk = 1/µ(Ik)
∫
Ik
ωx dµ(x). We can estimate

M(ω) ≤
∫
ωx(E(x)) dµ(x) +

ε

2
(5.33)

=

∫
(ωx − ηx)(E(x)) dµ(x) +

∫
ηx(E(x)) dµ(x) +

ε

2
. (5.34)
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The second term can be rewritten as∫
ηx(E(x)) dµ(x) =

∑
k

∫
ηk(E(x))1Ik(x)dµ(x)

=
∑
k

µ(Ik)ηk

( 1

µ(Ik)

∫
E(x)1Ik(x)dµ(x)

)
=
∑
k

∫
ωy(Ek)1Ik(y)dµ

=

∫
ωy(
∑
k

Ek1Ik(y))dµ

=

∫
ωy(F (y))dµ

where Ek = 1/µ(Ik)
∫
Ik
Edµ and F =

∑
k Ek1Ik is a {Ik}-simple function. The first

term in (5.34) can now be bounded by∫
(ωx − ηx)(E(x)) dµ(x) ≤ ‖E‖∞

∫
‖ωx − ηx‖dµ ≤ ε

2µ(X)

∫
dµ =

ε

2
,

where we used that for almost every x0 ∈ X

‖ωx0 − ηx0‖ = ‖ωx0 − 1

µ(Ik)

∫
Ik

ωx dµ(x)‖

≤ 1

µ(Ik)

∫
Ik

‖ωx0 − ωx‖

≤ ε

2µ(X)‖E‖∞
.

Here we have chosen Ik such that x0 ∈ Ik. Putting all these steps together, we obtain
the desired result.

Using Lusin’s Theorem [Lus12] this can be extended to essentially bounded func-
tions.

Theorem 5.2.13. LetM be a von Neumann algebra, (X, d) a compact metric space,
µ a finite complete Radon measure on X and ω ∈ L1(X,N+(M)) µ-essentially
bounded. For any sequence of discrete partitions Pn = {Ink } of X with P1 ≤ P2 ≤ ...
such that δn := supk supx,y∈Ink

d(x, y) is a zero sequence, it holds that

M(ω) = lim
n→∞

sup
{∑

k

1

µ(Ink )

∫
Ink

ωx(Ek) |Ek ≥ 0,
∑
k

Ek ≤ 1

}
. (5.35)

Furthermore, if λn = inf{µ(Ink ) |µ(Ink ) 6= 0} is such that λn > 0 for all n, we get

lim
n→∞

(
Hmin(X({Ink })|B)ω + log λn

)
≤ Hmin(X|B)ω, (5.36)

and equality holds if µ(Ink ) = λn for all n and k. Here, we denotedM =MB.
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Proof. We show that for any ε > 0 there exists a n0, such that for any n ≥ n0 exists
a Pn-simple function F such that (5.31) holds. Let us fix an arbitrary ε > 0 and
choose E ∈ L∞(X,M) such that∫

ωx(E(x)) dµ(x) ≥M(ω)− ε

3
.

Next, we use Lusin’s theorem and take a compact subsetK ofX such that µ(X\K) ≤
ε/(3‖E‖∞‖ω‖∞) and ω is continuous on K. We can then bound

M(ω) ≤
∫
ωx(E(x)) dµ(x) +

ε

3

=

∫
K
ωx(E(x)) dµ(x) +

∫
X\K

ωx(E(x)) dµ(x) +
ε

3

≤
∫
K
ωx(E(x)) dµ(x) + ‖E‖∞‖ω‖∞

∫
X\K

dµ+
ε

3

≤
∫
K
ωx(E(x)) dµ(x) + 2

ε

3
.

Applying Lemma 5.2.12 to ω restricted to K such that Equation (5.31) is satisfied
with ε/3 completes the proof of the first part. The second part involving the min-
entropy follows straightforwardly by definition.

This can now be generalized to non-compact metric spaces as follows.

Corollary 5.2.14. Let M be a von Neumann algebra, (X, d) a locally compact
metric space, µ a complete Radon measure and {Pn}n as in Theorem 5.2.13. If
ω ∈ L1(X,N+(M)) is µ-essentially bounded and for any ε > 0 there exists a com-
pact subset C ∈ X of finite measure such that

∫
X\C ‖ω‖dµ ≤ ε, then

M(ω) = lim
n→∞

sup
{∑

k

1

µ(Ink )

∫
Ink

ωx(Ek) |Ek ≥ 0,
∑
k

Ek ≤ 1

}
. (5.37)

Furthermore, if λn = inf{µ(Ink ) |µ(Ink ) 6= 0} is such that λn > 0 for all n, we get

lim
n→∞

(
Hmin(X({Ink })|B)ω + log λn

)
≤ Hmin(X|B)ω, (5.38)

and equality holds if µ(Ink ) = λn for all n and k. Here, we setM =MB.

Proof. The proof is a straightforward application of Theorem 5.2.13. We have to
show that for any ε > 0 there exists a n0, such that for any n ≥ n0 there is a
Pn-simple function F such that (5.31) holds. Let us fix ε > 0 and choose C with∫
X\C ‖ω‖dµ ≤ ε/2. We can apply the result from 5.2.13 to (C, d) implying the
existence of a n0 such that for any n ≥ n0 is a Pn simple function such that (5.31)
holds with ε/2. Putting these steps together yields the desired result.
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5.2.3. Interpretation of Min- and Max-entropies of Continuous
Outcomes

Let us take a connected subset X ⊂ R and define Pδ as the partition of X into
intervals of equal length δ. In the following we consider a state ω ∈ L(X,MB) for
which

lim
δ→0

(
Hmin (X(Pδ)|B)ω + log δ

)
= Hmin (X|B)ω . (5.39)

The min-entropy for discrete outcomes can be interpreted as the guessing probabil-
ity 4.46

pguess(X(Pn)|B)ω = 2−Hmin(X(Pδ)|B)ω . (5.40)

If we denote pc(X|B)ω = 2−Hmin(X|B)ω , Equation (5.39) can be rewritten as

pc(X|B)ω = lim
δ→0

pguess(X(Pδ)|B)ω
δ

. (5.41)

Because of limδ→0 pguess(X(Pδ)|B)ω = 0, we obtain that pc(X|B)ω is just the deriva-
tive of pguess(X(Pδ)|B)ω at δ = 0. Hence, we have that for small spacing δ, the
guessing probability

pguess(X(Pn)|B)ω = pc(X|B)ωδ −Θ(δ2) , (5.42)

where the higher order correction is always negative. Hence, the guessing probability
corresponding to a spacing δ is always upper bounded by pc(X|B)ωδ.
In order to discuss the meaning of the conditional max-entropy for continuous

outcomes we consider an interval X ⊂ R with µ(X) = |X| < ∞ and a state ω in
L1(X,MB) with

lim
δ→0

(
Hmax (X(Pδ)|B)ω + log δ

)
= Hmax (X|B)ω . (5.43)

The max-entropy with respect to a partition Pδ ofX into intervals of constant lengths
δ can be written as

Hmax (X(δ)|B)ω = sup
σB

log
( |X|
δ
F (ωX(δ)B, τX(δ) ⊗ σB)

)
, (5.44)

where X(δ) is the random variable obtained by partitioning according to Pδ and
τX(δ) = 1/|X(δ)|idX(δ) the tracial state on X(δ). If we define the closeness of ωXB
to the uncorrelated uniform distribution on X as

rkey(X(δ)|B)ω = sup
σB

F (ωX(δ)B, τX(δ) ⊗ σB) (5.45)

we can write the max-entropy as Hmax(X(δ)|B)ω = log |X|δ rkey(X|B)ω. Using now
Equation (5.43), we can infer that

lim
δ→∞

rkey(X(δ)|B)ω =
1

|X|
rc(X|B)ω (5.46)

where rc(X|B)ω = 2Hmax(X|B)ω . Hence, we get that for small δ ≈ 0

rc(X|B)ω · |X| ≈ rkey(X(δ)|B)ω (5.47)

implying that rc(X|B)ω · |X| is a lower bound for rkey(X(δ)|B)ω for any δ.
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5.3. Position and Momentum Uncertainty Relations with
Quantum Side Information

By position and momentum operators, we denote a pair of selfadjoint operators Q
and P acting on a Hilbert space H ' L2(R) satisfying the cannonical commutation
relation [P,Q] = i. They can uniquely be represented on H as the multiplication and
differential operator acting on smooth functions as Qψ(x) = xψ(x) and Pψ(x) =
(1/i) d

dxψ(x). The spectrum for both operators is equal to R and there exist projective
operator valued measures denoted by µQ and µP such that

Q =

∫
R
x dµQ(x) P =

∫
R
x dµP (x). (5.48)

The integrals converge weakly and for any ψ ∈ H induces 〈ψ|dµQ(x)ψ〉 and
〈ψ|dµP (x)ψ〉 a Borel measure on R.
We are interested in the uncertainty of the outcome distributions of position and

momentum measurements quantified by the uncertainty relation with quantum side
information derived in Theorem 4.7.1. We consider first the case of a finite measure-
ment precision. This corresponds to a partition of the real line, where the fineness
of the partition characterizes the resolution of the measurement apparatus used in
the experiment. Even though a measurement with infinite precision does not exist in
real world, it is theoretically interesting to consider the limit when the fineness goes
zero. It also brings a practical advantage because the computation of entropies for
continuous outcome distributions are often easier than for the discretized probability
distributions. This is especially true for the important class of Gaussian states.

5.3.1. Measurements with Finite Spacing

For convenience, we use the notation MA = B(H) (H ' L2(R)) for the system on
which the position and momentum measurements are performed. The von Neumann
algebras used to model the side-information are denoted byMB andMC . The pro-
jections which correspond to a position and momentum measurement in the interval
I are

Q[I] :=

∫
I

dµQ and P [I] =

∫
I

dµP . (5.49)

Let Pδ = {Ik}k∈N be a partition of the real line (see Definition 5.2.4) into intervals
Ik with equal length δ. Given a state ωABC ∈ S(MABC), the post-measurement
state obtained by measuring Q with the finite spacing Pδ is given by

ωδQBC = (ωQ,nBC )n∈N , (5.50)

where ωQ,nBQ is the state on MBC defined by a 7→ ωABC(Q[In]a). Analogously, we
denote the post-measurement state obtained by measuring the momentum operator
P with spacing Pδ by

ωδPBC = (ωP,nBC)n∈N , (5.51)

where ωP,nBQ is the state onMBC defined by a 7→ ωABC(P [In]a).
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In order to allow for full generality, we introduce different spacings δq and δp for
the two observables Q and P and denote the partitions by Pδq = {Ik}k∈ΛQ and
Pδp = {Jk}k∈ΛP with ΛP/Q ' N. The complementarity of the measurements in the
uncertainty relation in Theorem 4.7.1 is quantified by

c = sup
k,l
‖
√
Q[Ik]

√
P [Il]‖2 = sup

k,l
‖
√
Q[Ik]P [Il]

√
Q[Ik]‖

= sup
k,l
‖Q[Ik]P [Jl]Q[Ik]‖ ,

where we used ‖A‖2 = ‖A∗A‖ and that the operators are projectors. Since the
translation in position exp(−iaP ) and momentum exp(−itQ) are unitary operators
it is clear that ‖Q[Ik]P [Jl]Q[Ik]‖ does not depend on k, l. Hence, we can neglect
the supremum and conclude that it only depends on the lengths δp and δq. The
same argument holds for the dilation such that the value of c is determined by the
product of the lengths of the intervals δqδp. It then follows that for any two intervals
Ik ∈ Pδq and Jl ∈ Pδp (see e.g. [LP64] or also [KW10] and references therein)

c = c(δq, δp) := ‖Q[Ik]P [Jl]Q[Ik]‖ =
1

2π
δqδp · S(1)

0

(
1,
δqδp

4

)2

(5.52)

where S(1)
0 (·, x) is the 0th radial prolate spheroidal wave function of the first kind.

Hence, if we apply Theorem 4.7.1, we obtain the following uncertainty relation.

Theorem 5.3.1. Let Q and P be position and momentum operators, that is, they act
on H = L2(R) and satisfy [P,Q] = i. Furthermore, let MB,MC be von Neumann
algebras and ωABC ∈ S(MABC), where we denoteMABC = B(H)⊗MBC . For any
ε ≥ 0 and δq, δp > 0, it follows that

Hε
min (Q|B)ωδq + Hε

max (P |C)ωδp ≥ − log c(δq, δp), (5.53)

where ωδqQBC and ωδpPBC are the post-measurement states as defined in Equation (5.50)
and (5.51).

The complementarity term − log c(δq, δp) is plotted in Figure 5.1 for δq = δp.
Note that the result can be generalized to H = L2(Rn) = L2(R)⊗n, where n pairs
of position and momentum operators Qi and Pi for i = 1, 2, ..., n are considered.
The case n = 3 describes for instance the observables corresponding to the position
and momentum of one particle in a three dimensional space time. But the position
and momentum operators model for instance also the quadrature variables of the
electromagnetic field. That is, the system corresponding to n pairs of position and
momentum operators describes the electromagnetic degrees of freedom of n modes of
a light field. This will be used in Section 6.3. In the case of a general n, the constant
in the uncertainty relation changes to

c = ‖
n⊗
i=1

Qi[Ik]Pi[Jl]Qi[Ik]‖ =
n∏
i=1

‖Qi[Ik]Pi[Jl]Qi[Ik]‖ = c(δq, δp)n . (5.54)
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Figure 5.1.: The constant − log c(δ, δ) measuring the complementary of the position
and the momentum observable in Equation (5.53) for equal spacing δ.
Note that the units are such that the width of the vacuum is δ = 1 for
which we obtain − log c ≈ 1.85.

Note that we can neglect the supremum over the intervals since the operator
norm of Qi[Ik]Pi[Jl]Qi[Ik] only depends on the product of their lengths. If we de-
note MAn = B(H) = B(L2(R))⊗n, the uncertainty relation for a state ωAnBC ∈
S(MAnBC) where each Qi and Pi is measured with the same spacing δq and δp is
given by

Hε
min (Qn|B)ωδq + Hε

max (Pn|C)ωδp ≥ −n log c(δq, δp). (5.55)

Note that the post-measurement state ωδqQnBC = (ωδq,kBC )k∈Nn is defined via a 7→
ωAnBC(

⊗n
i=1Qi[Iki ]a). The same holds for ωδpPnBC with the momentum operator P

instead of the position operator.

Let us address the question if the uncertainty in Equation (5.53) is tight. In the
case where ε 6= 0, one can hardly expect that this is true. This is because of the
definitions of the smooth min- and max-entropy as optimizations over states close in
the purified distance. Let us therefore restrict to the case ε = 0. According to the
data processing inequality given in Proposition 4.5.1, the uncertainty relation (5.53)
also holds without side information. For convenience, we exchange the min- and
max-entropy and arrive at

Hmin(P )ωδp + Hmax(Q)ωδq ≥ − log c(δq, δp) . (5.56)

The above inequality is saturated by measuring a pure state for which the support
in constraint on one interval Ik of the Q measurement. The idea is that the min-
entropy only sees the largest eigenvalue and the size of the support essentially does
not affect its value. In contrast the max-entropy is sensitive on how large the support
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is. It is therefore intuitively clear that in order to make the max-entropy small the
distribution should be (more) peaked for the Q measurement.

Lemma 5.3.2. For every spacing δq and δp there exists a state such that equality
holds in (5.56). Thus, the uncertainty relation in (5.53) is tight for ε = 0.

Proof. Without any restriction, we assume that the partitions for the Q and P
measurement include the intervals I = [−δq/2, δq/2] and J = [−δp/2, δp/2]. Let us
take a pure state ψ ∈ L2(R) with support restricted to I. Therefore the measurement
distribution for the Q measurement is equal to 1 for one output and zero else. Thus,
we can conclude that Hmax(Q) = 0. Note that the probability distribution of the
continuous momentum measurement is given by |F(ψ(q))|2, where F denotes the
Fourier transform. Therefore, we find for the min-entropy that

2−Hmin(P) =

∫
1[−δp/2,δp/2](p)|F(ψ)|2dp

=
1

2π

∫
1I(r)1J(p)1I(q)ψ̄(r)ψ(q)e−i(q−r)pdrdpdq

= 〈ψ|Q[I]P [J ]Q[I]|ψ〉 ,

where 1I denotes the indicator function of I. But using Equation (5.52) and that
Q[I]P [J ]Q[I] is selfadjoint, we can write the overlap

c(δq, δp) = ‖Q[I]P [J ]Q[I]‖ = sup
φ∈L2(R)

〈φ|Q[I]P [J ]Q[I]|φ〉 . (5.57)

Since the supremum can be restricted to functions with support I, we find that
Hmin(P) = − log c(δp, δp) which proves the claim. We note that ψ ∈ 2(R) for which
equality in (5.56) is attained (or equivalently maximizes the right hand side of (5.57))
is the normalized projection of the radial prolate spheroidal wave function of the first
kind onto the interval I (see for instance [KW10]).

5.3.2. Measurements with Continuous Outcomes

We generalize the uncertainty relation in Theorem 5.3.1 to continuous measurement
outcomes by means of the approximation results for the differential min- and max-
entropy presented in Theorem 5.2.5. We use the same notation as in the previous
section. For a state ωABC , we denote the post-measurement state of a continuous
outcome measurement of the position operator Q by ωQBC . The state is an element
of S(L∞(R)⊗MBC) and defined by the action

f ⊗ a 7→ ωABC

(∫
R
f(x) dµQ(x)⊗ a

)
(5.58)

for f ∈ L∞(R) and a ∈MBC . As discussed in Section 5.2.1, we can identify the state
ωQBC with an element in L1

(
R,N+(MBC)

)
, that is, a measurable function ωQBC(x)

which takes values in N+(MBC) and satisfies
∫
R ‖ω

Q
BC(x)‖ dµ(x) < ∞. The same

of course holds for the post-measurement state obtained by a continuous momentum
measurement. In this case, we denote the state as ωPBC and the associated function
as ωPBC .
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Theorem 5.3.3. Let Q and P be position and momentum operators andMB,MC

be von Neumann algebras and setMABC = B(H)⊗MBC . Furthermore, let ωABC ∈
S(MABC) with continuous post-measurement states ωQBC and ωPBC in
L1
(
R,N+(MBC)

)
such that

• ωQBC and ωPBC are essentially bounded,

• there is a δp > 0 such that the discretized max-entropy Hmax (P (δp)|C)ωδp is
bounded,5

• and for any ε > 0 there exists a compact subset K ⊂ R with∫
R\K
‖ωQB(x)‖dµ(x) ≤ ε .

Then, it follows that

Hmin (Q|B)ω + Hmax (P |C)ω ≥ log 2π. (5.59)

The conditions of the theorem are for instance satisfied if the post-measurement
states ωQB(x) and ωPC (x) admit a continuous representative in L1

(
R,N+(MBC)

)
.

