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 I

SUMMARY 
 

The aim of this study was to compare the morphological, physiological and 
biochemical responses of Atriplex nummularia and A. leucoclada at various NaCl 
salinities. The plants were grown under artificial conditions in a gravel/hydroponic 
quick check system with 0, 25, 50, 100 or 150% seawater salinity. Increasing NaCl 
salinity stimulated the plant growth of both Atriplex species, with a maximum at 50% 
SWS, corroborating the halophilic nature of these species. The salinity threshold of 
both Atriplex species was slightly above 50% SWS, while the C50 was at 140 and 
114% SWS for A. nummularia and A. leucoclada respectively. High salinities 
inhibited the growth of both Atriplex species, with more adverse effect on A. 
leucoclada. The growth reduction could not be explained by water deficit because 
both Atriplex species were able to reduce their shoot water potential as a 
consequence of a decreased osmotic potential (mainly by Na+ and Cl-- accumulation) 
in all plant organs. Several mechanisms were involved in both species to reduce the 
excessive ion accumulation (toxicity): 1) The old leaves were shedded and used for 
the dispose of Na+ and Cl-; 2) the bladder hairs protected the actively 
photosynthesizing tissues by the accumulation of toxic ions; 3) ion dilution was 
achieved as a result of increasing leaf succulence; 4) the WUE of photosynthesis 
was increased. Elevating salinity led in both Atriplex species also to a drastic 
decrease of the K+, Ca2+ and Mg2+ concentrations and to symptoms of ion deficiency. 
In both cases (either ion deficiency or ion toxicity) salt resistance was apparently 
related to the ability to compartmentalize the harmful ions and to maintain adequate 
concentrations of the essential ions, especially, in the cytoplasm of the actively 
metabolic tissues. In this context, A. nummularia presented higher selective ion 
uptake and transport capacities at the root level in comparison to A. leucoclada. In 
both species, high dark respiration rates (DR) were observed for plants grown at the 
optimal salinity level, reflecting the high energy requirements for the transport and the 
sequestration of ions and biosynthesis of compatible solutes such as carbohydrates 
and proline. High NaCl concentrations significantly inhibited the net CO2 assimilation 
rate, the transpiration rate, the stomatal resistance, and the internal CO2 
concentration. The reduced photosynthesis may be attributed to the salt-induced 
reduction in chlorophyll contents especially Chl(b) and the (ultrastructural) changes in 
the chloroplasts. As a common reaction, high NaCl salinity led to a decrease of the 
occurrence of RubisCo large subunit in the leaves of both Atriplex species. However, 
PPDK, ALdP, MDH, HMT, and SAMS were all up-regulated in A. nummularia, but all 
down-regulated in A. leucoclada in response to high NaCl salinity. These results can 
be interpreted as a higher responsiveness of A. nummularia to balance the C4-
photosynthesis. Reduced growth seems to be due to ion toxicity and ion imbalance in 
both species. The lower selectivity of ion uptake and transport capacities, its high 
energy demand and its lower responsiveness to balance the photosynthesis are the 
major reasons for lower salt resistance of A. leucoclada.  
 
Keywords: Salt tolerance mechanisms, Atriplex nummularia, Atriplex leucoclada. 



Zusammenfassung    

 II

Zusammenfassung 
Das Ziel dieser Studie war der Vergleich und die Untersuchung der Effizienz 

der Salzresistenzmechanismen von Atriplex nummularia und A. leucoclada, mit einem 
Schwerpunkt auf strukturelle, physiologische und molekulare Anpassungen Die 
Pflanzen wurden unter Gewächshausbedingungen in einen Schnelltestsystem (QCS) 
mit 0, 25, 50, 100 und 150% Meerwassersalinität (SWS) bewässert. NaCl stimulierte 
das Pflanzenwachstum beider Atriplex Arten bis zu einem Wachstumsoptimum von 
50% SWS. Es gab jedoch einen signifikanten Unterschied bei der C50. Sie betrug 
140% für A. nummularia und nur 114% SWS für A. leucoclada. Außerdem hemmte 
eine Erhöhung der Salinität auf über 50% SWS besonders das Wachstum von A. 
leucoclada. A. nummularia war somit eindeutig die salzresistentere der beiden 
untersuchten Arten. Es gab keinen Hinweis, dass ein Wasserdefizit die o.g. 
Wachstumsabnahme bei hoher Salinität bewirkte, da das Sprosswasserpotential und 
die osmotischen Potentiale in allen Pflanzenorganen ausreichend und vorwiegend 
durch Na+ und Cl- Akkumulation abnahmen. Letzteres wurde als Hinweis für 
potentielle Ionentoxizität gewertet. Verschiedene Mechanismen waren in beiden Arten 
vorhanden um die NaCl-Toxizität zu reduzieren: 1) Die adulten Blätter wurden zur 
Beseitigung von exzessiv akkumuliertem NaCl abgeworfen; 2) die Blasenhaaren 
akkumulierten NaCl zum Schutz der photosynthetisch aktiven Gewebe; 3) toxische 
NaCl-Konzentrationen wurde durch eine gesteigerte Blattsukkulenz vermieden; 4) die 
WUE der Photosynthese wurde erhöht. Als ein Beleg für Ionen-Mangel wurde die 
salzbedingt deutliche Abnahme der K+, Ca2+ und Mg2+ Konzentrationen in allen 
Organen beider Arten interpretiert. Sowohl bei Ionen-Mangel als auch bei Ionen-
Toxizität ist die Salzresistenz mit der Fähigkeit verbunden, intrazellular die 
schädlichen Ionen vom Zytoplasma fern zu halten (kompartimentieren) aber 
gleichzeitig ausreichend hohe Konzentrationen der essentiellen Ionen in diesem 
stoffwechselaktiven Kompartiment zur Verfügung zu stellen. In diesem 
Zusammenhang zeigte A. nummularia im Vergleich mit A. leucoclada eine signifikant 
höhere Ionenselektivität bei der Aufnahme und dem Transport. Der dadurch aber auch 
durch die Synthese von stoffwechselverträglichen Substanzen (wie zum Beispiel 
Kohlenhydrate und Prolin) erhöhte Energiebedarf wurde in beiden Arten durch eine 
erhöhte Dunkelatmung (DR) abgedeckt. Salinität führte außerdem zum 
Stomataverschluss (hoher stomatärer Widerstand) und damit verbunden niedrigen 
Transpirationsraten. Die salzbedingt verminderte Photosyn-these könnte 
zurückzuführen sein auf niedrige Ci-Konzentrationen und Chlorophyll-gehalte sowie 
Schädigungen der Chloroplasten (Aufblähen der Thylakoidstapel) und einer möglichen 
Hemmung des Membrantransports, die mit der Anhäufung von großen Stärke-Körnern 
einher ging. 150% SWS bewirkte außerdem eine Abnahme der RubisCo- (große 
Untereinheit) in den Blättern beider Atriplex Arten. Auf dem C4-Weg der 
Photosynthese erhöhte allerdings nur A. nummularia die Expression von PPDK, 
ALdP, MDH, HMT und SAMS während A. leucoclada deutliche Abnahmen dieser 
Proteine aufwies. Dieses Ergebnis kann als Beleg für eine resistenzerhöhende 
Regulation der Photosynthese bei A. nummularia gewertet werden. Die niedrige 
Selektivität bei der Ionenaufnahme und dem Transport, der hohe Energiebedarf und 
die fehlende Regulation im C4-Weg der Photosynthese sind die Hauptgründe für die 
vergleichsweise niedrige Salzresistenz von A. leucoclada.  
Schlüsselwörter: Salztoleranzmechanismen, Atriplex nummularia, Atriplex 
leucoclada.  
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1 INTRODUCTION 
 

Approximately half of the world's land surface is perennial desert or dry lands, 

characterized by a climate with insufficient rainfall to meet the sustainable 

agricultural production (UNFPA, http://www.unfpa.org/seed/unso/pub-htm/dryland-

population.pdf). These areas are mostly inhabited by developing countries with 

dense population (about 16% of the world’s population). The high rate of population 

growth in these regions associated with the poor economic performance, water 

shortages, possible global climate changes, mismanagement, improper irrigation 

systems, deterioration of the vegetative cover, degradation of soil fertility and 

structure are leading to the desertification (FAO, 2005).  

The spread of desertification threatens agricultural productivity worldwide by 

removing arable land from crop production. According to the UNCCD 

(http://www.unccd.com), more than 1 billion people in 110 countries are at risk of 

being displaced as a consequence of desertification. The widespread of 

desertification is usually related to the water shortage, the most pressing problem 

for mankind, most notably in the arid and semi-arid regions (Shay, 1990; Hamdy, 

2002). Although two thirds of the earth is covered by water surfaces, only 2.5% is 

fresh water, while the majority (97.5%) is unusable saline water, containing about 3 - 

5% salt, mostly sodium chloride (Hamdy, 2002). The usable portion of the 

freshwater resources for drinking, industry, and agriculture is less than 1% of all 

freshwater, and 0.01% of all water on the earth (Ghassemi et al., 1995; Hamdy, 

2002). These dry areas can only be more productive by irrigation (Flowers, 2004). 

Unfortunately, high probability of salinization throws an immediate question over the 

sustainability of using irrigation to increase food production (Ghassemi et al., 1995). 

Salinity is one of the oldest and serious agricultural problems, especially in 

countries where irrigation is an essential aid to agriculture (Flowers and Yeo, 1995; 

Munns, 2002; Rengasamy, 2002). It affects about 7 – 10 % of the world’s total area, 

mostly located in arid and semi-arid regions (Szabolcs, 1994; Glenn et al., 1998; 

FAO, 2005). Additionally, the extension of irrigated agriculture and the intensive use 

of water resources combined with high evaporation rates in the arid and semi-arid 

regions increase the concentration of water soluble salts close to the soil surface. 



    INTRODUCTION    

 2

Inevitably, this leads to an acceleration of secondary salinization that usually results 

in losses of once productive agricultural land (Choukr-Allah, 1996; Lieth and 

Mochtschenko, 2002; Lambers, 2003; Munns, 2005). At present, about one third of 

the world’s cultivated lands are salt-affected due to unsustainable irrigation practices 

and about 1.6 million ha/year of irrigated lands go out of production due to 

salinization (Flowers, 1999; Glenn et al., 1999; Tanji, 2002; FAO, 2005).   

Shortage of the precious natural resources (i.e. land and water) combined 

with an increasing demand for food as the population increase seriously limits the 

economic development and threatens the mankind existence worldwide, but 

particularly in arid and semi arid-regions. The situation in Egypt is an example for 

the critical overload. The agricultural production in Egypt is not increasing 

proportionally to population growth because of limited natural resources. 

Geographically speaking, Egypt is located between 27 – 30 °N latitude with a total 

area of one million square kilometres. Most of the population is concentrated in only 

a small portion (3.5 – 4% of the total area). The major parts of the country (96%) 

have a very low annual precipitation, ranging between 0 mm in the desert to 200 

mm in the northern coastal region. Because of the insufficient rain, the agricultural 

production of the country is almost entirely dependent on the Nile River (55.5 BCM 

per year). As in many countries of the arid region, the competition for fresh water 

increases. Thus water of better quality is used primarily for drinking, whereas water 

of lower quality such as brackish or even saline water is often used for irrigation. 

Unfortunately, the salinity of such water resources typically exceeds the limit 

tolerated by our conventional crops.  

The primary value of increasing salt tolerance of crops will be sustainability of 

irrigation (Tester and Davenport, 2003; Flowers, 2004). Given the amount by which 

food production will have to be increased, it seems reasonable to predict that 

changing of salt tolerance of crops will be an important aspect of plant breeding in 

the future. An alternative approach is domestication of naturally occurring 

halophytes for a sustainable crop production since they have already the requisite 

level of salt tolerance (Boer and Gliddon, 1998; Lieth et al., 1999). The study of 

halophytes with potential to become economically important is the aim of this 

investigation. About 2500 halophytic species are known throughout the world (Lieth 

et al., 1999; Koyro, 2006). They constitute the basis for the selection of plant 
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material that combined economic utility with the ability to grow, produce and 

reproduce under high salinity conditions (Aronson, 1989; Lieth et al., 1999). The 

optimum and sustainable utilization of halophytes as cash crops has the potential of 

making an important contribution to the food and feed production in many arid and 

semi-arid regions (Choukr-Allah, 1993; Lieth and Al Masoom, 1993; Glenn et al., 

1999; Lieth et al., 1999; Koyro and Huchzermeyer, 1999a; Ahmad and Malik 2002; 

Barrett-Lennard, 2002; Zhao et al., 2002; Koyro, 2003b; Liu et al., 2006). It also 

permits the use of saline water, thereby reduces some of the demand for high 

quality water. However, application of halophytes is complex and its sustainable use 

needs great care, in considering agronomic, water management and economic 

factors without ignoring long term effects of this practice on the soil properties and 

on crop yield (Hamdy, 2002). In many developing countries, utilization of halophytes 

as cash crops has entered the realm of economic feasibility (Boer and Gliddon, 

1998; Lieth and Mochtschenko, 2002). A number of halophytes are used as food 

crops such as many Atriplex species, Aster tripolium, Salicornia europea, Avicennia 

marina, Avicennia germinans, Kosteletzkya virginica and Zizania aquatica (O'Leary 

1984; Lieth and Mochtschenko, 2002). Several halophytic species could provide 

good fodder for livestock and wildlife such as Atriplex nummularia, Atriplex 

leucoclada, Suaeda fruticosa, Spartina alternifora, Sporobus virginicus, Leptochloa 

fusca (Güth, 2001; Lieth and Mochtschenko, 2002). Wood from certain mangroves 

such as Avicennia marina, Rhizophora mangle and Laguncularia racemosa as well 

as Tamarix amnicola have been used traditionally for house and ship building (Güth, 

2001; Lieth and Mochtschenko, 2002). Several halophytes such as Salsola kali 

contain chemicals of interest for medical and pharmaceutical purposes (Menzel and 

Lieth, 1999). In many arid and semi-arid regions halophytes like Batis maritime, 

Mesembrianthemum crystalinum and Sesuvium portulacastrum may help improve 

landscapes and roadsides. In addition, many halophytes can be used as ornamental 

plants such as Aster tripolium and Limoneastrum monopetalum (Lieth et al., 1999; 

Lal, 2001; Güth, 2001; Lieth and Mochtschenko, 2002). Suaeda salsa and Batis 

maritima can also be applied in saline land reclamation (phyto-remediation) (Zhao, 

1991; Lieth et al., 1999). Use of halophytes has also substantial environmental 

benefits, since several halophyte species have the potential for coastline protection, 
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dune stabilisation or CO2 sequestration to reduce the atmospheric CO2 pollution 

(Güth, 2001; Lieth and Mochtschenko, 2002).  

In this long list of useful plants, the family Chenopodiaceae, contains some 

particularly economically important halophytic generis such as Atriplex. As 

described so far, the genus Atriplex comprises about 200 species worldwide, mostly 

grown in arid and semiarid saline habitats. Atriplex species have been generally 

recognized for their high salt and drought tolerance. They evolved a number of 

adaptive mechanisms enabling them to survive and grow under saline and dry 

conditions (Watson et al. 1987; McKell, 1994; Glenn et al., 1997; Osman and 

Ghassaeli, 1997). The adaptability of these species to such stressful environments 

is a key for their utilization (Kelley et al., 1982). Owing to their favourable crude 

protein and acceptable nutritional contents, many Atriplex species have been 

introduced specifically for the purpose of increasing forage productivity and 

rehabilitating the marginal land, particularly in the arid and semi-arid regions (Kelly 

et al., 1982; McKell, 1994; Swingle et al., 1996). They are extremely important as 

forages for the livestock and wildlife on a year-round basis especially during the off-

season periods (Goodall, 1982; Le Houérou, 1995). According to Nefzaoui (1997), 

more than one million ha in the Middle East have been cultivated with different 

Atriplex species for this purpose. In this respect, some Atriplex species (A. 

lentiformis, A. barclayana, A. europea) produce about 0.6 – 2.6 tones proteins per 

year and per ha, and thus under saline conditions (O’Leary et al., 1985). 

Additionally, Atriplex shrubs can be used as roadside plants (Stark, 1966), fuel 

(Nord and Countryman, 1972), in reclamation of salty soils (Goodin and Mozafar, 

1972), and soil stabilisation (McKelly, 1974).  

Among the salt tolerant Atriplex species, A. nummularia Lind. and A. 

leucoclada Bioss, have high potentials to become cash crops. A. nummularia has 

been long promoted as one of the most promising Atriplex species for extensive use 

as a forage crop on saline and marginal lands in several Mediterranean countries. 

As a plant with C4 carbon fixation, it exhibits high water use efficiency (WUE) of 

photosynthesis (Osmond et al., 1980; Miyamoto and Mueller, 1994) and high salinity 

and drought tolerances (Sharma, 1982). There are several relevant information 

about its high fodder quality such as high biomass production, high protein content 

(approximately 15%), high digestible matter content, low fibre and moderate ash 
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content, within the range of conventional forage sources (National Academy of 

Sciences, 1971; Kelley et al., 1982; Glenn et al., 1997).  

A. leucoclada is a native species, used as forage in the saline and marginal 

area of North Egypt. However, less data are available on A. leucoclada in 

comparison to A. nummularia.  

Despite the ecological importance of A. nummularia and A. leucoclada and 

their potential use in the salt-affected area, knowledge about the levels of salt 

tolerance and their responses to salt stress (mechanism of salt tolerance), 

particularly about A. leuococlada, has not been sufficiently assessed. Understanding 

the morphological, physiological and biochemical mechanisms underlying the salt 

tolerance could provide important information needed for the sustainable utilisation 

of both Atriplex species and provide basic information about the effect of salinity on 

the growth and development of these plants (Lieth and Mochtschenko, 2002; Koyro 

and Huchzermeyer, 2004). Hence one aim of the current study is to assess the 

potential of sustainable utilization for A. nummularia and A. leucoclada as cash 

crops, and to compare the performance of these closely related Atriplex species at 

various NaCl salinities using the quick check system (QCS, Koyro and 

Huchzermeyer, 1999a). This system seems ideal to get detailed and precise 

information about the threshold of salinity tolerance and the individual mechanisms 

for salt tolerance. 

It seems essential to select methods (including some general and specific 

physiological or biochemical parameters) closely related to the four major constrains 

of plant growth under saline conditions i.e. water relations, CO2 gas-exchange, ion 

toxicity and nutrient imbalance constrains. One of these parameters is the biomass 

production. The plant species differ greatly in their growth responses to salt stress. 

While the glycophytes show generally a dramatic growth inhibition under saline 

condition, halophytes can tolerate and grow in a substrate rich in NaCl (Flowers et 

al., 1986). Many reports revealed that some halophytic species do not only tolerate 

high salinity levels but reach their optimal growth at moderate salinities (Ungar, 

1991; Koyro et al., 2006; Liu et al., 2006). Growth stimulation at moderate salinity 

(100 - 200 mol*m-3 NaCl) has been reported for several Atriplex species such as A. 

infata F. Muell (Ashby and Beadle, 1957), A. nummularia (Uchiyama, 1987; Dunn 

and Neales, 1993), A. hastata (Black, 1965; Dunn and Neales, 1993), A. halimus 
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(Bajji et al., 1998) and A. griffithii (Khan et al., 2000). If the salinity increases above 

a threshold level, the growth of many halophytic species is markedly reduced 

(Greenway, 1968; Uchiyama, 1987; Ungar, 1996; Khan et al., 2000; Lu et al., 2002; 

Kefu et al., 2003; Koyro et al., 2006). 

