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Abstract

This thesis deals with unilateral contact problems with Coulomb friction. The main
focus of this work lies on the derivation of the dual-dual formulation for a frictional
contact problem. First, we regard the complementary energy minimization problem
and apply Fenchel’s duality theory. The result is a saddle point formulation of dual
type involving Lagrange multipliers for the governing equation, the symmetry of
the stress tensor as well as the boundary conditions on the Neumann boundary
and the contact boundary, respectively. For the saddle point problem an equivalent
variational inequality problem is presented. Both formulations include a nondiffer-
entiable functional arising from the frictional boundary condition. Therefore, we
introduce an additional dual Lagrange multiplier denoting the friction force. This
procedure yields a dual-dual formulation of a two-fold saddle point structure. For
the corresponding variational inequality problem we show the unique solvability.
Two different inf-sup conditions are introduced that allow an a priori error analysis
of the dual-dual variational inequality problem.

To solve the problem numerically we use the Mixed Finite Element Method. We pro-
pose appropriate finite element spaces satisfying the discrete version of the inf-sup
conditions. A modified nested Uzawa algorithm is used to solve the corresponding
discrete system. We prove its convergence based on the discrete inf-sup condi-
tions.

Furthermore, we present a reliable a posteriori error estimator based on a Helmholtz
decomposition. Numerical experiments are performed to underline the theoretical
results.

Keywords. Mixed Finite Element Method, dual formulation, saddle point problem,
variational inequality, inf-sup condition, error estimator
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Zusammenfassung

In dieser Arbeit betrachten wir Ein-Körper-Kontaktprobleme mit Coulomb Reibung.
Das Ziel dieser Arbeit ist eine Herleitung der dual-dualen Formulierung dieser Rei-
bungskontakprobleme. Ausgehend vom Minimierungsproblem der komplemen-
tären Energie leiten wir mit Hilfe der Fenchel’schen Dualitätstheorie ein äquiva-
lentes Sattelpunktsproblem her. Dieses beinhaltet Lagrange Multiplikatoren für die
zugehörige Differentialgleichung, die Symmetrie des Spannungstensors sowie die
Randbedingungen auf dem Neumannrand und dem Kontaktrand. Für das Sat-
telpunktsproblem geben wir ein äquivalentes Variationsungleichungsproblem an.
Beide Formulierungen enthalten ein nichtdifferenzierbares Reibungsfunktional. Da-
her führen wir mit der Reibungskraft einen weiteren Lagrange Multiplikator ein und
erhalten somit eine dual-duale Formulierung des Problems, welches eine zweifache
Sattelpunktsstruktur aufweist. Für das zugehörige Variationsungleichungsprob-
lem zeigen wir die eindeutige Lösbarkeit. Basierend auf zwei Inf-Sup-Bedingungen
können wir eine a priori Analysis des dual-dualen Variationsungleichungsproblems
durchführen.

Wir verwenden die Gemischte Finite Elemente Methode zur numerischen Approx-
imation der Lösung des Problems. Hierzu führen wir geeignete Finite Element
Räume ein, welche die diskrete Version der Inf-Sup-Bedingungen erfüllen. Um das
diskrete System zu lösen, benutzen wir einen modifizierten, geschachtelten Uzawa
Algorithmus. Wir beweisen seine Konvergenz mit Hilfe der diskreten Inf-Sup-
Bedingungen.

Darüberhinaus leiten wir einen, auf einer Helmholtz-Zerlegung basierenden, a pos-
teriori Fehlerschätzer her. Zudem stellen wir numerische Experimente vor, die
unsere theoretischen Ergebnisse bestätigen.

Schlagwörter. Gemischte Finite Elemente Methode, duale Formulierung, Sattel-
punktproblem, Variationsungleichung, Inf-Sup-Bedingung, Fehlerschätzer
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1. Introduction

Contact problems in mechanics are investigated for more than hundred years. In
1881 Hertz [58] analyzed the so-called Hertz contact problem where he derives
analytical representations for the shape of the contact area between two elastic
spheres and determines the resulting contact pressure. The need for a more precise
analysis and simulation in manufacturing and other fields of engineering science
came along with better approximations of real life problems in terms of mathematical
models and their numerical resolution.

The mathematical theory of elasticity, see Sokolnikoff [79], is governed by Lamé’s
equation. Combined with Hooke’s material law we obtain problems of linear elas-
ticity. If the stresses occurring in a body subject to extern and intern forces exceed
a certain value, e.g. the yield stress, the theory of linear elasticity is no longer valid
and more complex nonlinear models have to be used, e.g. models for plasticity. For
an introduction to elasto-plasticity we refer to Nečas and Hlaváček [69]. The theory
of plasticity is described in Han and Reddy [57] and an overview of other inelastic
models can be found in Simo and Hughes [78].

The second field where nonlinearities appear are contact boundary conditions. In
the simplest setting some linear elastic body is coming into contact with a rigid fric-
tionless foundation. This is the so-called Signorini problem, see Kikuchi and Oden
[63]. As the material points of the body must not pervade the rigid foundation they
satisfy a nonpenetration condition, which is an inequality condition. Therefore, the
theory of variational inequalities is closely connected to contact problems. In most
cases contact problems are formulated in terms of variational inequality problems.
Duvaut and Lions [31], Glowinski et al. [53], Kikuchi and Oden [63] and Nečas et al.
[60] give an elaborate review of this topic. An abstract introduction to variational
inequalities can be found in Kinderlehrer and Stampacchia [64] and Glowinski [52].
In the latter work the author distinguishes between variational inequalities of the
first and of the second kind. Variational inequalities of the first kind are restricted
to a convex set. For example the displacement field solving the Signorini problem is
restricted to all vector fields that do not violate the nonpenetration condition. Vari-
ational inequalities of the second kind are formulated on a whole space but involve
a nonlinear convex functional, for example if the rigid foundation in the Signorini
problem causes friction. In this case the tangential part of the stress on the contact
boundary depends on the normal part. The common model of this phenomenon
is the Coulomb law of friction, where the absolute value of the tangential stress
cannot exceed a multiple of the absolute value of the normal stress, denoted as the
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1. Introduction

friction force. A simpler model is the law of Tresca friction. Here, the friction force
is assumed to be given.

There are several other models known in literature. Oden and Martins [74] give an
extensive overview. Johansson and Klarbring [62] consider additionally the influ-
ence of temperature and state a thermoelastic frictional contact model. Oden and
Pires [73] propose a Coulomb friction like model with a nonlocal relation between
tangential and normal stresses.

This work is limited to the case of unilateral linear elastic contact problems with
Coulomb friction. Since we deal with linear elastic materials, the contact problem can
also be stated as a minimization problem. The principle of the minimum potential
energy states, that the displacement field, solving the contact problem, minimizes
the potential energy of deformation. Similarly the corresponding stress minimizes
the complementary energy, see Sokolnikoff [79]. The first one is denoted as the
primal problem, whereas the second one is named dual problem. In this way
the displacement field is called the primal variable and the corresponding stress
tensor the dual variable. Tools from convex analysis, see Ekeland and Temam [32]
and Ito and Kunisch [61], allow us to reformulate the minimization problems as
saddle point problems, which on their parts are equivalent to variational inequality
problems, under certain assumptions. These tools are summarized in the theory of
Fenchel’s duality. The introduction of a saddle point problem is attended by the
usage of Lagrange multipliers. In the primal case the primal-dual problem regards
the displacement field as primal variable and the friction force as dual variable.
This approach is quite popular in literature. Glowinski et al. [53, 52] present an
extensive analyzation of this approach. Among many others we mention Suttmeier
[81] who chooses the primal-dual approach to solve grinding processes. Hild and
Renard [59] and Dörsek and Melenk [30] introduce the normal stress as well as
the tangential stress on the contact boundary as additional Lagrange multipliers.
The latter solves the problem with an adaptive hp-Finite Element Method. Finally,
Chernov, Maischak and Stephan [25] use the primal-dual formulation in combination
with an hp-Mortar Boundary Element Method to solve a two-body frictional contact
problem.

The main backdraw of solving the primal problem is the fact, that the stress tensor
denotes a more important quantity in engineering sciences. For example the stress is
a measure to determine plastic zones that may appear in a body under extern loads.
As in the primal formulation the displacement field is approximated, the stress
tensor has to be computed in a postprocessing which yields a further source of error.
For this reason, we propose in this work an approach based on the dual problem.
For the Laplace problem with unilateral frictionless contact boundary conditions
Wang and Wang [84] solve a dual variational inequality problem of the first kind.
A similar approach is used by Wang and Yang in [85] for a unilateral frictionless
contact problem in linear elasticity. Maischak [67] presents a dual approach for
a transmission problem with Signorini conditions, see also Gatica, Maischak and
Stephan [49]. The probelm is solved via the coupling of FEM and BEM. For a
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transmission problem with friction a similar approach is presented by Maischak and
Stephan in [68]. Bostan, Han and Reddy [13] derive the dual formulation for a scalar
elliptic model problem involving a variational inequality of the second kind with the
help of Fenchel’s duality theory. Bostan and Han [12] extend this approach to some
linear elastic problem with Tresca friction and homogeneous normal displacement
on the contact boundary. Finally we would like to refer to Kunisch and Stadler
[65] who consider the linear elastic contact problem with Coulomb friction. Using
Fenchel’s duality theory they derive the dual problem with the friction function as
additional Lagrange multiplier for the contact problem with Tresca friction. The
authors have to regularize the problem to use a semi-smooth Newton method.
Finally, they use an augmented Lagrangian method to solve the original problem.

The approach within this work will include both, variational inequalities of the first
and of the second kind. We also apply the theory of Fenchel’s duality. But, unlike the
above mentioned approaches, where the conjugate problem of the primal problem
is derived, we will compute the conjugate problem of the dual problem. The first
approach results in a dual minimization problem, usually involving dual variables as
the stress inside the body and its normal and tangential parts on the contact boudary.
In contrast, our approach leads to the primal problem with additional Lagrange
multipliers, denoting the displacement on the Neumann boundary and the contact
boundary. After applying the Fenchel’s duality theorem, we derive a saddle point
problem with the stress tensor as primary unknown. The displacement decomposed
into volume and boundary parts and the rotation of the displacement are considered
additionally in terms of Lagrange multipliers. Unfortunately, the corresponding
equivalent variational inequality problem involves a nondifferentiable functional.
To overcome this difficulty, another Lagrange multiplier, denoting the friction force,
is introduced. This leads us to a problem having two-fold saddle point structure and,
as the friction force denotes a dual variable, to the term of a dual-dual formulation.

The notion of dual-dual formulations was first introduced by Gatica [34] in 1999.
Within this work the solvability of variational problems having dual-dual form
is presented extending the theory of Babuška and Brezzi. As an application a
nonlinear exterior transmission problem is considered, where the two fold structure
results from the coupling of the Boundary Element Method in the exterior region
with the Mixed Finite Element Method in the interior region. The work was first
presented as technical report and released in parts in [33] whereas the final version
[34] was published in 2002. The theory is extended to problems concerning plane
hyperelasticity by Gatica and Heuer in [35] where the authors also propose suitable
finite element subspaces. Finally the theory is generalized by Gatica, Heuer and
Meddahi in [40]. The dual-dual formulation for a nonlinear exterior transmission
problem is further investigated by Gatica and Meddahi in [43]. Moreover Gatica and
Heuer present solution algorithms for dual-dual type problems in [37, 36, 38, 39].

The approximation of saddle point problems can be realized by the Mixed Finite
Element Method, see Brezzi and Fortin [18] for a detailed introduction and descrip-
tion. The main difficulty is to find appropriate finite element spaces for which the
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1. Introduction

resulting linear system is regular. Babuška [6, 7] and Brezzi [17] developed the the-
ory of the Mixed Finite Element Method. The key is the so-called Babuška-Brezzi
condition which assures unique solvability of the saddle point problem. In the dis-
crete case it implies the regularity of the matrix in the corresponding linear system.
In plane elasticity the PEERS elements introduced by Arnold, Brezzi and Douglas
Jr. [5] are well suited for the triple of stress tensor, displacement field and rotation
tensor. Other possible choices are listed in [18]. Our approach is based on the var-
ious contributions by Gatica et al. [45, 48, 10, 46, 19, 47, 11, 42] where the authors
introduce several mixed finite element formulations for problems in plane elasticity,
some of them having two-fold or even three-fold saddle point structure.

Many of the above cited references also introduce a posteriori error estimators. An
introduction to the topic can be found in Verfürth [82] and Ainsworth and Oden [2].
Furthermore, Han [56] presents approaches to a posteriori error estimation via the
Fenchel duality theory. One of these approaches is used in the above mentioned
work by Dörsek and Melenk [30] for an estimate of the primal-dual formulation for
a contact problem with friction. We will restrict ourselves to an a posteriori error
estimator of residual type which is based on the works of Maischak [67], Gatica
and Stephan [44], Carstensen and Dolzmann [22] and Gatica and Meddahi [50]. In
[67] the author uses the Helmholtz decomposition introduced by Alonso [3] and
Carstensen [21] to derive an a posteriori error estimator for an interface problem
with Signorini contact.

Outline of the work

In Chapter 2 we introduce the basic notations and some necessary definitions, par-
ticularly the Sobolev space H(div,Ω). The chapter finishes with a short summary of
Fenchel’s duality theory from convex analysis.

Chapter 3 forms the main part of this work. We introduce the boundary value prob-
lem and discuss the contact boundary conditions. After explaining the friction laws
of Tresca and Coulomb in detail we give a short overview of the primal approach. In
Section 3.1 we derive the dual-dual formulation of the contact problem with Tresca
friction. This process is divided into several steps. After introducing the minimiza-
tion problem related to the complementary energy principle we apply the theory
of Fenchel’s duality in Section 3.1.1. Using the Fenchel duality theorem we arrive
at the saddle point problem with additional Lagrange multipliers in Section 3.1.2.
The equivalence of the saddle point problem with the minimization problems of the
previous section is proven in Theorem 3.10. The saddle point problem is equiva-
lent to a variational inequality problem, which is presented in Section 3.1.3. As the
problem involves the nondifferentiable functional concerning the friction force on
the contact boundary a further Lagrange multiplier is introduced. In this way in
Section 3.1.4 a second saddle point problem is derived, having a two-fold structure.
We show the equivalence of the corresponding variational inequality problem with
the variational inequality problem of the previous section in Theorem 3.17. Taking
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advantage of the existence and unique solvability of the minimization problems and
the equivalence of the subsequent problems we show existence and unique solvabil-
ity of the variational inequality problems in Section 3.1.5. Finally, in Section 3.1.6
we present two inf-sup conditions for the bilinear forms concerning the Lagrange
multipliers. These conditions are necessary for the error analysis of the discrete
formulation. We finish the section with the continuous dependency of the solution
on the given data.

In Section 3.2 we introduce appropriate mixed finite elements for solving the varia-
tional inequality problem numerically. First we explain the setting of the discretiza-
tion of the domain and define the finite element spaces to approximate the solutions
of the continuous formulation. We introduce the discrete variational inequality
problem in Section 3.2.1 and present some conclusions that are necessary for further
observations. In Section 3.2.2 we show, that the finite element spaces satisfy the
discrete versions of the inf-sup conditions. We prove two versions of the inf-sup
condition for the dual Lagrange multiplier approximating the friction force. The
first one is proven for a mesh-dependent norm, but we show, that it holds for a
larger class of problems. On the other hand the second one gets along with a norm,
that is independent of the meshsize but needs a further assumption on the given
Tresca friction. The section closes with an error analysis in Section 3.2.3. We prove a
Céa-type estimate and give an a priori estimate of the error under certain regularity
assumptions.

Section 3.3 deals with the algorithm, that we propose for the solution of the discrete
variational inequality problem. To improve readability we rewrite the problem in
an algebraic form in Section 3.3.1. In Section 3.3.2 we introduce an Uzawa-type
algorithm for the solution of a contact problem without friction. A similar algorithm
was already proposed by Maischak in [67] for a transmission problem with Signorini
boundary conditions. However, we explain the algorithm in detail, as we will need
it to prove the convergence of the nested Uzawa algorithm in Section 3.3.3. This
algorithm solves, in a nested loop, the variational inequality problem for the contact
problem with Tresca friction. We explain, how to adjust the algorithm for the solution
of the contact problem with Coulomb friction, without the need of a further loop. For
the solution of the variational inequalities we rewrite the subproblems for contact
and friction on the contact boundary as two minimization problems with inequality
constraints, respectively. We propose an interior point method of predictor-corrector
type for quadratic programs as solver for the subproblems. Finally, in Section 3.4,
several numerical experiments are presented to underline the theoretical results
of the previous sections. We investigate the rate of convergence and examine the
sensitivity of the solution algorithm on the controlling parameters.

To perform a faster convergence of the solution algorithm we introduce an a poste-
riori error estimator of residual type in Chapter 4. The estimator is based on a local
Helmholtz decomposition of the error of the symmetric stress tensors as proposed by
Carstensen and Dolzmann [22]. We prove reliability of the estimator in Section 4.1.
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1. Introduction

In Section 4.2 we investigate the performance of the estimator on some numerical
experiment.
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2. Basic foundations

In this chapter we give a brief overview of the theoretical background concerning
this work. Section 2.1 collects definitions, notations and equations that are often
used within this work. Section 2.2 deals with some properties of the Sobolev space
H(div,Ω). The results and their proofs can be found in the works of Girault and
Raviart [51] and Duvaut and Lions [31]. Finally Section 2.3 states some needful
results from convex analysis. The proofs can be found in the works of Ekeland and
Temam [32] and Ito and Kunisch [61].

Throughout the work we will use several results from different references. Whenever
it is needful to repeat the result in this work, we will use italic type.

2.1. Notations

Within this work we consider functions on some open bounded domain Ω with
Lipschitz boundary Γ := ∂Ω. Those functions can be scalar, vector valued or tensors
of second order. In the interest of improving readability we therefore use bold letters
for all vector valued functions. Small greek letters denote tensors of second order on
the one hand as well as functions on some part of the boundary on the other hand.
In this case the right meaning should be clear from the context. We use a similar
notation for function spaces which are usually abbreviated with capital letters, e.g.
for some function space X containing scalar functions we use X for the space of those
vector valued functions whose components live in X. A special treatment has to be
done in case of tensors of second order. We do this exemplary in Section 2.2 for the
spaces H(div,Ω) and H(div,Ω), respectively.

Sometimes we will use an index notation and the Einstein notation for sums over
the same index labels. We use a comma to denote a differentiation. For a function
u ∈ H1(Ω) we have for example

∇u = ui, jei ⊗ e j and div u = ui,i =

d∑

i=1

∂ui

∂xi

.

Here the vector product ei ⊗ e j of the cartesian base vectors ei and e j denote the
component of the tensor. In the above example i is the row index and j the column
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2. Basic foundations

index of the gradient tensor ∇u. For tensors of second order we use

σ : τ :=
d∑

i, j=1

σi jτi j

as the inner tensor product. Note that in general the product is defined as the
multiplication of the two right most indices of the left multiplier with the first two
indices of the right multiplier. As we consider contact problems with continua of
linear elastic isotropic material we are faced with Hooke’s law σ(u) := C : ε(u),
stating the dependence of the stress tensor σ(u) and the linearized strain tensor
ε(u) := 1

2 (∇u+∇Tu) of some displacement field u. This involves the elasticity tensor
of fourth orderC whose components are defined asCi jkl := λδi jδkl + µ(δikδ jl + δilδ jk) (2.1)

using the Lamé constants λ and µ and the Kronecker delta. Furthermore we have the
following symmetry properties of the elasticity tensor (see Chapter 3 in Sokolnikoff
[79] for more details) Ci jkl = C jikl = Ckli j. (2.2)

The ellipticity and symmetry ofC yields the existence ofC−1 and α > 0 such that

τ : C−1 : τ ≥ α τ : τ ∀ τ, (2.3)

(see Chapter 3 in Duvaut and Lions [31]). Note that the symmetry properties (2.2)
are also valid for the inverse elasticity tensor C−1. We often use the decomposition
of a tensor into its symmetric and antisymmetric parts. These are defined for an
arbitrary tensor τ as

sym(τ) :=
1
2

(τ + τT) as(τ) :=
1
2

(τ − τT). (2.4)

Note that the symmetric part of the gradient of any vector field u ∈ H1(Ω) equals
the linearized strain tensor of u, i.e. ε(u) = sym(∇u). If not explicitly identified
we usually use C as a generic positive constant which can change its value within
computations. In elasticity problems Korn’s inequality assures uniqueness of the
primal problem. Since we will use the primal problem as an auxiliary problem in
our work we state the result which stems from Duvaut and Lions [31, see Theorems
3.1 and 3.3 of Chapter III].

Theorem 2.1: Korn’s second inequality
LetΩ be a bounded open set with regular boundary Γ and let the Dirichlet boundary
ΓD have positive measure. Let

VD := {v ∈ H1(Ω) : v = 0 on ΓD}.
Then there exists an α0 > 0 such that

a(v,v) :=
∫

Ω

ε(v) : C : ε(v) dx ≥ α0‖v‖H1 (Ω) ∀ v ∈ VD. (2.5)
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2.2. Some properties of the Sobolev space H(div,Ω)

Finally from the second binomial theorem we have the following inequality which
will be used very often. Using 0 ≤ (εa − b)2 = ε2a2 − 2εab + b2 for two arbitrary
integers a and b we get

ab ≤ ε
2

a2 +
1
2ε

b2 ∀ ε > 0. (2.6)

2.2. Some properties of the Sobolev space H(div,Ω)

If we are dealing with dual formulations in elasticity we are faced with tensors of
second order. In the equilibrium equation of the mechanical system the divergence
operator is acting on the stress tensor. If we further assume that the volume force on
the right hand side of the equilibrium equation is at least L2-integrable we are led to
the space

H(div,Ω) := {τ = (τi j)d
i, j=1| (τi j)d

j=1 ∈ H(div,Ω) for i = 1, . . . , 3},

whereΩ ⊂ Rd, d = 2, 3 is an open bounded domain and

H(div,Ω) := {v ∈ L2(Ω) := (L2(Ω))d| div v ∈ L2(Ω)}

equipped with the norm

‖v‖H(div,Ω) = (‖v‖2
L2 (Ω)

+ ‖div v‖2
L2(Ω)

)
1
2 .

Consequently H(div,Ω) is equipped with the norm

‖τ‖H(div,Ω) =




d∑

i=1

‖(τi j)3
j=1‖2H(div,Ω)




1
2

.

From Girault and Raviart [51, see Chapter I] we have the following trace theorem
concerning H(div,Ω).

Theorem 2.2:
Let n denote the outer normal on the boundary Γ := ∂Ω of the domain Ω. Then the
mapping

γn : v 7→ v · n|Γ

defined on (C∞0 (Ω̄))d can be extended by continuity to a linear and continuous map-

ping, still denoted by γn, from H(div,Ω) into H−
1
2 (Γ). Moreover the range of γn is

exactly H−
1
2 (Γ) and we have

‖γnv‖
H
− 1

2 (Γ)
≤ ‖v‖H(div,Ω) ∀ v ∈ H(div,Ω).
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2. Basic foundations

In our case we are interested in the tractions on the boundary, that are τ · n|Γ. Since
each row vector of a tensor τ ∈ H(div,Ω) is in H(div,Ω) we can apply the above
result to get

Theorem 2.3:
The mapping

γ
n

: τ 7→ τ · n|Γ

defined on (C∞0 (Ω̄))d×d can be extended by continuity to a linear and continuous

mapping, still denoted by γn, from H(div,Ω) into H−
1
2 (Γ). Moreover the range of γn

is exactly H−
1
2 (Γ) and we have

‖γ
n
τ‖

H
− 1

2 (Γ)
≤ ‖τ‖H(div,Ω) ∀ τ ∈ H(div,Ω).

2.3. Convex analysis

The following results are collected from the works of Ekeland and Temam [32] and
Ito and Kunisch [61]. We use them in Chapter 3 to derive a saddle point formulation
from a minimization problem and its dual.

Let X, Y be two reflexive Banach spaces with duals X′, Y′ and let J : X → (−∞, ∞]
be a proper, lower semicontinuous (l.s.c.) and convex function. We consider the
following minimization problem, denoted as the primal problem (P):

Find x̄ ∈ X such that

J(x̄) ≤ J(x) ∀ x ∈ X. (2.7)

Clearly if J is coercive, then there exists a minimizer x̄ ∈ X of the primal problem
(P). Now we define a family of perturbed problems in the following way. Let
Φ(x, y) : X × Y → (−∞, ∞] be proper, l.s.c. and convex with Φ(x, 0) = J(x), then the
problem (Py) reads:

Find x̄ ∈ X such that for y ∈ Y

Φ(x̄, y) ≤ Φ(x, y) ∀ x ∈ X. (2.8)

Obviously (P) is equal to (P0).

Remark 2.4: If J(x) = F(x) + G(Λx), where F : X → R and G : Y → (−∞, ∞] are
two proper, l.s.c. and convex functions and Λ ∈ L(X,Y), then we can set Φ(x, y) :=
F(x) + G(Λx + y).

10



2.3. Convex analysis

Definition 2.5:
The functional J∗ : X′ → [−∞, ∞] defined by

J∗(x∗) = sup
x∈X
{〈x∗, x〉 − J(x)}

is called the conjugate of J.

The dual problem (P∗) of (P) with respect to Φ is then defined by:

Find ȳ∗ ∈ Y′ such that

−Φ∗(0, ȳ∗) ≥ −Φ∗(0, y∗) ∀ y∗ ∈ Y′. (2.9)

Remark 2.6: If we consider the case of the previous remark, i.e. Φ(x, y) = F(x)+G(Λx+ y),
then the conjugate Φ∗(x∗, y∗) of Φ reads

Φ∗(x∗, y∗) = F∗(x∗ −Λ∗y∗) + G∗(y∗).

Definition 2.7:
The functional L : X × Y′ → [−∞, ∞) defined by

−L(x, y∗) := sup
y∈Y
{〈y∗, y〉 −Φ(x, y)} (2.10)

is called the Lagrangian.

Now we can state the following result from [61, see Theorem 4.35].

Theorem 2.8: Fenchel’s duality theorem
Assume that Φ is a convex, l.s.c. function that is finite at (x̄, ȳ∗). Then the following
are equivalent.

• (x̄, ȳ∗) ∈ X × Y′ is a saddle point of L, i.e.

L(x̄, y∗) ≤ L(x̄, ȳ∗) ≤ L(x, ȳ∗) ∀ x ∈ X, y∗ ∈ Y′ (2.11)

• x̄ solves (P), ȳ∗ solves (P∗), and Φ(x̄, 0) = −Φ∗(0, ȳ∗).
The next result from [32, chapter VI] states equivalence between saddle point prob-
lems and variational inequality problems. It is very useful for frictional contact
problems because the functional in the saddle point formulation does not need to
be Gâteaux-differentiable.

Proposition 2.9:
Assume that L = m + l with

∀ x ∈ X, y∗ 7→ l(x, y∗) is concave and Gâteaux-differentiable,

∀ y∗ ∈ Y′, x 7→ l(x, y∗) is convex and Gâteaux-differentiable,

∀ x ∈ X, y∗ 7→ m(x, y∗) is concave,

∀ y∗ ∈ Y′, x 7→ m(x, y∗) is convex.

11



2. Basic foundations

Then (x̄, ȳ∗) ∈ X × Y′ is a saddle point of L if and only if

〈 ∂l

∂x
(x̄, ȳ∗), x − x̄〉 +m(x, ȳ∗) −m(x̄, ȳ∗) ≥ 0, ∀ x ∈ X,

−〈 ∂l

∂y∗
(x̄, ȳ∗), y∗ − ȳ∗〉 +m(x̄, ȳ∗) −m(x̄, y∗) ≥ 0, ∀ y∗ ∈ Y′.

(2.12)

12



3. Dual-dual formulation for a contact problem
with friction in 2D

In this chapter we apply the theory of Fenchel’s duality from Section 2.3 in order to
derive dual formulations of a contact problem with friction in 2D. Let us consider
the following contact problem in 2D elasticity with Tresca friction. Assume a linear
elastic body occupying the open bounded domainΩ ⊂ R2. The Lipschitz-boundary
Γ := ∂Ω is divided into three disjoint parts, the Dirichlet boundary ΓD where we
assume homogeneous Dirichlet conditions, the Neumann boundary ΓN where a
prescribed traction is acting on the body and the contact boundary ΓC where the
body is supposed to come into contact with a rigid foundation, see Figure 3.1. To
circumvent technical computations in the subsequent analysis we assume that the
contact boundary ΓC and the Neumann boundary ΓN do not touch, i.e. ΓC ∩ ΓN = ∅.
Then the displacement vector field u(x) in each material point x ∈ Ω of the body
satisfies the following PDE: Here the stress tensor σ(u) is connected to the strain

Ω

ΓC

ΓD

ΓD

ΓN

g

Figure 3.1.: Boundary distribution

−divσ(u) = f in Ω,

u = 0 on ΓD,

σ(u) · n = t0 on ΓN,

un ≤ g; σn ≤ 0; (un − g)σn = 0 on ΓC,

|σt| ≤ F ; σt · ut + F |ut| = 0 on ΓC.

(3.1)

tensor ε(u) via Hooke’s law for linear elasticity, see Section 2.1. The volume body
force f ∈ L2(Ω), the prescribed traction t0 ∈ H−

1
2 (ΓN), the positive gap function

g ∈ H
1
2 (ΓC) and the friction function F ∈ L∞(ΓC) are assumed to be given. On the

contact boundary ΓC we have the decompositions u = unn + ut and σ · n = σnn + σt

of the displacement and the traction into their normal and tangential parts, where n
denotes the unit normal exterior to the contact boundary ΓC and

un = u · n, ut = u − unn, σn = nT · σ · n, σt = σ · n − σnn.

On the contact boundary we find some KKT-conditions for the normal part. They
implicate that all material points of the body Ω may not penetrate the rigid foun-
dation, which has positive distance g to the contact boundary ΓC. Furthermore, if

13



3. Dual-dual formulation for a contact problem with friction in 2D

some point x ∈ ΓC is not in contact (i.e. un(x) < g(x)), then the normal stress σn(x) at
this point has to be zero. Otherwise due to the nonpenetration condition the body
cannot expand at those material points x ∈ ΓC that are in contact (i.e. un(x) = g(x)).
Therefore the normal stress occuring at those points is always a compressive stress
which leads to σn(x) ≤ 0. Finally, the equation in (3.1)4 states that for all material
points on the contact boundary either of the above situations is valid.

Friction laws

The last boundary condition in the boundary value problem (3.1) state the friction
law of Tresca friction. A more physical law would be the Coulomb friction law, see
e.g. Kikuchi and Oden [63, Chapter 10], which reads

if |σt| < µ f |σn|, then ut = 0 on ΓC,

if |σt| = µ f |σn|, then ∃ s ≥ 0 : ut = −sσt on ΓC.
(3.2)

Here µ f ≥ 0 is the friction coefficient, which is assumed to be uniformly Lipschitz on
ΓC. It specifies how strong the body is sticking to the rigid foundation when coming
into contact at some point x ∈ ΓC. The second line in (3.2) is equivalent to

σt · ut = −µ f |σn||ut| on ΓC. (3.3)

When considering real life problems the friction coefficient, being not necessarily
constant is usually not known exactly since it depends on the material properties of
the body Ω and the rigid foundation as well as on the roughness of both materials
at each point. The last factor is a local property that changes in each material point.
Nevertheless we restrict ourselves to some constant values for the friction coefficient
which is sufficient for our purpose.

The Coulomb friction law indicates the direct dependence of the shear stress on
the normal stress in each material point on the contact boundary. If some material
point x ∈ ΓC is not in contact with the rigid foundation then no shear stress (or
tangential stress) appears due to |σt(x)| ≤ µ f |σn(x)| = 0. On the other hand we have
to distinguish two cases. First, the material point x ∈ ΓC sticks to the rigid foundation.
In this case |σt(x)| < µ f |σn(x)| and the tangential stress is not large enough to move the
material point in tangential direction. Second, the material point is moving along the
rigid foundation in tangential direction. The absolute value of the tangential stress
equals µ f |σn(x)|. In this case the tangential stress cannot increase when the normal
stress is fixed at the same time. The excess energy has transformed into kinetic
energy (and usually also thermal energy). Figures 3.2 and 3.3 give an example of
the stick and the slip situations, respectively. The dashed, colored lines depict the
deformed geometries.

However a direct treatment of contact problems with Coulomb friction seems dif-
ficult and in some cases even impossible. The first result concerning existence of a
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solution for a sufficiently small friction coefficient was discovered by Nečas, Jarušek
and Haslinger [70]. Other references were already mentioned in the introduction.
To approach the Coulomb friction law, Nečas et al. [60, see Chapter 2.5.4] propose a
fixed point iteration. We give a short abstract of this approach and refer to the above
references for more details.

For given F0 ∈ L∞(ΓC) and µ f , both positive, we compute Fk+1 := µ f |σk
n| where σk

n

is the normal stress on ΓC of the solution of the contact problem (3.1) with given
Tresca friction function Fk ≥ 0. We proceed until some stopping criterion is reached.
The whole algorithm, in particular the part of solving problem (3.1), is explained in
Section 3.3. For convenience we drop the index k of the friction function Fk. Note

Ω

ΓC

ΓD

ΓNΓN

t0

ut = 0

Figure 3.2.: Deformed geometry
when stick occurs.

Ω

ΓC

ΓD

ΓNΓN

t0

ut , 0

Figure 3.3.: Deformed geometry when slip
occurs.

that we demand F to be in L∞(ΓC) and not in H−
1
2 (ΓC) as we would expect from the

definition above. The reason for this assumption will be seen later in this work.

Furthermore, we define NCF := {x ∈ ΓC : F is not continuous in x} and assume that
the number of points x ∈ NCF is bounded. The motivation of this assumption is
the following. If we would allow all functions F ∈ L∞(ΓC) then we could take for
example the indicator function IR\Q for x on ΓC

IR\Q(x) :=

{
1, if |x| ∈ R \Q,
0, if |x| ∈Q,

which is of course in L∞(ΓC). But for the strong formulation (3.1) this would lead to an
undefined contact situation on the whole contact boundary ΓC and we would have
little prospect for success of stating theoretical or numerical results. We therefore
state the following assumptions on the friction functional F

F ∈ L2(ΓC) and #NCF < N for some N ∈ N. (3.4)

Let us also give a heuristic motivation of the above assumption. It seems natural
as the diameter of some material point of a continuum is obviously bounded from
below by ε > 0 from the physical point of view. Hence the thought is as follows.
Considering the contact problem with Coulomb friction (3.2), then for all x ∈ ΓC

that are not in contact with the rigid foundation, the boundary conditions lead to
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3. Dual-dual formulation for a contact problem with friction in 2D

un(x) < g(x) ⇒ σn(x) = 0 and finally σt(x) = 0. Now let some material point x ∈ ΓC

come into contact with the rigid foundation, then un(x) = g(x)⇒ σn(x) , 0. Without
loss of generality we assume dist(x, ∂ΓC) > 0 and Bε(x)|Γ ⊂ ΓC, then y is in contact
with the rigid foundation for all y ∈ Bε(x). As the contact situation is exactly the
same for all y ∈ Bε(x) we have σn(y) is continuous in y for all y ∈ Bε(x). Finally, due
to ΓC being bounded we can find a finite set of material points xi ∈ ΓC, such that
∪iBε(xi) ⊃ ΓC. But this means that the number of points, where the normal stress
σn is not continuous, is finite. Since we expect the sequence of Tresca functions Fk

tending to µ f |σn|, which satisfies assumption (3.4), it seems feasible to demand it for
all elements of the sequence.

Remark 3.1: Assumption (3.4) on the friction function F is necessary for the theoretical
results in the next sections. In Section 3.2 we will use a further observation, concerning the
support of the friction function, to handle it numerically.

3.0.1. Primal formulation for contact problems with Tresca friction

Before we start with the investigation of our approach let us repeat some results
on the primal formulation where the displacement field is regarded as unknown
variable. We already defined the space of energetically admissible functions VD in
Section 2.1. Regarding the nonpenetration condition on the contact boundary we
are led to the definition of the closed convex subset of VD

Kg := {v ∈ VD : vn ≤ g a.e. on ΓC}.

Defining the coercive and continuous bilinear form a(·, ·) on VD×VD, the continuous
linear form L(·) on VD and the continuous but nondifferentiable functional j(·) on
VD by

a(u, v) :=
∫

Ω

ε(u) : C : ε(v) dx,

L(v) :=
∫

Ω

f · v dx +

∫

ΓN

t0 · v ds,

j(v) :=
∫

ΓC

F |vt| ds,

the energy functional corresponding to the boundary value problem (3.1) reads

J(v) :=
1
2

a(v, v) − L(v) + j(v). (3.5)

The energy principle states that the solution of (3.1) minimizes the energy functional
J(·) over all admissible functions in Kg. Hence we arrive at the primal minimization
problem:
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Find u ∈ Kg such that

J(u) ≤ J(v) ∀ v ∈ Kg. (3.6)

Since J(·) is coercive on Kg, strictly convex and l.s.c. there exists a unique solution
u ∈ Kg of problem (3.6), see e.g. Chapter II in Ekeland and Temam [32]. This
approach was investigated for years and is well known in literature. Some few
references among many others are for example the books of Duvaut and Lions [31],
Glowinski et al. [53], Glowinski [52], Kikuchi and Oden [63] and Nečas et al. [60].
In the next section we will use the following well known result, see the references
above, concerning the primal minimization problem.

Lemma 3.2:
If the solution u of the primal minimization problem (3.6) is smooth enough, then
it is connected with the strong formulation (3.1) in the following way. Defining
σ(u) := C : ε(u) there holds

−divσ(u) = f in Ω,

σ(u) · n = t0 on ΓN,

σ(u)n ≤ 0 and |σ(u)t| ≤ F on ΓC,∫

ΓC

ut · σ(u)t + F |ut| ds = 0.

Proof. For completeness we show the proof. From [53] we know that the minimiza-
tion problem (3.6) is equivalent to the following variational inequality problem of
finding u ∈ Kg s.t.

a(u,v − u) − L(v − u) + j(v) − j(u) ≥ 0 ∀ v ∈ Kg (3.7)

If we choose v = ±φ + u with φ ∈ C∞0 (Ω)2, then v ∈ Kg and we have
∫

Ω

σ(u) : ε(φ) dx −
∫

Ω

f ·φ dx = 0 ∀ φ ∈ C∞0 (Ω)2.

Applying integration by parts it follows −divσ(u) = f in Ω, if u is smooth enough.
Now using

a(u,v − u) −
∫

Ω

f · (v − u) dx =

∫

ΓN∪ΓC

(v − u) · σ(u) · n ds

the variational inequality reduces to
∫

ΓN

(v − u) · (σ(u) · n − t0) ds +

∫

ΓC

(vn − un)σ(u)n ds

+

∫

ΓC

[(vt − ut) · σ(u)t + F |vt| − F |ut|] ds ≥ 0 ∀ v ∈ Kg

17



3. Dual-dual formulation for a contact problem with friction in 2D

and choosing v ∈ Kg with v = u on ΓC and v = ±φ+u on ΓN forφ ∈ H̃
1
2 (ΓN) we have

∫

ΓN

φ · (σ(u) · n − t0) ds = 0 ∀ φ ∈ H̃
1
2 (ΓN) ⇒ σ(u) · n = t0 on ΓN.