Proof. The proof is a combination of the approximation theorem for differential
min- and max-entropies (Theorem 5.2.5) and the uncertainty relation for finite spac-
ing (5.53). Let us assume that δq = δp = δ. Then the uncertainty relation (5.53) for
ε = 0 together with the definition of c(δq, δp) in Equation (5.52) yields

Hmin (Q(δ)|B)ωδ + log δ + Hmax (P (δ)|C)ωδ + log δ ≥ log
2π

S
(1)
0

(
1, δ2/4

)2 , (5.60)

where Q(δ) and P (δ) indicate that the outcome distribution of a position and
momentum measurement with a spacing δ are considered. Since the condition
of Theorem 5.2.5 are satisfied for the post-measurement states, we obtain using
S

(1)
0

(
1, δ2/4

)
→ 1 (δ → 0) the desired inequality in the limit δ → 0.

The uncertainty relation is tight and saturated in the case without side-information.
The states which saturate the inequality are pure Gaussian state with a minimal un-
certainty product of their variances σXσP = 1/2 [BB06]. A simple computation
shows that for a Gaussian distribution

f(x) =
e−

1
2σ2

√
2π · σ

the min- and max-entropies are Hmin(X) = log(
√

2πσ) and Hmax(X) = log(2
√

2πσ).
Hence, in the case of σXσP = 1/2, we obtain equality in (5.59).

5Here, the system P (δp) refers to the discrete alphabet induced by the spacing δp.
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6. Finite-Key Analysis for
Continuous-Variable Quantum Key
Distribution

6.1. Introduction

In a continuous-variable protocol, the information is encoded in the field quadratures
of a light state which are measured by homodyne or heterodyne detection. The quan-
tum system of a stationary field mode is modeled by the infinite-dimensional Hilbert
space H ' L2(R) and can be thought as generated by the observables of the ampli-
tude and phase quadrature given by operators Q and P which obey the canonical
commutation relation. These operators are unbounded and the spectrum is the real
line, and thus, continuous (see Section 5). The information in a continuous-variable
protocols is usually encoded by Gaussian states which have the advantage that they
can be efficiently prepared in an experiment. Prepare and measure protocols based
on a finite number of possible displacements (relative to the vacuum state) are called
discrete modulation protocols and were first proposed in [Ral99, Rei00, Hil00]. Later
on a Gaussian modulation was proposed in [CLA01] which can be realized as an
entanglement based protocol using a two-mode squeezed state (c.f. Section 6.3.1).
For a review about the possible implementations see for instance the recent review
in [WPGP+12] and references therein.
Results concerning the security of such protocols are often based on results explic-

itly derived for quantum systems modeled on a finite-dimensional Hilbert space and
assumed to hold also for continuous-variable systems. This includes for instance the
asymptotic key rate formula derived by Devetak andWinter in [DW05] for i.i.d. quan-
tum sources as well as the general finite-key formula by Renner [Ren05]. Both are
information theoretic statements and characterize the optimal extractable key rate
using one-way classical post-processing. The key length formula in [Ren05] are de-
rived via the characterization of privacy amplification by the smooth min-entropy
(c.f. Section 4.8) and the Devetak-Winter rate [DW05] can be retrieved via the
asymptotic equipartition property [Ren05, TCR09]. Using the results from Chap-
ter 4, these results will be rigorously generalized to the finite-dimensional case in
Section 6.2.2.
Another subtle problem is to prove security of a continuous-variable protocol

against coherent attacks in the finite-key regime (see Section 1.4 for the basic no-
tions). Techniques like the exponential de-Finetti theorem [Ren07] or the post-
selection technique [CKR09] which allow to lift the security from collective to coher-
ent attacks do not apply directly to infinite-dimensional quantum systems [CKMR07].
In [RC09], the de-Finetti theorem is combined with a truncation of the Hilbert space
dimension such that it can be applied under certain constraints to continuous-variable
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protocols. But an estimation of the required measurements in one run necessary to
obtain a non-vanishing key rate turned out to be extremely high and hardly feasible in
practice. The estimation was based on conditions derived in [Ped08], where they also
show that it is not clear that the technique is robust in the experimental parameters.
Even the bounds on the finite-key rate obtained for qubit protocols which are based
on [Ren07] are quite pessimistic [SLS10]. This has been improved by [CKR09], but
so far, no generalization to infinite-dimensions are proven. Alternative approaches
based on entanglement distillation has been analyzed in [GP01, vAIC05] but without
a quantitative analysis.
We circumvent this problem and use the idea from [TR11, TLGR12] and employ

the uncertainty relation with quantum side-information for the smooth min- and
max-entropy (see Section 4.7). It allows to bound the information of an eavesdrop-
per about the measurement outcomes of Alice by the knowledge about the strength
of the correlations between the outcomes between Alice and Bob. But the corre-
lations are directly accessible to Alice and Bob and can be probed on a random
sample of the data. The uncertainty relation for phase and amplitude measurements
Q and P as derived in Theorem 5.3.1 depends on the binning δq and δp of the mea-
surement outcomes. In order for the uncertainty relation to be strong enough the
binning has to be chosen relatively which on the order side requires a highly squeezed
Gaussian state to still generate strong enough correlations. Nevertheless, we find in
Section 6.3.2 a non-vanishing key rate for an experimentally achievable squeezing
strength (c.f. [EHD+11b, EHD+11a]) for a two-mode squeezed state protocol similar
to [CLA01].
We further compute the finite-key rate secure against collective Gaussian attacks

in Section 6.3.4 by using the asymptotic equipartition property from Section 4.5.3.
A similar finite-key analysis has been discussed in [LGG10] for a protocol based
on heterodyne detection. We use state estimation to determine the information a
possible eavesdropper could have about the measurement data and the extremality of
Gaussian attacks [GPC06, NGA06]. Comparison with the finite-key rate computed
against coherent attacks, we find a gap which is due to the non-tightness of the
uncertainty relation.

6.2. Security Definition and Finite-Key Rate for a
Generic Protocol

In a quantum key distribution (QKD) protocol two parties, Alice and Bob, com-
municate via quantum and classical channels in order to establish a secret key. In
the following, we assume that the classical channels are always authenticated such
that Alice and Bob know that the message is sent by the other party and not by
an adversary trying to learn about the key. We also assume that Alice and Bob are
honest and only an outside adversary, from now on called Eve, is malicious.
We consider an entanglement based protocol in which an entangled state is first

distributed between Alice and Bob and then measured. A part of the data is used to
estimate the knowledge of a possible eavesdropper about it. This procedure is referred
to as parameter estimation (PE) and involves classical communication between Alice
and Bob. In case that the information of the eavesdropper is small enough, a secret
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key is extracted from the remaining data by means of classical post-processing.
For the following discussion, we divide the protocol which we denote by P into

two subparts. The first part P1 consists of the part where quantum mechanics
plays the key role. It includes the distribution of the quantum state, the performed
measurements and the parameter estimation step. Output of this part is a so-called
raw key XA and XB on Alice’s and Bob’s side or a flag s, which tells them to
abort the entire protocol. If the protocol did not abort, they pursue with the second
part P2, the classical post-processing, in which they first apply an error correction
protocol followed by privacy amplification to extract the final key denoted by SA and
SB on Alice’s and Bob’s side. In the following subsections, we define the security
criterion and explain how to compute the extractable length of a finite-key.

6.2.1. Composable Security Definition

The current standard for security proofs of cryptographic primitives asks for compos-
able security, which demands that the concatenation of two secure protocols remain
secure. This is especially important for a quantum key distribution protocol which
only produces a key, which then serves as a resource for other tasks, like for in-
stance one-time pad. In quantum key distribution, we also assume that Alice and
Bob are honest players and that security has only be proven against an outside
adversary. In that case, composable security is thus weaker than for instance in
oblivious transfer or secure function evaluation where even the parties can be mali-
cious. In this latter situation one refers to the term universally composable security
(see, e.g., [Can01, Unr10] and references therein).
The following security definitions are based on the discussion of composable se-

curity in quantum key distribution presented in [MQR09] (c.f. [RK05, BOHL+05]).
The idea is to define the security according to the possibility to distinguish the given
“real” protocol with an “ideal” protocol. As described above, a general quantum key
distribution protocol P outputs either two binary strings sA and sB on Alice’s and
Bob’s side (the key) or a flag s which stands for abort. The protocol is a statistical
process and only the probability distribution of the keys denoted by ωSASB can be
characterized. Hence, the outputs of the protocol ar described by random variables
SA and SB. For simplicity, we use the symbols SA and SB to indicate both the
random variable and the alphabet. During the run of the protocol a malicious third
party Eve may wiretap the quantum channel, such that the key distribution is cor-
related with her system denoted by E. Hence, the overall output is described by a
classical quantum state

ωSASBE =
∑
sA,sB

p(sA, sB)|sa, sB〉〈sa, sB| ⊗ ωsA,sBE , (6.1)

where p(sA, sB) denotes the distribution of the keys and ωsA,sBE ∈ S(ME) a state
of Eve’s system modeled on a von Neumann algebraME . Furthermore, we denote
by pab the probability that the protocol aborts, and thus, outputs s and ppass =
(1−pab). An ideal secure key is uniformly distributed on SA and maximally classically
correlated to SB, while uncorrelated to E. This is captured in the following definition.

Definition 6.2.1. A protocol P which outputs a state ωSASBE is called
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• εc-correct if Probω[SA 6= SB] ≤ εc, and correct if this holds for εc = 0.

• εs-secret if 1

inf
σE

(1− pab)
1

2
‖ωSAE − uSA ⊗ σE‖ ≤ εs (6.2)

and secret if this holds for εs = 0. Here, uSA denotes the uniform distribution
on SA and the infimum is take over all σE ∈ S(ME).

A protocol P is finally called secure or ideal if it is correct and secret, and εsec-secure
if it is εsec-indistinguishable from an ideal protocol.

The term ε-indistinguishable means that there is no device (or protocol) interacting
with the protocol P or its ideal version P ideal, which can differ between them with
success probability higher than ε. It is easy to see that a protocol which is εc-correct
and εs-secret is εsec-secure for εc + εs ≤ εsec. The fact that the given definition is
composable secure is shown in [MQR09], and simply relies on the indistinguishability
property. Therefore, it is also essential to use the norm distance in the secrecy
definition (6.2), which quantifies the possibility to distinguish between two quantum
states. It has also the advantage that any further processing of the state by a classical
or quantum channel can only decrease the distance. This is in contrast to security
definitions which are based on a small mutual information which does not satisfy the
requirement of composable security [KRBM07].
Finally, we want to stress that since the protocol is probabilistic, the security

can only be guaranteed up to a failure probability. Hence, there is always a small
possibility that information leaked. Note also the success is conditioned on the event
that the protocol passes and therefore only the product of (1−pab) with the distance
to uniform in (6.2) can be controlled. But this is sufficient because a protocol which
aborts with almost one is secure in a statistical sense up to a failure probability.
Since pab cannot be determined in the experiment, the computed key length must
be independent of it.

6.2.2. Finite-Key Analysis for a Generic Protocol

Let us start at the beginning of the second part of the protocol and assume that
Alice and Bob have already generated the raw keys XA and XB and the parameter
test has been passed. They proceed then with an error correction protocol in which
Alice broadcasts leakEC bits. Based on this information Bob changes his bit string
to match it with XA. In order to check that the strings are εc-correct Alice and Bob
do the following correctness test: Alice draws a random function from a family of
two-universal hash functions onto an alphabet of size log(1/εc) and applies it to her
string XA. She then sends the result and the description of the function to Bob who
aborts the protocol if the result does not coincide with the valued he obtains when
applying the function on his string.

1The norm is the canonical norm on the state space given in the case of classical quantum states
in Equation (3.2). If the quantum system is described by a Hilbert spaceME = B(HE), we can
use density matrices and the norm is the usual trace norm.
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Let us denote by ωXAE the state between Alice and Eve conditioned on the event
that the parameter estimation test is passed.2 Furthermore, we denote the random
variable corresponding to the classical communication during the error correction
protocol by M . Recall that the number of bits log |M | is assumed to be leakEC +
log(1/εc). According to the privacy amplification result Corollary 4.8.4, we know
that if Alice applies a hash function drawn at random from a family of two-universal
hash functions (see Definition 4.8.2), which maps XA onto an alphabet SA of size
` = |SA|, we know that

1

2
‖ωSAE − uSA ⊗ ωE‖ ≤

√
2`−Hεmin(XA|EM)ω−2 + 2ε. (6.3)

In order to obtain an εs-secret key (see Equation (6.2)), we have to ensure that the
left hand side of (6.3) is smaller than εs/ppass. Hence, we can conclude that an
εs-secret key can be extracted if ` is smaller than

Hε
min(XA|EM)ω − 2 log

ppass

ε1
+ 2. (6.4)

where ε ≤ (εs − ε1)/(2ppass). Using the properties of the smooth min-entropy from
Lemma 4.5.6 and 4.5.7, we can further simplify

Hε
min(XA|EM)ω ≥ Hε

min(XAM|E)ω − log |M| ≥ Hε
min(XA|E)ω − log |M|. (6.5)

Moreover, by using that − log ppass ≥ 0, we obtain the following claim.

Theorem 6.2.2. Let ωXAE the state between Alice and Eve conditioned on the event
that the test in parameter estimation has been passed. If one uses an error correction
scheme broadcasting leakEC bits of classical information and passes the correctness
test via two-universal hash functions onto an alphabet of size log(1/εc), then, we can
extract an εc-correct and εs-secret key of length

Hε
min(XA|E)ω − 2 log

1

ε1
− log

1

εc
− leakEC + 2, (6.6)

where ε ≤ (εs − ε1)/(2ppass).

This theorem reduces the finite-key analysis to finding a bound on the smooth
min-entropy. Since the state ωXAE between Alice and Eve is not known, it has to
be estimated with the data obtained in the parameter estimation step. Hence, the
goal is to find a lower bound on the smooth min-entropy for all states which are
compatible with the observed data. This estimation can be done under different
assumption. A common one is to restrict the power of Eve to for instance collective
attacks.
The error correction term leakEC can be estimated in different ways. If we use the

result from Section 4.9, we now that a one-way communication protocol exists which
is εc correct and leaks leakEC = H

εc/2
max(XA|XB)ω bits. As shown in Lemma 4.9.6 such

2Of course, this state is never known to Alice nor Bob at no stage of the protocol. But we can
assume that it exists.
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an error correction scheme is essentially optimal. Combined with Equation (6.6),
this gives the key length

Hε
min(XA|E)ω − 2 log

1

ε1
−Hεc/2

max(XA|XB)ω + 2.

Note that form this formula, we also obtain the Devetak-Winter rate [DW05] in
the case of collective attacks by using the asymptotic equipartition property of the
smooth min- and max-entropy discussed in Section 4.5.3 (see also [Ren05, TCR09,
FAR11]). In particular, we can then assume that we have tensor product structure
ω⊗nXAXBE , where now ωXAXBE denotes the state after a single use of the quantum
channel, such that by Corollary 4.5.5 the optimal achievable asymptotic rate is

r = H(XA|E)ω −H(XA|XB)ω = I(XA : XB)ω − I(XA : E)ω , (6.7)

where I(A : B) = H(A) −H(A|B) denotes the mutual information. Note that the
same argument can also be done in the case where Bob have not yet measured his
quantum register, which leads to an upper bound on the asymptotic key rate given
by I(XA : B)ω − I(XA : E)ω.

6.3. Application to a Two-Mode Squeezed State Protocol

6.3.1. Description of the Source and the Measurements

We always assume that the labs of Alice and Bob are closed and secure and that they
can trust their source and measurement devices. The source is located in Alice’s lab
and produces a two-mode squeezed vacuum state [BvL05, WPGP+12]. Experimen-
tally, such a state can be generated by mixing two squeezed vacuum states over a
balanced beam splitter. Alice then sends one mode to Bob over a quantum channel
whereupon both measure certain quadratures of the field by means of homodyne de-
tection. The important property of a two-mode squeezed state is that the outcome of
certain quadrature measurements on Alice’s and Bob’s side are strongly correlated.
In the following, we denote the conjugate pair of quadrature variables for Alice’s
and Bob’s mode which exhibit the maximal amount of correlation by QA, QB and
PA, PB, and call them phase and amplitude measurements. Mathematically, the ob-
servables QA and PA (QB and PB) correspond to the usual position and momentum
operator obeying the canonical commutation relation [QA, PA] = i ([QB, PB] = i)
(see Section 5). For simplicity, we chose the units such that ~ = 1. For illustration,
we plotted in Figure the probability distributions of the measurement outcomes of
Alice and Bob for the different choices of measurements for a two-mode squeezed
state.
Mathematically, the spectrum of the phase and amplitude measurements is the

real line. But in order to apply the privacy amplification result from Section 4.8
and therefore Theorem 6.2.2, it will be necessary to map the continuous outcome set
to a discrete (and finite) alphabet. This is also reasonable from a experimental
point of view since the resolution of a measurement device is always limited to
a certain accuracy. We use a uniform binning into intervals of length δ for the
range [−α + δ, α − δ] for a α > 0. The value of α will be chosen such that the
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probability that Alice measures a quadrature larger than α is of order εs. In the
following, we assume that δ is chosen such that M = α/δ is a natural number
and enumerate the intervals by I−M = (−∞,−α + δ], I−M+1 = (α − δ,−α + 2δ],
...,IM = (α − 2δ, α − δ], IM = (α − δ,∞). The outcome range is then denoted by
X = {−M,−M + 1, ...,M − 1,M} ⊂ Z and satisfies by definition |X | = 2α/δ. The
length δ has to be larger than the trusted measurement precision of the devices of
Alice and Bob used to measure the quadratures. The integrated projection valued
measure over the interval I ⊂ R of the phase and amplitude operators of Alice (Bob)
are denoted by QA(I) and PA(I) (QB(I) and PB(I)).
In the following section we describe the protocols for the case of coherent and

collective attacks. The way how the key is generated is similar in both cases and
uses the correlation in the phase an amplitude measurements. But the protocol
differs in the parameter estimation procedure. In the case of coherent attacks only
the quality of the correlations is tested while in the collective case state estimation
is used.