The primary deleterious effect of raising water salinity on plant growth is due 

to the disturbance of water homeostasis. Plants that grow in saline habitats face the 

problem of having low water potential in the substrate (Marschner, 1995). Low soil 

water potential interferes with the plant ability to take up water from the medium 

and, hence, causes growth reduction, along with a range of physiological and 

biochemical changes similar to those caused by water deficit (Sohan et al., 1999; 

Romero-Aranda et al., 2001; Koyro, 2000; Flowers, 2004; Munns, 2005). At low soil 

water potential, salt-tolerant plants adjust osmotically (accumulate solutes) and 

maintain a potential fort the influx of water. Several authors observed that water and 

osmotic potentials of many halophytic species decrease with the increase of 

substrate salinity (Khan et al., 2000; Romero-Aranda et al., 2001; Lu et al., 2002; 

Gulzar et al., 2003a, b and 2005).  

One of the primary physiological targets of the induced water deficit (see 

above) is the photosynthetic capacity of plants (Lawlor and Cornic, 2002). Low soil 

water potential can result in reduction of cell turgor pressure that provides the 

expansive forces necessary for cell wall extension (Frensch and Hsiao, 1994; 

Marschner, 1995; Koyro, 1997). This can lead to an inhibition of plant growth, 

reduction of leaf area and promotion of leaf senescence and abscission. As a result, 

the total leaf area decreases, leading to reduced photosynthetic capacity and 

biomass production. Moreover, water deficit induces a rapid closure of stomata to 

avoid further water loss via transpiration (Cornic, 1994; Tester and Davenport, 

2003). As a consequence, the apparent photosynthesis rate declines due to 

restricted availability of CO2 for carboxylation reactions in the leaves (stomatal 

limitation of the photosynthesis) (Brugnoli and Björkman, 1992; Huchzermeyer and 

Koyro, 2005). Salt induced changes in leaf anatomy, such as increased thickness of 

cell walls and decreased intercellular spaces between mesophyll cells can also 

restrict CO2 diffusion toward the chloroplasts (Evans and Caemmerer, 1996; Lauteri 

et al., 1997; Delfine et al., 1998). Limitation of CO2 supply to Rubisco is a major 

contribute to reduction in photosynthesis in many C3 carbon fixating plants. 
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However, in C4 plants there have been few attempts to quantify stomatal and non 

stomatal limitations to photosynthesis under stress conditions. In latter one, CO2 is 

fixed via phosphoenolpyruvate carboxylase in mesophyll cells into C4 acids, which 

are transported to bundle sheath cells where they serve as donors of CO2 to the C3 

cycle via C4 acid decarboxylases. By integrating the two CO2 assimilation pathways 

consecutively in the spatially cooperative mesophyll and bundle sheath cells, C4 

plants can achieve high photosynthetic efficiency, especially under conditions that 

cripple C3 plants (Hatch, 1997; Furbank et al., 2000). A major advantage of C4 

plants over C3 plants is not only higher photosynthetic efficiency, but more effective 

capacity to coordinate the rate of photosynthesis and transpiration. This may be 

significant in considering the ecological conditions under which many C4 plants such 

as Atriplex are grown (high salinity and high light intensity) (Furbank and Taylor, 

1995; Hatch, 1997). In many halophytic species, stomatal limitation of 

photosynthetic capacity reduces the transpiration rate and leads to higher water use 

efficiency in some halophytes (Naidoo et al., 1995; Robinson et al., 1997; Koyro and 

Huchzermeyer, 2004). There is, however, a long-standing controversy as to whether 

salt stress mainly limits photosynthesis through stomatal closure or metabolic 

impairments (non stomatal limitations) (Dionisio-Sese and Tobita, 2000; Lovelock 

and Ball, 2002). Non-stomatal limitation of photosynthesis has been attributed to an 

inhibited coupling factor activity (Tezara et al., 1999), reduced carboxylation 

efficiency (Wise et al., 1990; Jia and Gray, 2004), reduced amount or activity of 

crucial photosynthetic enzymes such as Rubisco (Parry et al., 2002), reduced RuBp 

regeneration (Giménez et al., 1992; Gunasekera and Berkowitz, 1993), and 

reduction of the contents of photosynthesis pigments (Seemann and Critchley, 

1985; Abdullah and Ahmed, 1990; Hamada and El-Enany, 1994; Hajar et al., 1996; 

Koyro, 2006). Apparent photosynthesis was significantly suppressed in high salt 

stressed A. prostrata (Wang et al., 1997), A. nummularia (Uchiyama, 1987; Dunn 

and Neales, 1993), A. centralasiatica (Qiu et al., 2003). In most cases, growth 

reduction was usually accompanied by a decreased photosynthetic capacity (Dunn 

and Neales, 1993; Lu et al., 2003 a, b; Koyro and Huchzermeyer, 2004). The 

reduction of CO2 supply to the carboxylation sites in the leaves as a result of 

stomatal and/or non-stomatal limitations increases the potential for photoinhibition 

and photooxidation (Lawlor, 2002; Lovelock and Ball 2002). These processes are 
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closely associated with an excess of excitation energy in PSII and over reduction of 

the photosynthetic electron transport (ET) chain (Osmond and Grace, 1995). If no 

protective mechanisms are employed, reactive oxygen species (ROS, such as 

superoxide, hydrogen peroxide, hydroxyl radicals and singlet oxygen) accumulate in 

the plants. ROS accumulation can damage many important molecules such as 

proteins, lipids and nucleic acids (Asada, 1999; Ben Amor et al., 2005), and leads to 

inactivation or damage of PSII (Hopkins, 1999; Parida, 2004).  

Ion toxicity is one major problem for plants growing on saline soils. Although 

Na+ is important in many C4 species for the conversion of pyruvate to 

phosphoenolpyruvate and for pyruvate translocation across membranes (Ohnishi et 

al., 1990; Murata et al., 1992), excessive Na+ may account for specific ion toxicity 

(Levitt, 1980). Symptoms of Na+ toxicity such as chlorosis and necrosis at the leaf 

tips and margins, followed by leaf death are common in many plant species (Zhu, 

2001; Munns, 2002). This leads apparently to a reduction of the leaf lifetime, and 

hence reduces the photosynthetic capacity and plant production (Munns, 1993, 

2002). Further, Na+-induced biochemical and ultra-structural changes in the 

chloroplasts may negatively impact photosynthesis (Fedina et al. 1994; Koyro, 2002; 

Lovelock and Ball 2002; Fiadalgo et al., 2004). Accumulation of Na+ in the leaf 

apoplast may additionally result in an osmotic damage (Öertli, 1968; Flowers et al., 

1991). Further, high cytoplasmic Na+ concentration interferes with the K+ binding 

sites, and hence inhibits a wide range of important metabolic processes that 

crucially depend on K+ (Blaha et al., 2000; Munns, 2005). Although the toxic effects 

of Na+ have been frequently reported, those of chloride were relatively ignored. Cl- 

toxicity may be primarily due to the osmotic effect of high Cl- in the cell walls (Öertli 

1968; Marschner, 1995), or Cl- accumulation in the cytosol, where it can affect 

protein synthesis and enzyme activity (Flowers et al. 1977; Gibson et al. 1984). Cl- 

may also interfere with anionic sites involved in binding of RNA and anionic 

metabolites such as bicarbonate, carboxylates and sugar phosphates (Wyn Jones 

and Pollard, 1983; Serrano, 1996; Xu et al., 2000).  

Plant growth inhibition can be also seen due to the effect of both Na+ and Cl- 

to limit the uptake of the essential nutrients required for growth (nutrient imbalance). 

High Na+ concentration in the rooting medium is known to influence uptake, 

transport and utilization of major cations such as K+, Ca2+ and Mg2+ and affects ion 
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homeostasis within the plant (Marschner, 1995; Hasegawa et al., 2000; Silberbush 

and Ben-Asher, 2001; Wyn Jones and Gorham, 2002; Tester and Davenport, 2003; 

Liu et al., 2006). This effect was observed in many NaCl stressed plants such as A. 

amnicola (Aslam et al.,1986), A. nummularia (Uchiyama, 1987; Ramos et al., 2004), 

A.barclayana (Nerd and Pasternak, 1992), A. griffithii (Khan et al., 2000), and A. 

hortensis (Wilson et al., 2000).  

K+ is a major macronutrient essential for many cell processes. The 

physiological roles of K+ in the plants have been frequently reviewed (Marschner, 

1995; Shabala et al. 2003). K+ is involved in enzyme activation, turgor formation, 

regulation of stomatal movement and maintenance of osmotic homeostasis. 

Counterbalancing the large excess of negative charge, K+ is also equilibrated with 

Na+ to provide a correct environment for protein synthesis in condition of hyperionic 

stress. K+ uptake at the root/soil boundary is achieved by highly K+ selective 

pathways, whereas Na+, at least in part, appears to move through less selective 

systems (Tester and Davenport, 2003). Because of the similarity between Na+ and 

K+ in their hydrated ionic radii (Amtmann et al., 2001; Tester and Davenport, 2003; 

Munns, 2005), Na+ competes with K+ at the sites of entry. Thus the K+ uptake 

decreases, resulting in ion toxicity, ion imbalance and growth reduction (Nakamura 

et al., 1990; Marschner, 1995; Shabala et al., 2003). 

Also, NaCl salinity severely affects Ca2+ uptake and transport, so that the 

shoots of stressed plants frequently show symptoms of Ca2+ deficiency (Cramer et 

al., 1987; Ehret et al., 1990; Francois et al., 1991). The physiological functions of 

Ca2+ have been comprehensively reviewed by Marschner (1995), and Cramer 

(2002). Briefly, it acts as a structural component of the apoplastic macromolecules. 

This function is related to its capacity for coordination by which it provides stable but 

reversible intermolecular linkages, predominantly in the cell walls and at the plasma 

membrane. Ca2+ has been also recognized as a transducer of hormonal and 

environmental signals to the responsive elements of cell metabolism (Lynch et al., 

1989 and Bennet and Breen, 1991). The displacement of Ca2+ ions by Na+ at the 

plasma membrane surface could induce the depolarization of the plasma 

membrane, inducing leakage of cytosolic K+ from the cell (Shabala and Newmann, 

2000; Cramer, 2002). Adequate Ca2+ contents in the salt-treated root tissues are 

thought to be a prerequisite for the maintenance of a high K+/Na+ selectivity 
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(Hajibagheri et al., 1987; Cramer, 2002). Therefore, the ratio Ca2+/Na+ in plants 

appears as the more reliable indicator for salt stress (or tolerance) than the Na+ 

concentration alone (Ben Hayyim et al., 1987; Cramer et al., 1986).  

The uptake of a further macronutrient, Mg2+ depends also on the Na+ 

competition. Mg2+ deficiency can influence many metabolic processes including 

enzymatic reactions such as RubisCo, Fructose-1, 6-Bisphosphatase, ATPases and 

most kinases (Marschner, 1995). Additionally, Mg2+ plays a key role in the 

chlorophyll and protein synthesis (Wyn Jones and Pollard, 1983). Mg2+ deficiency in 

plants often results in ultrastructural changes, especially in the chloroplast (Puech 

and Mehne-Jakobs, 1997). Hence, Mg2+ deficiency would have damaging effects on 

photosynthetic activity of plants (Sun and Payn, 1999; Fischer and Bremer, 1993; 

Koyro, 2000).  

High external Cl- concentration can also restrict the absorption of NO3
-, PO4

3- 

and SO4
2- (Termaat and Munns, 1986; Marschner, 1995; Fisarakis et al., 2001). 

There is not much information available about the effect of high Cl- on the uptake 

and contents of these anions in Atriplex species.  

Salt tolerance is brought about by a range of interconnected physiological, 

morphological and biochemical processes that are controlled by specific gene 

expression (Marschner, 1995; Rengasamy et al., 2003, Tester and Davenport, 

2003; Munns, 2005; Koyro, 2006). Basically, two main strategies are involved in 

salinity tolerance of plants: salt inclusion and salt exclusion. Both strategies are not 

mutually exclusive and may work in parallel in salt-tolerant species (Marschner, 

1995; Munns, 2002).  

Salt-including plants can use high salt (Na+ and Cl-) concentrations as a 

cheap osmoticum to create and maintain water potential gradient and turgor 

necessary for water uptake and expansive growth (Koyro and Huchzermeyer, 

1999b; Romero-Aranda et al., 2001; Lu et al., 2002; Tester and Davenport, 2003; 

Gulzar et al., 2005; Ottow et al., 2005). Many Atriplex species are known to rely on 

this mechanism and accumulate large amounts of Na+ and Cl-, mainly in the shoots, 

like A. barclayana (Nerd and Pasternak, 1992), A. nummularia (Uchiyama, 1987, 

Ramos et al., 2004), A. griffithii (Khan et al., 2000) and A. hortensis (Wilson et al., 

2000). Although salt inclusion mechanism facilitates osmotic adjustment and turgor 

maintenance, it can lead to ion toxicity and nutritional imbalance in the cytoplasm 
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(Koyro and Huchzermeyer, 1999b; Blumwald et al., 2000). Thus, adaptation by salt 

inclusion requires either salt tolerance, or avoidance mechanisms (Marschner, 

1995). Tolerance of high salt accumulation can be achieved by various 

mechanisms. In some salt-including plants, the old or adult leaves act as ion sinks 

and accumulate large quantities of ions (Flowers and Yeo, 1992; Munns, 1993, 

2002). This may restrict ion deposition into meristematic and actively growing and 

photosynthesizing leaf cells. Some species (natrophilic species) can replace K+ by 

Na+ not only in its function as osmoticum but also, to lesser extent, in some 

metabolic processes (Marschner, 1995; Mäser et al., 2002). The compartmentation 

of excessively accumulated Na+ and Cl- provides an efficient mechanism to avert 

the deleterious effects of these ions in the cytosol and help to maintain homeostasis 

of other essential ions like K+, Ca2+ and Mg2+ necessary for the metabolic activities 

(Flowers and Yeo, 1992; Marschner, 1995; Serrano, 1996; Bressan et al., 1998; 

Koyro and Huchzermeyer, 1999b; Blumwald et al., 2000; Hasegawa et al. 2000; 

Munns, 2005). Approaches which have been used, such as X-ray microanalysis 

(Milis et al. 1985; Leigh and Story, 1993; Koyro et al., 1997, 2006; Flowers and 

Hajibagheri, 2001) generally support the hypothesis that maintenance of low 

cytosolic Na+ concentration is important in salinity tolerance.  

As a matter of fact, both Na+ sequestration into the vacuole and Na+ extrusion 

in the apoplast are active processes, since Na+ has to be transported against its 

electrochemical potential (Blumwald et al., 2000; Tester and Davenport, 2003). 

Many membrane proteins are known to be involved in ion sequestration, 

compartmentation and redistribution. One important protein is the Na+/H+ antiporter, 

which mediated Na+ extrusion at the plasmalemma or sequestration at the tonoplast 

(Wang et al., 2001; Morsomme and Boutry, 2000; Wyn Jones and Gorham, 2002). 

This antiporter is powered by the operation of the H+-ATPase (Sussman, 1994). An 

increase in H+-ATPase activities was observed in salt stressed A. nummularia roots 

and leaves (Braun et al., 1988; Niu et al., 1996). Increasing leaf succulence is 

another important adaptive feature that contributes to the regulation of internal ion 

concentrations through a dilution (Flowers et al., 1986; Koyro and Huchzermeyer, 

1999b; Koyro, 2002; Debez et al., 2006). High substrate salinity was found to 

increase the leaf succulence of A. hastata (Black, 1958), A. nummularia (Ashby and 
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Beadle, 1957; Greenway, 1968), A. patula (Longstreth and Nobel, 1979), A. 

amnicola (Aslam et al., 1986), and A. halimus (Debez et al., 2003).  

Atriplex species show a wide range of adaptation from the morphological to 

the physiological adaptations that include the ability to remove salt through bladder 

hairs. It is a common feature of Atriplex leaves and important for salt removing from 

the leaf tissues and hence prevent dangerous accumulation of toxic salt in the 

photosynthetic tissues (Black, 1954; Osmond et al., 1969; Mozafar and Goodin, 

1970, Kelley et al., 1982; Schirmer and Breckle, 1982; Waisel 1991). In A. halimus, 

Mozafar (1970) and Mozafar and Goodin (1970) found that ion concentrations (Na+ 

and Cl-) of the leaf tissues remained almost constant, while those of the bladder 

hairs increased with increasing salt treatments and reached concentrations of 

almost saturated NaCl solutions. Also, ion contents of the bladder hairs were 

correlated with the salt concentrations in the leaves of A. nummularia (Uchiyama, 

1987).  

Salt exclusion is the second important adaptive feature beside salt inclusion. 

It is involved in the regulation of internal salt load (Marschner, 1995; Munns, 2002). 

The mechanisms conferring salt exclusion in plants have been reported by several 

authors (Greenway and Munns, 1980; Koyro and Huchzermeyer, 1999b; Storey and 

Walker, 1999; Koyro et al., 2006). These mechanisms include: prevention of ion 

entry into the root symplasm and subsequent unloading into the xylem, selective 

uptake of K+ over Na+ by root cells, preferential loading of K+ rather than Na+ by the 

stelar cells and removal of salt from the xylem in the upper part of the roots, the 

stem, petiole or leaf sheaths (Marschner, 1995; Storey and Walker, 1999; Munns, 

2002; Tester and Davenport, 2003). Additionally, some salt-excluders get rid of salt 

by excreting it back into the environment by intensive re-translocation from the shoot 

to the root (Bhatti and Wieneke, 1984; Munns, 2002). The exclusion of salt from the 

phloem ensures that salt is not transported to the growing tissues of the shoot 

(Munns et al., 1988; Tester and Davenport, 2003). Salt exclusion from the leaves 

(excretion) through salt glands is an important mechanism, which helps to maintain 

a steady salt balance in the leaves over long periods of the vegetative cycle 

(Flowers et al., 1986; Ball, 1988). Whereas salt exclusion minimizes ion toxicity, it 

may accelerate water deficit that may reduce the plant growth under high saline 

conditions (Gorham et al., 1985; Koyro and Huchzermeyer, 1999 b).  
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As well excluders and includers need the accumulation of compatible solutes 

in the cytoplasm and organelles to counteract the increased osmolality of apoplast 

or the cell vacuoles (Hasegawa et al. 2000; Rontein et al., 2002; Aziz and Khan, 

2003; Tester and Davenport, 2003; Ashraf and Harris, 2004). These solutes are 

non-toxic at high concentrations, have low weight, and are highly soluble. They 

protect plant cells from salt stress by turgor maintenance, detoxification of reactive 

oxygen species (ROS), and by stabilisation of quaternary structure of proteins 

(Yancey et al., 1982; Bohnert and Jensen, 1996). Major categories of organic 

osmotically active solutes are known to accumulate in plants under salt stress 

including simple and complex sugars, and sugar alcohols (Popp and Smirnoff, 1995; 

Bohnert and Jensen, 1996; Bajji et al., 1998; Murakeozy et al., 2003). Others 

include nitrogen-containing compounds such as amino acids, quaternary amino acid 

derivatives (proline, glycine betaine), and tertiary amines and sulfonium compounds 

(Nuccio et al., 1999; Mansour, 2000). A positive correlation between the substrate 

salinity and accumulation of proline and glycine betaine was reported in A. 

spongiosa and Suaeda monica (Storey and Wyn Jones, 1979), A. gmelini (Matoh et 

al., 1987), A. semibaccata and A. halimus (Koheil et al., 1992), A. braclayana (Nerd 

and Pasternak, 1992), A. griffithii (Khan et al., 1998), and A. halimus (Bajji et al., 

1998).  