With v ∈ Kg, v = u on ΓN, vt = ut and vn = un + φn on ΓC for φn being the normal
component on ΓC of some φ ∈ K0 we derive

∫

ΓC

φnσ(u)n ds ≥ 0 ∀ φ ∈ K0 ⇒ σ(u)n ≤ 0 on ΓC.

Taking v ∈ Kg with v = u on ΓN and v = u + φ on ΓC for some φ ∈ H̃
1
2 (ΓC) with

φn = 0, i.e. vn = un on ΓC and vt = ut + φt on ΓC, we have

0 ≤
∫

ΓC

(φt · σt + F |ut + φt| − F |ut|) ds

≤
∫

ΓC

(φt · σt + F |ut| + F |φt| − F |ut|) ds =

∫

ΓC

(φtσt + F |φt|) ds ∀ φ ∈ H̃
1
2 (ΓC).

For positive φt we get σt +F ≥ 0 and for negative φt, σt −F ≤ 0 on ΓC which reads
together |σt| ≤ F on ΓC. Finally, for v ∈ Kg with v = u on ΓN, vn = un and vt = 0 and
vt = 2ut, respectively on ΓC we have

∫

ΓC

utσ(u)t + F |ut| ds = 0 on ΓC.

�

In the next section we investigate the complementary energy principle in order to
derive dual formulations where the primary unknown variable is the stress tensor.

3.1. Dual-dual formulation in 2D

In this section we want to derive the dual-dual formulation of problem (3.1). To
do so we have to investigate the dual minimization problem resulting from the
complementary energy principle. After applying Fenchel’s duality theory we can
state an equivalent saddle point problem. Then in a final step we derive variational
inequalities that are suitable for some numerical analysis. But first let us set up the
dual minimization problem.
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3.1. Dual-dual formulation in 2D

3.1.1. Dual minimization problem

Before we introduce the dual minimization problem we make the following obser-
vation. As we consider a 2D problem we can define the unit tangential vector on the
boundary Γ as t :=

(
n2
−n1

)
for n =

( n1
n2

)
being the unit outer normal to the boundary Γ.

For some v ∈ H1(Ω) and τ its corresponding stress tensor we define

vt := v · t and τt := τt · t = (τ · n − τnn) · t = t · τ · n.

Then due to τt · n = 0 and vt · n = 0 we have |τt| = |τt|, |vt| = |vt| and

vtτt = (v · t)τt = (vnn + vt) · (τtt) = vt · τt.

For this reason we can restrict the friction boundary condition (3.1)5 to the scalar
version

|σt| ≤ F ; σtut + F |ut| = 0 on ΓC. (3.8)

Similar to the primal formulation we introduce the space of energetically admissible
functions

Xs := {τ = (τi j)i, j=1,2 : τ ∈ H(div,Ω), τi j = τ ji, i, j = 1, 2}. (3.9)

In a dual problem the boundary conditions switch their roles. Hence the Dirichlet
condition and the nonpenetration condition are no longer essential but natural. For
reasons of readability we restrict ourselves to homogeneous Dirichlet conditions.
On the other hand we have the Neumann condition as well as the inequalities on
the contact boudary concerning the stress. These are the essential conditions of the
dual problem and have to be built into the space of admissible functions Xs leading
to a convex set of admissible functions. Finally, the governing partial differential
equation (3.1)1 is no longer of second order, when regarding σ as primary variable.
Therefore we also build this equation into the closed convex set which is defined
as

K̃ := {τ ∈ Xs : −div τ = f in Ω; τ · n = t0 on ΓN; τn ≤ 0 on ΓC; |τt| ≤ F on ΓC}. (3.10)

Since we assume the volume body forces f and the traction t0 on the Neumann
boundary ΓN to be nonzero, we introduce Langrange multipliers for the displace-
ment field u in Ω and the trace of u on ΓN to derive the dual-dual formulation. We
introduce additional Lagrange multipliers denoting the tangential and normal dis-
placement ut and un on the contact boundary that are tested with the normal traction
and the tangential traction, respectively. We have f ∈ L2(Ω), t0 ∈ H−

1
2 (ΓN) and the

trace of Xs on ΓC, which is H−
1
2 (ΓC) due to Theorem 2.3. Therefore we define

Y := L2(Ω) ×H−
1
2 (ΓN) ×H−

1
2 (ΓC) ×H−

1
2 (ΓC). (3.11)
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3. Dual-dual formulation for a contact problem with friction in 2D

If we define the continuous bilinear form ã(·, ·) on Xs × Xs and the functional J̃(·) on
Xs by

ã(σ, τ) :=
∫

Ω

σ : C−1 : τ dx,

J̃(τ) :=
1
2

ã(τ, τ) − 〈g, τn〉ΓC
,

(3.12)

then J̃(·) is the conjugate energy functional and due to the minimum principle of the
conjugate elastic potential we know that the stress tensor σ(u) of the solution of (3.1)
minimizes J̃(·) over K̃. This leads us to the dual minimization problem.

Find σ ∈ K̃ such that

J̃(σ) ≤ J̃(τ) ∀ τ ∈ K̃. (3.13)

Due to Lemma 3.2 the convex set K̃ is not empty. Moreover the functional J̃(·) is
coercive on K̃, strictly convex and continuous and therefore we have the existence of
a unique solution for the dual minimization problem (3.13), see again Ekeland and
Temam [32, Proposition 1.2 in Chapter II]. The coercivity of J̃ on K̃ follows from the
coercivity of ã(·, ·) on the subspace of all divergence free tensors and the continuity
of the dual product on ΓC. From Theorem 2.3 and equation (2.3) we have

‖τ‖2
X
= ‖τ‖2

(L2(Ω))2×2 + ‖f‖2L2 (Ω)
∀ τ ∈ K̃

〈g, τn〉ΓC
≤ ‖g‖

H
1
2 (ΓC)
‖τn‖

H
− 1

2 (ΓC)
≤ ‖g‖

H
1
2 (ΓC)
‖τ‖X

⇒ J̃(τ) = 1
2 ã(τ, τ) − 〈g, τ〉 ≥ α

2 ‖τ‖2X − α
2 ‖f‖2L2 (Ω)

− ‖g‖
H

1
2 (ΓC)
‖τ‖X

= ‖τ‖X
(
α
2 ‖τ‖X − ‖g‖H 1

2 (ΓC)

)
− α

2 ‖f‖2L2 (Ω)

⇒ lim
‖τ‖X→∞

J̃(τ) ≥ lim
‖τ‖X→∞

‖τ‖X
(
α
2 ‖τ‖X − ‖g‖H 1

2 (ΓC)

)
− α

2 ‖f‖2L2 (Ω)
→∞,

since f ∈ L2(Ω) and g ∈ H
1
2 (ΓC). Furthermore, we observe for all τ1 , τ2 in K̃

J̃(sτ1 + (1 − s)τ2) − sJ̃(τ1) − (1 − s) J̃(τ2)

=
s2

2
ã(τ1, τ1) + s(1 − s) ã(τ1, τ2) +

(1 − s)2

2
ã(τ2, τ2) − s

2
ã(τ1, τ1) − 1 − s

2
ã(τ2, τ2)

=
s(s − 1)

2
ã(τ1, τ1) + s(1 − s) ã(τ1, τ2) − s(1 − s)

2
ã(τ2, τ2)

= −s(1 − s) ã(τ1 − τ2, τ1 − τ2) < 0 ∀ s ∈ (0, 1),

which means that J̃(·) is strictly convex on K̃. For the primal minimization problem
(3.6) and the dual minimization problem (3.13) we can prove the following
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3.1. Dual-dual formulation in 2D

Theorem 3.3:
Let u ∈ Kg and σ ∈ K̃ be the solutions of the primal minimization problem (3.6) and
the dual minimization problem (3.13), respectively. Then there holds

σ = C : ε(u) and J(u) + J̃(σ) = 0.

Proof. The proof follows the ideas of Nečas et al. [60, see Section 1.1.12]. See also
Theorem 5.3 in Maischak [67]. Let us define M := {τ ∈ L2(Ω)2×2 : τ = τT} and
J : Kg ×M ×M −→ R

J(v, ζ, τ) :=
1
2

∫

Ω

ζ : C : ζ dx +

∫

Ω

τ : (ε(v) − ζ)dx − L(v) + j(v).

Obviously there holds

sup
τ∈M

∫

Ω

τ : (ε(v) − ζ)dx =

{
0, if ζ = ε(v),

∞, else.

Thus the primal minimization problem (3.6) can be expressed as follows

inf
v∈Kg

J(v) = inf
(v,ζ)∈Kg×M

sup
τ∈M
J(v, ζ, τ).

Defining

I(τ) := inf
(v,ζ)∈Kg×M

J(v, ζ, τ)

we conclude

I(τ) ≤ inf
v∈Kg

J(v, ε(v), τ) = inf
v∈Kg

J(v) = J(u) ∀ τ ∈M,

which also holds true for the supremum

sup
τ∈M

I(τ) ≤ J(u).

Now if we set

I(τ) = inf
ζ∈M

I1(ζ, τ) + inf
v∈Kg

I2(v, τ)

with

I1(ζ, τ) :=
1
2

∫

Ω

ζ : C : ζ dx −
∫

Ω

τ : ζ dx for ζ, τ ∈M,

I2(v, τ) :=
∫

Ω

τ : ε(v) dx − L(v) + j(v) for v ∈ Kg, τ ∈M,
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3. Dual-dual formulation for a contact problem with friction in 2D

then we can compute both infima and thus I(τ). The first infimum follows immedi-
ately since we are concerned with a differentiable quadratic form. It follows

inf
ζ∈M

I1(ζ, τ) = −1
2

∫

Ω

τ : C−1 : τ dx.

For the second infimum we first observe that for g ∈ H
1
2 (ΓC) there exists an extension

G ∈ VD such that Gn = g and Gt = 0 on ΓC. Now for every v ∈ Kg there exist a ṽ ∈ K0

with v = ṽ + G and we can write

I2(v, τ) = I2(ṽ +G, τ) = I2(G, τ) + I2(ṽ, τ) ∀ v ∈ Kg.

Here we used

j(ṽ +G) =
∫

ΓC

F |ṽt + Gt| ds =

∫

ΓC

F |ṽt| ds = j(ṽ) + j(G).

Now we are able to take the imfimum over K0 which reads

inf
v∈Kg

I2(v, τ) = I2(G, τ) + inf
ṽ∈K0

I2(ṽ, τ).

Next we show that

τ ∈ K̃ ⇔ I2(ṽ, τ) ≥ 0 ∀ ṽ ∈ K0. (3.14)

To see this we first let τ ∈ K̃ and compute

I2(ṽ, τ) =
∫

Ω

τ : ε(ṽ) dx −
∫

Ω

ṽ · f dx − t(ṽ) + j(ṽ)

=

∫

Ω

τ : ε(ṽ) dx +

∫

Ω

ṽ · div τ dx − t(ṽ) + j(ṽ) =
∫

ΓN∪ΓC

ṽ · τ · n ds − t(ṽ) + j(ṽ)

=

∫

ΓC

ṽnτn ds +

∫

ΓC

ṽtτt + F |ṽt| ds ∀ ṽ ∈ K0, τ ∈ K̃,

where we have used the equality constraints for τ in K̃ and Green’s formula. As
ṽn ≤ 0 and τn ≤ 0 for ṽ ∈ K0 and τ ∈ K̃ we have ṽnτn ≥ 0 and so the first integral is
positive. For the second integral we observe

ṽtτt + F |ṽt| = (τt + F sign ṽt)ṽt

and by a distinction of cases we have

1. ṽt < 0 ⇒ sign ṽt = −1 : τt ≤ |τt| ≤ F ⇒ τt + F sign ṽt = τt − F ≤ 0

2. ṽt > 0 ⇒ sign ṽt = 1 : τt ≥ −|τt| ≥ −F ⇒ τt + F sign ṽt = τt + F ≥ 0,
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3.1. Dual-dual formulation in 2D

leading to (τt + F sign ṽt)ṽt ≥ 0. Finally, we have

I2(ṽ, τ) =
∫

ΓC

ṽnτn ds +

∫

ΓC

ṽtτt + F |ṽt| ds ≥ 0 ∀ ṽ ∈ K0, τ ∈ K̃.

Now let τ ∈M such that I2(ṽ, τ) ≥ 0 for all ṽ ∈ K0 which means
∫

Ω

τ : ε(ṽ) dx − L(ṽ) + j(ṽ) ≥ 0 ∀ ṽ ∈ K0.

The terms on the boundary parts vanish if we take ṽ = ±φ with φ ∈ C∞0 (Ω)2 which
is clearly in K0. Thus we have

∫

Ω

(τ : ε(φ) − φ · f)dx = 0 ∀ φ ∈ C∞0 (Ω)2

that is −div τ = f in Ω in the weak sense. After integration by parts the functional
reduces to

I2(ṽ, τ) =
∫

ΓN∪ΓC

ṽ · τ · n ds −
∫

ΓN

ṽ · t0 ds +

∫

ΓC

F |ṽt| ds

and choosing ṽ ∈ K0 with ṽ = 0 on ΓC we get τ · n = t0 on ΓN. Next taking ṽ ∈ K0

with ṽt = 0 on ΓC we have τn ≤ 0 due to ṽn ≤ 0 and I2(ṽ, τ) ≥ 0. Finally, ṽ ∈ K0 with
ṽn = 0 and sign ṽt = − signτt on ΓC leads to |τt| ≤ F on ΓC and therefore τ ∈ K̃ which
is the desired assertion (3.14).

For τ ∈ K̃ we just have seen that

I2(v, τ) =
∫

ΓC

vnτ ds +

∫

ΓC

τtvt + F |vt| ds ∀ v ∈ Kg.

If we take the infimum over all v ∈ Kg we see with τn ≤ 0 and vn ≤ g that the first
integral assumes its infimum for the upper bound of vn that is

inf
v∈Kg

∫

ΓC

vnτn ds =

∫

ΓC

gτn ds.

Furthermore, we have τtvt ≥ −|τt||vt| ≥ −F |vt|, which leads
∫

ΓC

τtvt + F |vt| ds ≥ 0 ∀ v ∈ Kg,

and so the infimum is assumed for vt = 0.
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3. Dual-dual formulation for a contact problem with friction in 2D

On the other hand for τ < K̃ we have seen that there exists a ṽ ∈ K0 with I2(ṽ, τ) < 0.
But since kṽ ∈ K0 for all k ∈ N we get

lim
k→∞

I2(kṽ, τ) = −∞

and therefore have

inf
v∈Kg

I2(v, τ) =


〈g, τn〉ΓC

, if τ ∈ K̃,

−∞, if τ < K̃.

From the above observations I(τ) is computed to

I(τ) =


−1

2
ã(τ, τ) + 〈g, τn〉ΓC

, if τ ∈ K̃,

−∞, if τ < K̃

and we have

J(u) ≥ sup
τ∈M

I(τ) = sup
τ∈K̃

(− J̃(τ)) = − inf
τ∈K̃

J̃(τ) = − J̃(σ).

Next we prove that σ(u) = C : ε(u) as defined in Lemma 3.2 minimizes J̃(τ) for all
τ ∈ K̃. Due to Lemma 3.2 we know that σ(u) ∈ K̃. Using Green’s formula we get

−J(u) = −1
2

∫

Ω

ε(u) : C : ε(u) dx +

∫

Ω

f · u dx +

∫

ΓN

t0 · u ds −
∫

ΓC

F |ut| ds

= −1
2

∫

Ω

σ(u) : C−1 : σ(u) dx +

∫

Ω

σ(u) : C−1 : σ(u) dx −
∫

ΓC

unσ(u)n ds

−
∫

ΓC

(utσ(u)t + F |ut|) ds

≥ 1
2

∫

Ω

σ(u) : C−1 : σ(u) dx −
∫

ΓC

gσ(u)n ds = J̃(σ(u)).

With σ ∈ K̃ being the solution of the dual minimization problem (3.13) we conclude
with the above computations

J̃(σ(u)) ≥ J̃(σ) ≥ −J(u) ≥ J̃(σ(u))

and since the dual minimization problem (3.13) has a unique solution we have
σ(u) = σ. Furthermore, we have seen above that J(u) = − J̃(σ) which finishes the
proof. �
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3.1. Dual-dual formulation in 2D

Now let us apply the theory of Fenchel’s duality to the dual minimization problem
(3.13). Our aim is to state the problem as a minimization problem over the space Xs.
The equality constraints in K̃ will be enforced by introducing Lagrange multipliers
on Ω and ΓN combined with a Penalty method. For the inequality constraints we
will use the indicator function. But first let us define a minimization problem on Xs,
that is equivalent to (3.13). We want to state this in the form of Remark 2.4. Therefore
we define the operator Λ ∈ L(Xs,Y) as follows

Λτ = (Λ1τ,Λ2τ,Λ3τ,Λ4τ) := (div τ, τ · n, τt, τn). (3.15)

Then we define the two functionals F : Xs → R and Gc : Y→ (−∞,∞] by

F(τ) :=
1
2

ã(τ, τ), τ ∈ Xs,

Gc(v,ψ, µt, µn) :=
c

2
{‖v + f‖20 + ‖ψ − t0‖2

H
− 1

2 (ΓN)
} + IF (µt) + I

g
−(µn), (v,ψ, µt, µn) ∈ Y

where c > 0 denotes the penalty parameter. The indicator functions are defined by

IF (µt) :=

{
0, if |µt| ≤ F ,
∞, else,

I
g
−(µn) :=

{ − 〈g, µn〉ΓC
, if µn ≤ 0,

∞, else.

Now we can state the following result.

Lemma 3.4:
If c > 0 arbitrary, then the functionals F and Gc are proper, convex and l.s.c. on Xs

and Y, respectively.

Proof. Let u ∈ H1(Ω) be the solution of the primal minimization problem (3.6). We
define τ := C : ε(u), which lies in Xs due to Lemma 3.2, and observe F(τ) = 1

2 a(u,u).
With Korn’s inequality (2.5) and the continuity of a(·, ·) there exists a constant C > 0,
such that

0 ≤ α0

2
‖u‖H1 (Ω) ≤ F(τ) ≤ C

2
‖u‖H1 (Ω) < ∞.

Due to Lemma 3.2 we have Λσ(u) ∈ Y, gσ(u)n ≤ 0 and ‖σ(u)‖H(div,Ω) ≤ ‖u‖H1 (Ω) +

‖f‖L2 (Ω). Since u is depending continuously on the given data, its H1(Ω)-norm is
bounded. With

Gc(Λσ(u)) = Gc(divσ(u), σ(u) · n|ΓN
, σ(u)t|ΓC

, σ(u)n|ΓC
) = −〈g, σ(u)n〉ΓC

we can use Theorem 2.3 to show

0 ≤ Gc(Λσ(u)) = −〈g, σ(u)n〉ΓC
≤ ‖g‖

H
1
2 (ΓC)
‖σ(u)‖

H
− 1

2 (ΓC)

≤ ‖g‖
H

1
2 (ΓC)
‖σ(u)‖H(div,Ω) ≤ ‖g‖

H
1
2 (ΓC)

(‖u‖H1 (Ω) + ‖f‖L2 (Ω)) < ∞.

To prove convexity we first show, that any squared norm induced by a scalar product
is convex. So let V be a Banach space with scalar product 〈·, ·〉 and with norm
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3. Dual-dual formulation for a contact problem with friction in 2D

‖x‖2V := 〈x, x〉. Then for a fixed b ∈ V we show that ‖x + b‖2V is convex for all x ∈ V.
For α ∈ (0, 1) and x, y ∈ V there holds

‖αx + (1 − α)y + b‖2V − α‖x + b‖2V − (1 − α)‖y + b‖2V

= α2‖x‖2V + (1 − α)2‖y‖2V + 2α〈x, b〉 + 2(1 − α)〈y, b〉 + 2α(1 − α)〈x, y〉 + ‖b‖2V

− α(‖x‖2V + 2〈x, b〉 + ‖b‖2V) − (1 − α)(‖y‖2V + 2〈y, b〉 + ‖b‖2V)

= − α(1 − α)(‖x‖2V − 2〈x, y〉 + ‖y‖2V) = −α(1 − α)‖x − y‖2V ≤ 0.

Due to the ellipticity of C−1 (cf. (2.3)) we have that the bilinear form ã(·, ·) induces a
norm on [L2(Ω)]2×2 which proves the convexity of F.

Let (v, ψ, µt, µn), (w, χ, νt, νn) ∈ Y and α ∈ (0, 1). If µn > 0 or νn > 0 we have

Gc(·, ·, ·, αµn + (1 − α)νn) ≤ ∞ = αGc(·, ·, ·, µn) + (1 − α)Gc(·, ·, ·, νn).

Otherwise if µn ≤ 0 and νn ≤ 0 we have αµn + (1 − α)νn ≤ 0. In this case we have

I
g
−(αµn + (1 − α)νn) = −〈g, αµn + (1 − α)νn〉ΓC

= −α〈g, µn〉ΓC
− (1 − α)〈g, νn〉ΓC

= αI
g
−(µn) + (1 − α)Ig

−(νn).

The convexity for µt follows with the same arguments. If |µt| ≤ F and |νt| ≤ F it
holds

|αµt + (1 − α)νt | ≤ |α||µt| + |1 − α||νt| ≤ αF + (1 − α)F = F .
The convexity for v and ψ follows from the convexity of a squared norm and the fact
that the penalty parameter c is just a multiplicative constant. Therefore Gc is convex
for arbitrary c > 0.

As F is continuous it is l.s.c. in particular. From Ekeland and Temam [32, see
Proposition 2.3 in Chapter I] we have that Gc is l.s.c. if its epigraph is closed, i.e.

epi Gc = epi Gc := {[(v, ψ, µt, µn), a] ∈ Y ×R : Gc(v, ψ, µt, µn) ≤ a}.

If we define
K̃C := {(v, ψ, µt, µn) ∈ Y : µn ≤ 0, |µt| ≤ F }, (3.16)

we clearly have epi Gc ⊂ K̃C ×R. Now let c > 0 be fixed. Let us define

H(v, ψ, µt, µn) :=
c

2
{‖v + f‖20 + ‖ψ − t0‖2

H
− 1

2 (ΓN)
} − 〈g, µn〉ΓC

.

Of course we have epi Gc ⊂ epi H and since H is continuous its epigraph is closed.
Furthermore, we have

epi Gc = epi H ∩ K̃C ×R.
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3.1. Dual-dual formulation in 2D

To see this we take on the one hand [(v, ψ, µt, µn), a] ∈ epi Gc, then (v, ψ, µt, µn) ∈ K̃C

and we have

H(v, ψ, µt, µn) = Gc(v, ψ, µt, µn) ≤ a ⇒ [(v, ψ, µt, µn), a] ∈ epi H.

On the other hand if [(v, ψ, µt, µn), a] ∈ epi H∩ K̃C×R, then since |µt| ≤ F and µn ≤ 0,
we have

a ≥ H(v, ψ, µt, µn) = Gc(v, ψ, µt, µn) ⇒ [(v, ψ, µt, µn), a] ∈ epi Gc.

But since epi H and K̃C ×R are closed we have that epi Gc is closed as well. If we
now take the limit c→∞ we have

epi lim
c→∞

Gc ⊂ K̂ ×R,
with

K̂ := {(v, ψ, µt, µn) ∈ Y : v + f = 0 in Ω, ψ − t0 = 0 on ΓN,

µn ≤ 0 on ΓC, |µt| ≤ F on ΓC}.
(3.17)

Note that K̂ is a closed subset of Y. Furthermore, we have

epi lim
c→∞

Gc ⊂ epi ĝ(v, ψ, µt, µn) with ĝ(v, ψ, µt, µn) := −〈g, µn〉ΓC
.

Again we have that ĝ is continuous and so its epigraph is closed. Analogously to
the above case we conclude epi lim

c→∞
Gc = epi ĝ ∩ K̂ ×R and therefore epi lim

c→∞
Gc is

closed. �

Let us define the family of minimization problems (P̃c):

Find σ ∈ Xs such that for c > 0

F(σ) + Gc(Λσ) ≤ F(τ) +Gc(Λτ) ∀ τ ∈ Xs. (3.18)

Theorem 3.5:
The family of minimization problems (P̃c) converges to the dual minimization prob-
lem (3.13), as the penalty parameter c tends to infinity.

Proof. As we have seen in the proof of Lemma 3.4 the epigraph of lim
c→∞

Gc is a subset

of K̂ ×R. But this means that

lim
c→∞

Gc(Λτ) =: G(Λτ) =

{−〈g, τn〉ΓC
, if Λτ ∈ K̂,

∞, else.

Again due to Lemma 3.4 the problems (P̃c) are uniquely solvable for every c > 0 and
we have the equivalent formulation for (3.18)

F(σ) + Gc(Λσ) = min
τ∈Xs

{F(τ) + Gc(Λτ)} .
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3. Dual-dual formulation for a contact problem with friction in 2D

Finally, we take the limit of the minimum. We are allowed to switch the order using
the fact, that the effective domains K̃C of Gc and K̂ of G defined in (3.16) and (3.17)
are closed.

lim
c→∞

(
min
τ∈Xs

{F(τ) + Gc(Λτ)}
)
= min

τ∈Xs

(
lim
c→∞
{F(τ) + Gc(Λτ)}

)

= min
τ∈Xs

(F(τ) +G(Λτ)) = min
τ∈Xs ,Λτ∈K̂

(F(τ) + G(Λτ)) = min
τ∈K̃

J̃(τ).

�

If we set ~w := (v,ψ, µt, µn) ∈ Y and define the functional

Φc(τ, ~w) := F(τ) +Gc(Λτ + ~w),

then we can define the perturbed problem (P̃c
~w

):

Find σ ∈ Xs such that for c > 0 and w ∈ Y

Φc(σ,w) ≤ Φc(τ,w) ∀ τ ∈ Xs. (3.19)

Clearly we have (P̃c
0) = P̃c. Now the conditions of Fenchel’s duality theory hold

and we are able to derive the conjugate problem of the dual minimization problem
(3.13). We first have to compute the conjugate of Λ.

Let (u,ϕ, λt, λn) ∈ Y′ = L2(Ω) × H̃
1
2 (ΓN) × H̃

1
2 (ΓC) × H̃

1
2 (ΓC). If we further assume

∇u ∈ L2(Ω) and u|Γ ∈ H
1
2 (Γ), which means u ∈ H1(Ω), then we have

〈Λ∗1u, τ〉 = 〈u,Λ1τ〉 =
∫

Ω

u · div τ dx = −
∫

Ω

∇u : τ dx +

∫

Γ

u · τ · n ds,

〈Λ∗2ϕ, τ〉 =
∫

ΓN

ϕ · τ · n ds,

〈Λ∗3λn, τ〉 =
∫

ΓC

λn n · τ · n ds,

〈Λ∗4λt, τ〉 =
∫

ΓC

λt t · τ · n ds.

Reminding Section 2.3, we have for the conjugate of Φc

Φc∗(x∗, y∗) = F∗(x∗ −Λ∗y∗) + Gc∗(y∗).

The conjugate of F is computed to

F∗(−Λ∗(u,ϕ, λt, λn)) := sup
τ∈Xs

{−〈Λ∗(u,ϕ, λt, λn), τ〉 − F(τ)}
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3.1. Dual-dual formulation in 2D

= sup
τ∈Xs

{∫

Ω

∇u : τ dx − 1
2

∫

Ω

τ : C−1 : τ dx −
∫

ΓD

u · τ · n ds

−
∫

ΓN

(u +ϕ) · τ · n ds −
∫

ΓC

(un + λn)τn ds −
∫

ΓC

(ut + λt)τt ds
}

=



1
2

∫

Ω

∇u : C : ∇u dx, if
u = 0|ΓD

, u +ϕ = 0|ΓN
,

un + λn = 0|ΓC
, ut + λt = 0|ΓC

,

∞, else.

(3.20)

This can be seen very easy when regarding the volume part and the boundary parts
separately. Due to the ellipticity of C−1, see (2.3), the volume terms assume the
supremum for τ = C : ∇u at 1

2

∫
Ω
∇u : C : ∇u dx which is positive due to Korn’s

inequality (2.5). Note that we also use the density of C∞0 (Ω)2×2 in Xs since we cannot
expect that C : ∇u ∈ Xs.

For each boundary part there are two possibilities. We do this exemplary for the
Neumann boundary part. The other parts follow with the same arguments. First,
u +ϕ does not equals zero. Then we can find some τ ∈ Xs such that signτ · n|ΓN

=

− sign(u+ϕ) and with kτ ∈ Xs for all k ∈ Nwe can take the limit of k towards infinity
to conclude that the supremum is infinity. Second, u + ϕ = 0 and the boundary
part vanishes. Due to the symmetry properties (2.2) of the elastic tensorC we have
∇u : C : ∇u = ε(u) : C : ε(u) since

∇u : C = ui, jCi jklek ⊗ el =
1
2

ui, jCi jklek ⊗ el +
1
2

u j,iC jiklek ⊗ el

=
1
2

(ui, j + u j,i)Ci jklek ⊗ el = ε(u) : C
and the right product follows analogously with the symmetry of the last two com-
ponents of C.

The conjugate for Gc is computed to

Gc∗(u,ϕ, λt, λn) = sup
w∈Y
{(u,v)L2(Ω) + 〈ϕ,ψ〉ΓN

+ 〈λn, µn〉ΓC
+ 〈λt, µt〉ΓC

−Gc(~w)}

= sup
w∈Y

{
(u,v)L2(Ω) −

c

2
(v + f,v + f)L2(Ω) + 〈ϕ,ψ〉ΓN

− c

2
〈ψ − t0,ψ − t0〉ΓN

+ 〈λn, µn〉ΓC
− I

g
−(µn) + 〈λt, µt〉ΓC

− IF (µt)
} (3.21)

=



1
2c

(u,u)L2(Ω) − (u, f)L2 (Ω) +
1
2c
〈ϕ,ϕ〉ΓN

+ 〈ϕ, t0〉ΓN
+ j(λt), if λn + g ≥ 0,

∞, else.

Here the first four terms follow due to the ellipticity of the inner products of L2(Ω)
and H−

1
2 (ΓN). This holds true since L2(Ω) and H−

1
2 (ΓN) are Hilbert spaces. The

suprema are assumed for v = 1
c
u − f ∈ L2(Ω) and ψ = 1

c
ϕ + t0 ∈ H−

1
2 (ΓN).

29



3. Dual-dual formulation for a contact problem with friction in 2D

For the normal part on the contact boundary the supremum is clearly assumed for
µn ≤ 0. If λn + g < 0, then 〈λn + g, µn〉 > 0 for µn < 0 and with kµn < 0 for all k ∈ N
the supremum is infinity. Otherwise, if λn + g ≥ 0 then the dual product is negative
and the supremum is assumed for µn = 0. For the tangential part the supremum is
assumed for µt = F sign λt at j(λt), since F ≥ 0 and the absolute value of λt is the
supremum over all µt ∈ H−

1
2 (ΓC) with |µt| ≤ 1.

Since G = limc→∞ Gc we have

G∗(u,ϕ, λt, λn) =


− (u, f)0 + 〈ϕ, t0〉ΓN

+ j(λt), if λn + g ≥ 0,

∞, else.

With Φ := limc→∞ Φ
c we have

Φ(τ, ~w) = F(τ) + lim
c→∞

Gc(Λτ + ~w) = F(τ) +G(Λτ + ~w)

and using equation (2.9) and the results from above the conjugate problem (P̃∗) of
the dual minimization problem (3.13) reads

sup
(u,ϕ,λt ,λn)∈Y′

L

{
−1

2

∫

Ω

ε(u) : C : ε(u) dx +

∫

Ω

u · f dx −
∫

ΓN

ϕ · t0 ds −
∫

ΓC

F |λt| ds
}
, (3.22)

where

Y′L :=
{
(u,ϕ, λt, λn) ∈ VD × H̃

1
2 (ΓN) × H̃

1
2 (ΓC) × H̃

1
2 (ΓC) : u +ϕ = 0|ΓN

,

un + λn = 0|ΓC
, ut + λt = 0|ΓC

, −λn ≤ g a.e. on ΓC

}
.

But this is just the primal problem (3.6) with additional Lagrange multipliers.

3.1.2. Saddle point formulation

Due to Lemma 3.4 the assumptions in Proposition 2.9 are satisfied and we are able
to state a saddle point problem that is equivalent to the dual minimization problem
(3.13). Let us first compute the Lagrange functional L : Xs × Y′ → R̄. To do this,
we first compute the Lagrange functional Lc and then take the limit of c to infinity.
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3.1. Dual-dual formulation in 2D

From Definition 2.7 we have

−Lc(τ; u,ϕ, λt, λn) = sup
~w∈Y
{〈(u,ϕ, λt, λn), ~w〉 −Φc(τ, ~w)}

= sup
~w∈Y

{
(u,v)L2(Ω) + 〈ϕ,ψ〉ΓN

+ 〈λn, µn〉ΓC
+ 〈λt, µt〉ΓC

− F(τ) − Gc(Λτ + ~w)
}

= sup
~w∈Y

{
(u,v)L2(Ω) −

c

2
(v + div τ + f,v + div τ + f)L2(Ω) −

1
2

∫
τ : C−1τ dx

+ 〈ϕ,ψ〉ΓN
− c

2
〈τ · n +ψ − t0, τ · n +ψ − t0〉ΓN

+ 〈λn, µn〉ΓC
− I

g
−(τn + µn) + 〈λt, µt〉ΓC

− IF (τt + µt)
}

=



1
2c

(u,u)L2(Ω) − (u,div τ + f)L2 (Ω) −
1
2

ã(τ, τ) +
1
2c
〈ϕ,ϕ〉ΓN

−〈ϕ, τ · n − t0〉ΓN
− 〈λn, τn〉ΓC

+ j(λt) − 〈λt, τt〉ΓC
,

if λn + g ≥ 0,

∞, else.

The last equation follows analogously to the computations of the conjugates F∗

and Gc∗ in the previous section. Hence the supremum on the contact boundary is
assumed for τn + µn = 0 and τt + µt = F signλt. The other terms follow again due
to the ellipticity of the inner products of L2(Ω) and H−

1
2 (ΓN).

Now defining L := lim
c→∞

Lc we have

L(τ; u,ϕ, λt, λn) :=



1
2

ã(τ, τ) + b(u, τ) + f (u)

+ dN(ϕ, τ) − t0(ϕ)

+ dC,n(λn, τ) + dC,t(λt, τ) − j(λt),

if λn + g ≥ 0,

−∞, else,

(3.23)

where the linear forms and bilinear forms are defined by

f (u) :=
∫

Ω

u · f dx, t0(ϕ) :=
∫

ΓN

ϕ · t0 ds, dN(ϕ, τ) :=
∫

ΓN

ϕ · τ · n ds,

dC,n(λn, τ) :=
∫

ΓC

λnτn ds, dC,t(λt, τ) :=
∫

ΓC

λtτt ds.

(3.24)

Remark 3.6: We obtain the same result for (3.23) if we compute the Lagrangian viaΦ(τ,w).

We have the following saddle point problem:
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3. Dual-dual formulation for a contact problem with friction in 2D

Find (σ; u,ϕ, λt, λn) ∈ Xs × Y′ such that for all (τ; v, ψ, µt, µn) ∈ Xs × Y′

L(σ; v, ψ, µt, µn) ≤ L(σ; u,ϕ, λt, λn) ≤ L(τ; u,ϕ, λt, λn). (3.25)

Remark 3.7: Due to Lemma 3.4 and Proposition 2.8 we have that the saddle point problem
(3.25) is equivalent to the dual minimization problem (3.13) and the primal problem (3.22)
in the sense that for the solution (σ; u,ϕ, λt, λn) of (3.25) we have σ ∈ Xs solves (3.13)
and (u,ϕ, λt, λn) ∈ Y′ solves (3.22). Since the minimization problems are both uniquely
solvable this holds true for the saddle point problem.

Remark 3.8: For convenience we redefine the Lagrange multiplier λn by lifting it with the
gap function g, i.e. we set λn := λ̃n + g with λ̃n + g ≥ 0. In this way the gap function
tested with the normal stress becomes an additional term in the Lagrange functional and we
search for λn ≥ 0. Moreover in order to treat the problem numerically we have to impose the
symmetry of the tensors in form of another Lagrange multiplier to extend the problem to the
space

X := H(div,Ω). (3.26)

The fact that τ is symmetric means that the antisymmetric part as(τ), as defined in
(2.4), vanishes. Since the nonzero part of as(tau), i.e. 1

2 (τ12 − τ21), is in L2(Ω) we
define

Ỹ := L2(Ω) × L2(Ω)′ ×H−
1
2 (ΓN) ×H−

1
2 (ΓC) ×H−

1
2 (ΓC). (3.27)

Furthermore, we define Λ̃ : X→ Ỹ

Λ̃τ = (Λ̃1τ, Λ̃2τ, Λ̃3τ, Λ̃4τ, Λ̃5τ) = (div τ, τ12 − τ21, τ · n, τt, τn) (3.28)

and observe
(

0 η
−η 0

)
:
( τ11 τ12

τ21 τ22

)
= η(τ12 − τ21) =

(
0 η
−η 0

)
: as(τ) = η : (Λ̃2τ) ∀η ∈ L2(Ω), τ ∈ X.

If we finally define

F̃(τ) :=
1
2

ã(τ, τ) − 〈g, τn〉ΓC
,

G̃c(v, ξ,ψ, µt, µn) :=
c

2

{
‖v + f‖2

L2 (Ω)
+ ‖ξ‖2

L2(Ω)
+ 〈ψ − t0,ψ − t0〉ΓN

+ I0
−(µn) + IF (µt)

}
,

(3.29)

for τ ∈ X and (v, ξ,ψ, µt, µn) ∈ Ỹ, then the results of Lemma 3.4 and Theorem 3.5 still
hold true. Furthermore, we get

〈Λ̃∗2η, τ〉 = 〈η, Λ̃2τ〉 =
∫

Ω

( τ11 τ12

τ21 τ22

)
: τ dx ∀η ∈ L2(Ω), τ ∈ X.
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3.1. Dual-dual formulation in 2D

Proceeding analogously to the previous computations of the conjugates F∗ and Gc∗

we get with (3.20)

F̃∗(−Λ̃∗(u, η,ϕ, λt, λn)) =



1
2

a(u,u), if
u = 0|ΓD

, u +ϕ = 0|ΓN
,

ut + λt = 0|ΓC
, un + λn − g = 0|ΓC

,

∞, else.

and using (3.21)

G̃c∗(u, η,ϕ, λt, λn) =



1
2c

(u,u)0 − (u, f)0 +
1
2c
〈ϕ,ϕ〉ΓN

+ 〈ϕ, t0〉ΓN
+ j(λt) +

1
2c

(η, η)0,
if λn ≥ 0,

∞, else.

Therefore we still get the primal problem (3.6) as the conjugate problem of the
perturbed problem

Find σ ∈ X, such that for w̃ := (v, ξ, ψ, µt, µn) ∈ Ỹ

Φ̃(σ, w̃) ≤ Φ̃(τ, w̃), ∀ τ ∈ X (3.30)

with Φ̃ := lim
c→∞

(F̃ + G̃c). To compute the resulting Lagrange functional L̃ : X × Ỹ′ →R ∪ {−∞,∞}, we make use of Remark 3.6. Defining

K̄ :=
{
(v, ξ, ψ, µt, µn) ∈ Ỹ : v + f = 0 in Ω, ξ = 0, ψ − t0 = 0 on ΓN,

|µt| ≤ F on ΓC, µn ≤ 0 on ΓC

}
,

we have

Φ̃(τ, w̃) := lim
c→∞

(F̃(τ) + G̃c(Λ̃τ + w̃)) =



1
2

ã(τ, τ) − 〈g, τn〉ΓC
, if Λ̃τ + w̃ ∈ K̄,

∞, else.

