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Eine Herausforderung der regenerativen Medizin ist die Wiederherstellung defekter Gewebe 

des menschlichen Körpers durch den Einsatz von Stammzellen. Zu diesem Zweck werden 

Stammzellen ex vivo prozessiert, wobei die Vermehrung und die Ausdifferenzierung der 

Zellen zielgerichtet kontrolliert werden müssen. In diesem Zusammenhang spielen Zytokine 

eine entscheidende Rolle. Darüber hinaus stellt die Quelle der prozessierten Zellen einen 

wichtigen Aspekt für die Etablierung eines reproduzierbaren und technisch vertretbaren 

Bioprozesses dar. 

Im Rahmen dieser Arbeit wurden rekombinante CHO Zelllinien zur Produktion der 

Stammzell-relevanten Zytokine Angiopoietin-like protein 1 und 2 (Angptl1 und Angptl2), 

sowie Leukemia Inhibitory Factor (LIF) etabliert. Während Angptl1 und Angptl2 intrazellulär 

exprimiert wurden, konnten jedoch die Proteine extrazellulär nicht nachgewiesen werden. 

Dagegen konnte das LIF Protein von der etablierten Zelllinie erfolgreich sekretiert werden. 

Die Bioaktivität des aufgereinigten LIF wurde daraufhin anhand von Suspensionskulturen 

muriner ES-Zellen demonstriert. Mittels durchflusszytometrischer Zellsortierung wurden 

schließlich klonale CHO Zelllinien generiert, die eine Optimierung des LIF 

Produktionsprozesses erlauben könnten. 

Ferner erfolgte eine Charakterisierung mesenchymaler Stromazellen (MSC) aus dem 

Nabelschnurgewebe. Im Hinblick auf therapeutische Anwendungen wurden xeno-freie 

Isolierungs- und Expansionsprozesse durchgeführt. So zeigten die isolierten MSCs ein hohes 

Proliferationspotential und wiesen einen stabilen Phänotyp auf, was für die Etablierung 

biotechnologischer Prozesse hoch interessant ist. Eine große Anzahl an undifferenzierte hoch 

qualitativer Zellen für die Bereitstellung therapeutischer Dosen könnte somit in kurzer Zeit 

erhalten werden. Schließlich wurde das osteogene Differenzierungspotential der Zellen 

untersucht. Hierbei konnte kein funktioneller osteogener Phänotyp induziert werden. 

Allerdings wurde gezeigt, dass die Zellen dennoch auf einen osteogenen Stimulus reagierten, 

was unter anderem durch die Herunterregulierung des Oberflächenmarkers CD90 zu 

erkennen war. Zukünftige Arbeiten sollten untersuchen, ob die isolierten MSCs über 

alternative Differenzierungsmethoden effizienter osteogen induziert werden können. Darüber 

hinaus bleibt die Frage offen, ob die Zellen ein höheres Potential für weitere mesodermale 

Differenzierungswege aufweisen.   

 



Abstract 

III 

Abstract 
Keywords: stem cells, cytokine, Mesenchymal Stromal Cells, umbilical cord tissue 

 

The engineering of stem cells to restore defect functions in human tissues is an ambitious aim 

in the field of regenerative medicine. The establishment of stem cell-based bioprocesses is 

challenging, as it requires the control of the cellular fate ex vivo. In this context, bioactive 

cytokines are key elements of the process. Moreover, the implementation of reliable and 

reproducible bioprocesses would be facilitated by the use of non-controversial and easily 

accessible stem cells in the human body. 

In the present work, recombinant CHO cell lines were established for the production of the 

cytokines Angiopoietin-like proteins 1 and 2 (Angptl1 and Angptl2) and Leukaemia 

Inhibitory Factor (LIF), which are of high interest for stem cell technology applications. 

While the intracellular expression of Angptl1 and Angptl2 was demonstrated, the cytokines 

could not be detected in the cuture supernatants. In contrast, the CHO cell line established for 

the production of LIF secreted the recombinant protein. The bioactivity of the purified LIF 

was demonstrated using suspension cultures of ES cells. Given the bioactivity of the expressed 

cytokine, clonal CHO cell lines were eventually generated for the optimization of the LIF 

production process. 

The second part of this work focused on the characterization of MSCs derived from human 

umbilical cord tissue. In the perspective of clinical applications, xeno-free isolation and 

expansion procedures were proposed. A large number of MSCs could be isolated from the 

tissue in a reproducible manner. The isolated cells exhibited a high proliferation potential and 

were found to display a stable MSC phenotype during long-term expansion. These features are 

particularly interesting in terms of cell engineering. Compared to MSCs derived from other 

sources, clinical doses could be obtained more rapidly from UC-MSCs. Finally, with regard to 

tissue engineering applications, the osteogenic differentiation potential of the cells was 

evaluated. The isolated cells could not be induced to a functional osteogenic phenotype, but 

responded to osteogenic stimulation, as illustrated by a down-regulation of the surface antigen 

CD90. Further investigations should be conducted to achieve a more efficient osteogenic 

differentiation and elucidate if the isolated cells may be more committed to other mesodermal 

lineages. 
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1 Introduction  
The engineering of stem cells to restore defect functions in human tissues is an exciting 

challenge in the field of regenerative medicine. The aim of this fast emerging interdisciplinary 

area is the isolation of stem cells from niches of the human body and the use of their 

biological potential for clinical and tissue engineering applications. Stem cell based therapies 

exist since the first successful bone-marrow transplantations in 19681, 2. Ever since, the 

procedure has been routinely used to treat hematopoietic disorders. In this context, minimal 

ex vivo manipulations have been required as hematopoietic stem cells have been transplanted 

following tissue isolation mostly as an heterogeneous population.  

Many advances achieved over the last decades enlarged the perspectives for clinical 

applications of stem cells. The establishment of human embryonic stem (ES) cell lines opened 

possibilities for the use of pluripotent stem cells3. Adult stem cell niches were identified in 

various tissues of the body, exhibiting the potential to give rise to specific cell types. It was 

soon observed that these cells may be much less lineage restricted than previously thought, 

showing a so-called “stem cell plasticity” 4. Expanded knowledge was gained for the isolation, 

the cultivation and the directed differentiation of the cells, so that ex vivo engineering of stem 

cell is now conceivable.  

The development of bioprocesses for the delivery of highly qualitative cells to a patient is 

challenging, as each process step may influence the safety and the efficiency of the final cell 

product. A schematic view of the approach is given in Fig. 1.1 highlighting some questions 

that must be addressed for each step of the process.  

 

Fig. 1.1: Schematic overview of a stem cell-based bioprocess for clinical or tissue engineering applications. 
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In some cases, stem cells will be isolated and subsequently expanded to deliver a sufficient 

number of cells to support the regeneration of damaged tissues in vivo. For other applications, 

it will be desirable to differentiate stem cells in vitro, for instance for tissue reconstruction 

before delivery into the human body.  

The cellular fate of stem cells is directed by bioactive proteins called cytokines, which are 

provided in vivo to the cells by their cellular environment. An important challenge of the ex 

vivo procedures is to determine cultivation conditions allowing the preservation of stem cell 

characteristics or the efficient differentiation into a specific lineage. In this context, the 

identification of cytokines and their production is crucial for the development of stem cell-

based bioprocesses. For some cell populations, such as hematopoietic stem cells, ex vivo 

expansion remains difficult because appropriate culture conditions are still lacking. Newly 

described cytokines may help solving this problem5. In the case of embryonic stem cells, 

several factors have been identified making their ex vivo expansion possible6-9. The 

identification of these factors has been a breakthrough in this field, allowing in some cases the 

elimination of serum8, 10 and the use of adherent co-cultures involving feeder cells 10-12, so that 

perspectives have been opened for the scale-up of the expansion processes. To date, cytokines 

represent an important part of the cultivation costs and their availability constitutes a 

bottleneck during the development of a stem cell-based bioprocess, in particular if large scale 

approaches are intended.  

Stem cell availability is an essential point for the implementation of reliable and reproducible 

bioprocesses. In addition, the question of the public and political acceptance of the 

technologies plays an important role, especially for biotechnological companies, which still 

consider stem cell technology financially and technologically risky 13. In this context, the 

source for the derivation of stem cells is crucial and should be carefully chosen according to 

the potential and the application field of the isolated cells, but also according to the related 

ethical issues. 

Embryonic stem (ES) cells have a great potential in regenerative medicine due to their 

pluripotency, but their use may be limited by serious ethical considerations. Recent findings 

evidencing the reprogramming of somatic cells to pluripotent stem cells, termed as iPS cells 14, 

open ethically acceptable perspectives. Pluripotent stem cells may represent the most efficient 

approach for the generation of large amount of cardiac tissue 15, 16. Even so, the concern 
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remains that undifferentiated iPS cells as well as ES cells may form teratomas after 

transplantation in the body. As a consequence, their clinical application would introduce 

additional challenges.  

Adult Mesenchymal Stem or Stromal Cells (MSCs) are considered a valuable alternative to 

pluripotent stem cells. Since their discovery in bone marrow (BM) by Friedenstein et al. 17, 

BM-MSCs have been extensively investigated and their use in animal studies as well as in 

clinical trials showed encouraging results 18. Today BM-MSCs are still considered as the “gold 

standard” for the use of adult MSCs. However, BM as a source for MSCs presents several 

disadvantages. Besides the invasive and painful collecting procedure, MSCs are present at very 

low frequency (approx. 0.001-0.01 % 19) in BM-aspirates and their quality varies with the age 

of the donor. The low frequency implies that an extensive ex vivo expansion of the cells will 

be required to deliver clinical doses to a patient, which enhances the risk of epigenetic 

damages as well as viral and bacterial contaminations. The donor dependent quality is 

problematic for the establishment of a reproducible bioprocess. For these reasons, alternative 

sources of MSCs should be considered.  

In this context, non-controversial and accessible sources of MSCs such as human adipose 

tissue or the umbilical cord have gained more and more attention in recent years. The human 

umbilical cord in particular, which used to be a waste product at birth, is a non-controversial 

and accessible source of autologous cells. It has been demonstrated that MSCs are present in 

the blood (UCB)20 but also in the tissues of the umbilical cord. UCB-derived MSCs may have a 

limited technological potential because their frequency is even lower than in BM (ranging 

from 0.001–0.000001%) 21 and their isolation is hardly reproducible 22, 23. In contrast, the 

frequency of MSCs in UC-tissues is believed to be much higher and the first generation of 

studies strongly suggests that these multipotent primitive cells may have a high potential for 

clinical and tissue engineering applications.  

 

Aims of the work 

Given the challenges of the development of stem cell-based bioprocesses and the recent 

findings in the field of MSCs, two objectives are defined for this work. 

In the first part, stable recombinant CHO cell lines are established for the production of 

cytokines of high interest in stem cell technology. Among them, the production of two 
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Angiopoietin-like proteins (Angptl), which have been recently proposed to support the ex 

vivo expansion of hematopoietic stem cells, is intended. In addition, a CHO cell line is 

established for the production of human Leukaemia Inhibitory Factor (hLIF), a key cytokine 

for ES cell cultures. To allow the rapid establishment of stable CHO cell lines, lentiviral gene 

transfer is used and the efficiency of this technique is evaluated.  

The second part of this work focuses on the characterization of MSCs derived from human 

umbilical cord tissue. In the perspective of a clinically relevant bioprocess, xeno-free isolation 

and expansion procedures are proposed. The primary cells isolated in these conditions are 

characterized and their potential is evaluated for the establishment of a reliable process to 

provide cells for therapeutic applications. 
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2 Theoretical background 

2.1 Gene transfer techniques for the establishment of recombinant cell lines  

 

The establishment of recombinant animal cell lines for the expression of heterologous proteins 

requires the transfer of foreign DNA into the host cell. The expression of a recombinant 

protein can be transient, i.e. the transgene is not integrated into the genome and will be lost at 

cell division. Transient gene expression is useful for the rapid production of protein, e.g. for 

initial screening of bioactivity24. For the establishment of a reliable process, stable cell lines 

which permanently express the transgene are necessary. Stable protein expression usually 

requires the integration of the expression construct into the host cell genome, although long-

term episomal gene expression was also reported 25. 

Several barriers have to be overcome for the delivery of expression vectors into the cell 

nucleus. Thus, DNA plasmids must be first condensed using cationic reagents or be packaged 

in a transfer vehicle to facilitate cell entry. After internalization, the DNA has to escape 

degradation in the cytoplasm and finally reach the nucleus. Once inside the nucleus, the 

delivered expression construct has to integrate into the genome of the host cell. Every step 

may limit the efficiency of the procedure. 

Many approaches have been used for the transfer of expression vectors into mammalian cells. 

The methods can be roughly divided into non-viral transfer, denominated as “transfection”, 

and viral transfer, termed as “transduction”. An overview of current methods is given in Table 

2.1. The methods are briefely discussed subsequently. 
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Table 2.1: Overview of transfection and transduction methods for mammalian cells. 

DNA delivery methods 
Chosen 

Ref. 
Physical methods  

Electroporation 26 
Microinjection 27 
Particle bombardment 28 
Sonoporation 29 

Chemical methods  

Calcium phosphate 30 
DEAE-dextran 31 
Lipid-mediated  32 
Peptid-mediated  33 
Cationic dendrimers  34 
Cationic polymers  35 

Viral methods  

Adenoviruses 36 
Adeno-associated viruses 37 
Alphaviruses 38 
Baculovirus 39 
Herpes Simplex viruses 40 
Retroviruses 41 

 

2.1.1 Non-viral gene transfer 

Physical methods 

Physical methods such as microinjection, electroporation, sonoporation and particle 

bombardment are available techniques for DNA transfer into cells. Microinjection is efficient, 

as in this case foreign DNA can be directly introduced into the nucleus. However, the 

technique can be applied only for a limited number of cells and is used for specific 

applications, such as the manipulation of embryos 42. Particle bombardment implicates the use 

of DNA-coated microparticles that are accelerated through the cell membrane. This technique 

has mostly found applications for the in vivo administration of DNA to animal tissues 43 or to 

plant cells 44. Electroporation is a widely used technique and is applicable to many cell types. 

The cells are exposed to a high voltage electrical field inducing the formation of pores in the 

cell membrane and allowing exogenous DNA to pass into the cytoplasm. The procedure is 

rapid, but a high mortality of the cells is caused by the exposure to the electrical field and 

optimizations are required for every cell type. Similar limitations are observed for 

sonoporation, where ultrasound is used to transiently induce cell membrane poration 45.  
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Chemical methods 

DNA transfer methods using chemical reagents have mostly been used for the establishment 

of recombinant mammalian cell lines.The general principle of chemical methods relies on the 

interaction of negatively charged DNA with positively charged reagents to form a complex, 

which is then internalized, presumably via endocytosis. DEAE-dextran transfection or 

calcium phosphate (CaPO4) precipitation belong to the earliest chemical methods and have 

been widely used for the transfection of mammalian cells. However, DEAE is not appropriate 

for a stable transfection31 and the efficiency of CaPO4 transfection is strongly dependent on 

the presence of serum46, which may be a major limitation for the establishment of industrial 

cell lines. Many reagents were developed for lipid-mediated DNA delivery. In this approach, 

cationic lipids are added to the DNA to form a complex called “lipoplex”. The complex 

interacts with the hydrophobic and positively charged cell membrane and passes via 

endocytosis into the cytosol. The principle of the uptake is presented in Fig. 2.1.  

 

Fig. 2.1: Lipid-mediated-gene delivery47 

Other approaches involving peptide-based delivery methods have been used. For instance, the 

cationic peptide poly-L-lysine (PLL) can be used to condensate DNA for efficient intracellular 

uptake48. Also many cationic polymers have been developed, such as polyamidoamine 

(PAMAM) dendrimers 49 or polyethylenimine polymer (PEI)50 and its derivates such as 

mannose-PEI 51 or transferrin-PEI 52. PEI has been shown to be one of the most effective 

reagent for the transfection of mammalian cells 53, 54. The highly branched polycationic 

molecule (Fig. 2.2.A) forms a dense complex with the DNA, which can be efficiently 

internalized by the cells (Fig. 2.2.B).  
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Many of the transfer methods mentioned above 

are highly effective for DNA delivery into the 

cytoplasm. CaPO4, cationic lipids or polymers 

are able to mediate a DNA uptake into almost 

every treated cell. However, subsequent 

barriers limit the efficiency of the transfection. 

Many delivered transfection particles remain 

sequestered in the endocytic vesicles and are 

degraded among the endosomal pathway (see 

Fig. 2.1). The high efficiency of the PEI 

transfection methods has been explained by its 

ability to destabilize endosomes after DNA 

uptake. This phenomenon, illustrated in Fig. 

2.2.B, is most likely due to the buffer effect of 

the polymers, which leads to an increased 

osmotic pressure during endosomal 

acidification (driven by proton pumps) and  

Fig. 2.2: PEI-mediated DNA uptake.  
In A: structure of branched PEI. In B: 
internalization of the PEI/DNA complex (1), 
release from the endosome, (2) and nuclear 
targeting (3), adapted from 54 

eventually to lysis. Additionally, the PEI/DNA complex seems to protect the plasmid from 

cytoplasmic nucleases after release from the endosome 55. 

Besides the intracellular degradation process, the targeting into the nucleus plays also a 

limiting factor. In most cases, only a small fraction of the delivered DNA eventually reaches 

the nucleus. For instance, Holmes et al. measured that only 0.3 % of delivered DNA reached 

the nucleus 24h after transfection by cationic lipids56. In contrast, high nuclear trafficking 

may be possible when PEI/DNA complexes are used57. In order to optimize nucleus targeting, 

several strategies have been developed, as for instance the use of viral nuclear localization 

signals (NLSs) and nuclear-targeting peptides 58, 59. 

Finally, the efficiency of non-viral methods is limited by the integration of DNA into the host 

genome. This process is inefficient and needs to be accompanied by the simultaneous 

introduction of a marker in the genome in order to select transfected cells. The selection 

marker can be imported on the same vector as the gene of interest or on a separate plasmid60. 

Commonly used selection systems involve the expression of the enzyme dihydrofolate 
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reductase (DHFR), which is essential for the de novo synthesis of nucleotide, and glutamine 

synthetase (GS). Cells that contained the expression vectors episomally may first survive, but 

will then be eliminated over the next cell generations. The selective pressure can be 

subsequently increased using for instance inhibitor such as methotrexate (MTX) for the 

enzyme DHFR or methionine sulphoximine (MSX) for the enzyme GS. As a response, the 

transgene copy number is increased in the genome, which leads to a higher recombinant 

protein expression 24. 

It should be mentioned that integration in the genome alone does not guarantee a stable 

protein expression. The site of integration has also been found to be of tremendous 

importance. The random integration of the transgene in a transcriptional inactive area of the 

chromosomes, e.g. in heterochromatin, and/or silencing phenomenon such as DNA 

methylation and histone hypoacetylation, leads in many cases to the inactivation of the 

recombinant protein expression 61. Many scientific efforts have been made to allow a site 

specific integration in transcriptional active area of the genome62-64. The topic is outside the 

scope of this overview, but has been the subject of previous reviews 24, 65. 

The establishment of stable cell lines using physical and chemical methods is challenging, as 

many cellular barriers and mechanisms have to be overcome for the integration of a transgene 

into the host cell genome. In contrast, biological vectors such as viruses are able to efficiently 

integrate DNA into the host genome. This natural ability has been employed to design viral 

vectors for foreign DNA delivery. In the following section, retroviral DNA delivery is 

discussed shortly and the lentiviral vector preparation used in this work is presented in more 

detail. 

2.1.2 Viral gene transfer: retroviral vectors 

Many viruses have been used for the delivery of expression constructs into mammalian cells 

(see Table 2.1). Retroviruses present unique features that make them particularly interesting 

in this regard. During their life cycle, these RNA viruses can stably integrate their genomes 

into the chromosmes of infected cells for a subsequent high expression level of viral proteins. 

The following part briefly presents the mechanisms involved. 
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Retrovirus life cycle 

Fig. 2.3.A presents the 3D structure of a retrovirus. The viral capsid contains the RNA genome 

(two identical copies) as well as the viral enzymes (protease, reverse transcriptase/RNAse, 

integrase) necessary for the replication of the viruses. Envelop proteins are embedded in the 

lipid bilayer membrane (in red, Fig. 2.3.A). Surface glycoproteins are involved in the specific 

recognition of the host target cells. The genes gag, pol, env coding for the structural protein or 

viral enzymes are indicated. 

A 

 

B 

 
Fig. 2.3: 3D structure of a retrovirus (in A, adapted from http://www.stanford.edu/group/nolan) and 
retrovirus life cycle (in B, adapted from 66) 
 

The life cycle of retroviruses begins with the infection of the host cell (Fig. 2.3.B). The viral 

surface glycoproteins bind to receptors of the targeted host cells and initiate the 

internalization. Following internalization, the RNA genome is reverse transcribed into DNA 

(2) and integrated into the host genome by viral integrases. Once in the genome, the 

transcription of the viral gene is promoted by the retroviral promotor (4). The protein 

synthesis machinerie of the host cell is then used for the translation of new viral proteins, 

which finally assemble for the formation and the budding of new viruses out of the cells (5). 

By modification of the retroviral genome and the use of packaging cells for virus production, 

retrovirus-based delivery systems have been developed for the insertion of a transgene into a 

host cell genome. A crucial aspect of this approach has been the inactivation of retroviral 

replication, so that after genome integration, a new generation of retroviruses can not arise 

from the infected cells. Many retroviruses only integrate into dividing cells, thus limiting the 

delivery to a subset of cells within the treated population. Lentiviruses, a sub-class of 



2 Theoretical background 

11 

retrovirus, have been found to have the ability to transduce dividing and non-dividing cells67, 

so that very high transduction efficiency can be attained using this delivery system. 

 

Retroviral gene delivery using lentiviral vectors 

Lentiviral vectors have been widely used for the transfer of transgenes to mammalian cells in 

the perspective of gene therapy 68, 69. Lentiviral vectors can integrate long DNA sequences (up 

to 10 kb) and most importantly allow a long-term expression of a transgene, because they 

incorporate preferentially within active transcription areas of the host genome70. The 

biosafety of the vector systems, in particular if the vectors are based on viruses infectious for 

human (e.g. HIV-1), has been a source of concerns. Several modifications of the virus genome 

have been made to guarantee the biosafety of the transfer methods 69, 71. First, as mentioned 

above, non-replication competent viruses are used, i.e. the viruses are able to infect host cells, 

but will not form new viruses. Also, the vector transferred to the host cell is “self inactivating” 

(SIN), which means that after integration into the genome, the transcription of viral 

sequences is not possible.  

In this work, replication incompetent viruses transferring a SIN lentiviral vector designed by 

Schambach et al. 71, 72 was used for the transduction of CHO cells. The vector preparation is 

based on the Human Immunodeficiency Virus (HIV-I). The approach is presented here in 

short.  

The production of lentiviruses for the transduction of the CHO cells take place in so called 

packaging cells. HEK 293T cells are frequently used for this purpose. These cells are 

transiently transfected with several plasmids providing all genetic elements necessary for the 

production of the lentiviruses. Thus, the production of replication incompetent viruses is 

achieved by segregating the key coding and regulatory sequences of the HIV-I genome on 

four separated plasmids. Only the vector containing the gene of interest exhibits the 

packaging signal ψ (SIN vector in Fig. 2.4.B), i.e. only this vector is packaged into the viruses 

for delivery. This point is illustrated in Fig. 2.4.B. In comparison, a schematic representation 

of the HIV-I genome is given (in A).  
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Fig. 2.4: Schematic representation of the HIV-I genome (in A), a part of the genome (gene Nef, Vpr, Vpu, 
Vif and Tat) has been omitted. Schematic representation of the SIN vector and helper plasmids used for 
the production of lentiviruses. LTR: long terminal repeats; ψ: packaging signal; RRE: Rev response 
element; PPT: polypurine tract; SFFV: Spleen focus forming Virus promotor; PRE: post-transcriptional 
regulatory element; SIN: self inactivating; CMV: Cytomegalievirus promoter; RSV: Rous-Sarkoma Virus 
promoter. 

The sequences coding for the viral proteins are delivered by the so-called helper plasmids. 

Thus, the gene gag, coding for the matrix and core proteins, and the gene pol coding for the 

viral enzymes (reverse transcriptase, integrase, RNAse, see Fig. 2.3) are delivered with one 

plasmid. A second plasmid brings the gene coding for the Rev protein, an essential viral 

protein for the transport of the viral RNA into the cytoplasm of the packaging cells. The third 

plasmid contains the gene coding for the surface proteins of the lentiviruses. For the infection 

of CHO cells, the HIV-I surface glycoprotein ENV (see Fig. 2.4.A), which specifically 

interacts with the surface receptor CD4 of human T lymphocytes, was replaced by the protein 

G of Vesicular Stomatitis Virus (VSV-G in Fig. 2.4.B), which recognizes a broad range of 

mammalian cells 73.  

The lentiviral vector contains the gene of interest flanked with a strong promoter SFFV (Fig. 

2.4.B), which allows a high expression of the transgene in the CHO cells once transduction 

has occurred. The lentiviral vector also harbors the regulatory sequences necessary for the 

transcription of the plasmid DNA into viral RNA in the packaging cells. These regulatory 
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promoter and enhancer sequences are contained in the so called long terminal repeat (5’LTR 

and 3’LTR). In the vector used, the promoter sequence of HIV-I (U3 in the 5’LTR, Fig. 2.4.A) 

has been replaced by a strong RSV promoter (see 5’LTR in Fig. 2.4.B) to allow a higher virus 

production in the HEK 293 T cells. The sequence interacting with the REV protein (RRE, Rev 

response element) for the nuclear export of the RNA is also present. Additional regulatory 

sequences such as the post-transcriptional regulatory element (PRE) and the polypurine tract 

(PPT) are also present on the vector and promote a high expression of the transgene after 

transduction74.  

Once integrated by the lentiviruses into the CHO genome, it is important that the viral 

transcriptional activity conferred by the LTRs is inactivated. This is the main feature of self 

inactivating “SIN” vectors. The transcriptional activity in the HIV genome is conferred by the 

U3 region of the 3’LTR (yellow sequence in Fig. 2.4.A). Thus, in the SIN vector used in this 

work, the portion of the 3'LTR exhibiting the transcriptional activity is deleted (yellow 

sequence in Fig. 2.4.B), so that the vector finally integrated in the CHO genome is a 

promoter-lacking sequence. In this context, non lentiviral transcription activity can be 

triggered in the CHO genome. 

 

 



2 Theoretical background 

14 

 

2.2 The human umbilical cord: a source of multipotent primitive cells with 

potential for clinical and tissue engineering applications. 

The human umbilical cord harbors several primitive cell populations of biotechnological 

interest. For instance, human umbilical vein endothelial cells (HUVEC), which can be isolated 

by well established procedures, may be used for tissue engineering applications, in particular 

for the generation of blood vessels in vitro 75-77. The umbilical cord blood (UCB) has been the 

focus of many studies in the context of hematopoietic stem cells. Sub-populations of 

hematopoietic progenitors such as CD34+ and CD133+ cells can be isolated from the UCB 78. 

Clinical transplantations of cord blood hematopoietic cells have been proposed for more than 

20 years 19 for the reconstitution of the blood system.  

During the last decade, the human 

umbilical cord (UC) gained more and more 

attention as a source of MSCs (see Fig. 

2.5). The acronym “MSC” has been used in 

the literature to denominate Mesenchymal 

Stromal Cells as well as Mesenchymal 

Stem Cells. In this work, “MSC” will be 

used for mesenchymal stromal cell (see 

2.2.3). It has been demonstrated that MSCs 

are present both in the blood 20 and in the 

tissues of the umbilical cord. However,  

Fig. 2.5: Cumulative number of publications over the 
last 15 years dealing with UC-derived MSCs (entries 
by PubMed using the terms “mesenchymal stem cells” 
AND “umbilical cord” until July 2009). 

MSC represent a rare cell population in the UCB with a frequency ranging from 0.001–

0.000001% 21 and their isolation is hardly reproducible 22, 23. In contrast, the frequency of 

MSCs in UC-tissues is believed to be much higher. In the following sections, an overview of 

the isolation, the characteristics, the differentiation potential, as well as the reported 

applications of UC-MSCs is given.  
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2.2.1 The human umbilical cord: a source of MSCs 

The human umbilical cord (UC) consist of two arteries and a vein, which are surrounded by 

connective tissue, the so-called Wharton’s jelly (WJ), enclosed by the amniotic epithelium 

(Fig. 2.6.A). In recent years, several studies described at least four separate regions  of the 

umbilical cord containing MSCs (Fig. 2.6.B). Mesenchymal stromal cells could successfully be 

isolated from umbilical cord blood79, the umbilical vein subendothelium80, from the 

Wharton’s jelly81, 82, and from the perivascular region83. The present overview will focus on 

MSCs derived from UC tissue. 

 

Fig. 2.6: Localization of MSCs within the tissues of the human umbilical cord. 

