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Abstract

Quantum communication and quantum computing to a large extent are based on
the distribution and the processing of quantum entanglement. The implementation
of the two is demanding because entanglement inherently is highly susceptible to de-
coherence, i.e. the uncontrollable loss of information to the environment. If the exist-
ing methods fail to minimize the decoherence sufficiently, entanglement distillation can
solve this problem. Such a procedure extracts a smaller number of more strongly en-
tangled states from a larger supply of weaker entangled states. In order to eliminate
the decoherence completely or to realize quantum communication over a long distance
this procedure has to be applied iteratively, i.e. the distillation is applied repeatedly on
entangled states, which already have been distilled previously.

Within the scope of this thesis the experimental implementation of a continuous vari-
able entanglement distillation protocol was conducted. The underlying entanglement
was prepared in the quadrature amplitudes of monochromatic continuous-wave laser
fields. The special decoherence process of phase diffusion was considered, which re-
sulted in non-Gaussian probability distributions of the corresponding variables. The
non-classicality of squeezed states suffering from this decoherence process was investi-
gated using the characteristic function. The simultaneous distillation, purification and
Gaussification of phase-diffused squeezed states was demonstrated. For the first time
distilled entangled states were actually prepared for a downstream application. Fur-
thermore, for the first time the iterative (multi-step) preparation of distilled entangle-
ment was realized. Complete evidence was provided by the first implementation of a
full, unbiased two-mode quantum state tomography in the continuous-variable regime.

Keywords: Quantum communication, entangled states, entanglement distillation.



Zusammenfassung

Die Konzepte der Quantenkommunikation und der Quantencomputer beruhen wei-
testgehend auf der Verteilung und Verarbeitung von Quantenverschränkung. Eine Um-
setzung gestaltet sich als schwierig, denn Verschränkung weist eine starke Anfällig-
keit für Dekohärenz, einen unkontrollierten Informationsverlust an die Umgebung, auf.
Wenn die vorhandenen Methoden zur Minimierung der Dekohärenz unzureichend
sind, kann die Destillation von Verschränkung dieses Problem lösen. Im Destillations-
verfahren wird eine kleinere Anzahl stark verschränkter aus einer größeren Menge
schwach verschränker Zustände extrahiert. Um eine vollständige Eliminierung der De-
kohärenz zu erreichen oder Quantenkommunikation auf große Distanz zu realisieren,
muss die Destillation auf iterative Weise vorgenommen werden; dies bedeutet, dass das
Destillationsverfahren wiederholt auch auf das Resultat einer vorherigen Destillation
angewendet wird.

Im Rahmen der vorliegenden Arbeit wurde ein Verschränkungsdestillationsproto-
koll in kontinuierlichen Variablen experimentell umgesetzt. Die zugrundeliegende Ver-
schränkung bestand in den Quadraturamplituden von monochromatischen Dauerstrich-
Laserstrahlen. Der spezielle Dekohärenzprozess der Phasendiffusion, der nicht-Gauß-
förmige Wahrscheinlichkeitsverteilungen zur Folge hat, wurde betrachtet. Die nicht-
Klassizität von phasendiffundierten gequetschen Zuständen wurde untersucht. Die
gleichzeitige Destillation, Purifikation und Gaussifikation von phasendiffundierten ge-
quetschten Zuständen konnte gezeigt werden. Zum ersten Mal wurden destillierte ver-
schränkte Zustände tatsächlich präpariert, was eine nachfolgende weitere Verwendung
ermöglichte. Darüber hinaus wurde erstmalig eine iterative Destillation von Verschrän-
kung realisiert. Auch hier wurde der präparierte Ausgangszustand für eine weitere Ver-
wendung zur Verfügung gestellt. Der Nachweis wurde auf Grundlage einer vollständi-
gen, unvoreingenommenen zwei-Moden Quantenzustandstomographie erbracht. Dies
stellte die erste Implementierung dieser Methode im Bereich der kontinuierlichen Va-
riablen dar.

Schlüsselwörter: Quanteninformation, verschränkte Zustände, Verschränkungsde-
stillation.
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CHAPTER 1

Introduction

Since the quantum mechanical description of physical systems was formulated over a
hundred years ago it has successfully explained many physical phenomena which were
mystical to the classical theory. For example, the photoelectric effect was unexplainable
without quantum mechanics. Also the spectrum of sunlight did not fit into the classical
description of the interaction of light and matter. But quantum mechanics not only pro-
vided explanations for existing problems but also predicted new phenomena. Maybe
the most tremendous aspect is the existence of entangled states of two or more physical
systems. In contrast to classical physics the individual system in such a state – even
when space-like separated – cannot be fully described individually by local quantities.
This led Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) in 1935 to the con-
clusion, that the theory of quantum mechanics must be incomplete, i.e. missing some
hidden variables [1]. However, it turned out that – rather than quantum mechanics
– EPR were wrong about their assumption of local reality. In 1965 John Steward Bell
formulated the famous Bell inequality [2], based on the assumption of hidden variables.
In 1982 Alain Aspect and his coworkers conducted the first experiment [3] with many
more to follow, which violated the Bell inequality. In this sense quantum mechanics
indeed is a valid and complete theory.

Measurements on the subsystems of an entangled state can exhibit a strong correla-
tion exceeding any classical approach. Quantum mechanics also states that in general
it is impossible to measure the quantum properties of a system without changing them.
The vivid research field of quantum information makes use of these special properties
to improve the quality of communication and information processing tasks. In gen-
eral, a quantum field can be described by the number-operator or alternatively by two
non-commuting position and momentum-like operators. It depends on the quantum
picture of the measurement apparatus, which of the two is appropriate for the descrip-
tion of the experiment. The corresponding measurement results have either discrete
or continuous spectra and form the basis of discrete-variable or continuous-variable
quantum information, respectively. Within the frame of this thesis we work in the con-
tinuous variable regime. Here, entangled states of light can be generated in a reliable
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and deterministic way by optical parametric amplifiers (OPAs). The states can be pre-
cisely manipulated with linear optics. The final measurements can be based on highly
efficient balanced homodyne detectors. These entangled two-mode squeezed states
show Gaussian probability distributions and were used for quantum teleportation [4]
and entanglement swapping [5], [6]. In analogy to two-mode squeezed states of the
light field, entangled states of the collective spins of two atomic ensembles have been
generated [7]. Linking light and matter, the storage of quantum states of light in an
atomic memory has been demonstrated [8]. The teleportation from a light-based state
onto an atomic ensemble has been reported [9]. High-speed quantum cryptography
with coherent light beams and homodyne detection has been demonstrated [10]. All
these spectacular achievements reveal the great potential of this approach to quantum
information processing.

The distribution of entangled states of light over long distances is a major challenge
in the field of quantum information. However, due to the fragile nature of entangled
states, environmental interactions such as optical losses, phase diffusion and mixing
with thermal states lead to decoherence and destroy the non-classical properties after
some finite transmission-line length. Obviously the first strategy to keep these effects
small is to prevent the environmental interaction by using for example optical fibres
with a small absorption coefficient. Yet, this strategy is not sufficient in many cases. For
arbitrary distances, analogous to classical communication, repeaters can be inserted into
the transmission line. Quantum repeater protocols [11], [12] were proposed to overcome
this problem. These devices combine quantum memory [8], entanglement distillation
[13], [14] and entanglement swapping [15]. The longer the distance the more repeater
stages have to be used. A missing piece in this toolbox has been a feasible protocol for
entanglement distillation and purification.

Entanglement distillation [13, 14] extracts from several shared copies of weakly en-
tangled mixed states a single copy of a highly entangled state using only local quantum
operations and classical communication (LOCC) between the two parties sharing the
states. This procedure has to be applicable in an iterative way for a long distance sce-
nario or in order to completely counteract the decoherence. In the continuous-variable
regime this turned out to be a very challenging task. This regime is mainly based on
linear optics, parametric amplification and homodyne detection. All these devices per-
form Gaussian operations. This characterizes the class of operations, which preserve
the Gaussian properties of a state. It was proved that it is impossible to distil Gaussian
entangled states by means of the experimentally accessible Gaussian operations [16, 17].
Though, a whole class of important decoherence processes give rise to non-Gaussian
noise and therefore produce non-Gaussian entangled states. It has been shown [18]
that in this case the entanglement distillation can be carried out using only interference
on beam splitters, balanced homodyne detection and conditioning on the measurement
outcomes. Precursor experiments confirmed this by successful demonstrations of dis-
tillation and purification protocols for single squeezed modes that suffered from de-
Gaussifying noise [19, 20, 21, 22].

Within this thesis the results of the first experimental implementation of an iterative
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entanglement distillation scheme are presented. A brief description of the underlying
theory is provided in Chapter 2. This includes a short presentation of the theoretical
model of the distillation scheme, which is based on the work of J. Fiurášek et al. [18]. In
Chapter 3 a detailed description of the individual components of the experiments can
be found. The main experiments and the results are presented in Chapter 4. The experi-
mental setups are described in terms of the components from the previous chapter. The
focus is set on the linking elements and the presentation of the results. A discussion of
the results can be found in Chapter 5.





CHAPTER 2

Theory

This section gives a brief description of the theoretical environment which the results
of this work live in. It is short and as such it is not meant to be complete. It is rather a
compilation of fundamental considerations plus details about purification and distilla-
tion. For a detailed description, see either of the books [23, 24, 25] and the indovdual
references. We use the standard bra-ket notation |n〉 and denote operators with a hat,
e.g. â. The Planck constant h̄ is set to unity unless noted differently.

2.1 Notation

We postulate that the electric field strength Ê for a single spatial mode for a single
frequency, see Page 28, characterized by u(~x, t) is given by:

Ê = u∗(~x, t)â + u(~x, t)â†, (2.1)

with the bosonic annihilation operator â for the amplitude, which are subject to the
commutation relation:

[â, â†] = 1 . (2.2)

The number of photons in the considered mode is counted by:

n̂ = â† â , (2.3)

which we use for the phase shift operator Û(θ) = e−iθn̂, that shifts the phase of â by the
amount θ:

Û(θ)† âÛ(θ) = â e−iθ. (2.4)
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2.1.1 Continuous Variables / Phase Space

Based on the amplitude operator we define the Hermitean operators q̂ for the amplitude
quadrature and p̂ for the phase quadrature:

q̂ = σ(â† + â), p̂ = iσ(â† − â). (2.5)

Commonly, the scaling factor σ is set to σ =
√

1/2 , which leads from Equation 2.2 to
the commutation relation of conjugate observables:

[q̂, p̂] = i . (2.6)

Sometimes it is preferable to set the scaling factor differently. The uncertainty limit for
q̂ and p̂ reads:

∆q̂∆p̂ ≥ σ2. (2.7)

In case of the vacuum state the limit is met and the individual uncertainties are equal.
For the variance Vq,vac of the q̂ quadrature we obtain:

Vq,vac(∆q̂)2 = σ2. (2.8)

This quantity can be measured experimentally and is often used to normalize the whole
apparatus the quantum scale. In this situation it is sometimes more convenient to con-
sider σ = 1 as a reference. For a squeezing experiment this scaling is often circum-
vented by quantifying the squeezed variance Vsqz on a Decibel scale: 10 log10(Vsqz/Vvac),
which is unique, independent of the scaling σ.

Quadrature Eigenstates

The eigenstates |q〉 and |p〉 of the quadrature operators are defined by:

q̂ |q〉 = q |q〉 , p̂ |p〉 = p |p〉 . (2.9)

Being orthogonal and complete they can be used as a basis for the state space, see Sec-
tion 2.1.2 for the Wigner function. The probability density prd(q) for e.g. the q̂ quadra-
ture is given by the absolute square of the quadrature wave function ψ(q) = 〈q|ψ〉:

prd(q) = |ψ(q)|2. (2.10)

In the experiment this is measured by homodyne detection, see Section 2.3.1.
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Fock States

Fock states are the eigenstates of the photon number operator:

n̂ |n〉 = n |n〉 . (2.11)

They are also complete and orthogonal and have discrete eigenvalues. This allows to
represent a state ρ̂ by the matrix:

ρmn = 〈m| ρ̂ |n〉 . (2.12)

In Section 2.3.2 we use their wave functions:

ψn(q) =
Hn(q′)√
2nn!

√
π

e−q2/2, (2.13)

for the reconstruction of the density matrix ρmn from balanced homodyning measure-
ments. Here, Hn denote the Hermite polynomials.

Glauber States

The light field created by a laser of high quality comes close to a Glauber state. These
states are also called coherent states, and defined as eigenstates of the annihilation oper-
ator (analogous the classical amplitude):

â |a〉 = α |a〉 . (2.14)

Coherent states are not orthogonal:

|
〈

α′|α
〉
|2 = e−|α−α′|2 , (2.15)

but complete and we can represent a state in the coherent state basis, see Section 2.1.3
for the P-function.

Squeezed States

In a formal way squeezed states |s〉 are generated by applying the squeezing operator Ŝ:

Ŝ(ζ) = e
1
2 (ζ∗ â2−ζ â†2), (2.16)

on the vacuum state |0〉:
|s〉 = Ŝ(ζ) |0〉 . (2.17)

Under squeezing with a real squeezing parameter ζ the quadrature operators transform
like:
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Ŝ†(ζ)q̂Ŝ(ζ) = q̂ e−ζ,

Ŝ†(ζ) p̂Ŝ(ζ) = p̂ e+ζ . (2.18)

One quadrature gets compressed including its quantum fluctuations and the other gets
stretched, that is the reason why squeezing is called squeezing. The vacuum state has
equal variances for both quadratures. After a squeezing operation this is no longer the
case and the variances for the squeezed vacuum read:

Vs = (∆q)2 = 1
2 e−2ζ ,

Va = (∆p)2 = 1
2 e+2ζ , (2.19)

with σ =
√

1/2 in the quadrature definition, Equation 2.5. For a complex ζ the phase
determines the orientation of the squeezing effect in quadrature phase space.

2.1.2 Wigner Function

The Wigner function W(p, q) [26] is an unique representation of a quantum state de-
scribed by the density operator ρ̂:

W(q, p) =
1

2π

∞∫

−∞

〈
q − x

2

∣∣∣ ρ̂
∣∣∣1 +

x

2

〉
dx . (2.20)

The probability density prdφ(qφ) for a rotated quadrature qφ = q cos φ + p sin φ is ob-
tained by a projection of the Wigner function for the corresponding direction:

prdφ(q) =

∞∫

−∞

W(q cos φ − p sin φ, q sin φ + p cos φ) dp . (2.21)

A remarkable property is the overlap formula, which provides the possibility to calcu-
late the expectation value for an operator F̂:

tr(ρ̂F̂) = 2π

∞∫

−∞

∞∫

−∞

W(q, p)WF̂(q, p) dq dp , (2.22)

with WF̂(q, p) for the Wigner function obtained by replacing ρ̂ with F̂ in Equation 2.20.
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2.1.3 Glauber-Sudarshan P-function

In the same year of 1963, Glauber [27] and Sudarshan [28] invented the P-function by
assuming a state ρ̂ to be composed of coherent states |α〉:

ρ̂ =

∞∫

−∞

∞∫

−∞

P(q, p) |α〉 〈α| dq dp , (2.23)

with α = 1/
√

2 (q + ip). In general, the P-function cannot be well-behaved like a prob-
ability distribution. If this were the case, all quantum states except for the coherent
states themselves would be classical mixtures of coherent states. This implies that all
pure states, too, would appear as a statistical mixture of coherent states. Already for co-
herent states, which in a sense mark the border between the classical and the quantum
world, the P-function is a singular δ-distribution. Any P-function, which is more singu-
lar than a δ-distribution or negative, is considered to represent a non-classical state. In
general, it does not even exit for all quantum states.

The P-function and the Wigner function are connected via a convolution with a Gaus-
sian function corresponding to the vacuum:

W(q, p) =
1
π

∞∫

−∞

∞∫

−∞

P(q′, p′) e−(q−q′)2−(p−p′)2
dq′ dp′. (2.24)

The convolution turns into a simple product for the respective characteristic functions,
i.e. the Fourier transforms:

W̃(u, v) = P̃(u, v) e−
1
4 (u2+v2), (2.25)

in polar coordinates:

W̃(ξ, φ) = P̃(ξ, φ) e−
1
4 (ξ2). (2.26)

As we know from Section 2.1.2, W̃(ξ, φ) equals the characteristic functions of the prob-
ability densities p̃rdφ(ξ) for the quadrature angle φ. Thus, W̃(ξ, φ) must be always
well-behaved and the same must be valid for P̃(ξ, φ).

2.2 Purification and Distillation

2.2.1 Purity of Quantum States

In order to discriminate, whether a state described by the density operator ρ̂ is pure or
mixed, fundamentally the von Neumann entropy S can be used [29]:

S = −tr(ρ̂ ln ρ̂), (2.27)
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which gives S = 0 only for a pure state and S > 0 for any mixed state. The purity µ
with:

µ = trρ̂2, (2.28)

represents a more easily computable quantity with µ = 1 for pure states and µ < 1
for mixed states. This can be seen from the diagonal representation of ρ̂. The elements
represent probabilities. Hence, they are positive and not larger than 1:

trρ̂2 = ∑
k

ρ2
k ≤ ∑

k
ρk = 1 . (2.29)

Within the valid range of ρk we find 1 − ρk ≤ − ln ρk. This gives a lower bound for the
von Neumann entropy:

S ≥ 1 − µ . (2.30)

For Gaussian states, which are represented by the covariance matrix γ, the purity is
given by:

µ =
1√

det γ
, (2.31)

with det denoting the determinant. This property follows from the Wigner overlap
formula, see Equation 2.98.

2.2.2 Phase-Diffused Squeezed States

In general, a squeezed state can have an arbitrary orientation in phase space, denoted
by the rotation angle φ starting from an amplitude squeezed state. The Wigner function
of such a state with the rotated quadratures qφ = q cos φ + p sin φ and pφ = −q sin φ +
p cos φ reads:

Wr[q, p, φ] =
1

2π
√

VsVa
e−

q2
φ

2Vs
−

p2
φ

2Va . (2.32)

The variances of the squeezed and anti-squeezed quadratures are denoted Vs and Va.
The probability distribution prdq(q, φ) of the amplitude quadrature can be obtained via
integration over p:

prdq(q, φ) =

∞∫

−∞

Wr[q, p, φ] dp (2.33)

=
1√

2πVq(φ)
e
− q2

2Vq(φ) , (2.34)
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with the variance of the amplitude quadrature Vq(φ):

Vq(φ) = Vs cos2 φ + Va sin2 φ (2.35)

=
1
2

[Vs + Va + (Vs − Va) cos 2φ] . (2.36)

A phase-diffused squeezed state is a statistical mixture of squeezed states with a rota-
tion corresponding to the phase diffusion. The Wigner function Wd(q, p) of the diffused
state with the probability density of the diffusion phase denoted Φ(φ) reads:

Wd[q, p] =

∞∫

−∞

Φ(φ)Wr[q, p, φ] dφ . (2.37)

q

p

Wigner function

q

p
rd

(q
)

probability distribution
of amplitude quadrature

Figure 2.1 - Left: Wigner function of a phase-diffused squeezed state with an initial squeezed variance
of −10 dB and σφ = 0.6. Note the shape of the contour lines is not at all an ellipse as for a
squeezed state. Right: probability distribution of the amplitude quadrature (blue) compared
to a Gaussian fit (red). The state is obviously non-Gaussian.

For the variance Vq,d of the amplitude quadrature of such a state we obtain:

Vq,d =

∞∫

−∞

Φ(φ)Vq(φ) dφ . (2.38)

For the experiments presented in Chapter 3 the phase diffusion was Gaussian with zero
mean, characterized by the standard deviation σφ. In this case we can solve Equation
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2.38 and obtain for the variance Vq,g of the amplitude quadrature:

Vq,g(σφ) =
1
2

[
Vs + Va + (Vs − Va) e−2σ2

φ

]
. (2.39)

Note that the variances are insufficient to describe a phase-diffused squeezed state. See
Figure 2.1 for the Wigner function and the probability distribution of the amplitude
quadrature, which would be squeezed without phase diffusion.

2.2.3 Distillation of Phase-Diffused Squeezed States

LO

BHD I

BHD II

to DAQphase diffused
squeezed states

to DAQ

BSPUR

LO

Figure 2.2 - Scenario for the purification/distillation of phase-diffused squeezed states. Two copies of a
phase-diffused squeezed state are superimposed on a balanced (50/50) beam-splitter (BSPUR).
Two balanced homodyne detectors (BHDI and BHDII) in combination with a digital data ac-
quisition system synchronously recorded time series of measured quadrature values. Note
that the elementary components for the protocol can be considered as a box with two inputs
for phase-diffused squeezed states and an output for the distilled/purified state.

The following section will describe our distillation / purification protocol for phase-
diffused squeezed states and derive the basic properties. For a more general description
see [18, 30]. The frame for this protocol is depicted in Figure 2.2. The protocol prepares
a new state from two phase-diffused states, with more squeezing and a higher purity.
The properties of a phase-diffused squeezed state, which this protocol relies on, can be
found in the previous section.

The quadratures measured with the balanced homodyne detectors (BHD) are termed
q1θ = q1 cos θ + p1 sin θ for the first balanced homodyne detector, BHDI, and q2φ =
q2 cos φ + p2 sin φ for BHDII. The protocol is based on marking the output state valid
or invalid depending on the measurement result of BHDI. A positive purification/dis-
tillation trigger signal will be provided, if |q1θ| < Q with a certain threshold value of Q.
We assume that before phase diffusion the q quadrature of each input beam is squeezed
and that there are no correlations between q and p quadratures. The covariance matrix
of each squeezed mode thus attains a diagonal form, γ = diag(Vs, Va), where Vs and
Va denote variances of q and p quadratures, which are assumed to be of equal value for
both states. For the vacuum state we have Vq = Vp = 1 and the mode will be squeezed,
if Vq < 1. Recall that VqVp ≥ 1 as a consequence of the Heisenberg uncertainty relation.
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Let us assume for a moment that the random phase shifts φj on each mode are fixed.
Let Vqj = Vs cos2 φj + Va sin2 φj and Vqj = Va cos2 φj + Vs sin2 φj, j = 1, 2 denote the
variances of the phase shifted squeezed states impinging on BSPUR. For a fixed φj, the
two-mode state at the output of BSPUR and prior to conditioning measurement is Gaus-
sian. Consequently, the joint probability distribution of quadratures q1θ of mode 1 and
q2 of mode 2 at the output of BSPUR is also Gaussian and reads:

P12(q1θ, q2) =
1

2π
√

D
exp

[
−Bq2

1θ + Aq2
2 − 2Cq1θq2

2D

]
. (2.40)

Here, D = AB − C2, A and B are variances of quadratures q1θ and q2 evaluated for the
state at the output of BSPUR,

A =
Vq1 + Vq2

2
cos2 θ +

Vp1 + Vp2

2
sin2 θ

+
Va − Vs

4
[sin(2φ1) + sin(2φ2)] sin(2θ),

B =
Vq1 + Vq2

2
. (2.41)

The correlation between the quadratures C = 〈∆q1θ∆q2〉 reads:

C =
Vq1 + Vq2

2
cos θ +

Va − Vs

4
[sin(2φ1)− sin(2φ2)] sin θ . (2.42)

The non-normalized distribution of q2 conditional on |q1θ| < Q reads:

Pcond(q2) =
∫ Q

−Q
P12(q1θ, q2) dq1θ . (2.43)

If the phase fluctuations are symmetric, Φ(−φ) = Φ(φ) then the mean value of the
quadrature q2 of the purified state will be zero. This is assumed to be the case through-
out this thesis. Under these conditions the variance Vout of the quadrature q2 becomes
equal to 〈q2

2〉 calculated from the conditional probability distribution (Equation 2.43),
averaged over all random phase shifts and properly normalized,

Vout =
1
P
∫

φ1

∫

φ2

∫ ∞

−∞
q2

2Pcond(q2) dq2Φ(φ1)Φ(φ2) dφ1 dφ2 , (2.44)

where:

P =
∫

φ1

∫

φ2

∫ ∞

−∞
Pcond(q2) dq2Φ(φ1)Φ(φ2) dφ1 dφ2 , (2.45)

is the probability of successful purification/distillation. The integration over q2 can be
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explicitly carried out and after some algebra we arrive at:

Vout =
1
P
∫∫ [

B erf
(

Q√
2A

)
−
√

2
π

C2Q

A3/2 e−
Q2
2A

]
Φ(φ1)Φ(φ2) dφ1 dφ2 . (2.46)

We also obtain a simplified formula for the success probability:

P =
∫

φ1

∫

φ2

erf
(

Q√
2A

)
Φ(φ1)Φ(φ2) dφ1 dφ2 . (2.47)

For comparison we refer to the variance of the q quadrature of the phase-diffused state
before purification/distillation:

Vin =
∫

φ
(Vq cos2 φ + Vp sin2 φ)Φ(φ)dφ . (2.48)

Successful purification/distillation increases the squeezing, which is indicated by Vout <

Vin. Note that Vout ≥ Vx would always hold as the purification/distillation cannot re-
duce Vout below the variance Vx of the original state before transmission through a
noisy channel. However, the method can restore the squeezing lost due to the phase
fluctuations (or other non-Gaussian noise). After purification/distillation, the state also
becomes Gaussified and its purity increases [18, 21, 22], which clearly demonstrates
that our method meets all requirements imposed on a proper purification/distillation
protocol.