As has been stated by Koyro and Huchzermeyer (2004), a prerequisite for 

the sustainable utilisation of the halophytes is the precise knowledge about their 

salinity tolerance and the various mechanisms enabling them to grow at saline 

habitats. Hence, a major motivation of the present study was to determine the levels 

of salt tolerance of A. nummularia and A. leucoclada and to compare the 

morphological, physiological and biochemical responses (mechanisms) of both 

species to various water salinities. Salt tolerance is a complex trait and often 

implicates a strong reliance between various mechanisms of which several were 

above-mentioned. Therefore, the influence of various NaCl salinity levels on several 

essential parameters related mainly to the four major constraints for plant growth on 

saline substrates as mentioned above were studied in both Atriplex species. It was 

planned to get an overview about the general mechanisms by measuring the 

following parameters: plant growth (fresh, dry, and ash weights, leaf number, leaf 

area, leaf mass to area ratio, and shoot/root ratio), water relations (water content, 
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water and osmotic potentials), gas-exchange (net photosynthesis, photosynthetic 

efficiency, dark respiration, intercellular CO2 concentration, stomatal resistance, 

water use efficiency, and light saturation and light compensation points), and 

composition of minerals and compatible solutes in different parts of both plants. 

Such general information would give an impression about the salinity tolerance level 

and the different mechanisms underlying the adaptation to high NaCl-salinity. In 

addition, further special investigations (proteomics, EDXA, and structural as well as 

ultrastructural investigations) are expected to complete the view about the individual 

salt tolerance mechanisms of these species. Considering that salt tolerance is 

multigenic and implicates the regulation of several genes with determinant role in 

salt adaptation, one specific aim of this study was to quantify changes in the leaf 

proteome of both Atriplex species in response to salt stress, and to eventually 

identify candidate salt responsive proteins. The response of Atriplex species to 

salinity is widely reported, but ion composition and sequestration in the bladder hairs 

are often disregarded. Therefore, the elemental composition and distribution of 

different leaf cells such as bladder, epidermal, guard cells was determined. Further, 

light as well as scanning and transmission electron microscopical studies were 

conducted to identify salt-induced structural and ultrastructural changes in the 

leaves of both Atriplex species and their ecological advantages. All these scientific 

informations (general and specific) were correlated and used to determine and 

compare the level of salinity tolerance of the both Atriplex species. The comparison 

of these closely related Atriplex species is expected to give more and better 

information about the small differences or factors contributing to the high salt 

tolerance of these species and to open the vision on their future integration in 

programs of amelioration of crops. 
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2 MATERIAL AND METHODS 
 

The present work was carried out at the “Institut für Botanik”, Gottfried 

Wilhelm Leibniz University, Hannover and the “Institut für Pflanzenökologie”, 

Justus-Liebig-University, Giessen, Germany. It aimed at investigating the physio-

logical and structural mechanisms of the halophytes A. nummularia and A. leuco-

clada for surviving high NaCl salinity (up to 750 mol*m-3 NaCl). The experiments 

were conducted in the greenhouse with three successive cultures for each species 

during the period from October 2002 until October 2004.  

 

2.1 Cultivation and growth conditions 
Seeds of A. nummularia and A. leucoclada were obtained from the Desert 

Research Institute, Cairo, Egypt. They were washed with running tap water for 24 - 

48 h to remove the excess of salts, and other germination inhibitors. The seeds 

were then sown in plastic flats containing a soil mixture of ED-73 soil (Hawita, Lau-

terbach, Germany) and vermiculite, 1:1 (v/v), and kept on a bench in the green-

house at 25 ± 2 ºC daytime and 15 ± 2 ºC night time temperatures for a photope-

riod of 16 h. After the emergence of the first two true leaves (two weeks after the 

germination), the young seedlings were transplanted into a multi-pot tray contain-

ing a soil mixture of F-E type T soil (Hawita, Lauterbach, Germany) and compost 

(1: 1, v/v). Five weeks later, fifty plants of uniform size were selected, and trans-

ferred into a gravel/hydroponic culture named Quick Check System (QCS) (Koyro 

and Huchzermeyer, 1999a) (Fig. 1). The plants were cultivated individually in black 

plastic pots (25 cm diameter). The free surface of the culture substrate was cov-

ered with a black plastic foil in order to prevent the plants from being spattered 

with the nutrient solutions, and to inhibit the growth of algae on the surface. The 

plants were irrigated with a basic nutrient solution modified after Epstein (1972) 

using a drip irrigation system. The composition of the nutrient solution is shown in 

Table (1). The plants were grown under photoperiodic conditions (16 h light/8 h 

dark) in the greenhouse. Temperatures were 25 ± 2 ºC during the day and 15 ± 2 

ºC during the night. The relative humidity ranged from 50 to 70%, and the light in-

tensity was in the range of 250 µE*m-2*s-1 at the plant level. 
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Salts 
 

Concentration 
(mol*m-3) 

KNO3  ........................................................ 

Ca(NO3)2 ...................................................

NH4 H2 PO4  ...............................................

(NH4)2 HPO4  .............................................

MgSO4 .......................................................

 

Fe-EDTA ...................................................

H3BO3 ........................................................

KCl ............................................................

MnSO4 ...................................................... 

ZnSO4 .......................................................

CuSO4 ...................................................... 

H2MoO4 .....................................................

1.0 

1.0 

1.0 

1.0 

1.0 

(µmol*m-3) 
20.0 

25.0 

50.0 

2.0 

2.0 

0.5 

0.5 

 

Fig. 1: Scheme of the Atriplex quick check system (QCS). (1) nutrient solution;  (2) 
filter; (3) pump; (4) irrigation tube; (5) Atriplex plant and (6) draining tube. 

Table 1: Composition of the basic nutrient solution (modified by Epstein, 1972), 
which used to irrigate Atriplex plants in the QCS.    
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The addition of NaCl to the basic nutrient solution started after a period of another 

2 weeks by raising the NaCl concentration in the nutrient solution in steps of 100 

mol*m-3 NaCl each day until the final concentrations were achieved. The highest 

salinity treatment was reached after eight days, and there were altogether five sa-

linity treatments (eight replicate pots for each treatment): control, 125, 250, 500 

and 750 mol*m-3 NaCl (equivalent to 0, 25, 50, 100 and 150% SWS). The plants 

were watered daily with the nutrient solution every 4 h for 30 min starting at mid-

night. The nutrient solutions were changed every 2 - 3 weeks to avoid nutrient de-

pletion. The experiment was performed for a total period of 11 - 12 weeks. During 

this period, the development of the cultures was photographed weekly with a digi-

tal camera.  
 

2.2 Harvest procedure 
The plants were harvested 11-12 weeks after the initiation of NaCl treat-

ment (three replicates were harvested from each treatment). The plants were 

separated into roots (R), adult leaves (La), juvenile leaves (Lj), adult stems (Sa) 

and juvenile stems (Sj). The root segments were washed for 1 - 2 min with ice-cold 

0.2 mol*m-3 CaSO4 solution, and then for 1 - 2 min in distilled water in order to re-

move the excess of the nutrient solution and salts in the root free spaces. They 

were then blotted carefully with tissue paper to remove the surface water. The 

fresh weight of the roots, the adult and juvenile leaves and the adult and juvenile 

stems was directly determined. The adult and juvenile leaf numbers per plant, leaf 

area per leaf (SAL), leaf mass to area ratio (LMA) (defined as fresh weight per sur-

face area) and the ratio of shoot /root fresh weight were captured.  

Representative specimens of about 200 – 300 mg from each plant organ 

(R, Sa, Sj, La and Lj) were taken, and stored at -80 ºC for the quantitative chemi-

cal analysis. In order to determine ion contents of the bladder hairs separately, 

which covered all shoot parts and those of the leaf tissues, the adaxial and abaxial 

surfaces of the adult and juvenile leaves were rinsed in 25 ml distilled water (blad-

der hair fractions). These fractions were stored at 4 ºC for the determination of the 

ion contents. To obtain the dry and ash weights of the different plant organs, 

specimens of about 300 – 500 mg of these washed plant materials (R, Sa, Sj, La 

and Lj) were dried for 48 h at 105 ºC, and then weighed, and ashed in a muffle 
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furnace at 550 ºC for 12 h. The water content of all plant organs was determined 

as percentage of fresh weight. 
 

2.3 Water relations 
2.3.1 Determination of water potential 

The leaf water potential of both A. nummularia and A. leucoclada was psy-

chrometrically measured on the abaxial surfaces of the intact leaves with a Dew 

Point Microvoltmeter (Wescor Type HR330, WESCOR INC, USA). Hence the de-

termination of water potential psychrometrically depends on the transpiration rate 

at the leaf surface through the stomata, it was difficult to obtain a real water poten-

tial values according to this method because of the presence of about 1 - 3 dense 

layers of bladder hairs which cover all leaf surfaces especially the young ones. 

Thus, the water potentials of the young shoots were determined by using the pres-

sure pump (Scholander et at., 1965). The measurements were taken 4 and 8 

weeks after the salt addition in the early morning between 08:00 and 09:00 

o’clock, three replicates for each plant and three plants for each treatment. 
 

2.3.2 Determination of osmotic potential 
In order to determine the real osmotic potential of the plant organ tissues, 

about 200 - 300 mg of the washed plant materials (R, Sa, Sj, La and Lj) (three rep-

licates each treatment) were placed in Eppendorf tubes, and heated in a water 

bath 80 ºC for 10 minutes. The samples were then crushed to extrude the tissue 

sap. A small hole was drilled in the bottom of each Eppendorf tube. The microtube 

was encased in a second intact empty Eppendorf tube, and centrifuged at 13000  

X g for 10 minutes. The tissular sap was moved through the hole of the upper Ep-

pendorf tube into the empty one. It was then collected for the measurements of the 

osmotic potential using an osmometer (Osmomat 030, Genotec GMBH, Berlin). A 

300 mOsmol NaCl solution was used as a standard, and the calibration was 

checked after every ten readings. The readings were then converted to pressure 

units by using the salinity conversion table (Koyro, 2003a).  
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2.4 Chlorophyll contents and CO2 gas exchange 
2.4.1 Determination of chlorophyll and carotenoid contents 

At harvest time, the pigment concentrations (Chl (a), (b) and carotenoids) 

were spectrophotometrically determined in the adult and juvenile leaves of both 

Atriplex species according to Lichtenthaler and Wellburn (1983).  

2.4.2 CO2-gas exchange and photosynthesis analysis 
A closed photosynthesis measurement system LI-COR 6200 (LI-COR, Lin-

coln, NE, USA) was used to estimate the net CO2 assimilation rate of A. nummu-

laria and A. leucoclada under different water salinity and light intensity levels. The 

photosynthesis measurements were taken 4 and 8 weeks after the initiation of salt 

treatment.  

CO2- gas exchange of the second or third uppermost fully expanded leaves 

was measured at different levels of PPFD (0, 400, 800, 1200, 1600 and 2000 

µmol*m-2*s-1) using a 200 W halogen light source. CO2- gas exchange measure-

ments were started after a pre-illumination of about 5 minutes for each light inten-

sity level. The values of net photosynthesis and light intensities were then blotted 

to obtain the light-photosynthesis response curve for each species at each water 

salinity level. The photosynthetic efficiency (Φc), light saturation point (Ls) and the 

light compensation point (Lc) were estimated using SigmaPlot software according 

to Spilatro (1998). Net photosynthesis (A) (µmol*m-2*s-1), transpiration rate (E) 

(mmol*m-2*s-1), intercellular (Ci) and atmospheric (Can) CO2 concentrations (in 

ppm), stomatal resistance (Rs) (s cm-1), and leaf and air temperature were deter-

mined (three different leaves from each plant and three plants from each treat-

ment). Additionally, the ratio Ci/Can, water use efficiency (WUE) as A/E, and the 

difference between leaf and air temperature (ΔT) were calculated. All measure-

ments were taken at light intensity of 2000 µmol*m-2*s-1 (suggested to be the light 

saturation point for photosynthesis in both Atriplex species under the greenhouse 

conditions). All measurements were taken at atmospheric CO2 concentration of 

419.27 ± 29.85 ppm, 30.84 ± 0.67 ºC air temperature, and 35.7 ± 2.87% relative 

humidity. The photosynthesis measurements were achieved between 09:00 and 

15:00 o’clock.  
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2.5 Determination of mineral elements 
2.5.1 Determination of cation contents 

Approximately 0.1 g of pulverized dried plant material from all organs (R, 

Sa, Sj, La and Lj) was ashed in a muffle furnace at 550 ºC for 12 h. Then the 

ashes of these organs were extracted with HNO3 (32%) according to Steubing and 

Fangmeier (1992). The extractions and the bladder hair fractions (washing solu-

tion) were then diluted and the Na+, K+, Ca2+ and Mg2+ were measured in these 

extractions using an atomic absorption spectrophotometer (Perkin Elmer model 

PE 2100). The selective absorption (SAK: Na) and the selective transport (STK: Na) 

capacity for K+ over Na+ was calculated according to the following equations: 

SAK: Na= (available Na+/K+ in the soil)/(Na+/K+ in the root) (Pitman, 1960). 

STK: Na= (Na+/K+ in part A)/(Na+/K+ in part B) (Wang and Zhu, 1994).  
 

2.5.2 Determination of anion contents 
The concentrations of Cl-, NO3

-, SO4
2-, PO4

-3, malate, and oxalate in the 

press saps of the different plant organs (R, Sa, Sj, La and Lj) as well as in the 

bladder hair fractions were determined by using an ion chromatographic system 

(Meteohm AG, Herisau, Switzerland). This system consisted of ion chromatograph 

690 equipped with a conductivity meter (detector), IC pump 697 and an autosam-

pler. The press sap as well as the bladder hair fractions were diluted, and filtered 

through cellulose acetate filters of 0.45 µm pore size. The separation process was 

carried out using an IC anion column (Hamilito PRP-X100, 250 mm) based on a 

polystyrene-divinylbenzene copolymer. P-Hydroxybenzoid acid/Benzoat solution 

(2.5 mol*m-3 p- Hydroxybenzoid acid, 1 mol*m-3 Sodiumbenzoat, 2.5 % methanol, 

pH 8.5, 300 µS/cm conductivity) was used as an eluent. The analytical conditions 

were as follows: flow rate 2 ml/min, maximum pressure 34 MPa, injection volume 

100 µl.  
 

2.6 CNS analysis 
About 2 – 3 g of the R, La and Lj fresh materials from each Atriplex species 

were harvested, directly freeze-dried, and ground into a fine powder. Carbon (C), 

nitrogen (N), and sulphate (S) contents of these organs were determined using a 
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Vario MAX CNS analyser (Elementar Analyse system, GmbH, Germany). L-

Glutamic acid (C and N), and Sulphanylamid (S) were used as standards.       
 

2.7 Determination of free amino acid (FAA) contents 
2.7.1 Amino acids extraction 

Initially, all chemicals used in the extraction of the amino acids were of 

HPLC grade, and purchased from Merck (Darmstadt, Germany). The amino acids 

were extracted according to Högy (2002). Samples of about 0.1 g of the freeze-

dried plant materials (R, La, Lj) were mixed in centrifugation tubes with 8.8 ml 4% 

5-sulfosalicylic acid dihydrate containing 0.0284 mol*m-3 β-2-thienyl-DL-alanine, 

and homogenized with an ultra homogenizer for 40 sec. The samples were kept 

on ice for about 1 h, and then 1.2 ml of NaOH 2 M was added to each sample. 

After that the samples were centrifuged at 20000 X g at 4 ºC for 10 min, and the 

supernatants were collected, and filtered through 0.45 μm cellulose-acetate filter. 

The extractions were then diluted (1:10 v/v) with 1M borate buffer, pH 8.5, and 

stored at -20 ºC for further analysis.  
 

2.7.2 Reversed-phase high performance liquid chromatography (RP-
HPLC) 

The extractions were derivatized with 9-fluoroenylmethyl chloroformate 

(FMOC-Cl) according to Einarsson et al. (1983). Free amino acids were deter-

mined by using a reversed-phase high performance liquid chromatograph (Varian, 

USA) equipped with a Varian autosampler model 410 and a Varian 210 pump. The 

amino acids were separated using an analytical ODS column (Aminotag 80 TM, 

150 x 4.6 mm) protected by a PR-8 guard column (10 x 3.2 mm). The column 

temperature was set to 33 °C. The solvent system consisted of 0.015 M sodium 

citrate dihydrate plus 0.01 M tetramethylammonium chloride, pH 3.84 (A), and 

acetonitrile (B). The flow rate was set to 1.4 ml/min, and the injection volume was 

10 µl. The derivatives were analysed using a HPLC fluorescence detector (Shima-

dzu RF-535) with a wavelength of 260 nm as excitation and 310 nm as emission 

wavelength  
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2.8 Determination of total soluble carbohydrate (TSC) contents 
The total soluble carbohydrate (TSC) contents in the press sap of all plant 

organs (R, Sa, Sj, La and Lj) of the studied Atriplex species were assayed pho-

tometrically according to Kleber et al. (1987) and Volk (1996).  
 

2.9 Determination of total soluble protein (TSP) contents 
The total soluble protein (TSP) contents in the press sap of all plant organs 

(R, Sa, Sj, La and Lj) of both Atriplex species were determined photometerically 

according to Bradford (1976).  

 
2.10 Two-dimensional polyacrylamide gel electrophoresis (2D-
PAGE) 

All chemicals used in the protein extraction, and gel electrophoresis were of 

the highest obtainable grade. At harvest time, the third and fourth uppermost fully 

expanded leaves of three randomly selected A. nummularia and A. leucoclada 

plants were collected from the control, and high salt treatment (750 mol*m-3 NaCl). 

The leaves were ground immediately to a fine powder in liquid nitrogen, and stored 

at -80 ºC until use. The proteins were extracted according to Zörb et al. (2004), 

and the protein content of these extractions (supernatants) was determined by the 

Bradford assay (1976). 