 

2.2.2 Isolation of MSCs from the umbilical cord 

Several protocols were published for the isolation of MSCs from the umbilical cord tissue. 

Depending on which compartment of the cord the cells are isolated from, different 

approaches have been adopted, combining mechanical and/or enzymatic treatment of the 

tissue. A schematic overview of the applied isolation approaches is given in Fig. 2.7. Basically, 

the isolation procedure starts with the removal of umbilical vessels. The cord is then cut in 

smaller segments or chopped into small pieces which are subsequently enzymatically digested 

81, 84, 85. Alternative isolation methods without removal of vessels 86, 87 and without enzymatic 

digestions 82, 86 or explant cultures 88, 89 have also been described. More specifically, further 

methods have been established in order to isolate cells from the perivascular tissue or the 

subendothelium of the umbilical vein 80, 83, 90-92 . For instance, Romanov et al. isolated a culture 

of endothelial cells by enzymatic digestion of the vein subendothelium, which was 

subsequently overgrown by MSCs within one week80. Sarugaser et al. first isolated the blood 
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vessels with the surrounding connective tissue. The perivascular tissue was then digested 

using collagenase and blood cell depletion (CD45+ cells) was performed subsequently using 

magnetic activated cell separation (MACS) 83. 

To date, it still remains to be investigated whether cells isolated from different compartments 

or derived by different isolation procedures share the same cell characteristics, e.g. 

proliferation and differentiation potential and immunologic properties. 

 

 

Fig. 2.7: Schematic overview of applied protocols for the isolation of UC-MSCs 

 

2.2.3 Characterization of UC-derived MSCs 

The acronym “MSC” has been widely used in the literature for “Mesenchymal Stromal Cell” as 

well as for “Mesenchymal Stem Cell” to denominate plastic-adherent fibroblast-like cultures 

isolated from different adult or extra-embryonic tissues. Because there is currently no 

consensus set of markers allowing the identification of MSCs and considering the fact that the 

definition criteria for stem cell are not unanimously accepted 47, it appeared unwise to apply 

the term “stem cell” for mesenchymal cell populations. In view of this, the International 

Society for Cellular Therapy (ISCT) proposed to define plastic-adherent fibroblast cultures as 
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“Multipotent Mesenchymal Stromal Cells” (MSC) 93 and published  the minimal criteria 

defining these cells 94 in 2006. 

UC-derived stromal cells meet the basic criteria defined by the ISCT, namely the adherence to 

plastic, the expression of a set of specific surface antigens (see below) and a multipotent 

differentiation potential (discussed in 2.2.4).  

Histologically, cells freshly isolated from the 

UC are mainly fibroblastic in appearance (see 

Fig. 2.8). An additional feature of MSCs is their 

clonogenicity. A single cell is able to rise to a 

fibroblastic colony in a so-called colony 

forming unit fibroblast (CFU-F) assay. 

Historically, this characterization parameter is 

linked to the pioneer work of Friedenstein et 

al., who first isolated stromal cells from bone  

 

Fig. 2.8: Fibroblastic morphology of UC-derived 
MSCs 

marrow according to their capability to form fibroblastic colonies and demonstrated their 

osteogenic potential in vitro 17. The CFU-F assay gives the frequency of fibroblast-like cells 

within a population capable of extensive proliferation and thus, able to give rise to a colony 

(see Fig. 2.9). 

 

Fig. 2.9: CFU-F assay of UC-derived stromal cells. 

This assay is commonly used to enumerate MSCs in a particular tissue 19. For instance Lu et al. 

recently evaluated the frequency at 1 CFU-F per 1609 mononuclear cells (MNCs) in whole 

umbilical cord tissues 87. More specifically, 1 CFU-F per 333 MNCs was reported in cells 

isolated from perivascular tissues of the umbilical cord vein 83. In comparison, the isolation 

frequency of CFU-F from bone marrow was estimated to be in a range of 1-10 CFU-F per 105 
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MNCs 19 and only 1 CFU-F per 108 MNCs 22 to 1-3 CFU-F per 106 MNCs were reported in 

umbilical cord blood 95, 96. According to these data, the human umbilical cord is considered to 

harbour a higher number of MSCs than those found in bone marrow or the umbilical cord 

blood. The results of the CFU-F assay, however, depend on different parameters such as the 

isolation method, culture conditions, as well as the cell seeding density. This leads to a high 

degree of variability in the results and makes the comparison of the published data difficult. 

The analysis of specific molecules expression at the single cell level via flow cytometry is 

strongly advisable in order to identify MSCs within a mixed cell population. 

In contrast to other progenitor cell populations as for instance hematopoeitic stem cells, there 

is currently no specific marker available defining human MSCs. The expression of a set of 

markers combined with the demonstration of in vitro multi-lineage differentiation potential is 

necessary to identify MSCs in UC-derived cell populations. Table 2.2 summarizes extracellular 

and intracellular molecules expressed by UC-MSCs reported in the literature until July 2009. 

The surface antigen SH2 (CD105), SH3 (CD73) and Thy-1 (CD90) are widely used for the 

identification of UC-derived stromal cells (see Table 2.2), as these markers are proposed by the 

ISCT as positive markers for human MSCs 94. The cells are not from haematopoietic or 

endothelial origin and thus lack the expression of the surface markers CD45, CD34 (common 

leukocytes and heamatopoeitic progenitor antigens, respectively) or CD31 (endothelial 

marker). Additionally, like MSCs isolated from other tissues, UC-derived stromal cells do not 

express the human leukocyte antigen HLA-DR, but express HLA-I. However, Sarugaser et al. 

reported that the expression of the latter marker may be manipulated in vitro, which may be 

very promising in term of allogenic transplantations 83.  

UC-derived stromal cells were found positive for pluripotency markers usually expressed by 

embryonic stem cells such as Oct-3/4, Nanog, Sox-2 or SSEA-4 (see Table 2.2), which 

underlines their primitive nature. The primitive character of the UC-derived cells is also 

illustrated by their high proliferation and expansion capacity. UC-derived stromal cells have 

shorter doubling times compared to adult BM-MSCs 87, 90, 97, 98, exhibit telomerase activity 82, 84, 

99 and could be expanded in vitro to a number of population doublings ranging from 20 to 80 

without evidence of senescence or abnormal karyotype 82, 85, 86, 100. 
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Table 2.2: Reported intra- and extra-cellular markers of UC-derived MSCs till July 2009. 

Marker Expression References 
CD10 + 85, 101 
CD13 + 85, 87, 101-108 
CD14 - 84, 85, 87, 101, 103, 109, 110 
CD29 (integrin β1) + 85, 87, 106, 107, 109-116 
CD31 (PECAM) - 85, 87, 90, 106, 107, 112, 113 
CD33 - 85, 117 
CD34 - 83-85, 87, 89, 90, 100, 101, 103, 104, 106-110, 112-117 
CD38 - 100, 107, 115 
CD44 + 83-85, 87, 89, 101, 104, 106-108, 110, 112, 113, 115-117 
CD45 - 83-85, 87, 89, 90, 100, 101, 104, 106-108, 110, 112, 113, 116, 117 
CD49b (integrin α2) + 85, 104 
CD49c (integrin α4) + 85 
CD49d (integrin α3) + 85 
CD49e + 85, 90 
CD51 (integrin α5) + 85, 116, 118 
CD54 (ICAM-1) -/+ * 100, 104, 113 
CD56 - 85 
CD71 -/+ 110, 115 
CD73 (SH3) + 83, 84, 87, 89, 99, 101, 108-114, 116, 118 
CD90 (Thy-1) + 83, 85, 87, 89, 90, 99-101, 104, 106, 108, 110-112, 114, 117 
CD105 (endoglin, SH2) + 83-85, 87, 89, 99-101, 103, 104, 107, 109, 112, 113, 116-118 
CD106 (VCAM-1) -/+ * 83, 87, 104, 106, 119, 120 
CD117 (c-kit) -/+ * 82, 83, 90, 99, 101, 104, 106, 110, 111, 117 
CD123 (IL-3 receptor) - 83 
CD133 - 85 
CD146 + 90, 119, 121 
CD166 (ALCAM) + 87, 99, 108, 109, 111, 113, 122 
CD235a (glycophorin A) - 83 
CD271 n.d.  
Bmi-1 + 115, 123 
Esrrb - 123 
GD2 + 124 
HLA-1  + 85, 100, 115, 125 
HLA-DR (MHC class II) - 83, 85, 87, 88, 101, 104, 106-108, 111, 112, 114, 115, 120 
HLA-DP (MHC class II) - 83, 101, 107, 110 
HLA-DQ (MHC class II) - 83, 101, 110 
HLA-A, B, C (MHC class I) + 83, 87, 101, 104, 106, 108-111 
HLA-G (MHC class I)  -/+* 83, 86, 126 
Hoxb-4 - 123 
MSCA-1 n.d.  
Nanog  + 85, 99, 123-125, 127 
Nucleostemin + 115, 123, 127 
Oct-3/4  -/+* 86, 99, 123-125, 127, 128 
Rex-1 + 99 
Sox-2 + 85, 99, 124, 127 
SSEA-3 -/+* 99, 123 
SSEA-4  -/+* 83, 99, 112, 123, 124 
STRO-1  -/+* 83, 90, 125 
Tbx-3 - 123 
TCL-1 - 123 
Tra-1-60 -/+* 99, 123 
Tra-1-81 -/+* 99, 123 
ZFX + 123 
Zic-3 - 123 

*discrepancy among the published results 
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It was first unclear whether UC-derived stromal cells were homogenous regarding their 

primitiveness or if UC-derived stromal populations rather harbour a subset of primitive MSCs 

129. For instance population doubling times estimated between 60 to 85 hours for freshly 

isolated UC-cells rapidly decreased within 2-3 passages to approx. 25 hours 83, 84, which may 

indicate the presence of a fast growing sub-population of more primitive cells overgrowing 

the initial population. This hypothesis was further strengthened in recent works 

demonstrating via flow cytometry the existence of a subset of cells expressing pluripotency 

markers 124, 125. Zhang et al. for instance reported that approx. 20 % of stromal cells isolated 

from perivascular tissues of the umbilical arteria express Oct-3/4 and Nanog 125. 

With a growing number of data showing that MSC-like cell population isolated from UC 

tissues are rather heterogeneous, at least in regard to primitive marker expression, the 

identification of a universal marker defining primitive human MSCs remains challenging. 

Several cell surface molecules were recently proposed for the identification and isolation of 

MSCs in bone marrow aspirates such as CD271 130, 131, MSCA-1 131, SSEA-4 132 and the neural 

ganglioside GD2 75, 133. To our knowledge CD271 and MSCA-1 expressions have not been 

reported yet in UC-derived stromal cell populations. Xu et al. recently isolated a subset of 

GD2+ cells exhibiting a high clonogenicity as well as proliferation capacity but also a 

significantly stronger multi-differentiation potential than GD2- cells. According to their 

results, GD2 may be a useful marker to isolate multipotent MSCs from UC-tissues, but further 

studies are needed to verify these findings.  

The most convincing biological property for the identification of MSCs remains the capability 

to differentiate into mesodermal lineages. In the next section, the in vitro differentiation 

potential of UC-derived stromal cells is presented. 

 

2.2.4 In vitro differentiation potential 

The differentiation repertoire of stromal cells derived from UC tissue reported in the 

literature till July 2009 is summarized in Table 2.3. The potential of UC stromal cells to 

differentiate into adipocytes, chondrocytes and osteocytes has been widely investigated and 

well established by several groups. According to the minimal definition criteria proposed by 

the ISCT, UC-derived stromal cells are considered multipotent MSCs 94. 
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Table 2.3: Differentiation potential of stromal cells derived from human umbilical cord tissue reported in 
the literature till July 2009. 

 Cell type References 

Adipocyte 
84, 86, 87, 90-92, 97, 99, 100, 106, 109, 110, 113-117, 119-121, 125, 

134-137 
Chondrocyte 84, 90, 92, 97, 99, 109, 110, 114, 116, 117, 119, 121, 125, 134-136, 138 

Osteocyte * 
80, 83, 84, 86, 87, 89-92, 97, 99, 100, 106, 109, 110, 112-117, 119-121, 

125, 134-137, 139, 140 
Cardiomyocyte * 113, 116, 119, 141 
Skeletal myocyte 100 

Mesodermal lineage 

Endothelial cells 97, 106, 114 
Ectodermal lineage Neuronal cells 81, 82, 84, 87, 117, 118, 142-144 

Islet-like cells 98, 145 
Endodermal lineage 

Unmature hepatocytes 146 
*Discrepancy among the published results. 

 

Successful adipogenic, chondrogenic and osteogenic differentiation of UC-derived MSCs are 

exemplary presented in Fig. 2.10.  

 
Fig. 2.10: Adipogenic, chondrogenic and osteogenic potential of UC-derived MSCs. A: formation of lipid 
droplets stained with oil red O in Wharton´s Jelly cells after adipogenic induction, scale bar = 20 µm; 
modified from 84, B: cell sphere obtained in droplet culture of chondrogenically induced UC-MSCs (scale 
bar = 500 µm) with abundant type II collagen expression (in C, scale bar = 50 µm); modified from 84, D: 
AP expression after osteogenic differentiation of umbilical vein derived MSCs; modified from 92. E: 
mineralization of osteogenically induced culture of umbilical vein derived MSCs evidenced by von Kossa 
staining; modified from 92. 
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Adipogenic potential is usually demonstrated by the apparition of cells exhibiting intracellular 

lipid droplets (Fig. 2.10.A). The capacity to form chondroblasts is displayed by the formation 

of shiny cell-spheres with type II collagen expression in the extracellular matrix in droplet 

cultures (Fig. 2.10.B). Enhanced alkaline phosphatase (AP) expression and mineralization 

assayed by von Kossa or Alizarin red staining demonstrate osteogenic potency (Fig. 2.10.D and 

.E). It should be also mentioned that sub-populations of cells spontaneously exhibiting a 

functional osteogenic potential with mineralized bone nodules can be observed in UC-MSCs 

cultures 83. Such bone nodules are presented in Fig. 2.11.  

 

 
Fig. 2.11: Mineralized bone nodule in HUCPV cell culture, modified from 83. A: nodule seen by phase 
contrast microscopy. B: nodule seen by scanning electron microscopy. 
 
Moreover, it has been shown that UC-MSCs can successfully differentiate to endothelial cells 

after addition of VEGF and b-FGF 106, 114 and can form vessel-like structures in matrigel 

cultures 97, 114. Furthermore, some UC-derived cell populations also seem to be able to 

differentiate to muscle cells. For instance WJCs could be induced to skeletal myocytes when 

placed in a myogenic medium 100. Differentiation to cardiomyocytes was also reported but 

remains controversial. Whang et al. demonstrated for instance that WJCs could be induced to 

cells exhibiting cardiomyocyte morphology and expressing specific markers (N-cadherin and 

cardiac troponin) using 5-azacytidine or cardiomyocyte-conditioned medium 116. Kadivar et al. 

observed cardiomyocyte-like cells expressing cardiac specific genes after 5-azacytidine 

induction of UC-MSCs isolated from the endothelium/subendothelium layer of the UC vein. 

In contrast to these results, Martin-Rendon et al. could not detect cardiac markers expression 

after in vitro induction of MSCs isolated from the WJs and perivascular tissues 119. 

Furthermore, differentiated in vitro cultures of functional cardiomyocytes presenting beating 

clusters are poorly or not demonstrated. To our knowledge, only one group reported 
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differentiated cells exhibiting a slight spontaneous beating after 21 days of induction, however 

no quantitative data are presented in this study 141.  

Recent findings suggested that UC-MSCs can differentiate into endodermal lineages. Campard 

et al. reported that UC matrix cells constitutively expressed markers of hepatic lineage, such as 

albumin, alpha-fetoprotein, cytokeratin-19, connexin-32, and dipeptidyl peptidase IV. After 

in vitro hepatic induction, cells exhibiting a hepatocyte-like morphology with hepatic 

features such as specific markers up-regulation and urea production were observed. However, 

the authors pointed out that their cells lacked important characteristics of functional liver 

cells and thus concluded that UC-matrix cells can be differentiated at least to immature 

hepatocytes 146. Chao et al. were also able to induce WJCs using a four stage differentiation 

protocol to form islet-like clusters expressing pancreatic related genes and secreting insulin in 

response to glucose concentrations 145. Recent results from Wu et al., who successfully 

differentiated WJCs to pancreatic cells and observed higher differentiation potential 

compared to BM-MSCs 98, further reinforced these findings.  

Finally, several groups observed the differentiation of WJCs to cells exhibiting morphological 

and biochemical characteristics of neural cells. This suggests that UC-MSCs are able to 

differentiate to a certain state of maturation along the neuronal lineage 81, 82, 84, 87, 117, 118, 142-144. 

Mitchell et al. were the first to observe neuronal differentiation of WJCs after stimulation 

with bFGF and other neuronal differentiation reagents 82. The differentiation was attested 

according to morphological changes and expression of neuron-specific enolase, βIII-tubulin, 

neurofilament M and tyrosin hydroxylase 82. The differentiation potential was then confirmed 

by several other groups 84, 117, 118, 142. Fig. 2.12 shows exemplary neuronal cells obtained by 

Karahuseyinoglu et al. after neuronal induction of a sub-population of WJCs 84. Interestingly, 

it seems also possible to generate some sub-types of neurones as demonstrated by Fu et al., 

who were able to obtain dopaminergic neurones from WJCs 118. 
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Fig. 2.12: Neuronal differentiation of WJCs, modified from84. A: β-III tubulin expression, B: Nestin 
expression located in the perinuclear cytoplasm in particular (B´), C:  neurofilament-160 (NF-M), D: 
neuron-specific nuclear protein expression (Neu-N) restricted to the nucleus, E: neuron-specific enolase 
(NSE), F: microtubule-associated protein-2 (MAP2) detected as discontinuities along the cells. G: MAP2 
distribution in cell-cell contact. Scale bars = 10 µm (B´), 20 µm (B, C), 50 µm (E), 100 µm (A, C, D). 
 

Summarizing the published data, we find strong evidence to suggest that the human umbilical 

cord is a source of multipotent stromal cells that are capable of differentiating into 

mesodermal and non-mesodermal lineages. It remains unclear whether the differentiation 

potential of the UC-derived MSCs depends on their location in the UC-tissues. Recently, two 

sub-populations were found in cultures of Wharton´s Jelly-derived MSCs with regard to the 

expression of vimentin and pan-cytokeratin filaments 84. Interestingly, cells expressing 

cytokeratin, predominently located in the perivascular tissue of the cord, did not differentiate 

into neurones in vitro. These findings are consistent with the results of Sarugaser et al., who 

showed that perivascular UC-cells could not be induced to the neuronal lineage 83.  

Many groups most likely investigate mixed populations of UC-MSCs, in particular if the cells 

are derived from whole umbilical cord or from the Wharton´s jelly. Thus, the results of 

studies comparing the differentiation potential of UC-derived MSCs with other sources (for 

example bone marrow) should be carefully interpreted 92, 112, 119, 135. More work is needed to 

attest whether cells isolated from a defined compartment of the UC are more suitable for a 

specific differentiation lineage. This information would be of tremendous importance for the 

clinical applications of UC-derived MSCs. 
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2.2.5 In vivo and tissue engineering applications of UC-MSCs 

Besides their multi-lineage differentiation potential, UC-derived MSCs have been shown to 

exhibit immune-privileged and immune-modulatory properties, which make them ideal 

candidates for cell-based therapies. Thus, several groups recently investigated the in vitro 

immune properties of umbilical cord-derived MSCs 126, 147, 148 and observed that the cells did 

not induce the proliferation of allogenic immune cells and even reduce the proliferation of 

activated peripheral blood lymphocytes in a dose-dependent way147. In this context, UC-MSCs 

may be used to reduce acute and chronic graft-versus-host disease (GvHD) occurring during 

allogenic transplantation, an approach which has been successfully applied with MSC derived 

from bone marrow149, 150. Currently, first clinical trials are conducted to demonstrate whether 

human UC-MSC have in vivo immune-suppressive effects and can be used for GVHD 

treatment (ClinicalTrials Identifier: NCT00749164). 

Additionally, all reports of animal studies involving in vivo transplantation of UC-MSCs 

indicated low level of rejections and encouraging results in tissue repairs. In particular, 

supportive function through parakrine effects seems to be involved, i.e. that UC-MSCs 

support tissue repair by stimulating and modulating tissue-specific cells rather than 

differentiating into specialized cells. Yang et al. reported a positive modulation of microglia 

and reactive astrocytes activities by UC-MSCs when transplanted into rats after complete 

transection of the spinal cord 151. They detected an elevated production of various cytokines 

around the lesion promoting spinal cord repair. Similar to these findings, Weiss et al. 85 

hypothesized a supportive function of UC-MSCs mediated by various secreted trophic factors 

when used in a rodent model of Parkinson’s disease. Liao et al. 152 used UC-derived MSCs in a 

rodent stroke model and observed that the cells, injected into the rat brain, survived for at 

least five weeks and reduced injury volume and neurologic functional deficits of rats after 

stroke. They assumed angiogenesis-promoting properties of the cells by the production of 

angiogenic cytokines. Koh et al. 153 used MSCs isolated from the umbilical vein sub-

endothelium and induced first differentiation of the cells in vitro into neuron-like cells before 

transplantation into stroke rats. The cells were both morphologically differentiated into 

neuronal cells and able to produce neurotrophic factors, but have not become functionally 

active neuronal cells. Thus, the authors hypothesized that the observed improvement in 

neurobehavioral function might be related to the neuroprotective effects of UC-MSCs, rather 
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than to the formation of a new network between host neurons and the implanted cells. 

Analogical findings were reported by Lund et al. 101. They suggested a supportive behavior of 

MSCs in a rodent model of retinal disease, where UC-MSCs were shown to contribute to 

photoreceptor rescue. In this study, the cells did not transform into neurons, but more likely 

secreted neurotrophic factors, as indicated by higher expression levels of these factors in vitro. 

The next generation of studies and first clinical trials will clarify if the benefit of UC-derived 

MSCs after transplantation experiments will rely on supportive effects or/and on 

differentiation in vivo. 

One of the ambitious aims of regenerative medicine is the engineering of tissue in vitro. Few 

but very promising applications of UC-derived MSCs have been reported in this field. For 

instance UC-MSCs are believed to have potential in cardiovascular tissue engineering 154. They 

grew very well on bio-degradable polymer for the elaboration of cardiovascular constructs88 

and could be used for the construction of human pulmonary conduits 155, for the engineering 

of biologically active living heart valve leaflets 156 and for the elaboration of living patches 

with potential for pediatric cardiovascular tissue engineering 157.  

Considering the very encouraging results obtained in the recent years, it may be only a 

question of time until UC-derived MSCs will be routinely used for clinical and tissue 

engineering applications. 
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3 Establishment of CHO cell lines for the production of 

recombinant cytokines  

Cytokines are key elements to control cellular fate of stem cells ex vivo. These proteins allow 

the maintenance of stem cell characteristics, i.e. the “stemness”, and/or the directed 

differentiation into specific cellular lineages and are therefore essential tools for stem cell 

engineering. Cytokines contribute significantly to the costs of the cultures and might 

represent a bottleneck in process development, in particular if large scale approaches are 

needed. 

In this work, a CHO platform was established for the expression of several recombinant 

cytokines of high interest in the field of stem cell technology. The establishment of stable 

recombinant CHO cell lines is a time consuming process. Classical methods for transgene 

delivery to eukaryotic cells, such as calcium phosphate precipitation, lipid-based or polymer-

mediated transfection (see Section 2.1.1), are well established and mostly used for the 

transfection of CHO cells. However, the efficiency of these methods is variable and generally 

low. For instance, transfection efficiency for CaPO4 precipitation or polyfection in serum-free 

condition was reported to be inferior to 1% 46. The stable integration of the transgene in the 

host genome is inefficient and the simultaneous introduction of a gene conferring a selectable 

phenotype is necessary in order to select transfected cells. The selection of producing clones is 

necessary, as heterogeneous cell populations of producing and non-producing cells are usually 

obtained. Thus, several weeks are necessary for the establishment of a stable cell line 24.  

Retroviral vectors allow a rapid and stable integration of an expression construct in the 

genome of mammalian cells. Lentiviruses, in particular, have been demonstrated to be an 

advantageous delivery system for the stable integration of a transgene into the genome of 

mammalian cells158. Their use has been proposed in the context of gene therapy and many 

advances in the recent years have made their application a safe and highly efficient 

technology 71.  

In the following section, the approach used for the establishment of recombinant CHO 

suspension cell lines using lentiviral gene transfer is presented. The expression and the 

production of specific cytokines will be then discussed in more detail.  
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3.1 Establishment of CHO cell lines via lentiviral gene transfer 

3.1.1 Lentiviral gene transfer 

The CHO platform for the expression of recombinant cytokines used in this work was based 

on the parent cell line CHOSFS clone II obtained from the company CCS Cell Culture Service 

(Hamburg, Germany). These cells were cultivated in a chemical defined serum-free medium 

in suspension (see Appendices 6.2.1). Master and working cell banks were established at the 

Institute of Technical Chemistry (Leibniz University of Hannover), providing the basic 

platform for all recombinant cell lines. The retroviral gene transfers to the CHOSFS cells were 

performed in the BSL 2 laboratories of the Department of Experimental Hematology 

(Hannover Medical School) using lentiviral vector preparations established by Dr. Axel 

Schambach. The vector preparation, derived from Human Immunodeficiency Virus (HIV-I), 

was designed by Axel Schambach so that replication-defective viruses are used for the 

delivery of a self inactivating (SIN) retroviral vector, thus assuring the biosafety of the system. 

The details and the mechanisms of the gene transfer using this system are discussed in Section 

2.1.2. An overview of the overall procedure is presented in Fig. 3.1.  

 

 

Fig. 3.1: Overview of the transduction procedure of the CHOSFS cells. Virus production and cell 
transduction were performed in BSL 2 laboratories of the Department of Experimental Hematology 
(MHH). The recombinant CHO cells were transferred to the BSL 1 facilities of the Institute of Technical 
Chemistry after 2 passages, i.e. 4 days, following the transduction. BSL: biosafety level. 
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The lentiviruses were produced in HEK 293T cells. For this purpose, the cells were transiently 

transfected with four different plasmids using CaPO4 precipitation. Three “helper” plasmids 

provided the sequences coding for the required viral proteins (gag/pol, REV and VSV-G 

proteins, see Section 2.1.2). The fourth plasmid, the so-called transfer plasmid or SIN vector, 

contained all regulatory sequences necessary for viral gene expression and packing of the 

viruses (5’ LTR, SIN 3’LTRs, packaging signal ψ, RRE, PPT and PRE, see Section 2.1.2), as well 

as the construct containing the cDNA coding for the cytokine of interest. The transfer plasmid 

is presented in Fig. 3.2. Transcription is promoted in the CHO cells by the strong viral SFFV 

promoter guaranteeing a high gene expression. All cytokines were expressed fused to a His-tag 

at the C-Terminus for the purification of the proteins. No selection marker was introduced 

with the expression construct. The sequence of the plasmid representing the DNA sequence 

finally integrating into the CHOSFS genome is schematically highlighted. It should be noted 

that in the CHO genome the 3’LTR will be partially exchanged with the 5’LTR of the 

presented sequence. 

 

Fig. 3.2: Map of the transfer plasmid used for the transduction of the CHOSFS cells. 

The supernatants containing the infectious viruses were collected one day after the 

transfection of HEK 293T cells and used directly for the transduction of the CHOSFS cells (Fig. 

3.1). As a control of the transduction, the reporter protein GFP was delivered to the CHOSFS 

cells under the same conditions as used for the delivery of the expression constructs designed 

for the cytokines. The infectious supernatants were removed by centrifugation two days 
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following transduction. The transduced cells were further cultivated for 2 passages to remove 

the remaining infectious viruses. Four days following transduction, the cells were transferred 

to the BSL 1 facilities of the Institute of Technical Chemistry. The overall procedure including 

the production of the viruses was performed within 6 days. At first, the efficiency of the 

procedure, i.e. the fraction of cells successfully transduced, was evaluated. 

 

3.1.2 Transduction efficiency 

The efficiency of the gene transfer to the CHOSFS cells was evaluated using flow cytometry, 

typically 6 days following transduction. The efficiency was evaluated by measuring the 

fraction of GFP expressing CHO cells within the control cell population (see additional results 

in Section 6.3.1). The measurements indicated a high transduction efficiency of 98.8 ± 1.3 % 

(n=3). More specifically, intracellular staining of the expressed cytokines in the recombinant 

CHO cells was performed. The specific staining of the cytokines was performed using a mouse 

antibody directed against the His-tag of the recombinant proteins. The primary antibody was 

detected by a secondary goat anti Ig mouse antibody labeled with the fluorochrome PE 

(Phycoerythrin). As a control, untransduced CHOSFS cells were stained under the same 

conditions. A detailed description of the procedure is given in Section 6.2.7. Fig. 3.3 shows 

typical results obtained for a CHO cell population transduced with a construct coding for the 

protein Angptl1 (in B), denominated as CHOAngptl1 subsequently. The expression of this 

cytokine will be further discussed in Section 3.2. The dot plots display the fluorescence 

intensity (FL2LOG) versus the forward scatter (FSC) signals of the cells. Positive staining was 

defined as the emission of a fluorescence signal that exceeded levels obtained by >99% of cells 

from the control population (in A). 