In this way the Lagrange functional is computed to

L̃(τ; u, η,ϕ, λt, λn) := sup
w̃∈Ỹ

{
〈(u, η,ϕ, λt, λn), w̃〉 − Φ̃(τ, w̃)

}

=



1
2

ã(τ, τ) − g(τ) + b(u, τ) + f (u)

+ s(η, τ) + dN(ϕ, τ) − t0(ϕ)

+ dC,n(λn, τ) + dC,t(λt, τ) − j(λt),

if λn ≥ 0,

−∞, else,

(3.31)
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3. Dual-dual formulation for a contact problem with friction in 2D

involving the new linear form and bilinear form

g(τ) :=
∫

ΓC

g τn ds s(η, τ) :=
∫

Ω

( τ11 τ12

τ21 τ22

)
: as(τ) dx =

∫

Ω

η(τ12 − τ21) dx. (3.32)

The result is evident since the supremum is assumed for Λ̃τ + w̃ ∈ K̄ and therefore
div τ + v = −f, as(τ)+ξ = 0, τ · n +ψ = t0. The supremum concerning the last two
multipliers is assumed similar to the previous computation of L for τn + µn = 0 and
τt + µt = F signλt. We have the following saddle point problem

Find (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′ such that for all (τ,v, ξ,ψ, µt, µn) ∈ X × Ỹ′

L̃(σ; v, ξ,ψ, µt, µn) ≤ L̃(σ; u, η,ϕ, λt, λn) ≤ L̃(τ; u, η,ϕ, λt, λn).

Note that the left inequality holds true for all µn ∈ H̃
1
2 (ΓC) with µn � 0. Without loss

of generality we therefore restrict the Lagrange multiplier concerning the normal
part on the contact boundary of the saddle point problem to

µn ∈ H̃
1
2
+ (ΓC) :=

{
µ ∈ H̃

1
2 (ΓC) : µ ≥ 0 a.e. on ΓC

}
.

If we introduce

Ỹ′+ := L2(Ω) × L2(Ω) × H̃
1
2 (ΓN) × H̃

1
2 (ΓC) × H̃

1
2
+ (ΓC),

then the above saddle point problem reads

Find (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ such that for all (τ,v, ξ,ψ, µt, µn) ∈ X × Ỹ′+

L̃(σ; v, ξ,ψ, µt, µn) ≤ L̃(σ; u, η,ϕ, λt, λn) ≤ L̃(τ; u, η,ϕ, λt, λn). (3.33)

Remark 3.9: In the case F ≡ 0, which means that no friction occurs on the contact
boundary ΓC, a similar procedure as the one above is valid. The indicator function IF (µt) in

the definitions of Gc and G̃c is exchanged by the penalizing term c
2 〈µt, µt〉ΓC

in order to force
the tangential traction to zero on the contact boundary. This is due to 0 ≤ |σt| ≤ F ≡ 0 on
ΓC in (3.1). Therefore the j-functional (3.5) vanishes in the Lagrange functions (3.23) and
(3.31), respectively. Remark (3.7) applies in a modified form.

Now we are in the position of stating a first result concerning equivalence and
uniqueness.

Theorem 3.10:
The saddle point problem (3.33) is equivalent to the minimization problems (3.13)
and (3.6) in the following sense.
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3.1. Dual-dual formulation in 2D

(i) If (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ is a saddle point of (3.33), then σ ∈ K̃ is the unique
solution of the minimization problem (3.13). Furthermore, it holdsσ = C : ε(u)
in Ω, η = 1

2 ((∇u)12 − (∇u)21) in Ω, u = 0 on ΓD, u +ϕ = 0 on ΓN, ut + λt = 0 on
ΓC and un + λn = g on ΓC.

(ii) If σ ∈ K̃ is the solution of the dual minimization problem (3.13) and u ∈ Kg is the
unique solution of the primal minimization problem (3.6), then (σ; u, 1

2 ((∇u)12−
(∇u)21),−u|ΓN

,−ut|ΓC
, g− un|ΓC

) ∈ X × Ỹ′+ is a saddle point of (3.33). Since σ and
u are unique, the saddle point is unique as well.

Proof. (i) Let (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ be a saddle point of (3.33). Then, since

2λn ∈ H̃
1
2
+ (ΓC), we can insert (0, 0, 0, 0, 0) ∈ Ỹ′+ and (2u, 2η, 2ϕ, 2λt, 2λn) ∈ Ỹ′+ into the

left inequality of (3.33). Noting that

j(2λt) =
∫

ΓC

F |2λt| ds = 2
∫

ΓC

F |λt| ds = 2 j(λt),

we conclude after subtracting L̃(σ; u, η,ϕ, λt, λn)

b(u, σ) + f (u) + s(η, σ) + dN(ϕ, σ) − t(ϕ) + dC,n(λn, σ) + dC,t(λt, σ) − j(λt) = 0 (3.34)

and the left inequality of (3.33) reduces to

b(v, σ) + f (v) + s(ξ, σ) + dN(ψ, σ) − t(ψ)

+ dC,n(µn, σ) + dC,t(µt, σ) − j(µt) ≤ 0 ∀ (v, ξ,ψ, µt, µn) ∈ Ỹ′+.

If we take (±ṽ, 0, 0, 0, 0) ∈ Ỹ′+ with some ṽ ∈ L2(Ω) we have

b(ṽ, σ) + f (ṽ) =
∫

Ω

ṽ · (f + divσ) dx = 0 ∀ ṽ ∈ L2(Ω)

from which we deduce −div σ = f in Ω.

In the same way by inserting (0,±ξ̃, 0, 0, 0) ∈ Ỹ′+ for ξ̃ ∈ L2(Ω) and (0, 0,±ψ̃, 0, 0) ∈ Ỹ′+
for ψ̃ ∈ H̃

1
2 (ΓN), respectively we have

s(ξ̃, σ) =

∫

Ω

ξ̃(σ12 − σ21) dx = 0 ∀ ξ̃ ∈ L2(Ω),

dN(ψ̃, σ) − t(ψ̃) =
∫

ΓN

ψ̃ · (σ · n − t0) ds = 0 ∀ ψ̃ ∈ H̃
1
2 (ΓN)
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3. Dual-dual formulation for a contact problem with friction in 2D

and we conclude σ = σT in Ω and σ · n = t0 on ΓN. For (0, 0, 0, 0, µn) ∈ Ỹ′+ with

µn ∈ H̃
1
2
+ (ΓC) we observe

dC,n(µn, σ) =
∫

ΓC

µnσn ds ≤ 0 ∀ µn ∈ H̃
1
2
+ (ΓC)

and thus σn ≤ 0 a.e. on ΓC. Finally, if we insert (0, 0, 0, µ̃t, 0) ∈ Ỹ′+ with µ̃t ∈ H̃
1
2 (ΓC)

and sign µ̃t = signσt we have for all µ̃t ∈ H̃
1
2 (ΓC) with sign µ̃t = signσt

dC,t(µ̃t, σ) − j(µ̃t) =
∫

ΓC

(σtµ̃t − F |µ̃t|) ds =

∫

ΓC

(σt sign µ̃t − F )|µ̃t| ds

=

∫

ΓC

(σt signσt − F )|µ̃t| ds =

∫

ΓC

(|σt| − F )|µ̃t| ds ≤ 0

and since |µt| ≥ 0 on ΓC, we have |σt| ≤ F a.e. on ΓC. But this simply means σ ∈ K̃.
Using (3.34) the right inequality of the saddle point problem reduces to

J̃(σ) =
1
2

ã(σ, σ) − g(σ) ≤ J̃(τ) + b(u, τ) + f (u) + s(η, τ) + dN(ϕ, τ) − t(ϕ)

+ dC,n(λn, τ) + dC,t(λt, τ) − j(λt)
∀ τ ∈ X.

Restricting τ to the convex set K̃ we have

b(u, τ) + f (u) = 0, dN(ϕ, τ) − t(ϕ) = 0 and s(η, τ) = 0.

Furthermore, with τn ≤ 0, λn ≥ 0 and τt ≤ |τt| ≤ F on ΓC there holds

dC,n(λn, τ) ≤ 0 and dC,t(λt, τ) − j(λt) ≤ 0.

Now the right inequality of the saddle point problem (3.33) restricted to K̃ reads

J̃(σ) ≤ J̃(τ) + dC,n(λn, τ) + dC,t(λt, τ) − j(λt) ≤ J̃(τ) ∀ τ ∈ K̃,

which means σ ∈ K̃ is the solution of the dual minimization problem (3.13). Ad-
ditionally the right inequality in (3.33) states that the tensor σ ∈ X minimizes the
functional L̃(·; v, ξ,ψ, µt, µn) in X. The linear forms that only act on Lagrange mul-
tipliers can be regarded as constants within this minimization problem and so we
have

1
2

ã(σ, σ) − 〈g, σ〉ΓC
+ b(u, σ) + s(η, σ) + dN(ϕ, σ) + dC,n(λn, σ) + dC,t(λt, σ)

≤ 1
2

ã(τ, τ) − 〈g, τ〉ΓC
+ b(u, τ) + s(η, τ) + dN(ϕ, τ) + dC,n(λn, τ) + dC,t(λt, τ) ∀ τ ∈ X.

Now X as a Hilbert space is evidently closed and convex and the above functional
is Gâteaux differentiable with respect to τ. Therefore using the theory of variational
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3.1. Dual-dual formulation in 2D

inequalities (see e.g. Kinderlehrer and Stampacchia [64]) the above minimization
problem is equivalent to the following variational inequality problem of finding
σ ∈ X such that

ã(σ, τ − σ) − 〈g, τ − σ〉ΓC
+ b(u, τ − σ) + s(η, τ − σ)

+ dN(ϕ, τ − σ) + dC,n(λn, τ − σ) + dC,t(λt, τ − σ)
≥ 0 ∀ τ ∈ X. (3.35)

Choosing τ = ±φ + σ with φ ∈ [C∞0 ]2×2 ∩ Xs the bilinear form s(·, ·) and the terms on
the boundaries vanish and we have

ã(σ, φ) + b(u, φ) =
∫

Ω

σ : C−1 : φ dx +

∫

Ω

u · divφ dx = 0 ∀ φ ∈ [C∞0 ]2×2 ∩ Xs.

Integrating by parts and using the symmetry of φ in the right integral leads to
∫

Ω

u · divφ dx = −
∫

Ω

∇u : φ dx = −
∫

Ω

∇u :
1
2

(φ + φT) dx

= −
∫

Ω

1
2

(∇u + ∇uT) : φ dx = −
∫

Ω

ε(u) : φ dx

and so the above equation reads
∫

Ω

(σ : C−1 − ε(u)) : φ dx = 0 ∀ φ ∈ [C∞0 ]2×2 ∩ Xs,

which means σ = C : ε(u) inΩ. If we do not require φ to be symmetric in the above
choice of τ, then again integrating by parts and using σ : C−1 = ε(u) the variational
inequality reduces to

ã(σ, φ) + b(u, φ) + s(η, φ) =
∫

Ω

ε(u) : φ dx −
∫

Ω

∇u : φ dx +

∫

Ω

(
0 η
−η 0

)
: φ dx

=

∫

Ω

[(
0 η
−η 0

)
− 1

2
(∇u − ∇uT)

]
: φ dx = 0 ∀ φ ∈ [C∞0 ]2×2

and therefore η = 1
2 ((∇u)12 − (∇u)21) in Ω. Next we observe by choosing τ ∈ Xs and

using σ : C−1 = ε(u) we have

ã(σ, τ − σ) + b(u, τ − σ) =
∫

Ω

ε(u) : (τ − σ) dx +

∫

Ω

u div(τ − σ) dx =

∫

Γ

u · (τ − σ) · n ds.

If we take τ ∈ Xs with τ · n = σ · n on ΓN ∪ ΓC and τ · n = ±ψ + σ · n on ΓD for some
ψ ∈ H−

1
2 (ΓD) we get

∫

ΓD

u · ψ ds = 0 ∀ ψ ∈ H−
1
2 (ΓD)
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3. Dual-dual formulation for a contact problem with friction in 2D

which leads to u = 0 on ΓD. In the same way choosing τ ∈ Xs with τ · n = σ · n on ΓC

and τ · n = ±ψ + σ · n on ΓN for some ψ ∈ H−
1
2 (ΓN) we get

∫

ΓN

(u +ϕ) · ψ ds = 0 ∀ ψ ∈ H−
1
2 (ΓN)

and so u = −ϕ on ΓN, since u|ΓN
∈ H̃

1
2 (ΓN). Next choosing τ ∈ Xs with τ · n = σ ·n on

ΓN, τ ·n = ±ψ+σ ·n on ΓC for someψ ∈ H−
1
2 (ΓC) whereψt = 0 andψn = ψ̃ ∈ H−

1
2 (ΓC)

we get
∫

ΓC

(un + λn − g)ψ̃ ds = 0 ∀ ψ̃ ∈ H−
1
2 (ΓC),

from which we deduce un = g−λn on ΓC. Finally, we choose τ ∈ Xs with τ ·n = σ ·n on
ΓN, τ · n = ±ψ+ σ · n on ΓC for some ψ ∈ H−

1
2 (ΓC) with ψn = 0 and ψt = ψ̃ ∈ H−

1
2 (ΓC)

to get
∫

ΓC

(ut + λt)ψ̃ ds = 0 ∀ ψ̃ ∈ H−
1
2 (ΓC),

which states ut = −λt on ΓC and concludes the first assertion.

(ii) To prove the second assertion we let σ ∈ K̃ be the solution of the dual minimiza-
tion problem (3.13) and u ∈ Kg be the solution of the primal minimization problem

(3.6). Then due to Theorem 3.3 we have σ = C : ε(u) in Ω. Since σ ∈ K̃ we have

f (v) + b(v, σ) = 0 ∀ v ∈ L2(Ω),

dN(ψ, σ) − t(ψ) = 0 ∀ ψ ∈ H̃
1
2 (ΓN),

s(ξ, σ) = 0 ∀ ξ ∈ L2(Ω).

As seen in the proof of Lemma 3.2 we have that the minimization problem (3.6) is
equivalent to the variational inequality problem of finding u ∈ Kg such that

a(u,v − u) − f (v − u) − t(v − u) + j(v) − j(u) ≥ 0 ∀ v ∈ Kg.

Letting v = u + ṽ with ṽ ∈ K0, then v ∈ Kg and we have
∫

Ω

σ : ε(ṽ) dx − f (ṽ) − t0(ṽ) + j(u + ṽ) − j(u) ≥ 0 ∀ ṽ ∈ K0.

Using σ ∈ K̃ and Green’s formula the above inequality reduces to
∫

ΓC

ṽnσn ds +

∫

ΓC

ṽtσt ds +

∫

ΓC

F |ut + ṽt| ds −
∫

ΓC

F |ut| ds ≥ 0 ∀ ṽ ∈ K0.
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3.1. Dual-dual formulation in 2D

Now choosing ṽ ∈ K0 with ṽn = 0 and ṽt = ±ut on ΓC we have using λt = −ut

dC,t(λt, σ) − j(λt) = −(dC,t(ut, σ) + j(u)) = −
∫

ΓC

ũtσt ds −
∫

ΓC

F |ut| ds = 0.

Analogously to the above argumentation we can write the dual minimization prob-
lem (3.13) as a variational inequality problem of finding σ ∈ K̃ such that

ã(σ, τ − σ) ≥ 〈g, τn − σn〉ΓC
∀ τ ∈ K̃.

If we now define

Kn :=
{
v ∈ VD : div ε(v) = 0 in Ω, ε(v) · n = 0 on ΓN,

ε(v)t = 0 and ε(v)n ≤ −σn on ΓC

}
,

we have τ = σ + ε(v) ∈ K̃ for all v ∈ Kn. Integration by parts in the above inequality
and using σ : C−1 = ε(u) we derive for all v ∈ Kn

ã(σ, τ − σ) = ã(σ, ε(v)) =
∫

Ω

ε(u) : ε(v) dx

= −
∫

Ω

u · div ε(v) dx +

∫

ΓN∪ΓC

u · ε(v) · n ds =

∫

ΓC

un ε(v)n ds ≥ 〈g, ε(v)n〉ΓC
.

Noting that σn ≤ 0 ≤ −σn we can choose v ∈ Kn with ε(v)n = ±σn on ΓC in the above
inequality and using λn = g − un we arrive at

dC,n(λn, σn) = −
∫

ΓC

(un − g)σn ds = 0.

Since σ ∈ K̃ we observe for µt ∈ H̃
1
2 (ΓC) and µn ∈ H̃

1
2
+ (ΓC) with F ≥ 0

−F ≤ σt ≤ F
−|µt| ≤ µt ≤ |µt|

=⇒ σtµt ≤ F |µt| and σnµn ≤ 0

and therefore we can state the left inequality of the saddle point problem 3.33

L̃(σ; v, ξ,ψ, µt, µn) =
1
2

ã(σ, σ) − g(σ) + b(v, σ) + f (v) + s(ξ, σ) + dN(ψ, σ)

+ dC,n(µn, σ) + dC,t(µt, σ) − j(µt)

= J̃(σ) +
∫

ΓC

(σtµt − F |µt|) ds +

∫

ΓC

σnµn ds ≤ J̃(σ) = L̃(σ; u, η,ϕ, λt, λn).
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3. Dual-dual formulation for a contact problem with friction in 2D

To prove the right inequality we first observe for τ ∈ X

L̃(σ; u, η,ϕ, λt, λn) − L̃(τ; u, η,ϕ, λt, λn)

= −1
2

ã(σ − τ, σ − τ) + ã(σ, σ − τ) − g(σ − τ) + b(u, σ − τ)

+ s(η, σ − τ) + dN(ϕ, σ − τ) + dC,n(λn, σ − τ) + dC,t(λt, σ − τ).

Using η = 1
2 ((∇u)12 − (∇u)21) we have s(η, τ) =

∫
Ω

(∇u − ε(u)) : τ dx. Then integration
by parts in the bilinear form b(·, ·) leads for all τ ∈ X to

L̃(σ; u, η,ϕ, λn, λt) − L̃(τ; u, η,ϕ, λt, λn)

= − 1
2

ã(σ − τ, σ − τ) + ã(σ, σ − τ) −
∫

Ω

∇u : (σ − τ) dx +

∫

Ω

(∇u − ε(u)) : (σ − τ) dx

+

∫

ΓN

(u +ϕ) · (σ − τ) · n ds +

∫

ΓC

(un − g + λn)(σn − τn) ds +

∫

ΓC

(ut + λt)(σt − τt) ds.

Finally, using the definitions forϕ, λn and λt the boundary integrals vanish and with
ε(u) = C−1 : σ we can show the right inequality of the saddle point problem 3.33

L̃(σ; u, η,ϕ, λn,λt) − L̃(τ; u, η,ϕ, λt, λn) = −1
2

ã(σ − τ, σ − τ) ≤ 0 ∀ τ ∈ X,

where the inequality is due to the ellipticity of the bilinear form ã(·, ·). �

3.1.3. Variational inequalities

We want to derive a variational formulation which is equivalent the saddle point
problem (3.33). Thus we have to check the assumptions of Proposition 2.9. With the

restriction of µn ∈ H̃
1
2
+ (ΓC) we have L̃ : X × Ỹ′+ → R. Of course X as a Hilbert space is

convex, closed and not empty. Furthermore, if we take µn = −un|ΓC
∈ H̃

1
2 (ΓC), where

u is the solution of the primal minimization problem (3.6), then Ỹ′+ is not empty.
Since H

1
2 (ΓC) is a real valued vector space and hs : H

1
2 (ΓC)→ R, µ 7→ (µ+ s) a linear

form on H
1
2 (ΓC) for s ∈ H

1
2 (ΓC) the equation hs(µ) = 0 defines an affine hyperplaneH .

Therefore the set Hs := {µ ∈ H
1
2 (ΓC)|hs(µ) ≥ 0} defines a closed half-space bounded

by H . With H̃
1
2 (ΓC) being closed we conclude that H̃

1
2
+ (ΓC) = H0 ∩ H̃

1
2 (ΓC) is closed

as well, see Ito and Kunisch [61].

Remark 3.11: If we do not lift the Lagrange multiplierλn by the gap function g as described in

Remark 3.8 we would deal with the convex set K−g := {µn ∈ H̃
1
2 (ΓC) : µn ≥ −g a.e. on ΓC}.

This set is closed as well since g ∈ H
1
2 (ΓC) and so we have K−g = Hg ∩ H̃

1
2 (ΓC), i.e. K−g is

closed.
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The convexity follows straightforward. Let us define

l : X × Ỹ′+ → R, (τ; v, ξ,ψ, µt, µn) 7→
1
2

ã(τ, τ) − g(τ) + b(τ,v) + f (v) + s(τ, ξ)

+ dN(τ,ψ) − t0(ψ) + dC,t(τ, µt) + dC,n(τ, µn),

m : X × Ỹ′+ → R, (τ; v, ξ,ψ, µt, µn) 7→ − j(µt),

then we can decompose L̃ = l+m. The bilinear and linear forms in l are all Gâteaux-
differentiable. Furthermore, all linear functionals are both, convex and concave. The
bilinear form ã(·, ·) is convex we have that l is convex in X for all (v, ξ,ψ, µt, µn) ∈ Ỹ′+
and concave in Ỹ′+ for all τ ∈ X. Since m does not depend on τ ∈ X, it is convex in
X for all (v, ξ,ψ, µt, µn) ∈ Ỹ′+. Finally, the j-functional itsself is convex in H̃

1
2 (ΓC) and

therefore m is concave in Ỹ′+ for all τ ∈ X.

Now all assumptions of Proposition 2.9 are satisfied and for (σ; u, η,ϕ, λt, λn) ∈ X×Ỹ′+
being the saddle point of L̃, we have to compute the following Gâteaux derivatives
for τ ∈ X and for (v, ξ,ψ, µt, µn) ∈ Ỹ′+

〈 ∂l

∂τ
(σ; u, η,ϕ, λt, λn) , τ − σ〉,

〈 ∂l

∂(v, ξ,ψ, µt, µn)
(σ; u, η,ϕ, λt, λn) , (v, ξ,ψ, µt, µn) − (u, η,ϕ, λt, λn)〉.

We do this exemplary for τ ∈ X. It holds

〈 ∂l

∂τ
(σ; u, η,ϕ, λt, λn) , τ − σ〉 = ∂

∂x

(
l(σ + x(τ − σ); u, η,ϕ, λt, λn)

) |x=0

=
∂

∂x

[1
2

ã(σ + x(τ − σ), σ + x(τ − σ)) − g(σ + x(τ − σ)) + b(σ + x(τ − σ),u)

+ f (u) + s(σ + x(τ − σ), η) + dN(σ + x(τ − σ),ϕ) − t0(ϕ)

+ dC,t(σ + x(τ − σ), λt) + dC,n(σ + x(τ − σ), λn)
] |x=0

= ã(τ − σ, σ) − g(τ − σ) + b(τ − σ,u) + s(τ − σ, η)

+ dN(τ − σ,ϕ) + dC,t(τ − σ, λt) + dC,n(τ − σ, λn).

After computing the other derivatives and applying Proposition 2.9 we end up with
the following variational inequality problem:
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3. Dual-dual formulation for a contact problem with friction in 2D

Find (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ such that

ã(τ − σ, σ) + b(τ − σ,u) + s(τ − σ, η) + dN(τ − σ,ϕ)

+ dC,t(τ − σ, λt) + dC,n(τ − σ, λn) ≥ g(τ − σ) ∀ τ ∈ X

b(v − u, σ) ≤ − f (v − u) ∀ v ∈ L2(Ω)

s(ξ − η, σ) ≤ 0 ∀ ξ ∈ L2(Ω)

dN(ψ −ϕ, σ) ≤ t0(ψ −ϕ) ∀ ψ ∈ H̃
1
2 (ΓN)

dC,t(µt − λt, σ) − j(µt) + j(λt) ≤ 0 ∀ µt ∈ H̃
1
2 (ΓC)

dC,n(µn − λn, σ) ≤ 0 ∀ µn ∈ H̃
1
2
+ (ΓC).

The first four inqualities that are valid on a whole Hilbert space can be reduced to
equalities, e.g.

Taking τ = 0 and τ = 2σ in the first inequality we have

−{ã(σ, σ) + b(σ,u) + s(σ, η) + dN(σ,ϕ) + dC,t(σ, λt) + dC,n(σ, λn)} ≥ −g(σ),

ã(σ, σ) + b(σ,u) + s(σ, η) + dN(σ,ϕ) + dC,t(σ, λt) + dC,n(σ, λn) ≥ g(σ),
(3.36)

which reads

ã(σ, σ) + b(σ,u) + s(σ, η) + dN(σ,ϕ) + dC,t(σ, λt) + dC,n(σ, λn) = g(σ).

Then with ± τ ∈ X we arrive at

ã(τ, σ) + b(τ,u) + s(τ, η) + dN(τ,ϕ) + dC,t(τ, λt) + dC,n(τ, λn) = g(τ) ∀ τ ∈ X.

The same procedure applies for the other three inequalities mentioned above and so
we finally arrive at the dual variational inequality problem:

Find (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ such that

ã(τ, σ) + B̂(τ; u, η,ϕ) + dC,t(τ, λt) + dC,n(τ, λn) = g(τ) ∀ τ ∈ X

b(v, σ) = − f (v) ∀ v ∈ L2(Ω)

s(ξ, σ) = 0 ∀ ξ ∈ L2(Ω)

dN(ψ, σ) = t0(ψ) ∀ ψ ∈ H̃
1
2 (ΓN)

dC,t(µt − λt, σ) − j(µt) + j(λt) ≤ 0 ∀ µt ∈ H̃
1
2 (ΓC)

dC,n(µn − λn, σ) ≤ 0 ∀ µn ∈ H̃
1
2
+ (ΓC)

(3.37)

where we have used the bilinear form B̂(τ; u, η,ϕ) := b(τ,u) + s(τ, η) + dN(τ,ϕ).

42



3.1. Dual-dual formulation in 2D

Remark 3.12: Note that the computation in (3.36) is valid for all Lagrange multipliers as

well, since setting µt = 0 and µt = 2λt in (3.37)5 and µn = 0 ∈ H̃
1
2
+ (ΓC) and µn = 2λn ∈

H̃
1
2
+ (ΓC) in (3.37)6 we get for the solution (σ; u, η,ϕ, λt, λn) of (3.37)

ã(σ, σ) + b(σ,u) + s(σ, η) + dN(σ,ϕ) + dC,t(σ, λt) + dC,n(σ, λn) = g(σ)

b(u, σ) = − f (u)

s(η, σ) = 0

dN(ϕ, σ) = t0(ϕ)

dC,t(λt, σ) − j(λt) = 0

dC,n(λn, σ) = 0.

(3.38)

The last two equations in (3.38) state in a weak sense the equality constraints on the
contact boundary ΓC of the strong form (3.1).

Remark 3.13: A similar procedure applies in the case where no friction occurs, i.e. F ≡ 0.
Following remark 3.9 and the computations above we arrive at the variational inequality
problem for contact without friction:

Find (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ such that

ã(τ, σ) + B̂(τ; u, η,ϕ) + dC,t(τ, λt) + dC,n(τ, λn) = g(τ) ∀ τ ∈ X

b(v, σ) = − f (v) ∀ v ∈ L2(Ω)

s(ξ, σ) = 0 ∀ ξ ∈ L2(Ω)

dN(ψ, σ) = t(ψ) ∀ ψ ∈ H̃
1
2 (ΓN)

dC,t(µt, σ) = 0 ∀ µt ∈ H̃
1
2 (ΓC)

dC,n(µn − λn, σ) ≤ 0 ∀ µn ∈ H̃
1
2
+ (ΓC)

(3.39)

3.1.4. Dual-dual formulations

Since the j-functional in the saddle point formulation (3.33) is non-differentiable we
introduce another Lagrange multiplier in order to approximate the sign of λt on the
contact boundary ΓC. As the support of the integral in j(·) is restricted to the support
of the friction functionF we also restrict the new Lagrange multiplier to the support
of F . Let us define

AC := suppF .
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3. Dual-dual formulation for a contact problem with friction in 2D

Then we set νλt = |λt| a.e. on AC, with

ν ∈ Λ := {κ ∈ H−
1
2 (AC) : |κ| ≤ 1, a.e. on AC}

and define the bilinear form

q(κ,µ) :=
∫

ΓC

F κµ ds for κ ∈ Λ, µ ∈ H̃
1
2 (ΓC).

Remark 3.14: The introduction of the additional Lagrange multiplier is done in a similar
way as in the primal-dual formulation, see e.g. Glowinski [52, Chapter II, Section 5.3]. The

difference is, that we choose H−
1
2 (AC) instead of L2(ΓC) in the definition of Λ. The reason

will be seen in the proof of the inf-sup condition concerning q(·, ·) in Section 3.1.6.

Let us consider the following saddle point formulation:

Find (σ, ν; u, η,ϕ, λt, λn) ∈ X × Λ × Ỹ′+ such that

L̂(σ, ν; v, ξ,ψ, µt, µn) ≤ L̂(σ, ν; u, η,ϕ, λt, λn) ≤ L̂(τ, κ; u, η,ϕ, λt, λn)

∀ (τ, κ; v, ξ,ψ, µt, µn) ∈ X × Λ × Ỹ′+,
(3.40)

where

L̂(τ, κ; v, ξ,ψ, µt, µn) :=
1
2

ã(τ, τ) − g(τ) + b(τ,v) + f (v) + s(τ, ξ)

+ dN(τ,ψ) − t(ψ) + dC,t(τ, µt) − q(κ,µt) + dC,n(τ, µn).

The bilinear form q(·, ·) is continuous and linear in both variables and therefore we
can apply Proposition 2.9 with l = L̂ and m ≡ 0. Analogously to the previous
subsection we have the saddle point formulation (3.40) being equivalent to the
following dual-dual variational inequality problem:

Find (σ, ν; u, η,ϕ, λt, λn) ∈ X × Λ × Ỹ′+ such that

ã(τ, σ) + B̂(τ; u, η,ϕ) + dC,t(τ, λt) + dC,n(τ, λn) = g(τ) ∀ τ ∈ X

b(v, σ) = − f (v) ∀ v ∈ L2(Ω)

s(ξ, σ) = 0 ∀ ξ ∈ L2(Ω)

dN(ψ, σ) = t0(ψ) ∀ ψ ∈ H̃
1
2 (ΓN)

dC,t(µt, σ) − q(µt, ν) = 0 ∀ µt ∈ H̃
1
2 (ΓC)

dC,n(µn − λn, σ) ≤ 0 ∀ µn ∈ H̃
1
2
+ (ΓC)

q(κ − ν, λt) ≤ 0 ∀ κ ∈ Λ

(3.41)
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Remark 3.15: There arise some questions from the introduction of the new Lagrange mul-
tiplier ν. First we note that from (3.41)7 we have

νλt = |λt| a.e. on AC, (3.42)

since taking κ = signλt ∈ Λ we get
∫

ΓC

F (|λt| − νλt) ds ≤ 0

in (3.41)7. But as ν ∈ Λ we have |λt| − νλt ≥ 0 and thus
∫

ΓC

F (|λt| − νλt) ds ≥ 0 ⇒
∫

ΓC

F (|λt| − νλt) ds = 0.

Since the friction function F is positive on the contact boundary ΓC we conclude (3.42). If
F is zero, then the inequality (3.41)7 is of course valid, but furthermore we deduce from
(3.41)5, that σt = 0 as well, since the equation reduces to the one in the frictionless case, see
Remark (3.13).

If λt = 0 on some part Γst
C
⊂ AC, we are in the situation where the body is sticking on the

rigid foundation. Then from (3.42) we have that ν ∈ Λ can be chosen arbitrarily. But in this

case, we have from (3.41)5 by taking µt ∈ H̃
1
2 (ΓC) with supp(µt) ⊂ Γst

C

0 = dC,t(µt, σ) − q(µt, ν) =
∫

Γst
C

µt(σt − F ν) ds ⇒ ν =
σt

F on Γst
C . (3.43)

Finally, if λt , 0 and F , 0, then we conclude from (3.42) and (3.43), which is valid here
as well

ν = sign λt ∧ ν =
σt

F ⇒ sign σt = sign λt = ν ∧ ν σt = |σt| = F . (3.44)

Corollary 3.16:
For the normal stress σn and the tangential stress σt on ΓC we conclude

σn ≤ 0 and |σt| ≤ F on ΓC. (3.45)

Proof. The first assertion follows from (3.41)6, using (3.38)6 and the fact, that µn ≥ 0
on ΓC. The second assertion follows due to Remark 3.15. �

Theorem 3.17:
The variational inequality problems (3.37) and (3.41) are equivalent in the following
sense. If (σ; u, η,ϕ, λt, λn) ∈ X×Ỹ′+ is a solution of (3.37), then (σ, ν; u, η,ϕ, λt, λn) ∈ X×
Λ × Ỹ′+ solves (3.41) with ν := signλt ∈ Λ. On the other hand if (σ, ν; u, η,ϕ, λt, λn) ∈
X ×Λ × Ỹ′+ is a solution of (3.41), then (σ; u, η,ϕ, λt, λn) solves (3.37).
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Proof. Let (σ, ν; u, η,ϕ, λt, λn) ∈ X × Λ × Ỹ′+ be the solution of (3.41). To prove that
(σ; u, η,ϕ, λt, λn) ∈ X× Ỹ′+ is a solution of (3.37), we only have to show the inequality
in (3.37)5 concerning the tangential displacement on the contact boundary. With
ν ∈ Λwe have

−q(ν, µt) = −
∫

ΓC

F νµt ds ≥ −
∫

ΓC

F |µt| ds = − j(µt) ∀ µt ∈ H̃
1
2 (ΓC)

and from (3.41)5, (3.42) and (3.38) which is valid here as well we get

0 = dC,t(µt, σ) − q(µt, ν) = dC,t(µt − λt, σ) − q(µt, ν) + q(λt, ν)

≥ dC,t(µt − λt, σ) − j(µt) + j(λt) ∀ µt ∈ H̃
1
2 (ΓC).

But this is just the first inequality in (3.37).

On the other hand let (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ be the solution of (3.37). For σ ∈ X

fixed, we have dσ(µ) := dC,t(µ, σ) is a continuous linear functional on H̃
1
2 (ΓC). With

(3.38) and µt = ±µ ∈ H̃
1
2 (ΓC) in (3.37)5 we get

dC,t(µ, σ) − j(µ) ≤ 0 ∧ −dC,t(µ, σ) − j(µ) ≤ 0 ⇒ |dC,t(µ, σ)| ≤ j(µ) ∀ µ ∈ H̃
1
2 (ΓC).

As F ∈ L∞(ΓC) ⊂ L1(ΓC) we can define the mapping

π : H̃
1
2 (ΓC)→ L1(ΓC), µ 7→ F µ.

Taking into account the positivity of F we have

|dC,t(µ, σ)| ≤ j(µ) =
∫

ΓC

F |µ| ds =

∫

ΓC

|Fµ| ds = ‖πµ‖L1(ΓC) ∀ µ ∈ H̃
1
2 (ΓC),

which is a seminorm on L1(ΓC) and therefore sublinear. Since H̃
1
2 (ΓC) ⊂ L1(ΓC) the

assumptions of the Hahn-Banach theorem, see e.g. Yosida [86, Chapter IV], are
fulfilled and we have the existence of some linear functional d̃σ on L1(ΓC) which is
an extension of dσ such that

d̃σ(µ) ≤ ‖πµ‖L1(ΓC) ∀ µ ∈ L1(ΓC).

Forµ ∈ L1(ΓC) there exists a ν ∈ L∞(ΓC), the dual of L1(ΓC), with ‖ν‖L∞(ΓC) ≤ 1 ⇒ ν ∈ Λ
and

‖µ‖L1(ΓC) = 〈µ, ν〉.

Here 〈·, ·〉denotes the duality product. This can be seen very easy from the definition
of the L1-norm as the supremum of the duality product over all dual functions
κ ∈ L∞(ΓC)

‖µ‖L1(ΓC) := sup
‖κ‖L∞ (ΓC)≤1

〈µ, κ〉.
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The supremum is assumed for ν = signµ ∈ L∞(ΓC). Since d̃σ is an extension of dσ we
have

dσ(µ) = dC,t(µ, σ) ≤ 〈ν, πµ〉 =
∫

ΓC

F νµ ds = q(µ, ν) ∀ µ ∈ H̃
1
2 (ΓC).

If we take µ = ±µt ∈ H̃
1
2 (ΓC) we finally arrive at

dC,t(µt, σ) = q(µt, ν) ∀ µt ∈ H̃
1
2 (ΓC).

Taking µt = λt and regarding (3.38) we get

0 = dC,t(λt, σ) − j(λt) ≤ q(λt, ν) − j(λt) =
∫

ΓC

F (νλt − |λt|) ds

and since ν ∈ Λwe have ν λt − |λt| ≤ 0 from which we deduce

νλt = |λt| a.e. on AC.

Finally, we have νλt = |λt| ≥ κλt for all κ ∈ Λ leading to

q(λt, κ − ν) ≤ 0 ∀ κ ∈ Λ

and thus the proof is complete. �

3.1.5. Existence and uniqueness results

The above derivations permit us to state existence and uniqueness results of the
variational inequality problems (3.37) and (3.41).

Theorem 3.18:
There exists exactly one solution (σ; u, η,ϕ, λt, λn) ∈ X × Ỹ′+ of the dual variational
inequality problem (3.37). There exists exactly one solution (σ, ν; u, η,ϕ, λt, λn) ∈
X ×Λ × Ỹ′+ of the dual-dual variational inequality problem (3.41).

Proof. In Section 3.1.3 we have seen that the dual variational inequality problem
(3.37) is equivalent to the saddle point problem (3.33). Due to Theorem 3.10 we have
the equivalence of the saddle point problem (3.33) with the primal minimization
problem 3.6 and the dual minimization problem 3.13. Since both minimization
problems are uniquely solvable we have that the saddle point problem (3.33) as well
as the dual variational inequality problem (3.37) are uniquely solvable.

The second statement follows directly from Theorem 3.17 and the existence and
uniqueness of the dual variational inequality problem (3.37). �

47



3. Dual-dual formulation for a contact problem with friction in 2D

3.1.6. Inf-Sup conditions

In order to derive an error analysis for the variational inequality formulations of
the previous section certain inf-sup conditions are required. When dealing with
variational problems without inequalities, these conditions imply unique solvability
of the problem. The theory was established by Babuška [6], [7] and Brezzi [17]. For
existence results of two fold saddle point problems occurring in mixed methods we
refer to Gatica [34] and the recent published work of Walkington and Howell [83].
The proofs go back to the theorem of Lax-Milgram and are based on the abstract
result of Brezzi and Fortin [18, see Proposition 1.1 in Chapter II]. To prove the first
inf-sup condition we follow very closely the works of Gatica and Wendland [45] and
Babuška and Gatica [9].