This protocol can be extended for more than two input copies, see [30].

2.2.4 Entanglement

In general, a pure bipartite state |ψ〉 with the subsystems labeled a, b is a linear combi-
nation of tensor products of states of the subsystems:

|ψ〉 = ∑
kl

ckl |ak〉a |bl〉b . (2.49)

According to [31] a basis exists for each subsystem {|uk〉a} and {|vk〉a}, for which the
so-called Schmidt decomposition reads:

|ψ〉 = ∑
k

ck |uk〉a |vk〉b . (2.50)

The state will be entangled, if and only if more than one nonzero coefficients, the
Schmidt rank, is needed for this decomposition. For a general mixed state ρ̂ab it was
shown [32] that the quantum state of the bipartite system will be separable, i.e. not
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entangled, if it is a mixture of product states of the subsystems:

ρ̂ab = ∑
k

ckρ̂k,a ⊗ ρ̂k,b . (2.51)

This property, in general, is hard to judge, but a convenient criterion for the separability
based on the transposition of one of the subsystems was found in [33]. For separable
states the partial transposition:

ρ̂Ta

ab = ∑
k

ckρ̂T
k,a ⊗ ρ̂k,b , (2.52)

yields again a density operator, i.e. an operator with unit trace and nonnegative ele-
ments in the diagonal form, because ρ̂T

k,a = ρ̂∗k,a is a valid density operator. This condi-
tion is necessary for separable states. Thus, the existence of a single negative eigenvalue
of ρ̂Ta

ab is a sufficient condition for entanglement. This is called the npt-criterion (negative
partial transpose).

Based on the partial transposition a quantity called the logarithmic negativity EN can
be defined [34]:

EN = log2 ‖ρ̂Ta

ab‖1 = log2 tr
√

ρ̂Ta∗
ab ρ̂Ta

ab , (2.53)

with ‖ · ‖1 denoting the trace norm. The logarithmic negativity can be regarded as a
measure for the npt-ness of the state and thus for the strength of the entanglement.

2.2.5 Gaussian Entanglement – Two Mode Squeezing

Here we describe the kind of entanglement, which we prepared in the experiment. For
a detailed description, see e.g. [35]. We take two squeezed modes as described in Equa-
tion 2.18 with the squeezing parameters ζ1 and ζ2:

q̂i = e−ζi q̂
(0)
i , p̂i = e+ζi p̂

(0)
i , (2.54)

with the superscript (0) indicating the vacuum state. These states are superimposed on
a 50:50 beam splitter, for which the two output amplitudes b̂1,2 are related to the two
inputs â1,2 by:

b̂1 =
1√
2

(â1 + â2),

b̂2 =
1√
2

(â1 − â2), (2.55)

with â1,2 chosen to be in phase for the interference. The input-output relations for the
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quadratures are identical. With q̂bi and p̂bi for the quadratures of b̂i we obtain:

q̂b1 =
1√
2

(q̂1 + q̂2) =
1√
2

( e−ζ1 q̂
(0)
1 + e−ζ2 q̂

(0)
2 ),

p̂b1 =
1√
2

( p̂1 + p̂2)=
1√
2

( e+ζ1 p̂
(0)
1 + e+ζ2 p̂

(0)
2 ),

q̂b2 =
1√
2

(q̂1 − q̂2) =
1√
2

( e−ζ1 q̂
(0)
1 − e−ζ2 q̂

(0)
2 ),

p̂b2 =
1√
2

( p̂1 − p̂2)=
1√
2

( e+ζ1 p̂
(0)
1 − e+ζ2 p̂

(0)
2 ). (2.56)

If we choose an equal amount of squeezing and equal orientation of the squeezing
ellipses: ζ = ζ1 = ζ2, we will find:

q̂b1 = e−ζ2 q̂
(0)
b1 ,

p̂b1 = e+ζ2 p̂
(0)
b1 , (2.57)

and the same for the other output with q
(0)
b1 denoting the vacuum output mode derived

from Equation 2.55. In this case there is obviously no entanglement, as the two output
modes can be expressed independently.

In contrast, if we choose a perpendicular orientation: ζ = −ζ1 = ζ2, we will find:

q̂b1 = cosh ζ q
(0)
b1 + sinh ζ q

(0)
b2 ,

q̂b2 = cosh ζ q
(0)
b2 + sinh ζ q

(0)
b1 , (2.58)

and the same for the p quadratures. Here we cannot see the separation of the former
case. We can see the entanglement by looking at the covariance matrix γ of the four
output quantities q̂b1, q̂b2, p̂b1, p̂b2. For Gaussian states as considered here, this is an
unique description of the state. For this purpose we go back to Equation 2.56, because
there we have independent mode operators q̂

(0)
i , p̂

(0)
i and find:

γ =




cosh 2ζ 0 sinh 2ζ 0

0 cosh 2ζ 0 − sinh 2ζ

sinh 2ζ 0 cosh 2ζ 0

0 − sinh 2ζ 0 cosh 2ζ


 , (2.59)

which we normalized to the quadrature variance of the vacuum state. On the diagonal
we see that the individual quadratures are very noisy. We also find a correlation of the
two amplitude quadratures and an anti-correlation in the phase quadratures, leading
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to the fact, that the difference of the q quadratures and the sum of the p quadratures
each are very quiet:

〈(q̂b1 − q̂b1)
2〉

〈(q̂
(0)
1 )2〉

= 2 e−2ζ ,

〈( p̂b1 + p̂b1)
2〉

〈( p̂
(0)
1 )2〉

= 2 e−2ζ . (2.60)

This is equivalent to the EPR Gedanken-experiment [1], which the so called EPR-criterion
for the presence of entanglement in the EPR sense was derived from in [36, 37] and ap-
plied in e.g. [38]. In the idealized case considered here this boils down to the inequality:

〈(q̂b1 − q̂b1)
2〉

〈(q̂
(0)
1 )2〉

〈( p̂b1 + p̂b1)
2〉

〈( p̂
(0)
1 )2〉

≥ 1 , (2.61)

which will be violated, if the entanglement is strong enough to demonstrate the EPR-
paradox, i.e. if by measuring qb1, pb2 an inference of qb2, pb1 is more accurate than the
vacuum fluctuation will allow. Under these idealized conditions this is the case for a
squeezing factor of -3 dB for the two input modes.

For our experiments we will take the simpler approach to generate so-called v-class
entanglement [39] by using only one squeezed field and a vacuum field. For the cor-
responding calculation this means ζ2 = 0 and ζ1 = ζ. The corresponding covariance
matrix γv reads:

γv =
1
2




1 + e−2ζ 0 1 − e−2ζ 0

0 1 + e+2ζ 0 1 − e+2ζ

1 − e−2ζ 0 1 + e−2ζ 0

0 1 − e+2ζ 0 1 + e+2ζ




, (2.62)

which again is normalized to the quadrature variance of the vacuum state. For the
difference/sum of the q/p quadrature we find:

〈(q̂b1 − q̂b1)
2〉

〈(q̂
(0)
1 )2〉

= 2 e−2ζ ,

〈( p̂b1 + p̂b1)
2〉

〈( p̂
(0)
1 )2〉

= 1 . (2.63)

In the perfectly lossless case more than -6 dB of input squeezing is required for the EPR-
criterion. For the characterization of the experiment we chose a weaker criterion for
separability, which is derived in [40] and solely based on the Heisenberg uncertainty
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and the Cauchy-Schwarz inequality. This criterion does not assume Gaussian states:

I =
〈(aq̂b1 − 1

a q̂b1)
2〉 + 〈(ap̂b1 + 1

a p̂b1)
2〉

〈(q̂
(0)
1 )2〉

≥ 2
(

a +
1
a

)
. (2.64)

We term I the total variance, which necessarily fulfills the inequality for separable states,
with a being an arbitrary nonnegative real number. See [38] for an experimental inves-
tigation of different entanglement criteria.

2.2.6 Phase-Diffused Entangled States

Relating to the experiments we restrict ourselves to the special case of Gaussian entan-
gled states as considered in the previous section. In order to describe a phase-diffused
entangled state, we use the four dimensional quadrature phase space with the labeling
(q1, p1) for the quadratures of the first subsystem and (q2, p2) for the second. We follow
the approach of Section 2.2.2 and use the two-mode Wigner function. Analogous to
the single mode case in Section 2.1.2, a projection on a plane [q1θ1 , q2θ2 ] yields the joint
probability distribution P(q1θ1 , q2θ2) for the quadratures q̂iθi

= q̂i cos θi + pi sin θi. For
Gaussian states with the covariance matrix γ the Wigner function reads [35]:

W(ξ) =
1

4π2V2
0

e−
1

2V0
ξγ−1ξ , (2.65)

with ξ = (q1, p1, q2, p2). Keep in mind that γ is normalized to the quadrature variance
of the vacuum V0 = 〈(q̂

(0)
1 )2〉. For the Wigner function of the s-class entanglement from

the previous section we obtain:

W(ξ) = 1
4π2V2

0
e−[ e−2ζ(q1+q2)

2+ e−2ζ(p1−p2)
2+ e+2ζ(q1−q2)

2+ e+2ζ(p1+p2)
2]/4V0 . (2.66)

Let us now analyze the phase diffusion of such state, by for a moment assuming a
fixed phase shift θ1 for the first subsystem and θ2 for the second. This corresponds to
a rotation of the quadratures: q̂iθi

= q̂i cos θi + pi sin θi and q̂iθi
= p̂i cos θi − qi sin θi.

The Wigner function of the phase shifted state is obtained from Equation 2.66 insert-
ing the rotated quadratures: W(q1θ1 , p1θ1 , q2θ2 , p2θ2). After some algebra we find the
discrepancy of the phase shifted state to the initial one of Equation 2.66. There are two
extra terms in the square brackets of the exponential, which read: (p1 p2 − q1q2)[cos(θ1 +
θ2) − 1] − (q1p2 + p1q2) sin(θ1 + θ2) sinh 2ζ.

We find that the discrepancy depends only of the sum of the individual phase shifts.
In order to characterize the phase diffusion we can use the probability distribution Φ(θ)
of the sum of the individual phases θ = θ1 + θ2. Like in Section 2.2.2 the phase-diffused
state represented by Wd is a mixture of rotated states according to the probability dis-
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tribution of the phase noise:

Wd(ξ) =

∞∫

−∞

W(q1θ1 , p1θ1 , q2θ2 , p2θ2)Φ(θ) dθ . (2.67)

2.2.7 Distillation of Phase-Diffused Entangled States
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Figure 2.3 - Sketch of the entanglement distillation scenario. Source 1 and 2 each generate a pair of en-
tangled modes, which are considered to be copies. Each of the four fields are affected by
independent phase diffusion Φ1...4. Alice and Bob superimpose their halves of the entangled
states on a 50:50 beam splitter (BSDa,b). Balanced homodyning (BHD) was performed on one
of the outputs of each beam splitter. A trigger for the validity of the output is generated via
classical communication (CC).

We assume a scenario, which requires the distribution of an entangled two-mode
squeezed state to Alice and Bob, see Chapter 1. During the distribution the transmitted
states suffers from decoherence caused by random phase shifts for each of the subsys-
tems. From the previous section we already know, that only the sum of the individual
phases is relevant. The distillation procedure we describe here requires only local oper-
ations and classical communication, as depicted in Figure 2.3. A detailed analysis can
be found in [18]. As an input the procedure needs two copies of phase-diffused entan-
gled states. Alice and Bob each superimpose the parts of the states they received (A1,
A2 and B1, B2) on a balanced beam splitter, Figure 2.3 (BSDa,b). The interference is con-
trolled such, that without phase diffusion it would appear in phase. They each perform
a balanced homodyne measurement of the q-quadratures of one of the superimposed
fields At and Bt. This means Alice measures: qA = 2−1/2(qA1 − qA2), and Bob measures:
qB = 2−1/2(qB1 − qB2). They combine their measurement results via classical commu-
nication and calculate the difference: δq = 2−1/2(qA − qB). This displays the trigger
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signal for the success of the distillation protocol. It will succeed, if |δq| < Q turns out to
be smaller than a certain adjustable value Q, similar to squeezing distillation protocol
from Section 2.2.3.

Two-mode squeezing exhibits squeezing in the two commuting quadratures: q− =
2−1/2(qAo − qBo), and: p+ = 2−1/2(pAo + pBo). We quantify our entanglement by means
of the total variance from Equation 2.64:

I = 〈(q̂−)2〉 + 〈( p̂+)2〉 . (2.68)

Although the total variance is not a true entanglement measure for non-Gaussian states,
it still quantifies the amount of non-local correlations and is easy accessible in the exper-
iment. By applying the protocol both variances 〈(q̂−)2〉 and 〈( p̂+)2〉 will be decreased.
Regarding q− the situation is exactly equivalent to squeezing distillation as both the
output q− and the trigger δq represent the (non-local) squeezed quadratures. Thus we
can use the same equations as in Section 2.2.3. The two independent phase fluctuations
are in this case: φ1 = φa1 + φb1, and: φ2 = φa2 + φb2. In order to figure out the effect on
the p+ quadrature we again for a moment assume fixed phase shifts φ1 and φ1. In this
case measurements of both p+ and δq show a Gaussian distribution with the variance
A from Equation 2.41. For this instant our trigger condition |δq| < Q is satisfied with
a probability according to the error function erf(Q/

√
2A ). This quantity gives us the

weights for averaging the variance of p+ properly over the phase distributions Φ1(φ1)
and Φ2(φ2):

〈(p+)2〉 =
1
P

∞∫

−∞

∞∫

−∞

A erf
(

Q√
2A

)
Φ1(φ1)Φ2(φ2) dφ1 dφ2, (2.69)

with P is the overall success probability given in Equation 2.47. This weighted aver-
aging can be understood such , that momentarily large values for A are suppressed by
the momentarily small success probability erf(Q/

√
2A ). Thus in the average for the

variance of p+ their contribution is attenuated.

For the experiments of Section 4.11 and Section 4.4 we used v-class entanglement,
which is not explicitly treated here. The course of reasoning should be very similar,
although due to the asymmetry of v-class entanglement the individual phases must be
taken into account rather than their sums. Yet we warrantably confided in the proper
functionality of the protocol, which was confirmed by the experiments, see Section 4.11
. The protocol presented here can also be applied in an iterative way, as it provides the
entangles output state in two open output port, which can be fed into another subse-
quent distillation stage, see Section 4.4.
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2.3 Quantum State Measurement

2.3.1 Homodyne Detection

Virtually every continuous variable quantum optics experiment relies on homodyne
detection of one or the other kind. It is based on the detection of the beat note be-
tween a strong coherent field and the signal field whose quadrature distributions are
to be measured. Usually pin-photodiodes are used as photo-sensitive elements. A pin-
photodiode is an insulator for a reverse bias voltage unless an electron is pushed over
the band gap by the energy of a photon. Thus, the electrical current IPD = ec〈n̂〉D is
proportional to the photon flux of the incident field on the detector surface D. In this
section n̂ denotes the photon flux. Following [23], we can express n̂ in terms of the flux
density operator φ̂(~x, t) of the incident field:

n̂ =
∫∫

D
φ̂†(~xD, t)φ̂(~xD, t) d2xD , (2.70)

with D indicating the integration over the detector surface. For a single frequency ω
the flux operator reads φ̂(~x, t) = âv(~x) e−iωt, with the spatial shape determined by v(~x).
As subject to the Helmholtz equation the spatial shape function must be composed of
eigenfunctions {vi} of the Laplace operator, which are orthonormal:

∞∫

−∞

∞∫

−∞

∞∫

−∞

v∗i (~x)vj(~x) d3x = δij . (2.71)

Assuming that the detector surface is large enough to cover the whole beam profile,
the finite integration limits over the detector surface in Equation 2.70 can be extended
over the whole x-y plane. Additionally we consider only beam-like fields propagating
toward the detector surface in z-direction. This allows us to use the paraxial approxima-
tion and treat z as a time-like variable z = ct. A real photo diode has a finite band width
corresponding to a response time τ greater than zero. This means the detector performs
a temporal averaging of the incident photon flux, i.e. an integration over z = ct:

IPD(t) ∝
1
τ

〈 t′+τ∫

t′

∞∫

−∞

∞∫

−∞

φ̂†(~xD, t)φ̂(~xD, t) dx dy dt′
〉

. (2.72)

The simplest version of a homodyne detector is a single photo diode illuminated by
a bright beam φ̂D = φ̂LO + φ̂s consisting of a single strong (classical) coherent field
φLO = αLOvLO eiωt with αLO chosen to be real and a weak signal component φ̂s =

∑k âk(t)vk eiωt. Note that different spectral components of φ̂s are expressed by âk(t) =∫ ˜̂ak(Ω) eiΩt dΩ .
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Inserting this into Equation 2.72 we find:

IPD ∝

〈 t′+τ∫

t′

∞∫

−∞

∞∫

−∞

(φ̂LO + φ̂s)
†(φ̂LO + φ̂s) dx dy dt′

〉

≈ α2
LO + αLO

〈

∑
k

t′+τ∫

t′

∞∫

−∞

∞∫

−∞

(âk(t) + â†
k(t))v∗kvLO dx dy dt′

〉
+O(â2

k). (2.73)

The linearization in the last line is valid provided that the local oscillator is much
stronger than anything else. Under this condition, it is the spatial mode shape of the
local oscillator and the time τ, which define the detection mode and the corresponding
annihilation operator:

âs(t) =

t′+τ∫

t′

∞∫

−∞

∞∫

−∞

âk(t)v∗kvLO dx dy dt′. (2.74)

Note that the detector bandwidth only sets a lower limit to τ, which is usually deter-
mined by the subsequent apparatus measuring IPD. Finally, we obtain:

IPD ∝ α2
LO + αLO 〈q̂(t)〉 = α2

LO + αLOq(t), (2.75)

with q̂(t) = âs(t) + â†
s (t) denoting the amplitude quadrature operator and q the ampli-

tude quadrature amplitude.
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Figure 2.4 - Sketch of a balanced homodyne detector. The balanced beam splitter is used to superimpose
the signal Φ̂s and the strong local oscillator Φ̂LO. A phase shifter can tune the mutual phase θ
of the local oscillator and the signal.

If not only the amplitude quadrature needs to be measured – like in the case of to-
mography or for the evaluation of entanglement criteria – a more flexible setup will be
required. A balanced homodyne detector, see Figure 2.4 displays exactly this feature.
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A balanced beam splitter is used to superimpose the strong (classical) local oscillator
ΦLO = [α0

LO + αLO(t)]v(~x) eiωt with noise represented by α0
LO(t) and the signal Φ̂s de-

fined as above. The phase θ of the signal is adjustable and referenced such that for
θ = 0 the two fields are in phase, accounting for all other phase shifts that occur at
the beam splitter. For the output ports of the beam splitter Φ̂± we obtain the sum and
the difference of the two inputs due to the energy conserving phase flip of the beam
splitter:

Φ̂± =
1√
2

(ΦLO ± eiθΦ̂s). (2.76)

Following the above considerations and assuming perfect spatial mode matching of the
two fields we obtain for currents I± of the two detector in the output ports PD+ and
PD−:

I± ∝ [α0
LO + αLO(t)]2 ± [α0

LO + αLO(t)]〈 eiθ âs + e−iθ â†
s 〉+ 〈â†

s âs + h.c.〉. (2.77)

If we assume that α0
LO will by far be the strongest component the difference of the two

detector currents ID = I+ − I− simplifies to:

ID ∝ α0
LO〈 eiθ âs + e−iθ â†

s 〉

=: α0
LO〈q̂θ〉, (2.78)

with q̂θ = q̂ cos θ + p̂ sin θ being a rotated quadrature in phase space, which is com-
posed of the amplitude quadrature q̂ and the phase quadrature p̂. Hence, a BHD can
measure a rotated quadrature component of the signal field with the rotation angle de-
termined by the mutual optical phase of signal and local oscillator. Also note that the
noise on the local oscillator is canceled by the subtraction.
On the other hand, the sum of the two detector currents: IS = I+ + I− does not contain
the interference terms:

IS ∝ [α0
LO + αLO(t)]2 + 〈â†

s âs + h.c.〉. (2.79)

This equals the sum of the individual detection of the local oscillator and the signal.

For a typical experiment however, there is usually a lot of technical noise in the low
frequency components of âs and hence also in ID, which covers any quantum signal.
This necessitates to observe only those parts of the spectrum, which are free of technical
noise. Without loss of generality we consider only the amplitude quadrature. With the
tilde denoting the Fourier transform we obtain:

ĨD(Ω) ∝ 〈˜̂q(Ω)〉

= 〈 ˜̂as(Ω) + ˜̂a†
s (Ω)〉

= 〈 ˜̂as(Ω) + ˜̂as
†
(−Ω)〉, (2.80)
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with the last line being the property of the Fourier transform under conjugation. Thus,
the frequency components of ID correspond to two fields at different optical frequen-
cies centered around the fundamental frequency ω. We call this a modulation mode,
see [41, 42]1 for the algebra, which turns out to behave just like ordinary bosonic opera-
tors. The modulation modes perfectly suit the description of an OPA, which emits pairs
of photons with frequencies ω ± Ω. Note that a mean value of q̃(Ω) or p̃(Ω) different
from zero corresponds to a classical amplitude or phase modulation at the frequency
Ω. This means that coherent states of the modulation mode are classical modulations.
In summary, the detection mode of a BHD is defined by the mode – the spatial shape,
the frequency and polarization – of the local oscillator, the time for which the photocur-
rent is recorded and the choice of spectral components of the BHD signal.
Regarding the spatial mode matching a special case related to many experimental im-
plementations can be considered. In most cases the signal under consideration is pre-
pared in a single spatial mode (TEM00) while all other modes carry the vacuum. The
experimentalist’s goal is to match this signal mode to the local oscillator at the BHD
which works really good but not perfect. The mode matching is usually quantified by
the visibility v. The light power Po in one of a balanced beam splitter output ports for
fields of equal frequencies at the input ports is given by

Po =
1
2

(
P1 + P2 + 2v

√
P1P2 cos θ

)
, (2.81)

with P1 and P2 being the powers of the input fields and the mutual phase θ of the input
fields in the output port. With respect to θ there is a minimal Pmin and a maximal power
Pmax in the output ports, which – given equal input powers – yields the visibility via:

v =
Pmax − Pmin

Pmax + Pmin
= 1 − 2

Pmin

Pmax + Pmin
≈ 1 − 2

Pmin

Pmax
, for small Pmin . (2.82)

Note that the power is proportional to the flux via the photon energy. How does a
visibility smaller than unity affect the measurement? Using the spatial mode v(~x) of
the local oscillator and vs(~x) of the excited mode of the signal, we define the quantity

√
ηmm =

∫∫∫
v∗s (~x)v(~x) d3x , (2.83)

with vs(~x) referenced such, that a non-negative real number is obtained. From the
annihilation operators â0,k of all modes v0,k of the vacuum part of the signal field, i.e. all
modes but the excited TEM00, the operator âv can be spawned:

√
1 − ηmm âv = ∑

k

â0,k

∫∫∫
v∗0,k(~x)v(~x) d3x . (2.84)

1 Note that Caves and Shumaker term a single squeezed beam two mode squeezing because of the two
optical frequencies at ω ± Ω, which contribute to the squeezing of the modulation mode. Nowadays
in contrast, the term two mode squeezing often refers to an entangled state, which is a superposition of
two squeezed modulation modes. Thus, single mode squeezing usually refers to the squeezing of a single
modulation mode. For Caves and Shumaker this was the degenerate limit (Ω → 0).
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Thus, the annihilation operator â of the mode perfectly matching the local oscillator can
be constructed:

â =
√

ηmm âs +
√

1 − ηmm âv . (2.85)

It can be shown that âv is an ordinary bosonic annihilation operator corresponding to a
vacuum mode. Thus, an imperfect mode matching in this case leads to exactly the same
situation as for loss modelled by a beam splitter with transmittance ηmm. The relation
to the visibility v can be obtained by putting the fields considered here into Equation
2.73 with an extra phase for the signal flux:

v
2 = ηmm . (2.86)

Until now we have assumed a perfect photo detection efficiency. However, a real photo
detector shows an efficiency ηD smaller than unity, which is modeled by a beam splitter
of transmittance ηD in front of an ideal photo detector. In the case of the balanced ho-
modyne detector, Figure 2.4, the fields toward the individual detectors 2−1/2(âLO ± âs)
must be replaced by
2−1/2η1/2

D (âLO ± âs) + (1 − ηD)1/2 âv±. For the sake of clarity we assume a single sig-
nal mode and perfect mode matching and instead of Equation 2.77 for the difference
current we obtain:

ID ∝ αLO

〈
ηDq̂θ +

1
2

√
1 − ηD

√
ηD

(
e−iθ(âv+ − âv−) + eiθ(â†

v+ − â†
v−)
)〉

. (2.87)

This expression is simplified by tracing âv± back through the beam splitter and using a
local oscillator α′

LO =
√

ηD αLO compensating the loss:

ID ∝ α′
LO

〈√
ηD q̂θ +

√
1 − ηD q̂θ,v

〉
, (2.88)

with q̂θ,v corresponding to a vacuum mode which matches the signal. Hence, for bal-
anced homodyne detection non-unit detection efficiency can be modeled by loss on the
signal field.