In this example 99.3% of the CHOAngptl1 were found to express His-tagged recombinant 

proteins. The results demonstrated that the delivery of the expression construct to the CHO 

cells occurred with a high efficiency and also indicated that the translation of the His-tagged 

protein successfully occurred in the transduced cells. In the case of the cell line CHOAngptl1, the 

transduction efficiency was evaluated to be 98.6 ± 0.7 % in triplicate measurements. 
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Fig. 3.3: Intracellular staining of His-tagged proteins in transduced CHO cells for the evaluation of the 
transduction efficiency. Measurements were performed 6 days after transduction. The cell population 
analyzed here were tranduced for the expression of the protein Angptl1. In A: untransduced CHOSFS cells 
as control. In B: CHO cells transduced with the Anptl1 expression construct. At least 10 000 events are 
displayed. FL2LOG: fluorescence intensity of the PE-labeled antibody measured in the channel 2, FSC: 
Forward scatter signals. 

 

Using this approach, the transduction efficiency of the cell lines established at the TCI for 

the production of recombinant cytokines was documented. Table 3.1 summarizes the 

results. The transduction efficiency evaluated using the GFP reporter CHO cell line is also 

given. 

 

Table 3.1: Transduction efficiency of the lentiviral gene transfer to the CHOSFS cells evaluated by 
intracellular staining of the recombinant protein or GFP fluorescence. The analysis were performed in 
triplicates (n=3). Angptl: angiopoietin-like protein; bFGF: basic fibroblast growth factor; hLIF: human 
leukemia inhibitory factor, TGF: transforming growth factor, VEGF: Vascular endothelial growth factor. 

Cell line  Expressed protein % positive cells 
   

CHOAngptl1 Angptl1 98.6 ± 0.7 
CHOAngptl2 Angptl2 96.3 ± 0.4 
CHOAngptl5 Angptl5 96 ± 1.1 
CHObFGF bFGF 96.8 ± 0.6 
CHOGFP  GFP  98.8 ± 1.4 
CHOhLIF hLIF n.d. 
CHOTGF TGF 97.2 ± 0.4 
CHOvEGF VEGF 95.4 ± 0.8 

n.d. : not determined 
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The delivery of the expression construct to the CHOSFS cells using lentiviral vectors was found 

highly efficient. Thus, more than 95% of the transduced CHO cells indeed expressed the 

recombinant protein. The efficiency of the transduction of the cell line CHOhLIF could not be 

determined. This issue will be discussed further in Section 3.3. In the following part, the 

stability of the protein expression by the transduced cells is examined.  

3.1.3 Cell line stability 

Retroviruses have the ability to insert an expression construct into the host cell genome. In 

this regard, the transduced CHO cells may be considered as “stable” transduced cells. 

However, the stability of the recombinant protein expression is not solely depending on the 

integration in the host genome, but several other parameters, such as the site of integration, 

greatly influences the level and the stability of recombinant protein expression 61, 65. 

Lentiviruses incorporate preferentially within active transcription areas of the host genome 70, 

so that the integration at sites exhibiting a high risk for gene silencing such as 

heterochromatin 159, 160, should be minimized. In this context, it was expected that the 

transduced CHO cell lines exhibit a stable recombinant protein expression. This hypothesis 

was verified in the following experiments. 

The stability of recombinant protein expression by transduced CHO cells was evaluated using 

a reporter GFP cell line. Following lentiviral gene delivery, the fraction of GFP expressing 

cells (GFP+ cells) within the transduced CHO population was measured to be 98.8 ± 1.4 % (see 

Table 3.1). The cells were subsequently cultivated and repeatedly passaged in a serum-free 

and chemical defined medium (ProCHO5, Lonza). The fraction of GFP+ cells was monitored 

using flow cytometry over long-term cultivation (124 days). Fig. 3.4 shows the results of the 

investigations.  
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Fig. 3.4: Stability of the recombinant protein expression by transduced cells evaluated using a GFP 
reporter cell line. In A: evolution of the fraction of GFP+ and GFP- cells within the transduced cell 
population. In B: Distribution of the GFP fluorescence on day 0 and day 124 of the experiment. All 
measurement were performed with cells buffered in PBS. At least 10 000 events are displayed.  

 

The fraction of GFP+ cells remained constant over the entire investigated time frame 

representing > 95 % of the overall population (Fig. 3.4.A). This indicates that the cells 

maintained GFP expression during prolonged cultivation and that no nonproducers arose 

within the transduced CHO population. In addition, comparable distributions of the GFP 

intensity were measured during the entire experiment, suggesting that the cells maintained a 

comparable recombinant protein level expression over long-term expansion. This point is 

illustrated in Fig. 3.4.B for the CHO population on day 0 and day 124.  

Interestingly, the initial fraction of GFP- cells (approx. 2%) remained nearly constant during 

the whole cultivation, suggesting that non-producing cells do not exhibit a higher 

proliferation rate than producing ones, as in this case the non-producer fraction should have 

increased over long-term cultivation. This fact was confirmed in a co-culture experiment, 

where transduced GFP+ cells were added to a culture of untransduced CHOSFS (parent cell 

line) in a ratio of 1:1 (illustrated in Fig. 3.5.A). The co-culture was sub-cultivated for 50 days 

and monitored via flow cytometry. The evolution of the sub-populations (GFP+ and GFP- 

cells) is plotted over time in Fig. 3.5.B.  
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Fig. 3.5: Monitoring of the GFP expression in a co-culture of transduced and non-transduced CHO cells. 
In A: flow cytometric measurement of a co-culture of GFP expressing cells mixed at a ratio of approx. 1:1. 
In B: monitoring of the distribution of the co-culture over 50 days.  

During the complete cultivation, the subset of untransduced cells (GFP-) did not overgrow the 

culture and the fraction of GFP+ cells remained nearly constant (Fig. 3.5.B). Accordingly, the 

expression of the recombinant protein does not seem to burden the cell metabolism and 

compromise the growth of recombinant CHO cells, so that no measurable change in the 

distribution of the co-culture was observed within 50 days. 

The results indicated a stable expression of the recombinant protein over long-term 

cultivation. This fact was not restricted to CHOGFP cells, as experiments performed with 

transduced CHO cells expressing the cytokine Angptl1 correlated well with these 

observations. Thus, 98.6 ± 0.7 % of the CHOAngptl1 cells expressed the recombinant cytokine 

following transduction (see Table 3.1). The cell population was further cultivated for three 

weeks in serum-free medium and recombinant protein expression was monitored using 

intracellular staining of His-tagged protein as previously described (see Section 3.1.2). After 

three weeks of cultivation, no change in the distribution of the transduced cell population was 

observed and 98.8% of producing cells were measured in culture (data not shown). 

 

The retroviral gene transfer method was found to be an efficient approach for the rapid 

establishment of recombinant CHO cell lines. Transduced cell populations containing more 

than 95% of cells expressing the recombinant cytokines were obtained within one week. The 

experiments confirmed that the expression constructs were integrated by the lentiviruses into 

active areas of the CHO genome, thus allowing a long-term expression of the transgene. The 
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stability of the protein expression in serum-free conditions was demonstrated for more than 

16 weeks using a reporter GFP cell line. In the case of the cytokine Angptl1, a stable 

expression could be observed for at least 3 weeks. In addition, the experiments suggested that 

the metabolitic disadvantage of expressing cells in comparison to untransduced cells is 

minimal, as no changes in the distribution of CHOGFP or CHOAngptl1 cell populations were 

observed over prolonged cultivation. Hence, we reasoned that 1-5 % of non-producing cells 

following transduction (see Table 3.1) could be tolerated and thus a time-consuming 

selection of producers or the generation of a clonal cell population could be avoided at 

first. In this context, the transduced cell populations were used directly for the expression and 

purification of the cytokines to rapidly characterize the expressed molecules and investigate 

the bioactivity. In the following part, the expression and the production of recombinant 

cytokines using established CHO cell lines are presented. 

3.2 Expression of Angiopoeitin-like proteins (Angptl) 

The Angiopoeitin-like proteins (Angptl) 1 and 2 were identified in 1999 by Kim et al.161, 162. 

The proteins induce in vitro the sprouting of vascular endothelial cells 161, 163, but their 

function during angiogenesis is not clarified yet 164 . Zhang et al. demonstrated in 2006 that 

Angptl2 stimulate the ex vivo expansion of mouse hematopoietic stem cells (HSC). These 

authors expressed the cytokine in adherent HEK 293T cells and demonstrated that the 

glycosylation of the protein is essential for the reported bioactivity 5. These findings are highly 

interesting because HSC are rare stem cell populations, for instance representing one cell in 1-

10·106 cells in the bone marrow 165, which leads to cell dose limitation for clinical applications. 

Ex vivo expansion of HSCs may overcome this problem, the procedure remains difficult 

however, mainly because of the lack of appropriate cytokines 166. In this context, the use of 

Angptl2 protein as a growth factor for the ex vivo expansion of HSC is of tremendous interest. 

It is postulated that protein Angptl1 may likewise support the expansion of human HSC (Axel 

Schambach, personal communication). 

The aim of this work was the production of the glycosylated cytokines Angptl1 and 2 using 

CHO suspension cell lines. The cell lines were established in the frame of the bachelor thesis 

of Ms. Sanketha Kenthirapalan 167 as described in section 3.1.1. The transfer plasmids used for 

Angptl 1 and 2 were constructed with the cDNA containing the coding sequences of the 
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human gene (“CDS” from NM_004673.3 and NM_012098.2, respectively) fused with a His-tag 

(6 x Histidines) at the C-terminus. The sequences comprise the native signal export peptide of 

both Angptls (first 21 amino acids of the translated proteins) at the N-terminus. Angptl1 and 

Angptl2 contain two coiled-coil domains (CC1 and CC2) and a fibrinogen-like domain (FD) 

highly conserved among angiopoietin family members 168. Both unglycosylated proteins have 

a theoretical molecular weight of approx. 57 kDa. A schematic view of the translated proteins 

can be seen in Fig. 3.6. The established cell lines will be subsequently denominated as 

CHOAngptl1 and CHOAngptl2.. 

 

 

Fig. 3.6: Schematic protein structure of the recombinant Angptl1 and 2 expressed in the CHOAngptl1 and 
CHOAngptl2 cell lines. S: hydrophobic signal sequence (black square) for protein secretion. N: N-domain 
of unknown function (white oval) presenting structural homology to angiopoietin family members. CC1 
and CC2: coiled-coil domains. FD: fibrinogen-like domain (grey rectangle). H: 6 x histidines at the C-
terminus. Modified from Dhanabal et al.168 

 

The transduction efficiency was evaluated to be 98.6 ± 0.7% (n=3) for the cell line CHOangptl1 

and 96.3 ± 0.4% (n=3) for the cell line CHOAngptl2 by performing intracellular staining and flow 

cytometric measurement of His-tagged protein content (see Section 3.1.2). At first, the 

location of the recombinant proteins was investigated. Extracellular expression was analyzed 

in the supernatants of the CHO cultures using SDS-Page and Western blot. The analysis of the 

intracellular expression used supernatants after cell disruption by sonication and 

centrifugation (see 6.2.3). The specific detection of the protein on western blot was performed 

using a primary mouse anti His-tag antibody (see Appendices 6.2.2). Fig. 3.7 presents the 

obtained results. 
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Fig. 3.7: Intra- and extracellular detection of Angptl 1 and 2 using SDS-PAGE (left part) and Western 
blot analysis (right part). Western blot detection was performed using a mouse anti His-tag primary 
antibody. In A: intracellular detection of His-tag protein in CHOangptl1 and CHOAngptl2 cell lysates. In B: 
extracellular detection of the recombinant proteins in the cell supernatant; 1: Angptl1, 10-fold 
concentrated supernatant (TCA precipitation). 2: Angptl1, purified supernatant using IMAC (Co2+). 3: 
Angptl2, 10-fold concentrated supernatant (TCA precipitation). 4: Angptl2, purified supernatant using 
IMAC (Co2+). 

 

The analysis of the intracellular protein fraction by Western blot revealed His-tagged protein 

bands between 55-70 kDa (Fig. 3.7.A) that correspond to the expected size range for both 

Angptl1 and Angptl2 (≈57 kDa). In contrast, the complete Angptl1 and Angptl2 proteins could 

not be observed in cell supernatants (Fig. 3.7.B). Only His-tagged fragments with a molecular 

weight of approx. 35 kDa were detected in the concentrated supernatants of both cell lines 

(see lines 1 and 3 in Fig. 3.7.B). The analysis of purified supernatants (via IMAC using Co2+, 

see Appendices 6.2.4) presented in lines 2 and 4 confirmed the results. 

The results indicated that both Angptl1 and Angptl2 are at least translated by the established 

cell lines, as His-tagged proteins exhibiting the expected size were detected in the 

intracellular protein fraction. However, the export of the entire proteins by the cells failed 

and solely C-terminal protein fragments > 35 kDa were detected in the culture supernatants. 

These peptides were not detected in the intracellular protein fraction (Fig. 3.7.A), which 
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suggests that these fragments are cleavage products of the complete Angptl proteins. This 

phenomenon is puzzling and it is not clear whether this cleavage occurred among the 

secretion pathway or once the Angptl proteins have been secreted. The exported fragments 

may comprise the fibrinogen domain (FD, theoretical MW≈26 kDa), which is of limited 

interest as the super coiled coil domains (see Fig. 3.6) are more likely involved in the support 

of HSC expansion5. The purification of the intracellular Angptl protein may be possible, but is 

more complicated than the purification of secreted product. Furthermore, it is unlikely that 

the intracellular Angptl proteins are glycosylated, as glycosylation occurs first among the 

secretion pathway. This seems to be confirmed by the thin bands observed at the theoretical 

MW of both proteins in Fig. 3.7.A, suggesting that the detected Angptls are unglycosylated.  

Currently, new CHOangptl1 and CHOangptl2 cell lines are being established. A new strategy for 

the better secretion of the recombinant cytokines is being investigated. Thus, the native 

export sequences of Angptl1 and Angptl2 have been exchanged with the signal sequence of 

proteins naturally secreted with high efficiency, such as the heavy chain of Immunoglobulin 

or interleukine-2. The signal peptide of the marine enzyme luciferase from Gaussia princeps, 

which was recently used efficiently in CHO cells169, is also being investigated. Additional 

work currently performed should confirm whether the adopted strategy allows the export of 

the glycosylated Angptl1 and 2 proteins by the established CHO cells lines. 

 

3.3 Production of human leukemia inhibitory factor (hLIF) 

Human leukaemia inhibitory factor (hLIF) is a polyfunctional glycoprotein. Many functions of 

the cytokine have been reported, for instance actions in kidney170 and in endocrine tissue such 

as breast epithelium36. The protein is involved in the regulation of osteogenic differentiation171 

and is essential for blastocyst implantation172 and for neural development 173. Human LIF was 

proposed for therapeutic uses and produced by Amrad174 under the name “emfilermin”. The 

protein reached phase II clinical trials for the treatment of chemotherapy-induced peripheral 

neuropathy175 and for improving embryo implantation following in vitro fertilization (clinical 

trail NCT00504608). 

In the context of stem cells, the cytokine is a key factor in maintaining the pluripotency of 

murine embryonic stem (ES) cells47 and is also widely used for the culture of human ES 
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cells 8, 10. In the latter case, hLIF more likely supports cell proliferation, as the cytokine is not 

necessary for the pluripotency of human ES cells 3. 

In the context of ES cell expansion, it has been demonstrated that the glycosylation of hLIF is 

not essential for the bioactivity 176, so that the cytokine has been widely expressed in E.coli. 

However, the correct folding of the protein requires oxidizing conditions, so that strategies for 

the manipulation of the redox potential in the E.coli cytoplasm, such as the co-expression of 

thioredoxin or Glutathion-S-transferase, are necessary for the expression of the soluble 

cytokine. The elimination of the fusion partner implicates further purification steps for the 

isolation of the intracellular cytokine. In contrast, mammalian cells such as CHO cells are able 

to fold the protein correctly and export it directly in the culture medium. In addition, it is still 

not clear whether the glycosylated form of hLIF is more active and stable than the 

unglycosylated one. 

In this work, a CHO cell line was established for the production of soluble glycosylated hLIF. 

Fig. 3.8 gives an overview of the approach followed for the establishment of the cell line and 

the production of the cytokine. 

 

 

Fig. 3.8: Process flow chart for the production of hLIF. IMAC: Immobilized Metal Affinity 
Chromatography. 

3.3.1 Expression of hLIF 

The CHO cell lines for the hLIF expression, termed as CHOLIF subsequently, was established 

as described in Section 3.1.1. In brief, the transfer plasmid was constructed with the cDNA 
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containing the coding sequence of the human gene (CDS from NM_002309), fused with a His-

tag (6 x Histidines) at the C-terminus. The expression of hLIF by the established cell line was 

detected on the transcriptional level (see Fig. 3.9.A), and on the protein level in the culture 

supernatant. Fig. 3.9.B presents the SDS-PAGE and Western blot analysis of CHOhLIF of the 

intracellular protein fraction (line 2) and in culture supernatants (line 4). Untransduced CHO 

cells were used as a control (line 1 and 3). The specific detection on the Western blot was 

performed using an antibody directed against the His-tag of the recombinant protein. 

 

Fig. 3.9: Expression of hLIF by the established CHO cell line. In A: expression of hLIF on the 
transcriptional level, RT-PCR analysis of the transduced (CHOhLIF) and the untransduced CHO cells 
(control). In B: expression of hLIF on the protein level SDS-PAGE (left part), Western blot (right part). 1: 
intracellular protein fraction of control cells; 2: intracellular protein fraction of CHOhLIF cells; 3: 
supernatant of a control culture; 4: supernatants of a CHOhLIFculture. 

 

The analysis of the CHOhLIF supernatants revealed several bands between 40-50 kDa on the 

SDS-PAGE gel (line 4, left), which were not found in the control supernatant (line 3, left). 

These bands were positively stained on the Western blot (line 4, right) indicating the presence 

of recombinant His-tagged proteins. The sensitive immunodetection revealed additional His-

tagged proteins ranging from 25 kDa to approx. 50 kDa. Unglycosylated hLIF has a theoretical 

molecular weight of 19.7 kDa. Thus, the results indicate that the hLIF expressed by the 

established cell line is highly glycosylated and that several glycoforms are secreted by the 

cells. Interestingly, no hLIF was detected in the intracellular protein fraction of the CHOhLIF 

(lines 2) suggesting that the intracellular content of the recombinant protein is under the 

detection limit of the immunodetection. Flow cytometric measurements confirmed these 

observations, as a very low, if detectable, level of intracellular His-tagged proteins was 
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measured in the CHOhLIF using this method (see Appendices 6.3.2). In this work, the 

determination of the transduction efficiency relied on the intracellular staining of His-tagged 

proteins. It was consequently not possible to determine the fraction of hLIF expressing cells 

within the CHOhLIF population. It was first assumed that similar high transduction efficiency 

was achieved as demonstrated in Section 3.1.2 for all others recombinant cell lines established 

under identical conditions. The topic will be discussed further in Section 3.3.4. 

The results suggest that the established CHOhLIF cell line efficiently secreted hLIF, as the 

recombinant protein was only detected in culture supernatants. In this context, the 

purification of the cytokine from the culture supernatants was performed. 

 

3.3.2 CHOhLIF cultivation and hLIF purification 

For the production of hLIF, CHOhLIF cells were cultivated in two 250 mL Spinners each 

containing 100mL serum-free ProCHO5 medium. Batch cultures were started with a cell 

concentration of 4·105 cells·mL-1. The cells were harvested after 4 days in the late growth 

phase at a cell concentration typically >1.5·106 cells/mL and a high viablilty (> 85 %). After cell 

separation by centrifugation, 160 mL supernatant were concentrated to a final volume of 10 

mL using centrifugal concentrators with a size exclusion limit of 10 kDa (Vivaspin20, 

Sartorius Stedim). The concentrated supernatant was then purified via Immobilized Metal 

Affinity Chromatography (IMAC) using Co2+ immobilized on a Sartobind Metal Chelate 

Membrane Adsorber (IDA75, Sartorius Stedim). The detailed procedure is presented in 

Section 6.2.4. The obtained chromatogram (in A) as well as the SDS-PAGE analysis of the 

eluted fractions (in B) can be seen in Fig. 3.10.  

The analysis of the eluted fractions revealed bands ranging from 25 to 50 kDa corresponding 

to the previously discussed band profile detected by Western blot (see Fig. 3.9.B). The 

fractions containing hLIF were collected (Fraction 56 to 61) and sterile filtrated (0.2 μm). In 

addition, the elution buffer was exchanged to PBS using a centrifugal concentrator (10 kDa 

exclusion limit, Vivaspin6, Sartorius Stedim) and the collected fractions were concentrated to 

a final volume of 1.5 mL. 
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Fig. 3.10: Purification of hLIF via IMAC. In A: FPLC chromatogram. In B: SDS-PAGE analysis of the 
eluted fractions. Fraction 21: flow through. Supernat. = concentrated culture supernatants.  

 

The protein purity of the final product was evaluated by SDS-PAGE and Western blot 

analysis. In this case, the specific detection was performed using a primary antibody directed 

against the hLIF protein. For a comparison, unglycosylated hLIF produced in E.coli was also 

analyzed. The results are presented in Fig. 3.11. The analysis confirmed the previous 

observation, namely that the cell line CHOhLIF expressed a heterogeneous pattern of 

glycosylated hLIF ranging from approx. 25 kDa to 50 kDa. The comparison with the protein 

expressed in E.coli (at approx. 20 kDa, Fig. 3.11.) makes the glycosylation of the secreted 

protein obvious. Interestingly, no unglycosylated hLIF is expressed by the CHOhLIF cell line, as 

no protein band was detected at 20 kDa. The considerable post-translational modification can 

be explained by the fact that hLIF contains at least six potential N-glycosylation sites 177. The 

variable glycosylation of the protein was also described in previous reports for instance for 
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hLIF expressed in CHO cells with a molecular weight ranging from 40 to 60 kDa 178 or in COS 

cells ranging from 20 to 50 kDa 178. 

The determination of the protein purity was difficult because of the heterogeneous expression 

pattern of hLIF. However, all protein detected on the SDS-PAGE gel were also detected by 

specific immunodetection following Western blotting. In this context, the protein purity was 

assumed to be high and evaluated from the gel to be at least > 90%.  

 

Fig. 3.11: Product purity evaluated by SDS-PAGE (left part) and Western blot (right part) analysis. The 
specific detection was performed using a primary antibody directed against the hLIF protein. 
Unglycosylated hLIF expressed in E.coli is displayed as a control. 

 

The protein concentration of the final product was measured to be 193.6 μg·mL-1 using 

Bradford assay, which corresponds to approx. 310 μg purified protein from 160 mL 

supernatant. Thus, 1.9 mg hLIF could be theoretically obtained from a 1L culture. An analysis 

using a hLIF-specific detection method such as ELISA should be performed to confirm these 

findings. 

In the following section, the testing of the bioactivity of hLIF expressed by the CHOhLIF cell 

line is presented. 

3.3.3 Bioactivity testing of hLIF expressed by CHO cells 

The biological activity of the hLIF produced by the CHOhLIF cells was investigated using 

suspension cultures of murine embryonic stem (ES) cells. The suspension cultures were 

established by Magda Tomala by adapting adherent Brachyury ES cells to suspension and 

dynamic culture conditions179. The experiments were performed in close collaboration with 
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Magda Tomala and Nina Bahnemann. The activity of the CHO hLIF was compared to the 

activity of a commercially available LIF protein (ESGRO, Millipore) expressed in E.coli. Each 

cytokine was added to the culture media to a final concentration of 10 ng·ml-1 respectively. As 

a negative control, cells were cultivated in the absence of LIF.  

Erlenmeyer flasks containing 25 ml medium were inoculated with 2·104 cells·ml-1 each and 

shaken orbitally at an agitation rate of 110 rpm. The cells were passaged after 4 days in 

culture. The cultures were monitored daily by determination of the cell concentration and 

viability. Apoptosis measurements were performed using the Annexin-V assay and flow 

cytometry (See Appendices 6.2.2). In parallel, suspension cultures in petri dishes were 

conducted for morphological observations. 

Growth curves and viability of the cells cultivated in the three different culture media are 

shown in Fig. 3.12. Whereas cells proliferated normally in the presence of ESGRO LIF and 

purified hLIF (CHO LIF), the negative control cultures showed a significantly reduced 

proliferation.  

 

Fig. 3.12: Cell growth and viability of the ES cells Brachyury cultivated in the presence of CHO hLIF, 
control LIF (ESGRO) and w/o LIF. The data are presented for cells in passage 2. 

 

The viability assayed by trypan blue exclusion (Fig. 3.12) and Annexin-V apoptosis assay (Fig. 

3.13.A and .B) was comparable for both LIF cultures. In contrast, cultures without LIF 

displayed a significant lower viability (Fig. 3.12) and massive apoptosis was demonstrated via 
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Annexin-V assay (Fig. 3.13.C). It was not possible to maintain the Brachyury ES cell line in 

suspension culture without LIF for more than 2 passages.  

 

Fig. 3.13: Flow cytometric apoptosis measurements using the Annexin-V assay in ES cell cultures in the 
presence of the purified CHO hLIF (in A), in the presence of ESGRO LIF (in B) and w/o LIF (in C). The 
analysis were performed after 4 days of the suspension cultivation in passage 2. Lower quadrant left: 
living cells. Lower quadrant right: early apoptotic cells. Higher quadrant right: late apoptotic or necrotic 
cells. At least 10 000 events are displayed. 

 

With regard to growth and viability, the purified CHO hLIF was comparable with 

commercially available ESGRO LIF. The maintenance of cell pluripotency, however, is 

another important aspect for the characterization of the purified cytokine.  

The maintenance of cell pluripotency in the presence of the purified hLIF was evaluated by 

expression analysis of the pluripotency marker SSEA 1. The expression level of the surface 

molecule was determined via flow cytometry using a monoclonal antibody labeled with FITC. 

Marker expression level was evaluated in comparison to a matched isotype control, i.e. an 

identically labeled antibody of the same isotype class and used in the same quantity as the test 

antibody, but presenting no affinity for murine cells (see Appendices 6.2.6). In Fig. 3.14 the 

histograms representing SSEA-1 expression of Brachyury ES cells derived from each culture 

are shown. Cells cultivated throughout 2 passages in the presence of the CHO hLIF retained 

high SSEA-1 expression levels (> 94 % positive cells, in Fig. 3.14.A), fully comparable with the 

positive control ESGRO LIF (Fig. 3.14.B). The expression remained high and stable over 14 

subsequent passages (93 % for CHO LIF and 94 % for ESGRO LIF). In contrast, cells cultivated 

without LIF showed a decrease in SSEA-1 expression (only 77 % positive cells) already after 

two passages (Fig. 3.14.C).  
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Fig. 3.14: Expression of the pluripotency surface marker SSEA-1 by ES cells cultivated in the presence of 
the purified CHO hLIF (in A), in the presence of ESGRO LIF (in B) and w/o LIF (in C). Analyses were 
performed on day 3 of the suspension cultivation for cells in passage 2. Unfilled histograms: matched 
isotype control. Filled histograms: SSEA-1 expression. At least 10 000 events are displayed. 
 

Microscopic observations of the morphology of suspension ES colonies cultivated in petri 

dishes also confirmed the undifferentiated phenotype of the cells cultivated in the presence of 

the purified hLIF. Thus, round shaped spheres were observed in the cultures supplemented 

with CHO hLIF and ESGRO LIF. The examination of the negative control, on the other hand, 

clearly revealed adhering and sprouting cells in the petri dishes, indicating that the cells 

differentiated when LIF was omitted. 

 

       
Fig. 3.15: Morphology of ES suspension cell cultures (petri dishes) in the presence of the purified CHO 
hLIF (in A), in the presence of ESGRO LIF (in B) and w/o LIF (in C). Pictures were taken on day 4, 
passage 2 (phase contrast, 100 x magnification)180. 

 

The experiments demonstrated that the purified hLIF was active in maintaining the 

proliferation potential of murine embryonic stem cells as well as their pluripotency. The 

approach described here for the biological testing of LIF, namely the use of suspension 

cultures of ES cells was found very advantageous. Thus, feeder cell free and suspension 

conditions allowed for a strong and immediate response of the ES cells to the absence or 

A B C
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presence of LIF already after one to two passages (8 days). In particular, apoptosis was found 

to be rapidly triggered in the suspension cultures cultivated without LIF. As a comparison, 

biological testing of hLIF performed by the group of Dr. Tobias Cantz (Junior Research Group 

Stem cell biology, MHH) using adherent cultures with feeder cells are performed over 5 

passages (24 days) to attest the activity of the cytokines. The use of feeder cells in the 

experimental set-up may in this case provide additional cytokines, which prolonge the culture 

of the ES cells. Thus, the functional testing of the bioactivity using suspension cultures may 

allow reducing the screening time of the purified cytokines.  