The first dimension electrophoresis (Isoelectric focusing) was carried out 

according to Westermeier and Naven (2002), and Zörb et al. (2004). Isoelectric 

focusing was performed with the IPGphor system (Amersham Pharmacia Biosci-

ences, UK) using Immobiline Dry gel strips (11 cm length) with linear pH gradients 

3 – 10 (Amersham Pharmacia Biosciences, UK). For each dry strip gel, a sample 

of 200 µl protein extraction plus lysis solution buffer (8 M urea, 4% CHAPS, 40 

mol*m-3 Tris base, and a trace of bromophenol blue) (protein concentration of 150 

µg) was prepared. The IEF was started under the following conditions: 10 h 

rehydration; then 100 V for 2h; 500 V for 1 h; 1000 V for 1 h; and finally 8000 V for 

5 h at 20 ºC and 50 µA for each strip. The focused IPG strips were then 

equilibrated with 5 ml equilibration buffer (A) [50 mol*m-3 Tris-Cl pH 8.8, 6 M urea, 

30% (v/v) glycerol (87%), 2% (w/v) SDS, 1% (w/v) DTT, and a trace of 

bromophenol blue] at room temperature for 15 min. The alkylation of the reduced 
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room temperature for 15 min. The alkylation of the reduced proteins was con-

ducted in 5 ml of the same equilibration buffer for 15 min using 2.5% (w/v) io-

doacetamide instead of DTT. The strips were then rinsed with SDS electrophore-

sis running buffer (5 mol*m-3 Tris, 38.4 mol*m-3 glycine, 0.1% SDS) for a few sec-

onds.  

The second dimension was performed according to Schägger and von 

Jagow (1987), and Zörb et al. (2004). Each IPG strip was placed on top of a verti-

cal in-house made 12.5% polyacrylamide-SDS gel (20x18x0.1 cm). Molecular 

weight standards (Rainbow, Amersham Pharmacia Biotech, UK) in the range of 14 

– 220 KDa were used. About 5 µl 1:10 diluted protein marker was positioned on 

the acidic side of each gel strip. The IPG strip and the marker were then sealed 

with 1% w/v agarose containing traces of bromophenol blue. The second dimen-

sion was run at 4 ºC using 15 mA per gel for 15 min followed by 45 mA per gel for 

about 3 – 4 h. The gels were then fixed in a solution of 50% Ethanol and 10% gla-

cial acetic acid for 1 h. The electrophoretically separated proteins were visualized 

by immersing the gels in Coomassie Brilliant Blue (50% Ethanol, 10% glacial ace-

tic acid, and 0.05% Coomassie Brilliant Blue R 150) overnight, and then destained 

with glacial acetic acid 10% for 4 h. 

The Coomassie stained gels were scanned, and the protein spots of the 

scanned images were counted using Delta 2D Software (DECODON GmbH, Ger-

many). To compare the protein profiles of the control with the salt treated leaves, 

the master gel (control) was warped with that of the salt treated ones using the 

Delta 2D programme after setting specific vector points. Then dual channel im-

ages of the 2D gel were obtained. The optical density of each spot in the dual 

channel images was determined as percentage of the total polypeptide-associated 

optical density using the quantitation tool in the Delta 2D software. The experimen-

tal pI and MW of the differentially regulated protein spots were used for the identi-

fication using the public databases SWISS-PROT, TrEMBL and NCBInr 

(http://www.expasy.com).  
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2.11 Mass spectrometry 
2.11.1 In-gel tryptic digestion and preparation of samples 

The selected protein spots were manually excised from the Coomassie 

stained 2D-gels, and submitted for peptide mass fingerprinting. They underwent 

in-gel digestion with trypsin according to the published methods of Shevchenko et 

al. (1996). The excised spots were destained with 75 µl of (30% ethanol, and 70% 

glacial acetic acid). The gel pieces were dehydrated in 30 µl 100% acetonitrile 

(CH3CN) for approximately 10 min, and then dried in a SpeedVac (Fa. Thermo 

Electron, Dreieich). Each sample was incubated in 150 µl of (10 mol*m-3 DTT plus 

0.1 M NH4HCO3) at 55 ºC for 1 h, and was then derivatized with 150 µl (55       

mol*m-3 iodoacetamide and 100 mol*m-3 NH4HCO3) at room temperature in the 

dark for 45 min. Subsequently, each sample was washed successively with 30 µl 

0.1 M NH4HCO3 for 30 min, 30 µl 100% acetonitrile for 10 min, 30 µl 0.1 M 

NH4HCO3 for 10 min, and finally dehydrated with 30 µl 100% acetonitrile for 10 

min. Afterward, the samples were completely dried in the SpeedVac. The gel 

pieces were then digested with trypsin (trypsin sequence grade, Roche Diagnos-

tics, Penzberg, Germany). For each sample, 30 μL trypsin solution 12.5 ng/μL in 

50 mol*m-3 NH4HCO3 was added, and the digestion was performed at 37°C over-

night. The resulting peptides were obtained by successive extraction of the di-

gested gel pieces. Firstly, the samples were centrifuged for 2 min, and the peptide-

containing supernatants were collected (S1) in a new microtube. The gel pieces 

were extracted again with 30 µl of Ethanol 50% plus 0.1% trifluoroacetic acid 

(1:1v/v) for 10 min, centrifuged for 2 min. Then the supernatants were collected, 

and pooled together with those of S1. Finally, the gel pieces were extracted with 

30 µl solution of [acetonitrile 100% and NH4HCO3 20 mol*m-3 in water] (1:1 v/v) for 

10 min and centrifuged for 2 min to obtain the S2.  
 

2.11.2 Mass Spectrometric Analysis and protein identification 
Mass analysis of the proteolytic digestions was carried out at the “Institut für 

Anorganische und Analytische Chemie”, Justus-Liebig-University, Giessen. The 

analysis was achieved using a home-built MALDI-TOF mass spectrometer 

(ALADIM II) (Advanced Laser Desorption Ionization Mass Analyzer). The peptide 

extractions were mixed with the matrix solution [10 mg/ml 2,5-hydroxybenzoic acid 
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in 0.1% (v/v) trifluoroacetic acid, 30% (v/v) acetonitril]. The mixtures were applied 

to sample targets using micro-pipettes, and were then dried by a stream of warm 

air.  The ionization was performed with a pulsed nitrogen laser (LSI- NSD, wave-

length 337 nm, 3 ns pulse duration, 200 µJ per laser pulse). The mass spectra 

were recorded by summing up the responses of at least 100 individual laser shots. 

The typical mass resolving power was between 5000 and 7000. Peptide mass 

standards (substance p, Mellitin, Insulin) were used to calibrate the mass spec-

trometer. MALDI spectra were acquired by the ULISSES software package (ver-

sion. 8. 2, copyright Bernhard Spengler, 1985 - 2000). Peak lists of the tryptic pep-

tide masses were searched against the public protein databases of Mascot 

(http://www.matrixscience.com), ProFound (http://www.proteometrics.com) and 

Aldente (http://www.expasy.org/cgi-bin/aldente/form.cgi). 

 
2.12 Structural investigations 
2.12.1 Light and Transmission Electron Microscopy 

Representative specimens of the shoot tips (including immature leaves) and 

juvenile fully expanded leaves of untreated control and NaCl treated (750 mol*m-3) 

plants were collected from both A. nummularia and A. leucoclada at the harvest 

time. Several small segments (about 1 mm2) of these organs were pre-fixed in an 

ice-cold fixative solution. The fixative consisted of 1% (v/v) formaldehyde and 2% 

(v/v) glutaraldehyde in 50 mol*m-3 pipes-buffer (pH 6.8). Since the osmosis of the 

cell is still active during the aldehyde fixation, sucrose was used as an additive in 

the fixative to form a weak hypotonic solution in accordance with the osmotic po-

tential of the leaves to minimize the osmotic shock that might be able to disturb the 

cellular and the ultra cellular structures. The plant materials were degassed, and 

further fixed at 4 ºC for 4 h. The specimens were then washed three times (15 

minutes each) in osmotically adjusted pipes-buffer (pH 6.8), and post-fixed for 4 

hours with 1% (w/v) osmium tetroxide solution in the same buffer in a fume hood 

(Harlay and Fergusen, 1990). After having been washed 4 - 5 times with double 

distilled water, the specimens were dehydrated in graded series of acetone (5, 15, 

30, 50, 70, 80, 90, 95 and 100%). The samples were embedded in Spurr’s resin 

(1969) and polymerised at 70 ºC for 12 h.  
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The embedded materials were sectioned with a glass knife for the light mi-

croscopy investigations using an ultra microtome (Ultracut E, Reichert Jung). The 

semi-thin (2 μm) cross sections were stained with methylene blue (in 2% Ethanol) 

on a heating plate for 1 min. The leaf cross sections were examined with an Olym-

pus AX 70 light microscope, and photographed with an Olympus C-35A D-2 digital 

camera on the same microscope. The measurements and the image analysis 

were done using an image analysis programme (Soft Imaging System) on a PC. 

In order to study the ultrastructural changes in the leaves after NaCl treat-

ment, thin sections (5–10 nm) were cut with a glass knife on an ultra microtome 

(Ultracut E, Reichert Jung). The sections were mounted on 200–300 mesh copper 

grids. They were then stained with 2% uranyl acetate (saturated solution in 60% 

Ethanol) for 8 min, and after that with lead citrate (2% in 0.2 M NaOH) (Reynolds, 

1963) for 5 min. The sections were examined, and photographed using a LEO-

912-AB-OMEGA (Zeis-Leica) Transmission Electron Microscope. 

 
2.12.2 Scanning Electron Microscopy 

For a closer examination of the leaf surfaces, scanning electron microscope 

investigations were carried out. Specimens of adult and juvenile leaves of the two 

studied Atriplex species were fixed in glutaraldhyde 2.5% in 50 mol*m-3 pipes-

buffer (pH 6.8) at 4 ºC for 4 h. After washing them 3 - 4 times with the same buffer, 

the specimens were dehydrated with ascending concentrations of alcohol (5, 15, 

30, 50, 70, 80, 90, 95 and 100%). They were then dried after the critical point 

method (Hall et al., 1978), and mounted onto aluminium stubs, and sputtered with 

a thin gold layer. The samples were examined, and photographed using a Philips 

XL-20 Scanning Electron with an accelerating voltage of 5 - 15 kV, and a working 

distance of 11 – 13 mm. 
 

2.13 Energy dispersive X-ray microanalysis 
Small fresh segments of the adult and juvenile leaves from the control and 

high salt treated A. nummularia and A. leucoclada plants were vacuum dried for 

about 10 minutes. Subsequently a thin gold layer was sputtered on the surfaces of 

the specimens using Hummer 6.2. Sputter coater. After the transfer of the speci-

mens into a Philips XL-20 Scanning Electron Microscope (SEM), Energy disper-
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sive X-ray-microanalyses (EDXA) were performed on the upper (adaxial) and 

lower (abaxial) leaf epidermal cells, the stomatal guard cells, and the bladder cells 

according to Koyro (1997). The analysis was conducted with a KEVEX-Si/Li-

detector with Beryllium window (500 V). Typical analytical conditions were as fol-

lows: working distance, 11-13 mm; magnification 500 X; analysis area 10 µm; 

beam (sample) current, 150 µA; accelerating voltage, 15 kV; and counting time of 

100 seconds. For each sample, three replicates were measured. The calculation 

and correction was made using EDAX DX-4 eDXi system version 3.02. Only the 

Kα values of each element were taken, and the ZAF correction procedure (where Z 

is the correction due to the atomic number of the matrix, A is the photoelectric ab-

sorption factor of x-rays in the specimen, and F is the fluorescence correction fac-

tor) was applied to convert the characteristic peak intensities into weight and 

atomic fractions.  
 

2.14 Statistical analysis 
The results of this study are presented as the means of nine replicates 

(three cultures each species, and three replicates each treatment) ± standard de-

viations (SD). All data sets were analysed with one-way-ANOVA using the SPSS 

for Windows statistical data analysis package (SPSS Inc., 2002, release 11, Chi-

cago, IL, USA) in order to determine if significant differences were found among 

means. The LSD test was employed to determine if significant (P< 0.05) differ-

ences occurred between individual treatments and organs. In some cases, and in 

order to meet all assumptions for ANOVA, a Log10 transformation was performed 

when the original data were not distributed normally.  
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 3 RESULTS 
 
3.1 Effect of salinity on the growth and development 
 

3.1.1 Visual observations 
 

Comparative growth responses of A. nummularia and A. leucoclada plants to 

varying water salinity levels (0, 125, 250, 500 and 750 mol*m-3 NaCl) (13 weeks 

treatment) are illustrated in Figures 2 a and b respectively (see also appendix, Fig. 

A1). Variations between the different salinity treatments in both species were 

evident four to five weeks after the commencement of salinity treatment. As shown 

in Fig. 2a, the absence of NaCl in the nutrient solution led to a distinct reduction in 

the growth (shoots and roots) of A. nummularia control plants. The plants were thin 

with a small number of branches and leaves. Increasing NaCl salinity generally 

stimulated the growth of plants relative to the controls. The optimal plant growth and 

development was reached at low and moderate salinities (125–250 mol*m-3 NaCl). 

The growth stimulation at low and moderate salinities was accompanied by 

increases in leaf numbers, area and succulence, plant height, branching, shoot and 

root weight and length. The leaves of these plants appeared light green to yellowish 

green (Fig. 3b). A. nummularia plants showed a healthy habitus and a conspicuous 

growth even under high water salinity (750 mol*m-3 NaCl), where their growth (shoot 

and root) was still higher as in the controls. At this salinity, the plants appeared 

intensely blue-green with succulent leaves (Fig 3c).  

A. leucoclada control plants grew normally with some signs of Na+ deficiency 

(chlorosis) in their leaves especially the adults (Fig. 2b and 4a). Increasing water 

salinity up to 500 mol*m-3 NaCl slightly (but not significantly at P < 0.05) enhanced 

the plant growth with a maximum at 250 mol*m-3 NaCl. High NaCl concentrations 

adversely affected the growth (shoot and root) of A. leucoclada plants, with more 

severe effect in comparison to A. nummularia plants. The plants were dwarf with 

shallow root system and few branches and leaf numbers. The leaves were also very 

small, thick and light green in color with visible Na+ toxicity symptoms i.e. burning of 

the leaf tips and margins (Fig. 4c).  
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Control 125 NaCl 250 NaCl 500 NaCl 750 NaCl 

Control 125 NaCl 250 NaCl 500 NaCl 750 NaCl 

Fig. 2: Effect of different water salinity levels on the growth and development 
of a) A. nummularia and b) A. leucoclada plants after13 weeks of 
salinity treatments. 

b) 

a) 
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b) c)a) 

b) c)a) 

 Fig. 3: The appearance of A. nummularia leaves as affected by different 
salinities; a) under control conditions; b) 125 and c) 750 mol*m-3 

NaCl.  

 Fig. 4: The appearance of A. leucoclada leaves as affected by different 
salinities; a) under control conditions; b) 125 and c) 750 mol*m-3

NaCl.  
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3.1.2 Growth parameters 
3.1.2.1 Fresh weight and biomass production 

The effects of different water salinity levels on the growth (expressed as fresh 

weight in grams) and development of different A. nummularia plant organs (R, Sa, 

Sj, La and Lj) are shown in Fig. (5a). The general tendency was that increasing 

water salinity induced a progressive increase in the growth of the different plant 

organs with optimal growth at low to moderate salinity (125 – 250 mol*m-3 NaCl). 

Significant (P< 0.05) increases of about 550% and 111% in the plant fresh weight 

(PFW) were observed at moderate and high salinity, respectively, relative to the 

control plants (see appendix, Table A1). This increase in plant fresh weight was 

mainly caused by increase in the shoot fresh weight (ShFW) rather than in the root 

fresh weight (RFW) especially at the full strength salinity. Additionally, increasing 

salinity markedly increased the leaves fresh weight (LFW) than the stem fresh 

weight (SFW) even at high salinity level. Consequently, the shoot/root fresh weight 

ratio increased significantly with raising NaCl salinity level, with maximum values at 

moderate salinity (see appendix, Table 1). As shown in Fig. (5a), salinity threshold 

of A. nummularia plants (initial significant reduction in the maximum expected yield, 

Shannon and Grieve, 1999) was reached at 50% SWS and the C50 value at 140% 

SWS.  

 The mean plant fresh weight of A. leucoclada controls was higher than that 

of A. nummularia control plants, reached 261.9 ± 50.5 g. As can be seen in Fig. 

(5b), A. leucoclada plants did not show any significant (P< 0.05) increase in all plant 

organs fresh weight up to 500 mol*m-3 NaCl salinity with one exception: low to 

moderate salinity led to a significant increase in the leaves fresh weight (see 

appendix, Table A2). High salinity treatments dramatically reduced the fresh weight 

of all plant organs (see appendix, Table A2). No significant increases were observed 

in the shoot/root fresh weight ratio with raising water salinity (see appendix, Table 

A2). Fig. (5b) reveals that the salinity threshold of A. leucoclada was reached at 

50% and the C50-value at 114% SWS.  

 
3.1.2.2 Leaf number, area and leaf mass to area (LMA) ratio 
 

The average leaf number per plant of A. nummularia controls was about 25.2 

± 4.2 and 328.9 ± 100.4 for the adult and juvenile leaves, respectively. As shown in  
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different NaCl salinities. The dotted red lines mark the C50 values. RFW, 
root; ASFW, adult stems; JSFW, juvenile stems; ALFW, adult leaves; 
JLFW, juvenile leaves. Each column represents the mean values of nine 
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Table (2a), NaCl salinity led to a transient increase in the adult and juvenile leaf 

numbers with maximum increase at moderate salinity (250 mol*m-3 NaCl). A. 

leucoclada control plants had significant (P< 0.05) more adult and juvenile leaves 

(83.8 ± 1.4 and 1297.0 ± 125.8 respectively) per plant than A. nummularia. The leaf 

number per plant increased slightly with increasing water salinity up to 250 mol*m-3 

NaCl. Unlike A. nummularia, high salinity level led to significant reductions in leaf 

number per plant in A. leucoclada and caused about 46 and 61% reductions in the 

adult and juvenile leaf number pre plant respectively relative to controls (Table 2b).     

The surface area per leaf (SAL) of the adult leaves was significantly (P< 0.05) 

higher than that of the juvenile ones in both Atriplex species and at all salinity 

treatments (Table 2a, b). In A. nummularia, increasing water salinity transiently 

increased the SAL of both adult and juvenile leaves. Highest SAL was recorded at 

low (for adult leaves) and moderate (for juvenile leaves) water salinity. Further 

increase in the water salinity lowered the (SAL) of both adult and juvenile leaves 

with more adverse effect on the juvenile leaves. In A. leucoclada, SAL of both adult 

and juvenile leaves was comparatively lower than A. nummulara for all salinity 

treatments. It declined gradually for both adult and juvenile leaves as the salinity 

increased in the external nutrient solution (Table 2b).  