2.3.2 Quantum State Tomography

The imaging of an object’s cross-sections which in general are located inside the object
and not accessible directly is referred to as tomography. Although not being accessible,
an image of the cross-section can be tomographically reconstructed from its marginal
projections for many different directions [43]. Nowadays, the concept of tomography
displays a widely used imaging and analyzing technique in various fields. Most promi-
nently tomography constitutes an important technique in medical diagnostics. The two
most important techniques are nuclear magnetic resonance tomography and computer-
aided X-ray tomography (CT). The latter gives an ostensive example of the flavour of
tomography:
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Figure 2.5 - Illustration of X-ray tomography. The central picture represents a slice of a human head with
different tissues exhibiting different X-ray absorption. The slice is illuminated with X-rays
from various angles. The stripes distributed around the central picture represent the X-ray
shadow for the corresponding angle. From these shadow images the central image can be
reconstructed via the so called inverse Radon transform.

The various tissues in the human body show different X-ray absorption coefficients,
which attenuate a beam passing through the body according to the integrated absorp-
tion along the direction of propagation. These marginal projections are taken from
many different directions, i.e. the X-ray source and screen are rotated around the body,
yielding a shadow of the cross-section under consideration for each direction, see Figure
2.5 . From these shadows the image of two dimensional cross-sections of the human
body can be reconstructed, see Figure 2.7 and Figure 2.6.

The spatial resolution of the reconstructed image depends on the spatial resolution
of the shadow detector itself, see Figure 2.6. Thus, the size of the smallest structure,
which is intended to be reconstructed, determines the pixel size of the detector. How-
ever, smaller pixels require a higher X-rays flux density to maintain a reasonable signal
to noise ratio for each pixel. Hence, in case of X-ray tomography the acceptable effec-
tive radiation dose limits the pixel size. The effective dose for X-ray tomography varies
in the range of one to ten millisievert (mSv). A typical chest X-ray screening yields
0.1 mSv. In Germany the natural background dose ranges from 0.5 mSv in the northern
lowlands to 2 mSv in the mountains of the Erzgebirge.
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Figure 2.6 - Lower row: Tomographic reconstructions for different spatial resolutions (colums). The an-
gular resolution is fixed at 2◦. The upper row displays the projections for all angles (x-axis).

The angular resolution, i.e. the number of different directions of illumination per rev-
olution has a less obvious impact on the resolution. Here, not only the size but also the
shape and the location of the smallest structure to be resolved is crucial. The stronger
the angular variation of a structures contribution to the absorption is, the higher is the
angular resolution required to resolve this structure. This is displayed in Figure 2.7 .
The tiny light grey disks in the centre already show up in the left most column with
only eight projections, while the three light grey structures in the lower part of the fig-
ure can only be distinguished with the highest angular resolution. However, increasing
the angular resolution necessitates increasing the number of projections and thus the
total X-ray dose.

The above considerations come in handy when it comes to quantum state tomogra-
phy (QT). In general, we cannot determine all properties of a quantum state at a time,
because of Heisenberg’s uncertainty relation. A quantum state cannot be represented
by a single dot in the phase space spanned by two non-commuting observables. We
cannot e.g. determine position and momentum of a particle or amplitude and phase
quadrature of a light mode (one of the objectives of this thesis) simultaneously. What
we want to image is obscured by the thing itself. All we can do, is to measure the projec-
tion of one of these quantities at a time. Believing in the ergodic hypothesis to acquire
the knowledge of the statistics of a state is not necessary to perform measurements on a
whole ensemble, but it is equivalent to prepare many individuals the same way one at
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Figure 2.7 - Lower row: Tomographic reconstruction for different angular resolutions ranging from 22.5◦

to 2◦. The spatial resolution is set to 512 bins. The upper row displays the projections for all
angles (x-axis).

a time and perform measurements on each. With a reliable state preparator it is possi-
ble to measure the probability distribution of e.g. a light mode’s amplitude quadrature
and take it as a states (estimated) probability density for this quantity. At a different
time the phase quadrature or any quadrature rotated arbitrarily in phase space can be
addressed.

In quantum mechanics there is an object in phase space whose marginal projections
for different directions yield the probability densities for the corresponding quantity.
This is the Wigner function, which uniquely characterizes a state. An integral over the
Wigner function in a certain direction in phase space results in the probability density
for the corresponding quantity similar to the integrated X-ray absorption results in the
shadow along the beam direction, see [44]. As this is equivalent in the case of the CT,
the same procedure can be used to reconstruct the Wigner function from its measurable
projections, which is called quantum state tomography. The analogy goes even further.
While in case of CT the imaging quality is limited by the acceptable radiation dose, in
case of QT it is limited by the finite number of ensemble representatives because of a
finite flux of the state preparator on the one hand and a finite time you are able to sit in
the laboratory on the other hand.

Turning to the scope of this thesis, for the quantum state tomography of a light
mode the shadow detection for different directions corresponds to the measurement
of probability distributions prd(qθ) of differently rotated (θ) quadratures qθ , which are
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Figure 2.8 - Left: Wigner function of a bright squeezed state. Right: Marginal probability distribution
with the projection angle θ on the x-axis. For the sake of clarity the projections are shown
for a full revolution, although half a revolution already contains all information as the second
half is nothing more than a mirror image of the first. The angular resolution is 18◦, which is
sufficient for a good reconstruction due to the simple angular structure of the Wigner function.

known to be the marginals of the Wigner function W(q, p), see Section 2.1.2 and Figure
2.8 for an illustration:

prd(qθ) =
∫ ∞

−∞
W(q cos θ − p sin θ, q sin θ + p cos θ) dp . (2.89)

This is experimentally accomplished by varying the optical detection phase of a bal-
anced homodyne detector (BHD), see Section 2.3.1. The histograms of the measure-
ment values for a reasonable amount of samples of the BHD signal form the prob-
ability distribution for the quadrature rotated corresponding to the detection phase:
prd(qθ) = 〈q|Û(θ)ρ̂Û†(θ)|q〉 with the phase shift operator Û(θ), see Section 2.1. Of
course, it is necessary to precisely know the detection phase. Thus, the mutual phase
of signal and local oscillator has to be measured, see Section A.1, where a scheme is
presented, which yields a signal linear in phase for an arbitrary phase. Given this, the
experimental procedure of addressing the necessary phase settings can be used to build
a control loop which controls the homodyne detection phase at a tunable set point from
the predefined set of different phases. Once a phase is set and a reasonable number of
measurements is recorded, the homodyne detector is tuned to the next set point, which
is the procedure for the presented work as well as for the pioneering experiment car-
ried out by Smithey, Beck, Raymer, and Faridani in 1993 [45]. However, sometimes the
experiment is yet too complex or simply not focussed on tomography and a full phase
readout scheme is unavailable. Usually, even in this case there is a signal depending
sinusoidally on the detection phase, which can be used to determine the phase at least
twice per revolution. The phase can then be swept under the assumptions that the
sweep is linear in time or at least representable by a low order polynomial. In the latter
case, a fit of the sinusoidal signal can be used to determine the polynomial coefficients.
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The continuous stream of sampled homodyne data can be sliced into pieces according
to the desired set of phases, see [46]. For an implementation at the AEI, see [47].
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p
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p

Figure 2.9 - Reconstructed Wigner functions of a bright squeezed state with statistical noise correspond-
ing to 100 000 BHD signal samples for each of the ten projections. Left: Filtered back projection
with no additional filtering applied but what is necessary for a stable integration, see Equa-
tion 2.97. Middle: Optimal filtering suppressing the fine ripples caused by statistics without
changing the structure of the Wigner function. Right: Excessive filtering detecting the Wigner
function itself as a ripple.

The reconstruction of the Wigner function from its projections is based on the ap-
proach to Wigner’s formula, Equation 2.20, and the fact, that the characteristic functions
p̃rd(uθ, θ), i.e. its Fourier transform, of the marginal probability distributions are polar
cuts according to the projection angle θ through the characteristic function W̃(u, v) of
the Wigner function:

p̃rd(uθ, θ) = W̃(uθ cos θ, uθ sin θ). (2.90)

The inverse Fourier transform yields the Wigner function from its characteristic func-
tion. In polar coordinates that is:

W(q, p) =
1

(2π)2

∞∫

−∞

π∫

0

W̃(u cos θ, u sin θ)|u| eiu(q cos θ+p sin θ) du dθ

=
1

(2π)2

∞∫

−∞

π∫

0

∞∫

−∞

prd(x, θ) eiu(q cos θ+p sin θ−x) du dθ dx, (2.91)

which is nice to know but lacks usability. As the prd function does not care about the
u-integration, we can introduce the kernel K(z):

K(z) = 1/2
∞∫

−∞

|u| eiuz du, (2.92)
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and obtain a simpler result:

W(p, q) =
1

(2π)2

π∫

0

∞∫

−∞

prd(x, θ)K(q cos θ + p sin θ − x) dθ dx. (2.93)

The kernel, Equation 2.92, can be treated with quite a bit of maths to end up with the
expression K(z) = −P/x−2 for the integral in Equation 2.93 equivalent to Cauchy’s
principal value P, see [23, 48]. This results in a decent expression for the so called in-
verse Radon transform, which shows how to calculate the Wigner function from a given
probability prd(x, θ):

W(p, q) = − P

(2π)2

π∫

0

∞∫

−∞

prd(x, θ)

(q cos θ + p sin θ − x)2 dθ dx. (2.94)

However, a numerical approach certainly requires additional considerations because
of the unbound kernel, which brings us to filtering and the filtered back projection imple-
mentation of the inverse Radon transform. It is reasonable to assume, that the Wigner
function does not oscillate with arbitrary high frequencies and that it tends to zero far
from the origin. Given this a cut off frequency kc can be introduced for Equation 2.92:

K(z) = 1/2
kc∫

−kc

|u| eiuz du (2.95)

= (cos(kcx) + kcx sin(kcx) − 1)/x2 (2.96)

≈ k2
c

2

[
1 − k2

c x2

4
+

k4
c x4

72

]
. (2.97)

A save choice for zc to switch from Equation 2.96 to the numerically stable Equation 2.97
is |kczc| ≤ 0.1. The right choice of kc depends on the structure of the Wigner function,
i.e. its finest structures. A fast implementation of the x convolution in Equation 2.93
can be done using the Fourier transform. The phase integration turns into a sum over
the set of tomographically measured phases. Fortunately, such an algorithm is readily
implemented in MATLAB, which also supports more sophisticated filtering than the
simple cut off. Many interesting things about filtering and the corresponding window
function can be found in e.g. [49]. Additionally, see Section 4.1 about how to directly
sample the characteristic function.

The same considerations as for the single mode tomography above hold in case of
two mode tomography, see [50]. The corresponding four dimensional Wigner func-
tion W(q1, p1, q2, p2) lives in a phase space spanned by the two conjugate quadratures
of each of the two modes involved. A projection of the Wigner function on a plane
q1θ , q2φ yields the joint probability distribution prd(q1θ , q2φ), see Figure 2.10 . This can
be thought of as first projecting in the first mode’s plane to obtain wp(q1θ , q2, p2) and
a subsequent projection in the second mode’s plane to obtain prd(q1θ , q2φ), which is
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Figure 2.10 - Joint probability distributions (big boxes) from two simultaneously sampled BHDs and in-
dividual probability distributions (small boxes surrounding the big ones) of the individual
detectors. In a two mode scheme it is not sufficient to record individual probability distribu-
tions. The individuals look identical in both cases, while only the joint probability distribu-
tions reveal that the two modes in the left case are independent and that there is a correlation
(possibly entanglement) on the right.

identical to two subsequent Radon transforms as described above. Thus, also the inver-
sion is already known. First, prd(q1θ , q2φ) must be inverted with respect to the second
mode, i.e. for each combination of q1θ , θ. The result is wp(q1θ , q2, p2), which now has
to be inverted for every combination of q2, p2 to yield the two mode Winger function
W(q1, p1, q2, p2). The joint probability distributions can be gained from simultaneously
sampling the signal of the first BHD tuned to θ and the second BHD tuned to φ. While
in the single mode case only a single inverse Radon transform has to be applied, there
are of order of 100 000 inversions necessary in the two mode case.

In addition to reconstructing the state’s Wigner function based on the tomographic
data, it is also possible to reconstruct or rather directly sample the density matrix. If we
replace the operator ρ̂ in Wigner’s formula, Equation 2.20, by the projector for a den-
sity matrix element |a〉〈a′ |, we will obtain the Wigner representation Wa′a(q, p) of this
projector. The corresponding density matrix element ρa′a of a given Wigner function
W(q, p) can be obtained by overlap integration of W(q, p) and Wa′a(q, p):

ρa′a = 2π

∞∫

−∞

∞∫

−∞

W(q, p)Wa′a(q, p) dq dp . (2.98)

This as well as the inverse Radon transform is a linear integral transform. As such, a lin-
ear expression for the density matrix elements in terms of the probability distributions
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must exist:

ρa′a =

π∫

0

∞∫

−∞

prd(q, θ)Fa′ a(q, θ) dq dp (2.99)

= 〈〈Fa′a(q, θ)〉〉q,θ︸ ︷︷ ︸
weighted average

. (2.100)

The interesting aspect occurs in the second line. Given the right pattern functions
Fa′a(q, θ) for the density matrix, every measurement value of the BHD individually con-
tributes to the density matrix. Thus, the density matrix can be grown by averaging over
the individual contributions. This avoids the detour via the Wigner function as well as
the filtering, which is necessary for the inverse Radon transform. However, the hard
part is to find the right pattern functions for the basis of choice of the density matrix,
which can be found in [23, 51, 52].

By combining Equation 2.94 and Equation 2.98 via the characteristic function the
expression:

ρa′a = −P

π

π∫

0

∞∫

−∞

∞∫

−∞

prd(q, θ)prda′ a(x, θ)

(q − x)2 dq dx dθ, (2.101)

can be found for the matrix element ρa′a with the generalized probability functions:

prda′a(x, θ) = 〈x|Û(θ)|a〉〈a′ |Û†(θ)|x〉. (2.102)

This is just the ordinary formula for the probability distribution with the density oper-
ator ρ replaced by the projector |a〉〈a′ | and the phase shift operator Û(θ).

Choosing the Fock states as a basis the expression Equation 2.102 turns into:

prdmn(x, θ) = ψm(x)ψn(x) ei(m−n)θ, (2.103)

with the wave functions ψ(x) of the Fock states |n〉. Due to the simple phase depen-
dence of the Fock wave functions for the pattern functions we obtain likewise:

Fmn(q, θ) =
1
π

fmn(q) ei(m−n)θ. (2.104)

with the real amplitude pattern functions fmn(q) which now can be read from Equation
2.101 and comparing it with Equation 2.99 to be:

fmn(q) = −P

∞∫

−∞

ψm(x)ψn(x)

(q − x)2 dx. (2.105)
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There was a surprisingly simple formulation for fmn found in [53]:

fmn(q) = ∂x [ψm(x)φn(x)] . (2.106)

The irregular wave functions φn(x) are the solutions of the Schrödinger equation for the
same frequency as for ψn(x). Usually they are discarded as they are not normalizable.
For a numerical implementation there is a nice recipe in [23] providing a fast and stable
computational algorithm for the numerical generation of the pattern functions. This
algorithm is based on a stable iterative scheme derived from the algebraic relations
among the wave functions. Given this nice formula a general basis can be expressed in
the usual way:

ρa′a = ∑
mn

ρmn〈a′|m〉〈n|a〉. (2.107)

Corresponding to the basis states |a〉 the time dependent regular wave functions ψa(x, t)
can be composed from the Fock wave functions:

ψa(x, t) = ∑
n

〈n|a〉 ψn e−iωnt, (2.108)

and likewise for the irregular solutions φa(x, t). This ends up in a simple and yet gen-
eral formula for the direct sampling of the state in an arbitrary basis:

ρa′a = 〈〈∂x [ψ∗
a′(x)φa(x)]〉〉x,t. (2.109)

The concept of state sampling can be expanded to the two mode case as shown in [50].
The tomographic completeness of the measurement with two BHDs is derived in [54].
Note that the completeness also applies to the single mode measurement. For the sam-
pling of the joint density matrix we restrict ourselves to the Fock basis with the matrix
elements ρnmjk:

ρnmjk = 〈n|a 〈j|b ρ̂ |k〉b |m〉a (2.110)

=

π∫

0

∞∫

−∞

π∫

0

∞∫

−∞

S
jk
nm(qa, θ, qb, β) dθ dqa dβ dqb (2.111)

= 〈〈Sjk
nm(qa, θ, qb, β)〉〉qa,θ,qb,β . (2.112)

The subscripts refer to the modes with the detection phases θ at Alice’s and β at Bob’s

BHDs. The functions S
jk
nm(qa, θ, qb, β) are the pattern functions for a joint density matrix,

which is due to the independently measurable degrees of freedom just the product of
the single mode sampling functions:

S
jk
nm(qa, θ, qb, β) = Fnm(qa, θ)Fnm(qb, β). (2.113)
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Figure 2.11 - Real part of the pattern functions Fmn for different n and m. The angular complexity (num-
ber of nodes) is proportional to the photon number difference, while the radial complexity
scales with the mean photon number. The overall stretch in phase space depends on the
smaller photon number. Thus, as an a priori assumption regarding the maximum significant
photon number can be used to estimate the angular and quadrature resolution for the state
tomography.

Finally, possible errors in the reconstruction need to be considered. The whole pro-
cess of tomography works in a discrete manner. First, we consider, that the angular
detection interval has to be sliced in a finite set of discrete phases. Secondly, also the
quadrature resolution is discrete, because the data acquisition necessarily involves an
analogue to digital converter with a finite resolution. Third, the measurement can only
last a finite time per detection phase. Hence, there are statistical fluctuations which
need to be taken into account.

From Figure 2.11 we can derive a hand waving argument for the number of tomogra-
phy phases required for a certain number of components of the reconstructed density
matrix. As the number of angular nodes in Fmn(q, θ) in the interval [0, π] matches the
photon number difference, aliasing can occur if the number of detection phases is ex-
ceeded. Thus, the angular resolution limits the maximum photon number of the recon-
structed density matrix, which equals the largest photon number difference occurring.
A detailed analysis can be found in [55]. We will stick to the rule "maximum photon
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number ≤ tomography phases".

The second aspect to be read from Figure 2.11 is the radial dependence of the pat-
tern function on the photon number. The frequency of the oscillation in radial direction
grows with the photon number. Thus, the quadrature resolution must also increase
with the maximum photon number M to be reconstructed. Based on finding an approx-
imation for the frequency of the oscillation in [23] the quadrature period qM of the most
rapid oscillation is found to be:

qM =
π√

2M + 1
. (2.114)

Aiming at a certain M in the reconstruction this sets an upper limit to the bin width
of the quadrature resolution, which should be at least qM/2. This was easily fulfilled
by the data acquisition hardware described in Section 3.5 and it was even possible to
merge two or more adjacent bins.

For the approach to the statistical error we consider a single bin in the tomography
process, i.e. a single quadrature bin at a certain detection phase. The probability of a
measurement falling into this bin is given by prd(q, θ). The filling process is Poissonian
as it displays a quantum random number generator. As such the variance is known to
be:

σ2
q,θ =

π

Nθ

prd(q, θ), (2.115)

with Nθ denoting the number of measurements for each detection phase. The filling of
each bin is independent from the others. Thus, we can use Equation 2.99 and Equation
2.104 to obtain the variance for the real part of the reconstructed matrix elements caused
by statistical fluctuations:

σ2
mn =

1
π2

π∫

0

∞∫

−∞

σ2
q,θ f 2

mn(q) cos [(n − m)θ] dq dθ. (2.116)

As the tomography is run in the regime of large numbers N of measurements, for this
purpose of estimating the variance directly from the measurement the ideal quantum
mechanical probability can be identified with the measurement and we can use Equa-
tion 2.115 to obtain:

σ2
mn = 〈〈 1

πNθ

f 2
mn(q) cos [(n − m)θ]〉〉q,θ. (2.117)

The same holds for the imaginary part with the sine instead of the cosine.



CHAPTER 3

Key Components of the Experiments

3.1 Laser Sources

Three phase-locked coherent single-mode continuous-wave laser fields were employed
for different purposes in the experiments. One field was used as a local oscillator in
the homodyne detectors and for control of the squeezed light sources. It is referred to
as fundamental beam at the near infrared (NIR) wavelength of 1064 nm. A second NIR
laser was phase-locked to the fundamental one with a radio frequency offset. The sec-
ond laser was used for the phase read out and control of the homodyne detectors and is
referred to as auxiliary laser. The third field oscillated at exactly twice the frequency of
the fundamental one and was generated by a second-harmonic generator (SHG) based
on χ(2) non-linear frequency doubling. This field pumped the optical parametric ampli-
fiers and hence is referred to as pump. There were several considerations which led us to
choosing the wavelength of 1064 nm and 532 nm: First of all, there were well matured,
ultra stable, high-power lasers available, which had shown an excellent performance in
the squeezing laboratories around the world for years. Secondly, PIN photo detectors
at the crucial wavelength of 1064 nm were highly efficient. Thirdly, high quality optical
components were available from stock and, after all, these wavelengths were common
in the scientific community.

3.1.1 Main Laser

As the main laser source we chose the model Diablo from the local manufacturer Inno-
Light. This device was a diode pumped solid state laser at 1064 nm with an integrated
frequency doubling unit. It provided 350 mW of NIR and 800 mW of green light power
each in a single mode.

The active medium for the NIR laser was neodymium doped yttrium aluminium
garnet (Nd:YAG) forming a monolithic non-planar ring oscillator (NPRO) pumped by
two laser diode arrays at 809 nm. The monolithic nature of the laser cavity ensured a
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Figure 3.1 - A sketch of the inside of the Diablo with mode cleaning setup. NPRO: NIR laser inside the Di-
ablo. SHG: second-harmonic generator. PD: photo diode. EOM: electro optical modulator. FI:
Faraday isolator. MC: mode cleaner. LP: integrator. Peltier: Peltier thermo element attached
to MC spacer.

high mechanical stability and thus a high optical frequency stability. The temperature
of the laser crystal was stabilized to achieve long term stability.
The laser frequency could be actuated in two ways. Firstly, the set point of the crystal
temperature stabilization could be changed yielding a tuning range of up to 30 GHz
with -3 GHz per Kelvin and a bandwidth of 1 Hz. Secondly, there was a tiny piezo-
electrical crystal transducer (PZT) attached to laser crystal cavity. By slightly squeezing
and thus applying stress to the laser crystal, the PZT affected the cavity resonance fre-
quency and thus the laser field. This alternative provided a significantly higher band-
width of 100 kHz and a tuning range of ±100 MHz at roughly 1 MHz per Volt.
The laser operated in the so-called class-B-regime, with the upper-state lifetime being
longer than the cavity damping time. In this regime, changes or fluctuations in pump
power led to so-called relaxation oscillations. This process caused the output power to
show rather strong fluctuations around the relaxation oscillation frequency. As coun-
termeasure a power stabilization control loop called noise eater was integrated into the
laser head. It consisted of a PIN photo diode monitoring the power of a small fraction
of the output beam and a control circuit, which feeded back on the current of the pump
diodes. The relative intensity noise was suppressed by 30 dB.
Inside the laser head the beam passed a Faraday isolator and a beam splitter, which
transmitted 350 mW of light power into the output and reflected the remaining 1.8 W
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through an electro optical modulator (EOM) to the integrated frequency doubling unit.
Basically, this is equivalent to what is described in Section 3.2, a crystal sitting in a
cavity. However, it was operated in such a way that χ(2) non-linear up-conversion or
second-harmonic generation was the dominant process by feeding the strong infrared
field through the partially reflecting mirror into the resonator. As the resonator length
had to be controlled, the incident infrared beam passed a phase modulating EOM. A
common modulation-demodulation technique based on the work of R. V. Pound, R. W.
P. Drever and J. L. Hall [56, 57, 58] was used to generate an appropriate error signal, see
Section B.1.2. From stock the modulation frequency was set to 12 MHz, which was well
within the cavity line width of around 150 MHz. A photo diode behind the highly re-
flecting end of the cavity measured the residual transmitted power. The signal was sent
to the control unit, where it was demodulated and filtered to be fed back onto the cavity
length. However, the modulation had to be rather strong to gain a reasonable error sig-
nal because of the low modulation frequency. This led to a non-negligible modulation
on the generated green field. Furthermore, the modulation frequency was within the
frequency band of downstream measurements, which led to our decision to change the
modulation frequency.

We chose a frequency of 200 MHz. This frequency was well outside the downstream
experiment’s detection band. Additionally, this was close to the frequency at which –
given the line width – the demodulated signal was the biggest, see Section B.1.3. For
equal modulation indices the signal for the 200 MHz modulation was ten times bigger
than that for 12 MHz. In order to change the modulation frequency many amendments
had to be made to this part of the laser. On the one hand, the EOM had to be replaced.
More demanding, on the other hand, was the detection and demodulation stage. We
replaced the photo detector with a custom made one to achieve a good performance
at the higher frequency, and in the same step we moved the modulation-demodulation
stage onto the detector circuit board (see Section A.2.5), which circumvented the trans-
mission of any 200 MHz signal over a longer distance. The demodulated signal was
conditioned in such a manner that it suited the existing control circuitry. In total, we
could reduce the modulation depth by a factor of 30 and ended up with only 3 mrad
of RMS phase fluctuations on the green field. Assisted by the increased modulation
frequency the laser was now suitable for the experiments we had in mind.