The experiments confirmed that the hLIF produced by the established CHOhLIF cell line is able 

to support the growth and maintain the pluripotency of ES cells. In this context, first step of 

the optimization of the hLIF production process were conducted. At first, the isolation of 

producing cells was performed for the generation of clonal cell populations. The use of a 

homogenous cell population for the production process of hLIF may be desirable, in particular 

if clones exhibiting superior growth or production characteristics can be identified within the 

transduced cell population. In the following section, the isolation and the characterization of 

CHOhLIF from the clonal cell population is presented.  

3.3.4 Isolation and characterization of CHOhLIF cell clones 

In the previous section, the establishment of a CHO cell line expressing bioactive hLIF was 

demonstrated. As mentioned in Section 3.3.1, the intracellular detection of hLIF was not 

possible and the fraction of producing cells within the transduced cell population could not be 

determined. In addition, the expression of hLIF was found to be heterogeneous with regard to 

the molecular weight, indicating that several glycoforms of the cytokine are expressed by the 

CHO cells. It was hypothesized, that the glycosylation of the protein may be cell clone 

dependent. In this context, cell clones issued from the transduced population were isolated. 

The analysis of the hLIF expression of the isolated cells was subsequently performed to 

identify producing cells and to observe if individual cell clones exhibited different 

glycosylation patterns.  
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Generation of CHOhLIF clones using flow cytometric cell sorting 

Cell cloning was performed using Fluorescence Activated Cell Sorting (FACS). Exponentially 

growing CHOhLIF cells were harvested and cloned using the single cell sorting modus of a 

FACS Vantage SE. Thus, 180 cells were sorted in 96-well plates containing fresh cultivation 

medium. The efficiency of the procedure was evaluated by counting the number of growing 

cells 6 days after cell sorting and was determined to be 33% (60 growing cell populations). All 

cultures were further expanded by Nina Bahnemann in the course of her Master thesis 180. 

Eventually, 25 living clonal cell populations were obtained after 8 weeks, leading to an overall 

cloning efficiency of approx. 14%.  

 

Characterization of isolated clones 

The expression of hLIF by the isolated CHO clones was analyzed semi quantitatively by SDS-

PAGE. Culture supernatants were purified utilizing small scale IMAC (Vivawell 8-strips, 

Sartorius Stedim, see Appendices 6.2.5) and subsequently analyzed for hLIF expression using 

SDS-PAGE. The volume of purified supernatant was adjusted according to the measured cell 

concentration in the culture, so that the purified volume of medium contained the same 

number of cells. This approach allowed a semi-quantitative comparison of the hLIF expression 

between each clone. The results are displayed in Fig. 3.16. All 25 clones were found to be 

producers, which strongly supports the hypothesis that high transduction efficiency was 

achieved during the establishment of the cell line, as demonstrated in Section 3.1.2. In 

addition, a similar heterogeneous expression of hLIF was observed on the gels for all isolated 

clones (Fig. 3.16), indicating that the protein was similarly glycosylated by all cells. Thus, the 

observed heterogeneous glycosylation pattern is not cell clone dependent and is more likely 

caused by the changing chemical environment in the culture. The maintenance of defined and 

controlled culture conditions may allow manipulating glycosylation by the CHOhLIF cells. This 

may be advantageous, if a particular glycoform of hLIF is found to be more suitable for a 

defined field of application of the cytokine.  

Interestingly, two clones (6 and 21) exhibited more pronounced and intense bands on the 

SDS-PAGE gel. These results, confirmed by Coomassie staining (data not shown), suggested a 

higher expression level of the recombinant protein by these clones.  
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Fig. 3.16: Analysis of the hLIF expression by CHOhLIF clones isolated by FACS. The purified volumes of 
the supernant for the analysis was determined occording to the cell concentration.  

 

In addition, microscopic observation of the two clones revealed a significant higher cell size 

compared to untransduced cells. This fact is illustrated in Fig. 3.17 for CHOhLIF clone 21 (in A) 

in comparison to untransduced CHOSFS cells (in B).  

 

 

Fig. 3.17: Comparison of the cell size of the isolated CHOhLIF clone 21 with untransduced CHOSFS cells. In 
A: CHOhLIF clone 21 (200 x magnification), In B: untransduced CHOSFS cells (200 x magnification); In C: 
flow cytometric measurement using FSC signals as a measure of cell size. FSC: Forward Scatter. 

 

Thus, from the digital images cell diameter was estimated to be approx. 31.4 μm (± 9.2 μm, n = 

10 cells) for CHOhLIF clone 21 and 15.5 μm (± 2.2 μm, n = 10 cells) using the Olympus software 

Cell^2. The results were confirmed by flow cytometric measurement using the forward scatter 

signals (FCS) as measure of cell size (see Fig. 3.17.C). This phenomenon may be explained by 

the fact that producing cells increase the size of some intracellular organelles, such as the 
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endoplasmic reticulum or the golgi apparatus for the secretion of the recombinant cytokine. 

Cell size is an intrinsic parameter requiring no staining. Thus, this criterion may be used as a 

selection parameter during cell sorting by FACS in order to isolate high producing clones 

more selectively from the established CHOhLIF population. Further experiments should be 

performed to elucidate if a correlation exists between the size and the specific productivity of 

the transduced CHO cells. 

Based on the hLIF expression observed on SDS-PAGE, new cell banks (CHOhLIF clone 6 and 

CHOhLIF clone 21) were established for further investigation. The growth characteristics as 

well as the specific productivity should be determined for these homogenous cell lines using a 

quantitative method such as ELISA. Ideally, the cell line will exhibit a high growth rate and a 

high specific productivity, so that the volumetric productivity of the production process of 

hLIF could be increased.  

 

3.4 Summary and perspectives 

In this work, recombinant CHO cell lines were established for the production of cytokines of 

high interest for stem cell technology. For this purpose, lentiviral vectors were used for the 

delivery of expression constructs to the CHO cells. This approach was found to be very 

efficient. Within one week, transduced cell populations harboring more than 95% of 

producing cells were obtained. The expression constructs were integrated by the lentiviruses 

in the CHO genome, allowing a stable expression of the recombinant proteins.  

During this work, the production of the proteins Angptl1 and 2, two cytokines that may have 

a high potential for the ex vivo expansion of hematopoietic stem cells, was intended. The 

expression of both recombinant proteins by the established CHO cell lines was confirmed. 

However, only intracellular expression was detected leading to the conclusion that the 

cytokines were not properly exported by the CHO cells. The use of new export signals for 

both proteins may allow overcoming this problem.  

In contrast, the CHO cell line established for the expression of hLIF, a key cytokine for ES cell 

cultures, efficiently secreted the protein. The heavily glycosylated cytokine could be purified 

from CHO supernatant with a yield of approx. 190 μg from 100 mL. A rapid functional assay 

involving suspension cultures of murine ES cells was established in cooperation with Magda 
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Tomala and the bioactivity of the expressed hLIF was demonstrated. Additional testing 

performed by Tobias Cantz at the Hans-Borst-Zentrums für Herz- und Stammzellforschung 

(Rebirth Junior Research Group, MHH) confirmed the activity of the protein using adherently 

growing ES cells on feeder layers. This experiment also suggested that the glycosylated form 

of hLIF may be still active at lower dilutions compared to hLIF expressed in E.coli. This point 

may indicate that the glycosylated form of hLIF may be more bioactive or stable than the 

unglycosylated one. This should be confirmed and investigated in more detail in a 

comparative study.  

Eventually, CHOhLIF clones were generated using flow cytometric cell sorting from the 

original transduced CHO cell pool. On the basis of semi quantitative analysis of the hLIF 

expression, two clonal populations were selected and used for the establishment of new cell 

banks. The specific productivity as well as the growth characteristics of these clones should be 

investigated. A high specific productivity and a high specific growth rate, if demonstrated, 

may allow increasing the volumetric productivity of the hLIF production process.  

The efficiency of lentiviral preparations for a stable transgene transfer to CHO cells observed 

in this work raises the question of the applicability of this approach for the establishment of 

industrial cell lines and will be here briefly discussed. For the production of small amounts of 

recombinant protein, transient transfections are usually performed to rapidly characterize a 

molecule and screen its bioactivity24. For the large scale production of a bioactive protein, the 

establishment of a stable cell line for a long-term and reproducible expression is performed 

subsequently. The use of lentiviral gene transfer combines in our opinion both approaches, as 

a stable transduced cell population is obtained within one week, allowing thus the rapid 

production of a recombinant protein for screening purposes. If the bioactivity of the expressed 

protein is attested, a stable transduced cell population is already available for large scale 

production purposes. If necessary, the generation of clones and the selection of high producers 

within the originally transduced cell pool can be performed. Screening and production are 

performed using the very same cell line, thus variations due to the change of host cell or to 

the change of gene transfer method are reduced. In addition, the transduction of CHO cells 

can be performed in serum-free condition, as both virus production and CHO infection do not 

require the presence of serum or any additives of animal origin. The use of human derived 

viruses requires a level of biosafety 2, which may represent a difficulty, as it implicates the 
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availability of dedicated facilities. However, the use of murine-based lentiviruses for instance, 

may allow reducing the biosafety level to 1. In this context, the efficient technique of 

lentiviral gene transfer may play a role for the establishment of recombinant CHO cell lines of 

industrial relevance. 
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4 Characterization of mesenchymal stromal cells isolated from 

human umbilical cord tissue 

Pioneer works of several groups during the last decade demonstrated that the tissues of the 

umbilical cord harbor mesenchymal stromal cell (MSC) populations exhibiting potential for 

clinical and tissue engineering applications (see Section 2.2). The development of suitable 

biotechnological protocols for the isolation, expansion and differentiation of MSC is now a 

challenge for the delivery of cells to a patient.  

MSC have been derived from umbilical cord tissue by various approaches using non-human 

serum such as fetal calf serum (FCS) for isolation and expansion of the cells. The use of sera of 

animal origin raises some safety concerns in particular the potential transmission of infections 

e.g. viruses and prions from animals to man. The prominent example of the Bovine 

Spongiform Encephalopathy (BSE) in the late 90’s brought the FDA to recommend the use of 

fetal-calf serum originating from a country certified free of this disease 181. 

In this context, the use of human serum (subsequently abbreviated HS) would be preferable 

for the delivery of cells of clinical grade. Furthermore, HS-based isolation and expansion 

protocols would open possibilities for the use of allogenous strategies, i.e. the use of a patient’s 

own serum for the production of therapeutic MSCs.  

In this work, primary cells derived from human umbilical cord under xeno-free conditions 

were characterized. In particular, flow cytometry was used as an analytical tool to specify the 

identity of the isolated cells and to monitor their growth or differentiation. Experiments were 

partially performed in collaboration with co-workers, as mentioned subsequently. A xeno-free 

isolation procedure using HS for the isolation of the cells is first presented. The procedure was 

evaluated with respect to the capability to yield MSCs and its reproducibility. Investigations 

were conducted to determine the nature of observed sub-populations within the isolated 

cultures. The growth characteristics as well as the expansion capacity of the cells cultivated 

with HS were studied. Finally, the osteogenic potential of the isolated cells was evaluated.  
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4.1 Isolation of mesenchymal stromal cells from human umbilical cord 

tissue under xeno-free conditions 

Several strategies have been applied for the isolation of Mesenchymal Stromal Cells (MSC) 

from human umbilical tissue (reviewed in Section 2.2). The challenge of the procedure is the 

release of primitive cells widely distributed in the tissue and their separation from other 

suspension (blood cells) or adherent (endothelial cells, blood or endothelial progenitors) cell 

populations also contained in the cord.  

Within the framework of this thesis, six human umbilical cords were processed in close 

collaboration with Stefani Boehm 182 and Tim Hatlapatka 183. Because MSCs are found in 

nearly all compartments of the umbilical cord (see Section 2.2.1), the isolation approach 

chosen by our group did not focus on a particular region, but involved the processing of the 

entire umbilical tissue. No enzymatic treatment was used for the release of cells from the 

tissue. More importantly, the complete isolation procedure was performed under xeno-free 

conditions using HS as a supplement. The HS used in this study was obtained from the 

Institute of Transfusion Medicine (Hannover Medical School) and consisted of a pool of sera 

without regard to blood type or Rhesus factor. Fig. 4.1 illustrates the isolation procedure. 

 

 

Fig. 4.1: Isolation of plastic adherent cells from human umbilical cord tissue, modified from 184. 
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The umbilical cords were obtained from consenting patients delivering full-term (38–40 

weeks) infants by cesarean section. Immediately after birth the cords were fragmented into 

10-15 cm long segments (Fig. 4.1.A) and stored for transport in PBS containing 5 g·l-1 glucose 

supplemented with 50 μg·ml-1 gentamicin, 2.5 μg·ml-1 amphotericin B, 100 U·ml-1 penicillin 

and 100 μg·ml-1 streptomycin to prevent bacterial or fungal contaminations. The cord 

segments were then transported and processed within 48 hours. Blood from the arteries and 

the vein was first removed by flushing PBS through the vessels using blunt needles and a 

sterile syringe (Fig. 4.1.B). The tissue was then chopped in small pieces (termed here as 

explants) in order to enhance the contact surface of the tissue and transferred to cell culture 

flaks (Fig. 4.1.C and D). Explant cultures were incubated in αMEM supplemented with 15% 

HS and 50 μg·ml-1 gentamicin at 37°C in a humidified atmosphere with 5% CO2. The medium 

was changed every second day.  

After few days, an outgrowth of adherent cells from the explants could be observed as 

illustrated in Fig. 4.1.E (day 10). After 2 weeks the tissue was removed and the attached cells 

were washed several times with PBS. The adherent cell population was further cultivated in 

αMEM with 10% HS avoiding the formation of confluent colonies by enzymatic treatment if 

necessary. On day 21 a culture of sub-confluent plastic adherent cells presenting 

predominantly a fibroblastic morphology was finally obtained (Fig. 4.1.F). However, 

microscopic examination revealed colonies exhibiting an endothelial morphology within the 

fibroblastic cell population in one of the six isolated cultures (Fig. 4.2.A and B).  

 

 

Fig. 4.2: Endothelial contamination in a UC-derived adherent culture. A: fibroblastic adherent cells. B: 
colony of cells exhibiting an endothelial morphology (100 x magnification). 
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The identity of this subset of adherent cells was investigated on the single cell level via flow 

cytometry. For this purpose, the expression of the surface antigen CD31, designating the 

protein PECAM-1 (Platelet endothelial cell adhesion molecule) was measured, as this antigen 

is known to be expressed on endothelial cells185. CD31 expression was detected using a 

monoclonal mouse anti-human FITC-labeled antibody. The detailed staining procedure is 

described in Appendices 6.2.6.  

 

Fig. 4.3: Identification of an endothelial (CD31+) sub-population in UC-derived cultures via flow 
cytometry. CD31 expression was detected using a mouse anti-human FITC-labeled antibody in the FL1 
channel (BP: 505-545 nm). A: CD31 analysis before cryopreservation (> 2·105 events displayed); B: CD31 
analysis after revitalization (> 4·105 events displayed). FSC: Forward scatter signals. 

 

The isolated culture was found to harbour a subset of CD31 expressing cells at a frequency of 

approx. 0.33% total living cells. This sub-population can be seen in a density plot FL1 vs FSC 

in Fig. 4.3.A. The result of the analysis confirms the fact that endothelial cells are possible 

contaminants during the isolation procedure of fibroblastic cells from umbilical tissue. 

However, only a very low frequency of such cells could be detected in one of six isolated 

cultures. More importantly, CD31+ cells could not be longer detected after cryopreservation 

and revitalization (illustrated in Fig. 4.3.B) suggesting that the subset of endothelial cells did 

not survive the freezing procedure.  

The process flow chart presented in Fig. 4.4 summarizes the isolation and highlights some 

selection features observed during the applied procedure.  
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Fig. 4.4: Process flow chart summarizing the isolation of plastic adherent fibroblastic cells from umbilical 
cord tissue. Dashed arrows indicate removal of unwanted cells. 

 

Hematopoietic cells (blood cells) present in great number in the cord at birth are removed by 

washing the blood vessels and subsequently during repeated medium changes and washing 

steps of the explant cultures. The isolation procedure relies primary on the fact that adherent 

cells grow out of the fragmented umbilical tissue in the presence of medium. This can be 

explained by a passive phenomenon: the direct contact of the chopped tissue with the cell 

culture vessel allows superficial cells to adhere to the plastic surface. An active migration of 

the cells out of the explants is however the most likely involved mechanism. Chemotaxis may 

be driven by the increasing nutrient gradient from tissue to the surrounding medium but also 

by specific cytokines present in the medium. In particular, chemokines such as HGF 

(hepatocyte growth factor) and SDF-1 (stromal-derived factor) known to be secreted by 

injured tissue were found to induce the migration of bone marrow and umbilical cord blood 

derived MSCs 186, 187. In this procedure, these cytokines must be secreted into the medium after 

tissue fragmentation and drive MSC migration out of the explants. This phenomenon, if 

verified, may be used for the optimization of the isolation process. Medium, supplemented 



4 Experimental Part: Characterization of UC-MSCs  
 

58 

with specific cytokines may accelerate cell migration und reduce the duration of the 

procedure. 

Using a simple approach, fibroblastic plastic adherent cell populations were successfully 

isolated from 6 umbilical cords. Numerous cells could be derived from each cord and cell 

banks were established with a minimum of 21·106 cells.  

 

Plastic adherence and fibroblastic morphology belong to the characteristics of mesenchymal 

stromal cells. However, these two criteria are not sufficient for the identification of MSC in 

cultures derived from human tissue. The UC-derived fibroblastic cells were further 

investigated with regard to the expression of specific molecular markers. Analyses on the 

single cell level were performed to investigate the heterogeneity of the cell population and to 

determine the identity of the isolated cells.  

 

4.2 Characterization of stromal cells isolated from human umbilical cord on 

the single cell level 

4.2.1 Immunophenotyping of the UC-derived cells 

The UC-derived cell populations were investigated with regard to the expression of specific 

molecules reported to be present on MSC. In contrast to other progenitor cells, for instance 

hematopoeitic stem cells, there is currently no unique marker available for defining human 

MSCs. The expression of a set of markers combined with the demonstration of in vitro multi-

lineage differentiation potential (discussed later and in Section 4.5) is necessary to identify 

MSCs derived from human tissue.  

The expression of several intra- and extracellular specific proteins were reported for UC-

derived MSC (reviewed in Section 2.2.3). The surface glycoprotein endoglin also termed as 

surface antigen SH2 or CD105, the extracellular 5'-nucleotidase (SH3 or CD73), and the Thy-1 

membrane glycoprotein (CD90) are widely used for the identification of UC-derived stromal 

cells (see Section 2.2.3), as these markers were proposed by the International Society for 

Cellular Therapy (ISCT) in 2006 as positive markers for human MSCs 94. However, these 

surface molecules may also be expressed on haematopoietic and endothelial cells, which are 

two potential contaminants in UC-derived cell populations. Consequently, it is necessary to 
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carefully examine the haematopoietic or endothelial nature of the isolated cells using surface 

markers such as the transmembrane tyrosin phosphatase CD45 (leukocyte common antigen), 

CD34 (antigen expressed on hematopoietic progenitors and endothelial cells) and CD31 

(endothelial cells, already discussed in 4.1). The hyaluronic acid (HA) receptor CD44 is also a 

commonly used positive marker and may be expressed by UC-derived MSCs as the 

extracellular matrix of the UC is one of the highest HA-containing tissue in humans 188. Cell 

surface markers will be subsequently denominated using the “CD” nomenclature.  

Analytics for the detection of the antigens CD31, CD34, CD45, CD73, CD90 and CD105 using 

fluorescence labeled antibodies was established in this work. Fig. 4.5 illustrates for instance 

the expression of CD90 on the membrane of UC-derived adhering cells detected with a FITC 

labeled antibody. 

 

 

Fig. 4.5: Thy-1 (CD90) expression on the membrane of UC-derived cells. CD90 is detected using a mouse 
anti-human FITC labeled monoclonal antibody (green fluorescence). Cell nuclei are visualized using the 
nucleic acid dye DAPI. 

 

The heterogeneity of the isolated cell populations was investigated via flow cytometry. 

Considering the fact that a set of cellular markers have to be combined to identify MSC, assays 

allowing the simultaneous analysis of several markers were established. Accordingly, the 

fluorophores FITC, PE and the tandem dye PE-Cy5 were used in three color experiments 

(detailed in Appendices 6.2.6).  

The results of the analysis of UC-derived fibroblastic cells after revitalisation (termed in the 

following as passage 1 or P1) can be seen in Fig. 4.6.A-C. The analysis was validated by the use 

of a mix population of UC-derived and Jurkat cells (D, E and F). The Jurkat leukaemia human 
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cell line was found very convenient as a control population, as these hematopoietic cells 

express CD45 189, lack the expression of CD73 190, CD44 191 and CD105 192 and showed a 

heterogeneous expression for CD34 and a low CD90 expression level.  

 

 

Fig. 4.6: Multicolor analysis of a UC-derived fibroblastic cell population in P1 (A, B and C) and control 
mixed sample containing leukaemia Jurkat cells (blue dots in D, E and F). Data were obtained from three 
staining experiments combining detection of CD90, CD73 and CD45 (A and D), detection of CD90, CD105 
and CD45 (B and E) and detection of CD90, CD44 and CD34 (C and F). At least 10 000 events are 
displayed. 
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The UC-derived cell populations were found surprisingly homogenous with regard to all 

investigated cell markers as demonstrated in the dot plot A, B and C in Fig. 4.6. Compared to 

the control cell population, the isolated cells were found positive for the MSC markers CD90 

and CD73 (A), CD105 (B) and CD44 (C), but lacked the expression of the markers CD45 (B) 

and CD34 (C). 

The expression of each surface molecule was confirmed and quantified in monoparametric 

measurements. Marker expression level was evaluated in comparison to a matched isotype 

control, i.e. an identically labeled antibody of the same isotype class and used in the same 

quantity as the test antibody, but presenting no affinity for human cells (see Appendices 

6.2.6). The conditions for flow cytometric analysis were optimized in additional experiments. 

Thus, cell harvest using the enzymatic solution accutase (a mixture of proteolytic and 

collagenolytic enzymes) was preferred to trypsin or to non-enzymatic methods, since a 

reduced antigen detection was measured after treatment with the latter two detachment 

procedures (see Appendices 6.3.3). All assays were validated on the transcriptional level via 

RT-PCR using Jurkat cells as control (Appendices 6.3.4).  

The typical immunophenotype of a UC-derived cell population in P1 is presented in Fig. 4.7 

(filled histograms). Positive staining was defined as the emission of a fluorescence signal that 

exceeded levels obtained by >99% of cells stained with isotype control antibodies (unfilled 

histograms). In addition, medians of the fluorescence distributions are displayed. The analyses 

confirmed that the isolated cells lack the expression for CD31, CD34 and CD45. The isolated 

cells are consequently neither from endothelial (CD31- and CD34-) nor from hematopoietic 

(CD45-) nature. More importantly, the cells were found positive (>99.8%) for the MSC 

markers CD44, CD73, CD90 and CD105. 
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Fig. 4.7: Immunophenotype of UC-derived cells (in P1).  

 

Table 4.1 summarizes the measured immunophenotype of all cell populations isolated by our 

group during this work (n=6 umbilical cords). The reproducibility and the efficiency of the 

isolation procedure are demonstrated since fibroblastic cells exhibiting a MSC 

immunophenotype could be derived from all processed cords. Additionally, in vitro 

differentiation studies performed by Tim Hatlapatka demonstrated the adipogenic and 

chondrogenic potential of the isolated cells 183. The osteogenic potential will be discussed in 

more detail in section 4.5. Consequently, it can be stated that the isolated cells meet the basic 

criteria defining Mesenchymal Stromal Cells (MSC) as proposed by the ISCT 94: the adherence 

to plastic, the expression of a set of specific surface antigens and a multi-lineage 

differentiation potential. Accordingly, the isolated cells will be termed subsequently as UC-

MSC. 

Table 4.1: Overview of the measured immunophenotype of primary cells isolated from 6 umbilical cords. 

Surface marker [%] 
Positive cells 

CD31 0,9 ± 0,8 
CD34 1,4 ± 0,2 
CD44 99,9 ± 0,2 
CD45 0,4 ± 0,4 
CD73 98,9 ± 1,8 
CD90 99,9 ± 0,2 

CD105 98,9 ± 2,3 
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To date the identification of MSC in human tissue isolates requires the combination of several 

characteristics (morphology, surface marker profile and differentiation potential). In this 

context, the identification of a universal marker defining primitive human MSCs remains 

challenging. Recent works described surface molecules allowing the identification of MSC in 

bone marrow aspirates75, 130, 131. In the following section, the analysis of the expression of these 

cellular markers in UC-MSC culture is presented. 

 

4.2.2 Expression of newly described MSC markers in UC-derived MSC cultures 

Several markers were described to uniquely distinguish MSC from other bone marrow cell 

populations. Thus, the surface antigens CD271130, 131, MSCA-1131 and the neural ganglioside 

GD275 were successfully used for the isolation of multipotent cells from bone marrow 

aspirates. The analysis of the expression of these antigens in MSC isolated from other sources 

is highly interesting in order to elucidate whether these markers are universally expressed on 

human MSC or restricted to the bone marrow.  

In this work, the expression of CD271 and MSCA-1 were analyzed using PE-labeled 

monoclonal antibodies. The protein GD2 was stained using a primary antibody and PE-labeled 

secondary antibody (see Section 6.2.6).  

The analysis of the isolated cell population did not reveal cells expressing the surface antigen 

MSCA-1 and CD271 (see additional results in Section 6.3.5). For the protein GD2 however, a 

few positively stained cells were detected at a frequency <0.1%. At such a low frequency, the 

determination of significant results is challenging and the signal to noise ratio of the method 

used for detection has to be carefully examined. This particular field of flow cytometry is 

called “rare event flow cytometry” and technical aspects have to be scrutinized in order to 

obtain reliable results193. In particular, dead cells and cell aggregates have to be excluded from 

the analysis to prevent the measurement of false positive events. Fig. 4.8 summarizes the 

approach used for the analysis. First living cells were gated in a density plot of the FSC versus 

SSC signals (region R1 Fig. 4.8.A) and according to propidium iodide exclusion (R2 in Fig. 

4.8.B). In addition, cell aggregates were excluded of the analysis using pulse height and pulse 

integral measurement (region R3 in density C displaying pulse high versus pulse area of the 

measured FSC signals). In this example 122 positive cells were measured (Fig. 4.8.D). The 
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background noise of the detection was evaluated measuring the same number of cells treated 

with the secondary antibody under identical conditions as the test sample, but omitting the 

primary anti-GD2 antibody (17 events in Fig. 4.8.E). Thus, subtracting the background from 

the number of measured events, 105 ± 26 cells positive for GD2 in a total population of 5·105 

cells were measured. The counting error was determined using Poisson statistic (standard 

deviation SD = 26 cells) and corresponds to a coefficient of variation (CV) of 11.2%. Using this 

method, frequencies of GD2+ cells ranging from 0.02 – 0.1 % were measured in three isolated 

cell populations.  

 

Fig. 4.8: Rare event analysis of GD2 expressing cells within a UC-derived MSC population. Dead cells 
were excluded of the analysis according to FSC and SSC signals (in A) as well as Pi exclusion (in B). 
Aggregates were excluded using pulse processing analysis (in C). GD2 was detected using a primary and 
secondary PE-labeled antibody detected in channel FL2 (dot plots D and E, a total of 5·105 living cells are 
displayed). The background noise of the procedure was evaluated measuring cells solely stained with the 
secondary antibody.  

 

A higher number of events of interest (GD2+ cells) should be acquired to improve the 

statistical relevance of the results. For instance, the acquisition of 10000 events of interest 
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would allow the counting of GD2+ cells with a CV of 1%. With a measured frequency of 

0.02%, a total of 50·106 living cells should be measured, which is barely possible using a 

conventional flow cytometer such as the Epics XL used for this study (acquiring approx. 1000 

cells/s, approx. 14 hours of analysis would be necessary). Thus, the measured frequency should 

be confirmed using an experimental setting appropriate for rare event flow cytometry, in 

particular a high speed analysis system. 

The results of the analysis suggest the presence of GD2+ cells within the isolated population at 

very low frequency. These findings are supported by a very recent report from Xu et al.124. In 

this work, GD2+ cells were detected using immunohistochemistry in the tissue of the 

umbilical cord. Using an enzymatic isolation approach and cell separation by magnetic-

activated cell separation (MACS), a sub-population of GD2+ cells was obtained. Interestingly, 

flow cytometric analysis of the GD2+ cells demonstrated the expression of pluripotent markers 

usually expressed by human embryonic stem cells such as Oct3/4, SSEA-4, Sox-2 and 

Nanog124. In addition, these cells exhibited a higher differentiation potential than GD2- cells. 