6.3.2. Coherent Attacks

The Protocol and a Formula for the Finite-Key Length. Alice and Bob per-
form independently and uniformly at random either phase or amplitude measure-
ment. This is repeated 2N times and leads to a set of 2N measurement outcomes.
Once all the measurements are completed they broadcast publicly their choice of
measurements, that is, phase or amplitude. They sift their data by discarding all
measurement results in which they have measured different quadratures. Since the
probability that they have chosen the same quadrature is 1/2 they end up with
roughly N correlated data points. Let us assume for simplicity that they are exactly
N measurement results left. They group their measurement outcomes according to
the binning introduced in the section before and end up with N data points in X .
For the following discussion, we assume that the protocol parameters α and δ are
fixed such that |X | = 2α/δ.
They choose a random sample of k < N data points denoted by XPE

A , XPE
B ⊂ X k,

which are used for parameter estimation. The remaining n = N − k data points
are denoted by XA, XB ∈ X n and serve as the raw key from which the final key is
extracted by classical post-processing as explained in Section 6.2.2. In the parameter
estimation step Alice and Bob check check, how strong their outcomes are correlated.
Let us define the average distance between two strings X,Y ∈ X k as

d(X,Y ) =
1

k

k∑
i=1

|Xi − Yi| , (6.8)

where X = (X1, ..., Xk) and Y = (Y1, ..., Yk). By definition, as smaller d(XPE
A , xPE

B )
as higher is the correlation between the strings XPE

A and XPE
B . They proceed with

the following test.
Parameter Estimation Test. They broadcast the values of XPE

A , XPE
B and check

that d(XPE
A , xPE

B ) ≤ d0. If not they abort the protocol.
If this test is passed, they pursue with error correction and privacy amplification as
discussed in Section 6.2.
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In all what follows we trust the source which is located in Alice’s lab. Hence,
Eve cannot interact with Alice’s mode during the whole protocol. Furthermore,
we assume that N uses of the source produces a state ωS

ANBN
which has tensor

product structure ωS
ANBN

= (ωSAB)⊗N and that the probability that Alice measures
a quadrature with absolute value smaller α is larger than pα. More formally, this
means that

ωSA

(
QA([−α, α])

)
≥ pα and ωSA

(
PA([−α, α])

)
≥ pα . (6.9)

We call such a source which ejects a tensor product state an i.i.d. (idependent and
identical distributed) source. We are now interested to bound the probability that a
quadrature value which is used for the raw key is outside of the range [−α, α]. But
this is simply given by

g(pα, n) = 1− pnα. (6.10)

As we show in the next section, the secure key length which can be extracted is
computed as follows.

Theorem 6.3.1. Let the source be i.i.d. and pα such that the inequality in (6.10)
is satisfied. We assum that an error correction scheme broadcasting leakEC bits of
classical information is used and the correctness test via two-universal hash functions
onto an alphabet of size log(1/εc) is passed. Moreover, let γ denote the function

γ(t) = (t+
√

1 + t2)
( t√

1 + t2 − 1

)t
. (6.11)

If the protocol passes the parameter estimation test for d0, then one can extract an
εc-correct and εs-secret key of length

n[log
1

c(δ)
− log γ(d0 + µ)]− leakEC − 2 log

1

ε1
− log

1

εc
+ 2, (6.12)

where c(δ) is the overlap of Alice’s measurement defined in Equation 6.22 and

µ = |X |
√
N(k + 1)

nk2
ln

1

εs − ε1 − 2
√

2g(pα, n)
. (6.13)

Note that the condition εs − ε1 − 2
√

2g(pα, n) ≥ 0 has to be satisfied in (6.13).
This can be reformulated by adding ε1 + 2

√
2g(pα, n) to the security parameter εs.

In particular, we then obtain that the key is (ε+ ε1 +2
√

2g(pα, n))-secret if we chose

µ = |X |
√
N(k + 1)

nk2
ln

1

ε
.

This simply means that we assume that the security of the protocol fails whenever
Alice measures a quadrature measurement higher than α. This is only a technical
problem necessary for the statistical estimations in the security analysis. More con-
cretely, in order to be able to obtain statistical large deviation bounds the alphabet
has to be finite.
The computation of the key rate is always based on certain assumption. In the

case of Theorem 6.3.1 the assumptions are the following.
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• Both Alice and Bob chose their measurements independently and uniformly in
each run.

• The source is trusted and i.i.d. satisfying inequality (6.10).

• The measurements of Alice are modeled by projections onto the intervals of
length δ of the spectrum of the one mode phase and amplitude operators QA
and PA. This includes implicitly the fact that the measurement between dif-
ferent runs commute.

Note that no assumptions about Bob’s measurement is used in the derivation of (6.6).
Hence, we do not have to trust the phase reference signal (local oscillator) which is
used for homodyne detection.
In practical implementations, the leakage term leakEC is the number of bits which

have been communicated in the error correction phase. Theoretically, we assume
that it is close to the asymptotic optimum which is given by the conditional von
Neumann entropy H(XA|XB) [SW71]. The conditional entropy can be written in
terms of the mutual information as

H(XA|XB) = H(XA)− I(XA : XB). (6.14)

In order to account for the inefficiency of the error correction protocol and the fact
that we are not in the asymptotic limit, we set3

leakEC = H(XA)− βI(XA : XB) (6.15)

where 0 < β ≤ 1. Recently, new codes designed for the case of Gaussian modu-
lation were developed which allow for high efficiencies like in the qubit case (β ≈
0.95 [JKJL11]).
Let us discuss now the dependence of the finite-key rate in Equation (6.6) on the

various parameters of the protocol. For practical purposes, the value d0 is simply
chosen to be equal to d(XPE

A , XPE
B ) which is optimal. The term µ comes from the

statistical analysis and reflects the uncertainty which arise if one wants to infer
properties of the raw key by analyzing the random sample XPE

A , XPE
B . As therefore

expected it goes to zero if N goes to infinity. If we consider the functional behavior µ
in dependence of the fraction of data used for parameter estimation k/N , we see that
it has a symmetric U-shape and takes its minimum for k/N = 0.5. Furthermore,
µ crucially depends on α and δ via |X | = 2α/δ as well as pα. This is a technical
problem which comes from technicalities in large deviation theory. Nevertheless,
we are not aware of how to relax this dependence. For the range of α we have to
consider, the influence of α on d(XPE

A , XPE
B ) and leakEC are negligible for the two

mode state considered below.
Let us assume for now that no eavesdropper is presence and discuss the dependence

of the finite-key length on the binning parameter δ. The numerical analysis shows
that the range of δ for which a non-vanishing key rate can be expected is δ ≤ 0.02.
The variation of δ effects directly the overlap of the quadrature measurements c(δ)

3In practice, it turns out that the inefficiency scales with the mutual information and not with the
conditional entropy
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(see Equation (5.52) or (6.22)). For small δ it can be well approximated by c(δ) ≈
δ2/(2π). Intuitively, it is clear that the average distance d(XPE

A , XPE
B ) decreases if

the binning δ gets smaller. Indeed, one can show that for a two mode squeezed
state the distance goes inverse proportional in δ for small δ. Moreover, for large
arguments the function γ(t) can be approximated by γ(t) ≈ 2et. Hence, we have
that4 γ(d(XPE

A , XPE
B ) + µ) ∝ 1/δ.

Let us now approximate the leakage term leakEC given in (6.15). We denote
the continuous outcome distribution of one quadrature measurements by X̃1

A and
X̃1
B. Since for small δ, the von Neumann entropy satisfies H(X1) ≈ h(X̃1) − log δ

with h(X̃) the differential entropy [CT91], we have under the assumption that the
outcomes in each run are independent and identically distributed that

leakEC ≈ n
(
h(X̃1

A)− β(h(X̃1
A) + h(X̃1

B)− h(X̃1
AX̃

1
B)
)
− n log δ

≡ nhβ(X̃1
A|X̃1

B)− n log δ

From this it follows that for small δ and in the asymptotic limit, the leading term in
the key rate is

r ≈ log
2π

δ2
− log γ

(
d(XPE

A , XPE
B )
)
− hβ(X̃1

A|X̃1
B) + log δ (6.16)

= − log
γ
(
d(XPE

A , XPE
B )
)
· 2hβ(X̃1

A|X̃
1
B) · δ

2π
. (6.17)

Hence, the condition for a positive key rate reads

γ(d(XPE
A , XPE

B ))

δ
≤ 2π

2hβ(X̃1
A|X̃

1
B)
. (6.18)

Both sides of inequality (6.18) do not scale in delta anymore and the difference
corresponds to the asymptotic key rate (which might vanish) for δ → 0.

Plots of the Finite-Key Rate. For the following plots, we use a symmetric model.
This allows us to characterize the two-mode state between Alice and Bob with four
parameters: squeezing λsq, antisqueezing λasq, transmission losses µloss and excess
noise µen. The squeezing and anti-squeezing is given in dB and describes the one-
mode vacuum squeezer used in the experiment. The corresponding covariance matrix
of the one mode state before the beam splitter is then given by(

10−
λsq
10 0

0 10
λasq

10

)
(6.19)

The two modes are then mixed over a 50 : 50 beam splitter by which the two-mode
squeezed vaccuum state is obtained. We assume that the losses due to transmission
and coupling are similar for Bob’s and Alice’s mode and simply modeled by replacing
a certain amount µloss of the signal by vacuum. Additionally, we assume excess noise
µen which corresponds to classical noise added in the data acquisition procedure.

4Note that also µ is inverse proportional in δ since |X | ∝ 1/δ
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Both effects are gaussian noise sources and are expressed as action on the covariance
matrix by

Γ→ (1− µloss)Γ + (µloss + µen)Γvac , (6.20)

where Γvac denotes the covariance matrix of the vacuum state which is simply the
identity matrix in our units. In the following plots the excess noise is always set to
µen = 0.01.5

All the plots are calculated for security parameters εs = εc = 10−6, and ε1 = εs/2.
This means that for realistic parameters N ≈ 108, `/N ≈ 10−1 the security per bit
is εs/` ≈ 10−13 [TLGR12]. We consider a high efficiency error correction scheme
with a leakage term given as in Equation (6.15) for β = 0.95. This can be achieved
using newly developed codes suitable for Gaussian modulation [JKJL11]. The key
rate is finally computed by optimizing over the remaining free parameter δ, α and
k/N .
In Figure 6.1 the key rate `/N is plotted for a fixed ratio λasq/λsq = 1.45 between

antisqueezing and squeezing and a fixed number of sifted measurement results N =
109. We see that in order to obtain a non-vanishing key rate without additional losses
(µloss = 0) a minimum squeezing/antisqueezing of λsq ≈ 8.9 dB and λasq ≈ 12.9 dB.
These squeezing strengths are experimentally challenging but possible [EHD+11b,
EHD+11a].

In Figure 6.2, the key rate `/N for a fixed squeezing and antisqueezing of λsq =
11dB and λasq = 16dB depending on N are plotted for losses 2%, 4% and 6%.
Losses of 6% are maximally tolerated, and above this threshold the key rate vanishes
even in the asymptotic limit. Experimentally, squeezing strengths of this order are
possible [EHD+11a] but the small tolerated noise threshold of 6% limits the distance
between Alice and Bob to a few meters. The reason why the key rate decreases so
rapidly by adding noise is because of the application of the uncertainty relation. For
a δ ≈ 0.02, the squeezing has to be strong in order to not lose the correlation between
Alice’s and Bob’s measurement. But since noise is added vacuum and it broadens
the phase space distribution, it severely destroys the correlations. The comparison
with the asymptotic optimal case and the case of collective attacks is discussed at
the end of Section 6.3.4.

6.3.3. Security Proof against Coherent Attacks

We start from the formula for the secure key length for a generic protocol given in
Theorem 6.2.2, such that the goal is to find a bound on the min-entropy Hε

min (XA|E).
This is achieved by applying a variant of the uncertainty relation discussed in Sec-
tion 4.7 for the discretized measurements of the quadrature variables QA and PA.
We use the notation introduced in Section 6.3.1 and assume for the following that α
and δ are fixed.
For the security analysis of a quantum key distribution protocol, we have to esti-

mate the quantum state on which the measurements for the raw key are performed
5In the experiment presented in [EHD+11a], the dark noise of the detectors is 20 dB below the
signal strength, leading to a value of µen = 0.01.
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Figure 6.1.: The key rate `/N is plotted depending on the squeezing λsq with fixed
ratio between antisqueezing and squeezing of λasq/λsq = 1.45 for sym-
metric losses of µloss of 0% (solid line), 2% (dashed line), 4% (dash-dotted
line) and 6% (dash-dotted-dotted line). The excess noise µen is assumed
to be 1%, the error correction efficiency β = 0.95 and the security pa-
rameters εs = εc = εpe = 10−6.

conditioned on the event that the parameter estimation test is passed. In our case
the test consists of the check d(XPE

A , XPE
B ) ≤ d0. In order to make this precise, we

assume that first all the quantum systems are distributed. In our protocol, we can
discard the subsystems on which Alice and Bob will measure different quadratures
and are left with a quantum state on N subsystems denoted by ωANBNE .6 Since
the parameter estimation test commutes with the measurement performed for key
generation, we can define the quantum state conditioned on the event that the test
is passed. This means that there exists a measurement operator Πpass acting only
non-trivially on the k subsystems used for parameter estimation which implements
the test. We denote by ωAnBnE the state conditioned on the event that the test is
passed and by ppass = 1 − pab the probability that the test is passed.7 Recall that
n = N − k denoted the number of signals left after parameter estimation.

Application of the Uncertainty Relation. The goal is to apply the uncertainty
relation with quantum side information for the measurements applied by Alice during
the protocol (see Theorem 5.3.1). But since the measurements corresponding to the
projections onto the intervals I−M = (−∞,−α + δ] and IM = (α − δ,∞) (see

6Note that at the moment we do not assume anything about the state except that it exists.
7We cannot estimate the value of ppass based on the information obtained in the protocol, so we
bound it from above by 1.
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Figure 6.2.: The key rate `/N against coherent attacks for fixed squeez-
ing/antisqueezing of 11dB/16dB and symmetric losses of 0% (solid line),
4% (dashed line) and 6% (dash-dotted line). The excess noise µen is 1%,
the error correction efficiency β = 0.95 and the security parameters
εs = εc = εpe = 10−6.

Section 6.3.1 for notation) satisfy

‖Q
1
2
A(IM )P

1
2
A (IM )‖2 ≈ 1 , (6.21)

the uncertainty relation given in Equation (4.57) is trivial. This is clear, because if
the product of the lengths of the intervals of two projectors are of order of the min-
imal uncertainty ~, then there exists a state with a phase-space distribution sharply
peaked in the square spanned by the intervals. But for such a state the entropies
of both quadrature measurements are approximately 0 why also the constant in the
uncertainty relation has to vanish.
In order to circumvent this problem we use the additional assumption that the

source is i.i.d. and that the condition 6.10 holds. Let us introduce another partition
of R into intervals {Ĩk}k∈Z of equal length δ enumerated in a way such that Ĩk = Ik
for k ∈ X\{−M,M}. Since the intervals are all of length δ, the overlap appearing
in the uncertainty relation is according to Equation (5.52) given by

c(δ) = max
i,j
‖Q

1
2
A(Ĩi)P

1
2
A (Ĩj)‖2 =

δ2

2π
· S(1)

0 (1,
δ2

4
)2 , (6.22)

where S(1)
n (·, u) denotes the radial prolate spheroidal wave function of the first kind.

Hence, we obtain a non-trivial bound for sufficiently small δ. It also follows that for
a sequence of n measurements the overlap is simply c(δ)n, if on each tensor factor
the product Q1/2

A (Ĩi)P
1/2
A (Ĩj) appears.
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In the protocol Alice chooses independently and uniformly at random for each
subsystem between phase and amplitude measurement. This can be modeled by
introducing a random variable Zn = (Z1, ..., Zn) independent and identically dis-
tributed according to the uniform distribution, where Zi takes value 0 or 1 depend-
ing on whether Alice’s measures phase or amplitude in the ith run. Let us denote
Zn = [0, 1]n, the uniform distribution over Zn by u and by {|zn〉〈zn|}zn∈Zn an or-
thonormal basis of a Hilbert space. The random measurement choice of Alice can
now be modeled by introducing the state

ωAnBnEZn =
∑

zn∈{0,1}n
u(zn)ωAnBnE ⊗ |zn〉〈zn| , (6.23)

and the POVM {Πln(zn)⊗ |zn〉〈zn|}zn∈Zn,ln∈Xn , where

Πln(zn) =
⊗
i

Πlni
(zni ) (6.24)

with Πlni
(0) = QA(Ilni ) and Πlni

(1) = PA(Ilni ). Hence, zni determines whether phase or
quadrature is measured. In the following, we let z̄n be the maximally complementary
string of zn, i.e, z̄ni = 1 if zni = 0 and vice versa. Let us denote the post-measurement
state obtained by measuring the state ωAnBnEZn by the POVM {Πln(zn)⊗|zn〉〈zn|}
by ωnXABnEZn . Here, XA takes values in X k and denotes the random variable which
describes the distribution of the raw keys in the actual protocol. Note that all parties
are assumed to hold a copy of the variable Z since the measurement choices have
been revealed in the sifting phase. Additionally, we introduce a similar POVM for
the projections onto the spectrum of Alice’s phase and amplitude measurements onto
the intervals {Ĩi}i∈Z and denote them by

Π̃ln

A (zn) =
⊗
i

Π̃li
A(zi) , (6.25)

where Π̃i
A(0) = QA(Ĩi) and Π̃i

A(1) = PA(Ĩi) for i ∈ Z. The corresponding post-
measurement state is denoted by ω̃nXABnEZn . Note that here the distribution over
XA can take values in Zn.
In a first step, we prove now that ωnXABnEZn is close to ω̃nXABnEZn whenever pα as

defined in (6.10) is small. This enables us to finally apply the uncertainty relation
to ω̃nXABnEZn . We assume that the source is i.i.d. and that (6.10) holds. Let us now
define Λ = Z\X and for every zn ∈ [0, 1]n the projector

ΠΛ
A(zn) =

∑
ln∈Λ

Π̃ln

A (zn) (6.26)

which corresponds to the event where at least one of the quadrature measurements
exceeds α. Since

ωAn =
1

ppass
TrAkBN

(
Πpass
k ωANBN

)
≤ 1

ppass
ω⊗nA ,

we obtain by substituting the definition from Equation (6.10)

Tr
[
ωAnΠΛ

A(zn)
]
≤ 1− pnα

ppass
=

2g(pα, n)

ppass
, (6.27)
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for every zn ∈ Zn. Let ωznXABnE be the normalized state conditioned on the event
Zn = zn, which can be written as

ωz
n

XABE
=
∑
ln∈Xn

|ln〉〈ln| ⊗ ωl
n,zn

BE .

If we use the similar notation for the state ω̃nXABnEZn , we obtain that the fidelity
between ωznXABE and ω̃znXABE (see Definition 3.4)

F (ωz
n

XABE
, ω̃z

n

XABE
)

1
2 =

∑
ln∈Xn

F (ωl
n,zn

BE , ω̃l
n,zn

BE )
1
2

≥
∑
ln∈Xn

F (ω̃l
n,zn

BE , ω̃l
n,zn

BE )
1
2

= 1− Tr
[
ωAnΠΛ

A(zn)
]
,

The inequality is due to the fact that whenever |lni | ≤ M − 1 for all i we have
that ωl

n,zn

BE = ω̃l
n,zn

BE , and otherwise, we can write ωl
n,zn

BE = ω̃l
n,zn

BE + σl
n,zn

BE for a
non-normalized state σl

n,zn

BE . By using Equation (6.27) and that the fidelity between
ωnXABnEZn and ω̃nXABnEZn is just the average over zn ∈ Zn, we arrive at

F (ωXABnEZn , ω̃XABnEZn) ≥
(
1− 2

g(pα, n)

ppass

)2 ≥ 1− 2
g(pα, n)

ppass
,

and by the definition of the purified distance (3.9)

P(ωnXABnEZn , ω̃
n
XABnEZn

) ≤

√
2
g(pα, n)

ppass
. (6.28)

The bound in (6.28) can now be used to bound the smooth min- and max-entropy
by

Hε+ε̃
min(XA|EZn)ω ≥ Hε

min(XA|EZn)ω̃ (6.29)

−Hε+ε̃′
max (XA|BnZn)ω̃ ≥ −Hε

max(XA|BnZn)ω , (6.30)

where ε′ =
√

2g(pα, n)/ppass. We simply used the definition of the smooth min- and
max-entropies (Definition 4.3.2) and applied the triangle inequality as well as the
monotonicity of the purified distance (3.11).
In a next step, we apply a version of the uncertainty relation shown in Theo-

rem 4.7.1 to the state ω̃XAZnBnE .