The leaf mass to area (LMA) ratio of the adult leaves was more or less equal 

to that of juvenile ones in both Atriplex species under control conditions (Table 2a, 

b). In both Atriplex species and for both adult and juvenile leaves, LMA ratio 

increased significantly as the salinity level increased, the effect was more obvious in 

the adult leaves, The juvenile leaves of A. nummularia, however, showed significant 

(P<  0.05) higher LMA ratio than those of A. leucoclada at the whole range of 

salinities (Table 2a, b).   
 
3.1.2.3 Dry weight 

Under control conditions, A. nummularia plants had comparatively higher dry 

weight in % fresh weight (DW in % FW) for all organs than A. leucoclada except in 

the case of the root (Fig. 6 a and b). On average over all the plant organs, the DW in 

% FW ranged from 16.6 ± 2.4 to 36.6 ± 2.3 % in A. nummularia and from 9.2 ± 1.8 

to 34.6 ± 1.9 % in A. leucoclada. In A. nummularia, a general trend of transient 

decrease in DW in % FW of all plant organs was observed as the salinity rose, with  
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Table 2a: Influence of different water salinity levels on the leaf number per plant, 
surface area per leaf (SAL) and leaf mass to area ratio (LMA) of             A. 
nummularia. La, adult leaves; Lj, juvenile leaves. 

 

 
Table 2b: Influence of different water salinity levels on the leaf number per plant, 

surface area per leaf (SAL) and leaf mass to area ratio (LMA) of             A. 
leucoclada. La, adult leaves; Lj, juvenile leaves. 

 
Leaf number*plant-1(n) SAL (cm2) LMA (mg*cm-2) Treatments 

La Lj La Lj La Lj 
Control 83.83a 

± 1.44 
1297.00a 
± 125.80 

64.75a 
± 3.93 

22.18a 
± 9.47 

32.86a 
± 4.45 

27.30a 
± 1.48 

 
125 NaCl 93.78a 

± 26.59 
2044.56b 
± 438.64 

61.42ab 
± 6.40 

21.53a 
± 5.78 

46.49b 
± 3.23 

28.86a 
±1.96 

 
250 NaCl 109.78a 

± 5.85 
2071.11b 
± 353.22 

51.39b 
± 8.83 

17.01ab 
± 6.21 

51.74bc 
± 2.25 

32.68b 
±3.01 

 
500 NaCl 84.78a 

± 4.30 
1560.89ac 

± 134.40 
35.58c 
± 6.04 

14.18ab 
± 3.98 

51.40bc 
± 2.98 

32.92b 
± 3.06 

 
750 NaCl 45.89b 

± 6.11 
512.67c 
± 55.34 

27.12c 
± 5.16 

8.39b 
± 4.23 

53.99c 
± 3.19 

35.23b 
± 1.06 

 
 

Leaf number*plant-1(n) SAL (cm2) LMA (mg*cm-2) Treatments 
La Lj La Lj La Lj 

Control 25.22a 
± 4.22 

328.89a 
± 100.41 

54.04a 
± 8.19 

29.00a 
± 9.67 

30.68a 
± 3.55 

30.19a 
± 3.11 

 
125 NaCl 117.33b 

± 13.65 
1153.11b 
± 150.84 

139.85b 
± 18.65 

44.16b 
± 9.43 

40.04b 

± 2.03 
37.22b 
± 5.50 

 
250 NaCl 127.00b 

± 16.25 
1338.11b 
± 277.04 

81.20c 
± 19.08 

44.21b 
± 9.33 

46.06bc 
± 2.58 

41.89b 
± 3.13 

 
500 NaCl 103.33b 

± 7.57 
1101.56b 
± 211.08 

76.06ac 
± 13.85 

34.67ab 
± 9.75 

48.98bc 
± 5.46 

42.66b 
± 5.62 

 
750 NaCl 54.67c 

± 12.98 
455.56a 
± 94.68 

61.88ac 
± 10.45 

31.43a 
± 8.43 

56.74c 
± 5.20 

42.05b 
± 4.87 

Each value represents the mean of nine replicates. Means within a column followed by the same letter are not 
significantly different at P< 0.05 as determined by LSD test.  

Each value represents the mean of nine replicates. Means within a column followed by the same letter are not 
significantly different at P < 0.05 as determined by LSD test.  
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maximum reductions at low and moderate salinities (Fig. 6a). High salinity treatment 

did not significantly affect the DW in % FW of the adult and juvenile stems but 

caused reductions of about 35, 20, and 7% in the DW in % FW of La, Lj, and R 

relative to controls.  

The same pattern of a transient decrease in the DW in % FW of all plant 

organs was observed for A. leucoclada (Fig. 6b). Low and moderate salinities did 

not significantly affect the DW in % FW of the adult and juvenile leaves and roots 

but significantly lowered that of adult and juvenile stems relative to the controls. 

Unlike A. nummularia, high NaCl concentration significantly increased the DW in % 

FW of the different A. leucoclada plant organs (except for the adult stem which was 

relatively less affected) and caused about 40, 30, 60 and 7% increases in La, Lj, Sj 

and R relative to the controls.  

 
3.1.2.4 Dry matter 

Fig. 7 (a and b) show that the dry matter content in % dry weight (DM in % 

DW) of all A. nummularia plant organs was significantly higher than those of A. 

leucoclada under control conditions (except for the adult stems). On average over 

all different plant organs, the DM in % DW ranged between 84.4 and 96.3% in A. 

nummularia and between 73.8 and 96.6% in A. leucoclada, with highest values in 

adult stems of both species. Increasing salinity level caused remarkably decreases 

in the DM in % DW in all plant organs of both Atriplex species relative to controls, 

with more adverse effect on A. leucoclada, especially at the highest salinity level 

(Fig. 7 a and b). At this salinity level, A. nummularia showed reductions of about 25, 

10, 6, 6 and 4% in the DM in % DW of La, Lj, Sa, Sj and R respectively, while these 

reductions were 20, 15, 8, 14, 18% in A. leucoclada.  

 
3.1.2.5 Ash weight 

Ash contents (AW in % DW) of the different plant organs of A. nummularia 

were lower as in A. leucoclada at all salinity treatments (Fig. 8 a and b). In both 

Atriplex species, the adult leaves had generally the highest AW in % DW being 16.3 

± 2.7% and 26.2 ± 2.5% in A. nummularia and A. leucoclada respectively while the 

adult stems showed the lowest (about 3% for both species). There was a correlation 

between NaCl concentration in the nutrient solution and AW in % DW of the different  



 RESULTS 

 36

c

cc
b

b
a

a

a

a aab
a

b

a abb
a

c

ab abb
b

c

b
ab

0

20

40

60

80

100

La Lj Sa Sj R

D
W

 %
 F

W

Ctr. 125 NaCl 250 NaCl 500 NaCl 750 NaCl

a
b

b

aa

a

a

ab

aa

a
a

a

aa

a
b

ab

aba

abc

b

bb

0

20

40

60

80

100

La Lj Sa Sj R

D
W

 %
 F

W

c
c

d
cc b

b

cd

b
b

babc
c

b

b

aab

b

b

a

aa
a

a

a

0

20

40

60

80

100

La Lj Sa Sj R

D
M

 %
 D

W

Ctr. 125 NaCl 250 NaCl 500 NaCl 750 NaCl

b

c
d

c
d

c

ab

b

c

c
b

ab

b

b

b

ab

ab

a

ab b

a

a
a

a a

0

20

40

60

80

100

La Lj Sa Sj R

D
M

 %
 D

W

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Plant organs dry weight in % fresh weight (DW in %FW) of a) A. nummularia and b) 
A. leucoclada at different water salinities. La, adult leaves; Lj, juvenile leaves; Sa, 
adult stems; Sj, juvenile stems; R, roots. Each column represents the mean values of 
nine replicates and the bars represent standard errors. Columns with the same letter 
are not significantly different at P< 0.05, LSD test. 

Fig. 7: Dry matter content in % dry weight (DM in % DW) of the different plant organs of a) 
A. nummularia and b) A. leucoclada as affected by different water salinities. La, adult 
leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each column 
represents the mean values of nine replicates and the bars represent standard errors. 
Columns with the same letter are not significantly different at P< 0.05, LSD test. 

a) 

b) 

a) 

b) 
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plant organs of both Atriplex species (Fig. 8 a and b). At high water salinity level, the 

AW in % DW of the adult leaves was highest, being 38.8 ± 1.9 and 41.9 ± 2.8% in A. 

nummularia and A. leucoclada respectively, whereas that of the adult stem was 

lowest, being 9.8 ± 1.3 and 11.2 ± 1.6% in A. nummularia and A. leucoclada 

respectively. 

 

3.2 Effect of salinity on the water relations 
3.2.1 Water contents 
         On average over the different organs, water content (H2O in % FW) of A. 

nummularia control plants ranged between 63.4 ± 2.3 (adult stem) and 83.4 ± 2.4 

(root). Transient increases in the water contents of all plant organs were observed 

as the NaCl concentration in the external nutrient solution increased (Fig. 9a). The 

maximum water contents, ranged between 69.3% (adult stems) and 92.3% (adult 

leaves) were reached at low to moderate salinities. Further increase in salinity level 

reduced the water contents of all plant organs (relative to the plants grown at 

moderate salinity) (Fig. 9a). High salinity treatment slightly increased the water 

contents of the adult and juvenile leaves, and did not significantly affect that of adult 

and juvenile stems relative to controls. The root water content was relatively less 

affected by increasing water salinity level (Fig. 9a). 

A. leucoclada controls had comparatively higher water content than A. 

nummularia, ranging from 65.4% (adult stem) to 90.8% (adult leaves). Low to 

moderate salinities resulted in slight increases in the water contents of all A. 

leucoclada plant organs (Fig. 9b). Unlike A. nummularia, high water salinity level 

significantly reduced the water contents of adult and juvenile leaves and juvenile 

stems but did not affect those of adult stems and root (Fig. 9b).     

 
3.2.2 Water potential 

Water potentials of the control plants (ψs) (determined in the young shoots 

using the Scholander pressure pump) were -0.17 ± 0.04 and -0.17 ± 0.06 MPa in A. 

nummularia and A. leucoclada respectively. Fig. 10 (a and b) showed that both 

plants lowered the (ψs) of their juvenile shoots gradually and significantly as the 

salinity in the external solution increased. At the highest salinity treatment, the  
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Fig. 8: Ash weight in % dry weight (AW in % DW) of the different plant organs of a) A. 
nummularia and b) A. leucoclada as affected by different water salinities. La, adult 
leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each column 
represents the mean values of nine replicates and the bars represent standard errors. 
Columns with the same letter are not significantly different at P< 0.05, LSD test. 

Fig. 9: Effect of various NaCl salinity levels on the water contents (H2O in % FW) of the 
different plant organs of a), A. nummularia and b), A. leucoclada. La, adult leaves; Lj, 
juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each column represents 
the mean values of nine replicates and the bars represent standard errors. Columns 
with the same letter are not significantly different at P< 0.05, LSD test. 
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Fig. 10: Water potentials of the juvenile shoots of A. nummularia (a) and A. leucoclada
(b) under elevated NaCl concentrations. The black lines show the substrate water 
potentials. Each column represents the mean values of nine replicates and the 
bars represent standard errors. Columns with the same letter are not significantly 
different at P< 0.05, LSD test.

Fig. 11: Osmotic potential (in press sap) of the different organs of A. nummularia a) and 
A. leucoclada b) at different water salinity levels. La, adult leaves; Lj, juvenile 
leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each column represents the 
mean values of nine replicates and the bars represent standard errors. Columns 
with the same letter are not significantly different at P< 0.05, LSD test. 
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juvenile shoots of A. nummularia exhibited slightly lower water potential (-2.6 ± 0.4 

MPa) than did those of A. leucoclada (-2.3 ± 0.3 MPa). It was observed that the 

values of the shoot water potentials obtained using Scholander pressure pump were 

slightly higher than the substrate water potential at all salinity treatments (Fig. 10 a 

and b).   

 
3.2.3 Osmotic potentials 

The osmotic potential of the press sap of A. nummularia control plants ranged 

between -0.7 and -2.3 MPa on average over the different plant organs. The highest 

osmotic potential was recorded in the root tissues and the lowest (more negative 

values) were in the juvenile stem ones. The osmotic potentials of all plant organs 

clearly decreased and became more negative as the water salinity increased (Fig. 

11a). It reached from -2.3 ± 0.3 MPa (R) to -4.5 ± 0.3 MPa (Lj) at high salinity 

treatment.  

The osmotic potentials of the different organs of A. leucoclada were more or 

less similar to those of A. nummularia, ranging from -0.8 MPa (R) to -2.5 MPa (Sj). 

As in A. nummularia, the osmotic potentials of all A. leucoclada plant organs 

became more negative as the water salinity increased (Fig. 11b). At the full strength 

salinity, A. leucoclada plants performed lower (more negatively) osmotic potentials 

than A. nummularia, being -3.4 ± 0.3 MPa (R) to -4.5 ± 0.5 MPa (Sj).   

 
3.3 Effect of salinity on the pigment contents and the CO2-gas 
exchange 
 

3.3.1 Chlorophyll a, b and carotenoid contents 
In general, chlorophyll (a), chlorophyll (b) and carotenoid contents (based on 

the leaf area) of the juvenile leaves were higher than those of the adult leaves in 

both Atriplex species and at all levels of salinity. Additionally, Chl(a) was the 

dominant pigment in adult and juvenile leaves of both Atriplex species. In A. 

nummularia control plants, the mean Chl(a) concentration was 61.9 and 72.1 µg* 

cm-2 in the adult and juvenile leaves, respectively. The Chl a/Chl b ratio ranged 

between 2.2 and 2.8 in the adult and juvenile leaves, respectively. As shown in Fig.  
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Fig. 12: Influence of NaCl salinity on the Chl (a) (a), Chl (b) (b), carotenoids concentrations (c) 
and Chl (a)/Chl (b) ratios (d) of the leaves of A. nummularia (left) and A. leucoclada
(right). Each column represents the mean values of nine replicates and the bars 
represent standard errors. Columns with the same letter are not significantly different at 
P< 0.05, LSD test. 
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12 (a - c), the pigment contents of the adult leaves were transiently reduced as the 

water salinity level increased. Moderate salinity caused reduction of about 50% in 

the Chl(a), Chl(b) and carotenoid contents relative to the controls. Further increase 

in the water salinity slightly increased the pigment contents of the adult leaves. 

However, these increases were significant only for Chl(a). As for the juvenile leaves 

Chl(a), Chl(b) and carotenoid contents were reduced gradually with increasing water 

salinity to reach minimum values at the highest NaCl treatment (Fig. 12 a - c). 

Accordingly the Chl a/Chl b ratio of the adult leaves increased with increasing 

salinity. 

The adult and juvenile leaves of A. leucoclada control plants had lower 

Chl(a), Chl(b) and carotenoid concentrations than those of A. nummularia. The 

Chl(a) concentrations ranged between 58.7 and 66.5 µg*cm-2 for the adult and 

juvenile leaves of A. leucoclada control plants respectively. Under this condition, the 

Chl a/Chl b ratio was much higher (4.45 and 3.43 for the adult and juvenile leaves 

respectively) compared to those of A. nummularia. Similarly, increasing water 

salinity decreased the contents of all the three pigments in both adult and juvenile 

leaves with respect to controls (Fig. 12 a - c). This effect was more severe on Chl(b) 

and consequently the Chl a/b ratio increased with increasing NaCl salinity. Unlike A. 

nummularia, no significant (P < 0.05) differences in the Chl(a), Chl(b) and 

carotenoid contents of both adult and juvenile leaves were observed at salinities 

above 250 mol*m-3 NaCl (Fig. 12 a - c).    

 
3.3.2 CO2-gas exchange 

Raising water salinity induced profound changes in the CO2-gas exchange 

parameters of both Atriplex species. Average net photosynthesis rate (A) of A. 

nummularia control plants was 18.3 ± 0.4 µmol*m-2*s-1. It significantly and steadily 

declined as the salinity increased, reached only about 25% of the control at the 

highest salinity treatment (Table 3a). Furthermore, the calculated photosynthetic 

efficiency (Φc) (µmol CO2*µmol-1 Quantum) declined steadily with increasing water 

salinity level, being lowest at the highest salinity treatment (Table 3b). In tendency, 

the light saturation point (Ls) increased from 953.33 µmol*m-2*s-1 under control 

conditions to 2647.36 µmol*m-2*s-1 at the highest water salinity level (Table 3b and 

Fig.13a). Consequently the light compensation point (Lc) gradually increased with  
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Table 3b: Calculated photosynthetic efficiency (Φc), dark respiration (DR), light 

compensation point (Lc) and light saturation point (Ls) of A. nummularia plants grown 
under various NaCl salinities. The calculation was done using SigmaPlot software.  

 

 

 

 

 

 

 

Treatments A 
[µmol*m-2*s-1] 

E 
[mol*m-2*s-1] 

WUE 
A/E 

Rs 
[s*cm-1] 

Ci/Can ∆T 
°C 

Control 18.25a 
± 0.38 

5.61a 
± 0.14 

3.26a 
± 0.15 

2.08a 
± 0.34 

0.50a 
± 0.04 

1,64a 
± 0,14 

 
125 NaCl 13.95b 

±1.23 
2.98b 
± 0.24 

4.69b 
± 0.09 

4.04b 
± 0.65 

0.35b 
± 0.04 

2,27ab 
± 0,48 

 
250 NaCl 12.65b 

± 0.74 
2.74b 
± 0.31 

4.70b 
± 0.31 

5.62b 
±1.01 

0.31b 
± 0.03 

3,15b 
± 0,29 

 
500 NaCl 8.94c 

± 0.46 
1.72c 
± 0.19 

5.24b 
± 0.34 

8.03c 
± 0.42 

0.26b 
± 0.02 

3,40b 
± 0,05 

 
750 NaCl 5.01d 

± 0.51 
0.75d 
± 0.10 

6.75c 
± 0.86 

15.95d 
± 0.68 

0.22c 
± 0.04 

4,19c 
± 0,08 

Treatments Φc 
[µmol CO2*µmol-1 Quantum] 

DR 
[mol*m-2*s-1] 

Lc 
[µmol*m-2*s-1] 

Ls 
[µmol*m-2*s-1] 

Control 0.044 -1.48          32.29         953.33 
 

125 NaCl 0.025 -1.47       56.41       1591.46 
 

250 NaCl 0.026 -1.73       61.14       1500.26 
 

500 NaCl 0.017 -1.16       63.09       1417.55 
 

750 NaCl 0.009 -0.84       88.94        2647.37 

Means within a column followed by the same letter are not significantly different at P< 0.05 as determined by LSD 
test. Each mean represents nine replicates.  

Table 3a: Effect of elevated NaCl salinity on the net photosynthesis rate (A), transpiration 
rate (E), water use efficiency (WUE), Stomatal resistance (Rs), ratio of the internal 
to the external CO2 concentration (Ci/Can), and difference between the leaf and 
atmosphere temperature (∆T) of A. nummularia. All of these values are at the light 
saturation point of photosynthesis.  
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Table 4b: Calculated photosynthetic efficiency (Φc), dark respiration (DR), light 

compensation point (Lc) and light saturation point (Ls) of A. leucoclada plants grown 
under various NaCl salinities. The calculation was done using SigmaPlot software.  