If we define the bilinear form B : X × Ỹ′ → R for τ ∈ X and (v, ξ,ψ, µt, µn) ∈ Ỹ′

B(τ, (v, ξ,ψ, µt, µn)) := b(v, τ) + s(ξ, τ) + dN(ψ, τ) + dC,t(µt, τ) + dC,n(µn, τ), (3.46)

then we can state the following

Lemma 3.19:
Let us assume that the boundary part ΓC is polygonal, then the bilinear form
B(·, ·) defined in (3.46) satisfies the inf-sup condition: ∃ β1 > 0 such that for all
(v, ξ,ψ, µt, µn) ∈ Ỹ′

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥ β1‖(v, ξ,ψ, µt, µn)‖

Ỹ′ (3.47)

where the norm on the product space Ỹ′ is given by

‖(v, ξ,ψ, µt, µn)‖
Ỹ′ :=

(
‖v‖2

L2 (Ω)
+ ‖ξ‖2

L2(Ω)
+ ‖ψ‖2

H̃
1
2 (ΓN)

+ ‖µt‖2
H̃

1
2 (ΓC)
+ ‖µn‖2

H̃
1
2 (ΓC)

) 1
2

.

Before we prove this lemma, we state some needful results from Gatica and Wend-
land [45], where they prove an inf-sup condition for a mixed boundary value problem
from elastostatics solved by the coupling of mixed FEM and BEM. The proof will
have the same structure. Analogously to [45] let us define the following subspaces
of L2(Ω)2×2 and X, respectively,

E := {ε(v) : v ∈ VD},

H := {τ ∈ X :
1
2

(τ + τT) ∈ E}.

Then from [45, see Lemma 4.4] we have the following
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Lemma 3.20:
For every ξ ∈ L2(Ω) there exists a unique τ ∈ H such that div τ = 0 in Ω, τ · n = 0 on
ΓN ∪ ΓC and 1

2 (τ − τT) =
(

0 ξ
−ξ 0

)
. Moreover, there exists C > 0 such that

‖τ‖X ≤ C‖ξ‖L2(Ω) ∀ ξ ∈ L2(Ω).

Now we are in the position to prove Lemma 3.19. The proof is in parts the same
as Lemma 4.5 in Gatica and Wendland [45] (see also Gatica and Babuška [9] and
Gatica et al. [10],[42] for similar results). We transfer it to the present case of a
frictional contact problem. For the sake of completeness we write down all steps of
the proof.

Proof. The proof is organized in five steps. The first three steps are from Lemma 4.5
of [45]. Let (v, ξ,ψ, µt, µn) ∈ Ỹ′ be arbitrary but fixed. According to lemma 3.20, we
let τ(ξ) be the unique element in H such that div τ(ξ) = 0 inΩ, τ(ξ) ·n = 0 on ΓN ∪ ΓC

and as(τ(ξ)) = 1
2

(
0 ξ
−ξ 0

)
inΩ. We observe that

τ(ξ) :
(

0 ξ
−ξ 0

)
= τ(ξ)12ξ − τ(ξ)21ξ =

1
2

(τ(ξ)12 − τ(ξ)21)ξ − 1
2

(τ(ξ)21 − τ(ξ)12)ξ

= as(τ(ξ)) :
(

0 ξ
−ξ 0

)
= ξ2.

Thus

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥ sup

0,τ∈H

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X

≥
B(τ(ξ), (v, ξ,ψ, µt, µn))

‖τ(ξ)‖X
=

∫
Ω
τ(ξ) :

(
0 ξ
−ξ 0

)
dx

‖τ(ξ)‖X
=
‖ξ‖2

L2(Ω)

‖τ(ξ)‖X
≥ C1‖ξ‖L2(Ω).

(3.48)

In the second step we consider z ∈ VD as the unique solution of the following
boundary value problem

div ε(z) = v in Ω,

z = 0 on ΓD,

ε(z) · n = 0 on ΓN ∪ ΓC.

The corresponding variational problem reads

Find z ∈ VD s.t.
∫

Ω

ε(z) : ε(w) dx = −
∫

Ω

v ·w dx ∀ w ∈ VD.

Now the second Korn’s inequality assures that the bilinear form on the left hand
side of the above equation is coercive, i.e.

∫
Ω
ε(z) : ε(w) dx ≥ C‖w‖2

H1 (Ω)
for some
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3. Dual-dual formulation for a contact problem with friction in 2D

C > 0. Furthermore, the solution is continuously depending on the right hand side,
that is ‖z‖H1 (Ω) ≤ 1

C
‖v‖L2 (Ω).

Choosing τ̂ := ε(z) we have div τ̂ = v in Ω, τ̂ · n = 0 on ΓN ∪ ΓC, τ̂ = τ̂T in Ω and

‖τ̂‖X = ‖ε(z)‖X ≤ ‖ε(z)‖L2 (Ω) + ‖div ε(z)‖L2 (Ω) ≤ ‖z‖H1 (Ω) + ‖v‖L2(Ω) ≤ C‖v‖L2 (Ω).

Hence, we get the following inequality

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥

B(τ̂, (v, ξ,ψ, µt, µn))

‖τ̂‖X

=

∫
Ω

v · div τ̂ dx

‖τ̂‖X
=
‖v‖2

L2 (Ω)

‖τ̂‖X
≥ C2‖v‖L2 (Ω).

(3.49)

In the third step we consider the following boundary value problem

−div ε(z) = 0 in Ω,

z = 0 on ΓD,

ε(z) · n = 0 on ΓC,

ε(z) · n = g on ΓN,

with some g ∈ H−
1
2 (ΓN). Analogously to the previous step we derive the correspond-

ing variational problem which reads

Find z ∈ VD s.t.
∫

Ω

ε(z) : ε(w) dx =

∫

ΓN

g ·w ds ∀ w ∈ VD.

Again we have a unique solution z with ‖z‖H1 (Ω) ≤ C‖g‖
H
− 1

2 (ΓN)
. Taking τ̄ := ε(z) we

get div τ̄ = 0 in Ω, τ̄ · n = 0 on ΓC, τ̄ = τ̄T in Ω, τ̄ · n = g on ΓN and

‖τ̄‖X = ‖ε(z)‖X = ‖ε(z)‖L2 (Ω) ≤ ‖z‖H1 (Ω) ≤ C‖g‖
H
− 1

2 (ΓN)
,

which leads to the inequality

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥

B(τ̄, (v, ξ,ψ, µt, µn))

‖τ̄‖X
=

∫
ΓN
ψ · τ̄ · n ds

‖τ̄‖X
≥ C

∫
ΓN
ψ · g ds

‖g‖
H
− 1

2 (ΓN)

.

Now the above inequality is valid for all g ∈ H−
1
2 (ΓN) and therefore by taking the

supremum over all g ∈ H−
1
2 (ΓN) on the right hand side we arrive at

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥ C3‖ψ‖

H̃
1
2 (ΓN)

. (3.50)
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In the last two steps we consider the contact boundary ΓC. The following boundary
value problem

−div ε(z) = 0 in Ω,

z = 0 on ΓD,

ε(z) · n = 0 on ΓN,

ε(z) · n = gn on ΓC,

with g ∈ H−
1
2 (ΓC), leads to the variational problem

Find z ∈ VD s.t.
∫

Ω

ε(z) : ε(w) dx =

∫

ΓC

gn ·w ds ∀ w ∈ VD.

Since we assume the boundary to be piecewise polygonal, we can decompose the

contact boundary ΓC :=
M⋃
i=1

ei, where ei denote appropriate edges on ΓC. Let ni denote

the corresponding normal exterior to the edge ei. For arbitrary ϕ ∈ H−
1
2 (ΓC) we have

ϕ =
M∑

i=1

ϕ∗i with ϕ∗i (x) :=
{ϕ(x), if x ∈ ei

0, else.

Using this decomposition we observe the following

‖ϕn‖
H
− 1

2 (ΓC)
= ‖

M∑

i=1

ϕ∗i n
i‖

H
− 1

2 (ΓC)
= sup

v∈H̃
1
2 (ΓC)

〈
M∑
i=1
ϕ∗i n

i, v〉ΓC

‖v‖
H̃

1
2 (ΓC)

≤
M∑

i=1

sup
vi∈H̃

1
2 (ΓC)

〈ϕ∗
i
ni, vi〉ΓC

‖vi‖
H̃

1
2 (ΓC)

=

M∑

i=1

‖ϕ∗i ni‖
H
− 1

2 (ΓC)
=

M∑

i=1

‖ϕ∗i ni‖
H
− 1

2 (ei)
.

For each polygon ei we have that ni is continuous. Therefore we can regard the
multiplication with the normal on ei as a linear, continuous mapping, i.e.

Ni : H−
1
2 (ei) −→ H−

1
2 (ei),

ϕ 7→ Niϕ := ϕni ∀ ϕ ∈ H−
1
2 (ei).

We have that Ni is bounded which reads

∃ C > 0 : ‖Niϕ‖
H
− 1

2 (ei)
≤ C‖ϕ‖

H
− 1

2 (ei)
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3. Dual-dual formulation for a contact problem with friction in 2D

leading to the estimate

‖ϕn‖
H
− 1

2 (ΓC)
≤ C

M∑

i=1

‖ϕ∗i ‖H− 1
2 (ei)
= C‖ϕ‖

H
− 1

2 (ΓC)
. (3.51)

For the unique solution z we thus have the estimate ‖z‖H1 (Ω) ≤ C̃‖gn‖
H
− 1

2 (ΓC)
≤

C‖g‖
H
− 1

2 (ΓC)
and setting τ̃ := ε(z) we have div τ̃ = 0 in Ω, τ̃ · n = 0 on ΓN, τ̃ = τ̃T in Ω

and τ̃ · n = gn on ΓC. The last equation leads to

τ̃n = n · τ̃ · n = gn · n = g,
τ̃t = τ̃ · n − τ̃nn = gn − gn = 0.

Furthermore, we have the inequality

‖τ̃‖X = ‖ε(z)‖X = ‖ε(z)‖L2 (Ω) ≤ ‖z‖H1 (Ω) ≤ C‖g‖
H
− 1

2 (ΓC)
.

Now we can estimate

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥

B(τ̃, (v, ξ,ψ, µt, µn))

‖τ̃‖X
=

∫
ΓC
µnτ̃n ds

‖τ̃‖X
≥ C

∫
ΓC
µng ds

‖g‖
H
− 1

2 (ΓC)

and using the same argument as in the third step and taking the supremum over all
g ∈ H−

1
2 (ΓC) we arrive at

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥ C4‖µn‖

H̃
1
2 (ΓC)

. (3.52)

Finally, in the last step we consider the boundary value problem

−div ε(z) = 0 in Ω,

z = 0 on ΓD,

ε(z) · n = 0 on ΓN,

ε(z) · n = g
(

n2

−n1

)
on ΓC,

with g ∈ H−
1
2 (ΓC) and the corresponding variational problem

Find z ∈ VD s.t.

∫

Ω

ε(z) : ε(w) dx =

∫

ΓC

g

(
n2

−n1

)
·w ds ∀ w ∈ VD.
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3.1. Dual-dual formulation in 2D

In a same manner as in the previous step we can adapt (3.51) keeping in mind, that
the multiplication with the tangent on some polygon ei is also a linear, continuous
mapping. For the unique solution z we therefore derive the estimate

‖z‖H1 (Ω) ≤ C̃‖g
(

n2

−n1

)
‖

H
− 1

2 (ΓC)
≤ C‖g‖

H
− 1

2 (ΓC)

and setting τ̌ := ε(z) we have div τ̌ = 0 in Ω, τ̌ · n = 0 on ΓN, τ̌ = τ̌T in Ω and

τ̌ · n = g
(

n2

−n1

)
on ΓC. The last equation leads to

τ̌n = n · τ̌ · n = gn ·
(

n2

−n1

)
= 0,

τ̌t = τ̌ · n − τ̌nn = g

(
n2

−n1

)
⇒ τ̌t = τ̌t ·

(
n2

−n1

)
= g

(
n2

−n1

)
·
(

n2

−n1

)
= g.

We get the inequality

‖τ̌‖X = ‖ε(z)‖X = ‖ε(z)‖L2 (Ω) ≤ ‖z‖H1 (Ω) ≤ C‖g‖
H
− 1

2 (ΓC)
,

and can estimate

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥

B(τ̌, (v, ξ,ψ, µt, µn))

‖τ̌‖X
=

dC,t(τ̌, µt)

‖τ̌‖X

=

∫
ΓC
µtτ̌t ds

‖τ̌‖X
=

∫
ΓC
µtg ds

‖τ̌‖X
≥ C

∫
ΓC
µtg ds

‖g‖
H
− 1

2 (ΓC)

.

Again using the same argument as in the third step and taking the supremum over
all g ∈ H−

1
2 (ΓC) we arrive at

sup
0,τ∈X

B(τ, (v, ξ,ψ, µt, µn))

‖τ‖X
≥ C5‖µt‖

H̃
1
2 (ΓC)

. (3.53)

If we finally set β1 := max{C1, . . . ,C5}we get the desired estimate (3.47). �

For the error analysis of the following sections we further need a second inf-sup
condition concerning the bilinear form q(·, ·). Before we can prove this assertion let
us define

IC := ΓC \ AC.

We make some further investigations on the friction functionalF . Let∂AC denote the
boundary of AC, which is the set of all points x with x ∈ (AC∩IC)∪{x ∈ AC : F (x) = 0}.
Due to assumption (3.4) we have to distinguish two cases for every x ∈ ∂AC
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︸   ︷︷   ︸
δ0

︸︷︷︸
δ1

IC AC IC

︸
 ︷︷

 ︸C

Figure 3.4.: Two cases for the friction functional F on ΓC.

IC AC IC

Figure 3.5.: General friction functional F on ΓC.

1. ∃ C > 0 : F (x) > C, i.e. F has a jump in x ∈ NCF ,

2. F (x) = 0 and we can find some δ0 > 0 s.t. F ∈ C(Bδ0(x) ∩ AC).

Moreover for the second case we can find for every x ∈ ∂AC some δ1 > 0 such that
F is strictly monotone in Bδ1 (x) ∩ AC. In Figure 3.4 we give an example of the two
possible cases. Without loss of generality we can reduce all other situations to one
of those above, as can be seen in Figure 3.5. We just have to cut AC appropriately
into some disjoint subsets.

Before we continue with the second inf-sup condition let us adopt Lemma 3.2.2.
from Chernov [24] which reads

Lemma 3.21:
Let Γ be a closed Lipschitz curve with two open connected disjoint subsets γ0 ⊂
Γ, γ1 ⊂ Γ, γ0 ∩ γ1 = ∅. Let also γ∗0 := Γ \ γ0, γ∗01 := Γ \ (γ0 ∪ γ1). Then for all

φ ∈ H
1
2 (γ1) there exists an extension fφ ∈ H̃

1
2 (γ∗0) of φ onto γ∗0, such that fφ|γ1 = φ

and

∃ α > 0 : ‖φ‖
H

1
2 (γ1)
≥ α‖ fφ‖

H̃
1
2 (γ∗0)

.

The constant α depends only on min
i
|(γ∗01)i|, where (γ∗01)i are connected components

of γ∗01.
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IC Aδ
C

ICRδ
1 Rδ

2

Figure 3.6.: Distribution of the contact boundary ΓC.

Now we are in a position to state the following

Lemma 3.22:
The bilinear form q(·, ·) satisfies the following inf-sup condition: ∃ β2 > 0 such that
for all κ ∈ H−

1
2 (AC)

sup
µ∈H̃

1
2 (ΓC)

q(µ , κ)

‖µ‖
H̃

1
2 (ΓC)

≥ β2‖κ‖
H
− 1

2 (AC)
. (3.54)

Proof. Without loss of generality we only consider the two cases mentioned above,
see also Figure 3.4. Let us first consider the friction functional assuming the first
case from above. Then there exists a C > 0 with min

x∈AC

F (x) > C and we have

sup
µ∈H̃

1
2 (ΓC)

q(µ , κ)

‖µ‖
H̃

1
2 (ΓC)

≥ sup
µ∈H̃

1
2 (AC)

∫
AC
F µκ ds

‖µ‖
H̃

1
2 (AC)

≥ C sup
µ∈H̃

1
2 (AC)

∫
AC
µκ ds

‖µ‖
H̃

1
2 (AC)

= C‖κ‖
H
− 1

2 (AC)
.

In the second case we proceed as follows. First we distribute the active part of the
contact boundary AC into the following sets as can be seen from Figure 3.6

AC = Rδ
1 ∪ Aδ

C ∪ Rδ
2 with Rδ

i := AC ∩ Bδ(xi) and Aδ
C = AC \

⋃

i

Rδ
i ,

where xi ∈ ∂AC and δ = min{δi
0, δ

i
1} for every Rδ

i
.

Now we can find some Cδ > 0 with min
x∈Aδ

C

F (x) > Cδ. If we apply Lemma 3.21 with

γ0 = IC ∪ ΓD ∪ ΓN, γ1 = Aδ
C
, γ∗0 = AC and γ∗01 = Rδ

1 ∪ Rδ
2, then we can find for every

µ ∈ H
1
2 (Aδ

C
) an extension fµ ∈ H̃

1
2 (AC) such that fµ|Aδ

C
= µ and

‖µ‖
H

1
2 (Aδ

C
)
≥ αδ‖ fµ‖

H̃
1
2 (AC)

,

for some αδ depending on δ. For κ ∈ H−
1
2 (AC) we can find κ̂ ∈ H̃−

1
2 (Aδ

C
) and

κ̄i ∈ H−
1
2 (Rδ

i
) with κ = κ̂∗+κ̄∗1+κ̄

∗
2 and κ̂∗ and κ̄∗

i
being extensions of the corresponding
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functions to AC by zero with equal norms, respectively. We have

‖κ‖
H
− 1

2 (AC)
= ‖κ̂∗ + κ̄∗1 + κ̄∗2‖H− 1

2 (AC)
≤ ‖κ̂∗‖

H
− 1

2 (AC)
+ ‖κ̄∗1‖H− 1

2 (AC)
+ ‖κ̄∗2‖H− 1

2 (AC)

= ‖κ̂‖
H̃
− 1

2 (Aδ
C

)
+ ‖κ̄1‖

H
− 1

2 (Rδ1)
+ ‖κ̄2‖

H
− 1

2 (Rδ2)
.

Now we are able to conclude for all κ̂ ∈ H̃−
1
2 (Aδ

C
)

sup
µ∈H̃

1
2 (ΓC)

q(µ , κ̂∗)

‖µ‖
H̃

1
2 (ΓC)

≥ sup
µ∈H̃

1
2 (AC)

∫
AC
F µ κ̂∗ ds

‖µ‖
H̃

1
2 (AC)

≥ sup
µ∈H

1
2 (Aδ

C
)

∫
Aδ

C

F fµ κ̂ ds

‖ fµ‖
H̃

1
2 (AC)

≥ αδ sup
µ∈H

1
2 (Aδ

C
)

∫
Aδ

C

F µ κ̂ ds

‖µ‖
H

1
2 (Aδ

C
)

≥ αδCδ sup
µ∈H

1
2 (Aδ

C
)

∫
Aδ

C

µ κ̂ ds

‖µ‖
H

1
2 (Aδ

C
)

= αδCδ‖κ̂‖
H̃
− 1

2 (Aδ
C

)
. (3.55)

As seen above F is continuous and strictly monotonic on Rδ
i

and so there exists the
inverse F −1 of F on Rδ

i
which is also continuous. Due to [61, see Chapter 9] F −1 is

a factor on H̃
1
2 (Rδ

i
) and therefore F −1µ ∈ H̃

1
2 (Rδ

i
) is well defined for all µ ∈ H̃

1
2 (Rδ

i
).

Defining µ̄ := F µ with ‖µ‖
H̃

1
2 (Rδ

i
)
= ‖F −1µ̄‖

H̃
1
2 (Rδ

i
)
≤ ‖F −1‖L1(Rδ

i
)‖µ̄‖H̃ 1

2 (Rδ
i

)
we get for

i = 1, 2

sup
µ∈H̃

1
2 (ΓC)

q(µ , κ̄∗
i
)

‖µ‖
H̃

1
2 (ΓC)

≥ sup
µ∈H̃

1
2 (Rδ

i
)

∫
Rδ

i

F µ κ̄∗
i
ds

‖µ‖
H̃

1
2 (Rδ

i
)

= sup
µ∈H̃

1
2 (Rδ

i
)

∫
Rδ

i

µ̄ κ̄i ds

‖µ‖
H̃

1
2 (Rδ

i
)

≥ 1
‖F −1‖L1(Rδ

i
)

sup
µ̄∈H̃

1
2 (Rδ

i
)

∫
Rδ

i

µ̄ κ̄i ds

‖µ̄‖
H̃

1
2 (Rδ

i
)

=
1

‖F −1‖L1(Rδ
i

)

‖κ̄i‖
H
− 1

2 (Rδ
i

)
.

(3.56)

Choosing β2 = min{ 1
‖F −1‖

L1(Rδ
i

)
, αδCδ} and adding (3.55) and (3.56) we finally arrive at

sup
µ∈H̃

1
2 (ΓC)

q(µ , κ)

‖µ‖
H̃

1
2 (ΓC)

= sup
µ∈H̃

1
2 (ΓC)

q(µ , κ̂∗ + κ̄∗1 + κ̄
∗
2)

‖µ‖
H̃

1
2 (ΓC)

≥ β2

(
‖κ̂‖

H̃
− 1

2 (Aδ
C

)
+ ‖κ̄1‖

H
− 1

2 (Rδ1)
+ ‖κ̄2‖

H
− 1

2 (Rδ2)

)

= β2

(
‖κ̂∗‖

H
− 1

2 (AC)
+ ‖κ̄∗1‖H− 1

2 (AC)
+ ‖κ̄∗2‖H− 1

2 (AC)

)

≥ β2‖κ̂∗ + κ̄∗1 + κ̄∗2‖H− 1
2 (AC)

= β2‖κ‖
H
− 1

2 (AC)
.

�

We have the following result concerning the continuous dependence of the solution
on the given data.
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Lemma 3.23:
There exists a constant C > 0 independent of the given data f, t0, g and F and a
constant CF independent of f, t0 and g such that for the solution (σ, ν; u, η,ϕ, λt, λn) ∈
X ×Λ × Ỹ of the variational inequality problem (3.41) there holds

‖σ‖X + ‖u‖L2 (Ω) + ‖η‖L2(Ω) + ‖ϕ‖
H

1
2 (ΓN)

+ ‖λt‖
H

1
2 (ΓC)
+ ‖λn‖

H
1
2 (ΓC)

≤ C
(
‖f‖L2 (Ω) + ‖t0‖

H
− 1

2 (ΓN)
+ ‖g‖

H
1
2 (ΓC)
+ ‖F ‖L∞(Γ)

)

and ‖ν‖
H
− 1

2 (AC)
≤ CF

(
‖f‖L2 (Ω) + ‖t0‖

H
− 1

2 (ΓN)
+ ‖g‖

H
1
2 (ΓC)
+ ‖F ‖L∞(Γ)

)
.

Proof. The first equation in the variational inequality problem (3.41) reads

B(τ , (u, η,ϕ, λt, λn)) = −g(τ) − ã(σ, τ) ∀ τ ∈ X.

Thus applying the inf-sup condition of Lemma 3.19 and the continuity of ã(·, ·) we
have

‖u, η,ϕ, λt, λn‖Ỹ′ ≤
1
β1

sup
τ∈X

B(τ , (u, η,ϕ, λt, λn))

‖τ‖X

=
1
β1

sup
τ∈X

−g(τ) − ã(σ, τ)

‖τ‖X
≤ C

β1

{
‖g‖

H
1
2 (ΓC)
+ ‖σ‖X

}
.

(3.57)

In the same way, using the inf-sup condition in Lemma 3.22 and the fifth equality of
(3.41) we derive

‖ν‖
H
− 1

2 (AC)
≤ 1
β2

sup
µt∈H̃

1
2 (ΓC)

q(µt, ν)

‖µt‖
H̃

1
2 (ΓC)

=
1
β2

sup
µt∈H̃

1
2 (ΓC)

dC,t(µt, σ)

‖µt‖
H̃

1
2 (ΓC)

≤ 1
β2
‖σt‖

H
− 1

2 (ΓC)
≤ 1
β2
‖σ‖X .

(3.58)

Now as σ is a solution of (3.41) we have for the divergence

‖div σ‖L2 (Ω) = ‖f‖L2 (Ω)

and using the coercivity of ã(·, ·) on the kernel of B(·, ·) we conclude

‖σ‖2X ≤
1
α

ã(σ, σ) + ‖div σ‖2
L2 (Ω)

=
1
α

(−B(σ , (u, η,ϕ, λt, λn)) − g(σ)
)
+ ‖f‖2

L2 (Ω)
.

Using the second to fifth equalities of the variational inequality problem (3.41) we
arrive at

‖σ‖2X ≤
1
α

(
f (u) − t0(ϕ) − q(λt, ν) − dC,n(λn, σ) − g(σ)

)
+ ‖f‖2

L2 (Ω)
.
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3. Dual-dual formulation for a contact problem with friction in 2D

From the proof of Theorem (3.10) we have dC,n(λn, σ) = 0. Furthermore, the proof of
Theorem (3.17) provides q(λt, ν) = j(λt). Applying the Cauchy-Schwarz-inequality,
equation (3.57) and inequality (2.6) we arrive at

‖σ‖2X ≤
1
α

(
‖f‖L2 (Ω)‖u‖L2 (Ω) + ‖t0‖

H
− 1

2 (ΓN)
‖ϕ‖

H̃
1
2 (ΓN)

+ ‖F ‖L∞(ΓC)‖λt‖
H̃

1
2 (ΓC)
+ ‖g‖

H
1
2 (ΓC)
‖σ‖X

)
+ ‖f‖2

L2 (Ω)

≤ 1
α

(
C

β1

{
‖g‖

H
1
2 (ΓC)
+ ‖σ‖X

} (
‖f‖L2 (Ω) + ‖t0‖

H
− 1

2 (ΓN)
+ ‖F ‖L∞(ΓC)

)

+ ‖g‖
H

1
2 (ΓC)
‖σ‖X

)
+ ‖f‖2

L2 (Ω)

≤ ε

2α
‖σ‖2X +

1
2εα

(
C

β1

(
‖f‖L2 (Ω) + ‖t0‖

H
− 1

2 (ΓN)
+ ‖F ‖L∞(ΓC)

)
+ ‖g‖

H
1
2 (ΓC)

)2

+
C

β1α
‖g‖

H
1
2 (ΓC)

(
‖f‖L2 (Ω) + ‖t0‖

H
− 1

2 (ΓN)
+ ‖F ‖L∞(ΓC)

)
+ ‖f‖2

L2 (Ω)
.

Taking ε = α we can find some C̃ > 0 such that

‖σ‖2X ≤
C̃2

α2

{
C

β1

(
‖f‖L2 (Ω) + ‖t0‖

H
− 1

2 (ΓN)
+ ‖F ‖L∞(ΓC)

)
+ ‖g‖

H
1
2 (ΓC)

}2

. (3.59)

We finish the proof by applying the square root of (3.59) to the inequalities (3.57)
and (3.58). �

3.2. Mixed finite elements

In this section we present the discretization of the dual-dual variational inequality
problem (3.41). We introduce appropriate finite element spaces such that the discrete
versions of the inf-sup conditions (3.47) and (3.54) hold. Mixed Finite Element
Methods have been investigated for years and we do not give an explanation of them
in this work, but refer to Ciarlet [26] for an elaborate description of the standard
Finite Element Method and to the work of Brezzi and Fortin [18], which is a very
extensive introduction to Mixed Finite Element Methods.

Before we state the discrete dual-dual variational inequality problem, let us define
the setting of the Mixed Finite Element Method, that we use to find an approximate
solution of (3.1). First assume that the boundary Γ of the considered domain Ω is
piecewise polygonal. Let Th be a regular, quasiuniform triangulation of Ω. First
assume that the boundary Γ of the considered domain Ω is piecewise polygonal.
Let Th be a regular, quasiuniform triangulation of Ω. The set of all edges Eh is
decomposed into the set of all interior edges EΩ

h
and the set of all boundary edges

EΓ
h
. Furthermore, Ei

h
for i ∈ {D,N,C,A, I} denotes the set of all boundary edges on

the corresponding boundary part, i.e. ΓD, ΓN and ΓC for the first three letters and AC
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3.2. Mixed finite elements

and IC for the last two letters. Note, that for all edges e ∈ EΩ
h

there exist exactly two
triangles T1

e ,T
2
e ∈ Th that have e as a common edge. In the same way we denote the

set of all verticesNh, decomposed into each boundary part and the interior domain
by N i

h
for i ∈ {D,N,C,A, I,Ω,Γ}. For some arbitrary triangle T and edge e we finally

denote by ET the set of all edges of T and by NT and N e the set of all vertices on T
and e, respectively.

As we will outline in the proofs of the discrete inf-sup conditions (3.69) and (3.72)
we need coarser mesh sizes for the finite element spaces of the Lagrange multipliers
on the boundaries. In order to keep the complexity of the solution algorithms and
its implementation, as simple as possible, we propose the following choice for the
coarser mesh sizes h̃ and ĥ. Similarly to Gatica and Maischak [41] we use h̃ := 2h

and ĥ := 4h. If the coarsening is not sufficient we use h̃ := 4h and ĥ := 8h and so
on. For the sets of edges with mesh sizes h̃ and ĥ on each boundary part, we use the
notation Ei

h̃
and Ei

ĥ
for i ∈ {D,N,C,A, I}, respectively. An analogous notation applies

for the sets of vertices. Moreover, we assume that for all edges ẽ ∈ Ei
h̃

we have only
edges e ∈ Ei

h
lying entirely on ẽ for i ∈ {N, C}. We make the same assumption for all

edges ê ∈ EC

ĥ
, i.e. for arbitrary ẽ ∈ Ei

h̃
or ê ∈ EC

ĥ
we have for all e ∈ Ei

h
and i ∈ {N,C}

the intersections ẽ ∩ e and ê ∩ e are either empty or the whole edge e. The number
of triangles in Th is denoted by NT . Analogously Ni denotes the number of edges in
Ei

h
, Ñi the number of edges in Ei

h̃
for i ∈ {D,N,C,A, I,Ω} and N̂C the number of edges

in EC

ĥ
.

In Chapter 4 we will need the following definitions for the interpolation estimates
of the Clément interpolation operator

ωT :=
⋃

NT′∩NT,∅

T′, ωe :=
⋃

e∩ET′,∅

T′. (3.60)

We are now in the position to define the discrete finite element spaces for the dis-
cretization of problem (3.41). For the triple (σ,u, η) ∈ X × L2(Ω) × L2(Ω) we use the
PEERS elements that were introduced by Arnold, Brezzi and Douglas Jr. in [5].
They show, that the PEERS elements are well suited in the sense that they fulfill the
discrete inf-sup condition for the bilinear form b(·, ·) + s(·, ·). For the Lagrange mul-
tipliers on the boundaries representing the corresponding displacement fields we
use continuous hat functions. This seems plausible since continuous hat functions
are well suited for the space H1(Ω) and the trace of a 2D hat function is a 1D hat
function restricted to the boundary. Finally, we use piecewise constant functions to
discretize H−

1
2 (AC).

We need the following finite element spaces. For arbitrary T ∈ Tk and e ∈ E j

k
with
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3. Dual-dual formulation for a contact problem with friction in 2D

k ∈ {h, h̃, ĥ} and j ∈ {D,N,C,A, I}we define the polynomial spaces

Pk
s(T) :=

{
ψ : ψ is a polynomial of degree at most s on T

}
,

Pk
s(T) :=

{
ψ :=

(
ψ1
ψ2

)
: ψi ∈ Pk

s(T) for i = 1, 2
}
,

Pk
s(e) :=

{
ψ : ψ is a polynomial of degree at most s on e

}
,

Pk
s(e) :=

{
ψ :=

(
ψ1
ψ2

)
: ψi ∈ Pk

s(e) for i = 1, 2
}

and the Raviart-Thomas spaces on some triangle T ∈ Th

RT0(T) :=
{
ψ := ( a

b ) + c
( x1

x2

)
on T ∈ Th, for a, b, c ∈ R}

,

RT0(T) :=
{
τ :

( τi1
τi2

) ∈ RT0(T) on T, for i = 1, 2
}

and on Th

RT0 :=
{
ψ ∈ H(div,Ω) : ψ|T ∈ RT0(T) ∀ T ∈ Th

}
,

RT0 := {τ ∈ H(div,Ω) : τ|T ∈ RT0(T) ∀ T ∈ Th} .

The space RT0 is the space of Raviart-Thomas elements of lowest order. They were
first introduced by Raviart and Thomas [76] and are suitable for the discretization
of H(div,Ω) since their normal component is continuous along all edges in EΩ

h
. In

order to define the PEERS elements we further need the following function. For a
T ∈ Th we take the barycentric coordinates λi

T for i = 1, 2, 3 and introduce the bubble
function on T as

bT(x) :=

∏3
i=1 λ

i
T(x)

∏3
i=1 λ

i
T(pb(T))

,

where pb(T) is the barycenter of the triangle T. We define

B :=
{
τ : τ|T = Curl

(
αbT
βbT

)
∀ T ∈ Th, α, β ∈ R}

,

where

Curlψ :=
(

(Curlψ1)T

(Curlψ2)T

)
and Curlψ :=

(
ψ,2
−ψ,1

)
,

according to the definition of the Curl-operator, see e.g. Carstensen and Dolzmann
[22]. Now, we proceed with the definition of the following finite element spaces for
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3.2. Mixed finite elements

the discretization of the dual-dual variational inequality problem (3.41)

Xh := RT0 ∪ B,

Mh :=
{
v : v|T ∈ Ph

0(T), ∀T ∈ Th

}
,

Sh :=
{
η ∈ C(Ω) : η|T ∈ Ph

1(T), ∀T ∈ Th

}
,

Nh̃ :=
{
ψ ∈ C(ΓN)2 : ψ|e ∈ Ph̃

1(e),ψ = 0|∂ΓN
, ∀ e ∈ EN

h̃

}
,

Ch̃ :=
{
µ ∈ C(ΓC) : µ ∈ Ph̃

1(e), µ = 0|∂ΓC
, ∀ e ∈ EC

h̃

}
,

C+
h̃

:=
{
µ ∈ Ch̃ : µ(x) ≥ 0 ∀ x ∈ NC

h̃

}
,

Lĥ :=
{
κ : κ ∈ Pĥ

0(e), ∀ e ∈ EA

h̃

}
,

Λĥ :=
{
κ ∈ Lĥ : |κ| ≤ 1 a.e. on ΓC

}
.

(3.61)

Finally, we set

X̃h := Xh × Λĥ, Yh :=Mh × Sh ×Nh̃ × Ch̃, Ỹh := Yh × C+
h̃
.

3.2.1. Approximation of the dual-dual variational inequality problem

To approximate the dual-dual variational inequality problem (3.41) we propose the
following solution scheme, using the above definitions of the finite element spaces:

Find (σh, νĥ; uh, ηh,ϕh̃, λh̃
t , λ

h̃
n) ∈ X̃h × Ỹh such that

ã(σh, τ) + B̂(uh, ηh,ϕh̃; τ) + dC,t(λh̃
t , τ) + dC,n(λh̃

n, τ) = g(τ) ∀ τ ∈ Xh

b(v, σh) = − f (v) ∀ v ∈Mh

s(ξ, σh) = 0 ∀ ξ ∈ Sh

dN(ψ, σh) = t0(ψ) ∀ ψ ∈ Nh̃

dC,t(µt, σ
h) − q(µt, ν

ĥ) = 0 ∀ µt ∈ Ch̃

dC,n(µn − λh̃
n, σ

h) ≤ 0 ∀ µn ∈ C+
h̃

q(κ − νĥ, λh̃
t ) ≤ 0 ∀ κ ∈ Λĥ

(3.62)
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3. Dual-dual formulation for a contact problem with friction in 2D

Corollary 3.24:
From the inequalities in (3.62) we conclude

dC,n(λh̃
n, σ

h) = 0. (3.63)

If furthermore ĥ = h̃, then we have

νĥλh̃
t = |λh̃

t | on ΓC yielding q(λh̃
t , ν

ĥ) = j(λh̃
t ). (3.64)

Proof. Taking µn = 0 ∈ C+
h̃

and µn = 2λh̃
nC+

h̃
in (3.62)6 we conclude assertion (3.63).

From the assumption ĥ = h̃ we have sign(λh̃
t ) ∈ Λĥ. Then, (3.64) follows analogously

to the argumentation in Remark 3.15. �

Proposition 3.25:
Analogously to the continuous case in Corollary 3.16 we conclude for the normal
stress σh

n on ΓC

σh
n ≤ 0 on ΓC. (3.65)

If furthermore AC ⊂ Γ′C, with

Γ′C := ΓC \ {e ∈ EC

h̃
: e ∩ ∂ΓC , ∅}, (3.66)

then we have for the tangential stress σh
t on ΓC

|σh
t | ≤ F on ΓC. (3.67)

Proof. From (3.63) and µn ≥ 0 on ΓC we get (3.65). For the second assertion we first
observe, that the restriction of (3.62)5 to the inactive set IC leads to σh

t = 0 on IC and
since F is positive (3.67) holds on IC. Due to νĥ ∈ Λĥ we have

q(µt, ν
ĥ) =

∫

AC

F µt ν
ĥ ds ≤

∫

ΓC

F |µt| ds = j(µt) ∀ µt ∈ Ch̃.

Hence we conclude with (3.62)5

dC,t(µt, σ
h) − j(µt) ≤ dC,t(µt, σ

h) − q(µt, ν
ĥ) = 0 ∀ µt ∈ Ch̃,

⇔
∫

ΓC

(
µtσ

h
t − |µt|F

)
ds ≤ 0 ∀ µt ∈ Ch̃,

⇔
∫

ΓC

|µt|
(
σh

t sign(µt) − F
)

ds ≤ 0 ∀ µt ∈ Ch̃,

⇔ σh
t sign(µt) − F ≤ 0 ∀ µt ∈ Ch̃.
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3.2. Mixed finite elements

Choosing µt ∈ Ch̃ such that µt|Γ′
C
= ±1 we have

σh
t − F ≤ 0 ∧ −σh

t − F ≤ 0 on Γ′C ⊃ AC

and therefore (3.67) is also valid on AC. �

Remark 3.26: If no friction occurs, i.e. F ≡ 0, we have the following discrete version of the
variational inequality problem (3.39) for contact problems without friction:

Find (σh; uh, ηh,ϕh̃, λh̃
t , λ

h̃
n) ∈ Xh × Ỹh such that

ã(σh, τ) + B̂(uh, ηh,ϕh̃; τ) + dC,t(λh̃
t , τ) + dC,n(λh̃

n, τ) = g(τ) ∀ τ ∈ Xh

b(v, σh) = − f (v) ∀ v ∈Mh

s(ξ, σh) = 0 ∀ ξ ∈ Sh

dN(ψ, σh) = t0(ψ) ∀ ψ ∈ Nh̃

dC,t(µt, σ
h) = 0 ∀ µt ∈ Ch̃

dC,n(µn − λh̃
n, σ

h) ≤ 0 ∀ µn ∈ C+
h̃
.

(3.68)

Remark 3.27: In general the subsets for the discretization of the convex sets in the variational
inequalities are not conform. However this does not hold for the discrete sets C+

h̃
and Λĥ. In

short, we have

C+
h̃
⊂ H̃

1
2
+ (ΓC) and Λĥ ⊂ Λ.