Corollary 6.3.2. Let ω̃AZnBnE, Π̃kn(zn)⊗|zn〉〈zn| and ω̃XAZnBnE as defined above.
Then, it follows that

Hε
min (XA|EZn)ω̃ ≥ −n log c(δ)−Hε

max (XA|BnZn)ω̃ . (6.31)

A proof can be found in [Tom12, Corollary 7.6] for the finite-dimensional case,
which can be straightforwardly extended to thee infinite-dimensional case. We give
here only a proof for the ε = 0 case which illustrates the idea.
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Proof. Let us simplify notation and write A, B and Z instead of An, Bn and Zn.
We then have that

ωXAZBE =
∑
z∈Z

u(z)⊗ |z〉〈z| ⊗ ωzXABE (6.32)

for ωzXABE =
∑

x |x〉〈x| ⊗ ωABE(Πx(z) · Πx(z)). It is now easy to see that the
uncertainty relation for ε = 0 given in Theorem 4.7.1 can be applied for every z
individually to and simply gives

Hmin (XA|E)ωz ≥ −n log c(δ)−Hmax (XA|B)ωz̄ . (6.33)

Hence, by using [Tom12, Proposition 4.6], we obtain

Hmin (XA|EZn)ω = − log
(∑

z

u(z)2−Hmin(XA|E)ωz
)

(6.34)

≥ − log
(

2n log c(δ)
∑
z

u(z)2−Hmax(XA|B)ωz̄
)

(6.35)

= −n log c(δ)−Hmax (XA|BZn)ω̄ , (6.36)

where
ω̄XAZBE =

∑
z∈Z

u(z̄)⊗ |z〉〈z| ⊗ ωx,zXABE . (6.37)

Since u(z̄) = u(z), we obtain the uncertainty relation for ε = 0. The technically
more involved proof for the ε > 0 case can be obtained in the same way as shown
in [Tom12, Corollary 7.6].

If we combine Corollary 6.3.2 with Equation (6.29) and (6.30) we arrive at

Hε+2ε′

min (XA|EZn)ω ≥ −n log c(δ)−Hε
max(XA|BnZn)ω .

with ε′ =
√

2g(pα, n)/ppass. Applying the data processing inequality from Proposi-
tion 4.5.1 with the quantum channel corresponding to Bob’s measurement, we finally
obtain

Hε+2ε′

min (XA|EZn)ω ≥ −n log c(δ)−Hε
max(XA|XB)ω . (6.38)

Statistical Bound on the Smooth Max-Entropy. We are left to bound the smooth
max-entropy Hε′

max(XA|XB)ω using the information from the parameter estimation
test. The following arguments are similar to the one in [TLGR12]. In a first step,
we estimate the probability that the average distance of the strings XA and XB

deviates from the one of the random sample XPE
A and XPE

B . This can be done by
using standard tools from random sampling without replacement. In the following we
denote by Xtot

A , Xtot
B ∈ XN the sequence of all measurement outcomes after sifting

from which XPE
A , XPE

B ∈ X k are drawn at random.

Lemma 6.3.3. Let Xtot
A , Xtot

B ∈ XN the N data points of Alice and Bob after sifting
and XPE

A , XPE
B ∈ X k a random sample of it. Then, it follows that

Prob[d(XA, XB) ≥ d(XPE
A , XPE

B ) + µ|“pass”] ≤ 1

ppass
e
−2µ2 nk2

|X|2N(k+1) . (6.39)
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Proof. Since the probability that the protocol passes is ppass, we find that

Prob[d(XA, XB) ≥ d(XPE
A , XPE

B ) + µ|“pass”]

≤ 1

ppass
Prob[d(XA, XB) ≥ d(XPE

A , XPE
B ) + µ] .

Deriving a bound on Prob[d(XA, XB) ≥ d(XPE
A , XPE

B ) + µ] is a standard problem
from random sampling without replacement. We have that XPE

A , XPE
B ∈ X k is a

random sample of all measurements Xtot
A , Xtot

B ∈ XN . The quantity of interest is
|xiA−xiB|, where xiA ∈ Xtot

A and xiB ∈ Xtot
B . For this we denote the population mean

by dtot = d(Xtot
A , Xtot

B ), the sample mean by dPE = d(XPE
A , XPE

B ), and for the raw
key dkey = d(XA, XB). Note that these are related via

Ndtot = kdPE + ndkey . (6.40)

We consider the runs of the protocol as a probabilistic process and treat dtot as a
random variable. As shown in [Ser74], we can bound now

Prob[dkey ≥ a+ µ|dtot = a] ≤ e−2nµ2 N
|X|2(k+1) ,

which is independent of a. Here, we used that the maximal value of |xiA − xiB| is
given by |X |.8 Using Eq. (6.40), we can compute

Prob[dkey ≥ dPE + µ] = Prob[dkey ≥ dtot +
k

N
µ]

=
∑
a

Prob[dtot = a] · Prob[dkey ≥ a+
k

N
µ|dtot = a]

≤ e−2µ2 nk2

|X|2N(k+1) .

In a second step, we give now a bound on the conditional smooth min-entropy
which only depends on the average distance between XA and XB.

Lemma 6.3.4. Let X be a finite alphabet, P(x, x′) a probability distribution on X n×
X n for some n ∈ N, d0 > 0 and ε > 0. If P satisfies ProbP[d(x, x′) ≥ d0] ≤ ε2, then

Hε
max

(
X|X ′

)
P ≤ n log γ(d0) ,

where
γ(t) = (t+

√
1 + t2)

( t√
1 + t2 − 1

)t
.

Proof. The idea is to first cut off the part such that d(x, x′) ≥ d0 by using the smooth-
ing parameter and then bound the max-entropy. So, let us define the probability
distribution

Q(x, x′) =

{ P(x,x′)
ProbP[d(x,x′)≤d0] , if d(x, x′) ≤ d0

0, else

8Here, it is necessary that the alphabet is finite.

101



6. Finite-Key Analysis for Continuous-Variable Quantum Key Distribution

and note that F (P,Q) = ProbP[d(x, x′) ≤ d0]. Hence, it follows that P(P,Q) =√
ProbP[d(x, x′) ≥ d0] ≤ ε. Using the definition of the smooth max-entropy (4.12)

and that the 0-Rényi-entropy is bigger than the max-entropy [TSSR10], we obtain

Hε
max

(
X|X ′

)
P ≤ Hmax

(
X|X ′

)
Q ≤ H0(X|X ′)Q .

The conditional 0-Rényi entropy of the distribution Q is then given by [Ren05, Re-
mark 3.1.4]

H0(X|X ′)Q = max
x′

log |{x ∈ X n ; Q(x, x′) 6= 0}|

≤ log |{x ∈ Zn ;
n∑
i=1

|xi| ≤ nd0}| .

For any λ > 0, we can estimate

|{x ∈ Zn ;

n∑
i=1

|xi| ≤ nd0}| ≤
∑
x∈Zn

exp[λ(nd0 −
n∑
i=1

|xi|)]

= eλnd0

(∑
z∈Z

e−λ|z|
)n

=
(
eλd0

1 + e−λ

1− e−λ
)n

.

By optimizing over λ > 0, one finds that |{x ∈ Zn ;
∑n

i=1 |xi| ≤ nd0}| ≤ γ(d0)n.
This completes the proof.

Let us now combine Lemma 6.3.3 and 6.3.4 by setting

(ε′)2 =
1

ppass
e
−2µ2 nk2

|X|2N(k+1) , (6.41)

from which then follows that

Hε′
max(XA|XB)ωpass ≤ n log γ(d0 + µ) (6.42)

for

µ = |X |

√
N(k + 1)

nk2
ln

1
√
ppassε′

.

Combining this with the uncertainty relation given in Equation (6.38) and bounding
ppass ≤ 1, we obtain the lower bound for the extractable finite-key length presented
in Theorem 6.3.1.

6.3.4. Collective Attacks and Comparison with Coherent Attacks

In the case of collective attacks, we can assume that the state between Alice, Bob
and Eve has tensor product structure. That is after Ñ use of the quantum channel
the state between these three parties can be written by ω⊗ÑABE . Alice and Bob can
do state estimation to guess ωAB. From this the information of Eve can be bounded
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by assuming that she holds an arbitrary purification of ωAB. This is then used to
compute a bound on the smooth min-entropy Hε

min (XA|En)ω⊗n which gives then a
bound on the extractable finite-key length via Theorem 6.2.2. The following treat-
ment focuses on the information theoretic part and the finite statistics in the state
estimation is mostly neglected.

The Protocol and a Formula for the Finite-Key Length. The protocol only dif-
fers from the case of coherent attacks in the parameter estimation phase. For the
key generation Alice and Bob choose randomly and independently between phase
QA, QB and amplitude measurements PA, PB. With a pre-determined probability,
they perform at random additional measurements necessary for state estimation. We
do not specify such measurements at the moment and refer to the end of this section
for a discussion. After Ñ measurements are performed Alice and Bob announce their
measurement choices. As in the case of coherent attacks, they use the measurement
in which both have measured phase or amplitude to form the raw key with the same
partition as introduced in Section 6.3.1. We assume that in the following δ and α
are fixed and that the use the measurement results from n instances to form the raw
key denoted by XA, XB ∈ X n.
The remaining data is used for state estimation. This includes the measurements

explicitly done for state estimation as well as the ones which were not used for
the raw key. We assume that the state estimation scheme determines a confident set
Cεpe ⊂ R4×4, which ensures that whenever the protocol does not abort the covariance
matrix Γ of the two mode state ωAB lies in Cεpe with probability at least 1− εpe.9 In
the following, we denote the two-mode Gaussian state corresponding to a covariance
matrix Γ by ωΓ

AB. As proven in the next section, the described protocol leads to the
following bound on the extractable finite-key length.

Theorem 6.3.5. Let us assume that an error correction scheme broadcasting leakEC
bits of classical information is used and the correctness test via two-universal hash
functions onto an alphabet of size log(1/εc) is passed. Moreover, we are given a
confidence set Cεpe . By assuming only collective attacks, one can extract an εc-correct
and (εs+εpe)-secret key of length

n · inf
Γ∈Cεpe

H(XA|E)ωΓ −
√
n ·∆− leakEC − 2 log

1

ε1
− log

1

εc
+ 2 (6.43)

where

∆ = 4 log(2
1
2
Hmax(XA)ω+1 + 1)

√
log

8

(εs − ε1)2
. (6.44)

Here ωΓ
XAE

is obtained from ωΓ
AB by applying the POVM corresponding to Alice’s

measurement to an arbitrary purification ωΓ
ABE. Note that ωΓ

XAE
depends on δ and

α via the POVM of Alice.

9We assume that Alice and Bob chose their coordinates such that the first moments of the state
vanish. For the analysis presented here it is then enough to estimate the second moments of the
state independent whether the state is actually a Gaussian state or not.
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Given Equation (6.43), the difficulty is now to obtain reliable confident sets Cεpe .
Note also that Theorem 6.3.5 holds for any continuous-variable protocol. The de-
pendence on the state is implicitly via the computation of the von Neumann entropy
H(XA|E) and the leakage term leakEC. Moreover, also the binning of the measure-
ments used to obtain the raw key XA ∈ X n can be changed arbitrarily. The only
crucial assumption is that the measurements form a complete POVM, that is, sum-
ming up to the identity. This is necessary to replace the infimum over all states with
a covariance matrix in Cεpe by the infimum over the Gaussian representatives. This
is usually called the optimality of Gaussian attacks [GPC06, NGA06]. The technical
statement suitable for our security analysis is also proven in Appendix A.1. Unfor-
tunately, this result is not compatible with post-selection [SRLL02], which is one of
the tools to beat the 50% (3dB) loss limit.
Another way to overcome the 50% loss limit is to use a reverse reconciliation scheme

[] in which the key is generated from Bob’s data (which is assumed to be more noisy)
and in the error correction scheme Alice corrects her data. This applies directly to
our formula by changing the dependence on XA by XB in formula (6.43). The idea
of reverse reconciliation is that since the source is located in Alice’s lab Bob’s data
is more noisy, which makes it more difficult for Eve to guess Bob’s measurement
outcomes. The advantage then is clear from the asymptotic key rate in terms of the
mutual information (6.7), in which an exchange from XA to XB only decreases Eve’s
mutual information about the raw key.

Plot of the Finite-Key Rate Secure against Gaussian Collective Attacks For
the state estimation procedure and therefore the computation of the confident set
Cεpe , we assume that Eve is restricted to collective Gaussian attacks. Under the
assumption of a Gaussian state Alice and Bob then reconstruct their state using
homodyne measurement of the quadratures QA, QB, PA and PB by assuming that
they correspond to the coordinates leading to maximal correlations. The covariance
matrix can then be estimated using likelyhood estimators. For the details as well as
the explicit formulas we refer to [LGG10]. If we assume that the actual distributed
Gaussian state has covariance matrix Γ, the confident set Cεpe is given by [EHD+11a]

Cεpe = {Γ̃ | Γij −
f(εpe)√
N ′

Γij ≤ Γ̃ ≤ Γij +
f(εpe)√
N ′

Γij} (6.45)

where f(εpe) is a function depending on εpe and N ′ is the number of measurements
used for the reconstruction per variance.
We consider the same error model as used in the case of coherent attacks (see

end of Section 6.3.2). That means, we assume symmetric losses µloss and a constant
excess noise of µen = 0.01.10 Furthermore, the squeezing and antisqueezing strengths
λsq and λasq are given for the one mode states before entangling over the balanced
beam splitter. In parctice, the value of α has to be chosen such that the hashing

10It would also be interesting to discuss the effect of reverse reconciliation and consider an asym-
metric situation in which the losses on Bob’s side are relatively higher. But here we just focus
on the comparison with the case of coherent attacks in which a symmetric model is assumed
because of the small tolerated noise.
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with two-universal functions is still possible. For simplicity, we take α → ∞ which
is the theoretical optimum.
The value of δ affects the key rate via the computation of the conditional von

Neumann entropy H(XA|E). Because we consider measurements with a finite spac-
ing δ, the post-measurement states conditioned on the event that for instance Alice
measured x ∈ X is not a Gaussian state anymore. This makes the computation
of H(XA|E) little more involved as in the case of continuous measurements (see
e.g. [LBGP+07]). But as shown in Appendix A.2 it can be estimated by

H(XA|E)ω ≥ H(E)ω(0) +H(XA)ω −H(AB)ω ,

where ωE(0) denotes the post-measurement state on Eve’s side conditioned on the
event that Alice measures a (continuous) quadrature x = 0. Since ωE(0) and ωAB
are Gaussian states the von Neumann entropy can be computed (see, e.g., [SIDS04]).
If nothing else mentioned, the following plots are computed for the same parame-

ters as in the case if coherent attacks, that is, the error correction efficiency is taken
to be β = 0.95 (see Equation 6.15) and security parameters εs = εc = εpe = 10−6

and ε1 = εs/2. In Figure 6.3, we plotted the finite-key rate for squeezing and an-
tisqueezing λsq = 11dB and λsq = 16dB. We see that without losses a positive key
rate is obtained slightly above N = 106 sifted signals. The highest tolerated loss in
this symmetric model is µloss = 0.25.
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Figure 6.3.: The key rate `/N against collective Gaussian attacks is plotted in depen-
dence of the number of sifted Signals N . The squeezing/antisqueezing
is 11dB/16dB and the different graphs belong to symmetric losses of
0% (solid line), 15% (dashed line), 25% (dash-dotted line). The excess
noise µen is 1%, the error correction efficiency β = 0.95 and the security
parameters εs = εc = εpe = 10−6.

We see that the key rate computed against Gaussian collective attacks is sig-
nificantly higher than the one for coherent attacks. It is known that under the
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assumption that we also trust Bob’s measurements (and that they are modeled by
projection onto the spectrum on the phase and amplitude operator), the asymptotic
rate

I(XA : XB)ω − βI(XA : E)ω, (6.46)

can be proven to be secure [RC09]. This is exactly the asymptotic limit for the
formula computed in the case of collective attacks. Hence, we know that the finite-
key rate computed in Section 6.3.2 do not converge to the asymptotic limit.11 In
fact a closer look at the security proof given in Section 6.3.3 shows that the bound
on the smooth max-entropy is essentially tight but the uncertainty relation is not.
One can show that the difference is independent of the squeezing and roughly given
by 1.5 bits. In Figure 6.4, we plotted the key rate for squeezing and antisqueezing
of λsq = 11dB and λsq = 16dB in dependence on symmetric losses for coherent and
collective Gaussian attacks and compare it with the asymptotic optimal rate.
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Figure 6.4.: The Key rate is plotted depending on the losses µloss for security against
coherent attacks (dot-dashed line) and collective Gaussian attacks at
N = 109 (dashed line), as well as the asymptotic rate 6.46 for opti-
mal error correction β = 1 (solid line). The squeezing/antisqueezing is
11dB/16dB and for the finite-key rate we set the number of sifted signals
N = 109 and the security parameters εs = εc = 10−6.

6.3.5. Security Proof against Collective Attacks

Let us fix the parameters α and δ which determine the measurements. We start
again with Theorem 6.2.2 and have to bound the smooth min-entropy. According to
the definition of the confidence set Cεpe , we know that up to an error of εpe the state

11Note that in contrast, the security proof based on [RC09] is not suitable for a finite-key analysis
because the number of signals N must be of orders (N & 1014) which are so far not possible in
practice.
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ωAB has a covariance matrix Γ ∈ Cεpe . The error εpe can be added to the security
parameter of the protocol. Let now ωAB be a state with covariance matrix Γ ∈ Cεpe .
We then take an arbitrary purification ωABE and give Eve the entire complementary
system E. Note that HE can chosen to be isomorphic to HAB. This provides her
with the best possible situation. We then denote by ωXABE the normalized post-
measurement state after Alice applied the POVM {1

2QA(Ii) + 1
2PA(Ii)}i∈X . Recall

that QA(Ii) (PA(Ii)) denotes the projector onto the interval Ii of the spectrum of
the operator QA (PA).
We show now that for any state ωAB with a covariance matrix Γ ∈ Cεpe there exists

a lower bound on Hε
min (Xn

A|En)ω⊗n which only depends on the covariance matrix
Γ of ωAB. In order to bound the smooth min-entropy of the n-fold tensor product
ω⊗nXAE , we use the asymptotic equipartition property from Theorem 4.5.3. This leads
to

Hε
min (Xn

A|En)ω⊗n ≥ nH(XA|E)ω −
√
n 4 log(η)

√
log

2

ε2
, (6.47)

where η = 2−
1
2

Hmin(XA|E)ω + 2
1
2

Hmax(XA|E)ω + 1. The value of η can now be simplified
by using that for an arbitrary purification ωXAEC of ωXAE , we have according to the
definition of the max-entropy (4.6)

−Hmin(XA|E)ω = Hmax(XA|C)ω ≤ Hmax(XA)ω

where the last inequality is due to the data processing inequality (4.18). Furthermore,
we can also use the data processing inequality (4.18) to bound the max-entropy
Hmax(XA|E)ω ≤ Hmax(XA)ω. Using this two estimations, we obtain

2−
1
2
Hmin(XA|E)ω + 2

1
2
Hmax(XA|E)ω ≤ 2

1
2
Hmax(XA)ω+1 .