 

 

 

 

 

 

 

Trearments A 
[µmol*m-2*s-1] 

E 
[mol*m-2*s-1] 

WUE 
A/E 

Rs 
[s*cm-1] 

Ci/Can ∆T 
°C 

Control 16,06a 
± 0,83 

3,77a 
± 0,19 

4,26a 
± 0,02 

3.18a 
± 0.19 

0.40a 
± 0.02 

1,96a 
± 0,13 

 
125 NaCl 14,16b 

± 0,40 
2,97b 
± 0,25 

4,79ab 
± 0,32 

4.18b 
± 0.31 

0.35a 
± 0.02 

2,41a 
± 0,37 

 
250 NaCl 10,73c 

± 0,78 
1,91c 
± 0,11 

5,63bc 
± 0,08 

8.04c 
± 0.62 

0.26b 
± 0.00 

3,64b 
± 0,39 

 
500 NaCl 8,15d 

± 0,74 
1,37d 
± 0,17 

5,98c 
± 0,28 

11.67d 
± 0.28 

0.23bc 
± 0.03 

4,28bc 
± 0,36 

 
750 NaCl 4,96e 

± 0,18 
0,84e 
± 0,12 

6,07c 
± 0,74 

15.55e 
± 0.25 

0.17c 
± 0.04 

4,92c 
± 0,75 

Treatments Φc 
[µmol CO2*µmol-1 Quantum] 

DR 
[mol*m-2*s-1] 

Lc 
[µmol*m-2*s-1] 

Ls 
[µmol*m-2*s-1] 

Control 0.030 -0.95         31.31      1385.77 
 

125 NaCl 0.027 -1.01     35.97    1315.18 
 

250 NaCl 0.026 -1.25      45.87     1142.34 
 

500 NaCl 0.022 -0.76     33.77     1185.06 
 

750 NaCl 0.009 -0.52     53.20     1824.42 

Means within a column followed by the same letter are not significantly different at P< 0.05 as determined by LSD 
test. Each mean represents nine replicates. 

Table 4a: Effect of elevated water salinity on the net photosynthesis rate (A), transpiration 
rate (E), water use efficiency (WUE), Stomatal resistance (Rs), ratio of the internal 
to the external CO2 concentration (Ci/Can), and difference between the leaf and 
atmosphere temperature (∆T) of A. leucoclada. All of these values are at the light 
saturation point of photosynthesis.  
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increasing NaCl concentration in the nutrient solution, reached maximum at the 

highest water salinity (Table 3b). Increasing water salinity gradually and significantly 

increased the stomatal resistance. At the highest salinity level, there was 

approximately 8-fold increase in the stomatal resistance relative to the control plants 

(Table 3a). This increase in the stomatal resistance was correlated with a strong 

reduction in the transpiration rate (E), which reached minimum level at the highest 

salinity treatment (Table 3a). This close coordination between the transpiration and 

net photosynthesis rates under elevated salinity led to a significant increase in the 

water use efficiency (WUE) with increasing water salinity. Compared to control, 

WUE was increased by about 100% in plants grown at the highest salt 

concentration (Table 3b). Salinity distinctly reduced the ratio of the internal to 

external CO2 concentration (Ci/Can) from 0.5 ± 0.04 under control conditions to 0.2 ± 

0.03 at 750 mol*m-3 NaCl treatment. A significant increase in the ΔT (difference 

between leaf and air temperature) was observed from 1.6 ± 0.1 °C under control 

conditions to 4.2 ± 0.1 °C at the highest water salinity treatment. The dark 

respiration (DR) increased transiently with elevated water salinity, being maximum 

at 250 mol*m-3 NaCl (Table 3b).  

The control plants of A. leucoclada showed comparatively lower net 

photosynthetic rates (16.1 ± 0.8 µmol*m-2*s-1) than those of A. nummularia (Table 

4a). The net photosynthetic rates was reduced gradually and significantly (P< 0.05) 

with increasing substrate salinity and reached similar level to that of A. nummularia 

at the highest salinity treatment (Table 4a). The calculated photosynthetic efficiency 

(Φc) of A. leucoclada controls was distinctly lower than that of A. nummularia. It 

declined gradually as the substrate salinity increased and reached a comparable 

level to that of A. nummularia at the highest salinity level (Table 4b). Light response 

curves (Fig. 13b) indicated that the photosynthesis was saturated at higher light 

intensity (1385.77 µmol*m-2*s-1). Salinity led to an increase (in tendency) of the light 

saturation point (Ls) which was highest (but lower than that of A. nummularia) at 750 

mol*m-3 NaCl treatment (Fig. 13b and Table 4b). This was associated with increases 

in the light compensation point. The transpiration rates (E) of A. leucoclada controls 

were clearly lower than those of A. nummularia controls. It was significantly reduced 

as the salinity rose and reached minimum at 750 mol*m-3 NaCl treatment         

(Table 4a). The reduction of the transpiration rates were accompanied by a  
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Fig. 13: Light response curves of A. nummularia a) and A. leucoclada b) at various 
NaCl salinities. A, Net photosynthesis rate [µmol*m-2*s-1]; PAR,
photosynthetically active radiation [µmol*m-2*s-1].
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significant increase in the stomatal resistance (5-fold increase) at 750 mol*m-3 NaCl 

salinity. As can bee seen in Table (4a), the WUE of A. leucoclada controls was 

higher than that of A. nummularia controls. Raising water salinity enhanced the 

WUE of A. leucoclada and the highest salinity treatment induced about 45% 

increase in the WUE relative to the control. The Ci/Can ratio dropped from 0.4 ± 0.02 

for control plants to 0.2 ± 0.04 for plants grown at 750 mol*m-3 NaCl. ΔT increased 

significantly (much more than in A. nummularia) from 1.9 ± 0.13 °C under control 

conditions to 4.9 ± 0.8 °C under the highest NaCl salinity (Table 4a). With respect to 

DR, it was markedly lower than that of A. nummularia under control conditions. 

Elevating NaCl salinity up to 250 mol*m-3 NaCl increased the DR, and then it 

declined to the same levels observed in A. nummularia plants at 750 mol*m-3 NaCl 

(Table 4b).                  

 
3.4 Effect of salinity on the mineral ion contents 

Ion contents of both Atriplex species were clearly affected by elevated NaCl 

salinity. Since Atriplex species develop bladder hairs on all their plant parts 

especially the leaves, ion composition of these bladder hairs and the plant tissues 

were determined separately.      

3.4.1 Cation composition 
3.4.1.1 Na+ contents 

At all NaCl salinity treatments and in both Atriplex species Na+ concentrations 

in the roots were lower than in the shoots. Tissue Na+ concentrations of A. 

nummularia control plants ranged from 30.9 ± 3.7 mmol*kg-1 fw (R) to 147.0 ± 12.9 

mmol*kg-1 fw (La). Analysis of variance revealed that Na+ contents of all organs 

increased progressively and significantly (P < 0.05) as the external NaCl 

concentrations increase (Fig. 14a). High salinity level resulted in 6 – 20 fold 

increases in the Na+ concentration relative to controls depending on the plant 

organs. At the highest salinity treatment, the roots tended to maintain low Na+ 

concentrations (301.5 ± 8.5 mmol*Kg-1 fw), while the shoot parts contained a 

comparable Na+ levels to those of the nutrient solutions (slightly lower in the adult 

stems) (Fig. 14a). The adult leaves, however, accumulate high Na+ concentration  
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Fig. 14: Effect of increasing NaCl salinity on the Na+ concentrations (per Kg fresh 
weight) of the different organs of a) A. nummularia and b) A. leucoclada. La, 
adult leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. 
Each column represents the mean values of nine replicates and the bars 
represent standard errors. Columns with the same letter are not significantly 
different at P< 0.05, LSD test. 

Fig. 15: Na+ excretion of the bladder hairs (µmol*cm-2) of the adult and juvenile 
leaves a) A. nummularia and b) A. leucoclada at varying NaCl salinity levels.
La, adult leaves; Lj, juvenile leaves. Each column represents the mean values 
of nine replicates and the bars represent standard errors. Columns with the 
same letter are not significantly different at P< 0.05, LSD test. 
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(822.3 ± 24.3 mmol*kg-1 fw) in comparison to the other organs and the nutrient 

solution (Fig. 14a). The leaves of A. nummularia control plants secreted 

considerable amounts of Na+, being 1.3 ± 0.7 and 3.2 ± 0.8 µmol*cm-2 for the adult 

and juvenile leaves respectively. The Na+ excretion significantly (P< 0.05) and 

gradually increased as the NaCl concentration in the nutrient solution increased 

(Fig. 15a). Expressed on the leaf fresh weight, Na+ excretion of the bladder hairs 

increased with increasing water salinity and exceeded slightly that of the 

corresponding leaf tissues and that of the nutrient solution at the high salinity 

treatment only for the juvenile leaves bladder hairs (data not shown).  

In general, Na+ contents of the different organs of A. leucoclada plants were 

higher than those of A. nummularia at all salinity levels (Fig. 14b). Na+ was the 

predominant cation in all A. leucoclada plant organs. It ranged from 72.6 ± 14.7 (R) 

to 320.4 ± 29.4 mmol*kg-1 fw (La) under control conditions. As expected, Na+ ion 

contents of the different plant organs increased incrementally with NaCl salinity (Fig. 

14b). The roots had distinctly lower Na+ concentrations (532.4 ± 30.6 mmol*kg-1 fw) 

than the shoots. Similar to A. nummularia, the adult leaves accumulated much 

higher Na+ concentration (1015.1 ± 68.5 mmol*kg-1 fw) compared to the other 

organs (Fig. 14b).  

Under control conditions, Na+ excretion of the bladder hairs were 4.2 ± 1.1 

and 8.0 ± 0.5 µmol*cm-2 for the adult and juvenile leaves respectively (Fig. 15b). 

Significant (P < 0.05) increases were observed in the bladder hairs Na+ excretion as 

the water salinity rose. The adult leaves bladder hairs accumulated significantly 

higher Na+ than did the juvenile leaf bladders at the highest salinity level. About 17 

and 6 folds increases were observed in Na+ excretion of the adult and juvenile 

leaves bladder hairs, respectively, relative to controls. On leaf fresh weight base, 

Na+ excretion of the bladder hairs of the adult and juvenile leaves were 1.5 and 2 

fold, respectively, as high as in the corresponding leaf tissues. In contrast to A. 

nummularia, age of the leaves had no influence on the Na+-excretion in A. 

leucoclada.   

 
3.4.1.2 K+ contents 

K+ was the dominant cation in A. nummularia plant tissues under control 

conditions. It reached 77.9 – 226.8 mmol*kg-1 fw on average over all the plant  
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Fig. 16: Effect of increasing NaCl salinity on the K+ concentrations (per Kg fresh weight) 
of different organs of a) A. nummularia and b) A. leucoclada. La, adult leaves; Lj, 
juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each column 
represents the mean values of nine replicates and the bars represent standard 
errors. Columns with the same letter are not significantly different at P< 0.05, 
LSD test. 

Fig. 17: K+ excretion (leaf area basis) of the bladder hairs of the adult and juvenile 
leaves of a) A. nummularia and b) A. leucoclada at varying NaCl salinity levels.
La, adult leaves; Lj, juvenile leaves. Each column represents the mean values 
of nine replicates and the bars represent standard errors. Columns with the 
same letter are not significantly different at P< 0.05, LSD test. 
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organs. The lowest K+ concentrations were found in the roots while the highest K+ 

concentrations were in the juvenile leaves (Fig. 16a). K+ concentrations decreased 

transiently in all plant organs (particularly in the shoots) with increasing NaCl 

salinity, and reached a minimum at 250 mol*m-3 NaCl. Thereafter, K+ concentrations 

of all plant organs slightly increased. However, this effect was significant only for the 

juvenile leaves (Fig. 16a).  

On the basis of leaf area, K+ excretion of the leaf bladder hairs were much 

lower than those of the corresponding tissues. It was highest for the hairs of both 

adult and juvenile leaves, resulting in 0.7 ± 0.1 and 0.8 ± 0.1 µmol*cm-2, 

respectively, under control conditions. K+ excretion of the bladder hairs decreased 

transiently with increasing NaCl salinity with minimum concentrations at the low 

salinity level (Fig. 17a). Further increase in NaCl salinity led to an increase of K+ 

excretion of the adult leaves bladder hairs, while it did not significantly affect that of 

the juvenile leaves bladder hairs (Fig. 17a).  

Tissues K+ concentrations of A. leucoclada were lower than those of A. 

nummularia at control conditions. They ranged between 30.5 ± 11.8 mmol*kg-1 fw 

(La) and 156.0 ± 13.8 mmol*kg-1 fw (Lj). As shown in Fig. (16b), the raising of the 

external NaCl salinity transiently declined the K+ contents of all plant organs, with 

more adverse effect on the shoots. Moderate salinity caused the highest reductions 

in K+ concentrations (about 50 – 60 % in the shoot parts and 20 % in roots). 

Thereafter, increasing water salinity slightly but significantly enhanced K+ contents 

of all plant organs, except that of the juvenile leaves (Fig. 16b). Fig. 17b shows that 

NaCl salinity transiently reduced the K+ excretion of the bladder hairs of both adult 

and juvenile leaves.  
 
3.4.1.3 Na+/K+ ratios 

NaCl salinity gradually and significantly (P < 0.05) increased the Na+/K+ ratio 

of all A. nummularia plant organs (Table 5). At the highest NaCl salinity level, the 

roots and adult stems exhibited the lowest Na+/K+ ratios (7.4 and 6.4 respectively), 

whereas the adult leaves had the highest Na+/K+ ratio (27.8). Na+/K+ ratios in the 

bladder hairs of both adult and juvenile leaves were always higher than under  
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Table 5: N
a

+/K
+ ratios of the different plant organs and bladder hairs of A

. num
m

ularia and A
. leucoclada under 

varying N
aC

l salinity levels. La, adult leaves; Lj, juvenile leaves; S
a, adult stem
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, roots; 
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K
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a  of the different plant organs and bladder hairs of A

. num
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ularia and A
. leucoclada under varying 

N
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l salinity levels. La, adult leaves; Lj, juvenile leaves; S
a, adult stem
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, roots; B

h.La, 
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e letter are not significantly different at P
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ach m
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control conditions. The bladder hairs of juvenile leaves had higher Na+/K+ ratio than 

those of the adult leaves at all salinity levels. The Na+/K+ ratio increased significantly 

with increasing water salinity, and reached a maximum (24.0 and 74.2 for the adult 

and juvenile leaves bladder hairs respectively) at the highest salinity treatment 

(Table 5). Na+/K+ ratio of all plant organs as well as of the bladder hairs of A. 

leucoclada was much higher than that of A. nummularia at all salinity treatments. 

The same trend of increasing Na+/K+ ratio of all plant organs and bladder hairs was 

observed with elevating NaCl salinity (Table 5). At the highest NaCl salinity, the 

adult leaves had the highest Na+/K+ ratio (45.3), while the juvenile stems and roots 

had the lowest Na+/K+ ratio (7.7 and 7.7 respectively).   

 
3.4.1.4 K+/Na+ selectivity 

Selective absorption capacity of K+ over Na+ (SAK: Na) (estimated according to 

the equation of Pitman, 1960) was low (0.10 ± 0.02) in A. nummularia control plants. 

Increasing NaCl concentrations in the substrate led to a steep rise of the SAK: Na up 

to more than 110 fold at the seawater salinity (Table 6). The control plants of A. 

leucoclada presented very low SAK: Na values (0.04 ± 0.08). SAK: Na increased as the 

salinity rose, being 95-fold higher than the controls at the highest salinity treatment. 

SAK: Na values were generally lower than those of A. nummularia at the whole range 

of salinity treatments. 

Table (6) shows that the selective transport capacity of K+ over Na+ (STK: Na) 

(calculated according to the equation of Wang and Zhu, 1994) was highest under 

control conditions for all organs of both Atriplex species. STK: Na was generally less 

than 1 in all organs of both Atriplex species and at the whole range of salinities 

(Table 6) with two exceptions; STK: Na from R to the Sa in A. nummularia and STK: Na 

from Sa to Sj in A. leucoclada which were always higher than one at all salinity 

levels. 
 
3.4.1.5 Ca2+ contents 

Tissues Ca2+ concentrations of A. nummularia were highest at control 

condition, ranging from 22.0 mmol*kg-1 fw (R) to 53.7 mmol*kg-1 fw (La). Ca2+ 

concentrations of all plant organs decreased as the NaCl salinity increased up to 

250 mol*m-3 NaCl (Fig. 18a). Thereafter, increasing water salinity did not  
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Fig. 18: Effect of increasing NaCl salinity on the different organs Ca2+

concentrations (fresh weight basis) of a) A. nummularia and b) A. 
leucoclada. La, adult leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile 
stems; R, roots. Each column represents the mean values of nine replicates 
and the bars represent standard errors. Columns with the same letter are not 
significantly different at P< 0.05, LSD test.
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Fig. 19: Ca2+ excretion (leaf area basis) of the bladder hairs of the adult and juvenile 
leaves of a) A. nummularia and b) A. leucoclada at varying NaCl salinity levels.
La, adult leaves; Lj, juvenile leaves. Each column represents the mean values of 
nine replicates and the bars represent standard errors. Columns with the same 
letter are not significantly different at P< 0.05, LSD test. 
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significantly impact the Ca+2 concentrations of all organs except the juvenile stems, 

which showed a small but significant (P < 0.05) increase at the highest salinity 

treatment. Small amounts of Ca2+ (about 0.02 µmol*cm-2) were detected inside the 

bladder hairs of both adult and juvenile leaves under control conditions. Increasing 

water salinity led to a transient decrease of the Ca2+ excretion, with lowest Ca2+ 

concentrations occurred at a salinity of 125 mol*m-3 NaCl (Fig.19a).  

Control plants of A. leucoclada had lower Ca2+ concentrations (19.0 – 37.3 

mmol*kg-1 fw) on average over the plant organs than A. nummularia. Ca2+ 

concentrations transiently decreased with increasing external NaCl concentrations 

(Fig. 18b). Further increase in the water salinity significantly increased the Ca2+ 

contents of all organs with the exception of the roots. At high salinity treatment, Ca2+ 

was still lower than in the controls. Fig. 19b reveals that the bladder hairs of both 

adult and juvenile leaves of A. leucoclada contained much higher Ca2+ 

concentrations than those of A. nummularia at the whole range of salinities. 

Additionally, the juvenile leaves excreted comparatively higher Ca2+ than adult ones 

at all salinity levels. Increasing NaCl salinity lowered significantly the Ca2+ excretion 

of the bladder hairs of the juvenile leaves, while it did not significantly affect those of 

the adult leaves bladder hairs (Fig. 19b).  
 