This follows from the fact that we use linear functions for C+
h̃

and demand that all functions

in C+
h̃

have to be positive in all vertices of NC

h̃
. This just means that we only allow linear

combinations of basis functions in C+
h̃

with positive coefficients and as the sum of positive
functions is positive again we conclude the first assertion. The second assertion is obvious
by the construction of the finite element space Λĥ.

3.2.2. Discrete Inf-Sup conditions

In order to derive an error analysis we have to assure, that the discrete versions of
the inf-sup conditions hold for the mixed finite element spaces in (3.61). For the first
discrete inf-sup condition (3.69) we collect known results from literature, similar to
the continuous case in Section 3.1.6. However for the sake of completeness we show
a sketch of the proof and name the right reference in each step of the proof. Let us
state the first discrete inf-sup condition.
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3. Dual-dual formulation for a contact problem with friction in 2D

Lemma 3.28:
The bilinear form B defined in (3.46) satisfies the following discrete inf-sup condition:
∃ C0, β1 > 0, independent of h and h̃ such that for all h ≤ C0h̃ and (vh, ξh,ψh̃, µh̃

t , µ
h̃
n) ∈

Ỹh

sup
0,τh∈Xh

B(τh, (vh, ξh,ψh̃, µh̃
t , µ

h̃
n))

‖τh‖X
≥ β1‖(vh, ξh,ψh̃, µh̃

t , µ
h̃
n)‖

Ỹ′ . (3.69)

Proof. The proof is divided into four steps. In [5, see Lemma 4.4], where Arnold,
Brezzi and Douglas Jr. introduce the PEERS elements to discretize the triple of stress,
displacement and rotation in plane elasticity, the authors show the discrete inf-sup
condition for the triple of functions. For this we define

X̂h :=


τh ∈ Xh :

∫

Ω

tr(τh) dx = 0


,

which allows us to decompose Xh = X̂h +RI and now Lemma 4.4. in [5] states

∃ C1 > 0 : sup
0,τh∈X̂h

b(vh, τh) + s(ξh, τh)
‖τh‖X

≥ C1‖vh, ξh‖L2 (Ω)×L2(Ω) ∀ (vh, ξh) ∈Mh × Sh.

Since the other terms in B(·, ·) are all bilinear forms on boundary parts we proceed
analogously to Gatica and Stephan in [44, see the proof of Theorem 4.1]. That is, for
all (vh, ξh,ψh̃, µh̃

t , µ
h̃
n) ∈ Ỹh we have

sup
0,τh∈Xh

B(τh, (vh, ξh,ψh̃, µh̃
t , µ

h̃
n))

‖τh‖X
≥ sup

0,τh∈X̂h

B(τh, (vh, ξh, 0, 0, 0))
‖τh‖X

= sup
0,τh∈X̂h

b(vh, τh) + s(ξh, τh)
‖τh‖X

≥ C1‖vh, ξh‖L2 (Ω)×L2(Ω).

In the next two steps we apply Lemma 4.2. of Gatica, Márquez and Meddahi [42] and
use Lemma 3.3. of Babuška and Gatica [9] to show the existence of some C̃0, C2 > 0
independent of h and h̃ such that for all h ≤ C̃0h̃ the following estimate holds

sup
0,τh∈Xh

B(τh, (vh, ξh,ψh̃, µh̃
t , µ

h̃
n))

‖τh‖X
≥ C2‖ψh̃‖

H̃
1
2 (ΓN)
− ‖ξh‖L2(Ω) ∀ (vh, ξh,ψh̃, µh̃

t , µ
h̃
n) ∈ Ỹh.

The second norm on the right hand side arises from the fact, that the interpolation
operator used within the proof of Lemma 4.2 in [42] does not necessarily preserve
the symmetry of the stress tensor. Furthermore, the first norm on the right hand side
is reached by applying first Lemma 3.2. of [9] and then Lemma 3.3. of [9].
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3.2. Mixed finite elements

Finally, since the above estimate holds also true for scalar functions on some bound-
ary parts we can apply it to the last two Lagrange multipliers µh̃

t and µh̃
n by using the

same arguments as in the continuous case in Lemma 3.19. Hence there exist some
positive constants C̄0, Ĉ0,C3 and C4 such that for all h ≤ C̄0h̃

sup
0,τh∈Xh

B(τh, (vh, ξh,ψh̃, µh̃
t , µ

h̃
n))

‖τh‖X
≥ C3‖µh̃

t ‖
H̃

1
2 (ΓC)
− ‖ξh‖L2(Ω) ∀ (vh, ξh,ψh̃, µh̃

t , µ
h̃
n) ∈ Ỹh

and for all h ≤ Ĉ0h̃

sup
0,τh∈Xh

B(τh, (vh, ξh,ψh̃, µh̃
t , µ

h̃
n))

‖τh‖X
≥ C4‖µh̃

n‖
H̃

1
2 (ΓC)
− ‖ξh‖L2(Ω) ∀ (vh, ξh,ψh̃, µh̃

t , µ
h̃
n) ∈ Ỹh.

Multiplying the last three inequalities by C1
4 and adding up all four inequalities we

arrive at the desired estimate with C0 := min{C̃0, C̄0, Ĉ0} and β1 := C1 ·min{1,C2 ,C3 ,C4}
4+3C1

. �

Before we state the second discrete inf-sup condition we make the following obser-
vation. We want to show the inf-sup condition for each choice ofF , in particular we
can assume F ≡ 1. Therefore the active set is the whole contact boundary AC ≡ ΓC.
Without loss of generality we can assume that ΓC is a line segment. In the following
we show exemplary, why we have to use a coarser meshsize for Λĥ.

Assume h̃ = ĥ, then we can define for an arbitrary set of edges EC

h̃

κ̄ :=
ÑC∑

i=1

(−1)iχi(x) ∈ Λĥ, with χi(x) :=
{

1, on ei ,

0, else.

Now we observe that for all φ ∈ Ch̃ we have q(φ, κ̄) = 0. To verify this we take an
arbitrary φ ∈ Ch̃

φ(x) :=
ÑC−1∑

i=1

ciψi(x) with ci ∈ R and ψi basis function in Ch̃

and compute

φκ̄ =




ÑC−1∑

i=1

ciψi(x)







ÑC∑

i=1

(−1)iχi(x)


 =

ÑC−1∑

i=1

ci

(
(−1)i + (−1)i+1

)
= 0.

Since F was assumed to be constant the assertion follows. In Figure 3.7 we illustrate
this observation exemplary. The dashed blue lines show each hat function separately.
The observation shows, that the discrete inf-sup condition does not hold for arbitrary
F , if the meshsizes for Λĥ and Ch̃ are equal.

Furthermore, we cannot regard F as a multiplier on Ch̃ since it can have jumps. As
described in the beginning of this chapter our aim is to solve the contact problem
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e1

ΓC

e2 e3 e4

Figure 3.7.: Example for φ ∈ Ch̃ (blue) and κ̄ ∈ Λh̃ (red) on the contact boundary ΓC.

(3.1) with Coulomb friction (3.2). In Section 3.3 we explain the solution algorithm
to solve the discrete variational inequality problem (3.62), where we update the
discrete friction function after each iteration according to (3.2). This means that we
define F in terms of the normal part of the approximated stress σh on ΓC which is
a piecewise constant function. For this reason we have to project F onto Lĥ. This
projection will be explained later in detail in Section 3.3. For our current purpose it
is sufficient to know that we deal with a friction function F ∈ Lĥ from now on. In
the following we will present two different inf-sup conditions. The first one will be
valid for all friction functions F ∈ Lĥ. Unfortunately it deals with a mesh dependent
norm. For the second version some more restrictions on the friction function are
necessary. If we know in advance, that dist(AC, ∂ΓC) > ε > 0, then the coarsening of
the mesh described above is not required.

Let us introduce the following norms defined in Roberts and Thomas [77, see Section
6 in Chapter II]

‖|v|‖H(div,T) :=
{
‖v‖2

L2 (T)
+ ĥ2‖div v‖2

L2(T)

} 1
2 ∀ v ∈ H(div,T), T ∈ Tĥ,

‖|κ|‖− 1
2 ,∂T := inf

v∈H(div,T)
v·n=κ|∂T

‖|v|‖H(div,T) ∀ κ ∈ H−
1
2 (∂T), T ∈ Tĥ,

‖|κ|‖− 1
2 ,∂Tĥ

:=



∑

T∈T
ĥ

‖|κ|‖2− 1
2 ,∂T



1
2

∀ κ = (κT) ∈
∏

T∈T
ĥ

H−
1
2 (∂T).

We will need the inequality (18.23) defined in [77, Chapter II, Section 6]

‖|κ|‖− 1
2 ,∂Tĥ

≤ Cĥ
1
2 ‖κ‖L2(∂T

ĥ
). (3.70)

With the above norms we define the restriction to the boundary part as follows. For
κ ∈ Lĥ

‖κ‖− 1
2 ,ĥ

:= ‖|κ∗|‖− 1
2 ,∂Tĥ

(3.71)
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where κ∗ ∈ ∏
T∈T

ĥ

H−
1
2 (∂T) is the extension of κ by zero.

Finally, we notice, that ĥ = 2h̃ is sufficient to prove the desired inf-sup condition.
This will be explicated in the following lemma.

Lemma 3.29:
The bilinear form q(·, ·) satisfies the following discrete inf-sup condition: ∃ Ĉ0 > 1
and β2 > 0, where β2 depends on F , such that for all h̃ ≥ Ĉ0 ĥ and for all κ ∈ Lĥ

sup
µ∈Ch̃

q(µ, κ)

‖µ‖
H̃

1
2 (ΓC)

≥ β2 ‖κ‖− 1
2 ,ĥ
. (3.72)

Proof. Let us assume Ĉ0 = 2. As written above we have F ∈ Lĥ. Therefore it holds
F κ ∈ Lĥ for all κ ∈ Lĥ with

κ =
N̂A∑

i=1

ciχi(x) and F κ =
N̂A∑

i=1

fi ciχi(x).

Due to the choice of Ĉ0 we can find for all edges êi ∈ EA

ĥ
a vertice pi ∈ NC

h̃
, which

is the midpoint of êi. We set Î as the index set of all vertices that are a midpoint of
some edge êi ∈ EA

ĥ
. For all i ∈ Î we identify with êi ∈ EA

ĥ
the edge on AC and with pi

the corresponding vertice which is the midpoint of êi. We need the global inverse
inequality for µ ∈ Ch̃, see e.g. Chapter 10.2 in Steinbach [80], which reads

‖µ‖
H̃

1
2 (ΓC)

≤ C̃ h̃−
1
2 ‖µ‖L2(ΓC) = C ĥ−

1
2 ‖µ‖L2(ΓC).

We define

µ̄ :=
∑

i∈Î

ci

fi
ψi(x) ∈ Ch̃,

then we have with min
i∈Î

fi > CF > 0

‖µ̄‖2
L2(ΓC)

=

∫

ΓC



∑

i∈Î

ci

fi

ψi(x)




2

ds =

∫

AC



∑

i∈Î

ci

fi

ψi(x)




2

ds =
∑

i∈Î

c2
i

f 2
i

∫

êi

ψi(x)2 ds

≤ 1
C2
F

ĥ
∑

i∈Î

c2
i =

1
C2
F
‖κ‖2

L2(AC)

and

q(µ̄, κ) =
∫

AC




N̂A∑

i=1

fi ciχi(x)






∑

i∈Î

ci

fi
ψi(x)


 ds =

∑

i∈Î

c2
i

∫

êi

ψi(x) ds = ĥ
∑

i∈Î

c2
i = ‖κ‖2L2(AC)

.
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Now with (3.70) and the definition of the mesh depedant norm (3.71) we conclude

sup
µ∈Ch̃

q(µ, κ)

‖µ‖
H̃

1
2 (ΓC)

≥
q(µ̄, κ)

‖µ̄‖
H̃

1
2 (ΓC)

≥ C ĥ
1
2

q(µ̄, κ)

‖µ̄‖L2(ΓC)
≥ CF ĥ

1
2 ‖κ‖L2(AC) ≥ CF ‖κ‖− 1

2 ,ĥ
.

Taking β2 := CF we finish the proof. �

Remark 3.30: The inf-sup condition is proved in the same way, when the following mesh
dependent norm is applied instead, see e.g. Braess and Dahmen [15]. For any κ ∈ Lĥ we
have κ ∈ L2(AC), therefore we set

‖κ‖2− 1
2 ,ĥ

:= ĥ ‖κ‖2
L2(AC)

.

As mentioned above we can prove the inf-sup condition without coarsening of the
mesh. Let us demand the following additional assumption on the friction function
F

∃ ε > 0 : dist(AC, ∂ΓC) ≥ ε. (3.73)

Defining C′
h̃

:=
{
µ ∈ C(Γ′

C
) : µ ∈ Ph̃

1(e),∀ e ∈ EC

h̃
∩ Γ′

C

}
, where Γ′

C
is defined in (3.66),

there holds for all h̃ ≤ ε : AC ⊂ Γ′C and C′
h̃
⊂ H

1
2 (Γ′

C
). According to Corollary 2.4 in

Chapter I of Girault and Raviart [51] we define the H−
1
2 (AC)-norm as follows

‖κ‖
H
− 1

2 (AC)
:= inf

q∈H(div,Ω)
q·n=κ|AC

‖q‖H(div,Ω)

and we can prove the following inf-sup condition.

Lemma 3.31:
Let the friction function F satisfy (3.73). Then the bilinear form q(·, ·) satisfies the
following inf-sup condition for ĥ = h̃: ∃ β2 > 0, where β2 depends on F , such that
for all κ ∈ Lh̃

sup
µ∈Ch̃

q(µ, κ)

‖µ‖
H̃

1
2 (ΓC)

≥ β2 ‖κ‖
H
− 1

2 (AC)
. (3.74)

Proof. Due to the above definition of Γ′
C

and Lemma 3.21 we can find for any µ ∈ C′
h̃

an extension µ∗ ∈ Ch̃ and C > 0 with

C ‖µ∗‖
H̃

1
2 (ΓC)

≤ ‖µ‖
H

1
2 (Γ′

C
)
.

For some arbitrary κ ∈ Lh̃ we consider the following auxiliary problem:
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3.2. Mixed finite elements

Find v ∈ H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD} such that

−∆v + v = 0 in Ω,

v = 0 on ΓD,

∂v

∂n
= 0 on ΓN ∪ IC,

∂v

∂n
= κ on AC.

For the corresponding variational problem we define

Vh̃ :=
{
v ∈ H1

D(Ω) : v ∈ Ph̃
1(T), ∀T ∈ Th̃

}
.

Then the variational problem reads:

Find vh̃ ∈ Vh̃ such that
∫

Ω

∇vh̃ · ∇w dx +

∫

Ω

vh̃ w dx =

∫

AC

κw ds ∀ w ∈ Vh̃.

Since ΓD , ∅we have from the Poincaré-Friedrichs inequality that the bilinear forms
in the above problem are coercive. Setting ph̃ := ∇vh̃ we observe ph̃ ·n = κ on AC and
furthermore

div ph̃ = ∆vh̃ = vh̃ in Ω ⇒ ph̃ ∈ H(div,Ω),

and ‖ph̃‖H(div,Ω) = ‖vh̃‖H1(Ω).

From the definition of the H−
1
2 -norm and the coercivity of the bilinear forms above

we have

‖κ‖
H
− 1

2 (AC)
= inf

q∈H(div,Ω)
q·n=κ|AC

‖q‖H(div,Ω) ≤ ‖ph̃‖H(div,Ω) = ‖vh̃‖H1 (Ω)

=

(∫

Ω

∇vh̃ · ∇vh̃ dx +

∫

Ω

vh̃ vh̃ dx
) 1

2

= 〈κ, vh̃〉
1
2
AC
≤ ‖κ‖

1
2

H
− 1

2 (AC)
‖ vh̃ |AC

‖
1
2

H
1
2 (AC)

yielding

‖κ‖
H
− 1

2 (AC)
≤ ‖ vh̃ |AC

‖
H

1
2 (AC)

.

As AC ⊂ Γ′C we can find some µ̄ ∈ C′
h̃

with µ̄ = vh̃|AC
. Now we have with the trace

theorem and the above observations

‖κ‖
H
− 1

2 (AC)
‖ vh̃ |AC

‖
H

1
2 (AC)

≤ ‖ vh̃ |AC
‖2

H
1
2 (AC)

≤ ‖vh̃‖2
H1(Ω)

=

∫

Ω

∇vh̃ · ∇vh̃ dx +

∫

Ω

vh̃ vh̃ dx

= 〈κ, vh̃〉AC
= 〈κ, µ̄〉AC

. (3.75)
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3. Dual-dual formulation for a contact problem with friction in 2D

Ω

ΓC

ΓN

ΓN
ΓD

Figure 3.8.: Domain with dist(ΓC,ΓD) > ε > 0.

Finally, the friction function is piecewise constant on AC and therefore we can find
some CF > 0 with min

x∈AC

F (x) > CF . With (3.75) we conclude

‖κ‖
H
− 1

2 (AC)
≤
〈κ, µ̄〉AC

‖µ̄‖
H

1
2 (AC)

≤ C
〈κ, µ̄∗〉AC

‖µ̄∗‖
H̃

1
2 (ΓC)

≤ C

CF
sup
µ∈Ch̃

q(µ, κ)

‖µ‖
H̃

1
2 (ΓC)

and thus the proof is complete. �

Remark 3.32: In the following we will use the mesh dependent norm ‖·‖− 1
2 ,ĥ

. All results

apply as well for ‖·‖
H
− 1

2 (AC)
, whenever the friction function F fulfills assumption (3.73).

Remark 3.33: If the contact boundary and the Dirichlet boundary have positive distance,

see e.g. Figure 3.8, then we deal with H
1
2 (ΓC) for λt and λn. The above theory is still

valid, since we can regard the Lagrange multipliers on the boundary parts as one function

on ΓC ∪ΓN. In this case we decompose λ̃ ∈ H̃
1
2 (ΓN ∪ΓC) into the corresponding parts on the

boundaries, where we approximate λ̃|ΓN
with some ϕ ∈ H̃

1
2 (ΓN) and take λt, λn ∈ H

1
2 (ΓC)

with λtt + λnn = λ̃|ΓC
. We approximate the Lagrange multipliers on ΓC with functions in

C̄h̃ :=
{
µ ∈ C(ΓC) : µ ∈ Ph̃

1(e), ∀ e ∈ EC

h̃

}
, (3.76)

C̄+
h̃

:=
{
µ ∈ C̄h̃ : µ(x) ≥ 0 ∀ x ∈ NC

h̃

}
. (3.77)

In this situation the inf-sup condition (3.74) in Lemma 3.31 with supremum over C̄h̃ is valid
independently of assumption (3.73). This follows trivially from the proof of the lemma.

3.2.3. A priori error analysis

Collecting the continuous and discrete inf-sup conditions from above we can derive
the following Céa-type estimate.

Theorem 3.34:
Let (σ, ν; u, η,ϕ, λt, λn) ∈ X × Λ × Ỹ′ and (σh, νĥ; uh, ηh,ϕh̃, λh̃

t , λ
h̃
n) ∈ X̃h × Ỹh be the
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3.2. Mixed finite elements

solutions of the continuous and the discrete variational inequality problems (3.41)
and (3.62), respectively. Then there exist some positive constants C, C1 and C2 such
that the following a priori error estimates hold

‖σ − σh‖X ≤ C
{

inf
τ∈Xh

‖σ − τ‖X+ inf
v∈Mh

‖u − v‖L2(Ω)+ inf
ξ∈Sh

‖η − ξ‖L2(Ω)+ inf
ψ∈Nh̃

‖ϕ −ψ‖
H̃

1
2 (ΓN)

+ inf
µt∈Ch̃

‖λt − µt‖
H̃

1
2 (ΓC)
+ inf
µn∈C+

h̃

‖λn − µn‖
1
2

H̃
1
2 (ΓC)
+ inf
κ∈Λ

ĥ

‖ν − κ‖
1
2

H
− 1

2 (AC)

}
, (3.78)

‖u − uh‖L2 (Ω) + ‖η − ηh‖L2(Ω) + ‖ϕ −ϕh̃‖
H̃

1
2 (ΓN)

+ ‖λt − λh̃
t ‖

H̃
1
2 (ΓC)
+ ‖λn − λh̃

n‖
H̃

1
2 (ΓC)

≤ C1

{
‖σ − σh‖X + inf

v∈Mh

‖u − v‖L2(Ω) + inf
ξ∈Sh

‖η − ξ‖L2(Ω) (3.79)

+ inf
ψ∈Nh̃

‖ϕ −ψ‖
H̃

1
2 (ΓN)

+ inf
µt∈Ch̃

‖λt − µt‖
H̃

1
2 (ΓC)
+ inf
µn∈C+

h̃

‖λn − µn‖
H̃

1
2 (ΓC)

}
,

‖ν − νĥ‖− 1
2 ,ĥ
≤ C2

{
‖σ − σh‖X + inf

κ∈Λ
ĥ

‖ν − κ‖L2(AC)

}
. (3.80)

Proof. We follow here the proof of Lemma 5.10 in Maischak [67]. For arbitrary
(τ, κ; v, ξ,ψ, µt, µn) ∈ Xh ×Λĥ ×Mh ×Sh ×Nh̃ ×Ch̃ ×C+

h̃
we get the following equations

from the first five equations in the variational inequality problems (3.41) and (3.62)

ã(σ − σh, τ) + B(τ, (u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n)) = 0, (3.81)

b(v, σ − σh) = 0, (3.82)

s(ξ, σ − σh) = 0, (3.83)

dN(ψ, σ − σh) = 0, (3.84)

dC,t(µt, σ − σh) − q(µt, ν − νĥ) = 0. (3.85)

Using the discrete inf-sup condition (3.69), equation (3.81) and the continuity of the
bilinear forms involved we get

β1‖(v − uh, ξ − ηh,ψ −ϕh̃, µt − λh̃
t , µn − λh̃

n)‖
Ỹ′

≤ sup
τ∈Xh

B(τ, (v − uh, ξ − ηh,ψ −ϕh̃, µt − λh̃
t , µn − λh̃

n))

‖τ‖X

= sup
τ∈Xh

B̂(v − u, ξ − η,ψ −ϕ; τ) + dC,t(µt − λt, τ) + dC,n(µn − λn, τ) − ã(σ − σh, τ)

‖τ‖X

≤ C
{
‖u − v‖L2(Ω) + ‖η − ξ‖L2(Ω) + ‖ϕ −ψ‖

H̃
1
2 (ΓN)

+ ‖λt − µt‖
H̃

1
2 (ΓC)
+ ‖λn − µn‖

H̃
1
2 (ΓC)
+ ‖σ − σh‖X

}
.
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3. Dual-dual formulation for a contact problem with friction in 2D

The triangle inequality applied to the left hand side concludes assertion (3.79).
Analogously we use the discrete inf-sup condition (3.72), equation (3.85) and the
continuity of the bilinear forms involved to estimate

β2‖κ − νĥ‖− 1
2 ,ĥ
≤ sup

µt∈Ch̃

q(µt, κ − νĥ)

‖µt‖
H̃

1
2 (ΓC)

= sup
µt∈Ch̃

dC,t(µt, σ − σh) + q(µt, κ − ν)

‖µt‖
H̃

1
2 (ΓC)

≤ C
{
‖σ − σh‖X + ‖F ‖L∞(AC)‖ν − κ‖

H
− 1

2 (AC)

}
.

Assertion (3.80) follows by applying the triangle inequality to the left hand side

‖ν − νĥ‖− 1
2 ,ĥ
≤ ‖ν − κ‖− 1

2 ,ĥ
+ ‖κ − νĥ‖− 1

2 ,ĥ
≤ C ‖ν − κ‖L2(AC) + ‖κ − νĥ‖− 1

2 ,ĥ
.

Now let us define the bilinear formA : (X×H−
1
2 (AC)× Ỹ′)× (X×H−

1
2 (AC)× Ỹ′)→ R

as follows

A((σ, ν,u, η,ϕ, λt, λn) ; (τ, κ,v, ξ,ψ, µt, µn)) := ã(σ, τ) + B(τ, (u, η,ϕ, λt, λn)) + q(µt, ν)

− B(σ, (v, ξ,ψ, µt, µn)) − q(λt, κ).

Obviously A is continuous. To estimate the error in σ we apply the coercivity of
ã(·, ·) with respect to the L2(Ω)-norm and conclude

α ‖σ − σh‖2
L2 (Ω)

≤ ã(σ − σh, σ − σh)

= A((σ − σh, ν − νĥ,u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n) ;

(σ − σh, ν − νĥ,u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n))

= A((σ − σh, ν − νĥ,u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n) ;

(σ − τ, ν − κ,u − v, η − ξ,ϕ −ψ, λt − µt, λn − µn))

+A((σ − σh, ν − νĥ,u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n) ;

(τ − σh, κ − νĥ,v − uh, ξ − ηh,ψ −ϕh̃, µt − λh̃
t , µn − λh̃

n)).

(3.86)

From the commuting diagram property, see Section 6 in Chapter II of Roberts and
Thomas [77], we know that div τ ∈ Mh for all τ ∈ Xh. Furthermore, we obtain from
(3.82) and the Cauchy-Schwarz inequality

‖div(σ − σh)‖2
L2(Ω)

=
(
div(σ − σh) , div(σ − σh)

)
L2(Ω)

=
(
div(σ − σh) , div(σ − τ)

)
L2(Ω)

≤ ‖div(σ − σh)‖L2 (Ω)‖div(σ − τ)‖L2(Ω)

⇒ ‖div(σ − σh)‖L2(Ω) ≤ ‖div(σ − τ)‖L2(Ω) ∀ τ ∈ Xh.

72



3.2. Mixed finite elements

But this means that it is sufficient to estimate the term on the left hand side in (3.78)
with respect to the L2-norm. Applying the continuity of the bilinear form A and
inequality (2.6) for some ε > 0, we conclude for the first term in (3.86)

A((σ − σh, ν − νĥ,u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n) ;

(σ − τ, ν − κ,u − v, η − ξ,ϕ −ψ, λt − µt, λn − µn))

≤ C ‖(σ − σh, ν − νĥ,u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n)‖
X×H

− 1
2 (AC)×Ỹ′

· ‖(σ − τ, ν − κ,u − v, η − ξ,ϕ −ψ, λt − µt, λn − µn)‖
X×H

− 1
2 (AC)×Ỹ′

≤ εC

2
‖(σ − σh, ν − νĥ,u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃

t , λn − λh̃
n)‖2

X×H
− 1

2 (AC)×Ỹ′

+
C

2ε
‖(σ − τ, ν − κ,u − v, η − ξ,ϕ −ψ, λt − µt, λn − µn)‖2

X×H
− 1

2 (AC)×Ỹ′

≤ εC

2

(
(1 + C1 + C2)‖σ − σh‖2X + C2 inf

κ∈Λ
ĥ

‖ν − κ‖2
H
− 1

2 (AC)
+ C1

{
inf

v∈Mh

‖u − v‖2
L2 (Ω)

+ inf
ξ∈Sh

‖η − ξ‖2
L2(Ω)
+ inf
ψ∈Nh̃

‖ϕ −ψ‖2
H̃

1
2 (ΓN)

+ inf
µt∈Ch̃

‖λt − µt‖2
H̃

1
2 (ΓC)
+ inf
µn∈C+

h̃

‖λn − µn‖2
H̃

1
2 (ΓC)

}

+
C

2ε
‖(σ − τ, ν − κ,u − v, η − ξ,ϕ −ψ, λt − µt, λn − µn)‖2

X×H
− 1

2 (AC)×Ỹ′

(3.87)

where we used (3.79) and (3.80) in the last inequality. Applying the definition ofA
the second term in (3.86) reads

ã(σ − σh, τ − σh) + B(τ − σh, (u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n))

− B(σ − σh, (v − uh, ξ − ηh,ψ −ϕh̃, µt − λh̃
t , µn − λh̃

n))

+ q(µt − λh̃
t , ν − νĥ) − q(λt − λh̃

t , κ − νĥ).

Since τ − σh ∈ Xh the first two terms vanish due to (3.81). Moreover using equations
(3.82)-(3.85) in the third and fourth term the above formula reduces to

−dC,n(µn − λh̃
n, σ − σh) − q(λt − λh̃

t , κ − νĥ). (3.88)

As we have chosen conform subsets for λh̃
n and νĥ, see Remark 3.27, we have C+

h̃
⊂

H̃
1
2
+ (ΓC) and Λĥ ⊂ Λ. Now using the inequalities in the discrete and continuous

variational inequality problems (3.62) and (3.41), respectively, we have due to λh̃
n ∈

H̃
1
2
+ (ΓC) and the continuity of dC,n(·, ·)

−dC,n(µn − λh̃
n, σ − σh) ≤ dC,n(λh̃

n − µn, σ) ≤ dC,n(λn − µn, σ) ≤ C‖σ‖X‖λn − µn‖
H̃

1
2 (ΓC)

.
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3. Dual-dual formulation for a contact problem with friction in 2D

In the same way we can estimate the second term in (3.88) due to νĥ ∈ Λ and the
continuity of q(·, ·)

−q(λt − λh̃
t , κ − νĥ) ≤ q(λt, ν

ĥ − κ) ≤ q(λt, ν − κ) ≤ ‖F ‖L∞(AC)‖λt‖
H̃

1
2 (ΓC)
‖ν − κ‖

H
− 1

2 (AC)
.

Using Lemma 3.23 we bound ‖σ‖X and ‖λt‖
H̃

1
2 (ΓC)

. Choosing ε = α
C(1+C1+C2 ) > 0 in

(3.87) finishes the proof. �

Before closing this section with an a priori result concerning the theoretical rate of
convergence of the solution scheme (3.62), we list some approximation properties of
the finite element spaces in (3.61). The results can be found in Chapter 4-6 of Babuška
and Aziz [8], in Chapter IV of Roberts and Thomas [77] and in Arnold, Brezzi and
Douglas jr. [5], see also Section 5.1.5 in Maischak [67] for a comprehensive list.

For all τ ∈ H1(Ω)2×2 with div τ ∈ H(div,Ω), there exists τh ∈ Xh and C > 0 such that

‖τ − τh‖X ≤ C h
{
‖τ‖H1(Ω)2×2 + ‖div τ‖H1 (Ω)

}
. (3.89)

For all v ∈ H1(Ω) and ξ ∈ H1(Ω), there exists vh ∈Mh, ξh ∈ Sh and C > 0 such that

‖v − vh‖L2 (Ω) ≤ C h ‖v‖H1 (Ω) and ‖ξ − ξh‖L2(Ω) ≤ C h ‖ξ‖H1 (Ω). (3.90)

For all ψ ∈ H̃
3
2 (ΓN)∩ H̃

1
2 (ΓN) and µ ∈ H̃

3
2 (ΓC) ∩ H̃

1
2 (ΓC), there exists ψh̃ ∈ Nh̃, µh̃ ∈ Ch̃

and C > 0 such that

‖ψ −ψh̃‖
H̃

1
2 (ΓN)

≤ C h̃ ‖ψ‖
H̃

3
2 (ΓN)

and ‖µ − µh̃‖
H̃

1
2 (ΓC)

≤ C h̃ ‖µ‖
H̃

3
2 (ΓC)

. (3.91)

For all κ ∈ L2(AC), there exists κĥ ∈ Lĥ and C > 0 such that

‖κ − κĥ‖
H
− 1

2 (AC)
≤ C ĥ

1
2 ‖κ‖L2(AC). (3.92)

We have the following a priori result of the mixed finite element scheme.

Theorem 3.35:
Let (σ, ν; u, η,ϕ, λt, λn) ∈ X × Λ × Ỹ′ and (σh, νĥ; uh, ηh,ϕh̃, λh̃

t , λ
h̃
n) ∈ X̃h × Ỹh be the

solutions of the continuous and the discrete variational inequality problems (3.41)
and (3.62), respectively. Assume that σ ∈ H1(Ω)2×2 with divσ ∈ H(div,Ω), u ∈ H1(Ω),
η ∈ H1(Ω), ϕ ∈ H̃

3
2 (ΓN) and λt, λn ∈ H̃

3
2 (ΓC). Then there exists a constant C > 0,

independent of h, h̃ and ĥ, such that

‖σ − σh‖X + ‖ν − νĥ‖− 1
2 ,ĥ
+ ‖u − uh‖L2 (Ω) + ‖η − ηh‖L2(Ω)

+ ‖ϕ −ϕh̃‖
H̃

1
2 (ΓN)

+ ‖λt − λh̃
t ‖

H̃
1
2 (ΓC)
+ ‖λn − λh̃

n‖
H̃

1
2 (ΓC)

≤ C h
{
‖σ‖H1 (Ω)2×2 + ‖divσ‖H1 (Ω) + ‖u‖H1 (Ω) + ‖η‖H1 (Ω)

}

+ C h̃
{
‖ϕ‖

H̃
3
2 (ΓN)

+ ‖λt‖
H̃

3
2 (ΓC)

}
+ C h̃

1
2 ‖λn‖

H̃
3
2 (ΓC)
+ C ĥ

1
4 ‖ν‖L2 (AC).

(3.93)
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3.2. Mixed finite elements

Figure 3.9.: Continuous function (black) with sign (blue) and its approx-
imation (dashed red).

Proof. The assertion follows from the Céa-type estimate in Theorem 3.34 and the
regularity assumptions on the continuous solution and the approximation properties
(3.89)-(3.92). �

We can improve the expected rate of convergence in Theorem 3.35 using a heuristic
observation concerning the approximation of the sign of λt by νĥ. For this we will
need Lemma 3.3.2 in Chernov [24] which we adapt to our situation

Lemma 3.36:
Let ψ ∈ L2(AC) andΠh : L2(AC)→ Lĥ be the L2-projection operator. Then there holds

‖ψ −Πĥψ‖H− 1
2 (AC)

≤ C ĥ
1
2 ‖ψ‖L2 (AC).

In particular, there holds

‖ψ −Πĥψ‖H− 1
2 (AC)

≤ C ĥ
1
2 ‖ψ −Πĥψ‖L2(AC).

Remark 3.37: A heuristic approximation result Since νĥ approximates the sign of a

continuous function λt ∈ H̃
1
2 (ΓC) with piecewise constants we conclude, that the approxi-

mation is exact on those edges ê ∈ EA

ĥ
where λt does not change its sign, i.e. λt has no root

on ê. We have visualized this observation exemplary in Figure 3.9. For a better view the
sign and its approximation are not superposing.

We conclude, if λt has a finite number of roots Nr, then the error of the approximation νĥ in
the L2-norm is

‖νĥ − ν‖2
L2(AC)

≤ C2 ĥ ‖ν‖2
L2 (AC)

, with C ≤ 2 N
1
2
r .

Using the above estimate and Lemma 3.36 we have

‖ν −Πĥν‖H− 1
2 (AC)
≤ C ĥ

1
2 ‖ν −Πĥν‖L2 (AC) ≤ C ĥ

1
2 ‖νĥ − ν‖L2(AC) ≤ C(Nr) ĥ ‖ν‖L2(AC). (3.94)
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3. Dual-dual formulation for a contact problem with friction in 2D

3.3. Numerical Algorithms

In this section we will propose an algorithm to solve the discrete variational inequal-
ity problem (3.62). The algorithm is a nested Uzawa-type algorithm. We will prove
its convergence with the help of the inf-sup conditions of Sections 3.1.6 and 3.2.2.
This proof will be done in three steps. First, we introduce the terms, projections and
mappings appearing in the algorithm. We show that the assumptions for the solvers,
that we use inside the algorithm, are satisfied. Second, we show the convergence of
the Uzawa-type algorithm that we propose for the variational inequality problem
(3.39) for contact problems without friction. Finally, in the third step we prove con-
vergence of the nested Uzawa algorithm. Let us first explain the algebraic form of
the discrete formulations with the help of an abstract framework. For more details
on the Finite Element Method we refer to Ciarlet [26]. In the following we will use
0 as a generic zero denoting the scalar integer, a null vector or the null matrix. The
right dimension will always be clear from context.

Let U,V be two arbitrary finite dimensional vector spaces with basis {φi}ni=1 and
{ψ j}mj=1, respectively. Let m(·, ·) be a bilinear form on U × V and h(·) a linear form on
V. Then the abstract variational problem reads

Find u ∈ U such that

m(u, v) = h(v) ∀ v ∈ V.

Since the vector spaces all have a finite dimension we can set
∑n

i=1 ciφi =: u and thus
for each base function ψ j of V it holds

m(u, ψ j) = h(ψ j) ⇒
n∑

i=1

ci m(φi, ψ j) = h(ψ j).

Without loss of generality we identify the solution u with the vector of coefficients
u with components ui = ci. Defining the matrix M ∈ Rm×n, M ji := m(φi, ψ j) and
the vector h ∈ Rm, h j := h(ψ j) we arrive at the algebraic form of the above abstract
variational problem

Mu = h.
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3.3. Numerical Algorithms

3.3.1. Algebraic dual-dual formulation

Using the concept described above we identify the following matrices with their
corresponding bilinear forms defined in (3.12), (3.24) and (3.32)

A with A ji := ã(φi, φ j) for basis functions φi, φ j ∈ Xh,

B̃ with B̃ ji := b(φi, ψ j) for basis functions φi ∈Mh, ψ j ∈ Xh,

S with S ji := s(φi, ψ j) for basis functions φi ∈ Sh, ψ j ∈ Xh,

N with N ji := dN(φi, ψ j) for basis functions φi ∈ Nh̃, ψ j ∈ Xh,

Ct with (Ct) ji := dC,t(φi, ψ j) for basis functions φi ∈ Ch̃, ψ j ∈ Xh,

Cn with (Cn) ji := dC,n(φi, ψ j) for basis functions φi ∈ Ch̃, ψ j ∈ Xh,

QF with (QF ) ji := q(φi, ψ j) for basis functions φi ∈ Ch̃, ψ j ∈ Λĥ.

(3.95)

Furthermore, we define the following vectors corresponding to the linear forms in
(3.24) and (3.32) and used on the right hand side of the discrete variational inequality
problem (3.62)

g with gi := g(φi) for basis functions φi ∈ Xh,

f with fi := f (φi) for basis functions φi ∈Mh,

t with ti := t0(φi) for basis functions φi ∈ Nh̃.

(3.96)

To improve readability we define the matrices B̄ and B and the vectors b̄ and b as
follows

B̄ :=
(
B̃ S N

)
, B :=

(
B̃ S N Ct

)
, b̄ :=

( − f
0
t

)
b :=

( − f
0
t
0

)
.

Defining N := dim(X̃h × Ỹh), NC := dim(Ch̃) and NA := dim(Lĥ), the algebraic form of
the solution scheme (3.62) reads

Find (σ, ν,u, η,ϕ, λt, λn) ∈ RN such that




A B̄ Ct Cn 0

B̄T 0 0 0 0

CT
t 0 0 0 QF







σ
(u, η,ϕ)
λt

λn

ν



=




g

b̄

0




(µn − λn)TCT
nσ ≤ 0 with (λn)i ≥ 0 ∀ µn ∈ RNC , (µn)i ≥ 0,

(κ − ν)TQT
F λt ≤ 0 with | νi | ≤ 1 ∀ κ ∈ RNA , |κi | ≤ 1.