According to these recent findings, GD2+ may represent a more primitive cell population 

within the umbilical cord tissue. This subset of cells may be of interest for clinical applications 

and deserves further investigation. However, the explant isolation approach used in this thesis 

is not efficient to derive this sub-population, as only a very low frequency of GD2+ cells (< 

0.1%) was detected in the isolated cultures. A more specific isolation procedure using 

monoclonal antibodies and MACS or FACS approaches may be more efficient for this purpose. 

In the following section the analysis of surface proteins of the major histocompatibility 

complex (MHC) is presented to specify the immune status of the isolated UC-MSCs. The MHC 

antigens are involved in the recognition and the rejection of transplanted tissues. Thus, the 

analysis of the expression of these molecules is of high interest to evaluate the potential of the 

isolated cells for allogenic transplantation. 

 

4.2.3 Analysis of MHC molecules expression: immune status of UC-MSCs 

The molecules of the major histocompatibility complex (MHC) are polymorphic glycoproteins 

expressed on the surface of human cells. There are two class of molecules MHC class I and 

MHC class II, which are subdivided according to the product of the Human Leukocyte 
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Antigen (HLA) genes. Thus, the antigens HLA-A, -B, -C belong to the MHC class I, HLA-DL, 

-DQ and DR to MHC class II 194. The function of the MHC molecules is to present peptide 

fragments derived from foreign organisms (viruses, bacteria) to T-lymphocytes and trigger the 

immune response against infected cells in the body. MHC molecules are also involved in the 

recognition of non-self (allogenic) molecules194. Thus, rejection of transplanted tissues from a 

donor usually results from T-cell responses to allogenic MHC molecules expressed by the 

grafted tissues.  

During pregnancy, the foetus, which can be seen as a semi-allogenic engraftment195, is 

protected from the maternal immune system by a cell barrier in the placenta (see Fig. 4.9)196. 

In particular, trophoblast cells in the chorion display several defence mechanisms against 

maternal T-cells. For instance they harbour a reduced expression of MHC class I molecules 195, 

197, i.e. these cells do not express HLA-A, HLA-B and HLA-C only weakly. On the other hand, 

they specifically express the HLA-G antigen, a non classical molecule of the MHC class I 

group 198-200.  

 

Fig. 4.9: The interface between maternal and foetal tissue in the placenta. Immuno-privileged trophoblast 
cells in the chorion protect the foetus from rejection by the maternal immunsystem 196 

 

The human umbilical cord links the trophoblastic tissue to the foetus (Fig. 4.9). For this 

reason, it has been postulated that the tissue of the cord or at least a part of it may possess 

similar immune properties as trophoblasts126. In this context, the analysis of MHC molecules 

expression of UC-derived cells is highly interesting to elucidate if the isolated cells harbour 
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similar properties. The issue is of particular interest with regard to the potential of UC-MSCs 

for allogenic transplantation. 

In the frame of this work the expression of the MHC class I molecules was investigated on the 

protein level via flow cytometry. For this purpose, a FITC-labeled monoclonal antibody (clone 

TÜ149) reacting with HLA-B, - C and some HLA-A molecules201-203 was used for detection. 

Fig. 4.10 illustrates typical results obtained for UC-derived MSCs (P1). 

 

 

Fig. 4.10: Flow cytometric analysis of HLA-A, -B and –C (MHC class I) expression on UC-derived MSC in 
P1 (in A) and on a positive control population (PBMCs; in B). Filled histogram: FITC labeled anti HLA-
A,-B and –C monoclonal antibody; unfilled histogram: matched isotype control. At least 10 000 living cells 
are displayed. 

 

Histogram A in Fig. 4.10 shows the expression of the HLA antigens on UC-derived MSC. The 

fluorescence distribution (filled histogram) overlaps the distribution of the matched isotype 

control (unfilled histogram) and no significant HLA-I expressing cells could be measured (the 

relevance of the 4.7 % positive cells measured in the histogram is questionable considering the 

distribution of the fluorescence). Similar results were obtained for all isolated cell populations 

(2.5 ± 1.9 % measured positive cells, n=6). The validation of the staining procedure through 

the analysis of human peripheral blood mononuclear cells (HLA-I expressing cells) is 

displayed in Fig. 4.10.B.  

The results indicate that the isolated cells do not express HLA-A, -B and C antigens, or at least 

in an undetectable level, and suggest a similar immune status of UC-derived MSC as other 

extra-embryonic tissues of the placenta. The lack of HLA-A, -B and –C antigen contradicts 

published data for UC-derived MSCs 83, 85, 87, 100, 101, 104, 106, 108-111, 115, 125. Indeed, a low level of 

expression of HLA-I molecules could be detected in all reviewed studies. However, in these 
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works UC-MSC were isolated and cultivated in Foetal Calf Serum (FCS). Giving credit to the 

fact that the use of HS for the isolation and expansion of the cells may allow a superior 

maintenance of the original status of UC-MSC than a xeno-serum, the data presented here 

may provide a more accurate picture of the HLA-I expression compared to groups working 

with FCS. This hypothesis was strengthened by the observation of the antigens expression of 

UC-MSC cultivated in parallel using 10 % HS or 10 % FCS (Fig. 4.11). A significant higher 

expression of the antigens was observed for cells cultured in presence of FCS compared to 

cells cultivated with HS (illustrated here for cells in passage 3 and 5). However, the expression 

level in the presence of FCS diminished over the cultivation time, so that a similar expression 

was observed at passage 8 in the presence of HS and FCS. In contrast, in the presence of HS 

HLA-I expression remained negative over all cell passages. The influence of the used serum on 

HLA-I expression of UC-MSC should be further clarified in comparative studies.  

 

 

Fig. 4.11: HLA-I antigens expression level in the presence of human or fetal calf serum. UC-MSCs were 
cultivated in α-MEM supplemented with 10% serum. The cells were cultivated in T-flasks at a seeding 
density of 4000 cells/cm².  

 
The results of these experiments indicate that UC-derived MSC, like other extra-embryonic 

tissue of the placenta, may not express some molecules of the MHC class I (HLA-A, -B and –

C), suggesting immune-privileged properties of the isolated cells. The investigation of other 

molecules of the MHC class I and II must be carried out to further specify the phenotype of 

the cells. For instance, the expression of the non classical HLA-G molecule (MHC-I) is of 

particular interest as the expression of this antigen may inhibit the cytolytic activity of natural 

killer (NK) cells 204. In a recent study, the expression of HLA-G on UC-derived MSCs has been 

demonstrated on the transcriptional level 126. The expression remains to be demonstrated on 

the protein level. 
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The exciting topic of immune properties of UC-derived stromal cells is currently the subject of 

further investigations conducted by Tim Hatlapatka 183. In co-culture experiments of UC-MSC 

and allogenic human peripheral blood mononuclear cells (PBMC), the immune privileged 

status of the isolated cells should be confirmed. For further information on the topic, the 

reader is encouraged to read the work of Tim Hatlapatka. 

 

4.2.4 Conclusion 

In this work it was demonstrated that MSC could be isolated efficiently from human umbilical 

cord tissue under xeno-free conditions. The isolated cells exhibit a homogeneous MSC 

phenotype (CD34-; CD44+; CD45-. CD73+; CD90+; CD105+) and a mutilineage mesodermal 

differentiation potential. Interestingly, the cells lack the expression of markers found on bone 

marrow MSCs such as MSCA-1 and CD271, suggesting that these markers are restricted to the 

bone marrow MSC niche. The isolated MSCs may harbor a rare population of GD2+ cells. The 

frequency of this subset of cells should be confirmed using an experimental setting allowing 

for rare events flow cytometry. Finally, the isolated MSC cell population did not express 

typical MHC-I molecules, suggesting immuno-privileged properties for these cells. 

Experiments using UC-MSCs in co-culture with human peripheral blood cells, may confirm 

this hypothesis. Table 4.2 summarizes the phenotype of the isolated cells  

Table 4.2: Overview of the immunophenotype of the isolated UC-MSCs 
Cellular marker Expression Detection methods 

CD31 - Flow cytometry, RT-PCR 

CD34 - Flow cytometry, RT-PCR 

CD44 + Flow cytometry, RT-PCR 

CD45 - Flow cytometry, RT-PCR 

CD73 + Flow cytometry, RT-PCR 

CD90 + Flow cytometry, RT-PCR 

CD105 + Flow cytometry, RT-PCR 

CD271 - Flow cytometry 

GD2 < 0.1% * Flow cytometry 

HLA-A,B,C - Flow cytometry 

MSCA-1 - Flow cytometry 

  * rare event analysis 
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4.3 Identification of sub-populations in UC-derived MSC cultures 

In the previous sections it was demonstrated that fibroblastic cells exhibiting a homogenous 

MSC immunophenotype could be successfully isolated from human umbilical cord tissue. 

Despite a homogenous surface marker profile, heterogeneity could be recognized within the 

isolated population, in particular with regard to morphology. Thus, broad cell size distribution 

and marked morphological differences were observed in isolated UC-MSCs cultures. This fact 

is illustrated in Fig. 4.12. Cell cytoplasm is visualized via total protein staining (FITC), while 

cell nuclei are stained using the nucleic acid dye DAPI. 

 

 

Fig. 4.12: Morphological and size heterogeneity of UC-derived stromal cells. Small cells (type I) with low 
cytoplasm-to-nucleus ratio and large cells (type II) can be observed. Cell nuclei are visualized via DAPI 
staining. Cytoplasm is visualized via total protein staining using FITC. A: 200 x magnification. B: 400 x 
magnification. 

 

Besides small sized cells exhibiting a relatively low cytoplasm-to-nucleus ratio (type I in Fig. 

4.12.A and B), large cells exhibiting an elongated to broad morphology (type II) with a higher 

proportion of cytoplasm could be observed in the cultures. Cell size and morphological 

heterogeneity in animal cell cultures may be a normal phenomenon related for instance to the 

cell cycle status of the cells. Cell division being imminent, cells are usually larger because 

protein content has been enhanced over precedent cell cycle phases. Increased cytoplasm may 

be also the result of migration phenomena in the cultures vessels: MSC extend their cytoplasm 

searching for cell-cell contact.  

However, cell size/morphology heterogeneity may have another biological explanation 

indicating the presence of real sub-populations. To examine this hypothesis, UC-derived cells 
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were separated according to their size and subsequently characterized. These experiments 

were performed in close collaboration with Prof. Ralf Hass (AG Biochemie und 

Tumorbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Medical School Hanover) 89. 

The results are presented subsequently. 

 

4.3.1 Cell separation using Counterflow Centrifugal Elutriation (CCE)  

Counterflow Centrifugal Elutriation (CCE) was chosen as a separation technique, as CCE 

allows a high throughput separation with minimal perturbation of cellular function. The 

technique has been widely used for the synchronization of cell populations for biochemical 

studies205. In brief, cells suspended in an elutriation fluid are led to a rotating separation 

chamber (Fig. 4.13.A). A size gradient is obtained in the separation chamber as a result of the 

balance between the centrifugal force and the counterflow of elutriation buffer (B). The cells 

are then eluted from the chamber by increasing the flow rate of the elutriation fluid, where 

small cells are obtained first followed by larger ones (C). 

 

Fig. 4.13: Principle of cell separation via Counterflow Centrifugal Elutriation (CCE) 205 

 

For this experiment, UC-derived MSC were first expanded in a cell factory (Nunc, Thermo 

Fischer). Approximately 6·108 cells were harvested and elutriated in the laboratory of Prof. 

Ralf Hass at the Medical School in Hannover. Fractions the elutriated sample were collected 

upon progressive increase of the pump speed (flow rates are presented in Appendices 6.2.9). 

Cell concentrations and viability of every fraction was documented (Appendices 6.2.9).  

Cell size distribution within the elutriated fractions was then directly analyzed via flow 

cytometry using forward scatter signals (FSC) as a measure of cell size. Additionally, the 

distribution of the cell diameter was analyzed utilizing the image analyzer Vi-CELL Series 

(Beckman Coulter). During the elutriation procedure six separate cell fractions with 

A B C
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continuously increasing cell sizes were obtained (Appendices 6.2.9). The first elutriated 

fraction consisting of the smallest and the last fraction containing the largest cells were 

further characterized. Fig. 4.14 illustrates the size differences of the elutriated cells. 

 

 

Fig. 4.14: Cell size distribution of small-sized and large-sized cells obtained after CCE. The cells were 
analyzed in suspension via flow cytometry (FSC) and digital image analysis (Vi-Cell analyzer). After 
adherence size and morphological differences were observed via phase contrast microscopy (100 x 
magnification). Flow cytometry: the median (Md) of the FSC signals is given [RU: relative units]. The 
standard deviation results from 6 independent measurements (n=6). Microparticles with a diameter of 4.4 
µm were measured as reference. Vi-cell analyzer: the mean of the calculated diameter is given. The 
standard deviation results from 3 independent measurements (n=3), modified from 89. 

 
Flow cytometric analysis of the cells confirmed the success of the elutriation procedure. A 

population of small cells, termed subsequently as small-sized cells, was obtained in the first 

fraction. The central tendency of the distribution is here given as the median of the FSC 

signals (Md = 314 ± 3.3 RU, n = 6). The last fraction yielded a population of significantly larger 

cells (Md = 512 ± 5.6 RU, n = 6), termed subsequently as large-sized cells. The flow cytometric 

data correspond well with the cell diameter distribution measured via digital image analysis 

(Vi-cell analyzer, Fig. 4.14). An average diameter of 11.1 ± 1.3 μm could be measured for the 

small-sized cells and 19.1 ± 3.1 μm for the large-sized cells. Eventually, microscopic 

observations of the adherent cultures confirmed the morphological differences. The high 

proportion of cytoplasm in the large-sized cell fraction is remarkable.  
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In addition, the cell cycle distribution in the elutriated samples was measured in order to 

investigate whether the observed size variation was a cell cycle related feature. It is 

commonly observed that cell size increases among the cell cycle phases206. DNA content 

analysis was performed using propidium iodide (Pi) as previously described207. Aggregates 

were excluded of the analysis using pulse height and pulse integral measurement. The 

generated histograms were analysed with the software WinCycle (Phoenix Flow Systems, San 

Diego, CA). Fig. 4.15 presents the cell cycle distribution of the small-sized and large-sized 

cells after elutriation. 

 

 

Fig. 4.15: Cell cycle distribution of the elutriated small sized (in A) and large sized (in B) cell populations. 

 
The analysis demonstrated that small-sized cell fraction consists of 96.2% G1/G0, 1.5 % S and 

2.3 % G2/M cells. In the large-sized cell fraction approx. 8 % of the cells are in the G2/M 

phases suggesting a poor enrichment of G2/M cells compared to the small-sized cell 

population. However, more than 90% of the cells are in the G0/G1 phase. It is therefore 

unlikely that the observed increase of cell size was cell cycle related, as the low enrichment of 

G2/M cells can not explain the clear cell size differences observed between the two elutriated 

fractions. 

4.3.2 MSC antigen expression level of elutriated cultures 

The aim of this experiment was the comparison of the expression level of MSC surface 

antigens between the elutriated cell fractions. Flow cytometric measurement of the antigens 

CD44, CD73, CD90 and CD105 demonstrated that all cells, regardless of the fraction, do 

express the surface MSC markers (see Appendices 6.3.6). These results were to be expected, as 
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it has been already demonstrated in Section 4.2.1 that all isolated UC-MSCs express the 

surface molecules. However, slight but significant differences were observed suggesting that 

large-sized cells express fewer surface antigens than small-sized cells (see Appendices 6.3.6). 

This point was surprising as it might be expected that larger MSC would express 

comparatively more surface antigens. 

To confirm this observation, the ratio of antigen expression (immunofluorescence) and total 

protein content was measured. Since a good correlation (R2 = 0,893 ± 0,011; n = 6) could be 

observed between the total protein content measured via the fluorescence dye FITC and the 

side scatter signals (see Fig. 4.16.A and Appendices 6.3.6), the SSC signals were found to be a 

good approximation of the total protein content of UC-derived cells. Thus, the ratio of 

immunofluorescence to SSC signals was used here as a parameter representative of the surface 

antigen expression normalized on total protein content. To the best of our knowledge, this is 

an original approach for making comparisons of the surface antigen expression between two 

cell populations. Fig. 4.16.B and .C present the ratio of CD73/SSC and CD90/SSC measured for 

the small- and large-sized cells. 

 

Fig. 4.16: Correlation between SSC signal and total protein content (A). Comparison of antigen surface 
expression normalized on total protein content (CD73 in B; CD90 in C). All signals were measured on 
linear scale. Ratios were measured using the ratio circuit of an Epics XL MCL flow cytometer (Beckmann 
coulter). 

 

The obtained histograms clearly indicate that small-sized cells exhibit a higher ratio of surface 

antigen (CD73 and CD90) to total protein than large-sized cells (Fig 4.17.B and .C). Similar 

results were observed for the antigen CD44 and CD105, however in a less extend (see 

Appendices 6.3.6).  
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Flow cytometric ratio measurements demonstrated that large-sized cells do not express MSC 

antigens proportionally to their size and confirmed the lower expression level of specific MSC 

antigens compared to small-sized cells. The reduced expression of the specific cellular surface 

protein may indicate altered cellular functions. The comparison of the proliferation and the 

senescence level of the elutriated cultures eventually brought explanations for this 

phenomenon.  

4.3.3 Comparison of the proliferation and senescence level of the elutriated 

fractions 

The proliferation as well as the level of senescence of elutriated populations were investigated 

by Majore et al. 89. The proliferation potential of parallel cultures was evaluated by calculating 

the average number of cell doublings and the resulting theoretical total cell number obtained 

over several passages. Fig. 4.17.A presents the growth of the elutriated small-sized and large-

sized cells. As a control, the initial UC-derived primary population was cultured in parallel.  

 

Fig. 4.17: Proliferation potential and detection of senescence in elutriated cultures. A: proliferation 
potential of the control, small- and large-sized cell populations over three passages. The experiment was 
performed 6 days after elutriation. The theoretical total number of cells was calculated at each passage. B: 
detection of senescent cells via β-galactosidase staining (100 x magnification). Quantitative results were 
obtained from the analysis of 4 microscopic images (n=4). The experiment was performed 8 days after 
elutriation, modified from 89. 

 

The growth of the cells issued from the small-sized sub-population was significantly higher 

than the start population and the large-sized sub-population. This fact was illustrated by 

higher numbers of cell doublings and thus higher total cell number at each passage 

(Fig. 4.15.A). Large-sized cells exhibited in contrast the lowest proliferation potential.  
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Senescence associated β-galactosidase activity was measured in culture 8 days following the 

elutriation using the substrate X-gal (Appendices 6.2.2). Typical images of the cultures can be 

seen in Fig. 4.17.B. Senescent cells are marked by cyan dye surrounding the nucleus. The 

fraction of senescent cells was determined by manual counting of stained cells in the cultures. 

The analysis revealed 6.3 + 0.9% (n = 4) of senescent cells in the original primary culture and 

18 + 5.5% of senescence in the small-sized sub-population. In contrast, 90.1 ± 2.3% of the 

large-sized sub-population displayed features of a senescent phenotype. 

This experiment demonstrated that the large-sized cell fraction predominantly consists of 

senescent cells. These results explain the low growth observed for the elutriated sub-

population, as senescent cells are growth arrested208. The data are in good agreement with the 

observed cell cycle distribution (Fig. 4.15.B), where > 90 % cells were measured in the G1/G0 

phase. The growth of the culture over 32 days relies consequently on a sub-population of non-

senescent cells (8 % in G2/M after elutriation in Fig. 4.15.B, or 10 % of non-senescent cells 8 

days after elutriation in Fig. 4.17.B). Furthermore, the altered cellular function of senescent 

cells may explain the observed reduced expression of MSC surface antigens. 

 

4.3.4 Conclusion 

Senescence is a normal protective mechanism leading to the elimination of aged cells and 

occurs after a certain number of cell divisions. It may be also the result of oncogenic stimuli208, 

209. Spontaneous immortalization of human cells in culture has been reported210. This process 

involves the escape of cells from senescence leading to the emergence of immortal cell clones. 

Thus, in the perspective of clinical applications aged cultures containing senescent cells are 

undesirable and may represent a risk for the patient. We demonstrated here that an increased 

cell size and a reduced surface antigen expression are related to the appearance of senescent 

cells in UC-MSC cultures. This two cell characteristics are measurable using high throughput 

single cell analysis such as flow cytometry and may be useful for the monitoring of the ex vivo 

cell expansion procedure. In particular, cell size measurement is an interesting parameter, as 

in this case no staining is required. Considering the fact that high nucleus to cytoplasma ratios 

are observed in senescent cells, this feature may serve for the detection of senescence in 

cultures. The combination of phase contrast microscopy and automated digital image analysis 
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for the calculation of this ratio may represent an interesting approach for the non-invasive 

monitoring of adherent UC-MSC cultures. 

 

4.4 Growth characteristics of UC-MSC under xeno-free conditions 

The proliferation potential and the expansion capacity are prominent characteristics for cells 

dedicated to clinical applications. Before delivery to a patient, MSCs will have to be generally 

expanded, so that a sufficient amount of undifferentiated cells can be obtained for therapeutic 

doses or for cell differentiation for tissue repair. How fast a clinical dose can be obtained is 

depending on the proliferation of the cells and their stability during the expansion process.  

In this work the successful isolation of MSCs cells from umbilical cord tissue using a medium 

supplemented with HS was already demonstrated (section 4.1-2). In the following part, the 

growth characteristics of the isolated cells cultured with HS are presented.  

 

4.4.1 Cell cultivation with human serum 

UC-derived MSC have been mostly cultivated and characterized in FCS 83, 84, 129, 211. To the best 

of our knowledge, the cultivation of MSC derived from umbilical cord tissue using HS has not 

been investigated yet. However, it has been demonstrated that HS does not optimally support 

the growth of bone marrow derived MSCs 212. In this context, a comparative study performed 

in close cooperation with Tim Hatlapatka was conducted to establish whether HS supports the 

growth of the isolated UC-MSCs in a comparable manner to FCS. For this purpose, UC-MSCs 

were cultivated in a basal medium (αMEM) supplemented with 10% serum. Five cultures 

issued from the same isolated UC-MSC population were started in parallel in the presence of 

HS and four commercially available FCS (type “standard quality”, “gold quality”, “heat 

inactivated” and “pre-tested for amnion cells”, all obtained from PAA Laboratories). The 

influence of the different sera on cell growth, cell morphology and on the expression of MSC 

markers was observed over 31 days. The detailed results of this study are presented in the PhD 

thesis of Tim Hatlapatka 183. The results of the flow cytometric analysis and the major 

conclusion are briefly presented subsequently.  

The UC-derived MSCs were able to grow in the presence of all sera. However, important 

morphological changes could be observed in cultures supplemented with FCS. Particular 
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attention was paid to cell size, as it was demonstrated in section 4.3 that the size of UC-MSC 

can be considered as a quality parameter for the cultures. Cell size was assayed utilizing flow 

cytometry (Forward Scatter signals, FSC). Fig. 4.18.A and B presents the cell size distribution 

of the start population (filled histogram) compared with the size distribution of the final 

population (unfilled histogram) obtained after 8 passages in FCS type “standard” (in B) and 9 

passages in HS (in A) (respectively 31 days and 28 days of cultivation). Fig. 4.18.C summarizes 

the cell size evolution of all cultures over the entire experiment. The central tendency of the 

distributions (median, Md) is plotted for every culture (measurements were made in 

triplicates, n=3).  

 

 

Fig. 4.18: Influence of serum on the size of UC-derived MSC. Cell size was measured by flow cytometry 
(FCS signals) in the presence of 10% human serum (in A) and 10% FCS “standard” (in B). The median 
(Md) of the distribution is given in diagram C for all cultures over the cultivation time. The plotted 
standard deviation was calculated from triplicate measurements, n=3. 

 

While cells cultivated in HS maintained a comparable size over the entire investigated time 

frame (Fig. 4.18.A and C), FCS type “standard” and “gold” induced a significant increase of cell 

size (Fig. 4.18.B and C). These observations were confirmed by microscopic observation and 

cell size measurements utilizing a CASY cell analyzer instrument (see Tim Hatlapatka’s 

thesis). 

Cell size increase was accompanied by a significant loss of MSC marker expression, which 

supports the observations made in section 4.3.2. This fact is illustrated in Fig. 4.19 for FCS 

type “standard”. In contrast, cells cultivated in HS exhibit a stable immunophenotype over the 
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entire investigated time frame (the stability of the immunophenotype of cells cultivated with 

HS will be discussed in more details in section 4.4.2). 

 

Fig. 4.19: Down regulation of MSC marker expression in the presence of FCS type “standard”. P3: 
passage 3; P8: passage 8. 

Cells cultivated with “heat inactivated” and “amnion pre-tested” FCS were found more stable 

with respect to cell size (Fig. 4.18.C) and to MSCS marker expression. However, with regard 

to the proliferation potential of the UC-MSC, HS was superior to all tested FCS. Thus, higher 

numbers of cell doublings were measured at every passage during the expansion using HS. 

These results are presented in more detail in the PhD thesis of Tim Hatlapatka 183. 

The study demonstrated that not all fetal calf sera are able to maintain a stable morphology 

and immunophenotype of UC-derived MSCs. Moreover, a higher proliferation was observed 

in the presence of HS compared to cells cultivated with FCS.  

In conclusion, it was demonstrated that UC-MSC could be efficiently cultivated in HS. On the 

basis of these results, the expansion protocol for the isolated UC-MSCs was established using 

10% HS as a basal medium supplement. In the following section, a detailed analysis of the 

growth characteristics of the UC-MSCs cultured under these conditions is presented. 

4.4.2 Growth characteristics of UC-MSCs  

The growth characteristics of UC-derived cells were investigated in 175 cm² T-flask cultures. 

Cells in an early passage (P4) were cultivated in basal medium (α-MEM) supplemented with 

10% HS. Six identical cultures were started in parallel with a cell density of 4000 cells/cm² 

(=7·105 cells). Cultivation medium was replaced daily. After harvest through enzymatic 

treatment using accutase, total cell number, viability, cell cycle distribution as well as glucose, 

lactate and glutamine concentrations were determined (Analytics described in Appendices 

6.2.2). Fig. 4.20.A presents the growth curve of UC-MSC and the measured cell cycle 

distribution over the cultivation time. 
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Fig. 4.20: Proliferation of UC-derived cells in α-MEM supplemented with 10% HS. A: cell growth and cell 
cycle distribution, B: specific growth rate µ over the cultivation time, C: D-Glucose (Glc), L-lactat (Lac) 
and L-glutamin (Gln) concentrations. 

 

After a short lag phase of approx. 24 hours, the cells grew until confluency was reached after 

approx. 100 hours. During this phase, the specific growth rates observed were ranging 

between 0.2 – 0.35 h-1 (Fig. 4.20.B). After 100 hours, the growth rate of the cell decreased 

rapidly. A maximum of 7.6·106 cells could be measured after 130 hours, which represents an 

approx. 11-fold expansion compared with the initial cell number. Post-confluent cultures 

were interrupted after 6 days. The viability of the cultures at this point remained high (87%). 

A 

B 

C 

Confluency 
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The results of the cell cycle distribution analysis of the cultures were consistent with the 

observed growth curve (Fig. 4.20.A). The highest proportion of proliferating cells (here 

defined as cells in the S and G2/M phases) were observed during the growth phase (t=24 - 100 

hours) ranging from 52.1 % to 27%. Once confluency was attained (t > 100 hours), the 

proportion of proliferating cells rapidly decreased, so that > 90 % of the population with a 

G0/G1 DNA content were measured in post-confluent cultures (t ≥ 130 hours). This result is 

illustrated in Fig. 4.21, where the cell cycle distribution of a post confluent culture (day 6) is 

plotted in comparison to the distribution of proliferating cells (day 2). The accumulation of 

G0/G1 cells indicates cell growth arrest.  

The analysis of D-glucose and L-glutamine concentrations over the cultivation time 

confirmed that no limitation of the main energy sources occurred during the experiment, as 

fresh medium was daily provided to the cells (Fig. 4.20.C). Moreover, L-lactate concentrations 

were found low(<0.2 g·L-1) over the entire time frame, so that a cytotoxic effect on the cells 

due to L-lactate accumulation can be excluded. Therefore, the reduction of cell growth after 

100 hours is not due to nutrient limitation or lactate accumulation but can be reasonably 

explained by the fact that the cells reached confluency. In this context, it can be concluded 

that UC-derived MSCs are contact inhibited. 

The proliferation potential of a cell population is often described by the population doubling 

time. Strictly considered, the population doubling time is calculated under unlimited growth 

(exponential cell growth), which may correspond here to the growth between 24 and 71 

hours. However, most of the published studies performed on MSC report the average 

population doubling time, i.e. the entire cell growth within a cell passage is considered. In 

order to compare the proliferation potential of our cells with other investigators, the average 

population doubling time (Td) was determined accordingly using five cultures (P4) in T-flasks. 