In order to prepare a high quality (see Section 3.3) local oscillator the fundamental
mode was sent through a high finesse mode cleaning cavity (MC) based on the de-
signed describe in [59]. An efficient spatial mode and frequency filtering was provided
by the MC, which was designed to have a line width ∆ν of ∆ν = 55 kHz resulting from
a finesse of F = 10500 with a round trip length of l = 52 cm. On resonance it trans-
mitted more than 95% of the incident light power. The control circuitry for keeping the
fundamental laser on resonance with the mode cleaner followed the PDH scheme, see
Section B.1.3. The acquisition of the error signal was straight forward, but the feedback
path turned out not to be trivial. After careful investigation the feedback loop was split
into two paths for different frequencies to benefit from the higher stability of various
components at different frequencies. The low frequency part of up to 0.1 Hz was cov-
ered by feeding back to the temperature of the spacer of the mode cleaner and thus on
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Figure 3.2 - Spectral noise power of the main fundamental laser. MC: mode cleaner. NE: noise eater.
The beam power was 5 mW, the spectrum analyzer was set to a resolution band width of
RBW=10 kHz and a video bandwidth of VBW=3 Hz. The red and the cyan curve show the
spectra of the beam as emitted by the laser with the internal noise eater (see text) turned off
(cyan) and on (red). For the blue and green curve the beam passed the mode cleaning cavity
(MC), which was operated on the low finesse (green) and high finesse (blue) mode. The shot
noise level for the given power is marked by the flat part of the blue curve, see Figure 3.13.

its optical path length. The high frequency part of up to 30 kHz was managed by actu-
ating the laser frequency via the laser crystal PZT. The PZT could be driven directly by
a standard operational amplifier omitting any high voltage (HV) components. A low
dynamic range in the upper frequency range was fairly sufficient. In an earlier stage the
high voltage amplifier caused severe problems; the output voltage was so noisy that a
stable operation was impossible. However, the final layout displayed no extra noise in
any part of the spectrum.

3.1.2 Auxiliary Laser

The auxiliary laser was a low power version of the infrared stage of the main laser.
It was pumped by only one laser diode array and yielded up to 300 mW of output
power. The means of adjusting the laser frequency are also right the same and were
used to establish a phase-locked loop (PLL) with the fundamental laser. This enabled
a phase readout scheme for downstream BHDs for arbitrary detection phases, which is
mandatory for quantum state tomography, see Section A.1.

In general, a PLL consists of three components: a phase detector, a feedback path and
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Figure 3.3 - Schematic of the PLL laser system. At the beam splitter (BS) the auxiliary laser (PLL laser)
is superimposed with the fundamental (reference). The interference in one port of the BS
was detected with a photo diode. Its signal was mixed (mixer) with a radio frequency signal
(RFosci), which generates the input for the loop controller (PID). The loop is closed by changing
the PLL laser frequency according to the PID signal in two ways: slowly via the temperature
of the laser crystal (LCtemp) with an additional integrator (LP), and fast via the PZT attached
to the laser crystal. With the feedback loop closed, the PLL laser field had a fixed phase with
respect to the reference field and a frequency offset determined by RFosci .

a variable oscillator (see Figure 3.3). The latter is the beat note, i.e. the difference of the
frequencies of fundamental and auxiliary laser detected with a photo diode. This could
simply be done by sending both beams onto a detector and relying on e.g. detector inho-
mogeneities prohibiting perfect cancellation of the interference fringes. However, the
signal gets stronger the higher the interference contrast is. Hence, a beam splitter was
used to superimpose the two fields with a reasonable spatial mode-matching yielding
a contrast of more than 85%. We chose the difference of the frequencies to be 50 MHz,
as this was easy to detect but yet outside the main experiment’s detection band.

The phase detector was a double balanced mixer generating the sum and the dif-
ference of the frequencies of the beat note signal and a 50 Mhz reference oscillator, see
Section A.1.2. A low pass filter suppressed the sum frequency. For equal input frequen-
cies the output signal is proportional to the cosine of the mutual phase and thus was
suitable as an error signal at a phase difference of 90 degrees. This error signal was
sent to a feedback controller, which actuated the auxiliary laser frequency in two ways:
A fast path drove the PZT on the laser crystal, while a slow path varied the crystal
temperature. Regarding the stability of the loop there were several issues to keep in
mind. The error signal was proportional to the phase while the feedback was applied
to the frequency, which is the derivative of the phase for harmonic signals. Thus, in
frequency space there was an intrinsic frequency characteristic of 1/ f , which is usually
sufficient for a stable control loop. Still there was an additional integrator needed in
the controller because otherwise a frequency drift of the fundamental laser could not
be compensated without leaving the linear regime of the sinusoidal phase dependence
of the error signal. Yet, another integrator was needed in the slow path of the feedback
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to ensure the stability of the split feedback system. The details can be found in Section
A.1.1. In total, the PLL worked with sufficient stability for hours.

frequency [Hz]

am
p

lit
u

d
e

[r
ad

/
√

H
z]

low gain
mid gain
high gain

rms=0.0016rad

rms=0.0038rad

rms=0.0083rad

100 101 102 103 104 105
10−6

10−5

10−4

10−3

Figure 3.4 - Linear spectral density of the mutual phase of fundamental and auxiliary laser with closed
feedback loop. The stability in the relevant frequency band up to 10 kHz for the phase lock of
the homodyne detectors was clearly overcoming the requirement of 0.01 rad. The three curves
correspond to different loop gains. For the high gain setting a noise amplification due to a lack
of phase margin of the loop frequency response could be observed around 90 kHz. This was
irrelevant for the downstream homodyne detector phase control, which was designed with a
band width of around 1 kHz. Hence, the noise suppression in the lower frequency regime was
still beneficial.

3.2 Non-classical Light Sources / Squeezer

The sources preparing the squeezed states throughout this work were constituted of
optical parametric amplifiers (OPAs), which utilized the second order term χ(2) of the
non-linear electrical polarization inside a special medium caused by an incident light
field. This non-linearity made different frequency components of the light field inter-
act, e.g. the NIR fundamental and the green second-harmonic fields in the presented
context. In general, for an OPA there is a strongly dominant pump field at a certain
frequency ωp interacting with two other fields called signal at the frequency ωs and
idler at ωi. Energy conservation necessitates ωp = ωs + ωi. For plane waves, see [60],
the conservation of momentum requires ~kp = ~ks +~ki for the wave vectors k in the
medium, which is called phase-matching. Here, this special medium was formed by
magnesium oxide doped lithium niobate (MgO : LiNbO3) crystals. We had the crystals
cut and polished such that they could be used for a type-I non-critically phase-matched



3.2 NON-CLASSICAL LIGHT SOURCES / SQUEEZER 49

degenerate OPA. In more detail this means, that the two subharmonic fields, signal and
idler, shared the same polarization, which was perpendicular to that of the pump field
(type-I). The phase-matching was achieved by tuning the temperature of the non-linear
medium in this way, that the refractive indices for the pump field in the ordinary polar-
ization and of the subharmonic fields in the extraordinary polarization matched exactly.
This kind of phase-matching is non critical regarding the alignment, because all beams
can propagate on the same axis. The frequencies of the subharmonic fields are degener-
ate to very close (≈RF) to half of the pump field frequency, which is termed fundamental
frequency.

The non-linear crystal was surrounded by an optical cavity to increase the effective
non-linear interaction as shown in Figure 3.5.

χ(2)Â1i

κ1 κ2κl Âl

Â2o

Â2iÂ1o
B â

b

Figure 3.5 - A non-linear crystal χ(2) in a cavity. The cavity mode annihilation operators are termed
â for the fundamental and b̂ for the pump mode. Â and B̂ are annihilation operators for
propagating fields entering or emerging the cavity. The coupling constants determined by
the mirror reflectivities are denoted κ. X̂l and κl refer to generic loss inside the cavity due to
absorption, scattering, diffraction or refraction.

The following brief discussion of the maths of such a device is based on the quantum
Langevin equations for damped quantum systems derived in [61] and the quantum in-
teraction of fundamental and harmonic field in [24]. A cavity mode can be treated with
the quantum harmonic oscillator formalism of annihilation â and creation â† operators.
The number of photons 〈n〉 in the fundamental mode is given by 〈n̂〉 = 〈â† â〉. Prop-
agating modes can be similarly represented by Â and Â†. The difference is, that the
expectation value 〈Â†Â〉 is a photon flux, i.e. the number of photons per time interval.
We assume, that the cavity is tuned to the laser frequency ω. Thus, the frequency of the
eigenmode of the cavity addressed by â is the same as for the propagating modes (Â).
The Hamiltonian Ĥll for a lossless OPA is given by:

Ĥll = h̄ωâ† â︸ ︷︷ ︸
fundamental

+ h̄2ωb̂† b̂︸ ︷︷ ︸
pump

+ ih̄ξ/2(â†2b̂ − â2b̂†)︸ ︷︷ ︸
interaction

, (3.1)

with all details of the non-linear interaction, such as the corresponding component of
χ(2), the beam diameter in the medium and the phase-matching are packed into the
coefficient ξ. The time evolution of â can be derived from ˙̂a = [â, Ĥll]/ih̄ and the
damping part from the Langevin equations:

˙̂a = −κâ + ξ â† b̂ +
√

2κ1 X̂1i +
√

2κ2 X̂2i +
√

2κl X̂l . (3.2)

The total cavity damping rate κ is given by κ = κ1 + κ2 + κl . Since the pump power
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is assumed to be strong we can further assume, that the pump is not depleted by the
OPA process. Hence, we can treat it as a classical coherent field by replacing b̂ with its
temporally stationary expectation value β. The combination g = ξβ will be assumed
to be real (determined by the phase of β). We reformulate the above equation (and its
Hermitean conjugate) in terms of the quadrature operators q̂+ for the amplitude and
q̂− for the phase (for convenience, instead of p̂):

˙̂q+
a = (g − κ)q̂+

a +
√

2κ1 q̂+
1i+

√
2κ2 q̂+

2i+
√

2κl q̂+
l ,

˙̂q−a =−(g + κ)q̂−a +
√

2κ1 q̂−1i+
√

2κ2 q̂−2i+
√

2κl q̂−l . (3.3)

The solution for q̂±a can be found via a Fourier transform. In the rotating frame of
frequency ω the solution reads:

q̂± =
1

κ ∓ g

(√
2κ1 q̂±1i +

√
2κ2 q̂±2i +

√
2κl q̂±l

)
. (3.4)

For a certain pump power level Pthr the absolute value of g equals κ, which displays
the threshold to spontaneous optical parametric oscillation (OPO) at the fundamental
frequency. This is similar to a laser, which starts lasing once the population inversion
in the active medium is strong enough to yield a gain factor exceeding the laser cavity
loss.
To calculate the fields X̂no (q̂±no respectively) we use the input-output-relations X̂no =√

2κn â − X̂ni [61] and find e.g. for the left one in Figure 3.5:

q̂±1o =
1

κ ∓ g

[
(2κ1 − κ ± g)))q̂±1i +

√
4κ1κ2 q̂±2i +

√
4κ1κl q̂±l

]
. (3.5)

Assuming all input fields are coherent, we replace their variances by V±
ni,l = 〈〈q̂±2

ni,l〉 −
〈q̂±ni,l〉2〉 = 1/4. The output quadrature variances then read:

V±
1o =

1
(κ ∓ g)2

[
1
4
(2κ1 − κ ± g)2 + κ1κ2 + κ1κl

]
. (3.6)

For the left coupling mirror being a perfect mirror, κ1 = 0 we find the expected V±
1o =

1/4. For perfect squeezing, e.g. in the amplitude quadrature V+
1o = 0, each individual

term in the square brackets has to vanish as they are all semi-positive. Thus, there must
be neither any loss κl = 0 nor any coupling on the right κ2 = 0. Also the gain has to
match the coupling on the left hand side |g| = κ1.
For an actual implementation this means that for a good squeezer the losses have to be
kept low and the cavity has to be single-ended. The design of our OPAs was the result
of quite a few iteration steps, which successively led to its current mature state.
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Figure 3.6 - Pictograph of the OPA. The facette A is a high reflectivity (> 99.95%) mirror for the fundamen-
tal and harmonic wavelength coated directly onto the non-linear crystal. The opposing sur-
face B carried an anti-reflection coating for both wavelengths. An optical resonator is formed
between A and C, which is the coated surface of a movable mirror. The reflectivities of the
latter are carefully chosen to provide the target line width for the fundamental and the power
build-up for the pump field. The movable mirror is actuated by a PZT D.

3.2.1 Optical and Mechanical Layout

In general, the cavity surrounding the crystal can come in various configurations re-
garding the geometry and the cavity parameters for the fundamental and the pump
field. The idea of using a semi-monolithic cavity for an OPA has long since existed
[62, 63, 64]. Here, a satisfying balance between tunability and stability was achieved
by coating the high reflectivity mirror directly onto the non-linear medium itself (Fig-
ure 3.6 A). The partially reflecting coupling mirror (Figure 3.6 C) was movable by means
of a piezo-electric transducer (PZT, Figure 3.6 D). This saved one movable and thus un-
intentionally moving mirror as well as an inevitably lossy intra-cavity anti-reflex (AR)
coating, leaving only a single movable one (Figure 3.6 B) remaining. Also the length of
such a cavity could be kept short, which limited the amount of air inside the resonator
and resulted in a high line width with given mirror reflectivities. A truly monolithic
design with both cavity mirrors coated onto the crystal would even increase these ben-
eficial factors. However, that would have made it hard to simultaneously tune more
than one OPA on resonance with the laser, because the length of a monolithic cavity
cannot be tuned easily to resonate with the laser.

The cavity geometry determined the shape of the cavity eigenmode. On the one
hand, a small beam waist radius w0 enhanced the effective non-linearity due to the
higher intensities. On the other hand, the strong divergence of such a beam would
make mode-matching hard and could even lead to thermal lensing induced by the
inevitable absorption of the strong pump beam. The closest feasible position for a
mode-matching lens was roughly zmin = 10 cm away from the waist. In order to
stay on the safe side the beam radius w(zmin) at this position should not be larger
than one millimetre to avoid diffraction or aberration for a standard 25 millimetre lens:
w(zmin) < wmax = 1 mm. The divergence angle ǫ well outside the Rayleigh range
for a beam of the wavelength λ and waist size w0 is given by ǫ = λ/(πw0). This led
to the approximation w(z) = ǫz. Consequently, the waist size is limited from below:
w0 > zλ/(πwmax) ≈ 30 µm. In order to relax this constraint we had the substrate of
the coupling mirror polished with a meniscus shape as sketched in Figure 3.7 to act as
an additional lens. Thus, we could design the cavity to have a waist of 25 µm centred
in the crystal, while the beam emerging the cavity corresponded to a waist of 42 µm
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Figure 3.7 - Beam parameters for the OPA cavity geometry. The crystal C had a radius of curvature of
8 mm on both optical faces. In combination with the coupling mirror M curvature of 25 mm at
the given position this formed a cavity mode with a waist size of 25 µm in the middle of the
crystal (solid lines). The meniscus shape of the coupling mirror on the right side formed an
additional lens, which changed the beam parameters of the mode emerging to the right. For a
radius of curvature of 20 mm a larger apparent waist size of 42 µm was obtained.

located only a few millimetres behind the crystal.

For a reasonable choice of the coupling constant κ1 several considerations had to be
taken into account. As stated below Equation 3.6, the total cavity loss rate had to be
dominated by the coupling mirror κ1. A decent high reflectivity mirror as coated on the
crystal surface provided a power reflectivity of 99.95%. The absorbtion in the crystal
was measured to be lower than 10−3cm−1, and the AR coating transmitted more than
99.8% of the power. These three contributions summed up to 0.3% loss per round trip.
For the cavity dynamics to be dominated by the coupler its transmissivity should be at
least ten times larger, i.e. the reflectivity should be less than 97%.

A second need for a large κ1 arose from the cavity line width, which depended on
κ1 (see Section B.5) and directly mapped onto the squeezing spectrum, see Figure 3.8.
As mentioned in Section 3.1.1 the laser was not shot noise limited at low modulation
frequencies, and thus the squeezing spectrum had to be wide enough to cover some of
the shot noise limited, higher frequency part of the spectrum above 5 MHz. As shown
in Figure 3.8 it was necessary to have a cavity line width of the order of 40 MHz to have
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Figure 3.8 - OPA: relative power (blue) reflected from the OPA cavity and spectra of the relative variance
of the squeezed quadrature versus the frequency difference to the resonance. The OPA cavity
line width is 20 MHz for the solid lines and 37 MHz for the dashed ones. The single pass
round trip gain, i.e. the pump power, is adjusted to yield the same level of squeezing at zero
frequency. |ρ|2 is scaled to level with the variances at zero frequency. The band width of good
squeezing is significantly smaller than the cavity line width.

a decent amount of squeezing up to 10 MHz. Given the geometry of Figure 3.7 with
a free spectral range of 4 GHz the power reflectivity rc of the coupling mirror had to
be rc ≈ 94%, which yields a finesse of F ≈ 100. On the other hand a large value of
κ1 implied that a large pump power would be required to get close to the threshold,
which was limited for several reasons. The most obvious limit was the power limit set
by the main laser source, which may be overcome by setting up a cavity for the pump
laser around the crystal as well. Another set of limits arose from various non-linear
properties of the crystal material, such as non-linear absorption [65], photorefractive
damage [66] and green induced infrared absorption (GRIIRA) [67].

For the OPAs used for this work we decided to make the coupler coating in that man-
ner, that it provided a reflectivity of 25% for the pump light, too. This yielded a finesse
Fp for the pump field of as low as Fp = 4.3 and a power build-up factor of three. The
reason was that it was planned to have three OPAs pumped by the main laser source,
which could otherwise have led to a lack of pump power. However, such a configu-
ration necessitated that the resonances for fundamental and pump radiation coincide.
Although the crystal temperature was controlled to match the refractive indices for the
two wavelengths, there were three coatings (A,B,C in Figure 3.6), which had to be de-
signed in such a way, that there is no phase difference for infrared and green light. For
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this reason we chose the moderate finesse for the green, which resulted in a high line
width providing a power build-up larger than one for one third of a free spectral range.
It turned out that the coating company was able to precisely meet our requirements
and we could benefit from the maximum power build-up factor of three.

Increasing the magnesium oxide doping from 5% [68] to 7% resulted in a decent
phase-matching temperature of ≈ 60 ◦C. Compared to the old crystals with 5% dop-
ing and a phase-matching temperature of over 100 ◦C, this was comfortably achieved
with small Peltier elements and rendered the formally required slow heating resistors
obsolete.

Two major improvements arose from the present work, see Figure 3.9. The new
closed and compact housing of the OPA drastically improved the overall stability and
robustness. The slight resonance enhancement of the pump field decreased the neces-
sary input power significantly. Additionally it provided a spatial mode cleaning.

Figure 3.9 - Comparison of the old (left) and new (right) designs of the OPAs. The crystals were housed
in the aluminium blocks with the screws on top in both cases. In the old design the whole
aluminium housing had to be heated to about 100 ◦C by means of a set of heating resistors.
The coupling mirror was carried by the bulky black mirror mount resulting in an unhoused
air gap inside the cavity. The relaxed phase-matching temperature of about 60 ◦C of the new
crystals could be achieved by Peltier elements sitting inside the aluminium housing very close
to the crystal. In the new design the coupling mirror sat inside an extra aluminium block
attached directly to the crystal housing (right) and the cavity was completely shielded from
the environment.
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Usually, the classical (de-)amplification gca of the power of the fundamental control
field is measured. Here we calculate, how that relates to the squeezing that can be
expected at zero modulation frequency. From Equation 3.2 and Equation 3.5 we can
derive the classical field emerging from the OPA by substituting all â and their adjoint
by their expectation values α = 〈â〉. Assuming that only 〈Â2i〉 and 〈B̂〉 have a real
classical amplitude, we find for 〈Â1o〉:

〈Â1o〉 = 2
√

κ1κ2
κ + g

κ2 − |g|2 〈Â2i〉. (3.7)

The square value of Equation 3.7 yields the power P1o:

gca =
P1o

P1o|g=0
=

(κ + g)2

(κ2 − |g|2)2 . (3.8)

This equation can now be solved for g and plugged into the formula for the output
variances, see Equation 3.6:

V+
1o =

1
4
− (

√
gca − gca)κ1

κ
,

V−
1o =

1
4

+
(
√

gca − gca)κ1

(1 − 2
√

gca )2κ
. (3.9)

With reasonably reliable values for κ and κ1 it is possible to infer the squeezing vari-
ances at zero frequency, see Figure 3.10.

3.2.2 Stabilization

There are three control loops discussed in this section. Two of which were necessary for
the OPA itself to prepare a squeezed state. These were the microscopic length control
of the OPA cavity and the temperature control of the non-linear crystal to meet and
preserve the phase-matching condition. The third was mandatory to be able to handle
the squeezed state in downstream experiments in a deterministic way. In general, the
orientation of the squeezing ellipse maps the phase of the pump field and thus has to
be controlled. For this purpose the phase of the pump field was locked to the phase
of the fundamental field which was used to control the length of the cavity and hence
copropagating with the squeezed field.

In case of the crystal temperature there was a standard temperature stabilization
scheme. A resistor with a large negative temperature coefficient (NTC) was put in ther-
mal contact with the crystal. The resistance was measured by an active Wien bridge,
see Section B.1.1, which provided a voltage Xes proportional to (small) deviations of
the resistance of the NTC from that of a reference resistor. This voltage was amplified,
appropriately filtered and converted into a proportional current. This current was sent
through the Peltier elements attached to the crystal. Chosen the right polarity there was
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Figure 3.10 - Squeezing variances V±
1o versus the classical (de-)amplification gca. This example is based on

realistic parameters for the coupler reflectivity (95%) and the extra cavity loss (0.3%). Note
that a perfect detection is assumed.

OPA
PSH
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P

PD FROPA

Ac Asqz
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Figure 3.11 - Control scheme around the OPA. Ec: fundamental control field. Ep: second-harmonic pump
field. Esqz: beam carrying control fields and squeezing. FR: Faraday rotator. HWP: half wave
plate. BSdc: dichroic beam splitter. PS: phase shifter. PD: photo detector.

negative feedback: The crystal is too warm/cold ⇒ the NTC had a lower/higher resis-
tance than the comparison resistor ⇒ Xes is positive/negative ⇒ the current through
the Peltier elements cooled/heated the crystal. With an appropriate filtering such a
loop is stable.

For the optical control scheme, see Figure 3.11, we came up with a ‘two birds with
one stone’ strategy, which was to control both the cavity length and the pump phase
with a single modulation on the infrared field. A chain of reasoning led to the con-
clusion that the pump phase was best set such, that the fundamental control field was
deamplified which corresponds to amplitude squeezing with respect to the control field.
The deamplification was beneficial because the spectral noise power of the fundamen-
tal field was well above the shot noise level at low modulation mode frequencies f and
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rolled off with 1/ f 2. The squeezed field generated by the OPA was necessarily superim-
posed with the control field. This means, that the noise on the control field would cover
the squeezing. In order to work at the shot noise level at a reasonably low frequency,
it was therefore necessary to have as little fundamental light on the squeezed mode as
possible. On the other hand, the control beam for the OPA cavity length should be as
strong as possible to achieve a good signal to noise ratio for the control signal. How-
ever, this was exactly what put fundamental light on the squeezed field. Thus, tuning
the pump phase for parametric deamplification was beneficial, as it deamplified the
control field emerging from the OPA together with the squeezed field. For a maximum
deamplification the light power is obviously extremal with respect to the mutual op-
tical phase of the control field and the pump. In order to derive an error signal for
this phase it was thus necessary to modulate the phase and demodulate the detected
power, as described in Section B.1.2. The phase modulation could be applied either to
the pump or to the control field. The former was done in earlier experiments [68]. How-
ever, a modulation of the pump phase also modulated the orientation of the squeezing
ellipse. Thus, it was preferable to use a phase modulation of the control field. In such a
situation the error signal was obtained by demodulation in phase with the modulation
signal, see Section B.1.2.
At the same time the optical OPA cavity length was controlled with a scheme described
in Section B.1.3. In this scheme the proper demodulation phase depended on the rela-
tion of the modulation frequency Ωm and the cavity line width ∆ν. For Ωm ≫ ∆ν the
demodulation had to be in phase and for Ωm ≪ ∆ν it had to be out of phase. Choosing
Ωm ≪ ∆ν this property allowed us to derive independent error signals for the pump
phase and the cavity by the demodulation in / out of phase of only a single phase
modulation on the control field.

3.3 Balanced Homodyne Detector

In order to observe quantum quadrature fluctuations we needed a suitable balanced
homodyne detector. We required a high quantum efficiency η = I/( ecn) with I for the
photo current, ec for the electron charge and n for the incident photon flux. For our
wavelength of 1064 nm the semiconductor material InGaAs (indium-gallium-arsenide)
provides a suitable band gap. We chose the photo diode ETX-500 by Epitaxx with a
radius of the active area of 500 µm. These devices provided an quantum efficiency of
η ≥ 93%.