Hence, we finally arrive at

Hε
min(XA|E)ω⊗n ≥ n ·H(XA|E)ω −

√
n ·∆ (6.48)

with

∆ = 4 log(2
1
2
Hmax(XA)ω+1 + 1)

√
log

2

ε2
. (6.49)

In a last step, we use that the infimum of the von Neumann entropy H(XA|E)ω over
all states ωAB with the same covariance matrix Γ is attained for the Gaussian state
ωΓ
AB. This is usually referred to as the fact that Gaussian attacks are optimal within

all possible ones [GPC06, NGA06]. In Appendix A.1, we give a proof by means
of a general extremality theorem for Gaussian states [RWW06]. Hence, since these
bounds hold for any Γ ∈ Cεpe , we obtain for any possible state ωAB with covariance
in Cεpe that

Hε
min(Xn

A|E)ω⊗n ≥ n · inf
Γ∈Cεpe

H(XA|E)ωΓ −
√
n ·∆. (6.50)

Using this result to bound the smooth min-entropy in Theorem 6.2.2 yields Equa-
tion (6.43).
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7. Device-Independent Quantum Key
Distribution and Extremal
Correlations

7.1. Introduction

The goal in device-independent quantum key distribution is to prove security with-
out any assumption about the source and the measurement devices (see Section 1.4).
One employs the principle that correlations can be generated by a quantum me-
chanical system which allow no local hidden variable model. This was realized and
formalized by Bell in 1964 [Bel64]. We focus here on the question of independence of
correlations often also referred to as monogamy of correlations [BKP06]. This means
that independent of the actual realization of the quantum system, the measurement
outcomes of the honest parties are uncorrelated to any measurement of a possible
adversary (see Definition 7.6). Hence, an adversary can only guess the outcomes of
the measurements. Motivated by this property, we call such correlations secure.1

In Section 7.3, we show that such secure correlations are in one-to-one correspon-
dence with extremal points in the set of all possible quantum correlations. The proof,
which is given here for quantum mechanics, can be generalized to any general proba-
bilistic theory. One direction of this result, namely that extremality implies security,
was shown for non-signal theories in [BLM+05]. Hence, our result implies also the
converse. How extremality of a correlation can be used to prove device-independent
security of a two-party quantum key distribution protocol is shown in [BHK05] for
the case of individual attacks and an eavesdropper which is only constraint by the
non-signaling principle.
In Section 7.3.1, we discuss the rather peculiar situation in which the correla-

tion determines the quantum representation, that is, the state and the observables
uniquely. This property together with extremality implies that all possible mea-
surements of the honest parties are statistically independent of any measurement an
eavesdropper can perform (see Theorem 7.3.8).
While the general part holds for any number of parties, measurements and out-

comes, we study in Section 7.4 methods to find extremal points for particular sit-
uations. In the case of two binary measurements at each site, the situation can be
reduced to the study of irreducible representations of the universal C*-algebra of two
projections [Ped68] and tensor products thereof (see Section 7.4.1). This is then ap-
plied to the case of 2 parties in Section 7.4.2, where a method to certify extremality
is discussed, by which a parametrized family of extremal correlations are obtained.

1Note that here “security” refers to a property of a correlation table and should not be confused
with the definition of a secure key given in the previous chapter.
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In Section 7.4.3, we discuss the case of two parties and an arbitrary number of bi-
nary measurements, which was essentially solved by Tsirelson [Tsi85]. We review
his results and apply it to particular questions like extremality of correlations or
uniqueness of quantum representations.

7.2. Basic Setup and Definitions

We consider a correlation experiment with N different parties which are space-like
separated. Each party can measure M different observables where each has K dif-
ferent outcomes. This situation can be described by a correlation table which gives
the probabilities for every outcome conditioned on every possible choices of mea-
surements of the parties. Let us denote the measurement choices or also called
settings of the N parties by s = (s1, . . . , sN ), with si ∈ {1, . . . ,M}. For each setting
si, we assume that the K outcomes are similarly labeled by {1, 2, ...,K} such that
the every measurement setting s produces an output string x = (x1, . . . , xN ) where
xi ∈ {1, . . . ,K}. Hence, the experiment is fully characterized by MN conditional
probability distributions denoted P(x|s) satisfying

N∑
i=1

K∑
xi=1

P(x|s) = 1 ∀s ∈ {1, ...,M}n . (7.1)

Such a set of conditional probability distributions P is called a correlation table.
Moreover, we refer to such an experiment determined by N parties,M measurements
and K outcomes each as the (N,M,K) case. For convenience, we always restrict to
the symmetric case in which all parties have the same number of measurements (M),
and each measurement has the same number of outcomes (K). Because the proofs
of the following general results do not depend particularly on these numbers, they
also hold if they are different for each party and measurement. In the following, we
think of P as vectors in Rd with d = (MK)N .
The assumed physical theory restricts the possible correlation tables by additional

conditions other than the normalization (7.1). Let us consider the example of non-
signaling theories in which no instantaneous interaction/communication is possible.
Since we assume that the parties (and in particular the space-time points in which
they chose and perform their measurements) are space-like separated, the outcome
of party i must not depend on the measurement settings s1, . . . , si−1, si+1, . . . , sN of
the other parties. The constraints for the correlation tables then reads

P(xk1 , xk2 , . . . , xkl |s1, s2, . . . , sN ) = P(xk1 , xk2 , . . . , xkl |sk1 , sk2 , . . . , skl) (7.2)

for any (xk1 , xk2 , . . . , xkl). Since these are finitely many linear constraints in P(x|s),
the set of all non-signaling correlation tables form a polytope. We denote them by
P(N,M,K) or short P if the number of parties, measurements and outcomes are
clear from the context.
The set of correlation tables which are convex combinations of deterministic events

are called classical correlations and denoted by C(N,M,K). These are the correla-
tions which allow a local hidden variable (LHV) model [Bel64]. Since the set is
defined as the convex hull of a finite number of extreme points (the deterministic
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events) it follows that also C is a polytope. A polytope is uniquely determined by
either its extreme points or the faces. A face corresponds to a supporting hyperplane
of the polytope. The inequalities which determine the face of the classical polytope
C are called (proper) Bell inequalities [Bel64].2 The most prominent Bell inequal-
ity is the Clauser-Horn-Shimony-Holt (CHSH) inequality which holds in the (2,2,2)
case [CHSH69]. Up to relabeling it is the only proper Bell inequality in the (2,2,2)
case as proven in [Fin82]. For more parties as well as larger numbers of measurements
and outcomes the problem to determine all the Bell inequalities is very difficult. For
more details about finding Bell inequalities as well as recent results see [Proa].
Let us turn now to the set of correlation tables which can be realized within

quantum mechanics. We start with a definition (c.f. [Tsi93]).

Definition 7.2.1. A quantum representation of a correlation table P consists of a
Hilbert spaceH together with a set of positive operator valued measures {Fi(xi|si)}Kxi=1

for i ∈ {1, . . . , N} and si ∈ {1, . . . ,M}, and a positive normalized linear functional
ω : B(H)→ C such that

[Fi(x|s), Fj(x|s)] = 0 (7.3)

for all i 6= j and
P(x|s) = ω

(
F (x|s)

)
, (7.4)

where F (x|s) =
∏
i Fi(xi|si). The set of all correlation tables P which admit a quan-

tum representation is denoted by Q(N,M,K).

In the following, we use the shorthand notation (H, {F (x|s)}, ω) for a quantum
representation as given in Definition 7.2.1. The Hilbert space dimension of a quantum
representation can be infinite and is not constraint. Note that we consider here the
C∗-algebra state space of B(H) to generat Q and not only allow normal states which
can be written as a density matrix according to Equation (2.3). This is important
for the state space to be weakly* compact which implies compactness of Q.

Lemma 7.2.2. The set of quantum correlations Q defined above is a convex and
compact set for every (N,M,K).

Proof. The set Q is a subset of the finite-dimensional vector space Rd with d =
(MK)N . Due to the normalization property given in Equation (7.1) it also follows
that Q is bounded. We first show the convexity of Q. Let P1 and P2 be correlation
tables in Q. We show that for any 0 ≤ p ≤ 1 the correlation table P = pP1 +
(1 − p)P2 admits a quantum representation. Since P1,P2 ∈ Q, there exist quantum
representations (Hl, {F (l)(x|s)}, ω(l)) such that

Pl(x|s) = ω(l)
(
F (l)(x|s)

)
.

Let us consider the direct sum of the Hilbert spaces H = H1 ⊕ H2 and define the
operators Fi(xi|si) = F

(1)
i (xi|si)⊕ F (2)

i (xi|si) and the state ω = pω1 ⊕ (1− p)ω2. It
is easy to verify that the operators Fi(xi|si) together with the state ω define a valid
quantum representation of P ∈ Q.

2Sometimes any inequality which constraints classical correlation tables is called Bell inequality
and not just the one which correspond to faces.
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In order to show compactness, it is enough to show that Q is closed in Rd. For that
we consider a converging sequence {Pk} of correlation tables in Q with quantum rep-
resentations (Hk, {F (k)(x|s)}, ω(k)). Let P be the limit of the sequence Pk. We then
define the Hilbert space H =

⊕
kHk and the operators Fi(xi|si) =

⊕
k F

(k)
i (xi|si).

Let now ωα be the sequence of states which is zero on all subspaces Hk except for
k = α and on Hα equal to ω(α). Since ‖ωα‖ = 1 for all α, we have that the se-
quence is bounded. Because the state space of a C∗-algebra is weakly* compact
(see e.g., [BR79, Theorem 2.3.15]), there exists according to the Banach Alaouglo
Theorem a weakly* converging subsequence. If ω is the limit of the subsequence,
then it follows that the operators {Fi(xi|si)} together with the state ω is a quantum
representation of P, and hence, P ∈ Q.

Note that we use the algebraic approach and model different parties by commuting
operators rather than require tensor product structure. The question whether the
two approaches lead to the same set of correlation tables is referred to as Tsirelson’s
problem [Prob, SW08]. It is clear that correlation tables which can be obtained
by assuming tensor product structure are contained in Q. Tsirelson showed that in
the case of finite-dimensional Hilbert spaces the set of correlation tables which can
be obtained by modeling different parties with tensor product structure are similar
to the one which can be obtained with commuting operators [Prob]. In the case of
infinite-dimensional systems this is still an open question and only recently connected
to Conne’s embedding problem which remains an outstanding question in operator
theory [JNP+11].

In contrast to C, the set Q is not a polytope. In particular, it is the convex span
of a continuum of extremal points. For an example see [Mas03] in which the set of
correlation tables for the (2, 2, 2) case was completely determined by means of a set
of non-linear inequalities. The convex and compact structure of Q allows us to use
supporting hyperplanes to characterize it. A supporting hyperplane is given by a
linear functional f : Rd → R such that there exists a real number qf > 0 with3

f(v) ≤ qf ∀x ∈ Q and ∃ v ∈ Q : f(v) = qf . (7.5)

The fact that there exists always a v such that f(v) = qf follows by the compactness
of Q. These supporting functionals are the analogues of the Bell inequalities for Q
and called Tsirelson inequalities in the following.4 Conversely, every linear functional
f with qf = supv∈Q f(v) = defines a supporting hyperplane of Q. If we denote by Q∗
the set of supporting affine functionals (f, qf ), then the bipolar theorem connects the
Q via (Q∗)∗ = Q [CT07]. The problem to find the maximal quantum value qf for a
given functional f is in general difficult. It can for instance be written as a hierarchy
of semi-definite programs (SDP) [DLTW08, NPA08]. But the sizes of the SDP’s in
the hierarchies grow exponentially and the speed of convergence of the hierarchy for
low orders is not clear.
The different convex sets C, Q and P defined above satisfy C ⊂ Q ⊂ P, where the

inclusions are proper. For instance, in the (2, 2, 2) case we have that the maximum
3Note that in general d = (MK)N , but it is often convenient to use linear constraints as in (7.1)
and (7.2) to reduce the dimensions to the actual degrees of freedom.

4Tsirelson was the first who proved that the maximal quantum violation of the CHSH inequality
is given by 2

√
2 [Tsi80]
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value of the CHSH inequality [CHSH69] is 2 for classical correlations in C, 2
√

2 for
quantum correlations in Q [Tsi85] and 4 for a non-signaling correlation in P [PR94].

7.2.1. Standard Form of a Correlation Table

According to the GNS-construction (see Theorem 2.1.2) it is clear that we can al-
ways find a quantum representation for which the state is a pure and cyclic state.
Naimark’s dilation theorem, which is a consequence from Stinespring’s dilation theo-
rem [Pau02], implies that we can always dilate the Hilbert space to obtain projective
measurements. A quantum representation for which both holds is called a standard
representation.

Definition 7.2.3. Let (H, {F (x|s)}, ω) be a quantum representation of P. We de-
note the von Neumann algebra generated by the operators {F (x|s)} by A(F ).5 The
quantum representation is called cyclic, if ω = |Ω〉〈Ω| is a vector state and A(F )|Ω〉
is dense in H. A quantum representation is called sharp, if every F (x|s) is a projec-
tion. The quantum representation is called a standard form of P if it is cyclic and
sharp.

For completeness, we show how to construct explicitly a sharp and cyclic quantum
representation.

Theorem 7.2.4. For every P ∈ Q exists a standard form, that is, a sharp and cyclic
quantum representation.

Proof. The proof is by construction. Let F (x|s) and ω be an arbitrary quantum
representation of P on H. We start by turning the measurement operators Fi(x|s)
into projective ones, by applying a version of the Naimark dilation successively to
each observable Fi(·, s). It suffices to do this for one of the observables, provided we
verify that in this construction not only the required commutativity conditions are
preserved, but also the projection valuedness of any of the other measurements. So
in order to turn the observable Fi(·, s) in to a projective measurement, we define the
Hilbert space Ĥ =

⊕K
x=1Hx, where each of the Hx is a copy of the given Hilbert

space H. We denote by Px the projection onto the summand with label x, and
introduce the isometry

V : H → Ĥ V φ =
⊕
x

√
Fi(x, s)φ .

Then we set F̂i(x, s) = Px such that V ∗F̂i(x, s)V = Fi(x, s), where V ∗ is the adjoint
operator of V . For other observables at the same site, e.g., Fi(·, r) with r 6= s, we
set

F̂i(x, r) =

{
V Fi(1, r)V

∗ + (1− V V ∗) for x = 1
V Fi(x, r)V

∗ for x > 1

Because V is an isometry, we again have that V ∗F̂i(x, r)V = Fi(x, r) for all x. More-
over, F̂i(x, r)2 = V Fi(x, r)

2V ∗ for x > 1 and F̂i(1, r)2 = V Fi(1, r)
2V ∗ + (1− V V ∗),

5Concretely, the von Neumann algebra A(F ) is defined as the σ-weak closure of the set of all linear
combinations of products of Fi(x, s)
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so that a projective measurement remains projective. For observables at all other
sites j 6= i, we take F̂j(x, r) =

⊕
x′ Fj(x, r), i.e., as the original observable acting

similar on each of the summands. Once again, this preserves projective valued-
ness, and not only satisfies V ∗F̂j(x, r)V = Fj(x, r), but even the stronger relation
F̂j(x, r)V = V Fj(x, r). With this relation it is easy to see that the F̂j(x, r) for
different j (including j = i) commute, so that we can form the product F̂ (x|s)
unambiguously and find V ∗F̂ (x|s)V = F (x|s). Hence if we define the state ω̂ via
ω̂(a) = ω(V ∗aV ), we obtain a quantum representation of the same point P ∈ Q,
with F̂i(·, s) projective measurements. In order to turn ω̂ into a pure and cyclic
state, we apply the Gelfand-Naimark-Segal (GNS) construction (Theorem 2.1.2) of
the algebra A(F̂ ) with respect to the state ω̂. We finally end up with a sharp and
cyclic representation of P.

7.3. Secure Correlations and Extremality

Let us consider the (N,M,K) case and assume that the N parties use the exper-
iment to distribute shared and private randomness among them. In the following,
we assume that the N parties are honest. With privacy, we mean that no (addi-
tional) malicious party (Eve) should have any information about their measurement
outcomes. We always assume that the adversary is limited by the law of quantum
mechanics and has no access to the labs of the honest parties. The goal is to charac-
terize the property of a correlation table P ∈ Q, which guarantees privacy to them.
Since we are interested in a theoretical characterization of correlation tables, we as-
sume for simplicity that the correlation tables are known exactly to the N honest
parties (but also to Eve). Thus, we neglect any statistical uncertainty which comes
along in the estimation of the correlation tables by a finite sample.
In order to be able to extract shared randomness from the outcomes of the cor-

relation experiment, we have to require that the correlations of the measurement
outcomes of the different parties are strong enough. Moreover, in order to generate
randomness the outcome distribution of each individual measurement si should be
close to the uniform distribution. But since this is apparent by the knowledge of the
correlation table, and furthermore, classical error correction and randomness extrac-
tion schemes can be applied to enhance correlation and randomness, we neglect this
conditions and put emphasis on the security against wiretapping.
Since the honest parties only know the correlation table P the property has to

hold for any quantum representation of P. Let us assume that {F (x|s)} and ω
is a quantum representation of P on H. Because we model space-like separated
parties by commuting operators, we admit Eve to perform every measurement which
corresponds to a positive operator E commuting with all F (x|s), that is, E ∈ A(F )′

with A(F )′ the commutant of A(F ) (see Section 2.1.2 for definitions). For instance,
if there exists a POVM {E(x, s)} in A(F )′ such that

ω
(
F (x|s)E(y, t)

)
= P(x|s)δxyδst ,

we have to assume that Eve has complete information about the measurement out-
comes of the honest parties.6. Hence, in order to ensure privacy, we have to require

6This does not mean that she has complete information in a practical situation but we have always
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that for any quantum representation all possible measurements of Eve have to be
uncorrelated with the outcome distribution of the honest parties. This motivates the
following definition.