Td was calculated using the initial and final number of cells obtained within one passage from 

day 0 to day 4 (see Appendices 6.2.10). Thus, the average population doubling time of UC-

derived MSC was found to be 31.4 ± 3.5 hours (n = 5). This Td value indicates a high 

proliferation potential comparable for instance with the potential of human embryonic stem 

cells, as Td values of approx. 24-36 hours have been reported for these cultures213-215. 

According to the calculated Td, UC-MSC exhibit a higher proliferation potential than adult 

MSC isolated from other human tissue such as bone marrow or adipose tissue. Thus, 
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population doubling times ranging from 40 hours 216 (using 10% FCS) to 80 hours 212 (using 

10% HS) were reported for human bone marrow MSCs and Td values of approx. 70 hours were 

found for MSC derived from human fat 125, 217(10% FCS). 

 

Fig. 4.21: DNA content distribution of proliferating (day 2) and confluent (day 6) UC-MSC cultures. In A: 
flow cytometric analysis. In B: phase contrast microscopic pictures of the corresponding cultures. 

 

The high proliferation potential demonstrated here underlines the primitive nature of UC-

MSC cells. Since UC-MSCs are isolated at birth, the cells exhibit a superior proliferation 

potential compared to aged cells. This feature should also be critically evaluated, as a high 

proliferation potential is often associated with a tumour phenotype and may be the result of 

the transformation of primary to immortalized cells during the isolation procedure. However, 

two features demonstrated in this study contradict this hypothesis. First, flow cytometric 

analysis of the DNA content revealed a diploid cell population with a normal distribution in 

G1/G0, S and G2/M phases (Fig. 4.21). DNA aneuploidy, which in some cases is associated 

with the appearance of tumor-like cells218, 219, could not be detected (see Fig. 4.21 and 

Appendices 6.3.7). Furthermore, the isolated cells demonstrated contact inhibition, which is 

also a primitive cell characteristic that may be lost during cell transformation 220-222.  

 

Finally, the stability of the cells during expansion was evaluated with regard to the MSC 

phenotype. Cell size and the expression of the MSC surface markers CD44, CD73, CD90 and 
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CD105 were monitored by flow cytometry. For this purpose, cells were expanded in T-flasks 

over several passages in α-MEM supplemented with 10% HS. The cells were passaged when 

the cultures were evaluated to be 80%–90% confluent by phase contrast microscopy. The 

experiments were all started with revitalized isolated cells (P0), which were first cultivated 

over one passage and then plated in T-flasks (P1). The experiments were performed at two 

different seeding densities 4000 cells/cm² and 500 cells/cm².  

The stability of the cell phenotype was investigated over 28 days of cell expansion. Cell size 

remained stable over the investigated time frame (data not shown), which confirmed the 

results already presented and discussed in section 4.4.1. In addition, the expression of all MSC 

markers remained stable regardless of the seeding density, as demonstrated in Fig. 4.22.  

 

 

Fig. 4.22: Stability of the immunophenotype of UC-MSC over cell expansion. Cultures were started with 
cells in P1 (day 0). Day 28 correspond to P8 for the cultures seeded at 4000 cells/cm² and to P5 for the 
cultures seeded at 500 cells/cm². 

 

Thus, the cells maintained their MSC immunophenotype. The results suggest that no 

biological alterations occurred during cell expansion. The data obtained during this study 

demonstrated that UC-MSCs can be expanded at least over 28 days (approx. 18 cell 
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generations) with a stable phenotype. In addition, the expression of all MSC markers 

remained stable regardless of the seeding density, as demonstrated in Fig. 4.22. This fact is 

advantageous, as a low density seeding reduced the number of passages and thus enzymatic 

treatments required for cell expansion. This may be considered for the development of a large 

scale expansion procedure. 

 

4.4.3 Conclusion 

During this work it was demonstrated that human serum was superior to fetal calf serum for 

the cultivation of UC-MSCs. The growth and the expansion capacity of the UC-MSCs using 

HS were characterized. The investigations confirmed the primitive nature of the isolated cell 

population, as demonstrated by a normal DNA content, contact inhibition, a high 

proliferation potential with an average population doubling time of approx. 31 hours. 

The rapid cell growth combined with a possible expansion without loss of the MSC phenotype 

at least during 28 days are very advantageous features in terms of cell engineering. A high 

number of cells may be rapidly obtained for the delivery of clinical doses, thus limiting the 

duration of the ex vivo cultivation and the cellular damages, which may occur during this 

process.  

Clinical cell doses, i.e. the number of cells required for cell therapy, is difficult to estimate and 

mostly not yet determined. However, available data from clinical studies involving human 

MSC, which have shown successful results, can be used for a rough estimation of required cell 

numbers. Thus, bone marrow MSC were transfused into patients and showed positive results 

for instance for the treatment of graft versus host diseases (GVHD) 223, 224, for hematopoietic 

recovery 225 or for the treatment of osteogenesis imperfecta 226. In these studies, MSC doses 

ranging from 1 – 5·106 cells/kg body weight were used. Thus, for a patient weighing 75 kg 

(average weight in Germany 2005, published by the Gesundheitsberichterstattung des 

Bundes) cell numbers ranging from 7.5·107 to 3.75·108 may be required for transfusion. It can 

be calculated from our data, that starting with a cell population of 7·105 cells (number of cells 

required for the seeding of 175 cm² T-Flask at 4000 cells/cm²), a population of approx. 3.4·1011 

cells can be theoretically obtained after 28 days of expansion. This would represent approx. 

900 clinical doses (3.75·108 cells/dosis) of highly qualitative MSC. 
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For some applications, MSCs will have to be induced in vitro to differentiated tissue before 

delivery to a patient. The potential of the cells to differentiate in a particular lineage and the 

efficiency of the applied procedure will be determining factors in this case. In the frame of 

this work, the osteogenic potential of the isolated UC-MSCs was studied. The results are 

presented in the following section. 

 

4.5 Osteogenic potential of UC-derived MSCs 

The multi-lineage differentiation potential of UC-MSCs was demonstrated by Tim Hatlapatka. 

Thus, the isolated cells could be induced in vitro into adipogenic and chondrogenic lineages 

183. In this work, the osteogenic potential of UC-derived MSCs was investigated in more detail. 

An efficient induction into the osteogenic lineage is of high interest, especially in the context 

of bone tissue engineering applications. 

4.5.1 Evaluation of the osteogenic potential of UC-derived MSCs 

The osteogenic potential of UC-MSCs was first perceived as very promising, since gene 

expression analysis of the isolated cell population revealed that non-induced cells 

spontaneously express typical osteogenic markers, such as the key osteogenic transcription 

factor RUNX2, alkaline phosphatase (AP), collagen type I (Col I), osteocalcin (OCN) and 

osteopontin (OPN). These observations are demonstrated in Fig. 4.23. 

 

 

Fig. 4.23: Transcriptional analysis of osteogenic markers of a non-induced UC-MSC population. As a 
negative control, mRNA from the leukemia cell line Jurkat was used for the RT-PCR analysis. 

 

The reverse transcriptase PCR (RT-PCR) analysis indicates that all cells express a basal level of 

osteogenic markers, or at least that these genes are expressed by a subset of cells within the 

population. In addition, the isolated cells spontaneously demonstrated morphological features 

associated with osteogenic differentiation. Thus, bone nodule-like cell colonies were observed 
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occasionally in non-induced cultures, suggesting that a subset of cells may differentiate 

spontaneously. Such bone nodule is presented in Fig. 4.24. A similar phenomenon was already 

described and extensively characterized by Sarugaser et al. for MSCs derived from 

perivascular tissue of the umbilical cord, and moreover a high osteogenic potential could be 

demonstrated for these cells in standard differentiation experiments83. 

 

Fig. 4.24: Bone nodule-like cell colony observed by phase microscopy (200 x magnifications) in a non-
induced UC-MSC culture (P3). 

In vitro differentiation experiments were performed to confirm the osteogenic potential of the 

UC-derived MSCs. The detailed protocol and differentiation medium are presented in 

Appendices 6.2.11. Briefly, UC-cells in P1 were induced using the synthetic hormone 

dexamethasone (100 nM) in the presence of L-Ascorbat-2-Phosphat (0.2 mM) and β-

Glycerophosphat (5mM). The cells were seeded at 4000 cells/cm² in 6-well plates and 

cultivated in osteogenic medium over 28 days. These conditions correspond to standard 

osteogenic differentiation assays widely described in the literature 80, 83, 84, 136. Alkaline 

phosphatase (AP) expression, as well as the ability of the extra cellular matrix to undergo 

mineralization were investigated to attest the osteogenic phenotype of the induced cultures. 

Mineralization of the extra cellular matrix was assayed by Von Kossa and Alizarin red S 

staining (Appendices 6.2.12). The differentiation procedure was validated using MSCs isolated 

from human adipose tissue (kindly provided by the group of Prof. Martijn van Griensven) as a 

positive control.  

Fig. 4.25 shows typical UC-MSC cultures obtained after 28 days of induction. The positive 

control cells (MSCs from adipose tissue) could be successfully differentiated, as demonstrated 

by AP expression (Fig. 4.25.D) and by the mineralization of the extra cellular matrix revealed 

by Von Kossa staining (black area in Fig. 4.25.E) and by Alizarin red S staining (red area in 
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Fig. 4.25.F). In contrast, the induction of UC-MSCs to mineralized cultures failed, a major 

difficulty being the loss of adherence over the differentiation experiment (Fig. 4.25.A – C). 

UC-MSC cultures reached confluency typically after 4 – 5 days. A considerable extra cellular 

matrix production was observed in post-confluent cultures. However, this feature was not 

restricted to osteogenic induced cells, but was generally observed in non-induced UC-MSC 

cultures. Confluent cultures could be maintained over a maximum of 10 days. After this time 

period, the cells rapidly detached from the culture vessels and aggregated (Fig. 4.25.A – C).  

 

 

Fig. 4.25: Osteogenic potential of UC-MSCs evaluated by in vitro differentiation assay. Alkaline 
phosphatase (AP) staining as well as mineralization (Von Kossa and Alizarin red S staining) of the post-
confluent cultures were assayed after 28 days. At this stage, the cultures were 24 days post-confluent. 

 

Some areas of the UC-MSC cultures showed persisting adherent cell layers after 28 days of 

induction. However, microscopic observations of these cells did not reveal any 

biomineralization of the extra cellular matrix as illustrated in Fig. 4.26.A - C.  
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Fig. 4.26: Comparison of the biomineralization of osteogenic induced UC-MSC cultures with a positive 
control (MSC from human adipose tissue) after 28 days of induction (24 days post-confluent cultures). A, 
D: phase contrast observation of the culture; B, E: Von Kossa stained cultures; C, F: Alizarin red S 
stained cultures. (40 x magnification) 

Additional differentiation assays were performed using culture vessel surfaces coated with 

proteins naturally found in the extra cellular matrix. During these experiments, it was 

hypothesized that a culture surface mimicking the extra cellular matrix would increase cell 

interaction with the culture vessel and would thus prolong cell adherence. In the frame of this 

work, Collagen type I coated plates were used, as this collagen is the main constituent of the 

bone extra cellular matrix 227. In addition, it was demonstrated in Section 4.2.1 that UC-MSCs 

express the transmembrane adhesion protein CD44. Specific interaction between CD44 and 

collagen type I has been reported in the literature 228, 229.  

After several differentiation assays, it was observed that cell adherence was not significantly 

improved by the collagen type I coated surface. Similarly to the experiment performed on 

non-coated cell surfaces, UC-MSCs detached from the culture surfaces shortly after 

confluency was reached (data not shown). No mineralization could be detected in the induced 

cultures. 

A functional osteogenic phenotype of UC-MSCs, i.e. mineralizing cultures under osteogenic 

stimulation, could not be demonstrated during this work. The loss of cell adherence of post-

confluent cultures constituted a major problem during the differentiation experiments. 

Further investigations with coated surfaces should be performed to improve cell adhesion. 

Other proteins of the extra cellular matrix such as fibronectin or laminin may lead to better 

results in this respect. 
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A statement about the osteogenic potential of the isolated UC-MSCs using standard 

differentiation procedures was problematic to achieve, mainly because of the difficulty in 

maintaining a post-confluent monolayer. In this context, the response of UC-MSCs to the 

osteogenic stimulus was investigated in sub-confluent cultures. In particular, flow cytometry 

was used to monitor cell response on the single cell level to elucidate whether all or a fraction 

of UC-MSCs respond to osteogenic conditions. 

4.5.2 Monitoring of cell response to osteogenic induction in sub-confluent 

cultures 

During this experiment, UC-MSCs were maintained under osteogenic conditions and passaged 

before cell confluency was attained. The cellular response to the osteogenic stimulation was 

first evaluated with regard to the expression of specific surface proteins. It was demonstrated 

in Section 4.2.1 that undifferentiated UC-MSCs express the marker CD44, CD73, CD90, and 

CD105. It was hypothesized that the expression of these specific surface antigens may be 

modulated during osteogenic cell differentiation. This hypothesis seemed reasonable, as some 

of these markers are used to monitor the differentiation or maturation of other cell types. For 

instance, CD73 and CD90 are used to monitor the differentiation state of cells in the T-

lymphocyte lineage 230-232. In the particular case of human MSCs, some reports described a 

reduced expression of CD73 and CD105 for adipogenic and osteogenic differentiated bone 

marrow MSCs 233. Also a loss of CD90 expression was reported on a subset of bone marrow 

MSCs under angiogenic stimuli234. More recently, a down regulation of CD105 associated with 

multi lineage differentiation was also described for MSCs isolated from umbilical cord blood 

235. 

Surface protein expression was quantitatively monitored using flow cytometry. UC-MSCs 

were maintained in osteogenic medium (see Appendices 6.1.9) for 28 days and successively 

passaged. In parallel, cells were cultivated in culture medium (α-MEM containing 10% HS) as 

a control.  

UC-MSCs cultivated under osteogenic conditions did not significantly modulate the 

expression of the surface markers CD44 and CD105 compared to the control conditions (see 

Appendices 6.3.8). In contrast, the expression of the surface protein CD90 was definitely 

influenced by the osteogenic medium. A reduced amount of the CD73 antigen was also 
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measured under osteogenic conditions (see Section 6.3.8), however to a lesser extend than 

CD90. Fig. 4.27 illustrates the results assayed by multicolor flow cytometry measuring 

simultaneously CD90 and CD73.  

 

Fig. 4.27: CD90 expression under osteogenic (left) and control conditions (right). UC-MSCs were 
maintained in sub-confluent cultures. CD90 and CD73 expression was assayed using a FITC- and PE-
labeled monoclonal antibody respectively. At least 10 000 events are displayed. 
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Under osteogenic conditions a subset of UC-MSCs gradually lost CD90 surface expression. 

This sub-population was evaluated to be 11% after 16 days of induction (in Fig. 4.27.B). After 

28 days of osteogenic stimulation, the fraction of CD90- cells was found to be approx. 50% (in 

Fig. 4.27.C). This phenomenon was not observed in the control cultures (in Fig. 4.27.D-F). In 

addition, the multicolor flow cytometric experiment permitted the demonstration that the 

subset of CD90– cells maintained the CD73 expression (in Fig. 4.27.C).  

Interestingly, the rising of CD90 negative cells within the population coincided with an 

overall decrease of cell growth in the osteogenic culture compared to the control culture. This 

fact is illustrated in Fig. 4.27. The percentages of CD90- cells in the control and osteogenic 

cultures are plotted against time. Cell growth is given by the cumulative number of 

population doublings assayed at every cell passage. After 16 days, osteogenic stimulated cells 

exhibited significantly lower proliferation than the control culture. The proliferation 

diminished further with increasing numbers of CD90- cells over the last 12 days of the 

experiment. 

 

Fig. 4.28: CD90 expression and proliferation of UC-MSC cultures under osteogenic and control 
conditions. 

A decrease of proliferation is a cellular feature of cell differentiation. It is generally 

acknowledged that differentiating MSCs progress through several maturation stages, 

characterized by a reduction of proliferation accompanied by a down-regulation of some 

cellular proteins to the benefit of tissue-specific markers 76, 236. The experiment demonstrated 

that a subset of cells loses CD90 expression under osteogenic conditions, which coincides with 
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a decrease of proliferation. Consequently, the overall decrease of cell growth over the 28 days 

of induction may be reasonably explained by the accumulation of low proliferating CD90- 

cells. As this phenomenon was not observed in the control culture, the decrease of CD90 

expression was hypothesized to be an osteogenic feature. In order to verify this hypothesis, 

the subset of CD90- cells was isolated and further characterized. 

 

Flow cytometric cell sorting and characterization of the CD90- cell population 

The selection of the CD90- sub-population was performed using flow cytometric cell sorting 

(termed in the following as FACS). After 22 days of osteogenic induction in sub-confluent 

cultures, UC-MSCs were harvested, stained for CD90 expression and finally sorted. A detailed 

procedure is presented in appendices 6.2.14. Following cell sorting, the cells were collected 

and mRNA isolation was performed (see 6.2.15). Expression of the osteogenic markers 

RUNX2, alkaline phosphatase (AP), osteocalcin (OCN) and osteopontin (OPN) was 

investigated on the transcriptional level via RT-PCR. A fraction of the sorted cells was further 

cultivated for another 4 days and stained for AP expression. 

Fig. 4.29 shows the populations isolated by FACS. Re-analysis of the sorted fractions 

confirmed the success of the procedure. A purity superior to 99% for each fraction was 

obtained. 

 

Fig. 4.29: Flow cytometric cell sorting of CD90- and CD90+ cells from a UC-MSC culture maintained 
under osteogenic conditions in sub-confluent cultures (day 22). 
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The expression of the osteogenic markers by CD90- cells was compared to the marker 

expression of the CD90+ cells. For this purpose, the transcription of each gene was analyzed by 

RT-PCR, quantified using densitometry and normalized on the expression level of the house 

keeping gene GAPDH (see 6.2.15). This approach allows a semi quantitative comparison of the 

osteogenic marker expression of the two populations. 

Fig. 4.30 presents the results of the analysis. Interestingly, both populations expressed the 

osteogenic markers. However, a higher expression of all investigated genes was measured in 

the CD90- cell population compared to CD90+ cells.  
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Fig. 4.30: Transcription level of osteogenic markers measured in the CD90- and CD90+ cell populations. 
Runx2: transcription factor RUNX2. AP: alkaline phosphatase; OCN: osteocalcin; OPN: osteopontin. The 
expression level of each gene was quantified by densitometry on agarose gel and normalized on the 
GAPDH expression of each population (n=3). 

 

In addition, AP staining of the sorted cultures revealed that numerous CD90- cells indeed 

exhibited AP activity, confirming thus the expression of this marker on the functional level. 

This fact is illustrated in Fig. 4.31.A-B. In contrast, very few AP expressing cells could be 

observed in the CD90+ cultures (Fig. 4.31.C-D). 
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Fig. 4.31: Alkaline phosphatase staining of sorted CD90– and CD90+ cells (22 days of osteogenic induction, 
4 days after sorting). A and C: bright field pictures (40 x magnification; the pictures represent approx. 
10% of the total culture surface), white arrows indicate AP positive area of the culture, B and D: phase 
contrast pictures (100 x magnification), black arrows indicate AP positive cells. 

 

The experiment showed that CD90- cells expressed a higher level of osteogenic marker 

transcripts than CD90+ cells. AP expression could be observed on the functional level, as some 

cells in culture exhibited AP activity. The results suggest that the subset of CD90- cells is in a 

more advanced state of differentiation than CD90+ cells and support the hypothesis that the 

observed decrease of CD90 expression is an osteogenic feature. This interesting phenomenon 

deserves further investigations. For instance, a confirmation of the transcriptional analysis 

using quantitative RT-PCR as well as the detection of the osteogenic marker expression on the 

protein level, using immunocytochemistry for example, would resolutely confirm the 

hypothesis.  

 

The induction of UC-MSCs in sub-confluent cultures revealed that the cells respond to the 

osteogenic stimulation by a reduced proliferation and a down regulation of the surface antigen 

CD90. Using flow cytometry, the fraction of induced cells in the culture could be monitored. 

In the performed experiment, approx. 50 % of differentiating cells were measured after 28 

days of induction.  

The function of CD90 and its regulation among the osteogenic lineage has not been clarified 

yet. However, an early report from Chen et al. in 1999 describes the CD90 expression by 
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osteoblastic cell lines from several species237. According to this study, early osteoblast 

progenitors lack the CD90 expression but in contrast late progenitors and mature osteoblasts 

express the antigen. Consequently, the results of Chen et al. suggest that the loss of CD90 is a 

transition state of cells maturating among the osteogenic lineage. This hypothesis was 

evaluated in the context of UC-MSCs, where the decrease of CD90 expression may indicate 

the transition of undifferentiated MSC into early osteogenic committed progenitors. 

 

Regulation of CD90 expression over long-term osteogenic induction  

During this experiment the cell response was observed over 40 days of osteogenic stimulation. 

In addition, CD90 expression was measured in relation to the expression of the osteogenic 

markers AP and the transcription factor RUNX2 on the protein level. In particular, RUNX2 

expression was of high interest, as the expression of this transcription factor is a key element 

of osteogenesis, triggering the transcription of osteoblast-specific genes and inducing 

mineralization in cultures 238-240  

In this experiment, AP expression was monitored by performing staining of the cultures and 

by determination of the specific enzyme activity of the cells (see 6.2.13). Nuclear content of 

Runx2 was assayed by flow cytometry using an intra cellular staining procedure. For this 

purpose, a primary mouse antibody specific for the human protein RUNX2 and a secondary 

PE-labeled anti-mouse antibody were used (see 6.2.7).  

Fig. 4.32 presents the obtained results. The fraction of CD90- cells over the entire cultivation 

time is presented in comparison to cell proliferation (in A), to the specific AP activity of the 

cell population (in B) and to Runx2 expression (in C). The results obtained for the control 

culture (non-induced UC-MSCs cultivated in parallel) are also displayed. 

During this experiment a rapid decrease of CD90 surface expression was observed under 

osteogenic condition after 7 days (22 % CD90- cells), reaching approx. 33% after 22 days of 

induction (Fig. 4.32.A). Also, a significant decrease of proliferation was measured after 14 days 

(Fig. 4.32.A), confirming the results previously described. However, after 22 days of induction 

the fraction of CD90- cells decreases, so that only 16% CD90- cells were detected at the end of 

the experiment (40 days). The results are highly interesting and are in line with the 

hypothesis that CD90 down-regulation is a transitional state of differentiation. 
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Fig. 4.32: CD90 expression of UC-MSCs during long-term osteogenic induction. In A: CD90 expression 
and cell growth; in B: CD90 expression and AP specific activity; in C: CD90 expression and RUNX2 
intracellular content. 

 

Interestingly, induced UC-MSCs exhibited a significantly higher AP specific activity 

compared to the control culture over the entire time frame (Fig. 4.32.B). The specific activity 

increased during the first 7 days of induction and remained nearly constant until 28 days. 

Staining of the cultures confirmed the presence of AP expressing cells among the population 

A 

B 
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(Fig. 4.33.A and B). Over the last 12 days of the experiment, induced UC-MSCs markedly 

enhanced their AP expression as demonstrated by the measured specific enzyme activity (Fig. 

4.32.B) and the AP-staining of the culture on day 40 (Fig. 4.33.C). A slight increase in AP 

expression was also measured in the control culture during this time (Fig. 4.32.B). 

 

 

Fig. 4.33: AP expression of osteogenic induced and control cultures (100 x magnification). 

 

Flow cytometric analysis of the RUNX2 cellular content did not reveal a clear sub-population 

of UC-MSCs expressing the osteogenic transcription factor, but indicated an overall increase 

of the intracellular content during osteogenic induction. This fact is illustrated in Fig. 4.34. 

The intracellular RUNX2 distribution of induced UC-MSC is presented at day 0, day 28 and 

day 40 of the experiment. A shift of intracellular fluorescence indicating an increase of 

RUNX2 expression could be observed during osteogenic induction. This enhanced expression 

was quantified using the median of the fluorescence distribution (see Fig. 4.34) and plotted 

against time in Fig. 4.32.C. The measured medians for the UC-MSCs in control conditions are 

also displayed.  
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Fig. 4.34: Intracellular RUNX2 content of osteogenic induced UC-MSCs assayed by flow cytometry (filled 
histogram). Specificity of the staining procedure is demonstrated by the staining of the cells using solely 
the secondary PE-labeled antibody (unfilled histogram). 

 

Induced UC-MSCs exhibited a significantly higher intracellular RUNX2 content than non-

induced cells over the entire differentiation experiment. Interestingly, the time course of 

RUNX2 expression was found similar to the measured specific AP activity of the cells. Thus, 

the expression increased during the first 14 days of induction and remained nearly constant 

until 28 days. During the last 12 days of osteogenic stimulation, the intracellular content 

raised in parallel to the specific AP activity. However, during this time frame the control 

culture exhibited also an increased RUNX2 expression, suggesting that the long-term 

cultivation of the cells may also influence the expression of the transcription factor. 

The results of the experiments performed here confirmed the CD90 down-regulation and a 

decreased cell proliferation in response to the osteogenic conditions. The rapid appearance of 

CD90- cells in the cultures during the first 14 days of the experiments may explain the slight 

increased of AP and RUNX2 expression, as a higher AP and RUNX2 expression was observed 

on the transcriptional level in sorted CD90- compared to CD90+ cells. However, the loss of 

CD90 expression does not seem to be an end point of the differentiation, as after 21 days of 

induction the fraction of CD90- cells diminished in culture. The data suggest that the loss of 

CD90- cells is a transition step among the osteogenic lineage. This hypothesis is supported by 

the tremendous increase of AP and RUNX2 expression occurring once the fraction of CD90- 

cells decreases after 28 days of induction, suggesting that a new maturation stage is attained.  

 

The experiment raises the question of the function and the role of CD90 during the osteogenic 

differentiation. CD90 down regulation, together with a reduced proliferation, were the first 

cellular features observed during the osteogenic induction. Because our experiments were 
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performed in sub-confluent cultures, some late osteogenic features such as extracellular 

matrix protein production and matrix maturation are not triggered. In this context, the 

observed CD90 down regulation may be proposed as an early osteogenic marker.  

The results are in line with the work of Chen et al. reporting that skeletal osteogenic 

progenitors lack the expression of CD90, but in contrast the antigen was measured on cells 

representing more advanced stages of the osteogenic lineage (late precursors and mature 

osteoblasts)237. Thus, we postulate here that undifferentiated UC-MSCs exhibiting CD90 

expression may first differentiate to early osteogenic committed progenitors loosing CD90 

expression. With a further progression among the osteogenic lineage the expression of the 

surface antigen may be up-regulated anew, which would explain the diminution of CD90- 

cells after 21 days of induction. The reduction of the CD90- fraction in the culture seems to 

coincide with the increase of AP and RUNX2 expression observed during the last 12 days of 

the induction. This phenomenon can be explained by the accumulation of cells expressing 

CD90, RUNX2 and AP, which may correspond to the phenotype of late osteogenic precursor 

or osteoblast-like cells.  

4.5.3 Conclusion 

During this work, the differentiation of UC-MSCs into functional osteoblasts could not be 

demonstrated in post-confluent cultures in vitro. Post-confluent cultures could not be 

maintained and mineral deposits in the extra cellular matrix of UC-MSCs were not observed.  

However, in sub-confluent cultures a response to the osteogenic stimulation illustrated by a 

reduced cell proliferation and by a CD90 down-regulation could be observed. Evidence was 

provided that the observed CD90 loss of expression is an osteogenesis-associated feature. In 

addition, the CD90 down regulation was found to be a transition state leading, after 40 days of 

induction, to a cell population predominantly expressing the osteogenic transcription factor 

RUNX2 and the enzyme alkaline phosphatase. These experiments demonstrated that the cells 

can be at least induced into the osteogenic lineage. It is however uncertain which degree of 

maturation was attained during the sub-confluent culture experiments. The capacity of these 

cells to form mineralized extra cellular matrix in post-confluent cultures remains to be 

attested. 
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From a technological point of view the time frame necessary to obtain an osteogenic response 

from UC-MSC should be critically discussed. Giving credit to the fact that after 40 days of 

sub-confluent induction cells exhibiting a phenotype similar to osteoblasts (CD90+; AP+ and 

RUNX+) are obtained, the differentiation time necessary to induce these cells is rather long. 

Long-term differentiation experiments may increase the risk of epigenetic damages of the cells 

and may be a major limitation in terms of cell engineering. In this context, other approaches 

should also be investigated for a more rapid induction of UC-MSC into the osteogenic lineage. 

The use of specific cytokines such as bone morphogenic proteins (BMPs), mechanical strain or 

specific scaffolds using 3D cultivation systems, which have been successfully applied for the 

differentiation of MSCs from other sources 182, may be more efficient in this regard. 