The individual photo diodes were run in self made amplifier circuits based on com-
mon transimpedance amplification, i.e. the photo current is converted into a voltage.
For the calculations of Section 2.3.1 to be valid the amplified signal must be propor-
tional to the photon flux. We checked this property by comparing the output voltage
of the individual detectors with the incident optical power detected with a power me-
ter for various values for the power. The dependence was found to be linear within
2%. The linearity also had to be provided for the spectral components of the signal.
We checked that by recording power spectra of the detector signal for various power
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Figure 3.12 - Spectra of the fundamental laser at different power levels detected with a single photo detec-
tor. The parameters of the spectrum analyzer were RBW=300 kHz and VBW= 30 Hz. For the
actual choice of the electronic parameters the voltage given in the legend roughly scales with
1 mW/V for the incident light power, see Section A.2.1. The shape of the curves mapped the
detector transfer function because the spectrum of the incident light power was white shot
noise, see Figure 3.13. For the highest light power a slight change of the transfer function can
be observed due to the onset of saturation of the detector electronics.

levels, see Figure 3.12. For this purpose the laser was filtered by a mode cleaner with
a line width of 55 kHz to ensure that we see the shot noise in the spectra, which scales
linear with the optical power. In the low power regime the signal was dominated by
the electronic dark noise of the detector. Given that the detector dark noise is uncorre-
lated to the measured shot noise, we could subtract the dark noise level from the other
traces and obtained the results shown in Figure 3.13. We found an excellent linearity, as
for every factor of two in the optical power the spectra shifted by 3 dB in the relevant
power regime.

Given suitable individual detectors, we needed to confirm that the BHD consisting
of two photo detectors and an electronic subtractor, see Section A.7, was well-behaved,
too. We could confirm the linearity with the same procedure as above. Furthermore,
for the quantum state measurements the total electronic dark noise of the whole BHD
was required to be much smaller than the signal from the quadrature measurement.
For a comparison we chose the shot noise level corresponding to the nominal optical
operating power, as shown in Figure 3.14. The dark noise power level was found to be
up to 20 dB, i.e. a factor of 100, smaller than the shot noise level. Thus, we considered
the dark noise clearance large enough.
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Figure 3.13 - Spectra of the previous (Figure 3.12) corrected for the electronic detector dark noise. For
each factor of two of the incident light power (the voltage given in the legend) the spectral
power level increases by 3 dB. The detector is linear for two orders of magnitude.

3.4 Quantum State Tomograph

As described in Section 2.3.2 quantum state tomography is based on quadrature mea-
surements with a BHD, for a certain set of well defined detection phases and the sam-
pling of the corresponding probability distributions.

For the quantum state tomography of a single mode quantum state of the kind
which we prepared in our experiments, it was usually sufficient to address roughly ten
equidistant angles covering half a revolution in phase space. Given enough patience
and/or a rock steady experimental setup this could be done by manually setting the
desired phase, recording data, setting the next phase and so on. However, in case of
the quantum state tomography of a two mode state, e.g. an entangled state, as it was
subject of this thesis there were two homodyne detectors. To end up with the same
resolution as in the single mode case, every combination of the ten phases per detector
had to be measured, totalling in one hundred sequences of setting a phase and record-
ing data. Even a fast experimentalist would probably spend more than a minute for a
single setting, and thus would need one and a half hour for a whole tomography. Given
a finite lifetime of the experiment and the desire to perform multiple measurements, it
was a good idea to implement an automatic tomography machine.

Based on the techniques described in Section 3.5 and Section A.1 a PC based Lab-
View environment was set up to perform this task. There was one PC dedicated to the
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Figure 3.14 - Spectra of the difference signal of the BHD. With both optical inputs blocked we saw the
electronic dark noise of the BHD (green). With the local oscillator port opened we obtained
the blue curve corresponding to the noise level of the vacuum. The power of the local oscilla-
tor was set to the value of nominal operation. The clearance to the dark noise is almost 20 dB
in the part of the spectrum relevant for this thesis.

data acquisition (DAQ) because it is crucial that the data are recorded exactly when they
are supposed to. Hence, it must be ensured that the machine is not busy with any other
task at that moment. A second PC (AUX-PC) was set up to take care of the tomogra-
phy phase control, which is described in Section A.1 and Section A.1.2. For a successful
tomography the data acquisition has to take place after the phases are set, and the next
phase setting has to take place after the data acquisition is complete. A TCP interface
between the two PCs was used to establish a communication link between them. The
master control program ran on the first PC. The tomography procedure worked as fol-
lows:

• initialize the DAQ-PC

• initialize the AUX-PC

• start master program on DAQ-PC

– DAQ loop start

• TCP command from DAQ-PC to AUX-PC to set certain detection phases

• DAQ-PC waits for the phase setting to be finished
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• DAQ-PC records data

– DAQ loop end
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Figure 3.15 - Estimate of the accuracy of the BHD phase control. The control program scanned the phase
interval φs ∈ [0 . . . 4π] with 100 steps. The blue circles represent the normalized measurement
of the BHD DC signal for each step, which was proportional to cos(φa) with the actual phase
φa. For comparison, we plotted cos(φs) (green line). The red crosses represent the difference
of the two. The scaling was such, that at the zero crossings the values represent the phase
deviation in degree (right axis). The absolute deviation was not bigger than 1◦ .

In order to check how well the detection phase could be set, we set the control pro-
gram to scan the phase interval φs ∈ [0 . . . 2π] with 100 steps. For each step we recorded
the DC BHD signal XDC. This is proportional to cos φa, with φa being the actual phase
on the BHD beam splitter for the interference of the local oscillator with the funda-
mental laser component on the signal. With XDC normalized to unity amplitude, we
calculated the difference XDC − cos φs = cos φa − cos φs. For the zero crossings this
quantity represents the difference of the intended phase φs and the actual phase φa.
The results are shown in Figure 3.15. We found the absolute difference to be not bigger
than 1◦, and thus more than ten times smaller than the minimal phase interval we used
for tomography.

3.5 Data Acquisition

In Section 2.3.1 it is shown, that a BHD provides the ability to measure field quadratures
of a quantum light mode. Within the scope of this thesis there are up to six correlated
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BHD signals. However, the correlation only exists between measurements at the same
time. Therefore, the signals need to be recorded synchronously. Furthermore, lots of
measurements have to be collected to obtain significant statistical distributions of the in-
dividual signals as well as their correlation. A numeric processing of the collected data
is needed to extract meaningful quantities from the signals. The most convenient and
flexible way is to digitize the individual signals and store the data on a computer hard
disk. Once stored the data can be processed by the computer with virtually arbitrary
algorithms, such as of course distillation and purification as well as the quantification
of squeezing, entanglement or purity via quantum state tomography.

DAQ PC
BHD

D M AA

PD

PD
LO

Figure 3.16 - Building blocks of the data acquisition system. D: analog subtractor generating the difference
of the signals of the individual BHD photo detectors. M: electronic radio frequency (RF)
double balanced mixer to single out the signal of a certain RF modulation mode, see Equation
2.80. LO: local oscillator. AA: anti-aliasing low pass filter. DAQ PC: PC-based analogue to
digital converter.

However, care must be taken to correctly map the analogue BHD signals on their
digitized forms. Starting from the photo detectors, which convert the photo current of
the photo diode into a voltage, the whole chain uses the voltage as quantity to carry the
signal. The signals are termed X?(t) with the subscript indicating the node where they
occur and have the spectral decomposition X?(t) = 1/

√
2π
∫

X̃?(ω) eiωt dω. Through-
out this thesis the frequency of these signals is situated between DC and 50 MHz. The
chain of necessary components for this task is shown in Figure 3.16. These components
are discussed one at a time.

The quadrature signal is found in the difference of the signals of the two individ-
ual photo detectors of a BHD. With Section 2.3.1 in mind, we qualitatively reformu-
late the photo detector output, i.e. the subtractor input, signal to be X1/2 = g1/2(XLO
+/−XX) with g1/2 denoting the electronic gain factors of the two detectors, XLO for
the local oscillator contribution and XX for the quadrature signal. The most crucial
quantity for the generation of the difference is the common mode rejection ration CMRR,
which is the ratio of the magnitude, i.e. the absolute value of the amplitude, of the
difference signal XX to the magnitude of the residual sum signal XLO in the output
XD = XX + eiφ+ XLO/CMMR. We require CMRR > 100 to render the contribution of
XLO to XD insignificant. The ideal device would generate the output signal XD = XX,
but in reality the output is contaminated with a small contribution from the sum signal
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XLO, which in general can also have a phase shift φ+. This effect is caused by two ma-
jor contributions. First, the gain factors for the two input signals can exhibit different
frequency characteristics for the magnitude as well as for the phase due to differences
between the two detector circuits or impedance mismatching or varying properties of
the connection wiring. Secondly, the input and output inevitably couple via the electro-
magnetic field. Thus, the circuit boards must be designed carefully and the electronic
components have to be selected to minimize these effects. In the experiments the differ-
ence in magnitude of the gain factors was compensated with variable attenuators for
each of the signals.
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Figure 3.17 - Spectrum of the output XD of the subtractor. The BHD was run with only the local oscillator
at its nominal power and the signal port was blocked. The upper trace is the result of blocking
one of the BHD detectors and serves as the reference for half the sum signal power. In case of
the lower curve both detectors were illuminated. This displayed that the suppression of the
sum signal by the subtractor was more than 40 dB at 1 MHz.

In order to determine the effective CMRR with the components assembled in the
experiment the BHD was illuminated with the local oscillator only and the signal port
was blocked. Thus, the ideal difference signal power spectrum contains only vacuum
noise and the sum maps the intensity noise of the local oscillator. For this measurement
an unfiltered fraction of the main leaser beam was used, because for the normal oper-
ation the intensity noise of the local oscillator was effectively filtered by a high finesse
mode cleaner, see Section 3.1.1. However, the unfiltered beam exhibits the intensity
fluctuations caused by the laser’s relaxation oscillation. With one photo diode of the
BHD blocked the output signal turns into XD = 1

2(XLO + XX), which is dominated by
the relaxation oscillation on XLO and serves as a reference for the noise power of XLO.
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By comparing this to the spectrum with both BHD detectors illuminated the CMRR
shows in the difference of the two traces on a logarithmic scale as shown in Figure
3.17. With all components assembled in the experiment it was virtually impossible to
measure the common mode rejection for the whole relevant frequency band, because
this would have required a strong intensity modulation of the local oscillator in the
relevant frequency band. However, since all components were carefully characterized
individually beforehand, this measurement was taken to be meaningful for the whole
relevant frequency band. When the photo detectors where build they where tuned to
show identical transfer functions. The subtractor was checked to have a CMRR of more
than 40 dB in the frequency range from DC up to 10 MHz, which covers the frequencies
of the quantum modulation modes under test.

At the end of the day we want to collect data corresponding to a modulation mode,
see Equation 2.80, at the frequency Ωmm in the rotating frame of the fundamental laser
field with the bandwidth ∆Ωmm of a quantum light field. The quadrature signal for
this mode can be found the BHD difference signal XD in the spectral region of Ωmm

and ∆Ωmm. Due to technical reasons, see Section 3.1.1 and Section 3.2.2, the preferable
frequency range is 5 MHz . Ωmm . 10 MHz, which is too fast for the analogue to
digital converter at the end of the chain. For this reason the next link in the chain is the
frequency mixer. This device basically multiplies the input XD and the electronic local
oscillator XeLO. For the double balanced mixer to work properly, the local oscillator is
required to be a square wave signal, see [69, 70]. Thus, the mixer output signal looks
like:

XM(t) = XD(t) · XeLO(t) = XD(t) · XeLo · sign(cos(ωeLOt + φeLO)). (3.10)

The spectral decomposition of a square wave with the frequency ωeLO consists of Dirac
delta peaks at odd multiples of ωeLO and reads:

X̃eLO(ω) = X̃0
eLO

∞

∑
n=1,3,5...

1
n

δ (ω − nωeLO) . (3.11)

The spectral decomposition of XM can be obtained via the Fourier convolution theorem:

X̃M(ω) =
1√
2π

∫
XM(t) eiωt dt (3.12)

=
1√
2π

∫
XD(t)XeLO(t) eiωt dt (3.13)

=
1√
2π

∞∫

−∞

X̃D(ω′)X̃eLO(ω − ω′) dω′. (3.14)

Note that in the last line the integration ranges from −∞ to ∞. Thus, we extend the
spectral decomposition with their negative frequency parts, which are the complex conju-
gate mirror images of the positive parts. With this in mind and inserting Equation 3.11
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the integral turns into a sum:

X̃M(ω) = X̃0
eLO

∞

∑
n=1,3,5...

1
n

[
X̃D(nωeLO − ω) + Ã∗

D(nωeLO + ω)
]

. (3.15)

From Equation 3.15 we can read, that we have to choose ωeLO = Ωmm to map the de-
sired part of the spectrum around Ωmm of X̃D onto the low frequency part around DC
of X̃M, which is the analogue to digital converter capable of. However, e.g. for ω = 0
we also find contributions from higher frequency components of X̃D corresponding to
all odd multiples of ωeLO and likewise for all frequencies. Thus, we have to make sure,
that all frequency components starting from 3ωeLO and above are sufficiently attenu-
ated to not mask the desired signal. For this purpose a low pass filter with a pass band
1.5ωeLO and a roll-off of 12 dB/octave sits in front of the mixer input. Together with the
1/n Fourier expansion coefficients this provides an minimum attenuation of more than
20 dB, which is sufficient, as the level of the unwanted components of XD is similar to
the desired one.

Coming closer to the analogue to digital converter (ADC) we have a first look at the
digitizing process (sampling). The ADC converts a Voltage at its input into a binary
number representation with a certain number of bits, which can be read by a computer
at a certain instant of time and is termed sample. Only after a while the computer can
read the next sample. Usually, the sampling is done with equidistant time intervals.
The corresponding frequency is called sampling rate fs.
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Figure 3.18 - (Aliasing) caused by the signal frequency being too high for the given sampling rate. In the
upper part the sampling rate is lower than half of signal (blue) frequency, i.e. between two
samples (red circles) a little more than half a signal period has passed. Given the samples only
an unbiased guess of the initial signal may result in the green curve, the alias. The lower fig-
ure shows the minimum sampling rate required to render the unbiased guess unique, which
is twice the signal frequency.

Signal variations, which occur temporally in between two sampling instants, cannot
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be detected. The crucial consequence is called aliasing, which is illustrated in Figure
3.18. Let X̃s(ω) the Fourier frequency representation of a signal to be sampled. The
blue curve in Figure 3.18 represents the highest frequency ωh component of the signal
Xh(t): X̃s(ω > ωh) ≈ 0. If the sampling rate is lower than twice ωh, the sampled data
can be mistaken to originate from an alias signal. For a detailed analysis see [71] or [72].
To be on the safe side and for the sake of simplicity we require:

fs ≥
2ωh

2π
. (3.16)

Note that in principle aliasing would not be an issue for the experiments within this
thesis, because we do not want to know how the signal exactly looked like but are only
interested in the statistics. If we could rely on the quantum light field to be prepared in
identical states for all modulation frequencies, the aliasing would only define a funny
structure of the modulation mode under test, see Equation 2.80. However, for technical
reasons, e.g. the laser noise, this was not true, and hence we did not want aliasing.

A low pass frequency filter can be used to suppress the frequency components of
the signal beyond fs/2 and prevent aliasing. Such a filter is called anti-aliasing (AA)
filter. A good introduction to filters is provided by [73] and [74]. Linear, time invariant
filters can be characterized by their transfer functions h̃(ω) = g(ω) eiφ(ω) for sinusoids
of the frequency ω, i.e. the magnitude or gain g(ω) and phase φ(ω) of the frequency
response. In Fourier space the output signal Ã(ω)AA as result of the action of the filter
on the input signal X̃(ω)M is expressed by X̃(ω)AA = h̃(ω)X̃(ω)M . Another important
characteristic of a filter is the group delay τd(ω). This is the time shift after the filter of
a slowly varying amplitude envelope of a sinusoid with the frequency ω. The group
delay can be derived from the phase of the frequency response via τd(ω) = ∂ωφ(ω).

On the one hand, the AA filter should provide sufficient attenuation, see next para-
graph, in the stop band above fs/2. On the other hand, the pass band, i.e. the frequency
region with g(ω) >

√
1/2 g(0), should be as wide as possible. This is, because the mea-

surement time required to gather a significant amount of data becomes larger as the
signal bandwidth is reduced. Thus, the first idea is to use a filter, whose transfer func-
tion is close to the Heaviside step function. However, an electronic implementation of a
filter like this is hard to build and very sensitive to the actual values of the components
determining the filter response. As a rule of thumb: the steeper the roll-off between
pass band and stop band must be, the more crucial are the components. By carefully
selecting every single key component it is possible to assemble unique filters with a
very steep roll-off, but it is virtually impossible to build several exact copies. However,
an experiment as presented within this thesis, see Section 4.4, aiming on measuring the
correlation amongst simultaneous samples of several signals requires identical filters,
because otherwise the correlations may be destroyed. Variations of τd, which exceed
the sampling period τs = 1/ fs, cause a loss of sample-wise synchrony. Hence, a more
robust filter design has to be used.

The attenuation gsb required in the stop band can be found by looking at the down
stream ADC, which provides a certain resolution, i.e. the number of bits Nr the input
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signal is represented by. To make use of the full resolution, i.e. use all of the 2Nr different
numbers, the input voltage has to be scaled in such a way, that the maximum voltage
Vmax occurring is converted into the largest number and the minimal voltage Vmin into
the smallest with Nr − 1 intervals in between. Given a linear ADC, the width of these
intervals is voltage resolution Vres = (Vmax −Vmin)/2(Nr− 1). For symmetrical voltage
swings symmetrical around zero the resolution is:

Vres = Vmax/2Nr−2. (3.17)

Everything smaller than that counts as zero. Thus, to render the aliases undetected we
require gsb < 2−Nr+2.

For the experiments presented within this thesis up to six identical filters were re-
quired, see Section 4.4. As these experiments were focussed on the detection of cor-
relation we focussed on a filter design, which is robust under variations of the values
of the electronic components. A good starting point was a filter of the Bessel [75] type
showing a constant group delay within the pass band. The software FilterCAD provided
by the semi-conductor component manufacturer Linear Technologies was used to find
an appropriate design of the transfer function ending up with a 6th order model. A
suitable electronic circuit based on a passive network of inductors and capacitors was
designed for the electronic implementation. The component values for this circuit were
not uniquely determined by the transfer function. Thus, in a next step the program liso
written by Gerhardt Heinzel [76] was used to find a robust compilation of component
values. The sampling frequency was fixed at 1 MHz for all experiments presented here,
except for Section 4.2. Following Equation 3.16, the filters were required to exhibit a suf-
ficient attenuation above 500 kHz. Our ADC provided a resolution of Nr = 14 bit. The
signals had symmetric voltage swings and we gave a headroom of a factor of two for
the maximum voltage which yielded Vres = Vmax/211. Thus, the attenuation of the AA
filter above 500 kHz had to be better than Vres/Vmax = 2−11 = −66 dB. The measured
transfer functions of all six filters are shown in Figure 3.19, showing that the filters are
well suitable for our purpose.

The last link in the DAQ system chain was the ADC. We chose the NI PCI-6133 by Na-
tional Instruments, which was run in a PC with the graphical programming environment
LabView. The ADC provided eight analogue input channels with a resolution of 14bit,
which could be sampled simultaneously with up to three million samples per second.
On board memory for 32 million samples ensured that samples were collected even
when the PC was busy, e.g. drawing the mouse cursor. Numerous LabView programs
were written for the online-monitoring of the experiments during the set up and ad-
justment phase and of course to collect and store the final measurement data. The Lab-
View-environment was also used to control the experiments involving quantum state
tomography, see Section 2.3.2.

The process of analogue to digital conversion also introduces extra noise, see [77].
This is because the continuous signal is quantized into discrete values, which differ
from the original signal by up to half of the voltage resolution Vres, see Figure 3.20.
We can estimate the strength of this noise by assuming that the original signal varies
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Figure 3.19 - Characteristics of six AA filters. Top: The magnitude of the frequency response was well
suitable for an AA filter. The attenuation at 450 kHz was almost -70 dB and even better for
higher frequencies. Bottom: The group delay was derived from the phase of the frequency
response. It was almost constant within the pass band, and the largest differences amongst
all traces is well below the sampling period of 1 µs.

linearly within the time interval tq from one quantization step to the next. The deviation
of the quantized value from the original then reads:

ǫ(t) =
Vres

td
t , (3.18)

with the t = 0 at the centre of the considered level. Note that the average is zero and
thus the corresponding variance is given by:

σ2(ǫ) =
1
td

td/2∫

−td/2

(
Vres

td
t

)2

dt =
1

12
V2

res . (3.19)

How did this relate to the experimental parameters? The overall voltage gain in the
DAQ-system was set such, that the largest signal fell within the voltage range of the
ADC. Strictly spoken this cannot be true for Gaussian noise but we hardly observed a
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Figure 3.20 - Quantization noise caused by the deviation of the quantized value (green crosses) from the
original continuous signal (blue line). The vertical distance between the levels of the green
crosses is the voltage resolution Vres.

sample at the edge of the input range. The rate was of the order of one out of ten mil-
lion. Assuming Gaussian noise we could deduce from the error function that the input
voltage range must have been roughly five times the standard deviation of the input sig-
nal. The largest signal was the noise from the anti-squeezed quadrature measurement,
which had a standard deviation three times (10 dB) lager than that for the vacuum noise.
The latter, in turn, was ten times (20 dB) bigger than the BHD dark noise. Thus, the in-
put voltage range Vmax was 3 · 5 · 10 ≈ 28! times lager than the standard deviation of
the BHD dark noise signal σdn , or using Equation 3.17 and Equation 3.19:

σ(ǫ) =
√

12 Vres =

√
12

211 Vmax ≈
√

12 28

211 σdn ≈ 4
100

σdn . (3.20)

Finally, we did not need to worry about digitizing noise, because it was more than ten
times smaller than the dark noise of the BHD.

3.6 Random Phase Diffusion

The controlled diffusion of the optical phase of a quantum light mode played an im-
portant role for the underlying work, as it was used in all experiments presented in the
next section. The intention was to jiggle the angular orientation of the quadrature axes
in phase space rather than to excite the phase quadrature of the modulation mode un-
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der test at a few Megahertz, see Equation 2.80. Thus, the spectrum of the applied phase
diffusion had to be bound to frequencies far below the frequency of the considered
modulation mode, such that when moving into the rotating frame of the modulation
mode, the diffused phase can be treated as a slowly varying factor. However, to per-
form a meaningful quadrature detection the phase had to be stabilized for very low
frequencies corresponding to the time it took to collect a significant number of quadra-
ture samples, i.e. at least some milliseconds. These constraints left us with the audio
frequency band above 1 KHz for the spectrum of the phase diffusion.

BHD

D

PD

PD

PZT

PZT

c

d

s
PC

A

LOA

Figure 3.21 - Application of phase diffusion. A (PC) soundcard produced the desired phase diffusion
signal to actuate on the phase of the signal beam (Xs) via (PZTd). The average detection
phase of the BHD was controlled by an independent actuator (PZTc) in the path of the local
oscillator (LO).

As shown in Figure 3.21 we used movable mirrors driven by piezo-electric transduc-
ers (PZT) to microscopically change the optical path length and thus actuate the optical
phase with respect to a fixed reference, e.g. the BHD. Technically this is equivalent the
way the optical phase was usually controlled and stabilized for interferometers, e.g. the
BHD. A PC sound card was used to produce the desired voltage signal, which had to
be amplified by a powerful amplifier. The PZTs we used had an electrical capacitance
of around 100 nF and provided a spatial displacement of 1 µm per 100 V or a phase
displacement of 2π per 100V. Thus, to make the phase diffusion cover a full revolution
in phase space, which changes at a rate of more than a Kilohertz, the amplifier was re-
quired to provide an amplitude of 100 V at these frequencies. The PZT capacitance led
to an impedance Z at 5 kHz of |Z| = 1/(2π · 5 kHz · 100 nF) ≈ 300Ω. Hence, the ampli-
fier had to provide a current of a few hundred Milliampere at 100 V at a few Kilohertz.
Although this looked like using a Hifi amplifier, we decided to build our own, because
they are usually not designed to drive capacitive loads and specification for this regime
were hardly available.

The sound file to be played back by the PC for the appropriate signal was a priori
generated with a modified random number generator in MATLab, see Figure 3.23. As
stated before, the signal was required to show a certain spectrum. The PZTs showed a
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flat transfer function for frequencies lower than 10 kHz, see Figure 3.22. To make sure,
that the PZT truly mapped the input signal onto the optical phase, the frequency range
was restricted to 5 kHz from above. The lower limit was set to 1 kHz. This provided
enough headroom for the phase diffusion not to interfere with any phase control loop.
Additionally, the probability distribution had to be Gaussian to be compatible with the
preceding theoretical analysis. These characteristics are shown in Figure 3.23.
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Figure 3.23 - Probability distribution and power spectral density of the phase diffusion signal. The phase
distribution was Gaussian as can be seen in the left figure showing a Gaussian fit. The spec-
trum was well confined between one and five Kilohertz.

The amplifier gain was adjustable by means of a potentiometer to vary the strength
of the phase diffusion, which was quantified in terms of the standard deviation σφ.
We assumed a linear relation between σφ and the potentiometer scale P: σφ = m ·
P. To determine m we locked the BHD to measure the phase quadrature and directly
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observed the standard deviation of the difference signal XD without demodulation for
different potentiometer settings, as shown in Figure 3.24. However, there were a few
considerations necessary to finally obtain m.