3.4.1.6 Mg2+ contents 

Mg2+ concentrations of A. nummularia ranged from 25.8 mmol*kg-1 fw (R) to 

38.3 mmol*kg-1 fw (Lj and Sj). Moderate NaCl salinity decreased the Mg+2 contents 

of all plant organs (Fig. 20a). The same effect was observed for Mg2+ excretion of 

the bladder hairs of both the adult and juvenile leaves. It dropped significantly as the 

salinity rose to 125 mol*m-3 NaCl and then remained constant at higher salinities 

(Fig. 21a).  

Mg2+ concentrations of A. leucoclada control plants were higher than those of 

A. nummularia controls in all plant organs with exception of the adult stems. On 

average over all the different plant organs, Mg2+ concentrations of A. leucoclada 

ranged between 25.8 mmol*kg-1 fw (Sa) and 61.9 mmol*kg-1 fw (Lj). Mg2+ 

concentrations of all plant organs declined transiently in response to elevated water 

salinity (Fig. 20b). At high salinity treatment, the plants maintained consistently 

higher Mg2+ concentrations than A. nummularia in all organs. With regard to the  
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Fig. 20: Effect of increasing NaCl salinity on the different organs Mg2+

concentrations (fresh weight basis) of a) A. nummularia and b) A. 
leucoclada. La, adult leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile 
stems; R, roots. Each column represents the mean values of nine replicates 
and the bars represent standard errors. Columns with the same letter are not 
significantly different at P< 0.05, LSD test. 

Fig. 21: Mg2+ excretion (leaf area basis) of the bladder hairs of the adult and juvenile 
leaves of a) A. nummularia and b) A. leucoclada at varying NaCl salinity levels.
La, adult leaves; Lj, juvenile leaves. Each column represents the mean values 
of nine replicates and the bars represent standard errors. Columns with the 
same letter are not significantly different at P< 0.05, LSD test. 
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bladder hairs, they accumulated higher Mg2+ content than A. nummularia, particular, 

in the juvenile leaves. A minimum Mg2+ content inside the bladder hairs of both adult 

and juvenile leaves was observed at the moderate salinity (Fig. 21b). 

 

3.4.2 Anion composition 
3.4.2.1 Inorganic anions 
3.4.2.1.1 Chloride contents 

Cl- was generally the dominant anion in the plant tissues of both Atriplex 

species at all salinity levels. In control plants of A. nummularia, the Cl- 

concentrations of all organs were distinctly higher than in the nutrient solution. They 

ranged between 31.2 (Lj) and 201.5 (Sj) mmol*l-1 press sap. Cl- concentrations of all 

plant organs increased significantly (P < 0.05) in parallel to the NaCl concentration 

in the culture solution (Fig. 22a). The pattern of Cl- accumulation was similar to that 

of Na+ i.e. it was accumulated preferentially in the shoot parts. However, Cl- 

concentrations were comparatively lower than Na+ concentrations in all plant organs 

especially at the highest salinity level. Even the bladder hairs accumulated much 

lower Cl- than Na+ at all salinity levels. Regardless of salinity treatment, Cl- 

concentrations in the juvenile leaves bladder hairs were distinctly higher compared 

to those of the adult ones (Fig. 23a). At control conditions, low Cl- excretion was 

measured, ranging from 0.3 ± 0.1 to 0.6 ± 0.1 µmol*cm-2 for the bladder hairs of the 

adult and juvenile leaves respectively. Increasing NaCl salinity led to a steep rise of 

the Cl- excretion in the juvenile leaves bladder hairs, while that of the adult leaf 

bladder hairs did not significantly change up to a salinity of 750 mol*m-3 NaCl (Fig. 

23a).  

Tissue Cl- concentrations of A. leucoclada control plants were in the range 

between 42.4 (R) and 297.23 (Sj) mmol*l-1 press sap. The Cl- concentration in the 

tissue of all plant organs was correlated with the NaCl concentration applied to the 

nutrient solution. They consistently increased as the water salinity rose reaching a 

maximum at the highest water salinity level (Fig. 22b). At this level Cl- increasing 

was proportionally higher in the roots than in all other organs. As can be seen in Fig. 

23b, the bladder hairs of A. leucoclada contained comparatively higher Cl- contents 

than those of the A. nummularia at all salinity levels. As in A. nummularia, the 

bladder hairs of A. leucoclada accumulate lower Cl- rather than Na+ and the bladder  
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Fig. 22: Effect of increasing NaCl salinity on Cl- concentrations of the different 
organs of a) A. nummularia and b) A. leucoclada. La, adult leaves; Lj, 
juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each 
column represents the mean values of nine replicates and the bars 
represent standard errors. Columns with the same letter are not 
significantly different at P< 0.05, LSD test.

Fig. 23: Cl- excretion (leaf area basis) of the bladder hairs of the adult and 
juvenile leaves of a) A. nummularia and b) A. leucoclada at varying 
NaCl salinity levels. La, adult leaves; Lj, juvenile leaves. Each column 
represents the mean values of nine replicates and the bars represent 
standard errors. Columns with the same letter are not significantly 
different at P< 0.05, LSD test.
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hairs of the juvenile leaves contained generally higher Cl- contents compared to 

those of the adult ones. Cl- contents inside the bladder hairs of the juvenile leaves 

increased gradually and significantly as the salinity rose, while those of the adult 

leaves bladder hairs increased only significantly at 500 and 750 mol*m-3 NaCl 

(Fig.23b).  

 
3.4.2.1.2 Nitrate contents 

Tissue NO3
- concentrations of A. nummularia control plants varied from 8.1 to 

63.4 mmol*l-1 press sap on average over all the plant organs. Salinity transiently and 

significantly reduced the nitrate contents of all plants organs (Fig. 24a). The 

maximum reduction in nitrate contents occurred at the low and moderate salinities 

and was severe in the juvenile organs (Lj and Sj) and roots (Fig. 24a). Thereafter, 

nitrate contents of all plant organs increased significantly with increasing water 

salinity. At 750 mol*m-3 NaCl salinity, nitrate concentrations in the adult leaves and 

roots exceeded the control levels while those of juvenile leaves and adult and 

juvenile stems did not significantly differ relative to their controls (Fig. 24a). NO3
- 

contents of the bladder hairs were much lower as in the corresponding leaf tissues. 

Salinity declined transiently nitrate excretion of the bladder hairs of the adult and 

juvenile leaves, with a minimum excretion at 250 and 500 mol*m-3 NaCl for juvenile 

and adult leaves, respectively (Fig. 25a).  

Untreated A. leucoclada control plants had markedly higher NO3
- 

concentrations (on average over all organs 13.2 –8.0 mmol*l-1 press sap) than those 

of A. nummularia. Increased salinity led to a decrease of nitrate concentrations of all 

plants organs, with minimum concentrations being 4.5 – 23.6 mmol*l-1 press sap at 

the highest salinity treatment (Fig. 24b). The bladder hairs contained small 

quantities of NO3
- (0.01 and 0.14 µmol*cm-2) in adult and juvenile bladder hairs, 

respectively. As shown in Fig. (25b), salinity reduced significantly the nitrate 

excretion of the juvenile leaves while it did not significantly affect the adult ones.   

 
3.4.2.1.3 Phosphate contents 

A. nummularia control plants contained high tissue phosphate concentration, 

ranging between 31.0 (R) to 167.8 (Sa) mmol*l-1 press sap. Phosphate  
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Fig. 24: Effect of increasing NaCl salinity on NO3- concentrations of the different organs of 
a) A. nummularia and b) A. leucoclada. La, adult leaves; Lj, juvenile leaves; Sa, 
adult stems; Sj, juvenile stems; R, roots. Each column represents the mean values 
of nine replicates and the bars represent standard errors. Columns with the same 
letter are not significantly different at P< 0.05, LSD test.

Fig. 25: NO3- excretion (leaf area basis) of the bladder hairs of the adult and juvenile 
leaves of a) A. nummularia and b) A. leucoclada at varying NaCl salinity levels. La, 
adult leaves; Lj, juvenile leaves. Each column represents the mean values of nine 
replicates and the bars represent standard errors. Columns with the same letter are 
not significantly different at P< 0.05, LSD test. 
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concentration in all plant organs tended to decrease as the water salinity increased 

(Fig. 26a). These declines were transiently in the adult leaves, juvenile stems and  

roots and gradually in the juvenile leaves and adult stems. Analysis of variance 

between the means showed that the effect of NaCl salinity on the tissues phosphate 

concentrations was not statistically significant.    

On average over all the plant organs, A. leucoclada had lower phosphate 

concentrations (of about 29.7 – 92.6 mmol*l-1 press sap) than A. nummularia and a 

decline occurred with increasing NaCl salinity (Fig. 26b). These decreases were 

transient only for the adult and juvenile leaves. Statistically, there were no 

differences in the phosphate concentrations of the adult leaves and juvenile stems 

at the whole range of salinity treatments. At high salinity level, phosphate was 

accumulated in the leaves, reaching nearly the control levels but it decreased by 36, 

27 and 46% in the adult stems, juvenile stems and roots respectively (Fig. 26b).  
 
3.4.2.1.4 Sulphate contents  

Sulphate concentrations in the tissues of A. nummularia control plants ranged 

between 11.1 (Sj) and 137.3 mmol*l-1 press sap (La). Fig. 27a shows that salinity of 

125 mol*m-3 NaCl led to a decline of the sulphate concentration of all organs with 

the exception of the adult leaves where the concentrations were slightly but not 

significantly higher. For all organs, no significant changes in the sulphate 

concentrations were found at salinities higher than 125 mol*m-3 NaCl.  

Sulphate concentrations were slightly lower in A. leucoclada than in A. 

nummularia for all plant organs. They ranged from 6.5 (Sa and R) to 14.9 (Lj) 

mmol*l-1 press sap. The sulphate concentrations in all plant organs declined as the 

salinity increased with the exception of the juvenile leaves where they increased 

slightly (Fig. 27b). These effects, however, were not statistically significant for the 

juvenile leaves, adult stems and roots.  
 
3.4.2.2 Organic anions 
3.4.2.2.1 Oxalate contents 

The oxalate concentrations of A. nummularia control plants ranged between 

8.5 (La) and 47.0 (Lj) mmol*l-1 press sap. Oxalate concentrations decreased 

transiently as the salinity rose in all plant organs with the exception of the adult  
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Fig. 27: Effect of increasing NaCl salinity on SO4
2- concentrations of the different organs of a) A. 

nummularia and b) A. leucoclada. La, adult leaves; Lj, juvenile leaves; Sa, adult stems; Sj, 
juvenile stems; R, roots. Each column represents the mean values of three replicates and 
the bars represent standard errors. Columns with the same letter are not significantly 
different at P< 0.05, LSD test.

Fig. 26: Effect of increasing NaCl salinity on PO4
3- concentrations of the different organs of a) A. 

nummularia and b) A. leucoclada. La, adult leaves; Lj, juvenile leaves; Sa, adult stems; Sj, 
juvenile stems; R, roots. Each column represents the mean values of three replicates and 
the bars represent standard errors. Columns with the same letter are not significantly 
different at P < 0.05, LSD test. 
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leaves in which the oxalate gradually increased (Fig. 28a). Oxalate contents of all 

organs exceeded the control levels at the highest salinity treatment. Root oxalate 

contents remained approximately constant at the whole range of salinity treatments 

(Fig. 28a).  

Fig. (28b) reveals that oxalate concentrations of A. leucoclada plants were in 

the mean lower (8.2 – 20.5 mmol*l-1 press sap) than those of A. nummularia under 

control conditions. Their concentrations increased with elevating salinity. However, 

this effect was statistically significant only for the adult and juvenile leaves.  
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Fig. 28: Oxalate concentrations of the different organs of a) A. nummularia and b) A. 
leucoclada at varying NaCl salinity levels. La, adult leaves; Lj, juvenile leaves; Sa, 
adult stems; Sj, juvenile stems; R, roots. Each column represents the mean values 
of nine replicates and the bars represent standard errors. Columns with the same 
letter are not significantly different at P< 0.05, LSD test.
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3.4.2.2.2 Malate contents 
Malate content of the different organs of both Atriplex species were also 

measured, but its concentrations were always below the detection level. Therefore, 

it was not possible to get convincing results.  

 
3.5 Effect of salinity on carbon, nitrogen and sulphur contents 
   3.5.1 Carbon contents 

Comparable carbon contents (in % DW) were found in the adult and juvenile 

leaves and roots of A. nummularia plants under control condition, being 41.2 ± 0.7, 

41.0 ± 1.1 and 40.2 ± 2.7% respectively. Carbon contents of these organs declined 

as the external NaCl concentration increased (Fig. 29a). Raising water salinity from 

0 to 125 mol*m-3 NaCl reduced significantly (P < 0.05) the carbon content in the 

adult leaves and roots. Further increases in salinity did not significantly affect the 

adult leaves carbon content, but slightly and significantly increased that of the roots 

(Fig. 29a). As for the juvenile leaves, %C reduced gradually with increasing water 

salinity, with maximum and significant reduction at the highest water salinity level 

(Fig. 29a). At this level, %C of the different plant organs was lower than the controls 

measured 33.9 ± 3.1, 33.1 ± 3.1 and 35.2 ± 3.5 for the adult leaves, juvenile leaves 

and roots respectively.  

With the exception of the roots, % C of A. leucoclada was significantly (P < 

0.05) lower than that of A. nummularia under control conditions. It was 37.5 ± 2.3, 

35.5 ± 2.2 and 38.2 ± 4.0% for the adult leaves, juvenile leaves and the roots of A. 

leucoclada controls respectively. As shown in Fig. 29b, salinity gradually reduced 

the carbon contents of the adult and juvenile leaves, with less adverse effect on the 

juvenile leaves, while it did not significantly (P < 0.05) impact those of the roots. At 

the highest water salinity level, the roots exhibited the highest carbon content (38.2 

± 6.1%), while the adult and juvenile leaves showed lower levels (25.6 ± 3.2 and 

27.1 ± 1.1% respectively).  
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Fig. 29: Effect of various NaCl-salinity on the carbon contents (% dry weight) of the adult 
leaves (La), juvenile leaves (Lj) and roots (R) of a) A. nummularia and b) A. 
leucoclada. Each column represents the mean values of nine replicates and the 
bars represent standard errors. Columns with the same letter are not significantly 
different at P< 0.05, LSD test. 

Fig. 30: Effect of various NaCl-salinity on the nitrogen contents (% dry weight) of the adult 
leaves (La), juvenile leaves (Lj) and roots (R) of a) A. nummularia and b) A. 
leucoclada. Each column represents the mean values of nine replicates and the 
bars represent standard errors. Columns with the same letter are not significantly 
different at P< 0.05, LSD test. 
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3.5.2 Nitrogen content 
%N  of A. nummularia control plants averaged 4.4 ± 0.6, 5.3 ± 0.5 and 2.8 ± 

0.5% in the adult, juvenile leaves and roots respectively. It decreased transiently 

with increasing water salinity (Fig. 30a). The highest significant (P < 0.05) reduction 

in the %N occurred at the moderate salinity for the adult leaves and roots and at 

salinity of 500 mol*m-3 NaCl for the juvenile leaves. High salinity treatment 

significantly (P < 0.05) reduced the %N, with more severe effect on the adult leaves  

 (Fig. 30a). It caused about 35, 28, and 13% reduction in the adult leaves, juvenile 

leaves and roots respectively relative to controls. 

A. leucoclada control plants had relatively lower %N than A. nummularia 

(except for the juvenile leaves). The mean %N was 4.0 ± 0.2, 5.9 ± 0.6 and 2.0 ± 

0.3% in the La, Lj, and R respectively. In tendency, %N of the La and Lj was 

reduced, while that of the roots did not significantly change as the substrate salinity 

increased (Fig. 30b). There were reductions of about 34 and 38% in the nitrogen 

content of the La and Lj respectively at the highest salinity treatment.  

 

3.5.3 Sulphur content 
In A. nummularia, the juvenile leaves contained higher sulphur contents (0.8 

± 0.1% (dry weight basis) than the adult leaves (0.4 ± 0.1%) and the roots (0.3 ± 

0.1%) under control conditions. NaCl salinity transiently increased the %S of the 

adult leaves, gradually and significantly (P < 0.05) reduced %S of the juvenile 

leaves, but did not significantly affect that of the roots (Fig. 31a). High salinity level 

reduced the %S to about 24, 45, and 3% in the adult leaves, juvenile leaves and 

roots respectively.  

Concerning A. leucoclada, %S was lower in both juvenile leaves and roots 

and higher in adult leaves than in A. nummularia under control conditions. The 

mean %S of A. leucoclada controls was 0.8 ± 0.1, 0.6 ± 0.1, 0.3 ± 0.1% for the 

juvenile leaves, adult leaves and roots respectively. Similar to A. nummularia, 

raising water salinity increased transiently the %S of the adult leaves, gradually 

decreased that of the juvenile leaves and did not significantly affect that of roots 

(Fig. 31b). Reductions of about 8, 60 and 23% in the %S of adult leaves, juvenile 

leaves and roots, respectively, occurred at the highest water salinity treatment.  
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Fig. 31: Effect of various NaCl-salinity on the sulphur contents (% dry weight) of the 
adult leaves (La), juvenile leaves (Lj) and roots (R) of a) A. nummularia and b) A. 
leucoclada. Each column represents the mean values of nine replicates and the 
bars represent standard errors. Columns with the same letter are not significantly 
different at P< 0.05, LSD test.

a) b)

b) 

a) 

Fig. 32: Total soluble carbohydrate contents of the different plant organs of a) A. 
nummularia and b) A. leucoclada as affected by elevated NaCl salinity. La, adult 
leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each 
column represents the mean values of nine replicates and the bars represent 
standard errors. Columns with the same letter are not significantly different at P<
0.05, LSD test. 
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3.6 Effect of salinity on the total soluble carbohydrates content 
In A. nummularia control plants, the total soluble carbohydrate content (TSC) 

on average over all plant organs ranged between 88.9 (R) and 149.7 (Sa) mmol*l-1 

press sap. With increasing NaCl salinity, the TSC contents of all plant organs 

(except the adult leaves) notably increased and exceeded clearly the initial values at 

the highest salinity treatment (Fig. 32a). This effect was more pronounced in the 

adult stems where an increase of 100% in the TSC occurred at 750 mol*m-3 NaCl. 

Comparison of the means among the different treatments showed that the increase 

in TSC content with increasing salinity was not significant in the juvenile leaves. As 

for the adult leaves, TSC concentration significantly decreased with elevated salinity 

up to 250 mol*m-3 NaCl. Further increase in water salinity did not significantly affect 

the TSC content (Fig. 32a).  

The TSC content of the different A. leucoclada plant organs was considerably 

lower than that of the A. nummularia at the whole range of salinity treatments. It 

ranged between 43.56 (Lj) and 136.61 (Sa) mmol*l-1 press sap under control 

conditions. Salinity treatments increased gradually the TSC contents of the Sa, Sj 

and Lj to exceed that of the controls at the highest salinity treatment, whereas it 

transiently reduced the TSC contents of the La and R (Fig. 32b). At the high salinity 

treatment, TSC content of both organs increased significantly and exceeded that of 

control only in the adult leaves.  