Definition 7.3.1. A correlation table P ∈ Q is called secure if for any quantum
representation (H, {F (x|s)}, ω) of P and any operator E commuting with all Fi(xi|si)

ω
(
EF (x|s)

)
= ω(E)P(x|s) . (7.6)

Note that this definition also includes correlation tables which are trivially inse-
cure, that is, correlation tables for which Eve can correctly guess the outcome of
every setting s without additional information. These are the deterministic events
in which each choice of measurements s assigns a unique outcome x. These corre-
lation tables are the only extremal points of C.7 Hence, our security definition only
captures the additional advantage (beside a guess without additional knowledge),
which comes from correlations due to the interaction of the eavesdropper with the
quantum system shared by the honest parties. Since the guessing probability of an
eavesdropper of the setting s without additional knowledge is simply given by the
highest frequency of the probability distribution maxx P(x|s) and can be character-
ized by the min-entropy (see Definition 4.46), it can be estimated by knowing P
(see [ILL89] for details on classical randomness extraction).
The following statement gives a geometric characterization of all secure correlation

tables.

Theorem 7.3.2. A correlation table P ∈ Q is secure if and only if it is extremal in
Q.

Proof. Suppose, P is secure, but not extremal. Then there exists a direct sum rep-
resentation and a convex decomposition with P = λP1 + (1 − λ)P2, 0 ≤ λ ≤ 1.
Now use Equation (7.6) with E being the projector onto the first (second) sum-
mand to get P = P1 (P = P2). This shows that the convex combination is in-
deed trivial and P is extremal. Conversely, suppose P is extremal. Take any com-
muting 0 < E < 1 and set λ = Tr(ρE). Define P1 = (1/λ)Tr(ρEF (x|s)) and
P2 = (1/(1 − λ))Tr(ρ(1 − E)F (x|s)) such that P = λP1 + (1 − λ)P2. As P is ex-
tremal, it holds that P = P1, which is just equation (7.6), so P is secure.

Theorem 7.3.2 simplifies the unhandy definition of secure correlation tables with a
clear geometric meaning and reduces the problem of finding secure correlation tables
to finding extremal points in Q. Nevertheless, to find extremal points or even to
check that a point is extremal are generally hard tasks. Numerical algorithms fail
to be efficient even for small N , M and K. We discuss methods to find extremal
points in Section 7.4. An example of extremal points are the correlation tables which
maximally violate the CHSH inequalities with a value of 2

√
2 [Tsi85].

to consider the worst case scenario.
7Note that these points are also extremal for Q and P.
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7.3.1. Algebraically Unique Correlation Tables

Let us introduce the universal C∗-algebra to the (N,M,K) case. Roughly speaking,
it is the C∗-algebra given by the direct sum of every possible observable configuration
F (x|s) satisfying the requirements in Definition 7.2.1.

Definition 7.3.3. The universal C∗-algebra U(N,M,K) to the (N,M,K) case is
the C∗-algebra generated by positive elements F̃i(x|s) and the identity 1 satisfying
[F̃i(x|s), F̃j(x|s)] = 0 for all i 6= j and

∑
x F̃i(x|s) = 1 for all s with the property

that for any possible set of positive operators {Fi(x|s)} on H satisfying the condition
in Definition 7.2.1, there exists a representation π : U(N,M,K) → B(H) such that
Fi(x|s) = π

(
F̃i(x|s)

)
.

In the following we fix N , M , K and simply write U instead of U(N,M,K). A
quantum representation of P fixes a state ω on U such that P((x|s)) = ω(F (x|s)).
Of course, their might be different states which lead to the same P. Nevertheless, we
obtain a direct relation between quantum representations and the state space S(U).
Note that the state space S(U) is a weakly*-compact and convex set which is therefore
generated by its extremal points which correspond to the pure states (see e.g., [BR79,
Theorem 2.3.15]). We define the map γ from S(U) to Q via γ : ω 7→ ω(F̃ (x|s)). It
is clear that the function is affine, that is,

γ
( n∑
k=1

pkωk

)
=

n∑
k=1

pkγ(ωk)

for any probability distribution pk and ωk ∈ S(U). The pre-image γ−1(P) of a
correlation table P determines the set of all quantum representations of P (up to
unitary equivalence).

Lemma 7.3.4. For every P ∈ Q is the pre-image γ−1(P) convex and weakly* com-
pact. Furthermore, if P is extremal in Q then the extremal points of γ−1(P) are also
extremal points of S(U).

Proof. The convexity follows directly from the fact that γ is affine. Since S(U) is
weakly* compact it is enough to show that γ−1(P) is sequentially closed. Let us take
an arbitrary weakly* converging sequence ωk in γ−1(P). Since ωk(F̃ (x|s)) = P(x|s),
the same holds for the limit. Hence, γ−1(P) is weakly* closed. Let us now assume
that P is extremal. If ω is not extremal in S(U) then there exists a non trivial
convex combination ω = pω1 + (1 − p)ω2 where at least one of the points is not in
γ−1(P). But this means that P = pP1 + (1 − P )P2 where P1 6= P which contradicts
the extremality of P.

One can easily see that for instance extremal points in S(U) are not necessarily
mapped to extremal points of Q and that the pre-image of an extremal P can be a
face of S(U).
A special case is given if the correlation table determines the quantum representa-

tion completely. This means that solely by knowing P, we have full knowledge about
the measurements and the state.
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Definition 7.3.5. A correlation table P ∈ Q is called algebraically unique if it admits
a unique correlation table up to unitary equivalence, i.e., γ−1(P) contains only one
point.

Note that a algebraically unique correlation table P is not necessary an extremal
point of Q, but has to lie on the boundary ∂Q. In order to see this we consider
the negative implication which would say that a non-extremal point can never be
algebraically unique. But this for instance happens if a d-dimensional face (d ≥ 2)
of S(U) is faithfully mapped onto Q. But, if we assume that an algebraically unique
correlation table is also extremal in Q, we can conclude that the pre-image γ−1(P)
is an extremal point of S(U). This implies the following statement.

Corollary 7.3.6. Suppose that (H, {F (x|s)}, ω) is a standard form of an alge-
braically unique and extremal correlation table P. Then each F (x|s) is a projection.
Moreover, the representation is irreducible, so that every operator on the representa-
tion space can be approximated weakly by a polynomial in the F (x|s). At each site
the operators Fi(x|s) generate a factor.

Proof. The projection valuedness of the measurement operators follows because we
know that their exists a sharp quantum representation and all are unitary equivalent.
Since γ−1(P) is a pure state, Proposition 2.1.3 implies that the GNS construction
yields an irreducible representation. Since the GNS construction is cyclic and P
is algebraically unique we the claim follows. Recall that we call a von Neumann
algebra a factor if the commutant is trivial. But the fact that for an irreducible
representation the commutant consists only of multiples of the identity is for instance
proven in [BR79, Proposition 2.3.8].

The above corollary suggests that an algebraically unique and extremal correlation
table satisfies an even stronger security condition as the one in Definition 7.3.1.
Namely, that for any representation and all possible measurements of Eve and all
measurments in A(F ) the outcome distributions factorize. We call this algebraically
secure.

Definition 7.3.7. A correlation table P ∈ Q is called algebraically secure if for
any quantum representation (H, {F (x|s)}, ω) and any operator E commuting with
all Fi(x|s), and any F̃ ∈ A(F )

ω
(
EF̃
)

= ω(E)ω(F̃ ) . (7.7)

Note that obviously an algebraically secure correlation table is secure and therefore
also extremal according to Theorem 7.3.2. We find the following equivalence relation.

Theorem 7.3.8. A correlation table is algebraically secure if and only if it is extremal
and algebraically unique.

Proof. Assume first that P is algebraically secure. Since P is extremal according to
Theorem 7.3.2 it remains to show algebraic uniqueness of the quantum representa-
tion. Let (H, {F (x|s)}, ω) and (H′, {F ′(x|s)}, ω′) be two standard forms of P. Con-
dition (7.7) implies that for all corresponding operators F̃ ∈ A(F ) and F̃ ′ ∈ A(F ′),
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ω(F̃ ) = ω(ρ′F̃ ′). Otherwise, we can take the direct sum representation of the two
standard forms and E as the projector on the first or second summand to find a con-
tradiction to condition (7.7). Let us denote the cyclic vector states corresponding to
ω and ω′ by |Ω〉 and |Ω〉′. Define then the unitary operator U via UF̃ |Ω〉 = F̃ ′|Ω′〉
which transforms one representation into the other. Because |Ω〉 and |Ω′〉 are cyclic
U can be extended to a unitary from H to H′. Hence, the standard forms are uni-
tary equivalent. Since this holds for any two standard forms this implies that the
correlation table is algebraically unique. This proves the first direction.
Let us assume that P is extremal and algebraically unique and (H, {F (x|s)}, ω)

is a standard form of P. Let 0 ≤ E ≤ 1 be an arbitrary operator commuting with
all Fi(x|s). Since P is extremal it is also secure. But this implies that the state on
H defined via a 7→ 1

ω(E)ω(
√
Ea
√
E) together with the operators Fi(x|s) is a valid

quantum representation of P. Since P is algebraically unique the representation have
to be unitarily equivalent to (H, {F (x|s)}, ω), which implies E = 1. Hence, we
find that the condition in Equation (7.7) is satisfied for E. Since this holds for any
0 ≤ E ≤ 1, we can conclude that P is algebraically secure.

Even though the property of algebraically uniqueness seems to be quite demanding,
we see in the following chapter that it is not a rare property for an extremal point.
For example, the correlation table maximizing the CHSH inequality is algebraically
secure [Tsi85]. Furthermore, as shown in Section 7.4.3, every extremal correlation
table in the (2, 2, 2) case is algebraically secure.

7.4. Extremal Correlation Tables

In the previous section, we showed that extremality of a correlation table provides
security in the sense that the outcome distributions are independent of any measure-
ment of an eavesdropper. Here, we discuss methods to find or certify extremal cor-
relation tables. This is generally difficult and numerical algorithms are not efficient
(c.f. [DLTW08, NPA08]). Nevertheless, for particular N , M and K the problem can
be simplified essentially. We start in Section 7.4.1 with a discussion of the (N, 2, 2)
case, in which we show that all the extremal points admit a quantum representation
on a Hilbert space corresponding to N qubits. This is then used in Section 7.4.2 to
construct a certification scheme for extremality for the (2, 2, 2) case. We conclude
with a discussion of the case of full correlations in the (2,M, 2)-case which is based
on results by Tsirelson [Tsi85].

7.4.1. The (N,2,2) Case and the C*-Algebra of Two Projections

Let us consider the situation in which we have N parties with each two possible
binary measurements. In the following, we can restrict our attention to projective
measurement since each correlation table admits a sharp representation. Since we
consider binary measurements, they are completely determined by one projector.
Hence, the algebraic structure generated by the two possible measurements at each
side are determined by two projectors each standing for one measurement. Hence,
the important object is the universal C*-algebra generated by two projections for
which the representation is well understood [Ped68, Rae89].
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The C*-algebra of Two Projections. The universal C*-algebra C∗(p, q) of two
projections p and q is defined by the property that for any Hilbert space H and any
two projections P and Q in H there exists a representation π : C∗(p, q)→ B(H) such
that P = π(p) and Q = π(q) (c.f. Definition 7.3.3). As shown in [Ped68, Rae89],
C∗(p, q) is isomorphic to the matrix valued functions f : [0, π] → M2

8 with the
property that f(0) and f(π) are diagonal. The generators p and q are represented
by the functions

p(θ) =

(
1 0
0 0

)
q(θ) =

1

2

(
(1 + cos θ) sin θ

sin θ (1− cos θ)

)
. (7.8)

Note that p(θ) is the projection onto the subspace spanned by the vector (1, 0) and
q(θ) onto (cos θ2 , sin

θ
2). Hence, θ/2 is the angle between the projections p(θ) and

q(θ). Using the Pauli matrices the projections can be written as p(θ) = 1
2(1 + σ3)

and q(θ) = 1
2(1 + sin(θ)σ1 + cos(θ)σ3).

The pure states of C∗(p, q) are given by the functionals

ω(f) =

∫ 1

0
〈ψ|f(θ)ψ〉 δ(θ − θ0) dθ .

for ψ ∈ C2 and θ0 ∈ [0, π]. The GNS construction of pure states leads to irreducible
representations and they are given for θ0 ∈ (0, π) by πθ0 : C∗(p, q) → B(C2) where
the generators p and q are mapped onto p(θ0) and q(θ0). Hence, the representation
space is H = C2 and θ0/2 describes the angle between the projections. In the case
θ0 = 0, π the projectors commute and we obtain two 1-dimensional representations
of C∗(p, q).

Characterization of the (N,2,2) Case Let us come back to the case where we have
N parties and therefore N commuting pairs of projections. Since the algebra C∗(q, p)
is nuclear we obtain the following characterization of the (N, 2, 2) case.

Theorem 7.4.1. The universal C∗-algebra which describes the (N, 2, 2) case is given
by U(2, 2, 2) = C∗(p, q)⊗N . Furthermore, every extremal point admits a quantum
representation on H = (C2)⊗N determined by angles (θ1, ..., θN ) and a real state |ψ〉 ∈
H such that Fi(0|0) and Fi(0|1) are given by 1

2(1+σ3) and 1
2(1+sin(θi)σ1+cos(θi)σ3)

on the ith tensor factor and act like the identiy on the others.9

Proof. We use first the we can always find a sharp representation which allows us
to consider the universal C*-algebra of N pair of commuting projections. Because
C∗(q, p) is the tensor product of a finite-dimensional and an abelian C*-algebra, we
have that it is nuclear which means that for every C*-algebraA the C*-tensor product
C∗(q, p)⊗A is unique [Tak01, Mur90]. Hence, we have that the universal C*-algebra
generated by N commuting pairs of projections is given by C∗(q, p)⊗N . Lemma 7.3.4
implies that for every extremal point P in Q an extremal point in S(U(N, 2, 2)) exists
which generates P. Hence, it is enough to consider the extremal points of C∗(q, p)⊗N

which correspond to the pure states, and thus, to irreducible representations. But
8With M2 we denote the 2× 2 matrices with complex entries.
9Note that the other measurements are simply given by Fi(1|s) = 1− Fi(0|s).
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7. Device-Independent Quantum Key Distribution and Extremal Correlations

as discussed above they are given by fixing N angles (θ1, ..., θN ) and a vector state
|ψ〉 ∈ H. It remains to show that the state |ψ〉 can be chosen in Rn. This is essentially
because all the obserbales Fi(x|s) are real. In particular, for fixed angles (θ1, ..., θN )
the representation induced by |ψ〉 generates the same correlation table as the one
induced by the complex conjugate |ψ̄〉. Hence, so does the convex combination
1/2(|ψ〉〈ψ| + |ψ̄〉〈ψ̄|). But if one decomposes |ψ〉 into real and imaginary parts
|ψ〉 = |φ〉+ i|η〉 for ψ, η real, we find that 1/2(|ψ〉〈ψ|+ |ψ̄〉〈ψ̄|) = 1/2(|φ〉〈φ|+ |η〉〈η|)
is real.

Since every point of a d-dimensional convex set can be written as the convex
combination of at most d+1 extremal points, we find that every point P ∈ Q allows a
representation given by the direct sum of at most 4N + 1 irreducible representations.
In the following we denote the correlation table which corresponds to angles θ =
(θ1, ..., θN ) and a real state |ψ〉 by P(θ,ψ). Furthermore, we denote the measurement
operators corresponding to θ by F (θ)(x|s).

Maximal Violation of Tsirelson Inequalities. The characterization of the quantum
representations in the (N, 2, 2) case given in Theorem 7.4.1 can now be use to find
maximal violations of Tsirelson inequalities, from which extremality can be concluded
under certain conditions. LetQ ⊂ Rd and f : Rd → R be a linear functional. In order
to obtain a supporting hyperplane on Q (see Equation (7.5)) we have to determine
qf = maxP∈Q f(P). Since the maximum is always attained for an extremal point in
Q, it is sufficient to maximize over all irreducible representations parameterized by
angles θ ∈ [0, π]N and real vectors ψ ∈ R2N such that

qf = sup
θ,ψ

f
(
Pθ,ψ

)
. (7.9)

Let us assume that f(P) =
∑

x,s f(x|s)P(x|s). For a set of measurements {F (x|s)},
we then define the Tsirelson operator corresponding to f by

Tf (F ) :=
∑
x,s

f(x|s)F (x|s) . (7.10)

This then allows us to write

f(Pθ,ψ) = 〈ψ|Tf (F (θ))ψ〉. (7.11)

Optimizing the righthand side of the above equation over all θi ∈ [0, π] and ψ ∈
R2N yields qf and therefore a supporting hyperplane. If there is exactly one set
of parameters θ1, ..., θN and a unique state ψ for which the maximum is attained,
the corresponding probability distribution P is algebraically secure. In the case
where more than one possible choice of θ1, ..., θN , ψ leads to a maximal violation,
we can determine the convex span of the corresponding probability distributions.
This corresponds to the face given by the intersection of Q and the hyperplane
{P |

∑
x,s c(x|s)P(x|s) = Qc}. Extremal points of that face are extremal points of

Q, and thus, secure probability distributions.
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7.4.2. Certification of Extramility in the (2,2,2) Case

The goal is to use the characterization of extremal correlations in the (2, 2, 2) case
given in Theorem 7.4.1 to certify extremality of a correlation table. Since every
extremal correlation table admits an irreducible representation, it suffices to consider
correlation tables P(θ,ψ) for θ ∈ [0, 1]2 and ψ ∈ R4. The goal is to construct for a
given P(θ,ψ) a Tsirelsen inequality which is saturated by P(θ,ψ). If there exists such an
inequality which is not trivial, and no other probability distribution in Q saturates
it (or alternatively that just one quantum representation of P exists), extremality of
P is certified.
We call the two parties Alice and Bob and write θ = (θA, θB). The Hilbert

space is given by H = HA ⊗ HB where HA = HB = C2. Since we consider
binary observables given by projectors, we can equivalently work with selfadjoint
operators with eigenvalues ±1 denoted by A1, A2 ∈ B(HA) (B1, B2 ∈ B(HB))
on Alice’s (Bob’s) side. Note, that the condition to have selfadjoint operators
with eigenvalues ±1 simply means that A2

i = 1 and TrAi = 0. We further set
A0 = 1A, B0 = 1B, A = (A0, A1, A2) and B = (B0, B1, B2). We denote the
tuple of observables A and B which correspond to the representation (θA, θB) by
A(θA) =

(
A0(θA), A1(θA), A2(θA)

)
and B(θB) =

(
B0(θA), B1(θA), B2(θA)

)
. Note

that A0(θA) = B0(θA) = 1 are independent of the particular choice of the angles.
The problem of finding a Tsirelson inequality for P(θ,ψ) can be formulated in the fol-

lowing way.
Find a positive operator

T (A,B) =
∑
k

Pk(A,B)∗Pk(A,B) , (7.12)

with Pk(A,B) polynomials in Ai ⊗Bj, i, j = 0, 1, 2, such that

(i) Pk(A,B)ψ = 0 for all k

(ii) For all possible observables Ai and Bj satisfying A2
i = 1, B2

j = 1, TrAi = 0
and TrBj = 0 follows that T (A,B) is linear in Ai ⊗ Bj, i.e., T (A,B) =∑

i,j tijAi ⊗Bj with tij ∈ R.