The results of this study suggest a rather limited osteogenic potential for the isolated UC-

MSCs, at least using standard differentiation conditions. This finding is not in line with 

numerous published reports. The osteogenic potential of MSC isolated from human umbilical 

cord tissue has been reported in several studies (reviewed in Section 2.2). However, a growing 

body of evidence suggests that the differentiation potential of UC-derived MSCs depends on 

their location in the UC-tissues. For instance Suzdal'tseva et al. reported that only a few cells 

isolated from the cord vein subendothelial tissue were able to differentiate to osteoblasts 136. In 

contrast, cells isolated from perivascular tissues of the umbilical vein showed a high 

osteogenic potential with spontaneous formation of bone nodules 83, which was evaluated 

even higher than the potential of bone marrow MSCs in a comparative study 90. Ishige et al. 

compared in a recent study the osteogenic potential of MSCs isolated from the umbilical vein, 

arteries and from the connective tissue surrounding the blood vessels (Wharton’s jelly) and 

found a low potential for Wharton’s jelly cells241. The hypothesis of a location-dependent 

differentiation potential of UC-derived stromal cells is also supported by the fact that a 

gradient of cell maturity was observed within the UC tissues 242. According to the cytoskeletal 

complexity, the most immature cells are located in subamniotic and intervascular regions, 

whereas cells of perivascular regions may represent a more differentiated state 242, 243. Thus, 

MSC derived from the perivascular tissue of the umbilical cord may be more committed to 

osteogenic differentiation, while Wharton’s jelly or subamniotic cells would be more 

primitive and not yet committed to osteogenic differentiation. 
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The cells investigated in this work are isolated from the whole umbilical cord (see 4.1) and 

may be issued from every compartment of the cord. A high proportion of Wharton’s jelly cells 

may explain the low osteogenic potential of the isolated cells and the extended induction time 

necessary to observe an osteogenic phenotype. On the other hand, a subset of perivascular 

UC-MSC may explain the osteogenic features spontaneously observed in cultures, such as the 

formation of bone nodule-like colonies (see 4.5.1). 

 

4.6 Summary and perspectives 

In this work, a reproducible and efficient procedure for the isolation of MSC from human 

umbilical cord tissue under xeno-free conditions was described. It was demonstrated that a 

large number of cells (> 21·106 cells in the presented experimental set up) exhibiting a 

homogenous MSC phenotype could be isolated using a simple explant approach. The umbilical 

cord could be easily processed ex vivo and the development of controlled conditions for the 

isolation, i.e. GMP procedure, is conceivable. The overall procedure was performed within 

maximum three weeks. The use of specific chemokines, such as HGF or SDF-1, may allow 

accelerating the migration of MSCs out of the tissue and thus reduce the duration of the 

isolation procedure. The isolation under xeno-free conditions, i.e. using HS, may have an 

impact on the phenotype of the isolated cells, as for instance no expression of some HLA-I 

antigens could be measured. The lack of HLA-I antigens expression suggested immuno-

privileged properties for the isolated cells, which may be highly interesting in the context of 

allogenic transplantation. Experiments using UC-MSCs in co-culture with human peripheral 

blood cells, may confirm this hypothesis.  

The isolated cells exhibited a high proliferation potential under xeno-free conditions using 

HS. This feature is particularly interesting in terms of cell engineering. Compared to MSCs 

derived from other sources, clinical doses could be obtained more rapidly from UC-MSCs. 

Thus, no prolonged expansion will be required, thereby reducing the risk of possible damages 

occurring during the ex vivo expansion process. The generation of clinical grade MSCs will 

most likely be performed in disposable reactors. The monitoring of the cultures will be 

essential for controlling cell quality and the development of adequate in-situ sensors for the 

monitoring of the cultures will be of great interest 244. In this work, it was demonstrated that 
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morphological features of UC-MSCs such as cell size or nucleus to cytoplasm ratios indicate 

cell aging in cultures. The use of this parameter for the non-invasive monitoring of the 

expansion process could be conceivable.  

In the context of the delivery of undifferentiated MSC to a patient, an increasing number of 

publications indicate that transplanted MSC may not differentiate in vivo, but more likely 

migrate to the defect tissues and induce repair by so called parakrine effects, i.e. the cells 

express a pool of cytokines that stimulate the repair of the damaged tissue 85, 101, 151-153. Thus, it 

may be of high interest to analyze the profile of cytokines expressed by the isolated UC-MSCs. 

Flow cytometric bead-based technologies are now available for the analysis of multiple 

soluble analytes such as cytokines 245, 246. These so-called multiplex assays may be 

advantageous to specify the cytokine expression profile of UC-MSCs before the delivery to a 

patient.  

Eventually, in the perspective of tissue engineering applications, the osteogenic potential of 

the cells was evaluated in differentiation experiments. The isolated cells could not be induced 

to a functional osteogenic phenotype, but responded at least to osteogenic stimulation, as 

illustrated by a reduced proliferation, by a down-regulation of the surface antigen CD90 and 

by the expression of typical cellular osteogenic markers such as AP and RUNX2. These results 

contrasted with several reports claiming a high osteogenic potential for UC-MSCs, in 

particular for cells derived from the perivascular tissue. However, a growing body of 

evidences suggests that the differentiation potential of the isolated MSC populations is 

dependent on their location in the UC-tissues. In this context, the question should be 

addressed, whether the applied isolation procedure is efficient for the isolation of osteogenic 

committed cell populations. The extended time frame necessary to obtain an osteogenic 

response suggests that the UC-MSCs isolated under the described conditions may have a 

limited potential for bone tissue engineering. Nevertheless, approaches involving the use of 

newly developed scaffolds, mechanical strain or 3D bioreactors for osteogenic tissue 

generation, which were successfully applied with MSCs from other sources 182, should be 

investigated for a more rapid osteogenic induction of the isolated cells.  

Finally, it should be noted, that the differentiation of the cells to functional adipocytes and 

chondrocytes could be demonstrated by co-workers. Therefore, the isolated UC-MSC may be 

more committed for these differentiation lineages. 
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6 Appendices 

6.1 Materials 

6.1.1 Disposable materials 
Product Company 
BD BioCoat™ Collagen I 6-well Plates BD Biosciences, Heidelberg 
BD Falcon Cell Strainers, 70μm BD Biosciences, Heidelberg 
Centrifugal concentrators, Vivaspin6 and 
Vivaspin20, 10 kDa exclusion limit 

Sartorius-Stedim Biotech GmbH, Göttingen 

Centrifuge tubes, 15 and 50 mL SARSTEDT AG, Nümbrecht 
Cryo-tubes SARSTEDT AG, Nümbrecht 
CultiFlask 50 Tubes Sartorius-Stedim Biotech GmbH, Göttingen 
Erlenmeyer flasks, 125 ml, 250 ml, VWR International GmbH, Darmstadt 
Gloves Semperguard, Semperit AG Holding, Vienna 
Petridishes, 60- and 94 mm Greiner Bio One, Frickenhausen 
Pipettes 1, 2, 5 ,10, 25 und 50 ml, Sarstedt AG & Co, Nümbrecht   
Pipette tips Sarstedt AG & Co, Nümbrecht   
PVDF Membranes Bio-Rad, München 
Reaction tubes, 1.5 and 2 mL SARSTEDT AG, Nümbrecht 
Steril filters, Minisart 0,2 μm Sartorius-Stedim Biotech GmbH, Göttingen 
T-Flasks, 25, 75 and 175 cm² SARSTEDT AG, Nümbrecht 
Well-plates (6-wells; 12-wells and 96-wells) SARSTEDT AG, Nümbrecht 

 

6.1.2 Antibodies 
  Company Antigen Fluorophore Reactivity Isotype Product # [μg/μL] 

Labeled antibodies       
 Invitrogen HLA I FITC  human Mouse IgG2a MHBC01 0.800 
 BD Oct3/4 PE mouse/human Mouse IgG1, κ 560186 0.013 
 BD SSEA-1 FITC mouse/human Mouse IgM, k 560127 0.006 
 Miltenyi Biotec CD31 FITC  human Mouse IgG1  130-092-654 0.077 
 BD CD34 FITC  human Mouse IgG1, k 555821 0.006 
 BD CD34 PE-Cy5  human  555823 0.006 
 BD CD 45 PE-Cy5  human  555484 0.002 
 BD CD 45 FITC  human Mouse IgG1, k 555482 0.006 
 BD CD 44 PE  human Mouse IgG1, k 550989 0.013 
 BD CD73 PE  human Mouse IgG1, k 550257 0.006 
 BD CD 90 FITC  human Mouse IgG1, k 555595 0.500 
 Invitrogen CD105 R-PE  human Mouse IgG1 MHCD10504 0.100 
 Miltenyi Biotec CD271 PE  human Mouse IgG1 130-091-885 / 
  Miltenyi Biotec MSCA-1 PE  human Mouse IgG1 130-093-587 / 

Primary antibodies       
 BD GD2 / human Mouse IgG2a 554272 0.500 
 Santa cruz biotec Runx2 / human mouse IgG2b sc-101145 0.100 
  Santa cruz biotec His6 / / Mouse IgG2b sc-57598 0.100 
 RD Systems hLIF / human Mouse IgG1 MAB2501 0.5 
Secondary antibody       
  BD mouse IG PE mouse Goat Ig 550589 0.200 

Isotype controls       
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 BD  FITC  Mouse IgM, k 553474 0.500 
 BD  PE  Mouse IgM, k 555584 0.050 
 BD  FITC   Mouse IgG2a, k 553456 0.500 
 BD  FITC  Mouse IgG1, k 555748 0.050 
 BD  PE  Mouse IgG1, k 555749 0.050 
 Invitrogen  FITC  Mouse IgG2a MG2a01 0.100 
 Invitrogen  R-PE  Mouse IgG1 MG104 0.100 
  BD   PE-Cy5   Mouse IgG1, k 555750 0.006 

 

6.1.3 Enzymes 

Product Company 
HotOls DNA-Polymerase Omni Life Science GmbH, Bremen 
M-MLV-Reverse Transkriptas Promega GmbH, Mannheim 

 

6.1.4 Primers 

Oligo dT-Primer 5’ d(T)18 3’, Fermentas, St. Leon-Rot 
All specific primers were purchased from the company Firma Eurofins MWG Operon: 
 

Name 
Product size 

[bp] 
5´ Forward 3´ Reverse 

Annealing 
temperature 

[°C] 
AP 267 gctgaacaggaacaacgtga ccaccaaatgtgaagacgtg 51 

CD31 157 gagtcctgctgacccttctg tgagaggtggtgctgacatc 56.2 
CD34 158 actcggtgcgtctctctagg tggggtagcagtaccgttgt 56.2 
CD44 142 ggctttcaatagcaccttgc gttgtttgctgcacagatgg 53.8 
CD45 116 ttcatgcagctagcaagtgg agtcagccgtgtccctaaga 53.8 
CD73 261 gctcttcaccaaggttcagc agtggcccctttgctttaat 52 
CD90 173 tcctcccagaacgtcacagt aggcttcctgtctcctccat 56.2 

CD105 205 tgccactggacacaggataa ccttcgagacctggctagtg 53.8 
GAPDH 419 gccacccagaagactgtggat tggtccagggtttcttactcc 61.8 

hLIF 211 tgccaatgccctctttattc ggggttgaggatcttctggt 54 
OCN 315 aggcgctacctgtatcaat cagattcctcttctggagttt 48 
OPN 330 ctaggcatcacctgtgccatacc cagtgaccagttcatcagattcat 60 

RUNX2 229 tcttcacaaatcctcccc tggattaaaaggacttggtg 52 

 

6.1.5 Kits 
 

Product Company 
β-Galactosidase Staining Kit Cell Signaling Technology, Danvers, USA 
FITC Annexin V Apoptosis Detection Kit I BD Biosciences, Heidelberg 
RNeasy Plus Mini Kit  QIAGEN, Hilden 
AP conjugate substrate Kit  Biorad, München 
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6.1.6 Chemicals 

Reagenz Company 

Accutase PAA Laboratories GmbH, Pasching   

Acetic acid Roth GmbH + Co. KG, Karlsruhe 

Acrylamide Carl Roth GmbH + Co KG, Karlsruhe 

Alizarin Red S Sigma Aldrich Chemie GmbH, München 

Agarose ABgene, Hamburg 

Ampicillin Fluka Chemie AG, Buchs   

APS Sigma Aldrich Chemie GmbH, München 

BCIP/NBT tablets, SIGMA FAST  Sigma Aldrich Chemie GmbH, München 

Bismethylenacrylamide Carl Roth GmbH + Co KG, Karlsruhe 

Bromphenol blue Fluka Chemie AG, Buchs   

BSA Sigma Aldrich Chemie-GmbH, München 

Calcium chloride Merck KGaA, Darmstadt    
Cell Dissociation Solution Non 
enzymatic 

Sigma Aldrich Chemie GmbH, München 

Coomassie PhastGel Blue R Amersham Pharmacia, Uppsala, Schweden 

DAPI Sigma Aldrich Chemie-GmbH, München 

Dexamethason Sigma Aldrich Chemie-GmbH, München 

DMSO  Merck KGaA, Darmstadt    

dNTP’s  Fermentas, St. Leon-Rot 

EDTA AppliChem GmbH, Darmstadt   

Ethanol Roth GmbH + Co. KG, Karlsruhe 

Ethidium bromide Sigma Aldrich Chemie-GmbH, München 

FCS “standard quality” PAA Laboratories GmbH, Pasching   

FCS “gold quality” PAA Laboratories GmbH, Pasching   

FCS “heat inactivated” PAA Laboratories GmbH, Pasching   

FCS “pre-tested for amnion cells” PAA Laboratories GmbH, Pasching   

GeneRuler™ DNA Ladder Mix Fermentas, St. Leon-Rot 

Gentamicin PAA Laboratories GmbH, Pasching   

FCS, ES cell tested HyClone, Thermo Fischer, Karlsruhe 
Glycerol Fluka Chemie AG, Buchs   

Glycine Sigma Aldrich Chemie GmbH, München 

Hypoxanthine Sigma Aldrich Chemie-GmbH, München   

Imidazole Sigma Aldrich Chemie GmbH, München 

Isopropanol  Merck KGaA, Darmstadt   

Calcium Dihydrogen Phosphate Fluka Chemie AG, Buchs   

L-Ascorbat-2-Phosphat  Sigma Aldrich Chemie-GmbH, München   

L-Glutamine PAA Laboratories GmbH, Pasching   

LIF, ESGRO Millipore GmbH, Schwalbach 

Magnesium chloride Merck KGaA, Darmstadt   
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β-Mercaptoethanol Gibco, Karlsruhe   

Methanol Roth GmbH + Co. KG, Karlsruhe 

Non-essential amino acid Gibco, Karlsruhe   

Potassium chloride Merck KGaA, Darmstadt   

Sodium chloride Merck KGaA, Darmstadt   

Sodium Pyruvate Fluka Chemie AG, Buchs 

Paraformaldehyde Sigma Aldrich Chemie-GmbH, München   
p-Nitrophenyl phosphate tablets, 
SIGMA FAST 

Sigma Aldrich Chemie-GmbH, München   

p-Nitrophenol Fluka Chemie AG, Buchs 

Penicillin / Streptomycin PAA Laboratories GmbH, Pasching   

Propidiumiodide Sigma Aldrich Chemie-GmbH, München   

RNAse free water Qiagen, Hilden 

RPMI 1640  PAA Laboratories GmbH, Pasching   

Hydrochloric acid  Fluka Chemie AG, Buchs   

Saponin Sigma Aldrich Chemie-GmbH, München   

SDS Sigma Aldrich Chemie-GmbH, München   

TEMED Sigma Aldrich Chemie-GmbH, München 

Tris Base  Sigma Aldrich Chemie-GmbH, München 

Trypsin  Sigma Aldrich Chemie-GmbH, München   

Thymidine  Sigma Aldrich Chemie-GmbH, München   

Tween 20  Serva Elektrophoresis GmbH, Heidelberg   

 

6.1.7 Equipment 
 

Equipment Company 
AlphaEaseFC software, 3.2.3 Cell Biosciences, Inc., Santa Clara, USA 
Autoclave, Systec V-150 Systec GmbH, Wettenberg  
Cell sorter  
FACS Vantage SE 
Software Cell Quest Pro v3.5 

BD Biosciences, Heidelberg 
BD Biosciences, Heidelberg 

Argon Laser Enterprise II (488 nm) Coherent, Santa Clara, USA 
Filters:  

FL1: BP 515-545 nm  
FL1: 564-606 nm  
FL3: 665-685 nm  

CellB Imaging Software Olympus Corporation, Tokio, Japan 
Centrifuge, Multifuge 3s Heraeus Holding GmbH, Hanau 
Clean bench Technoflow 2F150-II GS, Integra 

Biosciences AG, Zürich, Switzerland 
Electrophoresis system (Protein) Mini-PROTEAN Bio-Rad, München 
Electrophoresis system (DNA) Thermo Fischer Scientific, Bonn 
Electrophoretic transfer cell for western blot,  
Criterion Blotter 

Bio-Rad, München 

Fluorescence microscope, Olympus IX 50 Olympus Corporation, Tokio, Japan 
FPLC, BioLogic Duo-Flow Systems Bio-Rad, München 
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Freezing Containers, Nalgene® Cryo 1°C Krackeler Scientific, Inc. NY, USA 
Gel documentation, Gel IX Imager Intas Science Imaging Instruments GmbH, 

Göttingen 
Hemacytometer, Neubauer Brand GmbH & Co KG, Wertheim   
Flow cytometer  
Epics XL/MCL Beckman Coulter, Krefeld 
Filters:  

FL1: BP 505-545 nm  
FL2: BP 560-590 nm  
FL3: 660-690 nm  

Incubator, Heracell 240 Heraeus Holding GmbH, Hanau   
Laboratory balance, MC 1 Sartorius-Stedim Biotech, Göttingen 
Metal Chelate Membrane Adsorber (IDA75 Sartorius-Stedim Biotech, Göttingen 
Microplate Reader 680, Bio-Rad, München 
Orbital shaker cell culture, DOS-10M Elmi Skyline Elmi Ltd., Riga, Lettland  
PCR-Thermocycler; Px2 Thermal Cycler Thermo Electron Corporation, Waltham, 

USA 
pH-Electrode, Checker®, Hanna Instruments Ltd, Leighton Buzzard, 

UK 
Pipettes, Research® Eppendorf AG, Hamburg   
Pipetting device, Pipetus® Hirschmann Laborgeräte GmbH & Co KG, 

Eberstadt 
Spectrophotometer, NanoDrop ND-1000 NanoDrop Technologies, Inc, Wilmington, 

DE, USA 
Shaker (Gels or blot staining), MTS 4 IKA Werke GmbH, Staufen   
Ultrapure Water System, Arium 611 Sartorius-Stedim Biotech GmbH, Göttingen 
Ultrasonic bath, Bandelin Sonorex Super RK 510 H BANDELIN electronic GmbH & Co. KG, 

Berlin 
Ultrasonic homogenizer, Labsonic Sartorius-Stedim Biotech GmbH, Göttingen 
UV/Vis-Spectrophotometer, NanoDrop ND-1000 PEQLAB -Biotechnologie GmbH, Erlangen 
WinMDI 2.8 Joseph Trotter 
YSI 2700 Select analyzer YSI Incorporated Life Sciences, Yellow 

Springs, US 
 

6.1.8 Cell lines and primary cells 
 
CHO cell line 
The CHOSFS clone II cell line was obtained from the company CCS Cell Culture Service (Hamburg, 
Germany). The cell line is DHFR defective and thus, is glycine, thymidine and hypoxanthine 
dependent. 
 
Jurkat cells 
The human T cell leukemia Jurkat (ACC 282) was purchased from the DSMZ - Deutsche 
Sammlung von Mikroorganismen und Zellkulturen GmbH (Hamburg, Germany). 
 
MSC from human adipose tissue  
The MSCs (huF53 (N127)) isolated from human adipose tissue were kindly provided by Prof. 
Martijn van Griensven (Ludwig Boltzmann Institut für experimentelle und klinische 
Traumatologie, Vienna, Austria). 
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Isolated MSC from human umbilical cord tissue: 
The use of the biological material has been approved by the Institutional Review Board, 
project #3037 in an extended permission on 17th June, 2006. The MSCs isolated within the 
framework of this thesis are summarized in the following table: 
 

Name Date of birth/isolation 
HD140509 14.05.09/14.05.09 
MK2407 24.07.08/24.07.08 
NS010408 01.04.08/01.04.08 
NS190109 19.01.09/19.01.09 
NS110809 11.08.09/11.08.09 
NS120809 11.08.09/12.08.09 

 
Murine ES cell line Brachyury 

The murine ES cell lines E14.1, isolated from the mouse line 129/Ola was kindly provided by Prof. 
Ulrich Martin (Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, MHH). 
 

6.1.9 Cell culture media 
CHO cultivation medium 
The serum free medium ProCHO 5 (Lonza, Verviers, Belgium) was supplemented with L-
glutamine (4mM), hypoxanthine (100 μM), thymidine (10μM), glycine (333μM) and penicillin 
/streptavidin (100 U·mL-1 and 10 μg·mL-1 respectively). 
 
Jurkat cultivation medium 
RPMI 1640 was supplemented with 10 % FCS, L-glutamine (2mM), and penicillin/streptavidin 
(100 U·mL-1 and 10 μg·mL-1 respectively). 
 
UC-MSC cultivation medium 
Basal medium (αMEM) was supplemented with HS (final concentration 10%) and gentamicin 
(final concentration 50 μg·ml-1). HS was obtained from the institute of transfusion medicine of the 
Hannover medical school and consisted of a pool of sera without regard to blood type or Rhesus 
factor. Before use the HS was centrifuged 10 minutes at maximal centrifugation speed. The clear 
supernatant was used for medium preparation. 
 
Osteogenic differentiation medium 
Cultivation medium was supplemented with the following osteogenic additives: 
 

Substances Final concentration 
β-Glycerophosphat  5 mM 
L-Ascorbat-2-Phosphat  0,2 mM 
Dexamethason 100 nM 
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ES cells cultivation medium 
The culture medium was composed of DMEM supplemented with 15 % fetal calf serum 
(HyClone), 0.2 mM L-glutamine, 0.1 mM β-mercaptoethanol, 0.1 mM non-essential amino acid 
stock and 1000 units / ml (10 ng / ml) leukemia inhibitory factor. 
 

6.1.10 Buffers and reagents 
 
Agarose gel electrophoresis 
Name Composition 

Loading buffer  
95% Formamide, 0.05 mM EDTA, je 0.025 % SDS,  Bromphenol blue, 
Xylencyanol FF, Ethidiumbromide 

TAE runnig buffer 40 mM Tris Base, 1 mM EDTA, pH 8  

 
Bradford reagent 
25 mg Coomassie Blue G-250, 12.5 mL 95 % Ethanol, 25 mL 85 % H3PO4, ad 250 mL ddH2O 
Cell culture solution 
Name Composition 

Trypsin solution 0.2 % Trypsin, pH 7.5 in PBS, 0.02 % EDTA 

 
Cell staining  
Name Composition 

Alizarin red S reagens 1% Alizarin red S in 2% EtOH 

Blocking solution  2 % FCS in PBS 
DAPI solution Dilution of the stock solution (500 μg/ml) 1:1000 in 1 x PBS. 
FITC solution 12 mg FITC in 20 mL 50% EtOH  

Fixation solution 
4 % Paraformaldehyde in Permeabilisierungslösung 
bei 90°C im Wasserbad ca. 1 h lang lösen 

Permeabilization solution 0.1 % Saponin in Blocking solution (filtered, 0.2) 

Propidium iodide solution 50 μg/ml in 0,9 % NaCl 

Von Kossa AgNO3 solution 5 % AgNO3 in ddH2O 

Von Kossa formaldehyde solution 5% NA2CO3 and 0.2% Formaldehyde in ddH2O 

 
FPLC and Vivawell 8-strips Metal Chelate (IMAC) buffers 

Equilibration buffer Binding buffer 
100 mM NaAc 50 mM NaH2PO4 
500 mM NaCl 500 mM NaCl 
pH 4.5 pH 8 
  
Co2+ solution Elution buffer  
100 mM NaAc 100 mM NaAc 
500 mM NaCl 500 mM NaCl 
100 mM Co2+ 250 mM Imidazol, pH 8 

 
Phosphate Buffered Saline (PBS) 
PBS: 140 mM NaCl, 27 mM KCl, 7.2 mM Na2HPO4, 14.7 mM  KH2PO4; pH = 7.4 
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SDS-PAGE 
Name Composition 

Acetic acid solution 5 % (v/v) CH3COOH 

Coomassie destain solution 30 % acetic acid, 10 % methanol, 70 % ddH2O 

Coomassie stain solution 1 PhastGel Blue R tab in 80 ml ddH2O + 120 ml methanol, filtrated 

Farmers Reducer 10 mg K3[Fe(CN)6] and Na2S2O3 in 100 ml ddH2O 

Formaldehyde solution 36.5 % (v/v) CH2O 

Sample buffer 
20 mM Tris-HCl, 2 mM EDTA, 5 % SDS, (0.02 %) Bromphenolblau, 
10% β-Mercaptoethano 

Separation gel (12 %) 
2.92 ml acrylamide (40 %), 1.56 ml Bisacrylamid (2 %), 2.8 ml 1.5 M 
Tris, 1 ml SDS (1%), 1.76 ml H2O, 20 μl Temed and APS 

Silver solution 0.1 % (w/v) AgNO3 

Sodium carbonate 2.5 % (w/v) Na2CO3 

Stacking gel (6 %) 
731 μl acrylamide (40 %), 390 μl bisacrylamide (2 %), 760 μl 1.5 M 
Tris, 0.3 ml SDS (1 %), 3.82 ml H2O, 10 μl Temed and APS 

TGS running buffer 25 mM Tris, 192 mM Glycin, 0.1 % SDS; pH 8.3 

 
Western blot 
Name Composition 

Blocking buffer  TBST + 2 % BSA 
TBS buffer 25 mM Tris, 150 mM NaCl; pH 7.4 
TBST (TBS + Tween20)  TBS + 0.05 % Tween 20 

Transfer buffer 25 mM Tris, 192 mM Glycin; 10 % Ethanol; pH 8,3 

 

6.2 Methods 

6.2.1 Cell culture 
 
CHO cultivation 
CHO cells were routinely cultivated in 175 cm² mL containing 40mL supplemented ProCHO5 
medium. The cells were passaged every 3-4 days by centrifugation (5min, 200 g) and resuspension 
of the pellet in fresh medium. Cell density was maintained between 4·105 and 1.5·106 cells·mL-1.  
For long-term cultivation experiments, the cells were cultivated in CultiFlask 50 Tubes containing 
10 mL medium. 
Batch cultures were performed in 250 mL Spinner flasks containing 100 mL cultivation medium. 
 
Jurkat cultivation 
Jurkat cells were routinely cultivated in T-Flasks (75 or 175 cm²) in supplemented cultivation 
medium. The cells were passaged every 3-4 days by centrifugation (5min, 200 g) and resuspension 
of the pellet in fresh medium. Cell density was maintained between 4·105 and 1.5·106 cells·mL-1. 
 
MSCs cultivation 
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MSCs were cultivated in 25, 75 or 175 cm² T-Flasks in cultivation medium. The cultures were 
started with a cell density of 500 or 4000 cells/cm². The cells were passaged when the cultures 
were evaluated to be 80%–90% confluent by phase contrast microscopy. For this purpose, the 
cultures were washed once with pre-warmed PBS (37°C) and treated with accutase (5 min at 
37°C). After centrifugation (5 min, 200 g), pellets were resuspended in pre-warmed medium. 
 
ES cell cultivation 
The murine embryonic stem (ES) cell line Brachyury was routinely cultured and expanded feeder 
cell free as floating cell spheres. The suspended cell spheres were passaged every three to four days 
by dissociating them into single cells with 0.025% trypsin and reseeding with a cell density of 
2 x 104 cells / ml. 
 
Cryopreservation  
CHO and Jurkat cells were frozen in culture medium containing 7.5% DMSO. The cells were 
gradually frozen at a rate of 1°C/min using a freezing container placed at -80°C overnight and 
finally stored at -196°C in liquid nitrogen. 
 
MSCs were frozen in a cryo-medium containing 80% HS, 10% culture medium and 10 % DMSO. 
The cells were gradually frozen at a rate of 1°C·min-1 using a freezing container placed at -80°C 
overnight. The cryo-tubes were finally stored at -196°C in liquid nitrogen. 
 