With φ denoting the deviation from the detection phase corresponding to the phase
quadrature, the difference signal reads:

XD = X0
D sin φ. (3.21)

For very small values of σφ we can assume σφ = σ(XD)/X0
D =: σD. However, to

quantify stronger diffusions we have to find the function f , which maps σD = f (σφ).
The probability distribution pD(x) of the BHD signal XD/X0

D is related to that of the
phase pφ(φ) via:

pD(x) =

∞∫

−∞

δ(x − sinφ)pφ(φ) dφ, (3.22)

with Equation 3.21 used in the Kronecker delta distribution. To solve the integral we
first have to slice the integration in bijective pieces with respect to sin φ:

pD(x) =

∞

∑
n=−∞




π/2+2πn∫

−π/2+2πn

δ(x − sinφ)pφ(φ) dφ +

3π/2+2πn∫

π/2+2πn

δ(x − sinφ)pφ(φ) dφ


 .

(3.23)

We change variables φ = arcsin y and dφ = dy/
√

1 − y2 and obtain:

pD(x) =

∞

∑
n=−∞

( 1∫

−1

δ(x − y)pφ(arcsin y + 2nπ)√
1 − y2

dy +

1∫

−1

δ(x − y)pφ(arcsin y + (2n + 1)π)√
1 − y2

dy

)

=
∞

∑
n=−∞

(
pφ(arcsin x + 2nπ)√

1 − x2
+

pφ(arcsin x + (2n + 1)π)√
1 − x2

)
.

(3.24)

The result for pD(x) can be used to obtain σD via:

σD =

√√√√√
1∫

−1

x2pD(x) dx . (3.25)



3.6 RANDOM PHASE DIFFUSION 73

Given a Gaussian distribution of the phase diffusion pφ(φ) = 1√
2πσ2

φ

e−φ2/(2σφ)

we obtain an expression for σD(σφ) using Equation 3.24 and Equation 3.25 with the
assistance of a computer algebra program:

σD(σφ) =
∞

∑
n=−∞

1
4

[
erf

(
(4n + 3)π

2
√

2 σφ

)
− erf

(
(4n − 1)π

2
√

2 σφ

)

−ℜ
(

e−2σ2
φ−4inπerf

(
(4n + 3)π − 4iσ2

φ

2
√

2 σφ

))

−ℜ
(

e−2σ2
φ−4inπerf

(
4iσ2

φ − 4nπ + π

2
√

2 σφ

))]
.

(3.26)
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Figure 3.24 - Measurement of the standard deviation of the BHD signal. The strength of the phase diffu-
sion was varied using a potentiometer. A fit of the function σD(σφ) = σD(mP), see Equation
3.26, was used to obtain m and to gauge σφ = mP the potentiometer scale P.

Turning back to the experiment we measured σD for various gain settings of the
amplifier quantified by the potentiometer scale P, as shown in Figure 3.24. In order to
find the slope coefficient m in σφ = m · P, we fitted σd(mP) from Equation 3.26 via m. As
described in Section 4.4, we used up to six quantum light modes, which needed a phase
diffusion to be applied. Because of variations between the various components in the
phase diffusion path, the above procedure was carried out for each path individually.





CHAPTER 4

Experiments

All experiments presented in this section rely on the sampling, see Section 3.5, of the
quadrature distribution of a quantum light mode, see Section 2.74, by means of bal-
anced homodyne detection (BHD), see Section 3.3.

4.1 Preparation and Characterization of Phase-Diffused

Squeezed States

This experiment aimed on the application of a novel criterion [78] for the non-classicality
of quantum states, i.e. those states which lack a classical counterpart. The criterion says,
that if the characteristic function P̃(ξ, φ) of the Glauber-Sudarshan P-function [79], see
Section 2.1.3, exceeds the corresponding function of the vacuum |P̃vacuum| ≡ 1 the un-
derlying state will be non-classical. With β = ξ eiφ, if

∃β : |P̃(β)| > 1 , (4.1)

the state will be non-classical. It was shown in [78], how to obtain P̃(ξ, φ) from a quadra-
ture sampling experiment, with Qφ representing the samples of the BHD for the detec-
tion phase φ:

P̃(ξ, φ) ∼= eξ2〈〈 eiξQφ〉〉. (4.2)

Note that the approximation symbol indicates, that the right hand side is a statistical
estimator for a finite number of samples.

The remarkable properties of the novel criterion are, that it is easy to test from an ex-
perimentalist’s point of view, and that it is weaker than other criteria, i.e. it can detect a
greater class of non-classical states. During a lunch break conversation on a conference
with W. Vogel, the author of [78], we found out that phase-diffused squeezed states,
see Section 2.2.2 may be suitable to demonstrate the power of the proposed criterion.
A subsequent visit of Vogel and two of his students in our group in Hanover clarified
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Figure 4.1 - Setup for the generation and detection of phase-diffused squeezed states. Squeezing was gen-
erated by an optical parametric amplifier (OPA), and the squeezing orientation was diffused
by a noise signal (PN) fed on a phase shifter PZTd. The detection phase of the BHD was con-
trolled by a feedback loop via PZTc. The BHD signal was sampled by the data acquisition
system (DAQ).

this.

The experimental setup for the generation and detection of phase-diffused squeezed
states is shown in Figure 4.1. In a first instance a squeezed state was generated by an
optical parametric amplifier (OPA), see Section 3.2. We chose the modulation mode at
6.7 MHz with a bandwidth of 800 kHz as a carrier for state. The OPA was operated such,
that it produced a squeezed variance of Vs = 0.36 = −4.44 dB and an anti-squeezing of
Vs = 5.28 = −7.23 dB with respect to the variance of the vacuum normalized to unity.
A phase diffusion with Gaussian distribution was applied with four different standard
deviations σφ by a phase shifter (PZTd, Figure 4.1) between the OPA and the BHD,
as described in Section 3.6. The procedure to obtain a gauge for the phase diffusion
standard deviation is found in the same section.

Additionally, a fully phase-diffused state with an uniform phase distribution should
be prepared. However, the above scheme had a limited maximum amplitude due to
a limited power of the amplifier driving the phase shifter. Additionally there were
constraints, especially from below, to the spectrum of the phase diffusion. These were
imposed to prevent BHD phase control loop from interfering with the phase diffusion.
The spectrum was also limited from above because of the 1/ f roll-off of the electrical
impedance of the phase shifter. That means, that the current needed for a constant
amplitude scales linear with the frequency. With a truly uniform phase distribution the
quadrature measurement cannot depend on the average BHD detection angle. Thus,
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Figure 4.2 - Measured phase distribution of the phase-diffused field for different gain factors P for the
width of the distribution. Left: Due to the electro-mechanical low pass characteristic of the
phase shifter the phase distribution was not exactly uniform although the driving signal was.
Right: With the right setting of P a truly uniform phase could be achieved because phases
modulo 2π are indistinguishable.

there was no need to control it and we could release the constraints to the spectrum
for low frequencies, which enabled us to increase the amplitude. We also modified the
signal driving the phase shifter to have an uniform distribution.

In order to verify a flat phase distribution of the field under test in the first place we
needed to measure the phase. The beam carrying the squeezed mode also carried some
light from the fundamental laser with a radio frequency modulation. Given this the DC
signal of the BHD Xc depended on the phase φ with respect to the amplitude quadra-
ture like Xc = X0

c cos φ and the demodulated signal Xs of the radio frequency modu-
lation looked like Xs = X0

s sin φ, see Section A.1. With the electronic gains adjusted in
that way, that X0

s = X0
c we could derive the phase from a simultaneous measurement

of these two signals via:

φ = arg (Xc + iXs). (4.3)

The measured distributions are shown on Figure 4.2. Although the signal driving the
phase shifter had an uniform distribution this could not be exactly mapped on the op-
tical phase as long as the width of the distribution was smaller than 2π and the sharp
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Figure 4.3 - Resulting variance of the initially squeezed quadrature after applying the phase diffusion
with different standard deviations σφ.

edges were eroded. This effect was caused by the low pass characteristic of the transfer
function from the electrical input to the optical phase as shown in Figure 3.22. How-
ever, we could benefit from the fact that the phase is indistinguishable with a modulus
of 2π. For a certain width of the distribution, which was adjustable, the wing of one
of the eroded edges could fill up the missing part of the other. The right hand side of
Figure 4.2 shows that we were able to generate a truly uniform distribution.

We measured the minimum quadrature variances for the different levels of phase
diffusion, as shown in Figure 4.3. We found a perfect match of the measured variances
and the theoretical prediction of Equation 2.39. We found that for a Gaussian phase
diffusion with a standard deviation of σφ = 22.2◦ the squeezing effect of the variance
is no longer observable and one would be considered to be classical. However, phase-
diffused squeezed states are non-Gaussian and hence cannot be completely character-
ized by their quadrature variance.

The main results were presented in [80], where also other criteria for non-classicality
are considered such as the squeezing of statistical moments higher than the variance
[81] or the positive semi-definiteness of certain matrices of normally ordered moments
[82]. At least for the completely phase-diffused states these failed to reveal non-classicality.
The criterion based on the characteristic function, however, detected non-classicality for
all states with a high statistical significance, as shown in Figure 4.4. This result agrees
with the ordering of the strength of different criteria in [83].

The results were presented in [80], where it was also shown that the novel criterion
could outperform several existing criterions.
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Figure 4.4 - Measured characteristic functions for different phase-diffused states. The reddish area repre-
sents one standard deviation, which was added to the classical limit of |P̃(ξ, 0)| = 1 and thus
marks the safe limit of being non-classical.

4.2 Distillation and Purification of Phase-Diffused Squeezed

States

The experiment presented in this section was a precursor for the experiments from
the next two sections, which provided great insight on our distillation / purification
protocol.

The experimental setup is shown in Figure 4.5. We used two optical parametric
amplifiers (OPAs), see Section 3.2, which were operated such in that manner, that both
prepared identical squeezed states. The variance of the squeezed amplitude quadrature
was −5.0 dB and +9.3 dB for the anti-squeezed phase quadrature, both corresponding
to the modulation mode of the OPA field at the frequency of 7 MHz with a bandwidth
of 80 KHz.

To realistically mimic the effects of noisy optical transmission channels each squeezed
beam was reflected off a high-reflective mirror that was randomly shifted by a PZT, see
Section 3.6. Hence, random phase shifts were introduced on the beams as they would
occur when transmitting the beams through optical fibres of considerable lengths. The
voltages driving the PZTs were carefully produced to meet certain criteria. Although
no special form of the noise is in principle required for a purification/distillation exper-
iment, we wanted to operate in a regime where the noise has well defined properties
and could be easily modelled theoretically. The phase diffusion showed a Gaussian
distribution with a spectrum confined in the frequency range 1 − 5 kHz. Performing
homodyne detection on each of the beams confirmed that the amount of squeezing de-
graded in the same way the strength of the phase noise was increased, see Figure 4.6
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Figure 4.5 - Schematic experimental set-up for the demonstration of purification/distillation of phase-
diffused squeezed states. Two OPAs (OPAI and OPAII) produced one amplitude-squeezed
beam each. Two piezo-electric transducers PZTs drove mirrors to induce random Gaussian-
weighted phase shifts to each beam to mimic the effect of a noisy optical transmission. The two
phase-diffused beams were then superimposed on a balanced (50/50) beam-splitter (BSPUR).
Two balanced homodyne detectors (BHDI and BHDII) in combination with a digital data ac-
quisition system synchronously recorded time series of measured quadrature values. BHDII
serves the purpose of verification and can be replaced by an arbitrary experiment, which re-
quires a squeezed input beam.

(black curve/circles).

In order to demonstrate purification/distillation the two phase-diffused squeezed
beams were superimposed on a balanced (50/50) beam splitter. Here, a visibility of
98.2% was achieved. The relative phase of the two beams on the beam splitter was
actively controlled (with a control loop bandwidth below the phase noise frequency
band) using phase modulation side bands present on the squeezed beams. The output
beams from the beam splitter were then detected using the homodyne detectors BHD I
and BHD II, each of which was servo-controlled to detect the appropriate quadratures
using the technique described in the first part of Section A.1. The feedback control
loop bandwidths were chosen to be smaller than the phase diffusion frequencies. The
BHDs were constructed from matched pairs of ETX-500 high-efficiency photo diodes,
see Section A.2.1. The visibilities for the BHDs were 98.4% for HD I and 98.7% for HD II.
Each detector difference current was subsequently electronically mixed with a 7 MHz
local oscillator. The demodulated signals were then filtered with steep low-pass filters
(anti-aliasing filters) at 40 kHz and synchronously sampled with 100 kHz, see Section
3.5. The slightly different non-linear phase response of these filters was compensated
with appropriate IIR filters after the data were sampled to effectively regain a constant
group delay. Both sampled time series of quadrature values from BHD I and BHD II,
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Figure 4.6 - Demonstration of successful distillation of squeezed states for two different trigger strate-
gies versus strength of phase fluctuations σ. Shown are measured variances of the (initially)
squeezed quadrature for the phase-diffused input states Vin (top, black) and for distilled states
Vout, when conditioned on the squeezed quadrature |q1| < Q (circles, blue) and when condi-
tioned on the anti-squeezed quadrature |p1| < Q (crosses, green), respectively. Theoretical val-
ues are represented by solid and dashed lines. Here, the trigger threshold was set to Q = 1.0.
For σ < 0.3 conditioning on the anti-squeezed quadrature was more efficient than condition-
ing on the squeezed quadrature. The red line indicates the shot-noise level. Without phase
diffusion the squeezed state variances were measured to Vs = 0.32 and Va = 8.5.

respectively, were post processed to perform the purification/distillation protocol with
various settings.

For a fixed threshold Q = 1 and a varying phase noise σφ we compared the condi-
tioning on measurements of the originally squeezed (q1) and anti-squeezed (p1) quadra-
tures. The results are shown Figure 4.6. Both the experimental data and the correspond-
ing numerical simulations are shown. We could clearly see that the purification/distil-
lation enhances the squeezing and Vout < Vin. We could say that the squeezing has
been probabilistically concentrated from two noisy de-phased copies of the state into
a single copy which thus exhibits higher squeezing. Remarkably, the conditioning on
|p1| < Q not only enhances the squeezing of the quadrature q2, but for sufficiently
weak phase noise it even leads to higher reduction of fluctuations of q2 compared to
conditioning on |q1| < Q. This was surprising because naively one could expect that
conditioning on |p1| < Q would rather reduce the fluctuations of quadrature p2 and
enhance fluctuations of q2. From a semi-classical point of view one could argue that
small values of p1 are detected by HD I with highest probability when the phase shifts
φ1 and φ2 are of that kind, that the states impinging on BSPUR are both squeezed in
p quadratures. However, this picture is generally oversimplified. Some insight into
why conditioning on |p1| < Q is helpful, can be achieved from the expression of the
output variance, see Equation 2.46, which consists of two terms. The first term propor-
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tional to B can be interpreted as corresponding to the probing of the channel. In case of
measurement of the originally squeezed quadrature q1, the factor erf(Q/

√
2A ) is maxi-

mized for zero random phase shifts. In this case B attains its minimum value B = Va, so
the conditioning acts as a filter that suppresses contributions corresponding to large un-
wanted random phase shifts. However, Equation 2.46 contains also a second negative
term, proportional to C2Q, that always reduces the variance Vout. This second distilla-
tion mechanism is of purely quantum nature since it is a consequence of the quantum
correlations established by the interference of the two copies of the de-phased state
on the purifying balanced beam splitter BSPUR. In case of measurements of squeezed
quadrature both above mechanisms contribute to the reduction of Vout. In contrast, for
measurements of the anti-squeezed quadrature the first positive term increases the Vout

since in this case the factor erf(Q/
√

2A ) is maximized for phase shifts φ1 = φ2 = π/2,
when B attains its maximum possible value Va. Thus, in this case the variance Vout is
reduced solely due to the second negative term. Remarkably, this quantum distillation
mechanism is efficient enough to reduce the fluctuations of q2.
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Figure 4.7 - Uncertainty product U =
√

VqVp of the purified states for different phase noise levels (σφ =
0.40 (green), σφ = 0.28 (red), σφ = 0.17 (blue) and σφ = 0 (black)). Lines represent theoretical
simulations while circles illustrate measurements.

So this conjugate purification/distillation is a purely quantum interference effect.
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The purification actually reduces the variances of both conjugate quadratures q2 and
p2 as witnessed by the decrease of the uncertainty product U =

√
Vout,qVout,p , see

Figure 4.7. The simultaneous suppression of the noise in both conjugate quadratures
is a signature of the increase of purity of the state, which for Gaussian states can be
evaluated as P = 1/

√
VqVp = 1/U.
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Figure 4.8 - Quadrature variances of distilled squeezed states Vout versus trigger threshold Q. Vout is plot-
ted for three different levels of phase noise (σφ = 0.40 (green), σφ = 0.28 (red) and σφ = 0.17
(blue)). The results are presented for conditioning on the (initially) squeezed quadrature q1
(solid lines, circles) and for conditioning on the anti-squeezed quadrature p1 (dashed lines,
crosses). Lines represent numerical simulations while circles and crosses illustrate measure-
ments.

In Figure 4.8 we presented the dependence of the variance Vout on the trigger thresh-
old Q for three different strengths of phase fluctuations. As expected, the output vari-
ance decreased with a decreasing trigger threshold. In agreement with Figure 4.6 we
saw again that for not too strong fluctuations the conditioning on p1 is superior to con-
ditioning on q1 and yields a lower variance Vout. The probability of success P mono-
tonically increased with Q, but also depends on the choice of quadrature used for con-
ditioning.

For further comparison we plotted in Figure 4.9 the trade-off between the output
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Figure 4.9 - Illustration of the same variance data as in Figure 4.8 – this time plotted over the fraction
of distilled states. We refer to Figure 4.8 for the detailed description of parameters used.
The graphs clearly show that for weak phase noise (bottom, blue) conditioning on the anti-
squeezed quadrature is more efficient than conditioning on the squeezed quadrature. The
opposite is found for strong phase fluctuations (top, green).

variance Vout and the success rate P . We can see that we can achieve higher reduction of
the noise at the expense of lower success rate P . Also note that the achieved reduction
of squeezed-quadrature variance is almost maximal already for P of the order of 30%.
A further lowering of the success probability results only in marginal improvement of
the squeezing. This result is rather generic as confirmed by extensive numerical simula-
tions. We can conclude that a single iteration of the purification/distillation procedure
typically exhibits nearly optimum performance for a rather high success probability of
several tens of percent. That is remarkable, for weak phase noise the conditioning on
originally anti-squeezed quadrature p1 yields for a given success rate P a lower vari-
ance Vout than conditioning on the originally squeezed quadrature q1. For strong phase
noise, however, it becomes preferential to condition on measurements of q1.

We also considered conditioning on measurements of arbitrary quadrature q1θ and
investigated the dependence of the performance of the purification/distillation proto-
col on θ. We found out that in fact, it does not matter too much, which quadrature q1θ
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Figure 4.10 - Experimental and theoretical characterization of our distillation protocol for phase noise
σ = 0.202 and trigger threshold Q = 0.7. Shown are variances versus the conditioning
quadrature angle. The central (black) curve shows the variance of the dephased state’s am-
plitude quadrature Vin. The lower (blue) curve shows the variance of the distilled state’s
amplitude quadrature Vout. For this particular parameter regime conditioning on the anti-
squeezed quadrature works more efficiently than conditioning on the squeezed quadrature.
However, the distillation protocol is successful for conditioning on any quadrature. The top
(red) curve displays the purified variance Vout after normalizing to Vin (black curve).

is measured in the homodyne detector BHD I and the purification/distillation actually
works well for all θ. Typical dependence of the squeezing of the purified state on θ is
depicted in Figure 4.10. We can see that Vout exhibits a local minimum at θ = 0, but
the global minimum corresponding to the optimal purification/distillation strategy oc-
curs in this case at θ = π/2. Importantly, the quadrature fluctuations are suppressed
and the squeezing is thus enhanced for any θ. This implies that the purification/dis-
tillation works even with phase-randomized homodyning, where the relative phase θ
between balanced homodyne detector and signal is varied or randomly fluctuates in
time. Interestingly, the phase-randomized homodyning very closely resembles the vac-
uum projection considered in [84, 85]. The effective Positive Operator Valued Measure
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(POVM) element that describes this conditioning measurement reads:

ΠQ =
1

2π

∫ 2π

0

∫ Q

−Q
|q; θ〉〈q; θ| dθ dq =

∞

∑
n=0

Pn|n〉〈n| , (4.4)

where |q; θ〉 is the eigenstate of operator q1θ with eigenvalue q and the probability for
the photon number: Pn = (

√
π 2nn!)−1

∫ Q
−Q H2

n(x)e−x2
dx, where Hn(x) denotes the Her-

mite polynomial. ΠQ is diagonal in the Fock state basis because all off-diagonal terms
vanish due to averaging over random phase shift θ. The dominant part of this POVM
element is the term proportional to the projector onto vacuum state |0〉, but ΠQ also con-
tains terms proportional to projectors onto higher Fock states |n〉. This POVM can be
thus considered as an approximate noisy version of the ideal projection onto vacuum.

In conclusion we experimentally demonstrated that the state generated by our pro-
tocol showed a higher degree of squeezing compared to the input state indicating that
we performed a distillation. We also showed that the variance was not only reduced for
the squeezed quadrature but also for the anti-squeezed quadrature, which means that
we also performed a purification. By the exploration of different detection quadratures
for the trigger signal we revealed the true quantum nature of the protocol.
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4.3 Distillation and Purification of Entangled States
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Figure 4.11 - Simplified setup for the demonstration of entanglement distillation and purification. BSE1,2:
beam splitter generating v-class entanglement. δL: mutually independent phase diffusion.
BSDa,b: distillation / purification beam splitter. BHD: balanced homodyne detector. DAQ:
data acquisition system.

In this section we present the first experimental realization of a protocol for the dis-
tillation and purification of continuous variable entangled states. For a background
description we refer to Section 2.2.7 and the work of J. Eisert et al. [85] and D. Browne
et al. [84]. A theoretical description very close to our experiment is presented by J.
Fiurášek [18].

A drastically simplified schematic sketch of the experimental setup is shown in Fig-
ure 4.11. We refer to Chapter 3 for the details of the individual components. Two
optical parametric amplifiers (OPAs), see Section 3.2, provided two continuous wave
light fields that carried amplitude squeezed states of light. The experimental parame-
ters, such as the non-classical gain and the corresponding pump phase, were set equally.
This ensured that both squeezed states had equal properties and could be considered
to be copies. During the assembly phase of the experiment we could examine the
squeezed states directly by sending them straight towards a balanced homodyne detec-
tor (BHD). The performance of the OPAs had turned out to be robust and reproducible
for many days. However, the direct measurement was no longer possible once the first
components of the subsequent beam splitter network were set up. From that stage on
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we relied on the measurement of various linear combinations of the accessible beams.
We did not find any temporal change of the parameters either.

As the first step of the subsequent setup each of the two squeezed modes was split
up by a balanced beam splitter, BSEa,b in Figure 4.11. In the quantum world this meant
that they were superimposed with the electro-magnetic vacuum field from the open port
of the beam splitter, see Section 2.2.4. Each pair of output modes was then in a so-called
v-class entangled state [39]. In general the entanglement from this class is rather weak
compared to s-class entanglement, where instead of the vacuum a second squeezed field
is sent onto the beam splitter with the squeezing ellipses orientated perpendicularly.
However, this experiment did not aim on generating the strongest entanglement but
rather on a proof of principle for our distillation protocol, which did not rely on the
presence of strong entanglement. Hence, the v-class approach was preferable because
of its experimental simplicity.

All four resulting beams of the two copies of the entangled pairs were transmitted to
two parties Alice (A) and Bob (B) through four channels exhibiting independent phase
noise. The noisy channels were realized by quasi-random electro-mechanical actuation
of mirror positions in the beam paths in order to mimic the phase noise introduced for
example in optical fibres. The phase fluctuations applied exhibited a vanishing mean
value. This implied that the mean values of the phase of the field was not affected by the
phase diffusion. In the following a reference to the phase of one of the phase-diffused
fields is understood as the mean phase, unless noted differently. The distribution of
the fluctuations was a Gaussian distribution, hence, the standard deviation of the noise
σφ provided a complete characterization of its strength. See Section 3.6 for a detailed
description. For the technical implementation we could benefit from the rich experience
gained from the precursor experiment, see Section 4.2. The process of phase diffusion
deteriorated the quantum properties of the underlying states, such as the non-local total
variance or the purity, as shown in Figure 4.13 and Figure 4.16 for the points on the
very right hand side. At the same time, the states were rendered non-Gaussian, which
is described in Section 2.2.2 and Section 2.2.6. This finalized the preparation stage for
the input states to the distillation protocol.

At the distillation stage, see Figure 4.11, Alice and Bob both superimposed their in-
put states by means of a balanced beam splitter, BSDa and BSDb. The fringe visibility,
see Equation 2.82, was 96.6% for Alice and 97.1% for Bob. The interference phase, δφ in
Figure 4.12, was controlled in that way, that the quadratures of the input fields aligned
in the output (with a phase flip in one of the outputs). An error signal for the control
loop was derived according to Section B.1.2. Due to the way the OPAs were operated
there was a phase modulation present on each of the beams. The power in the beam
splitter output thus exhibited a corresponding beat signal containing the required in-
formation about the interference phase. This power was detected by the subsequent
balanced homodyne detector (BHD). For each BHD the detector electronics generated
not only the difference but also the sum signal of the individual detectors. The sum
signal is equivalent to a simple power detection, as shown in Equation 2.79, and thus
provides the required phase information after demodulation.
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Figure 4.12 - Closer view of the distillation stage of Alice. The sum signal of the BHD was used to generate
a control signal for the mean phase difference δφ of the two input fields. The difference signal
of the BHD contains the quadrature information of At as well as the information about the
detection phase.