The ansatz for T (A,B) ensures that the operator is positive (and thus also self-
adjoint) for any observablesAi andBj . Condition (ii) implies that for any observables
Ai, Bj and state ω leading to the correlation table P, the expression ω

(
T (A,B)

)
defines a linear functional of P denoted by fT (P). This means that T (A,B) is the
Tsirelson operator to the linear functional fT . Condition (i) together with the ansatz
of T in Equation (7.12) ensures that fT defines a supporting hyperplane at P(θ,ψ),
that is, fT (P(θ,ψ)) = 0 and fT (P) ≥ 0 for any P ∈ Q. The approach to construct
manifest positive operators with an ansatz like in Equation (7.12) is closely related
to the ideas in [DLTW08].
The problem above induces a natural hierarchy by the degree of the polynomials

Pk(A,B) used in the ansatz of the operator T . In general, it is not clear which
degree is sufficient to construct for a given P(θ,ψ) a Tsirelson inequality (if even non
trivial ones exist). The idea is to start with the lowest order and sort out angles θ
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7. Device-Independent Quantum Key Distribution and Extremal Correlations

and states ψ for which this is possible. Note for instance that the lowest order is
sufficient to find the CHSH inequality which corresponds to the Tsirleson operator

ICHSH = A1 ⊗ (B1 +B2) +A2 ⊗ (B1 −B2) . (7.13)

In particular, it is easy to check that []

2
√

21− ICHSH =
1

2

(
(A−B)∗(A−B) + (A−B)(A−B)∗

)
+

1

4

2∑
j=1

(
[1− (Aj ⊗ 1)2] + [1− (1⊗Bj)2]

)
where A = 1/2(A1 + iA2)⊗ 1 and B = 1/(2

√
2)1⊗ (B1 + B2 + i(B1 − B2)). Since

A2
i = 1 and B2

i = 1, we see that it can be written as in Equation (7.12) with
polynomials Pk which have only degree 1. In the following, we give an analytical
solution for the lowest non trivial order of the hierarchy.

Lowest Order Certificate We want to construct a Tsirelson operator

T =
2∑
i=1

Pi(Ak, Bl)
†Pi(Ak, Bl) (7.14)

with

Pi =
2∑
j=1

(αijAj ⊗ 1− βij1⊗Bj) (7.15)

where α and β are matrices in M2, such that the conditions (i) and (ii) from above
are satisfied for at least one quantum representation θ and ψ. For given angles
θA and θB the concrete form of the observables (see Theorem 7.4.1) is given by
Ai(θA) =

∑
j t(θA)ijXj and Bi(θB) =

∑
j t(θB)ijXj with X1 = σ1, X2 = σ3 and

t(θ) =

(
0 1

sin θ cos θ

)
.

Note that the case θA = 0, π (θB = 0, π) corresponds to the case where the measure-
ments on Alice’s (Bob’s) side commute, which lead to correlation tables P which can
be generated by a LHV model.10 Hence, we restrict our attention to representations
with θA, θB 6= 0, π. Recall also that it is suffices to consider only real states ψ since
all observables are real.
We start by analyzing condition (i). Using the particular form of the observables

Ai(θA) and Bj(θB) expressed through t(θ), we find that Piψ = 0, i = 1, 2, results in

[Xi ⊗ 1]ψ =
∑
j

ηij [1⊗Xj ]ψ (i = 1, 2) (7.16)

10From the form I2
CHSH = 4 − [A1, A2] ⊗ [B1, B2] one directly sees that if one of the pairs of

observables commute the maximal CHSH inequality violation is 2. Hence, there exists an LHV
model realizing the correlation table.
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where η = t(θA)−1α−1βt(θB). We assumed here that α is invertible. However, this
is not a restriction since otherwise the state ψ has to be of product form.
In the following it is convenient to use the isomorphism between H and the Hilbert

space M2 of 2 × 2 matrices with the Hilbert-Schmidt inner product. States φ =
(φ1, φ2, φ3, φ4) in H are identified with matrices

φ̂ =

(
φ1 φ2

φ3 φ4

)
and [A⊗1]φ (respectively, [1⊗B]φ) can be written as the matrix multiplication Aφ̂
(respectively, φ̂BT ). Moreover, we have that φ is a purification of the density matrix
ρ = (φ̂∗φ̂)T on C2. Equation (7.16) is then equivalent to

Xiψ̂ =

2∑
j=1

ηijψ̂Xj . (7.17)

The following assertion characterizes condition (i).

Lemma 7.4.2. A real vector ψ ∈ H admits an η ∈M2 such that the relation (7.16)
holds if and only if ψ̂T ψ̂ is a multiple of 1. Then, it holds that

ηij =
1

2
Tr(ψ̂−1Xiψ̂Xj) (7.18)

for i, j = 1, 2.

Proof. We first note that ψ̂ must be invertible. This is due to the fact that oth-
erwise the reduced state of ψ given by (ψ̂∗ψ̂)T has determinant 0 and is therefore
a pure state. We then multiply equation (7.17) with Xkψ̂

−1 from the left to find∑
j ηijXkXj = Xkψ̂

−1Xiψ̂. Recalling that Tr(XkXj) = 2δkj , we can take the trace
and obtain (7.18).
We turn now to the first part of the statement. Multiplication from the right of

(7.17) with ψ̂−1 shows that Xi =
∑

j ηijψ̂Xjψ̂
−1. Thus, we obtain that

Tr(XiXk) =
∑
j,l

ηijηklTr(XjXl),

from which follows that ηηT = 1. On the other hand one can check that the set G
of all ψ̂ for which there exists a η such that (7.16) holds and det(ψ̂) = 1, describes a
group together with the usual matrix multiplication. Moreover, the map ψ̂ 7→ η(ψ̂)
induced by (7.18) is a group homomorphism such that η(ψ̂T ) = η−1. From this we
can then conclude that ψ̂T ψ̂ ∝ 1 is the necessary and sufficient condition to solve
(7.16).

Lemma 7.4.2 says that condition (i) is only satisfied if 1
det ψ̂

ψ̂ is an orthogonal
matrix. Hence, the possible states ψ for which condition (i) can be satisfied are
parameterized by

φ±x =
1√
2

(cosx,∓ sinx, sinx,± cosx) (7.19)
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where x ∈ [0, π). The state ψ determines the corresponding η uniquely through
equation (7.18).
Since the reduced state of ψ is equal to (ψ̂∗ψ̂)T , it follows directly that φ±x is

maximally entangled. From this follows also that the expectation values of all local
observables Al and Bj vanish, that is, 〈φ±x |Ajφ±x 〉 = 〈φ±x |Bjφ±x 〉 = 0 for j = 1, 2.
We turn now to condition (ii) and compute the expectation value of T with respect

to φ ∈ H,

〈T 〉φ = Tr(α∗α+ β∗β)−
∑
j,k

(α∗β + (β∗α)T )jk〈Aj ⊗Bk〉φ

+
∑
j 6=k

((α∗α)jk〈AjAk〉φ + (β∗β)jk〈BjBk〉φ),

where 〈·〉φ = 〈φ| ·φ〉 denotes the expectation value with respect to φ. Thus, condition
(ii) requires that the matrices α∗α and β∗β are diagonal. In this case the Tsirelson
inequality reads ∑

j,k

(α∗β + (β∗α)T )jk〈Aj ⊗Bk〉 ≤ Tr(α∗α+ β∗β). (7.20)

The coefficients cij in condition (ii) are therefore cjk = (α∗β + (β∗α)T )jk for j, k =
1, 2, c00 = −Tr(α∗α+ β∗β), and the others 0.
Since the expectation value of T is invariant under scaling and simultaneous uni-

tary transformation of α and β, we can without loss of generality assume that
α = diag(1, λ) with λ > 0. This can always be achieved by the polar decomposition.
Using now that η = t(θA)−1α−1βt(θB) we can write β = αγ with γ = t(θA)ηt(θB)−1.
The condition that β∗β is diagonal is then equivalent to

λ2 = −γ11γ12

γ21γ22
> 0, (7.21)

which completely characterizes condition (ii).
The following statement summarizes the results from the discussions of the two

conditions.

Theorem 7.4.3. The conditions (i) and (ii) are satisfied for maximally entangled
states φ±x = 1√

2
(cosx,∓ sinx, sinx,± cosx) (x ∈ [0, π)) and angles (θA, θB) for which

the inequality

(λ±x )2 := − sin(2x) sin(2x± θB)

sin(2x− θA) sin(2x− θA ± θB)
> 0. (7.22)

holds. Moreover, the corresponding Tsirelson inequality is given by (7.20) with coef-
ficients determined by

α∗β + (β∗α)T = 2
sin θB

(
± sin(2x± θB) ∓ sin(2x)

±(λ±x )2 sin(2x− θA ± θB) ∓(λ±x )2 sin(2x− θA)

)
(7.23)

and

Tr(α∗α+ β∗β) = − 2 sin θA sin(4x− θA ± θB)

sin(2x− θA) sin(2x− θA ± θB)
. (7.24)
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Proof. Because of Lemma 7.4.2, we can constrain to representations (ψ, θA, θB) with
ψ = φ±x . For these states we can compute η via equation (7.18), and insert it into
γ = t(θA)ηt(θB)−1 to find that

γ±x = 1
sin θB

(
± sin(2x± θB) ∓ sin(2x)

± sin(2x− θA ± θB) ∓ sin(2x− θA)

)
(7.25)

Condition (7.21) can then be computed to be given by (7.22). Provided that the
inequality (7.22) is satisfied, the method applies and we can compute α = diag(1, λ)
and β = αγ and obtain the Tsirelson inequality from (7.20). Expressed in λ±x , one
finds the coefficients given in the statement.

As argued before, among the possible P for which the method applies are also
the probability distributions which lead to maximal violation of a CHSH inequal-
ity (7.13). The corresponding values of x and θA, θB in Theorem 7.4.3 are θA =
θB = π/2 and ψ = φ±x with x = π/8 + nπ/4 (n = 0, 1, 2, 3).

7.4.3. The (2,M,2) Case and Clifford Algebras

Let us consider the case of 2 parties Alice and Bob with eachM binary measurements.
In the following we restrict our consideration on full correlations. We therefore
assume that each measurement is described by an observable Ai for Alice and Bi for
Bob with outcomes ±1. Hence, in the notation before this reads as Ai = F1(1|i) −
F1(2|i) and Bi = F2(1|i)− F2(2|i).

Definition 7.4.4. We call the expectation values of the correlation of the observables
Ai, Bi between Alice an Bob given by

Cij := 〈AiBj〉 (7.26)

the correlation matrix. Moreover, it is called a quantum correlation matrix if there
exists selfadjoint observables Ai, Bi (i = 1, ...,M) on a Hilbert space H satisfying
A2
i = B2

i = 1 for every i and [Ai, Bj ] = 0 for every i, j, and a state ω such that
Cij = ω(AiBj). The set of all quantum correlation matrices C is denoted by Qcor.11

Note that the restriction to self-adjoint operators Ai, Bi obeying A2
i = B2

i = 1

does not impose any limitation on the quantum representations since always a sharp
representation exists and we can choose the binary outcomes by ±1. In [Tsi85],
this was already proven by Tsirelson. It is easy to see that the probability dis-
tributions P(x|s) can be reconstructed by the correlation matrix Cij together with
the knowledge of the expectation values of the local observables 〈Ai〉 and 〈Bj〉 (see
e.g., [Tsi93]). Tsirelson characterized the quantum correlation matrices completely
in [Tsi85].

Theorem 7.4.5. (Tsirelson ’85) For every correlation matrix C ∈ Qcor exist
vectors x1, ..., xM and y1, ..., yM in an Euclidean vector space such that

Cij = 〈xi|yj〉 ∀i, j (7.27)
11In [Tsi93] the correlation tables P are called behaviors and Cij the correlation matrix.
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and ‖xi‖ ≤ 1, ‖yj‖ ≤ 1. We call such a collection of vectors a c-system of C, and
the dimension of the linear hull of the vectors {x1, ..., xM , y1, ..., yM} its rank. If C
is extremal in Qcor then all c-system are isometric to each other and the linear span
of {x1, ..., xM} is equal to the one of {y1, ..., yM}.

Possible cyclic quantum representations are given by representations of the Clifford
algebra. In the following, we give a short overview of the construction presented
in [Tsi85]. This reduces the problem to check if a quantum correlation is extremal to
check whether the rank of the c-system is even. The Clifford algebra C(n) of order n is
generated by Hermitian elements X1, ..., Xn satisfying the relations {Xi, Xj} = 21δij
(see, e.g., [Sim96] for a discussion of the properties of Clifford algebras). For a vector
x ∈ Rn let us define

X(x) :=
n∑
i=1

xiXi. (7.28)

Since X2(x) = ‖x‖1, the Clifford algebra exhibits an explicit invariance under isome-
tries.
The representation theory of Clifford algebras is well understood [Sim96]. For

even n there exists exactly one irreducible representation of C(n), and its generated
algebra is isomorphic to the full matrix algebra M

2
n
2
. In the case of an odd n there

are two unitary inequivalent representations, and the generated algebra of each of
them is isomorphic to the full matrix algebrasM

2
n−1

2
(C). In particular, starting with

the unique representation πn of C(n) for n even, the two irreducible representations
of C(n+ 1) can be constructed from πn. Let X̂i := πn(Xi) be the representatives of
the generators Xi. Then, the two inequivalent irreducible representations of C(n+1)
can be constructed by X̂1, ..., X̂n, and

X̂n+1 =

{
±X̂1...X̂n, n = 0 mod 4;

±iX̂1...X̂n, n = 2 mod 4.
(7.29)

Let us denote the representation of C(n+ 1) corresponding to the plus sign in (7.29)
as π+

n+1, respectively, their representatives as X̂
+
i , and similar for the one belonging

to the minus sign as π−n+1 and X̂−1 . Due to the uniqueness of the representation πn
up to unitary equivalence, it is straightforward to see the relation between the two
representations π+

n+1 and π−n+1. In terms of the representatives they are linked by
X̂+
i = −X̂−i for n = 0 module 4, and by complex conjugation X̂+

i =
¯̂
X−i for n = 2

modulo 4.
Given a c-system x1, ..., xM and y1, ..., yM with rank n the cyclic quantum rep-

resentations of the corresponding correlation matrix Cij can now be constructed
through the Clifford algebra C(n). If the rank n is even, then we have according
to the discussion before a unique cyclic quantum representation which corresponds
to the tensor product of the unique representations of C(n), that is πn ⊗ πn. More
explicitly, the observables are given by Ai = X̂(xi) ⊗ 1 and Bj = 1 ⊗ X̂(yj), and
the quantum state by the unique eigenvector of 1

n(X̂1 ⊗ X̂1 + ...+ X̂n ⊗ X̂n) to the
eigenvalue 1 [Tsi85].
If the rank n = 1 modulo 4, then the two cyclic quantum representation are given

by π+
n ⊗π+

n and π−n ⊗π−n . The observables and the state are constructed in the same
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manner as for even n. The other combinations π+
n ⊗π−n and π−n ⊗π+

n are not possible
because the operator 1

n(X̂1 ⊗ X̂1 + ... + X̂n ⊗ X̂n) does not has an eigenvalue +1.
Finally, if the rank is n = 3 modulo 4, then the two cyclic quantum representation are
given by π+

n ⊗ π−n and π−n ⊗ π+
n . The observables and also the state are constructed

in the same manner as for the other cases and the other combinations π+
n ⊗ π+

n

and π−n ⊗ π−n are not possible because the operator 1
n(X̂1 ⊗ X̂1 + ... + X̂n ⊗ X̂n)

does not has an eigenvalue +1.. Obviously, since π+
n can be transformed to π−n by

complex conjugation, and also the state of the different quantum representations are
linked by complex conjugation, the two different cyclic quantum representations are
anti-unitary.
For an extremal quantum correlation matrix, we have that all c-systems are iso-

metrically isomorph and thus, the representations are unitarily equivalent. Hence,
we obtain the following statement [Tsi85].

Corollary 7.4.6. (Tsirelson ’85) Let C be an extremal correlation matrix in Qcor.
Then, it follows that each cyclic quantum representation of C is Clifford. Moreover,
if the c-systems of P is of even rank, then there exists a unique cyclic quantum
representation up to unitary equivalence. If the c-systems of P is of odd rank, then
there exist exactly two unitary non-equivalent cyclic quantum representations.

We note that for the above representations of the Clifford algebras always follows
that 〈Aj〉 = 〈Bj〉 = 0 for every j. From this it follows that the correlation table
P belonging to an extremal correlation matrix with even rank is also algebraically
unique. But it does not have to be an extremal point in general.
Corollary 7.4.6 implies that in the (2, 2, 2) case every extremal correlation ma-

trix except the deterministic ones are algebraically unique. To see this, note that
the possible extremal quantum correlation matrices can be described by a c-system
x1, x2, y1, y2 such that ||xi|| = ||yj || = 1 and the linear span of {x1, x2} is equal to the
one of {y1, y2} [Tsi85]. The rank of the c-system is then the dimension of the linear
span of {x1, x2}. Thus, we have the case where x1 and x2 are linearly independent
which corresponds to an even rank system where a unique quantum representation
exists. If x1 and x2 are not linearly independent, i.e. a odd rank system, we can con-
clude that x1, x2, y1, y2 are all parallel or antiparallel to each other. Thus, we find the
possible correlations to be w(AiBj) = P (i, j) = (−1)ai+bj with fixed ai, bj = ±1. But
obviously, these correlation matrices correspond to deterministic (classical) points.
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The topics covered in this thesis can be divided into three main parts. The first
part (Chapters 3-5) generalizes information theoretic considerations in the one-shot
regime to arbitrary quantum systems including continuous-variable systems. In
the second part (Chapter 6), we apply the results developed in the first part to
continuous-variable quantum key distribution and present the first quantitative se-
curity analysis of such a protocol providing security against coherent attacks. The
third part (Chapter 7) contains a characterization and discussion of correlation tables
providing security for device-independent quantum key distribution in an error-free
scenario. In the following, we summarize the main results for each of the three parts
in turn and discuss some open questions.

8.1. Non-Asymptotic Information Theory with General
Quantum Systems

The generalization of one-shot information theory is accomplished by extending the
smooth min- and max-entropy formalism introduced for finite-dimensional systems
in [Ren05, KRS09, TCR10] to general quantum and classical systems. We start
in Chapter 3 with a discussion of an algebraic approach to quantum mechanics.
Space-like separated systems are described by commuting von Neumann algebras
(c.f. [Haa92]), which differs from Hilbert space quantum mechanics where one usu-
ally assumes a tensor product structure. The concept of a purification then requires
a generalization to states on a general von Neumann algebra. While this was al-
ready discussed for factor states in [Wor72], we introduce a more general definition
based on an operational approach (see Section 3.2). In Section 3.4, we introduce the
concept of a projective embedding of a von Neumann algebra. This is motivated by
the need to describe sub-normalized post-selected states in order to generalize the
purified distance defined in [TCR10]. This distance is adapted for smooth entropies
such that desired properties, for example duality, are preserved.