Cell thawing 
The following procedure was applied for all cell types: 

• Quickly submerge cryotube in a 42°C water bath (1-2 min), 
• While still cool to the touch but completely thawed, remove the sample, spray with 

ethanol and place inside a flow hood. 
• Add 1 mL of cold culture medium to the sample vial. 
• Wait 2 minutes. 
• Transfer the content to 15mL tube and add 2 mL of culture medium 
• Wait 2 minutes. 
• Top up to 10 mL with culture medium  
• Centrifuge at 200 g for 5 min at 4°C. 
• Aspirate supernatant. 
• Flick pellet 
• Resuspend in culture medium  

 

6.2.2 Analytics 
Cell concentration and viability 
Cell concentration and viability were determined by trypan blue exclusion method using a 
Neubauer hemacytometer for counting.  
L-Lactate and D-Glucose analysis 
L-Lactate and D-Glucose concentrations were measured in supernatants using a YSI 2700 Select 
analyzer (YSI Incorporated Life Sciences, Yellow Springs, US).  
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L-Glutamin analysis 
L-Glutamine concentrations were determined via HPLC using pre-column derivatization with o-
phthalaldehyde as previously described247. 
SDS-PAGE 
The electrophoretic separation of the proteins samples was performed using a 6 %- SDS-
polyacrylamide (w/v) stacking gel and a 12 %- (w/v) separation gel. The PAGE occurred in a 
vertical electrophoretic chamber (Bio-Rad) using Tris-Glycin-SDS (TGS) as running buffer. 
The protein samples were 1:1 mixed with SDS sample buffer, heated at 95 °C for 10 min, shortly 
centrifuged for 1 min, and loaded on the gel together with a protein marker. Gels were run first at 
100 V for 30 min until the stacking gel was passed and subsequently run at 200 V for 1h. 
For silver staining the following procedure was applied: 

• Lay the gel in silver-destain-fix solution for at least 30 minutes. 
• Wash gel shortly with ddH2O for 2 times. 
• Lay the gel in Farmers Reducer for 2.5 minutes. 
• Wash gel with ddH2O for 5 min. Repeat the wash step until the gel is colorless. 
• Lay the gel in silver solution 0.1% (m/v) for 30 minutes then discard the solution. 
• Wash gel with ddH2O for 2 times 30 seconds each. 
• Rinse gel with Na2CO3 solution (2.5 %). 
• Lay the gel in 100 ml Na2CO3 solution with 400 μL Formaldehyde. Wait until 
• yellow-brown bands appear. 
• Lay the gel in 5% acetic acid for 10 min to stop the stain. 

 
For Coomassie staining the following procedure was applied: 

• Wash the gel 3 times 5 min with ddH2O. 
• Stain the gel in Coomacie stain solution for 1h. 
• Wash the gel with ddH2O and lay the gel in destain solution until the background 

staining disappear. 
 
Western Blot 
For the transfer of fractioned protein samples from SDS gels to PVDF membranes, as well as for 
the specific immunodetection, the following protocol was used: 
1) transfer: 

• Wash the PVDF membrane with methanol for a few seconds. 
• Soak the gel and the PVDF membrane in transfer buffer for a minimum of 15 min to 
• remove salts and detergents. 
• Saturate two fibered pads and two filter papers in transfer buffer. 
• Assemble on the black side of a cassette in the following order: 

o fiber pad 
o filter paper 
o SDS gel 
o PVDF membrane 
o filter paper 
o fiber pad 
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• Insert the cassette into the electrode module. Be sure to check the direction so that the 
transfer is from the gel to the membrane. 

• Place a stirrer and a Bio-Ice cooling unit (stored at -20 °C) in the buffer tank. Place the 
electrode module in the buffer tank. 

• Fill the tank with transfer buffer. Place the buffer tank on a magnetic stir plate and stir at 
medium speed. 

• Attach electrodes and electrophoresis at 100 V for 50 min. 
2) Detection 

• Block the membrane in block buffer for 1h with shaking. 
• Remove the block buffer. Add the primary anti His-tag antibody to the block buffer 

(1:750) and incubate the blots for 1h with shaking. 
• Wash 3 times each time 5 min with block buffer at room temperature. 
• Add the secondary antibody to the TBST (1:3000) buffer and incubate for 1 h at room 

temperature with shaking. 
• Wash 3 times each time 5 min with TBST buffer and then 2 times with TBS at room 

temperature. 
• Wash the blot with AP buffer (AP conjugate substrate Kit) for 5 min. 
• Shake the membrane with Color-Development-Reagent (AP conjugate substrate Kit), and 

wait about 5 minutes for bands to appear. 
 
Bradford test 
Bradford tests were performed in 96-well plates. For the calibration curve, BSA was used as a 
protein standard at the following concentrations: 10, 25, 50, 75, 100, 250, 400 and 500 μg/mL. The 
following protocol was used: 

• Pipette 10 μl of each standard or unknown sample into the appropriate microplate wells. 
• Add 300 μl of the Coomassie Plus Reagent to each well and mix with plate shaker for 30 

seconds. 
• Remove plate from shaker. For the most consistent results, incubate plate for 10 minutes at 

room temperature (RT). 
• Measure the absorbance at or near 595 nm with a plate reader. 
• Subtract the average 595 nm measurement for the Blank replicates from the 595 nm 

measurements of all other individual standard and unknown sample replicates. 
• Prepare a standard curve by plotting the average Blank-corrected 595 nm measurement for 

each protein standard vs. its concentration in μg/ml. Use the standard curve to determine 
the protein concentration of each unknown sample. 

 
Annexin-V test 
Apoptosis was assayed using the Annexin V detection kit according to manufacturer’s instructions. 
The volume of Annexin V and propidium iodide reagents were reduced to 2.5 μL for each assay. 
 
Analysis of cellular senescence 
The amount of senescent cells was determined using the Senescence β-Galactosidase Staining Kit 
and DAPI fluorescence counter stain in accordance to the manufacturers’ instructions. The 
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different populations were cultured for 6 days after elutriation, passaged and seeded at a density of 
6,000 cells/cm2 for 48h before senescence β-galactosidase staining. After completion of the staining 
procedures, 4 representative images were taken from diverse areas of each cell culture using 
phase-contrast microscopy, fluorescence microscopy and CellB Imaging Software. For the 
calculation of the percentage of senescent cells the total number of cell nuclei and number of cell 
nuclei surrounded by cyan dye were enumerated. 
 

6.2.3 Cell disruption 
CHO cells in suspension were centrifuged 5 min at 200 g. Pellets of 5·106 cells were resuspended in 
10 mL PBS in 50 mL tubes. Cell disruption was performed on ice using a Ultrasonic homogenizer 
with pulse of 1 s at 100 W for 3 min followed by 1 min intermission on ice. The procedure was 
repeated 3 times. After cell disruption, the samples were centrifuged 10 min at 1000 g and the 
supernatants were used for further analysis. 
 

6.2.4 FPLC  
 
The following protocol was used for the purification of His-tagged protein: 
 

Step Volume [mL] Description Parameters Volume/Flow rate 
1 0:00 Isocratic Flow A: A-Buffer 1 

B: Buffer B 
100% 
0% 

Volume: 10 mL 
Flow: 1.00 mL/min 

2 10:00 Isocratic Flow A: A-Buffer 1 
B: Buffer B 

0% 
100% 

Volume: 10 mL 
Flow: 1.00 mL/min 

3 20:00 Isocratic Flow A: A-Buffer 1 
B: Buffer B 

100% 
0% 

Volume: 20 mL 
Flow: 1.00 mL/min 

4 40:00 Isocratic Flow A: A-Buffer 2 
B: Buffer B 

100% 
0% 

Volume: 10 mL 
Flow: 1.00 mL/min 

5 50:00 Load/Inject Sample Loade: Sample
Direct Inject 

Econo Pump 
Auto Inject Valve 

Volume: 10 mL 
Flow: 1.00 mL/min 

6 60:00 Isocratic Flow A: A-Buffer 2 
B: Buffer B 

100% 
0% 

Volume: 15 mL 
Flow: 1.00 mL/min 

7 75:00 Isocratic Flow A: A-Buffer 3 
B: Buffer B 

100% 
0% 

Volume: 10 mL 
Flow: 1.00 mL/min 

8 85:00 Isocratic Flow A: A-Buffer 1 
B: Buffer B 

100% 
0% 

Volume: 30 mL 
Flow: 1.00 mL/min 

 115:00 End of Protocol    
A-Buffer 1: Equilibration buffer; Buffer B: Co2+ solution; A-Buffer 2: Binding buffer; 
A-Buffer 3: Elution buffer 

6.2.5 Vivawell 8-strips Metal Chelate  
8-Strips were used in combination with 96-well plates. The following protocol was used for the 
purification of His-tagged proteins: 

• Wash the membranes with 300 μL Equilibration buffer and centrifuge for 3 min at 500 g  
• Load the membranes twice with 300 μL Co2+ solution and centrifuge for 3 min at 500 g  
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• Wash the membranes twice with 300 μL Equilibration buffer and centrifuge for 3 min at 
500 g  

• Wash the membranes with 300 μL Binding buffer and centrifuge for 3 min at 500 g 
• Load the membranes twice with 300 μL or adjusted volumes of the protein sample 

(filtrated, 0.2 μm) and centrifuge for 3 min at 500 g 
• Wash the membranes twice with 300 μL Binding buffer and centrifuge for 3 min at 500 g 
• Elute the protein by adding an appropriate volume of Elution buffer and centrifuge for 3 

min at 500 g 
 

6.2.6 Flow cytometric analysis of surface antigen expression 
 
Analysis of SSEA-1 expression by ES cell Brachyury 
 
Cells spheres were harvested, washed with PBS and trypsinated for 1 min at 37° C. Single cells 
were recovered by centrifugation at 200 x g for 5 min, washed twice in cold PBS supplemented 
with 2 % FCS and resuspended to a concentration of 105 cells / 100 μl for each test. For specific 
SSEA-1 staining, a titrated volume of a FITC-conjugated anti-mouse SSEA-1 IgM κ antibody was 
added in a volume of 20 μl to 100 μl cell suspension. Negative control staining was performed 
using matched FITC-conjugated isotype antibody. The dilution and the quantity of the antibodies 
used for the test are given in the following table: 
 

 
Antibody 

Volume 
antibody [μL] 

Blocking 
buffer [μL] 

μg antibody/ 
Test 

Test antibody anti- SSEA-1-FITC 10 10 0.06 
Isotype control BD mouse IgM, k FITC 13,7* 6.3 0.06 

* from a 1:50 pre-dilution 
 
After storage for 20 minutes at room temperature in the dark, 400 μl of PBS supplemented with 
2 % FCS as well as 1 μl propidium iodide was added. The cell suspension was then analyzed in an 
EPICS XL/MCL flow cytometer. Living cells were gated in a dot plot of forward versus side scatter 
signals and according to propidium iodide exclusion. At least, 10,000 gated events were acquired 
on a LOG fluorescence scale. Positive staining was defined as the emission of a fluorescence signal 
exceeding levels obtained by > 99 % of cells from the control population stained with matched 
isotype antibodies.  
 
Monoparametric analysis for the immunophenotyping of UC-derived MSCs 
Primary UC-derived cells were harvested by accutase treatment, washed twice in cold blocking 
puffer and resuspended to a concentration of 106 cells·ml-1. Staining was performed by adding 20 
μL of pre-diluted antibody solution to 100 μL of the cell suspension. Negative control staining was 
performed using matched isotype control antibodies. The optimal quantities of detection 
antibodies were determined for each assay in titration experiments to allow maximal fluorescence 
and low unspecific binding. The dilution and the quantity of antibody used for each test are given 
in the following table: 
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Antibody 

Volume 
antibody [μL] 

Blocking 
buffer [μL] 

μg antibody/ 
Test 

Test antibody anti CD34-PE-Cy5 1.5 18.5 0.01 
Test antibody anti CD45PE-Cy5 6 14 0.01 
Isotype control BD mouse IgG1, k PE-Cy5 1.5 18.5 0.01 
     
Test antibody anti CD44-PE 2 18 0.03 
Test antibody anti CD73-PE 4 16 0.03 
Isotype control BD mouse IgG1, k PE 0.5 19.5 0.03 
     
Test antibody anti CD105-PE 0.5 19.5 0.05 
Isotype control Invitrogen mouse IgG1, (R-PE) 0.5 19.5 0.05 
     
Test antibody anti HLA-I-FITC 1 19 0.80 
Test antibody anti CD90-FITC 1 99 0.10 
Test antibody anti CD31-FITC 1.3 18.7 0.10 
Isotype control BD mouse IgG1, k FITC 2 18 0.10 

 
After storage for 20 minutes at RT in the dark, 400 μL of blocking puffer was added and cells were 
analyzed in a EPICS XL/MCL flow cytometer. At least, 10,000 gated events were acquired on a 
LOG fluorescence scale. Living cells were gated in a dot plot of forward versus side scatter signals. 
Positive staining was defined as the emission of a fluorescence signal that exceeded levels obtained 
by >99 % of cells from the control population stained with matched isotype antibodies.  
 
Three colors experiment 
Cell staining was performed as described above. Three experiments were performed during which 
the cell samples were stained with different combinations of detection antibodies: 
 

Experiment 1 Experiment 2 Experiment 3 
anti HLA-I-FITC anti HLA-I-FITC anti HLA-I-FITC 
anti CD73-PE anti CD105-PE anti CD44-PE 
anti CD45PE-Cy5 anti CD45PE-Cy5 anti CD34-PE-Cy5 

 
The fluorophores combination and filter settings used for the detection of fluorescence emission in 
the performed three color experiments are presented in the following figure: 

 
modified from: http://www.invitrogen.com 

 
The compensation for every fluorescence channel was established by measuring samples that were 
individually stained with the detection antibody of the multi-color samples. 
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CD271, MSCA-1 and GD2 analysis 
CD271 and MSCA-1 expression were analyzed using a PE-labeled antibodies according to 
manufacturer’s instructions. 
 
GD2 analysis was performed using a mouse primary antibody detected by a secondary goat anti-
mouse PE-labeled antibody. Primary UC-derived cells were harvested by accutase treatment, 
washed twice in cold blocking puffer and resuspended to a concentration of 106 cells·ml-1. One mL 
of the cell suspension (106 cells) was then centrifuged and the pellet was resuspended in 100 μL 
blocking buffer containing 2 μL anti GD2 antibody. After storage for 20 minutes at RT in the dark, 
the cells were washed twice with blocking buffer and resuspended in 100 μL containing 1 μL of 
the secondary antibody. After storage for 20 minutes at RT in the dark the cells were washed once 
in blocking buffer and resuspended in 1 mL for flow cytometric analysis. Negative control staining 
was performed in parallel omitting the primary antibody. For this analysis, more than 5·105 living 
single cells were acquired according to propidium iodide exclusion and pulse high and area 
measurements. 

6.2.7 Flow cytometric analysis of intra cellular protein expression  
After harvest, the cells were washed once in blocking puffer and resuspended at a concentration of 
1·106 cells·mL-1. A volume of 200 μL was transferred into a 1.5 mL eppi. 500 μl of fixation solution 
was added and the suspension was incubated for 20 minutes at room temperature at RT. The cells 
were washed once in 500 μL permeabilization solution and centrifuged for 5 minutes at 300 g. The 
cell pellet was then fully resuspended in 100 μl of permeabilization solution containing the 
primary mouse antibody (see table below). Cells were vortexed 1-2 seconds and incubate for 20 
minutes at RT. Cells were washed twice in 500 μL permeabilization solution and resuspended in 
100 μl permeabilization solution containing the goat anti-mouse PE-conjugated antibody. Cells 
were vortexed 1-2 seconds and incubate for 20 minutes at RT in the dark. Cells were washed twice 
and resuspended in 500 μL in permeabilization solution for immediate analysis. 
 
Intracellular His-tagged protein staining 
Antibody Volume antibody  

μL/Test 
Volume permeabilization solution  

μL/Test 
Mouse anti His-tag  2 98 
goat anti-mouse Ig-PE 1 99 
 
 
Intracellular RUNX2 staining 
Antibody Volume antibody  

μL/Test 
Volume permeabilization solution  

μL/Test 
Mouse anti-human Runx2 1 99 
goat anti-mouse Ig-PE 1 99 
 

6.2.8 Total protein staining 

Cells pellets (105 cells) were washed twice with PBS and then fixed with 500 μL fixation solution 
for 30 min at room temperature. The cells were washed twice with 500 μL permeabilization 
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solution (in PBS, without blocking buffer) and the pellets were resuspended in 100 μL of FITC 
staining solution (dilution from the stock solution to 5 μg·mL-1). After 15 min at room temperature 
in the dark, the cells were washed twice with permeabilization solution and resuspended to a final 
volume of 500 μL for flow cytometric analysis. 
 
For fluorescence microscopy, the adherent cultures cultivated in 6-well plates were washed twice 
with 1 mL PBS and then fixed with 1 mL fixation solution for 30 min at room temperature. The 
cells were washed twice with 1 mL permeabilization solution (without blocking buffer) and 1 mL 
of FITC staining solution (dilution from the stock solution to 5 μg·mL-1) was added. After 15 min 
at room temperature in the dark, the cells were washed twice with PBS and 1 mL of DAPI 
solution was added to the wells. After 15 min at room temperature in the dark, the cells were 
washed twice with PBS and examined using a fluorescence microscope.  
 

6.2.9 Counterflow Centrifugal Elutriation (CCE) 
The CCE was performed using the Beckmann J6-MC with the JE-5.0 rotor and the appropriate 
5ml-standard elutriation chamber (Beckman Coulter GmbH, Krefeld, Germany). Harvested cells 
were resuspended in PBS and applied to the standard chamber (rotation: 1600 rpm at 24°C) using a 
digital flow controller (Cole-Palmer Instruments Inc., Chicago, IL, USA). Subsequent fractions of 
100 ml aliquots of the elutriated samples were collected upon progressive increase of the pump 
speed (see table ).  

Table 6.1: Elutriation Experiment 

Fraction Flow rate  Viable cells/ml Viability Avg. Diam. 
  (ml/min) x 106 (%) (μm) 
1 8 0,60 82,0 11,1 ± 1,3 

2 12 1,5 87,8 12,4 ± 1,1 

3 15 0,19 32,4 14 ± 1,9 

4 20 1,02 80,2 14,3 ± 1 

5 28 0,63 73,0 15,4 ± 1,1 

6 
28 

without centrifugation 
0,63 64,6 19,1 ± 3,1 

Control Non elutriated cells 6,48 83,9 15 ± 1.8 
 

6.2.10 Data analysis 
Specific growth rate 
Specific cell growth μ was estimated using the following equation: 

xt
x 1
⋅

Δ
Δ

=μ   

 

 
with:  
x = living cell concentration [cell·mL-1] 
μ = specific cell growth [h-1] 
t = time [h] 

 
Average population doubling time 
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For the calculation of the average population doubling time, it was assumed that the cells were 
dividing exponentially over the entire time frame:  

d
d N

tT Δ
=  

And: 

2ln

ln
0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
x
x

Nd  

With:  
Td = population doubling time 
Δt = time difference 
Nd = number of population doublings over Δt 
x = number of living cells at the time t 
x0 = number of living cells at the time t = 0 

 
 

6.2.11 Osteogenic differentiation 
In vitro differentiation assay in post-confluent cultures 
UC-MSCs (P0) were revitalized and cultivated for one passage in cultivation medium (α-MEM + 
10% HS). The cells were harvested by accutase treatment and seeded in 6-well plates at a seeding 
density of 4000 cells/cm² in osteogenic medium. The cells were maintained under osteogenic 
condition for 28 days. Medium was replaced every second days.  
 
In vitro differentiation assay in post-confluent cultures 
UC-MSCs (P0) were revitalized and cultivated for one passage in cultivation medium (α-MEM + 
10% HS). The cells were harvested by accutase treatment and seeded in 175 cm² culture flasks at a 
seeding density of 500 cells/cm² in osteogenic medium. The cells were maintained under 
osteogenic conditions and passaged when the cultures were judged 80-90% confluent by 
microscopic examinations. Osteogenic medium was replaced every second days.  
 

6.2.12 In vitro staining procedures 
AP staining 
Staining was performed in 6-well plates. BCIP/NBT (5-Bromo-4-chloro-3-indolyl phosphate/Nitro 
blue tetrazolium) was used as a substrate for the detection of the AP activity. The following 
protocol was applied: 

• Wash the cultures twice with cold PBS  
• Fix cells with 1 mL 100 % EtOH, 30 min at 4°C 
• Wash twice with ddH2O 
• Add 1mL of BCIP/NBT solution 
• Incubate 1 hour at 37 °C 
• Wash once with ddH2O 
• Microscopic examination 

 
Alizarin red staining 
Staining was performed in 6-well plates. The following protocol was applied: 

• Wash the cultures twice with cold PBS  
• Fix cells with 1 mL 100 % EtOH, 30 min at 4°C 
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• Wash twice with ddH2O 
• Add 500 μL of Alizarin red S solution 
• Incubate 15 min at RT 
• Wash 5 times with ddH2O 
• Microscopic examination 

 
Von Kossa staining 
Staining was performed in 6-well plates. The following protocol was applied: 

• Wash the cultures twice with cold PBS  
• Fix cells with 1 mL 100 % EtOH, 30 min at 4°C 
• Wash twice with ddH2O 
• Add 500 μL of AgNO3 solution and incubate 30 min at RT in the dark 
• Wash three times with ddH2O 
• Add 500 μL of the formaldehyde solution 
• Remove formaldehyde after 1-2 min reaction depending on the intensity of the staining 
• Wash 3 times with ddH2O 
• Microscopic examination 

 

6.2.13 Alkaline phosphatase specific activity 
The detection of the alkaline phosphatase activity was detected with p-Nitrophenyl phosphate as a 
substrate. The activity was measured for UC-MSCs in suspension following cell harvest. 
The following protocol was used: 

• Wash once the culture with pre-warmed PBS  
• Treat with accutase for 5 minat 37°C 
• Transfer to a 50 mL tube 
• Centrifuge 5 min at 180g 
• Resuspend in 5 mL PBS 
• Determine the cell concentration 
• Transfer 200 μL of the suspension in a reaction 1.5 mL tube 
• Add 200 μL p-Nitrophenylphosphat solution (pre-warmed, in 2x AP buffer)  
• Incubate at 37°C in thermoshaker (400 rpm) in the dark 
• Document reaction time Δt 
• Centrifuge the tubes 5 min at 200 g 
• Transfer 50 μL of the supernatant in wells of a 96-Well plates (in triplicates) 
• Measure absorption at 405 nm,  
• Measure the absorption of the blank sample (200 μL PBS added to 200 μL p-

Nitrophenylphosphat solution). 
• Subtract the blank value from the measured absorption  

 
The calibration curve was established using p-Nitrophenol as a standard using the following 
concentrations: 0, 10, 25, 50, 75 and 100 μg·mL-1. The concentration of p-NP (CpNP) in the samples 
was calculated from the calibration curve. The specific activity was calculated using the following 
equation: 
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With:  
 APspec. = AP specific activity [μmol p-NP·min-1·10-9 cells] 
 CpNP = p-NP concentration [μg·mL-1] 
 MpNP = Molecular weight p-NP [μg·μmol-1] 
 V= Volume of the sample = 0.4 mL 
 Δt = reaction time [min] 
 x = number of cells in the sample 

6.2.14 Flow cytometric cell sorting 
Cells were sorted using a FACS Vantage SE cell sorter equipped with a 488 nm argon laser. The 
fluidic system was sterilized before sorting using 70% isopropanol and then washed with sterile 
PBS. Green FITC fluorescence was measured in the green channel (BP 530/30 nm) and PI in the 
red channel (BP: 630/22 nm). Living cells were gated on a dot plot of forward versus side scatter 
signals (FSC/SSC) as well as on the absence of PI fluorescence indicating cells with intact 
membranes. For bulk sorting procedure, the cells were sorted to collecting tubes containing fresh 
medium. For cloning, sorting was performed using the ACDU single cell sorting modus of the t 
FACS Vantage SE. Each cell was isolated in a well of a 96-well plate containing fresh medium. 
 

6.2.15 RT-PCR 
RNA isolation 
RNA isolation was performed using the „RNeasy Plus Mini Kit“. Cell pellet were first suspended in 
0.5 ml RLT-Puffer (Lysispuffer) containing 1 % β-Mercaptoethanol. After 1 min incubation the 
suspension was several times homogenized with the pipette. The suspension was placed 10 min on 
ice and several times vortexed. The rest of the procedure was performed according manufacturer’s 
instructions. RNA purity and concentration were determined using the spectrophotometer 
NanoDrops 1000. 
 
Reverse transcription 
For the reverse transcription the following protocol was used: 

• Transfer 2 μg of isolated RNA into a reaction tube 
• Add 3 μL of the oligo-dT-primers solution 
• Adjust volume to 21 μL with RNAse free water 
• Denaturate 5 min at 65°C 
• Place the tube 1 min on ice 
• Add 8μL 5x M-MLV-Puffer 
• Add 4 μL dNTPs 
• Add 6 μL RNAse free water 
• Add 1 μL of reverse transcriptase (MLV RT) 
• Incubate 1 h at 37°C 
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PCR 
The polymerase chain reaction was performed with the following protocol: 

• Prepare PCR mix : 
10 μL 5x buffer (HotOls) 
4 μL dNTP’s 
1 μL forward Primer 
1 μL reverse Primer 
1 μL cDNA 
0.25 μL HotOls DNA-Polymerase 
32.75 μL PCR water 

• Denature 5 min at 95 °C 
• Run the following PCR program in thermocycler: 

 
Step Time Temperature 
Denaturation 30 s 95°C 
Primer annealing 30 s See 6.1.4 
Polymerization 30 s 72°C 
Number of cycles: 30 

 
Agarose gel for PCR products 
Run a 2% agarose gel  
Run the gel at 100 V 
 
Agarose gel analysis 
The intensity of the DNA bands was quantified using the AlphaEaseFC software. The background 
intensity was quantified automatically by the software for every detected band and subtracted to 
the measured signal. The intensity of every gene amplificate was then normalized on the detected 
intensity for the housekeeping gene GAPDH. 
 

6.3 Complementary results 

6.3.1 Transduction efficiency 
The transduction efficiency was evaluated measuring the fraction of fluorescing cells within the 
CHO population following transduction with an expression construct coding for the reporter 
protein GFP. As a control, untransduced CHOSFS cells were measured: 
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6.3.2 Intracellular hLIF staining 
The specific staining of the hLIF was performed using a mouse antibody directed against the His-
tag of the recombinant proteins. The primary antibody was detected by a secondary goat anti Ig 
mouse antibody labeled with the fluorochrome PE (Phycoerythrin): 
 

 
 

6.3.3 Optimization of flow cytometric assay for UC-derived cells 
UC-derived cells were harvested using accutase, trypsin and a non enzymatic cell dissociation 
solution according to manufacturer’s instructions. Incubation time of 3 and 8 minutes were tested 
for all solutions. The cells were subsequently stained for the surface antigen CD90 using a FITC-
labeled antibody. The mean fluorescence the fluorescence distributions were determined. In 
addition, cell viability was assayed using the trypan blue exclusion method. Experiments were 
performed in triplicates. The results are presented in the following diagram: 

 
 
Cell treated with the non enzymatic solution displayed a reduced fluorescence and viability (>85 
%). A good viability was observed for cells treated with accutase and trypsin (>95%), however a 
reduced fluorescence was measured in samples treated with trypsin, in particular after a prolonged 
treatment (8 minutes), suggesting that CD90 antigens have been damaged during the procedure. 
Accordingly, flow cytometric assays were performed on UC-MSC harvested using accutase. 
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6.3.4 Analysis of the CD proteins expression on the transcriptional level (RT-
PCR) 

The expression of typical MSC markers was analyzed on the transcriptional level using RT-PCR. 
UC-derived cells in P1 (UC) were used for this purpose. As control mRNA isolated from Jurkat 
(J)cells was same wise analyzed: 

 

 

6.3.5 CD271 and MSCA-1 analysis 
Analysis of CD271 and MSCA-1 expression of UC-MSCs (P1): 

 

6.3.6 Elutriation experiment  
Surface antigen expression of elutriated cells 
The expression of the markers CD90, CD73, CD44 and CD105 were measured on logarithmic 
scale. The fluorescence distributions were compared using the Kolmogorov-Smirnov248 test and 
both populations were found to be different at the 99,9 % confidence level.  

 
 
Correlation between total protein content (FITC staining) and side scatter signal 
The cells were fixed using 4% paraformaldehyde in PBS for cell fixation, as this method 
demonstrated minimum impact on the scatter properties of cells:  
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The correlation between total protein content (FITC staining) and side scatter signal was 
demonstrated for cells at day 2, 3 and 4 after seeding in culture flasks, indicating that the linear 
relation between SSC signal and protein content remains true, regardless of the proliferation state, 
i.e. cell cycle status of the cells: 
 

 
Ratio CD44/SSC and CD105/SSC 
The expression of the CD44 and CD105 antigens normalized on total cell protein was evaluated 
using the ratio of fluorescence to SSC signals:  

 

6.3.7 Cell cycle status of UC-derived cells 
UC-derived MSCs exhibit a normal diploid DNA content in culture: 
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6.3.8 Monitoring of cell response to the osteogenic stimulation 
Immunophenotype of cells cultivated under control (unfilled histogram) and osteogenic 
conditions (filled histogram) over 28 days: 
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