The same BHDs were used for a quadrature detection, see Equation 2.78. The fringe
visibility for the signal and the local oscillator beam was 97.3% for Alice and 97.1%
for Bob. The local oscillators were filtered by a mode cleaner cavity as described in
Section 3.1.1. This provided an excellent spatial mode as well as a shot noise limited
power spectrum for frequencies above 2 MHz, see Figure 3.2. The detection phase of
both BHDs was controlled for a detection of the amplitude quadrature. As shown in
Section 2.2.5, the sum of the amplitude quadratures showed a quantum correlation
according to the squeezing at the very beginning. The trigger condition for successful
distillation was derived from these quadrature measurements: The trigger condition
would be positive, if the absolute value of the sum of two amplitude measurements
qT = qTA1 + qTB1 was found to be lower than a certain threshold value Q:

|qT| < Q . (4.5)

If this condition was true, the output state would be distilled.

In order to verify the performance of the procedure we also used balanced homo-
dyne detectors for quadrature measurements of the output fields. They showed a fringe
visibility of 97.8% for Alice and 98.0% for Bob. Note that the trigger and the verification
BHD could swap their role in the setup. We simply chose those who provided a better
visibility for the verification. The detection phases of all four BHDs were controlled by
the second scheme presented in Section A.1. For the detection mode, see Section 2.74,
we chose a frequency of 7 MHz. The bandwidth of this mode was 400 kHz. This was
determined by the subsequent data acquisition system, see Section 3.5, which simulta-
neously sampled the signals delivered by the four BHDs. After the data were recorded,
the post selection based on the trigger condition was carried out and the quantities
describing the output state were calculated. The software program was based on the
MatLab program.

In total, there were six beam splitters for which the incident light modes had to be
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matched in order to obtain a good fringe visibility. For this purpose we chose a lens
saving an approach. Instead of placing mode-matching lenses in front of each beam
splitter we only used three pairs of lenses. Two of which for the output beams of the
two OPAs and one for the local oscillator. Each of the pairs was adjusted such, that the
resulting modes exhibited the same waist size. A proper mode-matching was produced
by placing each beam splitter such, that the distance to the waist position of the incident
modes was equal.
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Figure 4.13 - Variance of the sum of the squeezed anti-correlated quadratures, and success rate for differ-
ent strengths of the phase diffusion σ. The x-axis represents the trigger threshold value Q.
For comparison, the grey line represents the value for the variance for a vacuum instead of a
squeezed input to the experiment.

In the following presentation of the results we will let qA and pA denote the ampli-
tude and phase quadrature of the output field on Alice’s site. For Bob’s part we will use
qB and pB. The linear combinations are called q± = qA ± qB and p± = pA ± pB. Because
of the particular control scheme there was a phase difference of 180◦ between Alice’s
and Bob’s detection phase. Hence the measurements of q+ and p− correspond to the
non-local, EPR-like quadrature operators. We chose the normalization such that for the
variances we obtained in case of a vacuum state ∆2q

(0)
± = 1/4 and ∆2 p(0)± = 1/4.

In a first step we investigated the dependence of the non-local squeezing in ∆2
q+, see the
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points on the very right of Figure 4.13. Without any phase diffusion we found ∆2
q+ = 0.2

which corresponds to -4 dB of squeezing compared to the variance for a vacuum. For
increasing a phase noise strength we found ∆2q+ > 1/4 for σphi > 0.48.

The figures presented here are based on five sets of data collected for different strengths
of the phase diffusion, which is indicated in the legend of each figure. Each set consisted
of four subsets, one for each of the combinations: qA, qB, qA, pB, pA, qB and pA, pB. Each
of the subsets consisted of 100 000 samples of each of the four BHD signals. The trigger
BHDs were tuned to amplitude quadrature detection for all cases.
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Figure 4.14 - The total variance I for different phase diffusion strengths σ. The x-axis represents the suc-
cess rate of the protocol. The grey line represents the separability boundary. For a success
rate as high as 0.5 the protocol already distilled very efficiently and nearly deployed its full
potential.

Figure 4.13 shows the effect of the distillation protocol on the variance of q+ and
corresponding probability of success versus the threshold value Q. The lower the value
of Q was set the more selective the protocol worked. This resulted in a decrease of the
probability of success and in an improvement of the variance of q+. At the same time
the variance of p− decreased slightly, too. Due to the choice of v-class entanglement the
variance of p− did not show any non-classical variance. We omit a direct presentation.
The results still become evident by looking at the total variance: I = ∆2q+∆2 p−, see
Section 2.2.5. The total variance quantifies the quantum correlations between the two
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output modes and the degree of inseparability of the two mode state in the second
moment. If I < 1, then the state will be entangled.

The improvement of the total variance by distillation is shown in Figure 4.14 versus
the probability of success. For the two strongest levels of phase noise the total variance
did not show any non-classical behavior without distillation. By applying the distilla-
tion protocol we saw that the total variance decreased for all phase-diffused states. For
the strongest phase noise settings, too, entanglement was detected by the total variance
for a probability of success, which was as high as 0.4. Thus, the protocol worked very
efficiently even for high success rates.
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Figure 4.15 - Covariance matrix for Alice’s and Bob’s quadratures qa,b and pa,b. The sub-columns repre-
sent the result of the distillation for the different threshold values. The base area of each col-
umn is proportional to the success rate. All individual variances on the diagonal decreased
simultaneously under distillation. Most remarkably, at the same time the correlation between
the amplitude quadratures increased (the negative column).
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As stated before we measured all quadrature combinations qA, qB, qA, pB, pA, qB and
pA, pB. This enables us to reconstruct the most significant eight of ten independent
components of the covariance matrix γ of the distilled output state. The missing com-
ponents were the intra-modal correlation of the local modes of Alice and Bob, i.e. the
correlation of qA, pA and qB, pB. However, it is reasonable to assume that there is no
correlation for two reasons. First, the detected quadratures are the same as the quadra-
tures of the initial squeezing, for which there is no correlation. Second, the distribution
of the phase diffusion was symmetric around zero, i.e. there was no mean phase shift
introduced by the phase diffusion.
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Figure 4.16 - Purity of the final state estimated by the determinant of the covariance matrix. Simultane-
ously to the increase of entanglement the purity of the state after distillation also increased.

The reconstructed covariance matrix for a phase noise strength of σφ = 0.497 is
shown in Figure 4.15 for ten different threshold values represented by the sub-columns.
The base area of each sub-column represents the corresponding probability of success.
The individual quadrature variances on the main diagonal simultaneously decrease the
stronger the distillation was. At the same time the anti-correlation between the ampli-
tude quadratures became stronger (the reddish column in Figure 4.15). Consequently
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the squeezing of the non-local quadrature q+ was enhanced.
From the reconstructed covariance matrices we calculated their determinant D = det(γ).
For a Gaussian state the purity of the state is given by µ = 1/

√
D , see Section 4.7. In

Figure 4.16 the dependence of D on the distillation is shown versus the probability of
success. The value of D decreased the stronger the distillation was. This is a strong
indicator for increase of the purity of the still non-Gaussian state after distillation.

The experimental results demonstrate the ability of our protocol to prepare an en-
tangled state from a supply of two copies of less entangled states. At the same time the
protocol provides a higher purity of the output state compared with the input. The out-
put state is available for an arbitrary downstream application, including a subsequent
distillation stage, see the next section. To the best of our knowledge this was the first
demonstration [86] of a protocol providing all of the features required for entanglement
distillation in the continuous variable regime [13, 14, 85]. The results appeared back-to-
back with the work of R. Dong, et.al. [87] in the very same issue of Nature Physics. The
authors also report on continuous variable entanglement distillation, which was based
on a single input copy and a local conditioning based on one of the input modes.
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4.4 Iterative Distillation and Purification of Entanglement
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Figure 4.17 - Simplified sketch of the experiment. The first distillation stage was the complete setup from
the previous section except for the verification homodyne detectors. A third copy of the
entangled input states, was produced by OPA3 and the subsequent beam splitter BSE3. The
two corresponding fields were phase-diffused, too. The two already distilled output modes
of the first state and the newly prepared phase-diffused pair of modes formed the input
of the second distillation stage. The output of the second stage (qA(φA) and qB(φB) was
investigated by means of a full two mode quantum state tomography. The signals (qTA1, qTA2,
qTB1, qTB2) of the four trigger detectors were simultaneously recorded by the data acquisition
system (DAQ), together with the tomography data.

In this section the experimental demonstration of an iterative entanglement distilla-
tion scheme is presented.

This experiment consisted of two subsequent distillation stages as described in the
previous section, where a detailed description can be found. The output of the first
stage, which provided the distilled entanglement, was used as one input pair of modes
for the second subsequent stage, see Figure 4.4. The second entangled pair of input
modes was provided by a third copy of the two input pairs of the first stage. For the
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description of the preparation of the third copy, including the phase diffusion, we also
refer to the previous section.

The major difference between the first and the second distillation stage was the
choice of the reflectivity of the beam splitter for the superposition of the input modes
(BSDA2 and BSDB2). Numerical simulations showed that a power splitting ratio of 1:2
was optimal for the second stage. The bigger fraction of the beams from the first distil-
lation stage was transmitted to the output. The smaller fraction was used for the trig-
ger generation, and vice versa for the undistilled input. In total, there were six BHDs:
two in the first distillation stage and two in the second stage for the trigger generation.
Another two detectors were used to verify the output of the iterative scheme. All six
detector signals were simultaneously sampled, see Section 3.5.

The BHDs for the generation of the trigger condition for the success of distillation
were tuned to amplitude quadrature detection as it is the case the first stage, too. A
positive trigger condition in the first stage would be obtained, if the absolute value of
the sum of the two trigger BHDs qT1 = qTA1 + qTB1 were lower than a certain threshold
value Q1:

|qT1| < Q1. (4.6)

The trigger condition for the second stage was equivalently based on qT2 = qTA2 + qTB2
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Figure 4.18 - The total variance I after distillation versus the probability of success P for various values
of the trigger threshold Q1 and Q2. Each dashed line was obtained by keeping one of the
threshold values fixed while varying the other. The thick red line was obtained for equal
values of Q1 and Q2. The distillation worked most efficiently for equal values.
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and the threshold value Q2. In combination the protocol would only be successful, if
both conditions were positive at the same time:

(|qT1| < Q1) AND (|qT2| < Q2). (4.7)

We investigated the dependence of the distillation performance on the choice of val-
ues for Q1 and Q2. In order to quantify the performance we used the total variance I,
which represents the non-local correlation between the two output modes in the sec-
ond moment, see Section 4.11 and Section 2.2.5. In Figure 4.18 we show the resulting
total variance I versus the success rate for various combinations of Q1 and Q2. The best
result for a certain success rate was obtained for equal values. This was also true for
all the other quantities which we will introduce later in this section. Hence, we always
chose equal values.
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Figure 4.19 - The total variance I from the iterative experiment (3 copies exp) and a numerical simulation
according to the experimental parameters (3 copies sim) versus the probability of success P .
For a comparison to the distillation based on two copies a numerical simulation is shown (2
copies sim). The total variance of the initial state prior to the phase diffusion is also shown
(undiffused). The numerical simulations indicate that the iterative protocol outperforms the
single step version for lower success rates.

In the last section we used quantities based on the covariance matrix to characterize
the output state after distillation. As a first step we used the same approach also for
the iterative setup in terms of the total variance I, see Figure 4.19. The comparison to
the simulation indicated, that the iterative scheme provided a better performance than
the single step version could have done for strong purification, i.e. for a success rate
P < 0.4 the measured total variance was below the single step simulation including
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the error bars.

For a comparison of the iterative and the single step procedure we had to rely on nu-
merical simulations because the output of the first stage was sent into the second stage.
Thus, it was no longer available for a direct measurement. As it was shown here and
in the last section the simulations reliably reproduced the experimental results. The in-
creased number of components required for this setup inevitably led to additional loss
of 0.2% and a slightly lower overall efficiency. The simulations took this into account.
Apart from this issue the simulations were run with parameters equal to experiment.
We inferred an initial squeezing of -8.5 dB and an overall efficiency of 70.5% from the
measured variances. The phase diffusion standard deviation was σφ=0.302 rad The sim-
ulation was also based on the same number of quadrature samples. In order to reduce
the statistical fluctuations for the curves shown in this section we performed an aver-
aging over 1 000 individual simulations. The corresponding error bars were too small
to be shown in the figures. The error bars, which are shown for the experimental data
in the figures, were derived from the standard deviation of all simulations. This was
reasonable as the experimental errors were dominated by statistic. The vast effort of
number crunching was carried out on the computer cluster ATLAS, which was run by
our institute.
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Figure 4.20 - Fock base density matrix ρnmjk reconstructed from a full two mode quantum state tomo-
graphy. The large blocks count Alice’s photon number, the subdivisions count Bob’s. The
matrix elements decayed rapidly for larger photon number. Thus, it was safe to truncate the
reconstruction for n ≥ 5.

Despite being the most relevant property for down stream protocols based on corre-
lations in the second moment, in a strict sense these quantities could only fully describe
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Gaussian states. However, the states we worked with had to be - and also were - non-
Gaussian to a certain extend. In order to obtain the full information about the quantum
state of the output we therefore performed a full and unbiased two mode quantum state
tomography, see Section 2.3.2. For this purpose the joint probability distributions had
to be measured for many different combination of quadrature detection phases qA(φA)
and qB(φB) of the two output modes. A statistically significant estimate for the joint
probability distributions was obtained by recording many samples of the BHD signals
for each combination of detection phases, which required an active controlling. The
control scheme of φA and φA for this purpose is described in Section 3.4. With this con-
trol scheme and the accompanying automated data acquisition management system,
we were able to record data for ten different detection phases per BHD, which resulted
in 100 combinations. For each combination we took 300 000 samples of the two output
mode quadrature signals and simultaneously of the four trigger signals. As a repre-
sentation of the quantum state of the output we chose the Fock base density matrix:
ρnmjk = 〈n|A 〈m|B ρ̂ |k〉B |j〉A, of the two mode state ρ̂. The reconstruction procedure is
described in Section 2.3.2.

Figure 4.21 - Absolute values of the reconstructed density matrix with the sign indicated by the color of
each column. The ordering of the matrix elements is such that for each block the total photon
number is fixed: 〈n|A 〈m|B ρ̂ |m − k〉B |n − j〉A.

Figure 4.20 shows an example of the reconstructed density matrix. The matrix ele-
ments were organized such, that the big blocks accounted for Alice’s photon number.
Each block represented Bob’s part of the density matrix for the photon number of Al-
ice’s part determined by the position of the block. Note that for separable systems the
big blocks would differ by a factor, which is constant for all elements within the block.
Obviously this was not the case here. The matrix elements were found to decay very
rapidly for an increasing photon number. Thus, we truncated the reconstruction for
photon numbers exceeding 5. Roughly speaking the decay was determined by the sum
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of photons, which was somewhat intuitive as they emerged from a common source. In
anticipation of this structure the density matrix elements were reorganized in Figure
4.21. Here the elements were organized such, that the blocks, separated by the green
lines, represent a fixed sum of photon numbers.
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Figure 4.22 - Logarithmic negativity EN = ||ρTA
r (P)||1 of the distilled state (3 copies exp) versus the

probability of success based on the tomographically reconstructed density matrices ρr(P).
For comparison we show numerical simulations for the parameters of the experimental data
for the iterative scheme (3 copies sim) and the single step distillation (2 copies sim). We also
show the logarithmic negativity of the initial state prior to phase diffusion (undiffused). The
logarithmic negativity represents an entanglement measure. Unlike the total variance it is not
restricted to Gaussian states. This fully quantified the performance of the distillation. The
logarithmic negativity under the assumption of the state being Gaussian was significantly
lower (Gaussian). The simulation indicated that the iterative scheme produced a stronger
entanglement than the single step version.

We reconstructed the density matrix for various strength of distillation, i.e. for var-
ious values of the common threshold Q. For the following figures we used the cor-
responding probability of success for the abscissa. Based on the density matrices we
calculated the logarithmic negativity EN , see Section 2.2.4. This quantity measures the
strength of the entanglement without a restriction to the Gaussian regime. The results
are shown in Figure 4.22. The process of distillation increased the logarithmic negativity.
This demonstrated that the distillation truly increased the entanglement. We applied
the same reconstruction procedure on the simulated data for both the single step and
the iterative setup. Again, we calculated the corresponding logarithmic negativity. The
numerically simulated data for the iterative scheme were in excellent agreement with
the experimental data. Thus, we also confided in the single step simulation, which
shows that the iterative scheme was able to distill more entanglement for a sufficiently
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low success rate.
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Figure 4.23 - Purity µ = tr(ρr(P)2) after iterative distillation (3 copies exp) versus the probability of suc-
cess P . based on the tomographically reconstructed density matrices ρr(P). For comparison
we show numerical simulations for the parameters of the experimental data for the iterative
scheme (3 copies sim) and the single step distillation (2 copies sim). We also show the purity
of the initial state prior to phase diffusion (undiffused). Under the assumption of the state
being Gaussian the purity was significantly underestimated (Gaussian). The iterative scheme
produced a state of higher purity compared to the single step version simulation.

We also calculated the purity µ of the distilled states based on the reconstructed
density matrices, see Section 4.7. The purity quantified the mixedness of the distilled
states. The results for the experimental data and the corresponding simulations are
shown in Figure 4.23. For this quantity, too, we found the iterative scheme yield a
higher maximum purity than the single step simulation. Furthermore, the sum of the
squared deviation between the measured probability distributions and Gaussian fits
decrease by 40% after distillation. In this sense the output states were more Gaussian.

These results demonstrate that our apparatus indeed prepared distilled and puri-
fied entangled states in an iterative scheme. These quantities were determined in a
completely unbiased way by means of a full two mode quantum state tomography. To
our best knowledge this experiment was the first demonstration of the iterative appli-
cation of a distillation protocol. It also was the first time, that a full unbiased two mode
quantum state tomography was implemented to characterize the prepared states.





CHAPTER 5

Discussion and Conclusion

The first protocols in the field of quantum information, such as teleportation [88] or
quantum key distribution [89] were formulated for the regime of discrete variables, i.e.
the photon counting regime. Soon after their publication these protocols were trans-
lated to the complementary continuous variable regime [90, 91, 92, 93], which has sev-
eral advantages: The measurement tools such as balanced homodyne detectors show a
detection efficiency close to unity. Entangled states can be prepared efficiently, e.g. us-
ing squeezed states and linear optics. Related to the high efficiency is the valuable
feature of unconditionalness. A squeezed light source for example always emits squeez-
ing once per inverse bandwidth. Entangled states based on squeezing show the same
property. In the discrete-variable regime unconditionalness is not easy to achieve be-
cause of the poor quantum efficiencies of single photon detectors or photon counters.
Typical experiments in this regime rely on coincidence measurements with two or more
single photon detectors. Only in case of a coincidence a state is prepared, which auto-
matically cancels out the unwanted contributions to the prepared state, e.g. from the
vacuum state. For the same reason the unconditional preparation in case of continu-
ous variables comes at the cost of the quality of the generated states. A measurement
is bound to averaging over the time period the experiment lasts, because there is no
click-event indicating the right instant of time for the measurement. Entanglement gen-
erated this way is always imperfect. The degree of imperfection is determined by the
amount of initial squeezing, for which already more than 10 dB (measured directly) of
squeezing was demonstrated [94]. Laxly summarized: On the one hand, continuous
variable experiments can work well, efficiently and unconditionally, but never perfect.
On the other hand, discrete-variable approaches only sometimes work, but then they
do almost perfectly. The same arguments are applicable, when the distribution of quan-
tum states, e.g. through optical fibres, is considered. Continuous variable states aggre-
gate the inevitable noise during the transmission and leave the transmission-line in a
degraded state.

In order to counteract the degradation of entanglement imposed by decoherence
general strategies for the distillation of entanglement were developed [13, 14, 16]. Such
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protocols transform a certain number of copies of previously shared less entangled
pairs into a smaller number of in principal maximally entangled pairs. However, at
this point another drawback of the continuous variable regime was found: It is impos-
sible to distill Gaussian states by means of Gaussian operations [16, 95, 17]. A state is
Gaussian, if it exhibits a Gaussian distribution for the probability distributions of the
corresponding variables. The kind of entanglement based on squeezed states, i.e. the
kind that can easily be prepared, is Gaussian. Gaussian operations are those, which
preserve the Gaussianity of a state. The class of operations exhibiting an advantageous
efficiency preserve the Gaussianity. This means, that for a distillation within this frame
either a non-Gaussian operation, such as single photon counting, or a non-Gaussian
state is required.

In this work we successfully demonstrated the experimental feasibility and func-
tionality of a protocol for the simultaneous distillation, purification and Gaussification
of non-Gaussian entangled states. The underlying de-Gaussification was based on the
phase diffusion of Gaussian entangled states. This process realistically mimicked the
phase fluctuations occurring during the transmission through an optical fibre network.
In this frame phase fluctuation can happen due to temporal variations of the index of
refraction caused, e.g. by mechanical motion of the environment. Also non-linear pro-
cesses inherent to optical fibres are covered, like the optical Kerr-effect, which causes
intensity fluctuations of the transmitted light affecting the optical phase. In contrast to
previous demonstrations of entanglement distillation in the complementary discrete-
variable regime [96], [97], our scheme [18] achieved the actual preparation of the dis-
tilled state. Thus, it is suitable for an arbitrary downstream application such as the
Braunstein-Kimble teleportation [4].

However, the dominant decoherence process, which causes the entanglement to de-
teriorate, is displayed by generic loss, i.e. the random annihilation of photons. This
effect preserves the Gaussianity of the state and thus cannot be counteracted solely by
our protocol. In order to also address this effect our protocol can be combined with a
single intentional de-Gaussification step. Some schemes were recently demonstrated
[98, 99, 100], e.g. by single photon subtraction. This combination would provide a
generic entanglement distillation scheme.

We also demonstrated the iterative applicability of the protocol. The experimental
evidence was gained from a full unbiased two-mode quantum state tomography. This
enabled us to quantify the performance of our setup in terms of the logarithmic negativ-
ity and the purity without a priori assumptions about the state. In summary this makes
our scheme a suitable building block for a quantum repeater. Combined with already
demonstrated quantum memory [8] and entanglement swapping [5, 6] our experiment
may display an important enabling step for truly long-distance quantum communica-
tion networks.



APPENDIX A

Hardware

A.1 Homodyne Locking Scheme

In an ordinary squeezing setup the balanced homodyne detector (BHD) is tuned to the
squeezed quadrature, which usually is the amplitude quadrature with respect to the
fundamental carrier Es = E0

s ei(ωt)+φ of the squeezed beam. From Section 3.3 we know,
that this corresponds to a mutual phase φ of local oscillator E0

LO = ELO eiωt and signal
beam of φ = 0. We follow the argumentation of Section 3.3 for the fundamental carrier
on the signal beam only and find for the BHD signal XD:

XD(φ) = gE0
s E0

LO cos φ

=: X0
D cos φ, (A.1)

with E0
s and E0

LO chosen to be real. The overall electronic transimpedance and gain
factor is denoted g. This expression is linear in φ for small deviations from φ = 90◦.
Thus it is suitable to build a control loop which actuates on φ for the set point φp = 90◦,
i.e. the detection of the phase quadrature.

Typically there is a radio frequency phase modulation on the squeezed field. We
can obtain the derivative of XD(φ) with respect to φ by demodulating XD(φ) with the
frequency of the phase modulation, see Section B.1.2:

Xdm(φ) = X0
dm sin φ . (A.2)

This expression is linear in φ in proximity of φ = 0◦ and thus can serve as an error
signal for a control loop for detection of the amplitude quadrature with φq = 0◦.

In a tomography scenario this is not sufficient. An error signal for an arbitrary phase
is necessary. In a certain diploma thesis ([101]) the above two signals were used to
construct such a signal:

Xlc = a Xdm + b XD . (A.3)
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By choosing the right coefficients a, b of the linear combination of the two signals the
phase φs of the set point Xlc = 0 can be chosen:

φs = ± arccos
(

a√
a2 + b2

)
. (A.4)

Of course this necessitates that both amplitudes are carefully matched in the first place.
However, unless the set phase is not 0◦ or 90◦, fluctuations of the amplitude of each
signal couple into the signal for set phase. Inevitable offset voltages on the signals are
a problem as well and have to be cancelled thoroughly.

The single side band modulation technique overcomes all of these problems. The
author proposed to use this technique for the first time within the frame of generating
low frequency squeezing [102], where it was successfully applied, however in a different
scenario.

BHD

PD

PD

LOE

sE

Ω φ

θ

,

M
AM

Figure A.1 - Phase readout scheme for the single side band technique. BHD: Balanced homodyne detector.
Es: Signal field carrying the single sideband with a frequency shift of Ω with respect to ELO
and a phase shift θ. ELO: Local oscillator at the fundamental laser frequency ω. M: Doubly
balanced mixer. AM mixer output signal.