(3.97)
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3. Dual-dual formulation for a contact problem with friction in 2D

3.3.2. Uzawa algorithm for contact problems without friction

Following the approach of Maischak [67, see Section 5.3] we introduce the surjective
projection P+

h̃
: Ch̃ → C+

h̃
uniquely defined by

(
P+

h̃
µ − µ , χ − P+

h̃
µ
)

H̃
1
2 (ΓC)

≥ 0 ∀ χ ∈ C+
h̃
, (3.98)

where µ ∈ Ch̃ and we use the inner product of H̃
1
2 (ΓC). The surjectivity follows

from the fact that for all µ ∈ C+
h̃

we have P+
h̃
µ = µ and therefore the left term in the

inner product is zero. The projection is contractive. We only have to show this for
µ ∈ Ch̃ \ C+

h̃
since for µ ∈ C+

h̃
we have P+

h̃
µ = µ. Let µ ∈ Ch̃ \ C+

h̃
, then from (3.98) with

χ = 0 ∈ C+
h̃

and using (2.6) with ε = 1 it follows

(
P+

h̃
µ, P+

h̃
µ
)

H̃
1
2 (ΓC)

≤
(
µ , P+

h̃
µ
)

H̃
1
2 (ΓC)

≤ 1
2
(
µ, µ

)
H̃

1
2 (ΓC)
+

1
2

(
P+

h̃
µ , P+

h̃
µ
)

H̃
1
2 (ΓC)

and hence ‖P+
h̃
‖ ≤ 1. Moreover we define the linear mapping Φ : X → Ch̃ ⊂ H̃

1
2 (ΓC)

by

dC,n(µ, τ) =
(
µ , Φ(τ)

)
H̃

1
2 (ΓC)

∀ µ ∈ Ch̃, (3.99)

with τ ∈ X. Due to Theorem 2.3 we can adapt the argumentation of Maischak in [67,
Section 5.3] to show the continuity of Φ. For τ ∈ X we have

‖Φ(τ)‖2
H̃

1
2 (ΓC)

= (Φ(τ) , Φ(τ))
H̃

1
2 (ΓC)

= dC,n(Φ(τ), τ) = 〈Φ(τ), τn〉ΓC

≤ ‖Φ(τ)‖
H̃

1
2 (ΓC)
‖τn‖

H
− 1

2 (ΓC)
≤ ‖Φ(τ)‖

H̃
1
2 (ΓC)
‖τ‖X.

We will need another surjective and contractive projection operator PΛ
ĥ

: Lĥ → Λĥ

which is uniquely defined by
(
PΛ

ĥ
κ − κ , ψ − PΛ

ĥ
κ
)

L2(AC)
≥ 0 ∀ ψ ∈ Λĥ, (3.100)

for κ ∈ Lĥ. Here we use the inner product of L2(AC). The surjectivity and contraction
are proven in the same way as for P+

h̃
. Furthermore, let the mapping ΦΛ : H̃

1
2 (ΓC)→

Lĥ ⊂ L2(AC) be defined by

q(µ, κ) =
(
ΦΛµ, κ

)
L2(AC)

≥ 0 ∀ κ ∈ Lĥ, (3.101)

with µ ∈ H̃
1
2 (ΓC). The continuity follows due to

‖ΦΛ(µ)‖2
L2(AC)

=
(
ΦΛ(µ) , ΦΛ(µ)

)
L2(AC)

= q(µ,ΦΛ(µ)) =
∫

AC

F ΦΛ(µ)µ ds

≤ ‖F ‖L∞(AC) ‖ΦΛ(µ)‖L2(AC) ‖µ‖L2(AC) ≤ ‖F ‖L∞(AC) ‖ΦΛ(µ)‖L2(AC) ‖µ‖
H̃

1
2 (ΓC)

. (3.102)
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3.3. Numerical Algorithms

Before we present the algorithm, solving the frictional contact problem, we first state
an algorithm for the case where no friction occurs. In this case our aim is to solve the
solution scheme (3.68) defined in Remark 3.26. The corresponding algebraic form
reads

Find (σ,u, η,ϕ, λt, λn) ∈ RN−NA




A B Cn

BT 0 0







σ
(u, η,ϕ, λt)

λn


 =



g

b




(µn − λn)TCT
nσ ≤ 0 with (λn)i ≥ 0 ∀ µn ∈ RNC , (µn)i ≥ 0.

(3.103)

The following algorithm is used in many variants for different kinds of variational
inequalities. For a contact problem without friction a similar algorithm is proposed
by Wang and Wang in [84], where the authors investigate a dual formulation of a
unilateral beaming problem in linear elasticity. Glowinski, Lions and Trémolières
[53, see Section 4 in Chapter 2] give several examples of solution algorithms for
problem schemes having saddle point structure.

We adapt the Uzawa-type algorithm of Maischak [67, see Algorithm 5.1], which then
reads

Algorithm 3.38:

1 Choose feasible λ0
n ∈ C+

h̃
, (σ0; u0, η0,ϕ0, λ0

t ) := 0, ρ ∈ (0, 2α) and
ε ≥ 0,

2 for i = 1, 2, . . .

3 Solve
(

A B
BT 0

) (
σi

ui, ηi,ϕi, λi
t

)
=

(
g − Cnλi−1

n

b

)
,

4 Set λi
n := P+

h̃
(λi−1

n + ρΦ(σi)),

5

STOP if
‖(σi − σi−1,ui − ui−1, ηi − ηi−1,ϕi −ϕi−1, λi

t − λi−1
t , λi

n − λi−1
n )‖

‖σi; ui, ηi,ϕi, λi
t, λ

i
n‖

≤ ε,

Else go to 2,

end for
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3. Dual-dual formulation for a contact problem with friction in 2D

Theorem 3.39:
The Uzawa algorithm 3.38 converges for arbitrary initial value λ0

n ∈ C+
h̃

towards the
discrete solution of the dual variational inequality problem (3.39) for 0 < ρ < 2α,
where α denotes the ellipticity constant in (2.3).

Proof. The proof follows analogously to the proof of Theorem 5.12 in Maischak [67].
Furthermore, it has the same structure as the proof of Theorem 3.42. Therefore we
only give a sketch of the proof. The details can be derived analogously to the proof
of Theorem 3.42.

First, we show that the approximate solution λh̃
n satisfies

λh̃
n = P+

h̃
(λh̃

n + ρΦ(σh)).

Then we use the definition of the projection P+
h̃

and the mapping Φ to show, that

the sequence of errors ‖λi
n − λh̃

n‖
H̃

1
2 (ΓC)

is monotonically decreasing, if we choose

0 < ρ < 2α. This leads to the convergence of σi to σh in the H(div,Ω)-norm. Finally,
we use the discrete inf-sup condition in Lemma 3.28 to prove the convergence of the
Lagrange multipliers. �

Remark 3.40: Due to the discrete inf-sup condition (3.69) the matrix in step 3 of algorithm
3.38 is regular. For completeness we repeat Remark 5.10 in Maischak [67]:

The operators P+
h̃

and Φ are defined with respect to the scalar product of H̃
1
2 (ΓC), which is

not practical from the computational point of view. Fortunately, inspection of the proof of
Theorem 3.39 shows, that it is sufficient that the norm induced by the scalar product used

in the algorithm is equivalent to the H̃
1
2 (ΓC)-norm. Therefore we can use the bilinear form

〈W·, ·〉 instead of the scalar product (·, ·)
H̃

1
2 (ΓC)

. Then, we have to solve: Find P+
h̃
µ ∈ C+

h̃

such that

〈WP+
h̃
µ,χ − P+

h̃
µ〉 ≥ 〈Wµ,χ − P+

h̃
µ〉 ∀ χ ∈ C+

h̃
, (3.104)

and find Φ(τ) ∈ Ch̃ such that

〈WΦ(τ), µ〉 = dC,n(µ, τ) ∀ µ ∈ Ch̃. (3.105)

Both systems are small compared with the total size of the problem, because they are only
defined on the contact boundary ΓC. Applying (3.105) to (3.104) we obtain for µ = λi−1

n +

ρΦ(σi),

〈Wµ,χ − P+
h̃
µ〉 = 〈Wλi−1

n , χ − P+
h̃
µ〉 + ρdC,n(χ − P+

h̃
µ, σi),

and hence, the explicit solution of (3.105) is avoided.

In our case the operator W denotes the hypersingular operator for the Lamé problem of plane
elasticity, see e.g. Gwinner and Stephan [55] or Nédélec [71].
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3.3. Numerical Algorithms

For step 4 in algorithm 3.38 we observe the following. In the algebraic form the scalar
product coincide with the euklidean product. Furthermore, we identify with the
matrix W the corresponding hypersingular operator which is positive semidefinite,
see Section 6.7 in Steinbach [80]. From Remark 3.40 we know, that we have to solve
the problem of finding λi

n := P+
h̃
µ, such that

〈Wλi
n, χ − λi

n〉 ≥ 〈Wλi−1
n , χ − λi

n〉 + ρdC,n(χ − λi
n, σ

i) ∀ χ ∈ C+
h̃
.

Defining bi :=Wλi−1
n +ρCT

nσ
i the above problem reads: Findλi

n ∈ RNC with |(λi
n) j| ≥ 0,

such that

−(λi
n)TWλi

n − (χ − λi
n)Tbi ≥ −χTWλi

n ∀ χ ∈ RNC , |χ j | ≥ 0. (3.106)

Furthermore, due to W being positive semidefinite we have

1
2χ

TWχ + 1
2 (λi

n)TWλi
n ≥ χTWλi

n ∀ χ ∈ RNC . (3.107)

With the inequalities (3.106) and (3.107) we deduce

1
2χ

TWχ + 1
2 (λi

n)TWλi
n − (λi

n)TWλi
n − (χ − λi

n)Tbi ≥ 0 ∀ χ ∈ RNC , |χ j | ≥ 0,

⇔ 1
2χ

TWχ − χTbi ≥ 1
2 (λi

n)TWλi
n − (λi

n)Tbi ∀ χ ∈ RNC , |χ j | ≥ 0,

⇔ λi
n = argmin

χ∈RNC , |χ j |≥0

{
1
2χ

TWχ − χTbi
}
.

For this reason we execute step 4 in Algorithm 3.38 by solving a convex quadratic
program. This will be explained in the following subsection.

Abstract minimization problem with inequality constraints

We consider the following minimization problem

min
x∈Rn

q(x)

subject to G · x ≥ c,

where q(x) := 1
2 xT ·A · x+ xT · b with A ∈ Rn×n symmetric and positive semidefinite

b ∈ Rn, c ∈ Rm and G ∈ Rm×n. This kind of optimization problem is called convex
quadratic program since the objective function q(x) is quadratic with symmetric pos-
itive semidefinite Hessian matrix A and linear inequality constraints, see Nocedal
and Wright [72, Chapter 16]. There exist numerous algorithms for solving convex
quadratic problems and we refer to the extensive collections of Boyd and Vanden-
berghe [14] and Nocedal and Wright [72]. We will restrict ourselve to the usage of a
predictor-corrector algorithm which is of interior-point method type and well suited
for large problems. The algorithm can be found in Chapter 16.6 of the above men-
tioned reference [72]. It will be used for solving the projection λi

n := P+
h̃
(λi−1

n +ρΦ(σi))
in step 4 of algorithm 3.38 and the projections within algorithm 3.41, which is the
matter of the following section.
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3. Dual-dual formulation for a contact problem with friction in 2D

3.3.3. Nested Uzawa algorithm for frictional contact problems

We propose an algorithm for solving the solution scheme (3.62). It consists of two
nested algorithms of the Uzawa-type as presented in algorithm 3.38. With the
matrices defined in (3.95), the vectors defined in (3.96) and the projections defined
in (3.98) and (3.100) the algorithm reads

Algorithm 3.41:

1 Choose feasible λ̂0
n ∈ C+

h̃
and ν0 ∈ Λĥ, (σ̂0; û0, η̂0, ϕ̂0, λ̂0

t ) := 0,

ρ1 ∈ (0, 2α), ρ2 ∈
(
0,

2αβ2
1

C2‖F ‖2
L2(AC)

)
and ε1, ε2 ≥ 0,

2 for i = 1, 2, . . .

3 Set (σ0; u0, η0,ϕ0, λ0
t , λ

0
n) := (σ̂i−1; ûi−1, η̂i−1, ϕ̂i−1, λ̂i−1

t , λ̂i−1
n ) ,

bi := b +
(
0, 0, 0,QT

F ν
i−1

)T
,

4 for j = 1, 2, . . .

5 Solve (
A B
BT 0

) (
σ j

u j, η j,ϕ j, λ j

t

)
=

(
g − Cnλ

j−1
n

bi

)
,

6 Set λ j
n := P+

h̃
(λ j−1

n + ρ1Φ(σ j)),

7

If
‖(σ j − σ j−1,u j − u j−1, η j − η j−1,ϕ j −ϕ j−1, λ j

t − λ
j−1
t , λ j

n − λ j−1
n )‖

‖σ j; u j, η j,ϕ j, λ j

t , λ
j
n‖

≤ ε1,

set (σ̂i; ûi, η̂i, ϕ̂i, λ̂i
t, λ̂

i
n) := (σ j; u j, η j,ϕ j, λ j

t , λ
j
n) and go to 8,

Else go to 3,

end for

8 Set νi := PΛ
ĥ

(νi−1 + ρ2Φ
Λλ̂i

t),

9

STOP if
‖νi − νi−1‖
‖νi‖ ≤ ε2,

Else go to 2,

end for
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3.3. Numerical Algorithms

Theorem 3.42:
The nested Uzawa algorithm 3.41 converges for arbitrary initial values λ̂0

n ∈ C+
h̃

and
ν0 ∈ Λĥ towards the discrete solution of the dual-dual variational inequality problem

(3.62) for 0 < ρ1 < 2α and ρ2 ∈ (0,
2αβ2

1

C2‖F ‖2
L∞ (AC)

), where the constants α, C and β1

denote the ellipticity constant in (2.3), the constant from the continuity of ã(·, ·) and
the constant in the discrete inf-sup condition (3.69), respectively.

Proof. The proof is constructed analogously to the proof of Theorem 5.12 in Maischak
[67]. First of all we notice, that the inner loop in algorithm 3.41, i.e. step 4 to step 7,
converges for all 0 < ρ1 < 2α , every νi−1 on the right hand side and arbitrary initial
value λ0

n ∈ C+
h̃

towards the solution of the following discrete problem

Find (σ̂i; ûi, η̂i, ϕ̂i, λ̂i
t, λ̂

i
n) ∈ Xh × Ỹh such that

ã(σ̂i, τ) + B̂(ûi, η̂i, ϕ̂i; τ) + dC,t(λ̂i
t, τ) + dC,n(λ̂i

n, τ) = g(τ) ∀ τ ∈ Xh

b(v, σ̂i) = − f (v) ∀ v ∈Mh

s(ξ, σ̂i) = 0 ∀ ξ ∈ Sh

dN(ψ, σ̂i) = t0(ψ) ∀ ψ ∈ Nh̃

dC,t(µt, σ̂
i) = q(µt, ν

i−1) ∀ µt ∈ Ch̃

dC,n(µn − λ̂i
n, σ̂

i) ≤ 0 ∀ µn ∈ C+
h̃
.

(3.108)

The convergence is obvious since problem (3.108) corresponds to a contact problem
with prescribed nonzero tangential traction on the contact boundary. As the solution
is depending continuously on the given data, see Lemma 3.23, the convergence
follows from Theorem 3.39.

Let (σh, νĥ; uh, ηh,ϕh̃, λh̃
t , λ

h̃
n) ∈ X̃h × Ỹh denote the solution of the discrete dual-dual

variational inequality problem (3.62). Then, using ρ2 > 0, νĥ ∈ Λĥ and (3.62)7 we
have for all κ ∈ Λĥ

(
ρ2 Φ

Λλh̃
t + ν

ĥ, νĥ − κ
)

L2(AC)
= ρ2 q(λh̃

t , ν
ĥ − κ) +

(
νĥ, νĥ − κ

)
L2(AC)

≥
(
νĥ, νĥ − κ

)
L2(AC)

.
(3.109)

Since Λĥ is convex we have for any γ ∈ (0, 1)

χ = γ νĥ + (1 − γ) PΛ
ĥ

(ρ2 Φ
Λλh̃

t + ν
ĥ) ∈ Λĥ.
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3. Dual-dual formulation for a contact problem with friction in 2D

Inserting χ into (3.100) and using (3.109) we deduce

(
PΛ

ĥ
(ρ2 Φ

Λλh̃
t + ν

ĥ) − (ρ2 Φ
Λλh̃

t + ν
ĥ), χ − PΛ

ĥ
(ρ2 Φ

Λλh̃
t + ν

ĥ)
)

L2(AC)
≥ 0 ∀ χ ∈ Λĥ ,

⇔

γ
(
PΛ

ĥ
(ρ2Φ

Λλh̃
t + ν

ĥ), νĥ − PΛ
ĥ

(ρ2 Φ
Λλh̃

t + ν
ĥ)
)

L2(AC)

≥ γ
(
ρ2 Φ

Λλh̃
t + ν

ĥ, νĥ − PΛ
ĥ

(ρ2 Φ
Λλh̃

t + ν
ĥ)
)

L2(AC)

≥ γ
(
νĥ, νĥ − PΛ

ĥ
(ρ2 Φ

Λλh̃
t + ν

ĥ)
)

L2(AC)
,

⇔ − γ ‖PΛ
ĥ

(ρ2 Φ
Λλh̃

t + ν
ĥ) − νĥ‖2

L2(AC)
≥ 0 ∀ γ ∈ (0, 1) ,

⇔ PΛ
ĥ

(ρ2 Φ
Λλh̃

t + ν
ĥ) = νĥ. (3.110)

Using the fact that the projection operator PΛ
ĥ

is contractive we have with (3.102) and

(3.110) for any iterate νi

‖νi − νĥ‖2
L2(AC)

= ‖PΛ
ĥ

(ρ2 Φ
Λλ̂i

t + ν
i−1) − PΛ

ĥ
(ρ2 Φ

Λλh̃
t + ν

ĥ)‖2
L2(AC)

≤ ‖ρ2 Φ
Λ(λ̂i

t − λh̃
t ) + νi−1 − νĥ ‖2

L2(AC)

≤ ρ2
2 ‖F ‖2L∞(AC)‖λ̂i

t − λh̃
t ‖2L2 (AC)

+ 2ρ2

(
ΦΛ(λ̂i

t − λh̃
t ), νi−1 − νĥ

)
L2(AC)

+ ‖νi−1 − νĥ‖2
L2(AC)

≤ ρ2
2 ‖F ‖2L∞(AC)‖λ̂i

t − λh̃
t ‖2

H̃
1
2 (ΓC)
+ 2ρ2 q(λ̂i

t − λh̃
t , ν

i−1 − νĥ) + ‖νi−1 − νĥ‖2
L2(AC)

, (3.111)

where we have used the Cauchy-Schwarz inequality. Subtracting the first five
equations in (3.62) from the first five in (3.108) we get

ã(σ̂i − σh, τ) + B̂(ûi − uh, η̂i − ηh, ϕ̂i −ϕh̃; τ)

+ dC,t(λ̂i
t − λh̃

t , τ) + dC,n(λ̂i
n − λh̃

n, τ) = 0 ∀ τ ∈ Xh ,

b(v, σ̂i − σh) = 0 ∀ v ∈Mh ,

s(ξ, σ̂i − σh) = 0 ∀ ξ ∈ Sh ,

dN(ψ, σ̂i − σh) = 0 ∀ ψ ∈ Nh̃ ,

dC,t(µt, σ̂
i − σh) = q(µt, ν

i−1 − νĥ) ∀ µt ∈ Ch̃.

(3.112)

From the inequalities concerning the normal part on the boundary in (3.62) and
(3.108) we conclude

−dC,n(λ̂i
n − λh̃

n, σ̂
i − σh) = dC,n(λh̃

n − λ̂i
n, σ̂

i) + dC,n(λ̂i
n − λh̃

n, σ
h) ≤ 0. (3.113)
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From the commuting diagram property, see Section 6 in Chapter II of Roberts and
Thomas [77], we know that div(σ̂i − σh) ∈ Mh. Therefore, taking v = div(σ̂i − σh) in
the second equation of (3.112) we have

0 = b(div(σ̂i − σh), σ̂i − σh) =
∫

Ω

div(σ̂i − σh)2 dx = ‖div(σ̂i − σh)‖2
L2(Ω)

. (3.114)

Choosing µt := λ̂i
t − λh̃

t in the fifth equation of (3.112) and τ := σ̂i − σh in the first
one we can use the coercivity of ã(·, ·) and equations (3.112), (3.113) and (3.114) to
estimate

q(λ̂i
t − λh̃

t , ν
i−1 − νĥ) = −ã(σ̂i − σh, σ̂i − σh) − dC,n(λ̂i

n − λh̃
n, σ̂

i − σh)

≤ −α ‖σ̂i − σh‖2
L2(Ω)2×2 = −α ‖σ̂i − σh‖2X. (3.115)

Furthermore, from the discrete inf-sup condition (3.69), the first equation in (3.112)
and the continuity of ã(·, ·) we get

‖λ̂i
t − λh̃

t ‖
H̃

1
2 (ΓC)

≤ ‖(ûi − uh, η̂i − ηh, ϕ̂i −ϕh̃, λ̂i
t − λh̃

t , λ̂
i
n − λh̃

n)‖
Ỹ′

≤ 1
β1

sup
0,τh∈Xh

B(τh, (ûi − uh, η̂i − ηh, ϕ̂i −ϕh̃, λ̂i
t − λh̃

t , λ̂
i
n − λh̃

n))

‖τh‖X

=
1
β1

sup
0,τh∈Xh

ã(σh − σ̂i, τh)
‖τh‖X

≤ C

β1
‖σh − σ̂i‖X, (3.116)

where β1 is the constant in the inf-sup condition and C the constant from the conti-
nuity of ã(·, ·). Inserting (3.115) and (3.116) in (3.111) we have

‖νi − νĥ‖2
L2(AC)

≤ ρ2
2 ‖F ‖2L∞(AC)

C2

β2
1

‖σh − σ̂i‖2X − 2ρ2 α ‖σ̂i − σh‖2X + ‖νi−1 − νĥ‖2
L2(AC)

=

(
ρ2

2

C2 ‖F ‖2
L∞(AC)

β2
1

− 2ρ2 α
)
‖σ̂i − σh‖2X + ‖νi−1 − νĥ‖2

L2(AC)
.

(3.117)

For ρ2 ∈ (0,
2αβ2

1

C2‖F ‖2
L∞ (AC)

) the sequence ‖νi − νĥ‖2
L2(AC)

is monotonically decreasing.

Moreover it is bounded from below by zero and therefore convergent. Reordering
the terms in (3.117) and taking the limit i→∞ we conclude

0 ≤ lim
i→∞

(
ρ2

2

C2 ‖F ‖2
L∞(AC)

β2
1

− 2ρ2 α
)
‖σ̂i − σh‖2X

≤ lim
i→∞

(
‖νi−1 − νĥ‖2

L2(AC)
− ‖νi − νĥ‖2

L2(AC)

)
= 0,

⇒ lim
i→∞
‖σ̂i − σh‖2X = 0.
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3. Dual-dual formulation for a contact problem with friction in 2D

Using again the discrete inf-sup condition (3.69), the first equation in (3.112) and the
continuity of ã(·, ·) we can show the convergence of the Lagrange multipliers in Ỹh

‖(ûi − uh, η̂i − ηh, ϕ̂i −ϕh̃, λ̂i
t − λh̃

t , λ̂
i
n − λh̃

n)‖
Ỹ′

≤ 1
β1

sup
0,τh∈Xh

B(τh, (ûi − uh, η̂i − ηh, ϕ̂i −ϕh̃, λ̂i
t − λh̃

t , λ̂
i
n − λh̃

n))

‖τh‖X

=
1
β1

sup
0,τh∈Xh

ã(σh − σ̂i, τh)
‖τh‖X

≤ C

β1
‖σh − σ̂i‖X.

Finally, the discrete inf-sup condition (3.72), the fifth equation in (3.112) and the
continuity of the bilinear form dC,t(·, ·) leads to

‖νi−1 − νĥ‖− 1
2 ,ĥ
≤ 1
β2

sup
0,µt∈Ch̃

q(µt, νi−1 − νĥ)

‖µt‖
H̃

1
2 (ΓC)

=
1
β2

sup
0,µt∈Ch̃

dC,t(µt, σ̂i − σh)

‖µt‖
H̃

1
2 (ΓC)

≤ C̃

β1
‖σh − σ̂i‖X,

which finishes the proof. �

Remark 3.43: We can change the order of the loops in Algorithm 3.41. We just have to
exchange step 6 with step 8 and adjust step 7 and step 9. The convergence of this algorithm
follows analogously to the proof of Theorem 3.42 without changing the bounds for the
parameters ρ1 and ρ2.

Remark 3.44: For the projection in step 8 of Algorithm 3.41 we can proceed analogously to
Remark 3.40 and use the bilinear form 〈M·, ·〉 instead of the scalar product (·, ·)L2(AC). Here
M denotes the mass matrix on Lĥ. Then, we have to solve:

Find PΛ
ĥ
κ ∈ Λĥ such that

〈M PΛ
ĥ
κ,ψ − PΛ

ĥ
κ〉 ≥ 〈Mκ,ψ − PΛ

ĥ
κ〉 ∀ ψ ∈ Λĥ, (3.118)

and find ΦΛ(µ) ∈ Lĥ such that

〈MΦΛ(µ), κ〉 = q(µ, κ) ∀ κ ∈ Lĥ. (3.119)

Inserting κ = νi−1 + ρ2Φ
Λ(λ̂i

t) into (3.118) and using (3.119) we have to find PΛ
ĥ
κ ∈ Λĥ

such that

〈M PΛ
ĥ
κ,ψ − PΛ

ĥ
κ〉 ≥ 〈Mνi−1, ψ − PΛ

ĥ
κ〉 + ρ2 q(λ̂i

t, ψ − PΛ
ĥ
κ) ∀ ψ ∈ Λĥ. (3.120)

Defining νi := PΛ
ĥ
κ and bi :=Mνi−1+ρ2 QF λ̂i

t the above problem reads: Find νi ∈ RNA

with |(νi) j| ≤ 1, such that

−(νi)TMνi − (ψ − νi)Tbi ≥ −ψTMνi ∀ ψ ∈ RNA , |ψ j | ≤ 1. (3.121)
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Furthermore, due to M being positive definite we have

1
2ψ

TMψ + 1
2 (νi)TMνi ≥ ψTMνi ∀ ψ ∈ RNA . (3.122)

Adding inequalities (3.121) and (3.122) we deduce

1
2ψ

TMψ + 1
2 (νi)TMνi − (νi)TMνi − (ψ − νi)Tbi ≥ 0 ∀ ψ ∈ RNA , |ψ j | ≤ 1,

⇔ 1
2ψ

TMψ − ψTbi ≥ 1
2 (νi)TMνi − (νi)Tbi ∀ ψ ∈ RNA , |ψ j | ≤ 1,

⇔ νi = argmin
ψ∈RNA , |ψ j |≤1

{
1
2ψ

TMψ − ψTbi
}
.

For this reason we can execute step 8 in Algorithm 3.41 by solving a convex quadratic
program.

Remark 3.45: Since our aim is to solve a contact problem with Coulomb friction we can
modify Algorithm 3.41 in order to avoid a third loop within the algorithm. For this purpose
we replace step 8 and 9 with the following

8’ Compute F i := µ f |σ̂i
n|ΓC
|

9’

STOP if
‖F i − F i−1‖
‖F i‖ ≤ ε2,

Else go to 10’,

10’ Set νi := PΛ
ĥ

(νi−1 + ρ2Φ
Λλ̂i

t) and go to 2,

We have to approximate the friction functionF ∈ Lĥ in terms of the normal stress σh
n on AC.

If we define by n̂ the number of edges e ∈ EA
h

lying on some edge ê ∈ EA

ĥ
we define

F (σh)|ê :=
µ f

n̂

∑

e∩ê,∅
| σh

n|e | ∀ ê ∈ EA

ĥ
. (3.123)

Then, we use F 0(σ̂0) as initial friction function. In this case the bound for the second
parameter ρ2 may change within the algorithm. To overcome a possible failure of the
algorithm in an iteration step at later date, the parameter ρ2 can be coupled with the norm
of the friction functional F . Then the parameter is changing in each step. However, in our
numerical experiments this process did not significantly improve the stability or even the
speed of convergence of the algorithm.
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3. Dual-dual formulation for a contact problem with friction in 2D

3.4. Numerical Experiments

In this section we present numerical experiments which underline the theoretical
results of the previous section. The example is performed for the investigation of
the two parameters ρ1 and ρ2 in Algorithm 3.41. Furthermore, we show, that the
inf-sup condition (3.74) does not hold for some special case.

The results where computed on a cluster with 5 nodes à 8 cores with 2.93 GHz
and 48GB. Each node uses two Intel Nehalem X5570 processors. All finite element
matrices and right hand side vectors as well as the solver for the convex quadratic
problem and the executing scripts are implemented in Matlab. The hypersingular
operator for the scalar product 〈W·, ·〉 as described in Remark 3.40 is computed
by the software package MaiProgs, see Maischak [66]. Furthermore, the initial
triangulations and the uniform refinement for the h-version is also done in MaiProgs.
Since the solver for step 3 in Algorithm 3.38 and step 5 in Algorithm 3.41 is not our
concern we use Matlab’s internal LU-decomposition of the corresponding matrix
with all possible optimizations, e.g. taking advantage of the symmetry of the matrix.
This approach has not significantly affected the total solution time of the algorithm,
e.g. in the first experiment on the finest triangulation level with about 4 000 000
unknowns the optimal solution time was 164 minutes, see Table 3.6, compared to
9 minutes of preprocessing for the LU-decomposition of the matrix. Of course we
have to mention, that the factor between the solution time and the time for the LU-
decomposition also depends on the storage of the CPU, the sparsity of the matrix
and other criteria. Nevertheless it is sufficient for our purpose.

Example 3.46: Let us consider the domainΩ := [−4, 4] × [−1, 1] with boundary Γ divided
into the Dirichlet part ΓD := {−4, 4}× [−1, 1], the Neumann part ΓN := [−4, 4]×{1} and the
contact part ΓC := [−4, 4] × {−1}. We choose Young’s modulus E := 200 000 and Poisson’s
ratio ν := 0.25 which leads to the Lamé coefficients λ = µ = 80 000. The friction coefficient
µ f takes different values that will be specified in each example. The volume body force is set
to zero, furthermore we assume, that the body is subject to the boundary traction

t0 =



( 0

−800 (1− x2
2 +

x4
16 )

)
, for x ∈ [−2, 2],

0, else,

on the Neumann boundary ΓN. The body is fixed at the Dirichlet boundary ΓD. On the
contact boundary we assume the bodyΩ to come into contact with a rigid foundation which
has positive distance g to Ω. In Figure 3.10 we show the domain and the distribution of the
boundary as well as two examples of the gap function g. The red line denotes a constant gap
function, whereas the blue line corresponds to some arbitrary gap function, not necessarily
constant. We will solve the discrete scheme (3.62) for different gap functions, especially the

case g ≡ 0. In this case assumption (3.73) does not hold anymore and we have to take ĥ = 2h̃
in the definition of the finite element space Lĥ.
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ΓD ΓD

ΓN

ΓC

Ω

Figure 3.10.: Geometry, boundary parts and rigid foundations.

We take eight different triangulations of the domain Ω and the boundary parts ΓN and
ΓC, where the last seven results from the previous triangulation by halving the meshsize,
respectively. The corresponding degrees of freedom (Dof) of the functions in the different
finite element spaces and the mesh size are shown in Table 3.1. On the boundary we have the

mesh size h̃ =
√

2h The degrees of freedom for νĥ ∈ Λĥ are shown for the case ĥ = 2h̃, if we

consider ĥ = h̃, the values in the last column have to be doubled.

mesh size h Dof(Xh) Dof (Mh) Dof (Sh) Dof(Nh̃) Dof(Ch̃) Dof (Λĥ)
1.4142 180 64 27 6 3 2
0.7071 680 256 85 14 7 4
0.3536 2 640 1 024 297 30 15 8
0.1768 10 400 4 096 1 105 62 31 16
0.0884 41 280 16 384 4 257 126 63 32
0.0442 164 480 65 536 16 705 254 127 64
0.0221 656 640 262 144 66 177 510 255 128
0.0110 2 624 000 1 048 576 263 425 1 022 511 256

Table 3.1.: Degrees of freedom and mesh sizes for the first numerical example.

In order to study the influence of friction on the solution we solved the described problem for
friction coefficients µ f = 0 and µ f = 0.5. In the first case we have solved the discrete scheme
(3.39) using Algorithm 3.38 with ε = 10−8, whereas in the second case we used Algorithm
3.41 with ε1 = 10−8 and ε2 = 10−6 to solve the discrete scheme (3.62). In both cases the gap

function is g = 0.01. We use a mesh size of ĥ = 2h̃ but remark, that the solution algorithm

would also converge for ĥ = h̃. In the following figures the solutions for both schemes are
displayed. On the left side we show the solutions of the contact problem without friction and
on the right side the one for the contact problem with friction.

In Figures 3.11(a) and 3.11(b) the von Mises equivalent stress for plane strain is illustrated.
Using the theory of Nečas and Hlaváček [69, Section 10.2] and the yield criterion of Han and
Reddy [57, Section 3.3] we can derive the following equation for the von Mises equivalent
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3. Dual-dual formulation for a contact problem with friction in 2D

(a) Contact problem without friction, i.e. µ f = 0. (b) Frictional contact problem with µ f = 0.5.

Figure 3.11.: Von Mises equivalent stress in Ω

stress for plane strain

σ0 :=
(
(ν2 − ν + 1)[σ2

11 + σ
2
22] + (2ν2 − 2ν − 1)σ11σ22 + 3σ12

) 1
2
,

where ν denotes Poisson’s ratio. Note, that we have used 3
2 (σh

12 + σ
h
21) instead of 3σ12

in the above equation, as the approximated stress tensor does not have to be symmetric. In
engineering science the von Mises equivalent stress denotes a yield criterion to predict plastic
zones, which occur in those areas, where the value of the equivalent stress exceeds some given
limit.

The singularities of the equivalent stress in the corners of the domain are due to the change of
the boundary conditions and will be neglected in the following discussion. We can see from
the figures, that the presence of friction leads to a smaller maximal value of the equivalent
stress. Furthermore, the zone of the maximal value has moved to the regions where the body
is sliding on the rigid foundation.

(a) Contact problem without friction, i.e. µ f = 0. (b) Frictional contact problem with µ f = 0.5.

Figure 3.12.: Displacement uh
1(x) in Ω.

Figures 3.12(a) to 3.13(b) show the two components uh
1 and uh

2 of the displacement fields for
both cases. As we would expect, the only difference between the frictionless case and the case
where friction occurs can be observed at the contact boundary for the first component uh

1.
This is the direction of the tangential displacement on ΓC. As displayed more precisely in
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(a) Contact problem without friction, i.e. µ f = 0. (b) Frictional contact problem with µ f = 0.5.

Figure 3.13.: Displacement uh
2(x) in Ω.

Figure 3.19(b), there exists a sticking zone around x1 ∈ (−0.5, 0.5) on the contact boundary
for the frictional case.

(a) Contact problem without friction, i.e. µ f = 0. (b) Frictional contact problem with µ f = 0.5.

Figure 3.14.: Rotation ηh in Ω.

Figures 3.14(a) and 3.14(b) show the rotational part ηh of the gradient of the displacement
field. The only remarkable difference between the two cases can be observed on the active
part AC of the contact boundary , i.e. the part around x1 ∈ (−1.3, 1.3) on ΓC, where the
body comes into contact. In the frictionless case, the values of the rotation are nearly zero.

This is obvious, since here the change of the normal displacement λh̃
n, corresponding to

uh
2, in x1-direction is zero, cf. Figure 3.17(a). Furthermore, we observe in Figure 3.12(a),

that the change of the first component uh
1, in x2-direction is also zero on this part of the

contact boundary. The level set, illustrated by the colors, is nearly orthogonal to the contact
boundary. This is not the case, when friction occurs. Therefore we observe local extrema in
the zone where the body starts to slide, compare Figure 3.19(b). Another characteristic is,
that in both Figures 3.14(a) and 3.14(b), the extrema occur on the boundaries.

Figures 3.15(a) to 3.16(b) show the components ϕh̃
1 and ϕh̃

2 of the displacement field on the
Neumann boundary. There is no difference between the frictionless and the frictional case,
as the traction t0 is the same in both cases. Note, that according to Theorem 3.10 the signs

of the values of ϕh̃ are opposite to the signs of the values of uh|ΓN
.
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(a) Contact problem without friction, i.e. µ f = 0.
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(b) Frictional contact problem with µ f = 0.5.

Figure 3.15.: Displacementϕh
1(x) on ΓN..
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(a) Contact problem without friction, i.e. µ f = 0.
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(b) Frictional contact problem with µ f = 0.5.

Figure 3.16.: Displacementϕh
2(x) on ΓN.
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(a) Contact problem without friction, i.e. µ f = 0.
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(b) Frictional contact problem with µ f = 0.5.

Figure 3.17.: Normal displacement λh̃
n on ΓC.

At first glance the normal displacements λh̃
n − g on the contact boundary in Figures 3.17(a)

and 3.17(b) seem to be equal. However, a comparison of the vectors of coefficients for the two
approximated solutions on the finest level shows, that in the frictional case there are ten more
vertices in contact then in the case where no friction occurs. In the first case there are 165
vertices in contact, whereas in the second case we have 175 vertices in contact. From Table
3.1 we therefore deduce, that the contact zone in the second case is 0.156 larger than in the

first case. Again we observe the result of Theorem 3.10, namely the sign of λh̃
n − g is opposite

to the sign of the normal displacement on ΓC which is −uh
2|ΓC

.
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(a) Contact problem without friction, i.e. µ f = 0.
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(b) Frictional contact problem with µ f = 0.5.

Figure 3.18.: Normal stress σh
n on ΓC.

The maximal absolute value of the normal stress σh
n on the contact boundary is larger in the

case where no friction occurs although the contact zone is larger in the case with friction, see
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3. Dual-dual formulation for a contact problem with friction in 2D

Figures 3.18(a) and 3.18(b). The reason is, that the normal stress in the latter case exhibits a
kink at those points, where the body changes from sliding to sticking and vice versa. On the
other hand the absolute value of the total force Fabs acting on the active part of ΓC is larger in
the frictional case, where the total force is defined by

Fh
abs :=

∫

AC

|σh
n| + |σh

t | ds.

Using this equation we get a total force of 1226 in the frictionless case compared to a total
force of 1606 in the frictional case. This is due to the presence of friction forces in the second
case.
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(a) Contact problem without friction, i.e. µ f = 0.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

(b) Frictional contact problem with µ f = 0.5.

Figure 3.19.: Tangential displacement λh̃
t on ΓC.

As shown in Figure 3.19(b), the tangential displacementλh̃
t on the contact boundary possesses

a sticking zone for x1 ∈ (−0.5, 0.5) in the case where friction occurs. Due to the Coulomb
friction law (3.2) the tangential displacement is nonzero, if the tangential stress fulfills

|σt| = µ f |σn|. This is visualized in Figure 3.21(a), where the ratio
|σh

t |
|σh

n|
on the active part of

the contact boundary is mapped. Note, that the value does not exceed the friction coefficient
µ f = 0.5.

The sign of the tangential displacement λh̃
t equals the sign of the tangential stress σh

t which
corresponds to the Coulomb friction law (3.2), if we keep in mind the assertion of Theorem
3.10, i.e. λt = −ut|ΓC

. The tangential stress is pictured in Figures 3.20(a) and 3.20(b). In
the frictionless case, the body is not kept from free sliding and therefore the tangential stress
equals zero. In the second case friction forces occur that act in tangential direction.