In Chapter 4, we introduce the smooth min- and max-entropies for quantum, clas-
sical or hybrid systems modeled by von Neumann algebras. We show that these
entropies satisfy the data-processing inequality expressing the principle that classi-
cal post-processing cannot increase the amount of information. For systems modeled
on type I factors (bounded operators on a separable Hilbert space), we derive in
Section 4.5.3 a bound for the smooth-entropies of i.i.d. sources by the von Neu-
mann entropy, and show convergence in the asymptotic limit under certain con-
ditions. In Section 4.6, a Hahn-Banach like extension theorem is used to show
the operational meaning of the non-smooth min- and max-entropies for arbitrary
side-information. A main result is the characterization of privacy amplification by
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the smooth min-entropy in Section 4.8. Existing proofs in the finite-dimensional
case [Ren05, TSSR10] are usually not applicable since they rely on a bound of the
trace norm by means of a two-norm, which does not hold in infinite dimensions.

In order to study information theoretic properties of continuous-variable systems
in the one-shot regime, we extend the conditional min- and max-entropies to continu-
ous outcomes in Section 5.2. We show that they can be approximated by considering
their discrete counterparts in the limit where the coarse-graining goes to zero. This
is then applied to study the uncertainty of position and momentum measurements
(see Section 5.3). In particular, we show that arbitrary side-information can be
included into the entropic uncertainty relation for position and momentum oper-
ators expressed by min- and max-entropy derived in [BB06]. We further discuss
the entropic uncertainty relation for the smooth min- and max-entropy for a finite
measurement precision, which is more relevant for practical applications. For non-
smoothed versions, we show that the inequality is tight for any precision in the sense
that there exists a state for which equality holds.

Outlook. One of the motivations for the generalization of the smooth min- and
max-entropies to von Neumann algebras was to enable a more physically accurate
description of the quantum systems. This includes that in general not all observables
lying in the set of all bounded operators on a Hilbert space are physical. The descrip-
tion by means of von Neumann algebras can only partially suffice this requirement
since the product of two observables has not to be an observable. It would therefore
be interesting to constrain to the vector space spanned by the physical observables,
which corresponds mathematically to the theory of operator systems. This would for
instance allow one to restrict the read-out measurements of Bob’s quantum memory
in the information reconciliation task discussed in Section 4.9. On the other hand,
in privacy amplification (see Section 4.8), a restriction of Eve’s measurement could
enhance the bound on the extractable secure key.

The tasks that we have considered have been restricted to a classical-quantum
resource. It remains to be seen whether tasks like quantum stage merging in which
the resource is fully quantum can be quantified for systems modeled on an arbitrary
von Neumann algebra. Another task requiring a fully quantum description is the de-
coupling property of quantum systems [HHYW08, Dup09, DBWR10]. This property
is of great interest since it can be linked to other problems in quantum information
theory [DST].

As yet, the smooth differential min- and max-entropies lack an operational inter-
pretation. It would therefore be interesting to consider non-asymptotic information
theoretic questions for continuous-variable systems, like for instance capacities of
Gaussian channels. Another question that remains open is whether the uncertainty
relation with quantum side-information given in Theorem 5.3.3 for the non-smooth
min- and max-entropies also holds for the smooth versions.
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8.2. Continuous-Variable Quantum Key Distribution

We set the optimal finite-key length formula for one-way classical post-processing as
derived by Renner in [Ren05] on a rigorous footing for continuous-variable protocols.
The explicit formula reads

` ≈ Hε
min(XA|E)ω − leakEC −O(log

1

ε′
) ,

and reduces the laborious task of a finite-key security analysis to the estimation
of the smooth min-entropy of Alice’s raw key XA given Eve’s knowledge E. We
accomplish this for a continuous-variable protocol and present the first quantitative
security analysis against coherent attacks. We employ the uncertainty relation for
smooth min- and max-entropies with quantum side-information as first introduced
in [TR11], then generalized to continuous-variable systems in Theorem 5.3.1. This
allows us to bound the smooth min-entropy by the correlations of the raw keys of
Alice and Bob quantified via the smooth max-entropy, that is we have

Hε
min(X|E)ω ≥ −n log c−Hε

max(XA|XB)ω. (8.1)

The protocol for which the security analysis is presented is an entanglement based
protocol, where a two-mode squeezed state is measured via homodyne detection [CLA01].
The application of the uncertainty relation requires to use squeezed states.This is to
ensure that the balance between the complementary of the measurements expressed
by the constant c in (8.1) and the correlations of the raw keys Hε

max(XA|XB)ω does
not become negative.
The finite-key rate is plotted in Figure 6.2 for squeezing strengths recently realized

in experiments [EHD+11b, EHD+11a]. The comparison to the case of collective
attacks (see Figure 6.4) shows that the finite-key rates computed in the case of
coherent attacks are not optimal. The reason for this is that the uncertainty relation
is not tight for two-mode squeezed states, as considered in the protocol. This is
in contrast to the finite-dimensional case where the optimal asymptotic rates were
achieved by employing the same proof technique [TLGR12].
An important advantage of the presented proof technique is that the experimental

parameters only enters via the computation of the complementarity constant c for
Alice’s measurement choices (c.f. Equation (8.1)). This implies that the security
analysis is robust in deviations from the ideal implementations which is crucial for
practical applications. Furthermore, since the source is assumed to be located in
Alice’s lab, the reference signal (local oscillator) used for the homodyne detection
is directly included in the security analysis (c.f. [HML08]). On the other side, the
explicit assumption that the source is located in Alice’s lab has the drawback that
it forbids the application of reverse reconciliation [GG02]. However, this could only
bring small improvements since the bound on the smooth min-entropy is symmetric
in Alice’s and Bob’s data.
In the case of collective attacks, we apply the asymptotic equipartition property

from Theorem 4.5.3 to obtain a bound on the smooth min-entropy by the von Neu-
mann entropy. The correction term to the von Neumann entropy, which characterizes
the finite resource effect, goes like O( 1√

n
) (where n is the length of the raw key) and

is improved compared to the estimations given in [LGG10].
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Outlook. The general finite-key rate formula can be applied to any continuous-
variable protocol and offers a convenient way to prove security. The formula in the
case of collective attacks permits a simple adaption of the asymptotic key rates given
by the Devetak-Winter formula [DW05] to the finite-key regime. Hence, these key
rate formulas provide a basic and general starting point for a finite-key security anal-
ysis independent of the specific implementation. This means that difficult problems
such as the characterization of the optimal attacks can be avoided.
One big advantage of the proof technique based on the application of the uncer-

tainty relation is that it relies only on a few assumptions. It would therefore be
desirable to enhance the bounds and close the gap in the asymptotic limit by a
“weak” state dependent version of the uncertainty relation (c.f. [HT11a]), which only
exploits trusted knowledge. This knowledge can for instance be the reduced state on
Alice’s side since the source is assumed to be located in Alice’s lab.
In order to narrow the gap between the theoretical assumptions in the security

proof and the experimental implementations, it would be desirable to have a more
realistic description of the homodyne detection than simple projections onto the
spectrum of canonically conjugated operators of one mode. This only enters the
finite-key rate formula in the computation of the overlap in the uncertainty relation
and can therefore easily be adjusted. For instance, if the amplitude and phase
measurements are not perfectly orthogonal and instead deviate by an angle of θ,
then the constant c in Equation (8.1) changes by c 7→ cos θc+ sin θ.

8.3. Device-Independent Quantum Key Distribution and
Extremal Correlations

We characterize all the secure quantum correlation tables that are monogamous in
the sense that any extension to any further commuting quantum measurement is
uncorrelated. This property then implies that an eavesdropper cannot have more
information about the measurement outcomes of the honest parties than the statis-
tical frequencies thereof. Given that the randomness in the outcome distributions
and the correlations between the honest parties are large enough, this enables the
extraction of a secure key by classical post-processing (c.f. [ILL89]). A prominent
example of such a secure correlation table is the one that maximally violates the
CHSH-inequality [Tsi85]. The main result is given in Theorem 7.3.2. It states that
the secure correlation tables are exactly the extremal ones in the convex set gen-
erated by all quantum correlation tables. This generalizes an idea from [BLM+05],
which was used to prove security against individual attacks of a eavesdropper limited
by the non-signaling principle [BHK05].

In order to study general correlation experiments, we introduce the universal
C*-algebra specified by the number of parties N , measurements M and outcomes K
(see Definition 7.3.3). We then consider the property of an extremal quantum corre-
lation table to uniquely determine the quantum representation, that is, the quantum
state and the observables. We show that this property is related to an even stronger
notion of security, called algebraically secure (see Theorem 7.3.8). An algebraically
secure correlation table is defined via the property that also every other measurement
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which lies in the algebra generated by the observables leads to a secure correlation
table. Surprisingly, this is not a rare property among extremal correlation tables.
We show in Section 7.4.3 that many extremal correlation tables for an experiment
with two parties and binary measurements exhibit this property, including the one
corresponding to the maximal violation of the CHSH-inequality.

After linking the security of a correlation table to its extremality, we then dis-
cuss different methods of how to verify that a correlation table is extremal. A
common verification is to see whether a correlation table maximizes a Tsirelson
inequality. This problem can be expressed as a hierarchy of semi-definite pro-
grams [DLTW08, NPA08]. However, since this hierarchy is infinite, it is in general not
efficiently solvable. We find that the problem of determine all the extremal points is
closely related to determine the boundary states of the universal C*-algebra [Ave08],
which would decide Tsirelson’s problem [SW08], and thus, also Connes embedding
problem [JNP+11]. Hence, a general solution of the problem is hardly possible and
instead we focus on concrete configurations. The case of N parties where each can
perform two binary measurements is completely determined by the irreducible rep-
resentations of the universal C*-algebra of two-projections (see Section 7.4.1). This,
together with ideas from [DLTW08], enabled us to find a parameterized family of
extremal correlation tables for the simplest case of N = 2 parties. The case of two
parties and arbitrary numbers of binary measurements at each site was characterized
by Tsirelson [Tsi85] and is discussed in Section 7.4.3.

Outlook. The characterization of secure correlation tables shed new light on the
requirements that have to be satisfied in order to be useful for device-independent
quantum key distribution. A natural extension would be to consider almost secure
correlation tables. The security in that case has to be determined by a distance to
the closest extremal correlation table. However, linking different distance measures
to an operational meaning is far from trivial. A natural measure of security of a
correlation table P with a direct interpretation would be to define the distance as
the maximal possible weight of the deterministic points maximized over all convex
combinations of P into extremal correlation tables. This idea was for instance used in
the device-independent security proof in [BHK05]. This measure depends crucially
on the geometry of the convex set of quantum correlation tables. It would thus be
interesting to study this geometry in more detail, especially, around extremal corre-
lation tables which are possible candidates for practical implementations of device-
independent quantum key distribution protocols including the one maximizing the
CHSH-inequality or Mermin’s inequalities [Mer90].

The different cases specified by the number of parties N , measurements M and
outcomes K, are related to different notions of security of two-party quantum key
distribution protocols. In the situation where (N,M,K) is (2, 2, 2), we can under
the assumption of individual attacks, directly estimate the correlation table P. From
this we can then determine the maximal possible weight of deterministic points,
previously discussed, and infer security of the device-independent quantum key dis-
tribution protocol in analogy to [BHK05]. The case (2n, 2, 2) would then corre-

133



8. Conclusion and Outlook

spond to n choices of two commuting binary measurements at each site as discussed
in [HR10, MPA11]. Finally, the case (2, 2n, 2n) corresponds to coherent attacks in a
protocol based on n choices of two possible binary measurements. Since only little is
known about the C*-algebra corresponding to the (2, 2n, 2n) case, finding extremal
correlation tables or even verifying that a correlation table is close to an extremal
one is generally extremely difficult.
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A.1. Gaussian Extremality

In the following we show that the infimum infωH(XA|E)ω taken over all states ωAB
with covariance matrix Γ is attained for the Gaussian representative. Even though
the argument is in analogy to [GPC06], we give it here for the sake of completeness.
See also [NGA06] for a similar result.
The main tool is the nice result from [RWW06] which classifies functions which are

optimized by Gaussian states. In particular, if one can show that a function f(ωAB)
is (i) lower semi-continuous in trace norm, (ii) invariant under local unitary transfor-
mations, and (iii) strongly superadditive, i.e. f(ωABA′B′) ≥ f(ωAB)+f(ωA′B′) where
equality holds if ωABA′B′ = ωAB ⊗ ωA′B′ , then it follows that f(ωAB) ≥ f(ωΓ

AB).
Here, ωΓ

AB denotes the Gaussian representative of the family of states with same
covariance matrix Γ.
Consider now the function f(ωAB) = H(X|E)ω where ωABE is a purification

of ωAB and ωXBE is obtained by applying the measurement used in our protocol
on the A system. The conditional von Neumann entropy is defined in accordance
with [Kuz11], that is, H(A|B)ρ = H(A)ρ−H(ρAB||ρA⊗ ρB) where H(ρ||σ) denotes
the relative entropy. In this definition we require that H(A)ρ is finite. Note that the
classical alphabet X on which ωX is defined is finite such that H(X)ω is always finite
and the conditional entropy is well-defined. Because 0 ≤ H(X|B)ρ ≤ H(X)ρ ≤
log |X | holds for any finite-dimensional B systems, we obtain the same result for
infinite-dimensional Hilbert spaces via the finite-dimensional approximation property
of the conditional von Neumann entropy as shown in [Kuz11].
We show now that f satisfies the properties (i)-(iii) from which the extremality of

the Gaussian state follows. The properties (i) and (ii) are obtained in a similar way
as in [GPC06]. In order to show property (iii) one takes a purification ωABA′B′E of
ωABA′B′ which is of course also a purification of ωAB and ωA′B′ . The following chain
of inequalities for the von Neumann entropies

H(XX|E)ω = H(X|X ′E)ω +H(X ′|XE)ω

+ I(X : X ′|E)ω

≥ H(X|A′B′E) +H(X|ABE)

holds for finite-dimensional systems due to I(X : X ′|E)ω ≥ 0 and since X (X ′)
is obtained from AB (A′B′) via a trace preserving completely positive map. But
this can be lifted to infinite-dimensions via the finite-dimensional approximation
property [Kuz11] as the entropies are all finite. Hence, we obtain the strong super-
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additivity

f(ωABA′B′) = H(XX|E)ω

≥ H(X|A′B′E) +H(X|ABE)

= f(ωAB) + f(ωA′B′) .

The equality in the case of ωAB ⊗ ωA′B′ follows from the additivity of the von
Neumann entropy.

A.2. The Conditional von Neumann Entropy for Finite
Spacing

The goal is to calculate H(XA|E)ω for a two mode squeezed Gaussian state ωAB.
For the proper definition and the properties of conditional von Neumann entropies
for infinite-dimensional systems, we refer to [Kuz11]. Let ωABC be a Gaussian pu-
rification of ωAB with ωE a two mode Gaussian state. We first rewrite the entropy
as

H(XA|E)ω = H(XAE)ω −H(E)ω

= H(E|XA)ω +H(XA)ω −H(AB)ω ,

where we used that ωABE is pure and therefore H(E) = H(AB). Note also that
in our case the alphabet X is finite. Since ωAB is a two mode Gaussian state the
entropy H(AB)ω is just a function of the symplectic invariants and can be calcu-
lated [SIDS04].
For the computation of the other entropies, we assume for simplicity that the cor-

relations in amplitude and phase are symmetric, and do the calculation for the am-
plitude measurement with corresponding operator denoted by X. The measurement
operators for a projection onto the interval Ik, k ∈ X , are described by Ek = µx(Ik),
where µx is the spectral measure of X. The post-measurement states are then given
by ωkABE = 1/pk(EkωABEE

†
k), where pk = Tr [ωABEEk]. The entropy H(XA)ω is

the Shannon entropy of the classical distribution {pk}.
Let us turn to the estimation of H(E|XA)ω. First, we note that

H(E|XA)ω =
∑
k

pkH(E)ωk ,

which reduces the problem to calculate H(E)ωk for every k ∈ X . For that we
introduce the normalized post measurement state ωBE(x) conditioned that Alice
measures the amplitude x ∈ R. Furthermore, we denote by p(x) the probability
that Alice measures x. Since ωAE is a Gaussian state, one can show that ωE(x) =
U(v(x))ωE(0)U(v(x))†, where U(v) denotes the Weyl operator which corresponds to
a phase space translation and v is a continuous function which depends on ΓAE .
Hence, we obtain that H(E)ω(x) = H(E)ω(0) for all x.

Proposition A.2.1. Let ωAB be a two mode squeezed Gaussian state, ωABE a
Gaussian purification, and ωBE(x) and ωkBE as defined above. Then, it follows that
H(E)ωk ≥ H(E)ω(0) and, thus, H(E|XA)ω ≥ H(E)ω(0).
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Proof. The proof exploits the concavity of the von Neumann entropy and the fact
that the state ωkE can be approximated in trace class by a finite convex combination
of states ωE(x). Note that we can write ωkE = 1/pk

∫
Ik
p(x)ωE(x)dx where the

integral converges weakly. As discussed above we also have the relation ωE(x) =
U(v(x))ωE(0)U(v(x))†. Since U(v) is strongly continuous in v, we have x 7→ ωBE(x)
and, thus, x 7→ ωE(x) are trace class continuous. Hence, we know that the Lebesgue
integral

∫
Ik
p(x)ωE(x)dx converges even in trace norm, and furthermore, it is equal

to the Riemann integral. So we can approximate ωkE in trace norm via step functions

ρlE =
1

pk

Nl∑
j=1

p(xlj)|J lj |ωE(xlj) ,

where it holds for all l that Ik =
⋃
j J

l
j , the x

l
j ∈ J lj are chosen such that

∑Nl
j=1 p(x

l
j)|J lj | =

pk, and supj |J lj | → 0 for l → ∞. Furthermore, as ωE(x) is a Gaussian state, we
have that for H = Q2

E + P 2
E the expectation value Tr [ωE(x)H] is bounded and con-

tinuous in x, so Tr
[
ρlEH

]
→ Tr

[
ωkEH

]
for l → ∞ 1. Using that the von Neumann

entropy is continuous for sequences of states with finite energy [Weh78], we find that
H(E)ωk = liml→∞H(ρlE), and thus,

H(ωkE) = lim
l→∞

H(ρlE)

≥ lim
l→∞

1

pk

Nl∑
j=1

p(xlj)|J lj |H(ωE(xlj)) = H(ωE(0)) .

The inequality is due to the concavity of the von Neumann entropy [Weh78] and the
last equality holds because H(ωE(x)) is independent of x.

Using this proposition we finally get

H(XA|E)ω ≥ H(E)ω(0) +H(XA)ω −H(AB)ω ,

where the right-hand side can be calculated since ωE(0) and ωAB are Gaussian states
(see, e.g., [SIDS04]). Note also that the only dependence on the interval length δ in
this formula is due to H(XA)ω.

1We also use that x <∞ for x ∈ Ik since Ik ⊂ R for all k.
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