In a setup as depicted in Figure A.1 a BHD is operated with a local oscillator ELO(t) =
E0

LO eiωt at the fundamental laser frequency ω. The signal field Es(t) = eiθ(Eexp(t) +
Essb(t)) is a superposition of two fields: Eexp(t) denotes the field, whose quadrature
determined by the detection phase θ is to be measured for the main experiment. The
auxiliary field Essb(t) = E0

ssb ei(ω+Ω)t is phase-locked to Eexp, see Section 3.1.2 and Sec-
tion A.1.1.

Following the calculations of Section 3.3 we obtain for the BHD signal ABHD:

ABHD(t) ∝ ℜ[ELO(t)∗Es(t)]

= E0
LO

(
Eexp e−i(ωt+φ) + E0

ssb ei(Ωt+θ)
)

∝ Xexp(θ) + Essb cos(Ωt + θ), (A.5)

with Xexp(φ) corresponding to a quadrature of Eexp rotated by θ. This signal is fed into
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a mixer (M, Figure A.1), which basically (see Section 3.5) multiplies ABHD(t) with an
electrical local oscillator AeLO(t) = A0

eLO sin(Ωt + φ). We assume that Xexp is negligibly
small compared to Essb and obtain for the mixer output signal AM:

AM = ABHD · AeLO(t)

∝ cos(Ω + θ) sin(Ω + φ)

=
1
2

(sin(φ − θ) + sin(2Ωt + φ + θ))

low pass filtered → ∝ sin(φ − θ). (A.6)

For φ = θ the result is linear in the difference and thus can serve as an error signal
a control loop actuating the phase θ of the signal field. In the stable closed loop the
quadrature detection phase is determined by the phase of the electrical local oscillator.
Note that this in turn requires the electrical local oscillator used for the phase lock of the
auxiliary field, see Section 3.1.2, and the one used here to have the same frequency and
a fixed phase. How these electrical local oscillators have been prepared is described in
Section A.1.2.

A.1.1 Auxiliary Phase-Locked Laser

OPA
PS

PDpll

Asqz BSdc

Ap

Apll

Figure A.2 - Injection scheme for the phase-locked auxiliary laser. Apll: auxiliary laser field. Ap: second
harmonic pump field. Asqz: squeezed field with control field. BSdc: dichroic beam splitter,
reflects NIR, transmits green. PS: phase shifter. PDpll: photo detector detecting the beat note
of Apll and the fundamental field emerging the OPA.

The only way to feed some of the auxiliary laser field into the squeezed mode is to
use a beam splitter. However, the insertion of an extra beam splitter would inevitably
lead to extra loss on the squeezed mode. The existing dichroic beam (left one in Figure
A.2) splitter separating the pump from the squeezed field is supposed to be a perfect
mirror for the squeezed field. But in reality, it is not: it rather reflects 99.5% and trans-
mits the rest of the incident NIR intensity. Since this component has to be there anyway,
it displays the perfect measure of superimposing the auxiliary field to the squeezed
one. The beam splitter port transmitting the residual 0.5% of the squeezed light and
reflecting 99.5% of the auxiliary laser can be used to detect the beat note for the phase
lock. However, the main purpose of this port is to carry the pump mode. Hence, yet
another dichroic beam splitter (right one in Figure A.2) has to be inserted into this path
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to separate the pump from the beat note field.
In this setup the phase of the auxiliary field is locked to the fundamental field emerging
the OPA cavity. The phase of the pump field and thus the orientation of the squeezing
ellipse is locked to the same fundamental field by the loop discussed in Section 3.2.2.
Hence, the phase of the auxiliary field maps the orientation of the squeezing ellipse.

A.1.2 The Mixer Box

The locking scheme of the balanced homodyne detectors in the frame of quantum state
tomography relied on a control scheme, which allowed the optical detection phase to
be determined by the phase of an electrical local oscillator (eLO), see Section A.1. For
the experiment of Section 4.4 there were six balanced homodyne detectors to be con-
trolled simultaneously. Yet another eLO was necessary for the phase-locked loop of the
auxiliary laser, see Section 3.1.2, which the scheme is based on. All eLOs had to run
coherently at the same frequency with a fixed but adjustable phase. To not overstrain
the experimentalist the phases had to be controllable by a computer, see Section 2.3.2.

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

USB interface master oscillator

mixer

to PC

to experiment

Figure A.3 - The oscillator box provides eight input and eight output ports for mixing signals with local
oscillators with mutually fixed phases φ1 . . . φ8. Each phase can be set individually, which is
controlled by a LabView interface.

The eLO generation was based on the digital waveform synthesizer chip AD9959 by
Analog devices, providing four outputs derived from one master oscillator. The possi-
bility to phase lock the master oscillator to another oscillator was used to link two of
these chips together, such that the eight outputs where synchronized. The proprietary
serial interface of the AD9959 was used to program each output with a LabView pro-
gram running on a computer via a digital output interface (NI USB 6501 by National
Instruments).
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The AD9959 was available on an evaluation board providing all the support elec-
tronics to run the chip. Two of these boards were mounted in a metal case to shield
inevitable radio frequency stray radiation. For the same reason this case also housed
the amplifiers required to provide the appropriate signal power for a local oscillator.
Likewise the mixers, which the local oscillators were used for, sat in the same case with
all the appropriate support electronics. Although the total length of wiring connected
to the mixer may not change with the location of the mixers, it is a good idea to keep
the wiring of the local oscillator short. Usually the local oscillator signal is the strongest
and thus the antennas displayed by the wiring should be short.
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A.2 Electronics

A.2.1 Broadband Photo Detector

Figure A.4 - This circuit is a textbook transimpedance amplifier (upper pass), which converts the photo
current into a proportional voltage via the resistor RTI. For the balanced homodyne detectors
we used the OP: AD829 by Analog Devices. This device exhibits a high bandwidth and a low
input noise figure at the same time. An additional amplifier provided a high gain factor for
the AC component of the signal (lower pass).
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A.2.2 Resonant Photo Detector

Figure A.5 - In this circuit the high impedance of the resonant tank formed by the capacity of the photo
diode and the inductor LRES causes a high current-to-voltage conversion factor at the reso-
nance frequency. This voltage is further amplified in the lower path. The upper path is a low
speed transimpedance amplifier.
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A.2.3 Amplifier and Mixer for the Mixer Box

Figure A.6 - The board carrying this circuit was attached piggy-back to the AD9959 evaluation board
by Analog Devices. The low power signals generated by the AD9959 were amplified to the
appropriate power level of 7 dBm for the local oscillator input of the mixers (TUF3+ by Mini-
Circuits). Two of these devices were housed in a well-shielded metal case, which efficiently
suppressed stray radiation.
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A.2.4 Subtractor / Adder for BHDs

Figure A.7 - For the subtractor the line receiver IC MAX4145 was chosen for its high band width and
common mode rejection ratio. The output signal was split and amplified as it was used for
various purposes at the same time. The adder is a textbook circuit.
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A.2.5 Improved SHG Electronics

Figure A.8 - This circuit was fitted on a tiny board in order to fit inside the SHG in the Laser head. It
consisted of an oscillator at 200MHz with an appropriate amplifier to drive the EOM in the
laser head (top section). The oscillator signal was split and sent through an allpass filter (mid
section) in order to tune the demodulation phase for the subsequent mixer (bottom). The
whole radio frequency part of the modulation / demodulation scheme could be confined
inside the laser head.



APPENDIX B

Calculus For Fun

B.1 Error Signals

Here we restrict ourselves to the case, in which the state of the system to be controlled is
characterized by a single quantity Xp, usually a voltage proportional to the real quantity
like temperature or intensity. This quantity is a function of a single parameter Xp(φ) of
the system, which can be changed usually by applying a voltage Xc on a dedicated part
of the system.

B.1.1 Linear Set Point

In the easiest scenario Xp(φ) depends linear on φ in the neighborhood of the desired
state Xs = Xp(φset). The error signal Xes = Xs − Xp(φ) is proportional to the deviation
of the system’s actual state from the desired one. Given that and additionally a linear
dependence of φ on Xc, Xes can be filtered and fed back to Xc by a controller. With
appropriate filtering this gives a well stabilized system sitting at the set point Xs, see
[103].

B.1.2 Extremal Set Point

The situation becomes a bit more complicated when Xp is extremal for φset. Here Xs −
Xp(φ) has always the same sign and thus contains no information about whether φ is
too small or too large. The technique of modulation and demodulation helps out: A
slight jiggling with the modulation frequency Ω and the amplitude m is applied to φ.
The resulting signal Xp(φ + m cos Ωt) is demodulated with the same frequency, i.e. it
is multiplied with a periodic (modulation period) function and temporally integrated
(low pass filtered).

Xes =
1
τ

∫ t+τ

t
cos(Ωt) · P(φfree + m cos Ωt) dt . (B.1)
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Because Pφ is measured in the laboratory it is likely to be quite often differentiable and
thus may be represented by its Taylor series P(φ) = ∑

∞
n=0

∂nP(φ0)
n! (φ − φ0), which for

small m can be terminated after the first element:

Xes ≈ 1
τ

∫ t+τ

t
cos(Ωt) ·

(
P(φfree) + (m cos Ωt)∂φP(φfree)

)
dt (B.2)

=
1
τ

∫ t+τ

t
cos(Ωt) · P(φfree) + (m cos2 Ωt)∂φP(φfree) dt. (B.3)

Even with the next Taylor element taken into account the only term with nonzero mean
is the cos2 term. Its mean is one half, which is integrated over the period τ, which is
chosen to be smaller than the smallest interesting period in φ f ree, but much larger than
the modulation period 2π/Ω :

Xes =
1
τ

(τm

2

)
∂φP(φfree). (B.4)

Now we have the derivative of the signal to be kept extremal at hand. This is propor-
tional to a slight deviation from the extremum because the extremum is best approxi-
mated by a parabola, whose derivative is the desired line through the origin.

B.1.3 Extremal Not Modulatable Set Point, PDH Method

An even more complicated case arises when φ cannot or must not be modulated. There
is no general solution for such a problem, but the special case discussed in this section
happens so often, that it appears to be general: The length of a cavity is to be stabilized
on resonance for the laser light with the optical frequency ω. For one reason or another
the length of the resonator cannot be modulated. Solely the power reflected from the
cavity is measurable. To obtain an error signal people modulate the phase of the incom-
ing laser field, see Section B.2.2 and demodulate the detected power. How does that
work? Assuming the single mode steady state we find the reflection coefficient accord-
ing to Section B.3 for a laser field at frequency ω from a cavity with round trip length
L, real amplitude reflectivities ρn and ρ f for the near and the far mirror and round trip
loss δ: The frequency dependence eiωL/c is often expressed in terms of the so called
tuning parameter φ = (ωL/c) mod 2π :

ρ(ω) =
ρn − ρfδ eiωL/c

1 − ρnρfδ eiωL/c
. (B.5)

We obtain the power of the reflected phase modulated field from the cavity by cal-
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Figure B.1 - Amplitude reflection coefficient ρ for a moderate mode cleaner (impedance matched, F =
300). The grey bars indicate the frequency components of a phase modulated field. The mod-
ulation frequency is as much outside the linewidth as possible.

culating the reflection coefficient for every frequency component of Equation B.16,

Er = E0

(
ρ(ω) e−iωt

+ρ(ω + Ω)
im
2

e−i(ω+Ω)t + ρ(ω − Ω)
im
2

e−i(ω−Ω)t

)
, (B.6)

and taking the absolute square E∗
r Er. The demodulation picks only those terms of E∗

r Er
which oscillate at Ω:

XΩ = X0 (Re(ρ∗c (ρu − ρl)) sin Ωt + Im(ρ∗c (ρu + ρl)) cos Ωt) , (B.7)

with ρc = ρ(ω), ρl = ρ(ω − Ω) and ρl = ρ(ω + Ω). By choosing the demodulation
phase it can be chosen which linear combination of the sine and cosine term is detected.
We deduce that there is a signal in the sine quadrature, when there is for example an
imbalance of ρl and ρu. On the other hand the cosine quadrature is fed for example
from an imaginary component of ρc.

How does that apply on the cavity problem? Figure B.1 shows the reflection coeffi-
cient ρ for a moderate mode cleaner. The grey bars indicate the frequency components
of the phase modulated field. The modulation frequency is well outside the line width
of the cavity. The error signal can be seen by shifting the grey bars left and right, i.e. de-
tuning the laser. There is hardly any effect on ρl or ρu, but ρc is strongly affected, which
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Figure B.2 - Close view of the center part of Figure B.1

is resolved in Figure B.2. For a small detuning ρc gets a phase shift proportional to the
detuning and thus for the generation of an error signal the demodulation phase should
be chosen to demodulate the cosine quadrature.

The situation is different when the modulation frequency is within the cavity line
and the cavity is far from being impedance matched, which is the case for the OPA
cavities, see Section 3.2. In this case the phase modulated field is sent from the strongly
under-coupled side of the cavity. The reflection coefficient is shown in Figure B.3. The
impact of detuning on the phase of three components is small on the one hand and
the same on the other hand, because the phase is approximately linear in the relevant
range. Thus there is only a small signal in the cosine quadrature. But detuning creates
an imbalance between ρl and ρu and an error signal can be generated by demodulating
in the sine quadrature. In Section 3.2.2 you can read, why this is worth mentioning.

B.2 Modulation Of Light Fields

Assume, we have a single mode laser beam at frequency ω. After packing the spatial
shape, the amplitude and polarization into E0 we can write the field as

E(t) = E0 e−iωt. (B.8)
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Figure B.3 - Amplitude reflection coefficient ρ for the under coupled view of an OPA cavity, F = 110. The
grey bars indicate the frequency components of a phase modulated field. The modulation
frequency is well within the line width.

B.2.1 Amplitude Modulation

A cosine shaped periodic (Ω) change of depth m of the amplitude reads:

Eam(t) = E0 (1 + m cos Ωt) e−iωt (B.9)

= E0

(
1 +

m

2
( e−iΩt + eiΩt)

)
e−iωt (B.10)

= E0

(
e−iωt +

m

2
e−i(ω+Ω)t +

m

2
e−i(ω−Ω)t

)
. (B.11)

This leads to the term side band picture where in steady state a field is represented by
its frequency components. In the case of a cosine shaped amplitude modulation there
are exactly three single frequency fields involved, the carrier at frequency ω and the
two amplitude modulation fields at ω + Ω and ω − Ω, which are often termed side
bands. The original term side band refers to a piece of frequency space in proximity of
the carrier. This kind of modulation can be detected by a power (E∗E) detector:

E∗
am(t)Eam(t) = E∗

0 (1 + m cos Ωt) e+iωtE0 (1 + m cos Ωt) e−iωt (B.12)

= E∗
0 E0(1 + 2m cos Ωt + m2 cos2 Ωt). (B.13)
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B.2.2 Phase Modulation

The other modulation, the phase modulation, is a bit more tricky:

Epm(t) = E0 eim cos(Ωt) e−iωt. (B.14)

For a very small modulation index m the first exponential can be approximated by the
first two elements of its Taylor series:

Epm(t) ≈ E0 (1 + im cos(Ωt)) e−iωt (B.15)

= E0

(
e−iωt +

im
2

e−i(ω+Ω)t +
im
2

e−i(ω−Ω)t

)
. (B.16)

The result looks quite similar to the one in the previous section. The important differ-
ence is the phase relation of the three fields, i.e. the i in front of the sideband fields. This
kind of modulation cannot be detected directly:

E∗
pm(t)Epm(t) = (E∗

0 e−im cos(Ωt) eiωt)(E0 eim cos(Ωt) e−iωt) (B.17)

≡ E∗
0 E0 . (B.18)

An overall phase shift does not change the situation. But a frequency discriminating
device would do so, if it changed the phase of only the carrier or one of the sideband
fields. The latter can be expressed by a carrier phase shift plus an overall one. Assuming
only the carrier is shifted by φ, the 1 in Equation B.15 has to be multiplied by eiφ:

E(t) ≈ E0
(

eiφ + im cos(Ωt)
)

e−iωt. (B.19)

What is the power of this expression?

E∗(t)E(t) = E∗
0 E0

(
e−iφ − im cos(Ωt)

) (
eiφ + im cos(Ωt)

)
(B.20)

= E∗
0 E0

(
1 + m sin φ cos(Ωt) + m2 cos2(Ωt)

)
. (B.21)

This expression contains a term oscillating at the modulation frequency Ω, which is
proportional to the phase shift φ (for φ ≈ 0)! Note that this oscillation is in phase with
the initial modulation signal.

Something similar will happen, if the power balance of the two modulation sideband
fields is disturbed:

E(t) ≈ E0

(
1 + +

i(m − δ)

2
e−iΩt +

i(m + δ)

2
e+iΩt

)
e−iωt (B.22)

= E0 (1 + im cos(Ωt) + δ sin(Ωt)) e−iωt. (B.23)
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The power of this expression reads:

E∗(t)E(t) = E∗
0 E0

(
1 + m2 cos2 Ωt + δ2 sin2 Ωt + 2δ sin Ωt)

)
. (B.24)

Again there is a term oscillating with the modulation frequency Ω but 90 out of
phase with the initial modulation signal!
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Figure B.4 - A bunch of Bessel functions and the product J0 · J1. The latter tells you how big your error
signal will be. Note that only J1 has a slope 6= 0 at the origin.

What is the flap about these Bessel functions? They show up through the Jacobi-
Anger identity:

eim cos Ωt =
∞

∑
n=−∞

in Jn(m) einΩt. (B.25)

Here, Jn(m) denote the first kind Bessel functions. For positive integer n they obey the
identity J−n(m) = (−1)n Jn(m):

eim cos Ωt = J0(m) +
∞

∑
n=1

in Jn(m)
(

einΩt + e−inΩt
)

. (B.26)

In contrast to the previous section there are more and more side bands generated for
larger values of m. For small values of m we obtain the previous result J0 ≈ 1 and
J1 ≈ m/2 for all other Bessel functions the linear term vanishes.

Experimentally interesting are three distinct values for the modulation index. The
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first at m ≈ 1.082 is the modulation index which maximizes the possible error signal
obtained from PDH technique because it is proportional to the power at the demodula-
tion frequency which is proportional to the product of the field amplitudes. Second is
m ≈ 1.841 where the fields at ω ± Ω have their maximal amplitude. For the other is at
m ≈ 2.405 the carrier at ω vanishes.

B.3 The Naive Optical Resonator

The topology, the length, the radii of curvature of the mirrors and possibly intra cav-
ity elements determine the transverse shape and size of the cavity eigenmodes, and
whether there are some at all [104, 105]. Here we assume a stable resonator and a per-
fect match of all other fields involved to one and the same eigenmode.

ρn τn ρf τf

Ein E0
E1

E2
E...

Edr

Eon Eof
loss

L
2

Figure B.5 - The spatial shape of Ein perfectly matches the considered cavity eigenmode. The amplitude
reflection and transmission coefficients are denoted by ρ and τ. A whole round trip lasts L/c,
after which the amplitude is attenuated by the factor δ due to accumulated loss.

The fields Em inside the resonator shall be considered as the piece of field at the left
mirror propagation to the right after m round trips disregarding any interference. Thus,
the first piece is a fraction the input field Ein, attenuated by the mirror transmission:
E0 = τnEin. After one round trip the phase evolved corresponding to the wave number
k = ω/c of the field and the distance L it propagated. During this propagation the field
is reflected once from each mirror (ρn, ρf) and attenuated (δ) by generic loss. The phase
shift due to reflection is chosen to vanish for intra cavity reflections. Hence this shift
equals π for the outside reflection. In total this yields E1 = ρnρfδ exp(−iωL/c)E0. The
same holds for the next round trip, and thus

Em = ρnρfδe(−iωL/c)Em−1 =
(

ρnρfδe(−iωL/c)
)m

E0 . (B.27)

To obtain the total field Ec at the left mirror propagating to the right, we have to super-
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impose (add) all pieces.

Ec =
∞

∑
m=0

Em

= E0

∞

∑
m=0

(
ρnρfδe(−iωL/c)

)m

= E0
1

1 − ρnρfδe(−iωL/c)

= Ein
τn

1 − ρnρfδe(−iωL/c)
. (B.28)

The last step is valid because the magnitude of the base in the sum in the second line
is guaranteed to be smaller than one, and thus the geometric series converges. This
expression becomes large whenever the exponential in the denominator gets close to
one, i.e. (ωL/c mod 2π) = 0. The piece of frequency space between two adjacent reso-
nances is called free spectral range νFSR = c/L (physical frequency). Note that the free
spectral range solely depends on the length of the cavity. The frequency dependence is
often expressed by the tuning parameter φ = (ω/νFSR mod 2π). The other character-
istic frequency is the width of the resonance which is usually given by the full width at
half maximum of the power, i.e. the absolute square of the field inside the resonator Pc
or the transmitted field or full width at half minimum of the reflected power. For the
sake of simplicity all dispensable quantities are omitted:

Pc ∝
1

1 − ρnρfδ(2 cos φ − ρnρfδ)
. (B.29)

Now we have to solve 1
2 Pc(φ = 0) = Pc(φ) for φ:

1
2

1
1 − 2ρnρfδ + ρ2

nρ2
f δ2

=
1

1 − 2ρnρfδ cos φ + ρ2
nρ2

f δ2
,

2 − 4ρnρfδ + 2ρ2
nρ2

f δ2 = 1 − 2ρnρfδ cos φ + ρ2
nρ2

f δ2,

1
2

(
1

ρnρfδ
+ ρnρfδ − 4

)
= cos φ. (B.30)

Because of the symmetry of the cosine there are two solutions, one for each side. The
difference between both yields the line width ∆φ in terms of the tuning parameter or
∆ν for the frequency:

∆φ = 2 arccos
[

1
2

(
1

ρnρfδ
+ ρnρfδ − 4

)]
,

∆ν =
νFSR

π
arccos

[
1
2

(
1

ρnρfδ
+ ρnρfδ − 4

)]
. (B.31)
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For reflectivities close to one and very low loss we can approximate this rather com-
plicated expression by the first two elements of its power series about ρnρfδ = 1. This
yields much more intuitive but also quite inaccurate results:

∆φ ≈ 2(1 − ρnρfδ) ,

∆ν ≈ νFSR

π
(1 − ρnρfδ) . (B.32)

A much more accurate approximation can be obtained by going one step back to Equa-
tion B.29. Now we assume, that the line width of the resonance is small compared to
the free spectral range, i.e. we can approximate the cosine by cos φ ≈ 1 − φ2/2 and
with this substitution solve 1

2 Pc(φ = 0) = Pc(φ) for φ and take the difference of both
solutions again:

∆φ ≈ 2(1 − ρnρfδ)/
√

ρnρfδ ,

∆ν ≈ νFSR

π
(1 − ρnρfδ)/

√
ρnρfδ . (B.33)

The quality factor of the resonator is most commonly given by the Finesse F = νFSR/∆ν =

ρnρfδ
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Figure B.6 - Although the assumptions seem to be very similar their accuracy differs significantly. See
Equation B.31 for the exact solution. But obviously the popular formula Equation B.33 is
good even for moderate reflectivities.

2π/∆φ, which can easily be derived from the above. The most commonly used formula
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relates to Equation B.33 and reads:

F =
π
√

ρnρfδ

1 − ρnρfδ
. (B.34)

The transmitted field Eof is formed by the propagation of Ec to the far mirror and
the transmission through it. This yields the total frequency dependent transmission
coefficient τ(ω) of the cavity which is also called the transfer function as the transmitted
field is normalized by the input field:

τ(ω) =
τnτfδe(−iωL/2c)

1 − ρnρfδe(−iωL/c)
. (B.35)

The total reflected Er field is formed by the interference of the field reflected directly
from the near mirror Edr = −ρnEdr and the field leaving the resonator to the left Eon.
The latter can be derived from Ec analogous to the transmitted field: propagation, re-
flection from the far mirror, transmission through the near mirror:

Er = Edr + Eon (B.36)

= Ein

(
−ρn +

τ2
n ρfδe(−iωL/c)

1 − ρnρfδe(−iωL/c)

)
(B.37)

⇒ ρ(ω) =
−ρn + ρfδe(−iωL/c)

1 − ρnρfδe(−iωL/c)
. (B.38)

In the last line the identity ρ2 + τ2 = 1 was used. The reflection coefficient ρ(ω) on
resonance will vanish, if ρn = ρfδ, which is called impedance matching.
There is a quite different approach: Solve the cavity’s equation of motion for the electric
field Ec(t) inside, which works straight forward as long as the free spectral range is
much larger that the line width. Given the latter we can describe the resonator as a
harmonic oscillator with only a single eigenmode with the frequency ω0 and disregard
all the other longitudinal modes. The phase evolves like exp(iω0t) and thus Ėc(t) =
iω0Ec(t). The field partially gets lost by transmission through the mirrors and loss with
the loss rates κn, κf and κl and it is fed by an external field Ein(t) = Ein exp(iωt) through
the near mirror:

Ėc(t) = iω0Ec(t) − (κn + κf + κl)Ec(t) + κnEin exp(iωt). (B.39)

The homogenous solution is found via Ėc(t)/Ec(t) = ∂t log Ec(t) and reads Ec,hom(t) =
Ec,hom exp[(iωc − κn − κf − κl)t], which is absolutely unimportant because at the begin-
ning of all times there was nothing except from the vacuum inside the cavity and thus
Ec,hom = 0.
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