Finally, we show in Figure 3.21(b) the sign νĥ of the tangential displacement λh̃
t on the active

part of the boundary in the case of frictional contact. We remark, that the values are not
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(a) Contact problem without friction, i.e. µ f = 0.
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(b) Frictional contact problem with µ f = 0.5.

Figure 3.20.: Tangential stress σh
t on ΓC.
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(a) Contact problem without friction, i.e. µ f = 0.
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(b) Frictional contact problem with µ f = 0.5.

Figure 3.21.: Sign νĥ of λh̃
t on AC.

95



3. Dual-dual formulation for a contact problem with friction in 2D

zero in the zone where sticking occurs and λh̃
t equals zero. The value is connected to the

tangential stress by

νĥ(x) =
σh

t (x)

µ f |σh
n(x)|

,

on the whole active part AC regardless of whether sticking or sliding occurs. This was already
pointed out in Remark 3.15.

‖σh‖X ‖uh‖L2 (Ω) ‖ηh‖L2(Ω) ‖ϕh̃‖L2 (ΓN) ‖λh̃
t ‖L2(ΓC) ‖λh̃

n‖L2(ΓC) ‖νĥ‖L2(AC)

2617 3.399e-02 1.1797e-02 2.8114e-02 4.404e-03 6.208e-03 2.828
2489 3.534e-02 1.4050e-02 2.9210e-02 5.811e-03 1.166e-02 2.000
2481 3.550e-02 1.4573e-02 2.9198e-02 6.440e-03 1.286e-02 1.900
2488 3.550e-02 1.4588e-02 2.9161e-02 6.376e-03 1.323e-02 1.471
2497 3.543e-02 1.4571e-02 2.9111e-02 6.269e-03 1.340e-02 1.479
2504 3.541e-02 1.4566e-02 2.9094e-02 6.204e-03 1.349e-02 1.395
2508 3.539e-02 1.4565e-02 2.9084e-02 6.168e-03 1.354e-02 1.397
2510 3.538e-02 1.4566e-02 2.9076e-02 6.151e-03 1.357e-02 1.398

Table 3.2.: Norms of the solutions for the frictional contact problem with µ f = 0.5.

‖σh‖X ‖uh‖L2 (Ω) ‖ηh‖L2(Ω) ‖ϕh̃‖L2 (ΓN) ‖λh̃
t ‖L2(ΓC) ‖λh̃

n‖L2(ΓC)

26143 3.4595e-02 1.2200e-02 2.8466e-02 6.4989e-03 6.0165e-03
24659 3.5116e-02 1.4620e-02 2.9051e-02 7.6865e-03 1.2287e-02
24714 3.5604e-02 1.4896e-02 2.9269e-02 7.5524e-03 1.3070e-02
24775 3.5456e-02 1.4841e-02 2.9139e-02 7.3521e-03 1.3449e-02
24876 3.5445e-02 1.4827e-02 2.9126e-02 7.2336e-03 1.3590e-02
24940 3.5419e-02 1.4820e-02 2.9108e-02 7.1663e-03 1.3671e-02
24979 3.5399e-02 1.4819e-02 2.9097e-02 7.1323e-03 1.3720e-02
25003 3.5387e-02 1.4820e-02 2.9090e-02 7.1159e-03 1.3752e-02

Table 3.3.: Norms of the solutions for the contact problem without friction, i.e. µ f = 0.

In Tables 3.2 and 3.3 we present the norms of the approximated solutions for each iteration
step. For the Lagrange multipliers on the boundary parts we have computed the L2-norms.
We observe an asymptotic behaviour for all functions. In table 3.4 we have computed the total
error and the rate of convergence. Since we do not know the exact solution of the problem,
we use Aitken’s ∆2 extrapolation process for the sequence of the norms of the approximated
solutions, see e.g. Press et.al. [75, Section 5.1]. In this way we estimate the norms of the
exact solutions of (3.41). Then we can estimate the error for an approximation in some
iteration step i. For example if nσ is the extrapolated norm of the solution σ, then the error
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3.4. Numerical Experiments

etot α etot α
1.2121e+00 - 1.359e+00 -
6.7037e-01 0.904 6.815e-01 1.060
5.4220e-01 0.316 4.915e-01 0.487
3.8997e-01 0.483 4.023e-01 0.294
2.9375e-01 0.412 2.908e-01 0.472
2.1630e-01 0.443 2.063e-01 0.498
1.5780e-01 0.456 1.379e-01 0.582
1.1232e-01 0.491 9.985e-02 0.467

Table 3.4.: Total error and rate of convergence for the contact problem with µ f = 0
(left) and µ f = 0.5 (right).

for the approximation σi is estimated to

ei(σ) :=
(
| ‖σi‖2X − n2

σ|
) 1

2
.

In this way the total error for some iteration step i with mesh size hi is defined by

ei
tot :=

(
ei(σ)2 + ei(u)2 + ei(η)2 + ei(ϕ)2 + ei(λt)2 + ei(λn)2 + ei(ν)2

) 1
2
. (3.124)

If we do not have friction, then we drop the last term in the above definition. The rate of
convergence is computed as follows. Since the number of degrees of freedom N is connected
with the mesh size h by N ≈ 1

h2 we have for the rate of convergence α of the error e,

‖e‖ ≈ C hα ≈ C N−
α
2 .

Assuming that the constant does not change within two iterations of the h-version for the
solution scheme (3.41) we conclude

α = −2
log( ‖ei‖

‖ei+1‖
)

log( Ni

Ni+1
)
.

In Figure 3.22 we plot the total errors from Tables 3.2 and 3.3 against the corresponding
number of degrees of freedom. The slope of − 1

5 corresponds to a rate of convergence of

α = 1√
5
≈ 0.45.

In Tables 3.5 and 3.6 we present the number of iterations and the solution time (in seconds)
of the algorithms for solving the two discussed problems. Here we have abbreviated the
iteration step by It., the number of iterations for Algorithm 3.38 by #It, the number of
iterations for the outer loop in Algorithm 3.41 by #Itout and the sum of all inner iterations
by #Itin. Furthermore, we have studied the sensitivity of both algorithms on the choice of the
parameters ρ, ρ1 and ρ2. For the above problem we have identified the optimal parameters
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Figure 3.22.: Convergence of the frictionless and frictional contact problems in Ex-
ample 3.46.
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Figure 3.23.: Iteration numbers for different pairs of ρ1 and ρ2.
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It. #It Sol. time ρopt #It Sol. time
1 14 0.06 1.3 5 0.03
2 15 0.1 1.2 12 0.08
3 14 0.2 1.02 13 0.16
4 18 0.5 0.95 16 0.4
5 24 1.9 0.9 17 1.4
6 30 12.7 0.85 18 7.3
7 38 84.6 0.82 19 39
8 48 909 0.8 20 364

Table 3.5.: Number of iterations and solution times for the contact problem without
friction.

#Itout #Itin Sol. time ρopt
1 ρopt

2 #Itout #Itin Sol. time
10 86 0.4 1.3 3.5 7 27 0.15
7 78 0.6 1.225 3.0 7 55 0.4

18 140 1.6 1.05 1.85 10 74 0.9
20 141 3.9 0.97 3.9 8 71 2.1
49 301 30.6 0.93 2.2 24 153 15.3
84 589 282 0.9 2.0 48 252 120

134 964 2737 0.9 1.8 83 384 1094
198 1051 19433 0.89 1.75 135 558 9820

Table 3.6.: Number of iterations and solution times for the frictional contact problem.

in each iteration of the h-version. The time for solving the problem is halved on average for
both algorithms, when choosing the optimal parameters.

The optimal choice for the parameter ρ1 is always around 1 and decrease with a smaller mesh
size. The second parameter is more sensitive. This is due to the restriction of ρ2, which
depends on four different values, see Theorem 3.42, whereas the first parameter ρ1 is only
depending on the constant for the ellipticity of C−1, see (2.3).

For the frictional case we studied the dependence of the number of iterations on the choice
of the parameters more precisely. In Figures 3.23(a) and 3.23(b) we plot the number of
iterations for the outer and inner loop against the pair of parameters (ρ1, ρ2) for the fourth
iteration step in the h-version. The color illustrates the optimal choice of parameters. Here,
blue means a small number of iterations and red a large one.

If we choose the gap function g to be zero, then assumption (3.73) does not hold any longer,
since the active part of the contact boundary isΓC. In this case the algorithm is not converging,

when we take ĥ = h̃, because the discrete inf-sup condition for the bilinear form q(·, ·) does not

hold. But as we proved in Lemma 3.29 the inf-sup condition is valid, when choosing ĥ = 2h̃.
We have computed the above described problem with g = 0 and friction coefficient µ f = 0.5
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(a) Normal stress σh
n on ΓC.
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(b) Tangential stress σh
t on ΓC .

Figure 3.24.: Stresses on ΓC with gap function g = 0 using ĥ = 2h̃.
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(a) Tangential displacement λh̃
t on ΓC.
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(b) Sign νĥ of λh̃
t on AC.

Figure 3.25.: Tagential displacement and corresponding sign on ΓC with gap function
g = 0 using ĥ = 2h̃.
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using a coarser mesh for νĥ. In Figures 3.24(a) to 3.25(b) we show the normal and tangential
stress on the contact boundary, the tangential displacement on the contact boundary and the
corresponding sign. The first observation we make is, that the singularities at the end points
have vanished. The kink in the function of the tangential stress is due to the change from slip

to stick and vice versa. In Figure 3.25(b) we notice, that the red colored sign function νĥ of

the tangential displacement λh̃
t is tending to zero at the end points of the contact boundary.

This is due to the fact, that we have chosen ε2 = 10−6 in Algorithm 3.41. In Figure 3.24(a)
we see, that the normal stress is tending very fast to zero at the end points of ΓC. For this
reason the friction functional is small here and the convergence criterion in Algorithm 3.41

is satisfied before a good approximation is assumed for νĥ. Therefore, we have decreased the
bound ε2 to 10−8 resulting in the dashed blue function in Figure 3.25(b), which represents

the approximated sign νĥ for a coarser triangulation.

The inf-sup condition in Lemma 3.29 is only valid for a mesh dependent norm. For this
reason the constant within the condition is decreasing with the mesh size and therefore the
parameter ρ2 has to be chosen very small. Furthermore, as we have seen above, we have
to decrease the parameter ε2 to get a satisfactory approximation of ν. This leads to a large
number of iterations and thus to a large solution time. For the blue dashed line in Figure

3.24(a), which corresponds to νĥ in the fourth iteration of the h-version, the algorithm took
22 872 outer loops and all in all 45 743 inner iterations. Compared to 3.9 seconds as we see
e.g. in the fourth row of Table 3.6 the solution time of 3471 seconds is very large in this case.
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(a) Example with gap function g = |x1 |
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(b) Example with gap function defined in (3.125)

Figure 3.26.: Normal displacements λh̃
n for ĥ = h̃ (dashed red) and ĥ = 2h̃ (green) and

rigid foundation (dashed blue).

To show, that the algorithm is converging to the same solutions independently of the choice of

ĥ, if Assumption (3.73) is fulfilled, we have computed two examples with ĥ = h̃ and ĥ = 2h̃.
In both examples the friction coefficient is µ f = 0.5. In Figures 3.26(a) to 3.28(b) we show
the normal and tangential displacements and the corresponding signs. On the left hand side
we have the gap function g = |x1|. In Figure 3.26(a) the corresponding rigid foundation is
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(a) Example with gap function g = |x1 |
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Figure 3.27.: Tangential displacements λh̃
t for ĥ = h̃ (dashed red) and ĥ = 2h̃ (green).
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(a) Example with gap function g = |x1 |
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(b) Example with gap function defined in (3.125)

Figure 3.28.: Sign νĥ of λh̃
t for ĥ = h̃ (red) and ĥ = 2h̃ (dashed blue).
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shown as a dashed blue line. One observes, that the normal displacement in Figure 3.26(a)

and the tangential displacement in Figure 3.27(a) fit very well for the two choices of ĥ. The
same is with the signs in Figure 3.28(a), where the different width of the active set AC is due
to the different length of the edges. In the second example the gap function is

g =



|x1 + 2|, if x1 ≤ 0,

2 + x1 −
145 x2

1

6
+

425 x3
1

12
, if x1 ∈ (0, 0.4),

2 −
√

4 − (x1 − 2)2, if x1 ≥ 0.4.

(3.125)

Here the tangential displacements in Figure 3.27(b) are a bit different, which is due to the
complexity of the gap function and the chosen parameter ε2 = 10−6 for the convergence
criterion in step 9 of Algorithm 3.41.
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4. Adaptive methods for the dual-dual contact
problem with friction

This chapter deals with an adaptive algorithm for the discrete variational inequality
problem (3.62) in Section 3.2. The algorithm is based on an a posteriori error estimator
which is derived by following the approaches of Maischak [67, Chapter 5.2], Gatica
and Meddahi [50] and Gatica, Gatica and Stephan in [46].

4.1. A posteriori error estimate

In this section we will derive an a posteriori error estimator for the dual-dual
contact problem of Chapter 3. To do so let (σ, ν,u, η,ϕ, λt, λn) ∈ X × Λ × Y and
(σh, νĥ,uh, ηh,ϕh̃, λh̃

t , λ
h̃
n) ∈ Xh × Λĥ × Yh be the solutions of the continuous and dis-

crete variational inequality problems (3.41) and (3.62), respectively. We use the
notations of Section 3.4 and assume here, that the boundary parts of the domain are
polygonal. Furthermore, let the assumption (3.73) be fulfilled. In this case we are
allowed to choose ĥ = h̃, see Lemma 3.31, which is assumed here as well.

For an arbitrary T ∈ Th we consider the following local auxiliary problem of finding
zT ∈ H1(T) such that

−divC : ε(zT) = f + div(σh − as(σh)) in T ,

zT = 0 on ∂T ∩ ED
h ,C : ε(zT) · n = t0 − (σh − as(σh)) · n on ∂T ∩ EN
h ,C : ε(zT) · n = as(σh) ·n on ∂T ∩ EC
h ,C : ε(zT) · n = 0 on ∂T ∩ EΩh ,

(4.1)

with as(τ) denoting the antisymmetric part of some tensor τ , i.e. as(τ) := 1
2 (τ−τT).

If we set σ∗ ∈ X with σ∗|T := C : ε(zT) ∀T ∈ Th and σ̃ := σ∗ + σh − as(σh), then we
observe div(σ − σ̃) = 0 and as(σ − σ̃) = 0. Using the auxiliary problem (4.1) we can
prove the following lemma.
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4. Adaptive methods for the dual-dual contact problem with friction

Lemma 4.1:
There exists a constant C > 0, such that

α ‖σ − σ̃‖2X ≤ − ã(σh, σ − σ̃ − τ) − s(ηh, σ − σ̃ − τ) − dN(ϕh̃, σ − σ̃ − τ)

− dC,t(λh̃
t , σ − σ̃ − τ) + g(σ − σ̃ − τ) − dC,n(λh̃

n, σ − σ̃ − τ)

+ C
{
‖f + div σh‖L2 (Ω) + ‖as(σh)‖X + ‖t0 − σh · n‖

H
− 1

2 (ΓN)

}
‖σ − σ̃‖X ,

(4.2)

for all τ ∈ Xh , with div τ = 0 .

Proof. The auxiliary problem (4.1) is uniquely solvable and depends continuously
on the given data. Using

∫
Ω
· dx =

∑
T∈Th

∫
T
· dx and Theorem 2.3 we have with the

triangle inequality

‖σ∗‖X ≤ C
∑

T∈Th

{
‖f + div(σh − as(σh))‖L2(T) + ‖t0 − (σh − as(σh)) · n‖

H
− 1

2 (eT∩EN
h

)

+ ‖as(σh) ·n‖
H
− 1

2 (eT∩EC
h

)

}

≤ C
∑

T∈Th

{
‖f + divσh‖L2 (T) + ‖div as(σh)‖L2 (T) + ‖t0 − σh · n‖

H
− 1

2 (eT∩EN
h

)

+ ‖as(σh) ·n‖
H
− 1

2 (eT∩ECN
h

)

}

= C
{
‖f + divσh‖L2(Ω) + ‖as(σh)‖X + ‖t0 − σh · n‖

H
− 1

2 (ΓN)

}
, (4.3)

where ECN
h
= EC

h
∪ EN

h
. Using the coercivity of ã(·, ·) and div(σ − σ̃) = 0 we have

α‖σ − σ̃‖2X = α‖σ − σ̃‖2L2 (Ω)2×2 ≤ ã(σ − σ̃, σ − σ̃)

= ã(σ − σh, σ − σ̃) − ã(σ∗ − as(σh), σ − σ̃).
(4.4)

The second term in (4.4) can be estimated with the continuity of the bilinear form
ã(·, ·), the triangle inequality and (4.3)

ã(σ∗ − as(σh), σ − σ̃) ≤ C ‖σ∗ − as(σh)‖X‖σ − σ̃‖X
≤ C

{
‖σ∗‖X + ‖as(σh)‖X

}
‖σ − σ̃‖X

≤ C
{
‖f + divσh‖L2(Ω) + ‖as(σh)‖X + ‖t0 − σh · n‖

H
− 1

2 (ΓN)

}
‖σ − σ̃‖X.

(4.5)

For the first term in (4.4) we take some tensor τ ∈ Xh with div τ = 0. Then from
(3.41)1 and (3.62)1 we conclude

ã(σ − σh, τ) = −B(τ; u − uh, η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n)

= −s(η − ηh, τ) − dN(ϕ −ϕh̃, τ) − dC,t(λt − λh̃
t , τ) − dC,n(λn − λh̃

n, τ).
(4.6)
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Moreover, due to

div(σ − σ̃ − τ) = div(σ − σ̃) − div τ = 0 inΩ

and using equation (3.41)1 we have

ã(σ, σ − σ̃ − τ) = g(σ − σ̃ − τ) − B(σ − σ̃ − τ; u, η,ϕ, λt, λn)

= g(σ − σ̃ − τ) − s(η, σ − σ̃ − τ) − dN(ϕ, σ − σ̃ − τ)

− dC,t(λt, σ − σ̃ − τ) − dC,n(λn, σ − σ̃ − τ).

(4.7)

Using (4.6) and (4.7) we can rewrite the first term on the right hand side of equation
(4.4) as

ã(σ − σh, σ − σ̃) = ã(σ, σ − σ̃ − τ) + ã(σ − σh, τ) − ã(σh, σ − σ̃ − τ)

= ã(σ, σ − σ̃ − τ) − s(η − ηh, τ) − dN(ϕ −ϕh̃, τ)

− dC,t(λt − λh̃
t , τ) − dC,n(λn − λh̃

n, τ) − ã(σh, σ − σ̃ − τ)

= −ã(σh, σ − σ̃ − τ) − s(η, σ − σ̃ − τ) − s(η − ηh, τ)

− dN(ϕ, σ − σ̃ − τ) − dN(ϕ −ϕh̃, τ)

− dC,t(λt, σ − σ̃ − τ) − dC,t(λt − λh̃
t , τ)

− g(σ − σ̃ − τ) − dC,n(λn, σ − σ̃ − τ) − dC,n(λn − λh̃
n, τ).

(4.8)

Since as(σ − σ̃) = 0, the terms in (4.8), concerning the rotational parts of the displace-
ment, read

−s(η, σ − σ̃ − τ) − s(η − ηh, τ) = −s(ηh, σ − σ̃ − τ) − s(η − ηh, σ − σ̃)

= −s(ηh, σ − σ̃ − τ). (4.9)

For the normal component of σ − σ̃ on the boundary we observe

(σ − σ̃) · n = t0 − (t0 − (σh − as(σh)) · n) − σh · n + as(σh) ·n = 0 on ΓN,

(σ − σ̃) · n = σ · n − as(σh) ·n − σh · n + as(σh) ·n = σ · n − σh · n on ΓC.

By further reordering the boundary parts in equation (4.8) and applying the above
observations, we obtain

−dN(ϕ, σ − σ̃ − τ) − dN(ϕ −ϕh̃, τ) = −dN(ϕh̃, σ − σ̃ − τ) − dN(ϕ −ϕh̃, σ − σ̃)

= −dN(ϕh̃, σ − σ̃ − τ), (4.10)

−dC,t(λt, σ − σ̃ − τ) − dC,t(λt − λh̃
t , τ) = −dC,t(λh̃

t , σ − σ̃ − τ) − dC,t(λt − λh̃
t , σ − σ̃)

= −dC,t(λh̃
t , σ − σ̃ − τ) − dC,t(λt − λh̃

t , σ − σh), (4.11)

−dC,n(λn, σ − σ̃ − τ) − dC,n(λn − λh̃
n, τ) = −dC,n(λh̃

n, σ − σ̃ − τ) − dC,n(λn − λh̃
n, σ − σ̃)

= −dC,n(λh̃
n, σ − σ̃ − τ) − dC,n(λn − λh̃

n, σ − σh). (4.12)
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The second term in (4.11) can be bounded by zero. To see this we insert µt = λt in
(3.41)5 and use equations (3.42) and (3.45) to get

−dC,t(λt − λh̃
t , σ) = − j(λt) + dC,t(λh̃

t , σ) ≤ − j(λt) + j(λh̃
t ).

Analogously we take in the discrete case µt = λh̃
t in (3.62)5 and use (3.64) and (3.67)

to conclude

dC,t(λt − λh̃
t , σ

h) = dC,t(λt, σ
h) − j(λh̃

t ) ≤ j(λt) − j(λh̃
t ).

The sum of the two inequalities above leads us to the desired estimate. Finally, the
second term in (4.12) is also bounded by zero. Here we use equations (3.38)6, (3.45),
(3.63), (3.65) and the fact, that λn ≥ 0 and λh̃

n ≥ 0 on ΓC yield

−dC,n(λn − λh̃
n, σ − σh) = dC,n(λh̃

n, σ) + dC,n(λn, σ
h) ≤ 0.

Collecting the estimates (4.5) and (4.8) - (4.12) in (4.4) we finish the proof. �

To estimate the error of σh we will need the Clément interpolation operator Ih :
H1(Ω) → Vh, see Clément [27]. Here we have used the standard finite element
space

Vh :=
{
v ∈ VD : v ∈ Ph

1(T), ∀T ∈ Th

}
. (4.13)

Let hT and he denote the diameter of ωT and ωe, defined in (3.60). Then, for arbi-
trary triangle T ∈ Th and edge e ∈ Eh the Clément operator satisfies the following
interpolation estimates for v ∈ H1(Ω)

‖v − Ihv‖L2 (T) ≤ C1 hT‖v‖H1(ωT),

‖v − Ihv‖L2 (e) ≤ C2 h
1
2
e ‖v‖H1 (ωe),

where the positive constants C1 and C2 are independent of the meshsize h. For
some vector v and some tensor τ we define the following curl-operators, see e.g.
Carstensen and Dolzmann [22],

curl v := v2,1 − v1,2 and curl τ :=
(
τ12,1−τ11,2
τ22,1−τ21,2

)
.

In the following we will often use ηh as asymmetric tensor. Since we have

s(ηh, τh) =
∫

Ω

ηh
(
(τh)12 − (τh)21

)
dx =

∫

Ω

(
0 ηh

−ηh 0

)
: τh dx,

we identify ηh with the tensor
(

0 ηh

−ηh 0

)
to improve readability.
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4.1. A posteriori error estimate

Theorem 4.2:
There exists a constant C > 0, independent of the mesh size h, such that

‖σ − σh‖X ≤ C

{∑

T∈Th

ησ,T + ‖t0 − σh · n‖
H
− 1

2 (ΓN)

}
, (4.14)

where the local estimator ησ,T is defined for every T ∈ Th by

η2
σ,T := ‖f + divσh‖2

L2 (T)
+ ‖as(σh)‖2H(div,T) + h2

T ‖curl(C−1 : σh + ηh)‖L2(T)

+
∑

e∈ET∩EΩ
h

he ‖ [(C−1 : σh + ηh) · t] ‖2
L2 (e)
+

∑

e∈ET∩ED
h

he ‖(C−1 : σh + ηh) · t ‖2
L2 (e)

+
∑

e∈ET∩EN
h

he ‖(C−1 : σh + ηh) · t +
∂ϕh̃

∂t
‖2

L2 (e)
(4.15)

+
∑

e∈ET∩EC
h

he ‖(C−1 : σh + ηh) · t +
∂λh̃

t

∂t
t +

∂(λh̃
n − g)

∂t
n‖2

L2 (e)
.

Here, [·] denotes the jump across an interior edge e ∈ EΩ
h

, if e is not an interior edge,
then we just take the value inside the brackets.

Proof. We follow the works of Gatica et al. [11] and Maischak [67, see Theorem 5.10]
and make use of the Helmholtz decomposition of σ−σh +as(σh). With the definition
of σ̃ we have div(σ − σ̃) = 0. Since Ω is connected we have the existence of some
stream function s ∈ H1(Ω), with

∫
Ω

si dx = 0 for i = 1, 2, such that

σ − σ̃ = Curl s,

where the Curl-operator was already defined in the definition of the PEERS elements
in Section 3.2. Let us define the Clément interpolant sh := Ihs. Then, obviously
div Curl sh = 0 and we can choose τ = Curl sh in Lemma 4.1 to estimate

A := − ã(σh, σ − σ̃ − τ) − s(ηh, σ − σ̃ − τ) − dN(ϕh̃, σ − σ̃ − τ) − dC,t(λh̃
t , σ − σ̃ − τ)

+ g(σ − σ̃ − τ) − dC,n(λh̃
n, σ − σ̃ − τ)

= −
∑

T∈Th

∫

T

(C−1 : σh + ηh) : Curl(s − sh) dx −
∑

e∈EN
h

∫

e

ϕh̃ · Curl(s − sh) · n ds

−
∑

e∈EC
h

∫

e

(λh̃
t t + (λh̃

n − g)n) · Curl(s − sh) · n ds

=
∑

T∈Th

{∫

T

curl(C−1 : σh + ηh) · (s − sh) dx +
∑

e∈ET

∫

e

[(C−1 : σh + ηh) · t] · (s − sh) ds
}
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−
∑

e∈EN
h

∫

e

ϕh̃ · ∂(s − sh)
∂t

ds −
∑

e∈EC
h

∫

e

(λh̃
t t + (λh̃

n − g)n) · ∂(s − sh)
∂t

ds

=
∑

T∈Th

{∫

T

curl(C−1 : σh + ηh) · (s − sh) dx +
∑

e∈ET∩EΩ
h

∫

e

[(C−1 : σh + ηh) · t] · (s − sh) ds

+
∑

e∈ET∩ED
h

∫

e

t · (C−1 : σh + ηh) · (s − sh) ds (4.16)

+
∑

e∈ET∩EN
h

∫

e

(
t · (C−1 : σh + ηh) +

∂ϕh̃

∂t

)
· (s − sh) ds

+
∑

e∈ET∩EC
h

∫

e

(
t · (C−1 : σh + ηh) +

∂λh̃
t

∂t
t +

∂(λh̃
n − g)
∂t

n
)
· (s − sh) ds

}
.

Here we applied integration by parts on triangles and edges and the relation

Curl si · n =
( ∂s

∂x2

− ∂s
∂x1

)
·
(

n1
n2

)
=

( ∂s
∂x2

− ∂s
∂x1

)
·
( −t2

t1

)
= −∂si

∂t
, for i = 1, 2

leading to

Curl s · n =
(

Curl s1 ·n
Curl s2 ·n

)
= −∂s

∂t
.

Furthermore, since the unit normal and tangential vectors are constant on every
edge, we have used in (4.16)

∂λh̃
t t

∂t
=

(
t1 ∇λh̃

t
·t

t2 ∇λh̃
t
·t

)
=
∂λh̃

t

∂t
t and

∂(λh̃
n − g)n
∂t

=
(

n1 ∇(λh̃
n−g)·t

n2 ∇(λh̃
n−g)·t

)
=
∂(λh̃

n − g)
∂t

n.

Using Cauchy-Schwarz inequality in (4.16) we conclude with the interpolation esti-
mates for the Clément operator

A ≤
∑

T∈Th

{
‖curl(C−1 : σh + ηh)‖L2 (T) ‖s − sh‖L2(T)

+
∑

e∈ET∩EΩ
h

‖ [(C−1 : σh + ηh) · t] ‖L2 (e) ‖s − sh‖L2 (e)

+
∑

e∈ET∩ED
h

‖(C−1 : σh + ηh) · t‖L2 (e) ‖s − sh‖L2 (e)

+
∑

e∈ET∩EN
h

‖(C−1 : σh + ηh) · t +
∂ϕh̃

∂t
‖L2 (e) ‖s − sh‖L2 (e)
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+
∑

e∈ET∩EC
h

‖(C−1 : σh + ηh) · t +
∂λh̃

t

∂t
t

+
∂(λh̃

n − g)
∂t

n‖L2 (e) ‖s − sh‖L2 (e)

}

≤ C
∑

T∈Th

{
hT ‖curl(C−1 : σh + ηh)‖L2 (T) ‖s‖H1 (ωT)

+
∑

e∈ET∩EΩ
h

h
1
2
e ‖ [(C−1 : σh + ηh) · t] ‖L2 (e) ‖s‖H1 (ωe)

+
∑

e∈ET∩ED
h

h
1
2
e ‖(C−1 : σh + ηh) · t‖L2 (e) ‖s‖H1 (ωe)

+
∑

e∈ET∩EN
h

h
1
2
e ‖(C−1 : σh + ηh) · t + ∂ϕ

h̃

∂t
‖L2(e) ‖s‖H1 (ωe)

+
∑

e∈ET∩EC
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂λh̃
t

∂t
t +

∂(λh̃
n − g)

∂t
n‖L2(e) ‖s‖H1 (ωe)

}

≤ C
∑

T∈Th

{
hT ‖curl(C−1 : σh + ηh)‖L2 (T) +

∑

e∈ET∩EΩ
h

h
1
2
e ‖ [(C−1 : σh + ηh) · t] ‖L2 (e)

+
∑

e∈ET∩ED
h

h
1
2
e ‖(C−1 : σh + ηh) · t‖L2 (e) +

∑

e∈ET∩EN
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂ϕh̃

∂t
‖L2 (e)

+
∑

e∈ET∩EC
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂λh̃
t

∂t
t +

∂(λh̃
n − g)

∂t
n‖L2(e)

}
‖s‖H1 (Ω). (4.17)

For the stream function s we observe

∇s : ∇s = s2
1,1 + s2

1,2 + s2
2,1 + s2

2,2 =
(

s1,2 −s1,1
s2,2 −s2,1

)
:
(

s1,2 −s1,1
s2,2 −s2,1

)
= Curl s : Curl s

⇒ ‖∇s‖L2 (Ω)2×2 = ‖Curl s‖L2(Ω)2×2 = ‖σ − σ̃‖L2(Ω)2×2 = ‖σ − σ̃‖X. (4.18)

Furthermore, applying Lemma 3.3 in Großmann and Roos [54] we get

‖s‖2
L2 (Ω)

=

2∑

i=1

‖si‖2L2(Ω)
≤ C

{ 2∑

i=1

|si|2H1(Ω)
+

(∫

Ω

si dx
)2}
= C

2∑

i=1

|si|2H1(Ω)
= C|s|2

H1(Ω)
(4.19)

and therefore the equivalence of the H1-norm and the H1-seminorm. Therefore,
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using (4.18) and (4.19) in (4.17) we conclude

A ≤ C
∑

T∈Th

{
hT ‖curl(C−1 : σh + ηh)‖L2 (T) +

∑

e∈ET∩EΩ
h

h
1
2
e ‖ [(C−1 : σh + ηh) · t] ‖L2 (e)

+
∑

e∈ET∩ED
h

h
1
2
e ‖(C−1 : σh + ηh) · t‖L2(e) +

∑

e∈ET∩EN
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂ϕh̃

∂t
‖L2 (e)

+
∑

e∈ET∩EC
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂λh̃
t

∂t
t +

∂(λh̃
n − g)
∂t

n‖L2(e)

}
‖∇s‖L2 (Ω)

≤ C
∑

T∈Th

{
hT ‖curl(C−1 : σh + ηh)‖L2 (T) +

∑

e∈ET∩EΩ
h

h
1
2
e ‖ [(C−1 : σh + ηh) · t] ‖L2 (e)

+
∑

e∈ET∩ED
h

h
1
2
e ‖(C−1 : σh + ηh) · t‖L2(e) +

∑

e∈ET∩EN
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂ϕh̃

∂t
‖L2 (e)

+
∑

e∈ET∩EC
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂λh̃
t

∂t
t +

∂(λh̃
n − g)
∂t

n‖L2(e)

}
‖σ − σ̃‖X. (4.20)

With (4.20) the assertion in Lemma 4.1 reads

‖σ − σ̃‖X ≤ C
∑

T∈Th

ησ,T + ‖t0 − σh · n‖
H
− 1

2 (ΓN)
.

We finish the proof by using the triangle inequality, (4.3) and Lemma 4.1. �

Remark 4.3: As we mentioned in the proof of Theorem 4.2 the representation of σ − σ̃ in
terms of the Curl of some stream function corresponds indeed to the Helmholtz decomposition
of σ − σh + as(σh) on each triangle. In view of the definition of σ̃ we have on each tringle
T ∈ Th

σ − σ̃ = σ − σ∗ − σh + as(σh) = σ −C : ε(zT) − σh + as(σh)

⇒ σ − σh + as(σh) = C : ε(zT) + Curl s ∀ T ∈ Th.

But this is just the Helmholtz decomposition of the symmetric tensor σ − σh + as(σh), as it
was introduced by Carstensen and Dolzmann in [22], see also Carstensen et al. [23].

The estimates of the errors of the Lagrange multipliers is splitted into three parts.
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Lemma 4.4:
There exists some C > 0, such that

‖η − ηh‖L2(Ω) + ‖ϕ −ϕh̃‖
H̃

1
2 (ΓN)

+ ‖λt − λh̃
t ‖

H̃
1
2 (ΓC)
+ ‖λn − λh̃

n‖
H̃

1
2 (ΓC)

≤ C

{∑

T∈Th

ησ,T + ‖t0 − σh · n‖
H
− 1

2 (ΓN)

}
.

(4.21)

Proof. From the proof of Lemma 3.19 we have for τ ∈ X with div τ = 0 the continuous
inf-sup condition for B̂(τ; ξ,ψ, µt, µn) := s(ξ, τ) + dN(ψ, τ) + dC,t(µt, τ) + dC,n(µn, τ)

‖η − ηh‖L2(Ω) + ‖ϕ −ϕh̃‖
H̃

1
2 (ΓN)

+ ‖λt − λh̃
t ‖

H̃
1
2 (ΓC)
+ ‖λn − λh̃

n‖
H̃

1
2 (ΓC)

≤ sup
0,τ∈X

B̂(τ; η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n)

‖τ‖X
.

(4.22)

As div τ = 0 equation (3.41)1 reads

B̂(τ; η,ϕ, λt, λn) = g(τ) − ã(σ, τ). (4.23)

Furthermore, for some τh ∈ Xh with div τh = 0 equation (3.62)1 reads

B̂(τh; ηh,ϕh̃, λh̃
t , λ

h̃
n) = g(τh) − ã(σh, τh). (4.24)

Therefore, by adding zero we conclude with (4.23) and (4.24)

B̂(τ;η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n)

= B̂(τ; η,ϕ, λt, λn) − B̂(τ − τh; ηh,ϕh̃, λh̃
t , λ

h̃
n) − B̂(τh; ηh,ϕh̃, λh̃

t , λ
h̃
n)

= g(τ) − ã(σ, τ) − B̂(τ − τh; ηh,ϕh̃, λh̃
t , λ

h̃
n) − g(τh) + ã(σh, τh)

= −ã(σ − σh, τ) + g(τ − τh) − ã(σh, τ − τh) − B̂(τ − τh; ηh,ϕh̃, λh̃
t , λ

h̃
n). (4.25)

The first term in (4.25) can be estimated using the continuity of the bilinear form
ã(·, ·)

−ã(σ − σh, τ) ≤ C ‖σ − σh‖X ‖τ‖X. (4.26)

For the last three terms we use the argumentation in the proof of Theorem 4.2. Since
τ has divergence zero we have the existence of some stream function s(τ) ∈ H1(Ω)
with

∫
Ω

s(τ)i dx = 0 for i = 1, 2, such that τ = Curl s(τ). Choosing sh(τ) as the Clément
interpolant of s(τ), we have τh := Curl sh(τ) ∈ Xh with div τh = 0 and we can proceed
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in exactly the same way as in the proof of Theorem 4.2 using τ instead of σ − σ̃, see
equations (4.16)-(4.20). The corresponding final result reads

g(τ − τh) − ã(σh, τ − τh) − B̂(τ − τh; ηh,ϕh̃, λh̃
t , λ

h̃
n)

≤C
∑

T∈Th

{
hT ‖curl(C−1 : σh + ηh)‖L2 (T) +

∑

e∈ET∩EΩ
h

h
1
2
e ‖ [(C−1 : σh + ηh) · t] ‖L2 (e)

+
∑

e∈ET∩ED
h

h
1
2
e ‖(C−1 : σh + ηh) · t‖L2 (e) +

∑

e∈ET∩EN
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂ϕh̃

∂t
‖L2 (e) (4.27)

+
∑

e∈ET∩EC
h

h
1
2
e ‖(C−1 : σh + ηh) · t +

∂λh̃
t

∂t
t +

∂(λh̃
n − g)

∂t
n‖L2 (e)

}
‖τ‖X.

Using (4.25), (4.26) and (4.27) in (4.22) the proof is complete. �

Before we estimate the error of the displacement uh, let us define

MΓ
h :=

{
ψ ∈ L2(Γ) : ψ|e ∈ Ph

0(e) ∀ e ∈ EΓh
}
. (4.28)

For arbitrary vh ∈Mh we have v =
∑

T∈Th

{
cT

1

(
χT
0

)
+ cT

2

(
0
χT

)}
and we define the following

projection Ph,Γ
0 : Mh →MΓ

h

vh
Γ := Ph,Γ

0 vh =
∑

e∈EΓ
h

{
cTe

1

(
χe
0

)
+ cTe

2

(
0
χe

)}
. (4.29)

Lemma 4.5:
There exists some C > 0, such that

‖u − uh‖L2 (Ω) ≤ C

{∑

T∈Th

(
ησ,T + ηu,T

)
+ ‖t0 − σh · n‖

H
− 1

2 (ΓN)

}
, (4.30)

where the local estimator ηu,T is defined for every T ∈ Th by

η2
u,T :=

∑

T∈Th

h2
T‖C−1 : σh + ηh‖L2(T)2×2 +

∑

e∈ET∩EN
h

he ‖ϕh̃ + uh
Γ‖2L2 (e)

(4.31)

+
∑

e∈ET∩ED
h

he ‖uh
Γ‖2L2 (e)

+
∑

e∈ET∩EC
h

he ‖λh̃
t t + (λh̃

n − g)n + uh
Γ‖2L2(e)

.

Proof. We proceed analogously to Maischak [67, Theorem 5.11]. Hence, we want
to use the equilibrium interpolation operator Eh : H1(Ω)2×2 ∩ X → Xh as defined in
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4.1. A posteriori error estimate

Roberts and Thomas [77, see Chapter II, Section 6]. For τ ∈ H1(Ω)2×2 ∩ X we have
for every T ∈ Th the following estimate

‖τ − Ehτ‖L2(T)2×2 ≤ C hT |τ|H1(T)2×2 ,

‖div(τ − Ehτ)‖L2(T) ≤ C ‖div τ‖L2(T).
(4.32)

Using this estimate demands a higher regularity than X. Therefore, we apply the
same approach as Maischak in [67]. We let τ ∈ X be arbitrary but fixed. Defining the
convex domain Ω′ ⊃ Ω, we assume z ∈ H1(Ω′) with

∫
Ω′

zi dx = 0, for i = 1, 2 being
the unique solution of

divC : ε(z) =



div τ in Ω,

− 1
measΩ′\Ω

∫

Ω

div τ dx in Ω′ \Ω,C : ε(z) · n = 0 on ∂Ω′.

(4.33)

Here we have used
∫

Ω

div τ dx =
( ∫
Ω

(div τ)1 dx∫
Ω

(div τ)2 dx

)
.

The condition z ∈ H1(Ω′) with
∫
Ω′ zi dx = 0, for i = 1, 2 assures the validity of Korn’s

inequality, see e.g. Brenner and Scott [16, Chapter 9]. Furthermore, the given data
fulfills

∫
Ω′

f ′i dx = 0 for i = 1, 2 with

f ′i :=

{
(div τ)i in Ω,

− 1
measΩ′\Ω

∫

Ω

(div τ)i dx in Ω′\Ω,

which is a necessary and sufficient condition for the unique solvability of the aux-
iliary problem (4.33). Using the regularity result in Chapter 9 of [16] we conclude
z ∈ H2(Ω′) and ‖z‖H2 (Ω′) ≤ C(Ω′)‖div τ‖L2(Ω)2×2 . Defining rτ := C : ε(z)|Ω we have
rτ ∈ H1(Ω)2×2 and div rτ = div τ inΩ. Moreover, we have

‖rτ‖H1(Ω)2×2 ≤ C ‖z‖H2 (Ω) ≤ C ‖z‖H2 (Ω′) ≤ C(Ω′) ‖div τ‖L2(Ω)2×2 .

Using the commuting diagram property, see Roberts and Thomas [77, Section 6 in
Chapter II], we know that

div(Ehτ) = P0
h(div τ) ∀ τ ∈ H1(Ω)2×2, (4.34)

where P0
h

is the orthogonal projection of L2(Ω) onto Mh. Therefore, we deduce for
vh ∈Mh

∫

Ω

vh · div τ dx =

∫

Ω

vh · P0
h(div τ) dx =

∫

Ω

vh · div(Ehτ) dx ∀ τ ∈ H1(Ω)2×2. (4.35)
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4. Adaptive methods for the dual-dual contact problem with friction

From the proof of Lemma 3.19 we conclude the continuous inf-sup condition of
b(·, ·). Thus, we have

‖u − uh‖L2 (Ω) ≤ C sup
0,τ∈X

b(u − uh)
‖τ‖X

. (4.36)

Using (4.35) and the first equation of the continuous and discrete variational in-
equality problems (3.41) and (3.62) we have

b(u − uh, τ) =
∫

Ω

(u − uh) · div rτ dx = b(u, rτ) −
∫

Ω

uh · div(Ehrτ) dx

= g(rτ) − ã(σ, rτ) − B̂(rτ; η,ϕ, λt, λn) − b(uh,Ehrτ)

= g(rτ) − ã(σ, rτ) − B̂(rτ; η,ϕ, λt, λn) − g(Ehrτ) + ã(σh,Ehrτ)

+ B̂(Ehrτ; ηh,ϕh̃, λh̃
t , λ

h̃
n)

= −ã(σ − σh, rτ) − B̂(rτ; η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n)

+ g(rτ − Ehrτ) − ã(σh, rτ − Ehrτ) − B̂(rτ − Ehrτ; ηh,ϕh̃, λh̃
t , λ

h̃
n),

(4.37)

where we have extended by zero in the last step. The first two terms in (4.37) can be
estimated by using the continuity of the bilinear forms and Theorem 2.3

−ã(σ − σh, rτ) − B̂(rτ; η − ηh,ϕ −ϕh̃, λt − λh̃
t , λn − λh̃

n)

≤ C
{
‖σ − σh‖X + ‖η − ηh‖L2(Ω) + ‖ϕ −ϕh̃‖

H̃
1
2 (ΓN)

+ ‖λt − λh̃
t ‖

H̃
1
2 (ΓC)
+ ‖λn − λh̃

n‖
H̃

1
2 (ΓC)

}
‖rτ‖X

≤ C
{
‖σ − σh‖X + ‖η − ηh‖L2(Ω) + ‖ϕ −ϕh̃‖

H̃
1
2 (ΓN)

(4.38)

+ ‖λt − λh̃
t ‖

H̃
1
2 (ΓC)
+ ‖λn − λh̃

n‖
H̃

1
2 (ΓC)

}
‖τ‖X.

The last three terms will be splitted into parts and we first regard the bilinear forms
on the domain. Using Cauchy-Schwarz inequality and (4.32) we have

−ã(σh, rτ − Ehrτ) − s(rτ − Ehrτ, η
h) = −

∫

Ω

(C−1 : σh + ηh) : (rτ − Ehrτ) dx

=
∑

T∈Th

∫

T

(C−1 : σh + ηh) : (Ehrτ − rτ) dx

≤
∑

T∈Th

‖C−1 : σh + ηh‖L2(T)2×2 ‖Ehrτ − rτ‖L2(T)2×2

≤ C
∑

T∈Th

hT ‖C−1 : σh + ηh‖L2(T)2×2 ‖rτ‖H1(T)2×2

116



4.1. A posteriori error estimate

≤ C ‖τ‖X
∑

T∈Th

hT ‖C−1 : σh + ηh‖L2(T)2×2 . (4.39)

We need the following trace inequality, see Agmon [1, Theorem 3.10] and Arnold
[4, eq. (2.5)]

‖∂v

∂n
‖2

L2 (e)
≤ C

{
h−1

e |v|2H1(Te)
+ he |v|2H2(Te)

}
∀ v ∈ H2(Ω), ∀e ∈ EΓh . (4.40)

From the boundedness and ellipticity of Hooke’s tensor we deduce for e ∈ EΓ
h

by
using (4.40), (4.32), (4.34) and the definition of rτ

‖(Ehrτ − rτ) · n‖L2 (e) ≤ C h
1
2
e

{
h−1

Te
‖Ehrτ − rτ‖L2(Te)2×2 + ‖div(Ehrτ − rτ)‖L2(Te)

}

≤ C h
1
2
e ‖τ‖X.

(4.41)

Using the following property of the equilibrium interpolation operator
∫

e

(rτ − Ehrτ) · n = 0, ∀ e ∈ EΓh ,

see Roberts and Thomas [77], we can add 0 =
∫
Γ

uh
Γ
· (Ehrτ− rτ) ·n ds to the boundary

terms in (4.37), where uh
Γ

:= Ph,Γ
0 uh is defined in (4.29). Moreover, using the Cauchy-

Schwarz inequality and (4.41) in (4.37) we get

−dN(ϕh̃, rτ − Ehrτ) − dC,t(λh̃
t , rτ − Ehrτ) − dC,n(λh̃

n, rτ − Ehrτ) + g(rτ − Ehrτ)

=
∑

e∈EN
h

∫

e

(ϕh̃ + uh
Γ) · (Ehrτ − rτ) · n ds +

∑

e∈ED
h

∫

e

uh
Γ · (Ehrτ − rτ) · n ds

+
∑

e∈EC
h

∫

e

(λh̃
t t + (λh̃

n − g)n + uh
Γ) · (Ehrτ − rτ) · n ds

≤ C
∑

e∈EN
h

‖ϕh̃ + uh
Γ‖L2 (e) ‖(Ehrτ − rτ) · n‖L2(e) +

∑

e∈ED
h

‖uh
Γ‖L2 (e) ‖(Ehrτ − rτ) · n‖L2 (e)

+
∑

e∈EC
h

‖λh̃
t t + (λh̃

n − g)n + uh
Γ)‖L2(e) ‖(Ehrτ − rτ) · n‖L2(e)

≤ C ‖τ‖X
[∑

e∈EN
h

h
1
2
e ‖ϕh̃ + uh

Γ‖L2 (e)

+
∑

e∈ED
h

h
1
2
e ‖uh

Γ‖L2 (e)

∑

e∈EC
h

h
1
2
e ‖λh̃

t t + (λh̃
n − g)n + uh

Γ)‖L2 (e)

]
. (4.42)

Using (4.37), (4.38), (4.39) and (4.42) in (4.36) we finish the proof. �

Finally, there is one Lagrange multiplier left to estimate.
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4. Adaptive methods for the dual-dual contact problem with friction

Lemma 4.6:
Exists some C > 0, such that

‖ν − νĥ‖
H
− 1

2 (AC)
≤ C

{∑

T∈Th

(
ησ,T +

∑

e∈ET∩EA
h

h̃
1
2
e ‖σh

t − F νĥ‖L2 (e)

)
+ ‖t0 − σh · n‖

H
− 1

2 (ΓN)

}
. (4.43)

Proof. From the continuous inf-sup condition (3.54) we have

‖ν − νĥ‖
H
− 1

2 (AC)
≤ C sup

0,µt∈H̃
1
2 (ΓC)

q(µt, ν − νĥ)

‖µt‖
H̃

1
2 (ΓC)

. (4.44)

Using the fifth equality in (3.41) and adding zero in terms of (3.62)5 we have for
µh̃

t ∈ Ch̃

q(µt, ν − νĥ) = dC,t(µt, σ) − q(µt − µh̃
t , ν

ĥ) − dC,t(µh̃
t , σ

h)

= dC,t(µt, σ − σh) − q(µt − µh̃
t , ν

ĥ) + dC,t(µt − µh̃
t , σ

h). (4.45)

Applying the continuity of the bilinear form in the first term of (4.45) we have

dC,t(µt, σ − σh) ≤ C‖µt‖
H̃

1
2 (ΓC)
‖σ − σh‖X. (4.46)

Choosingµh̃
t := Qh̃µt as the L2-projection ofµt onto Ch̃, see e.g. Steinbach [80, Chapter

10], the following estimate holds

‖µt −Qh̃µt‖L2(e) ≤ C h̃
1
2
e ‖µt‖

H
1
2 (e)
. (4.47)

We conclude for the last two terms in (4.46) by applying the Cauchy-Schwarz in-
equality and (4.47)

−q(µt − µh̃
t , ν

ĥ) + dC,t(µt − µh̃
t , σ

h) =
∫

AC

(µt − µh̃
t )(σh

t − F νĥ) ds

=
∑

e∈EA
h̃

∫

e

(µt − µh̃
t )(σh

t − F νĥ) ds

≤
∑

e∈EA
h̃

‖µt − µh̃
t ‖L2(e) ‖σh

t − F νĥ‖L2(e)

≤ C ‖µt‖
H

1
2 (ΓC)

∑

e∈EA
h

h̃
1
2
e ‖σh

t − F νĥ‖L2(e). (4.48)

Applying (4.45), (4.46), (4.48) and the equivalence of the H
1
2 -norm and the H̃

1
2 -norm

to (4.44) we finish the proof. �
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4.1. A posteriori error estimate

Remark 4.7: If we demand a higher regularity on the Neumann traction t0, say t0 ∈ L2(ΓN),
we can estimate the nonlocal term ‖t0 − σh · n‖

H
− 1

2 (ΓN)
by the same argumentation as in the

proof of Theorem 6.3 in Gatica, Gatica, Stephan [46]. Here the authors use Theorem 2 in
Carstensen [20], taking advantage of the L2-orthogonality of t0 − σh · n on Ch̃.

Let us define

C̃N := max
{ he1

he2

: ∀ e1, e2 ∈ EN

h̃
with ē1 ∩ ē2 , ∅

}
.

We can state the following result for the total error of the approximate solution of
the discrete variational inequality problem (3.62).

Theorem 4.8:
In addition to the hypotheses of this Section assume that t0 ∈ L2(ΓN). Then there
exists C > 0, independent of the meshsizes h and h̃, such that

‖(σ, ν; u, η,ϕ, λt, λn) − (σh, νĥ; uh, ηh,ϕh̃, λh̃
t , λ

h̃
n)‖

X×H
− 1

2 (AC)×Ỹ′
≤ C

∑

T∈Th

ηtot,T, (4.49)

where the total local error indicator ηtot,T is defined by

η2
tot,T := η2

σ,T + η
2
u,T +

∑

e∈ET∩EA
h

h̃e ‖σh
t − F νĥ‖2

L2(e)
+ log(1 + C̃N)

∑

e∈ET∩EN
h

h̃e ‖σh · n − t0‖2L2(e)
(4.50)

and we have used the definitions of ησ,T and ηu,T in (4.15) and (4.31).

Proof. As we have mentioned in Remark 4.7 the fourth equation in (3.62) states
L2-orthogonality of σh · n − t0 on Ch̃, i.e.

0 = dN(ψ, σh) − t0(ψ) = 〈ψ, σh · n − t0〉L2(ΓN) ∀ ψ ∈ Ch̃.

Therefore, the assumptions of Theorem 2 in Carstensen [20] are fulfilled and we
have

‖t0 − σh · n‖
H
− 1

2 (e)
≤ log(1 + C̃N) h̃

1
2
e ‖σh · n − t0‖L2(e) ∀ e ∈ EN

h . (4.51)

Using (4.51) in the results of Theorem 4.2 and Lemmas 4.4, 4.5 and 4.6 and applying
the triangle inequality we finish the proof. �
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4. Adaptive methods for the dual-dual contact problem with friction

4.2. Numerical experiment using adaptive algorithms

In this section we perform the same numerical experiment as described in Example
3.46 but this time we use an adaptive algorithm based on the a posteriori error
estimator derived in Section 4.1. In the first case we use a refinement algorithm,
where a triangle T ∈ Th is refined, if the corresponding total error indicator ηtot,T is
greater or equal a factor θ ∈ (0, 1) times the maximal local error indicator

ηmax := max
T∈Th

ηtot,T.

In Table 4.1 we present the norms of the approximating solutions and the correspond-
ing degrees of freedom for the adaptive algorithm with θ = 0.5. If we compare the
norms in Table 4.1 with the norms in Table 3.2 we see, that we are still close to the
pre-asymptotic case for σh. Too few triangles were refined during the algorithm,
see Figures 4.1-4.8 although we have run the algorithm for 28 steps. This is caused
by the large differences in the scales of the error indicators. There are three indi-
cators having main influence on ηtot,T. Namely, the indicator corresponding to the
Neumann boundary condition

η2
N,T :=

∑

e∈ET∩EN
h

h̃e ‖σh · n − t0‖2L2(e)
,

the indicator corresponding to the friction force

η2
F ,T :=

∑

e∈ET∩EC
h

h̃e ‖σh
t − F νĥ‖2

L2(e)

and finally, the indicator corresponding to the symmetry of the stress tensor

ηas,T := ‖as(σh)‖L2(T).

The three indicators all include the stress tensor which has large coefficients in the
solution vector due to the large Lamé coefficients. Therefore, the only triangles that
are refined are close to the corners of the domain, on the Neumann boundary ΓN

and on the active part of the contact boundary AC.

In Section 3.4 we have observed singularities in the corners of the domain. As the
boundary traction t0 is zero at the end points of the Neumann boundary, this leads
to large values of the indicators ηN,T for triangles T ∈ Th near the corners of the
Neumann boundary having an edge on ΓN. This can be seen in Figures 4.1-4.8. The
great influence of ηF ,T on the refinement is due to the different mesh sizes for σh

and νĥ and the approximation error for the friction functional as defined in (3.123).
Finally, the maximal value for the indicator ηas,T is even growing with a smaller
mesh size. This can be seen in Table 4.2 in the third column. But even if we use
the L2-norm as proposed by Gatica, Gatica and Stephan in [46] or Carstensen and
Dolzmann in [22] the maximal value stays almost constant, as can be seen in the first
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Figure 4.1.: Initial triangulation ofΩ for the adaptive algorithm.
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Figure 4.2.: Triangulation after 4 steps of the adaptive algorithm.
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Figure 4.3.: Triangulation after 8 steps of the adaptive algorithm.
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Figure 4.4.: Triangulation after 12 steps of the adaptive algorithm.

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

Figure 4.5.: Triangulation after 16 steps of the adaptive algorithm.
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Figure 4.6.: Triangulation after 20 steps of the adaptive algorithm.
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Figure 4.7.: Triangulation after 24 steps of the adaptive algorithm.
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Figure 4.8.: Triangulation after 28 steps of the adaptive algorithm.
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4.2. Numerical experiment using adaptive algorithms

column of Table 4.2. The value of the singularity in the corners is increased, if the
mesh size is decreased. Since the indicator ηas,T is not weighted with the mesh size
we deduce the above mentioned behaviour.

Here, we observe a backdraw of using PEERS elements for the discretization of the
stress tensor, the displacement field and the rotation tensor. The maximal value

ηmax
as := max

T∈Th

ηas,T

is always reached in the two lower corners of the domain, where the Dirichlet
boundary and the contact boundary touch. We assume, that the PEERS elements
are not suitable for such situations, since the symmetry of the stress tensor is not
approximated well there.

‖σh‖X ‖uh‖L2(Ω) ‖ηh‖L2(Ω) ‖ϕh̃‖L2(ΓN) ‖λh̃
t ‖L2(ΓC) ‖λh̃

n‖L2(ΓC) Dof
2617 3.399e-02 1.180e-02 2.811e-02 4.404e-03 6.208e-03 317
2593 3.524e-02 1.229e-02 2.864e-02 4.218e-03 5.234e-03 683
2498 3.463e-02 1.253e-02 2.829e-02 5.453e-03 7.926e-03 1513
2502 3.583e-02 1.315e-02 2.916e-02 5.765e-03 7.775e-03 2388
2424 3.549e-02 1.425e-02 2.920e-02 6.767e-03 1.193e-02 3988
2646 3.555e-02 1.486e-02 2.931e-02 6.735e-03 1.314e-02 4978
2661 3.549e-02 1.488e-02 2.929e-02 6.419e-03 1.348e-02 5278
2669 3.546e-02 1.489e-02 2.927e-02 6.317e-03 1.354e-02 5578

Table 4.1.: Norms of the solutions and degrees of freedom for the frictional contact
problem with µ f = 0.5.

ηmax
as with L2-norm qas ηmax

as with H(div,Ω)-norm qas

2.2600 0.792 18.1975 0.722
3.2031 0.272 22.7789 0.471
2.2388 0.210 40.6292 0.294
3.2002 0.132 45.0999 0.169
2.2293 0.101 82.4388 0.145
3.1956 0.068 89.9081 0.091
2.2243 0.050 165.4811 0.080
3.1950 0.035 179.7075 0.043

Table 4.2.: Maximal indicators ηmax
as and corresponding quotient of triangles with

ηas,T ≥ 0.1ηmax
as .

However, if we compare the quotient qas of the number of triangles, where ηas,T ≥
0.1ηmax

as we see in the second and fourth column of Table 4.2, that this quotient
is tending to zero with decreasing mesh size. Therefore, we propose a second
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Figure 4.9.: Triangulation after 1 step of the adaptive algorithm.
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Figure 4.10.: Triangulation after 3 steps of the adaptive algorithm.
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Figure 4.11.: Triangulation after 5 steps of the adaptive algorithm.
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Figure 4.12.: Triangulation after 7 steps of the adaptive algorithm.
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Figure 4.13.: Triangulation after 9 steps of the adaptive algorithm.
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‖σh‖X ‖uh‖L2 (Ω) ‖ηh‖L2(Ω) ‖ϕh̃‖L2 (ΓN) ‖λh̃
t ‖L2(ΓC) ‖λh̃

n‖L2(ΓC)

2478 3.549e-02 1.461e-02 2.920e-02 6.544e-03 1.290e-02
2456 3.547e-02 1.466e-02 2.918e-02 6.435e-03 1.335e-02
2463 3.541e-02 1.464e-02 2.914e-02 6.300e-03 1.347e-02
2469 3.539e-02 1.463e-02 2.912e-02 6.225e-03 1.352e-02
2473 3.539e-02 1.462e-02 2.910e-02 6.186e-03 1.355e-02

Table 4.3.: Norms of the solutions for the frictional contact problem with µ f = 0.5.

etot Dof ηtot/etot

4.955e-01 5297 0.648
4.030e-01 9492 0.803
2.905e-01 17262 1.111
2.077e-01 32296 1.550
1.481e-01 60989 2.171

Table 4.4.: Norms of the solutions, total error and degrees of freedom for the frictional
contact problem with µ f = 0.5.

adaptive algorithm, where θ denotes the percentage of triangles that are refined in
each step. The triangles are sorted according to their indicators and then, θ percent
of the triangles with largest indicators are refined. In Figures 4.9-4.13 we show the
sequence of refinements for the second adaptive algorithm with θ = 0.2. Although
we start with a finer triangulation, the algorithm also refines triangles inside the
domain.

The norms of the approximated solutions are shown in Table 4.3. For the second
algorithm we also show the total error as defined in (3.124) and the effectivity index
ηtot

etot
, with

ηtot :=
∑

T∈Th

ηtot,T

in Table 4.4. The effectivity index is not satisfactory, which is a consequence of
the increasing maximal indicator ηmax

as as already described above. Nevertheless,
the refinement algorithm behaves sensible as the local refinements are observed in
critical areas, e.g. the active part AC of the contact boundary.
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A. Numerical methods for process-oriented
structures in metal chipping

This work was made possible by the German Research Foundation (DFG) who sup-
ported the author within the priority program SPP 1180 Prediction and Manipulation of
Interactions between Structure and Process. The project focusses on the phenomenon of
tool extraction. In some industrial applications the extraction of a milling cutter out
of thermal shrink-fit chucks during high speed milling processes was reported.

To identify the factors causing the extraction we develop a mathematical model
of the structure and its interaction with the process. Namely, we choose a finite
element model of the tool and the tool holder, i.e. Ω1-Ω6 in Figure A.1 and impose
on one hand the interaction of the tool holder with the dynamic characteristics of
the spindle in terms of inhomogeneous Dirichlet conditions at the interface of tool
holder and spindle ΓD := Ω6 ∩ Ω7. On the other hand the interactions of the tool
with the work piece are incorporated as Neumann conditions on the cutters of the
tool Γc

N(t) := Ω0 ∩ Ω1. In the following we define Ωa as the domain of the tool and
Ωb as the domain of the tool holder.

Figure A.1.: System of workpieceΩ0, toolΩ1-Ω4, tool holderΩ6 and spindleΩ7.

Due to the complex structure of the domains and the large interface betweenΩa and
Ωb a transient model involving two body contact conditions is not feasible. Since the
tool and the tool holder are sticking to each other after the shrink process we neglect
the contact conditions and considerΩ := Ωa ∪Ωb as an inhomogeneous compound
with corresponding material parameters depending on x ∈ Ω. Using this approach
we have to solve the following boundary and intial value problem of the elastic
wave.
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A. Numerical methods for process-oriented structures in metal chipping

Find u(x, t) : Ω ×R+ → R such that

ρ(x)ü(x, t) − divσ(u(x, t)) = f(x, t) ∀x ∈ Ω, t ∈ R+
σ(u(x, t)) · n = t(x, t) ∀x ∈ ΓN, t ∈ R+

u(x, t) = ũ(x, t) ∀x ∈ ΓD, t ∈ R+
u(x, 0) = U(x) and u̇(x, 0) = U̇(x) ∀x ∈ Ω.

Here the volume body force f contains the contribution of the shrink process which
is approximated via heat strain. To discretize the problem we use a 3D FE-model of
the tool and the tool holder, see Figures A.2(a) and A.2(b). For the time discretization
we apply the discontinuous Galerkin method on the system of first order ordinary
differential equations involving the displacement and the velocity as unknowns. We
use piecewise linear functions in space and piecewise quadratic functions in time.
As the system is rotating during the whole process we reformulated the problem in
rotational coordinates.

(a) Magnification of the tool tip. (b) System of tool and tool holder.

Figure A.2.: FE-model of tool and tool holder.

The given displacement ũ on the Dirichlet boundary ΓD results from the vibrations
of the whole system. For this reason a vibration model of the spindle is used to
determine ũ at each time step. The cutting forces computed with a geometrical
cutting force model imply the boundary traction t. For more details, see [29] and
[28]. Both models, vibration model and cutting force model, are coupled with the
FE-model of tool and tool holder in the following way. For given displacement
ũ(x, 0) and traction t(x, 0) we solve the elastic wave equation on the tool and the
tool holder at each time step tk. The resulting displacement field u(x, tk) is used
in the vibration model and the cutting force model to compute ũ(x, tk) and t(x, tk),
respectively. This data denotes the new boundary data for the FE-model of tool and
tool holder in the next time step tk+1.

The phenomenon of tool extraction is caused by the change of the contact situation
from stick to slip at the interface of the tool and the tool holder. Therefore, we
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observe the tangential and normal pressure at this interface during the process, see
Figure A.3. A significant change of the quotient of normal pressure and tangential
pressure at some time step would then be a hint for a possible tool extraction.

Figure A.3.: Change of normal pressure at the interface of tool and tool holder.

129





Bibliography

[1] S. Agmon. Lectures on elliptic boundary value problems. Prepared for publication
by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand
Mathematical Studies, No. 2. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-
London, 1965.

[2] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis.
Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley &
Sons], New York, 2000.

[3] A. Alonso. Error estimators for a mixed method. Numer. Math., 74(4):385–395,
1996.

[4] D. N. Arnold. An interior penalty finite element method with discontinuous
elements. SIAM J. Numer. Anal., 19(4):742–760, 1982.

[5] D. N. Arnold, F. Brezzi, and J. Douglas Jr. PEERS: a new mixed finite element
for plane elasticity. Japan J. Appl. Math., 1(2):347–367, 1984.

[6] I. Babuška. Error-bounds for finite element method. Numer. Math., 16:322–333,
1971.

[7] I. Babuška. The finite element method with Lagrangian multipliers. Numer.
Math., 20:179–192, 1973.

[8] I. Babuška and A. K. Aziz. Survey lectures on the mathematical foundations
of the finite element method. In The mathematical foundations of the finite element
method with applications to partial differential equations (Proc. Sympos., Univ. Mary-
land, Baltimore, Md., 1972), pages 1–359. Academic Press, New York, 1972. With
the collaboration of G. Fix and R. B. Kellogg.

[9] I. Babuška and G. N. Gatica. On the mixed finite element method with Lagrange
multipliers. Numer. Methods Partial Differential Equations, 19(2):192–210, 2003.

[10] M. A. Barrientos, G. N. Gatica, and E. P. Stephan. A mixed finite element method
for nonlinear elasticity: two-fold saddle point approach and a-posteriori error
estimate. Numer. Math., 91(2):197–222, 2002.

[11] T. P. Barrios, G. N. Gatica, M. González, and N. Heuer. A residual based a
posteriori error estimator for an augmented mixed finite element method in
linear elasticity. M2AN Math. Model. Numer. Anal., 40(5):843–869 (2007), 2006.

131



Bibliography

[12] V. Bostan and W. Han. A posteriori error analysis for finite element solutions
of a frictional contact problem. Comput. Methods Appl. Mech. Engrg., 195(9-
12):1252–1274, 2006.

[13] V. Bostan, W. Han, and B. D. Reddy. A posteriori error estimation and adaptive
solution of elliptic variational inequalities of the second kind. Appl. Numer.
Math., 52(1):13–38, 2005.

[14] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, Cambridge, 2004.

[15] D. Braess and W. Dahmen. Stability estimates of the mortar finite element
method for 3-dimensional problems. East-West J. Numer. Math., 6(4):249–263,
1998.

[16] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods,
volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 1994.

[17] F. Brezzi. On the existence, uniqueness and approximation of saddle-point
problems arising from Lagrangian multipliers. Rev. Française Automat. Informat.
Recherche Opérationnelle Sér. Rouge, 8(R-2):129–151, 1974.

[18] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15 of
Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.

[19] R. Bustinza, G. N. Gatica, M. González, S. Meddahi, and E. P. Stephan. Enriched
finite element subspaces for dual-dual mixed formulations in fluid mechanics
and elasticity. Comput. Methods Appl. Mech. Engrg., 194(2-5):427–439, 2005.

[20] C. Carstensen. An a posteriori error estimate for a first-kind integral equation.
Math. Comp., 66(217):139–155, 1997.

[21] C. Carstensen. A posteriori error estimate for the mixed finite element method.
Math. Comp., 66(218):465–476, 1997.

[22] C. Carstensen and G. Dolzmann. A posteriori error estimates for mixed FEM
in elasticity. Numer. Math., 81(2):187–209, 1998.

[23] C. Carstensen, G. Dolzmann, S. A. Funken, and D. S. Helm. Locking-free
adaptive mixed finite element methods in linear elasticity. Comput. Methods
Appl. Mech. Engrg., 190(13-14):1701–1718, 2000.

[24] A. Chernov. Nonconforming boundary elements and finite elements for interface and
contact problems with friction: hp-version for mortar, penalty and Nitsche’s methods.
PhD thesis, Leibniz University Hanover, 2006.

[25] A. Chernov, M. Maischak, and E.P. Stephan. hp-mortar boundary element
method for two-body contact problems with friction. Math. Methods Appl. Sci.,
31(17):2029–2054, 2008.

132



Bibliography

[26] P. G. Ciarlet. The finite element method for elliptic problems. North-Holland Pub-
lishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications,
Vol. 4.

[27] Ph. Clément. Approximation by finite element functions using local regulariza-
tion. Rev. Française Automat. Informat. Recherche Opérationnelle RAIRO Analyse
Numérique, 9(R-2):77–84, 1975.

[28] B. Denkena, D. Heinisch, M. Krüger, E.P. Stephan, M. Maischak, and M. Andres.
Investigations on dynamic tool, structure and process interaction. In Proceedings
of the 2nd International Conference Process Machine Interactions (PMI), 2010.

[29] B. Denkena, E.P. Stephan, M. Maischak, D. Heinisch, and M. Andres. Numerical
computation methods for process oriented structures in metal chipping. In 1st
International Conference on Process Machine Interactions, pages 247–256, 2008.

[30] P. Dörsek and J.M. Melenk. Adaptive hp-fem for the contact problem with
tresca friction in linear elasticity: The primal-dual formulation and a posteriori
error estimation. Appl. Numer. Math., 60(7):689–704, 2010.

[31] G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics. Springer-Verlag,
Berlin, 1976. Translated from the French by C. W. John, Grundlehren der
Mathematischen Wissenschaften, 219.

[32] I. Ekeland and R. Témam. Convex analysis and variational problems, volume 28 of
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, english edition, 1999. Translated from the French.

[33] G. N. Gatica. An application of Babuška-Brezzi’s theory to a class of variational
problems. Appl. Anal., 75(3-4):297–303, 2000.

[34] G. N. Gatica. Solvability and Galerkin approximations of a class of nonlinear
operator equations. Z. Anal. Anwendungen, 21(3):761–781, 2002.

[35] G. N. Gatica and N. Heuer. A dual-dual formulation for the coupling of mixed-
FEM and BEM in hyperelasticity. SIAM J. Numer. Anal., 38(2):380–400 (elec-
tronic), 2000.

[36] G. N. Gatica and N. Heuer. An expanded mixed finite element approach via
a dual-dual formulation and the minimum residual method. J. Comput. Appl.
Math., 132(2):371–385, 2001.

[37] G. N. Gatica and N. Heuer. Minimum residual iteration for a dual-dual mixed
formulation of exterior transmission problems. Numer. Linear Algebra Appl.,
8(3):147–164, 2001.

[38] G. N. Gatica and N. Heuer. Conjugate gradient method for dual-dual mixed
formulations. Math. Comp., 71(240):1455–1472 (electronic), 2002.

133



Bibliography

[39] G. N. Gatica and N. Heuer. A preconditioned MINRES method for the coupling
of mixed-FEM and BEM for some nonlinear problems. SIAM J. Sci. Comput.,
24(2):572–596 (electronic), 2002.

[40] G. N. Gatica, N. Heuer, and S. Meddahi. On the numerical analysis of nonlinear
twofold saddle point problems. IMA J. Numer. Anal., 23(2):301–330, 2003.

[41] G. N. Gatica and M. Maischak. A posteriori error estimates for the mixed finite
element method with Lagrange multipliers. Numer. Methods Partial Differential
Equations, 21(3):421–450, 2005.

[42] G. N. Gatica, A. Márquez, and S. Meddahi. A new dual-mixed finite element
method for the plane linear elasticity problem with pure traction boundary
conditions. Comput. Methods Appl. Mech. Engrg., 197(9-12):1115–1130, 2008.

[43] G. N. Gatica and S. Meddahi. A dual-dual mixed formulation for nonlinear
exterior transmission problems. Math. Comp., 70(236):1461–1480 (electronic),
2000.

[44] G. N. Gatica and E. P. Stephan. A mixed-FEM formulation for nonlinear incom-
pressible elasticity in the plane. Numer. Methods Partial Differential Equations,
18(1):105–128, 2002.

[45] G. N. Gatica and W. L. Wendland. Coupling of mixed finite elements and
boundary elements for a hyperelastic interface problem. SIAM J. Numer. Anal.,
34(6):2335–2356, 1997.

[46] G.N. Gatica, L.F. Gatica, and E.P. Stephan. A FEM-DtN formulation for a non-
linear exterior problem in incompressible elasticity. Math. Methods Appl. Sci.,
26(2):151–170, 2003.

[47] G.N. Gatica, L.F. Gatica, and E.P. Stephan. A dual-mixed finite element method
for nonlinear incompressible elasticity with mixed boundary conditions. Com-
put. Methods Appl. Mech. Engrg., 196(35-36):3348–3369, 2007.

[48] G.N. Gatica, N. Heuer, and E.P. Stephan. An implicit-explicit residual error
estimator for the coupling of dual-mixed finite elements and boundary elements
in elastostatics. Math. Methods Appl. Sci., 24(3):179–191, 2001.

[49] G.N. Gatica, M. Maischak, and E.P. Stephan. Numerical analysis of a trans-
mission problem with signorini contact using mixed-fem and bem. M2AN,
45:779–802, 2011.

[50] G.N. Gatica and S. Meddahi. An a posteriori error estimate for the coupling of
BEM and mixed-FEM. Numer. Funct. Anal. Optim., 20(5-6):449–472, 1999.

[51] V. Girault and P.-A. Raviart. Finite element approximation of the Navier-Stokes
equations, volume 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1979.

134



Bibliography

[52] R. Glowinski. Numerical methods for nonlinear variational problems. Springer
Series in Computational Physics. Springer-Verlag, New York, 1984.

[53] R. Glowinski, J.-L. Lions, and R. Trémolières. Numerical analysis of variational
inequalities, volume 8 of Studies in Mathematics and its Applications. North-
Holland Publishing Co., Amsterdam, 1981. Translated from the French.

[54] C. Grossmann and H.-G. Roos. Numerical treatment of partial differential equations.
Universitext. Springer, Berlin, 2007. Translated and revised from the 3rd (2005)
German edition by Martin Stynes.

[55] J. Gwinner and E. P. Stephan. A boundary element procedure for contact prob-
lems in plane linear elastostatics. RAIRO Modél. Math. Anal. Numér., 27(4):457–
480, 1993.

[56] W. Han. A posteriori error analysis via duality theory, volume 8 of Advances in
Mechanics and Mathematics. Springer-Verlag, New York, 2005. With applications
in modeling and numerical approximations.

[57] W. Han and B. D. Reddy. Plasticity, volume 9 of Interdisciplinary Applied Mathe-
matics. Springer-Verlag, New York, 1999. Mathematical theory and numerical
analysis.

[58] H. Hertz. Über die Berührung fester elastischer Körper. Journal für die reine und
angewandte Mathematik, 92:156–171, 1881.

[59] P. Hild and Y. Renard. An error estimate for the Signorini problem with
Coulomb friction approximated by finite elements. SIAM J. Numer. Anal.,
45(5):2012–2031 (electronic), 2007.
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[70] J. Nečas, J. Jarušek, and J. Haslinger. On the solution of the variational inequality
to the Signorini problem with small friction. Boll. Un. Mat. Ital. B (5), 17(2):796–
811, 1980.

[71] J.-C. Nédélec. Integral equations with nonintegrable kernels. Integral Equations
Operator Theory, 5(4):562–572, 1982.

[72] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, second edition, 2006.

[73] J. T. Oden and E. B. Pires. Nonlocal and nonlinear friction laws and variational
principles for contact problems in elasticity. Trans. ASME Ser. E J. Appl. Mech.,
50(1):67–76, 1983.

[74] J.T. Oden and J.A.C. Martins. Models and computational methods for dynamic
friction phenomena. Comput. Methods Appl. Mech. Engrg., 52(1-3):527–634, 1985.
FENOMECH ’84, Part III, IV (Stuttgart, 1984).

[75] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes
in C. Cambridge University Press, Cambridge, second edition, 1992. The art of
scientific computing.

[76] P.-A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order
elliptic problems. In Mathematical aspects of finite element methods (Proc. Conf.,
Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pages 292–315. Lecture Notes
in Math., Vol. 606. Springer, Berlin, 1977.

[77] J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. In Handbook
of numerical analysis, Vol. II, Handb. Numer. Anal., II, pages 523–639. North-
Holland, Amsterdam, 1991.

[78] J. C. Simo and T. J. R. Hughes. Computational inelasticity, volume 7 of Interdisci-
plinary Applied Mathematics. Springer-Verlag, New York, 1998.

136



Bibliography

[79] I. S. Sokolnikoff. Mathematical theory of elasticity. McGraw-Hill Book Company,
Inc., New York-Toronto-London, 1956. 2d ed.

[80] O. Steinbach. Numerische Näherungsverfahren für elliptische Randwertprobleme,
Finite Elemente und Randelemente. B.G. Teubner, 2003.

[81] F. T. Suttmeier. Adaptive computational methods for variational inequalities
based on mixed formulations. Internat. J. Numer. Methods Engrg., 68(11):1180–
1208, 2006.

[82] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement
techniques. Wiley-Teubner, 1996.

[83] N. J. Walkington and J. S. Howell. Inf-sup conditions for twofold saddle point
problems. submitted June 17, 2009 in Numerische Mathematik.

[84] G. H. Wang and L. H. Wang. Uzawa type algorithm based on dual mixed
variational formulation. Appl. Math. Mech., 23(7):682–688, 2002.

[85] G.H. Wang and X.Z. Yang. Numerical modeling of a dual variational inequality
of unilateral contact problems using the mixed finite element method. Int. J.
Numer. Anal. Model., 6(1):161–176, 2009.

[86] K. Yosida. Functional analysis. Second edition. Die Grundlehren der mathema-
tischen Wissenschaften, Band 123. Springer-Verlag New York Inc., New York,
1968.

137





Curriculum Vitae

28.12.1980 Born in Siemianowice, Poland

2000 Abitur at Greselius Gymnasium, Bramsche

2000–2001 Community service

10/2001 – 02/2007 Study of Mathematics
Studienrichtung Rechnergestützte Wissenschaften
with minor subject civil engineering,
Leibniz Universität Hannover

10/2003 Intermediate diploma in Mathematics

02/2007 Diploma in Mathematics, topic of the Diploma thesis:
Finite Elemente und Dirichlet-zu-Neumann Abbildung
mit Anwendungen in der Mechanik

since 03/2007 Research assistant and Ph.D. student at the Institute
of Applied Mathematics (IfAM),
Leibniz Universität Hannover

139