 
3.7 Effect of salinity on the amino acids (AA) content and 

composition 
   3.7.1 Total Amino acid (TotAA) content 

In control plants of A. nummularia, the total amino acid (TotAA) content of the 

juvenile leaves was highest (588.86 µmol*g-1 DW) followed by the adult leaves 

(460.26 µmol*g-1 DW) and the roots (209.60 µmol*g-1 DW). Increasing NaCl salinity 

decreased transiently the TotAA content of both adult and juvenile leaves, with 

lowest TotAA concentration at salinity of 125 mol*m-3 NaCl (Table 7). At this salinity 

level, approximately 20 and 49% reductions in the TotAA contents were noted for 

the adult and juvenile leaves respectively. TotAA content increased with a further 

increase in the NaCl salinity and reached a maximum (503.58 and 852.66 µmol*g-1  
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DW in the adult and juvenile leaves respectively) at the highest salinity treatment. 

As for the roots, TotAA contents significantly (P< 0.05) and continuously increased 

with the rise of salinization level, reached maximum (411.77 µmol*g-1 DW) at the 

highest salinity treatment (Table 7).  

Data presented in Table (7) reveal that the TotAA contents of the adult and 

juvenile leaves of A. leucoclada were nearly similar (408.97 and 438.19 µmol*g-1 

DW) and relatively lower than those in A. nummularia under control condition.     

The TotAA contents of the leaves decreased transiently as the external salinity rose. 

The maximum reduction (about 16%) was observed at 125 and 250 mol*m-3 NaCl 

treatments for the juvenile and adult leaves respectively. High salinity treatment 

increased the TotAA contents of the leaves, and caused about 34 and 79% 

increases in the TotAA of adult and juvenile leaves respectively (Table 7). As shown 

in Table (10), the roots of A. leucoclada control plants presented a slightly higher 

TotAA content (264.77 µmol*g-1 DW) compared to those of A. nummularia controls. 

The TotAA contents of the roots of A. leucoclada increased transiently (but not 

significantly) as the substrate salinity rose (Table 7).  

 
Table 7: Contents (µmol*g-1 DW) of total amino acids (TotAA) in the adult leaves (La), 

juvenile leaves (Lj) and roots (R) of A. nummularia and A. leucoclada at various 
NaCl salinities. 

A. nummularia A. leucoclada Treatments La Lj R La Lj R 

Ctr. 460.27 a 
±110.38 

588.86 b 
± 98.64 

209.60 a 
± 39.49 

408.97 ab 
± 37.38 

438.19 a 
± 28.04 

264.77 a 
± 23.71 

125 NaCl 363.66 a 
± 45.36 

295.43 a 
± 23.88 

298.27 ab

± 2.57 
376.54 ab 

± 83.49 
366.53 a 

± 84.00 
375.01 a 
± 106.93 

250 NaCl 443.34 a 
± 97.46 

407.36 ab

± 117.51 
322.30 ab

± 97.45 
340.02 a 

± 22.98 
382.15 a 

± 85.00 
398.55 a 

± 54.16 

500 NaCl 466.04 a 
± 68.24 

516.84 ab

± 50.23 
460.06 b 

± 67.84 
376.74 ab 

± 13.35 
427.02 a 

± 61.35 
346.27 a 
± 171.14 

750 NaCl 503.58 a 
± 112.45 

852.66 c 
± 76.75 

411.77 b 
± 59.54 

548.56 b 
± 55.10 

787.06 b 
± 127.02 

331.95 a 
± 18.24 

Means within a column followed by the same letter are not significantly different at P< 0.05 as determined by 
LSD test. Each mean represents three replicates.  
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3.7.2 Amino acids composition  
The analysis of the amino acids revealed that Arginine (Arg), Aspargaine 

(Asp), Glutamic acid (GluA) and Proline (Pro) are the most abundant amino acids in 

the different organs of both Atriplex species. The levels of all the other amino acid 

were relatively low and seem to be not much affected by salinity treatment. Thus we 

decided to concentrate only on the changes of Arg, Asp, GlutA and Pro in the La, Lj 

and R of both Atriplex species in response to various NaCl treatments.  

Arg, the least abundant amino acid in A. nummularia control plants, 

accounted for only 3, 3 and 5% of the TotAA of the adult leaves, juvenile leaves and 

roots respectively. As shown in Fig. 33, it transiently decreased in these organs as 

the NaCl salinity raised, reaching a minimum concentration at the low and moderate 

salinities. High salinity treatment induced about 8 and 10 folds increases in the Arg 

concentrations of the adult and juvenile leaves respectively, while it resulted in 

approximately 25% reductions in the roots Arg concentrations. In A. leucoclada 

control plants, Arg concentrations were distinctly lower in the adult leaves and 

slightly higher in the juvenile leaves and roots compared to those of A. nummularia 

(Fig. 33). It accounted for about 1.2, 8 and 8% of the TotAA in the adult leaves, 

juvenile leaves and roots. Arg concentrations reduced transiently in the adult and 

juvenile leaves, while it did not significantly change in the roots with increasing 

salinity (Fig. 33). There were about 4 and 0.4 folds increases in its concentration in 

the adult and juvenile leaves respectively under high salinity conditions. By contrast, 

the roots displayed about 0.9 fold reduction in the Arg concentration at this salinity 

level.  

Low concentrations of Asp were also detected in A. nummularia control 

plants. They contributed to about 4.5, 5 and 4.7% of the TotAA of the adult leaves 

and juvenile leaves and roots respectively. Fig. 33 shows that raising external NaCl 

salinity level did not significantly affect Asp concentration in the adult leaves, but 

transiently decreased that of the juvenile ones. As for the plant roots, Asp contents 

increased initially at low NaCl concentrations, then remained unchanged up to 250 

mol*m-3 NaCl salinity then increased significantly (P < 0.05) at the highest salinity 

treatment. High NaCl treatment caused about 40% reduction in the Asp content of 

both adult and juvenile leaves and about 60% increase in the root. Relatively low 

Asp content were also detected in A. leucoclada control plants, accounting for about  
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Fig. 33: Arg, Asp, GluA and Pro concentrations (µmol*g-1 DW) in the the adult leaves (a), 
juvenile leaves (b) and roots (C) of A. nummularia and A. leucoclada at different NaCl 
salinities. La, adult leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, 
roots. Each column represents the mean values of nine replicates and the bars 
represent standard errors. Columns with the same letter are not significantly different at 
P< 0.05, LSD test. 



 RESULTS 

 73

4, 3 and 5% of the TotAA of the adult leaves, juvenile leaves and roots respectively. 

Unlike A. nummularia, NaCl treatments had no significant impact on the Asp 

contents of the different organs of A. leucoclada (Fig. 33). 

As shown in Fig. 33, GluA was the most abundant amino acids accounted for 

about 31, 19 and 11% of the TotAA in the adult leaves, juvenile leaves and roots of 

A. nummularia respectively. GluA concentrations decreased in these organs with 

the rise of salinization level. However, this effect was significant only for the adult 

leaves. In A. leucoclada, GluA concentrations contributed to about 31, 20 and 9% of 

the TotAA in the adult leaves, juvenile leaves and roots respectively. In tendency, 

GluA concentration was reduced with increasing NaCl salinity. This effect which was 

significant only for the adult leaves (Fig. 33).  

Low proline (Pro) concentrations were also found in A. nummularia plants 

grown under control conditions. Proline concentration was accounted for about 4, 3 

and 5% of the TotAA in the adult leaves, juvenile leaves and roots respectively. Its 

concentrations in the different plant organs increased slightly (not significantly) with 

increasing NaCl salinity up to 250 mol*m-3 NaCl (Fig. 33. Higher salinity, however, 

induced progressive increases in the Pro contents, particularly in the juvenile 

leaves. There were about 6, 8 and 7 fold increases in the Pro levels in the adult 

leaves, juvenile leaves and roots respectively at the high salinity level. It was the 

most abundant amino acid accounted for 25 – 40% of the total amino acids in the 

different plant organs at this salinity. Pro concentration accounted for about 3, 2.5 

and 4.5% of the TotAA of the adult leaves, juvenile leaves and roots of A. 

leucoclada control plants. As in A. nummularia, Pro concentrations increased 

slightly at low salinities, and significantly much more pronounced at the high salinity 

treatments (Fig. 33). The leaves of A. lecuoclada accumulated clearly much higher 

Pro concentrations compared to those of A. nummularia at the highest water 

salinity, while the reverse was observed for the roots. At high salinity level, 

approximately 15, 20 and 5 fold increases were found in the Pro contents of the 

adult leaves, juvenile and roots of A. leucoclada plants (Fig. 33).  

 
3.8 Osmotic balance 

It is well known that plant survival under saline conditions depends on the 

ability to balance the osmotic burden by decreasing the tissue osmotic potential.  
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Fig. 34: Sums of the osmotically active substances concentrations in the different 
organs of A. nummularia plants at control (a), 250 mol*m-3 NaCl (b) and 750 
mol*m-3 NaCl (c) salinities. The asterix marks the corresponding osmotic 
potential of the press saps.    
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Fig. 35: Sums of the osmotically active substances concentrations in the different 
organs of A. leucoclada plants at control (a), 250 mol*m-3 NaCl (b) and 750 
mol*m-3 NaCl (c) salinities. The asterix marks the corresponding osmotic 
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This balance of osmotic potential will be reached by increasing the concentrations of 

osmotically active substances within the plant tissues in response to elevated water 

salinity. As can be seen in Fig. 34 and 35, the sums of all osmotically active solute 

concentrations increased parallel to the external salinity in all organs of both Atriplex 

species. From quantitive point of view, the sum of solute concentrations were 

sufficient to explain more than 95% of the osmotic potentials of all organs of both 

Atriplex species at all salinity levels. The accumulation of Na+ and Cl- ions in the 

different plant organs seem to play the main role in the osmotic adjustment in all 

plant organs especially at high salinity treatment 

 
3.9 Effect of salinity on the total soluble protein content 

The mean total soluble protein (TSP) content of A. nummularia controls 

ranged between 0.2 (R) and 0.9 (Lj) mg*l-1 press sap (Fig. 36a). Elevating substrate 

salinity transiently decreased the TSP concentration of adult and juvenile leaves and 

juvenile stems (Fig. 36a). High salinity treatment significantly (P < 0.05) enhanced 

the TSP content of juvenile leaves to reach higher level than the control only in the 

juvenile stems. As shown in Fig. 36a, no significant differences in the adult leaves 

TSP content were observed at salinities above 125 mol*m-3 NaCl. In contrary, the 

soluble protein content of the adult stems and the roots increased gradually as the 

water salinity rose. However, this effect was only statistically significant in the roots 

(Fig. 36a).  

A. leucoclada plants exhibited generally lower TSP than A. nummulatria 

plants at all salinity treatments except in the roots. TSP on average over the 

different organs of A. leucoclada control plants ranged from 0.3 (La) to 4.3 (Sa and 

Sj) mg*l-1 press sap. Increasing salinity levels transiently reduced the TSP of all 

plant organs, with maximum reductions at low and moderate salinities (Fig. 36b) . 

High salinity treatments increased the TSP contents which exceeded the control 

level in all organs except for the juvenile leaves. However, comparison of means 

among treatments showed that the changes in TSP content of juvenile stems were 

not statistically significant. 

 
 



 RESULTS 

 77

b

c

a
a

a

a

a a
a

b

a

ab a

a

abc

a

b
a b

bc

a

b
a b

c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

La Lj Sa Sj R

Pr
ot

ei
n 

co
nc

en
tr

at
io

ns
 [m

g 
l-1

 p
re

ss
 s

ap
] Ctr. 125 NaCl 250 NaCl 500 NaCl 750 NaCl

b
b

a a
ab

ab
a

a a

aa

ab

ab
a

abb

ab

b
a

abab
b

b a

b

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

La Lj Sa Sj R

Pr
ot

ei
n 

co
nc

en
tr

at
io

ns
 [m

g 
l-1

 p
re

ss
 s

ap
]

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 36: Total soluble protein content (TSP) of the different plant organs of a) A. 
nummularia and b) A. leucoclada as affected by elevated NaCl salinity. La, adult 
leaves; Lj, juvenile leaves; Sa, adult stems; Sj, juvenile stems; R, roots. Each 
column represents the mean values of nine replicates and the bars represent 
standard errors. Columns with the same letter are not significantly different at P<
0.05, LSD test. 
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3.10 Proteomics 
   3.10.1 2D-gel electrophoresis and protein expression patterns 

Figures 37 a and 38a show representative 2D-gel electrophoresis of the fully 

expanded leaves of A. nummularia and A. leucoclada respectively. Using the Delta 

2D software (DECODON GmbH, Germany), about 200 - 250 protein spots could be 

reproducibly detected on the Comassie-stained gels of both Atriplex species (control 

condition). Most of these proteins occurred in the pH range of 5 – 8. The protein 

expression patterns of salt treated leaves of A. nummularia and A. leucoclada (Fig. 

37b and 38b respectively) were compared with those of the corresponding controls. 

A general repression effect of high salinity treatment on the protein expression of 

the leaves was noted in both Atriplex species. The number of down regulated 

proteins and the degree of repression were higher in A. leucoclada than A. 

nummularia. Approximately 55 and 85% of the protein spots in A. nummularia and 

A. leucoclada, respectively, were differentially regulated under high salinity 

condition. In A. nummularia, about 5% of protein spots were up regulated, 38% 

down regulated, and 13% disappeared at high salinity concentration. In the case of 

A. leucoclada, there were about 0% up regulation, 46% down regulation and 39% 

disappear in the protein spots. Moreover, no new protein spot was detected in both 

Atriplex species under high salinity condition compared to control.  

Due to the high number of differentially expressed proteins, we decided to 

concentrate only on those with percentage volume higher than 0.1. On these 

criteria, about 70 and 79 protein spots were selected for A. nummularia and A. 

leucoclada leaves, respectively. The numbers on the gels in Figures 37a and 38a 

refer to them.  Of these proteins, 48 spots were down regulated, 12 spots were up 

regulated and 10 spots disappeared in A. nummularia at high NaCl concentration. In 

A. leucoclada, 60 spots were down regulated and 19 spots disappeared at high 

salinity level. The ratio of repression or induction (percentage spot volume of 

control/percentage spot volume of 750 mol*m-3 NaCl) of these proteins was 

calculated. About 33 protein spots that were regulated by a factor of at least two 

folds (repression or induction) when compared to the corresponding control were 

selected for further characterization. The experimental pI and MW were used firstly 

for the identification of these proteins using the public databases SWISS-PROT, 

TrEMBL and NCBInr (http://www.expasy.com). Searching using only  
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Fig. 37: Representative 2D-gel electrophoresis of the leaf proteins from untreated (a) and 750 mol*m-3

NaCl treated (b) A. nummularia plants. The numbers on the gels refer to the proteins which are 
differentially regulated under salinity condition and have percentage volume higher than 0.1% 
as quatified with Delta 2D software. The red arrows refer to the down-regulated proteins, the 
green arrows refer to the up-regulated proteins and the black ones refer to those proteins, which 
disappear under salinity treatment. 
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Fig. 38: Representative 2D-gel electrophoresis of the leaf proteins from untreated (a) and 750 mol*m-3

NaCl treated (b) A. leucoclada plants. The numbers on the gels refer to the proteins which are 
differentially regulated under salinity condition and have percentage volume higher than 0.1% as 
quatified with Delta 2D software. The red arrows refer to the down-regulated proteins, the green 
arrows refer to the up-regulated proteins and the black ones refer to those proteins, which 
disappear under salinity treatment. 
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the experimental pI and MW did not give valuable information about these proteins 

and a long list of probable protein names was obtained for each protein spot (see 

appendix, Table A4).  

 
3.10.2 MALDI-TOF mass spectrometry and protein identification 

Since searching the databases failed to give valuable information about these 

proteins, some of them were analyzed using Matrix Assisted Laser 

Desorption/Ionization - Time Of Fight - Mass Spectrometry (MALDI-TOFF-MS). 

Because of the high costs of this method, only 11 protein spots that showed very 

conspicuous expression profiles were chosen: Spots 1, 25, 61, 75, 76 and 77 (which 

showed more than 2-fold down regulation under high salinity treatment in both 

Atriplex species), and spots 4, 11, 28, 42 and 43 (which were down regulated in A. 

leucoclada but up regulated in A. nummularia under high NaCl salt stress). Figs. A2 

and A3 (see appendix) show representative mass spectra (peptide mass fingerprint) 

of the analyzed protein spots. The peptide mass fingerprint (PMF) of each protein 

spot was then searched against the public protein databases Mascot 

(http://www.matrixscience.com), ProFound (http://www.proteometrics.com) and 

Aldente (http://www.expasy.org/cgi-bin/aldente/form.cgi) for the identification. Only 

six protein spots (4, 11, 25, 28, 42 and 43) were successfully identified with high 

scoring (probability) whereas five proteins (1, 61, 75, 76 and 77) were not identified 

using these databases. All proteins in Table (8) are the first protein candidates in the 

search result lists. The identified proteins can be classified into two groups.  

 
I- Proteins involved in photosynthesis and carbohydrate metabolism – This 

group includes four protein spots (spot No. 4, 25, 42 and 43), with a relation to the 

C4 photosynthesis pathway.  

Spot No. 4 was identified as Pyruvate orthophosphate dikinase (PPDK) (EC 

2.7.9.1) similar to the PPDK from Mesembryanthemum crystallinum and 

Zea mays. As is shown in Figs. 37 and 38, the PPDK was up regulated and 

down regulated in the leaves of A. nummularia and A. leucoclada 

respectively at high salinity treatment. 

Spot No. 25 was identified (with high confidence) as ribulose1,5-bisphosphate 

carboxylase-oxygenase large subunit (EC 4.1.1.39). It was markedly down                  
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                regulated under high NaCl salinity treatment in comparison to the 

corresponding control in both Atriplex species (Figs. 37 and 38).  

Spot No. 42: A plastidic fructose-bisphosphate aldolase (ALdP) (EC 4.1.2.13), 

similar to that of Nicotiana paniculata was detected on this spot. The 

abundance of ALdP increased in the salt treated leaves of A. nummularia 

while it decreased in those of A. leucoclada (Figs. 37 and 38). 

Spot No. 43 was identified as malate dehydrogenase (MDH) (EC 1.1.1.37), similar 

to that of Zea mays and Mesembryanthemum crystallinum. The 

abundance of this protein increased significantly in the leaves of A. 

nummularia whereas it decreased markedly in those of A. leucoclada at 

high salinity treatment (Figs. 37 and 38). 

II- Proteins implicated in nitrogen metabolism and amino acid biosynthesis – 

This group includes spots No 11 and 28.    

Spot No. 11 was identified as 5-methyltetrahydropteroyltriglutamate-homocysteine 

transmethylase (HMT) (EC 2.1.1) homologous to that of 

Mesembrynthemum crystalinum. High salinity treatment induced a 

significant increase in abundance of 5-

methyltetrahydropteroyltriglutamate-homocysteine transmethylase in the 

leaves of A. nummularia and decrease in those of A. leucoclada (Figs. 37 

and 38). 

Spot No. 28 was identified as S-adenosyl-L-methionine synthase (SAMS) (EC 

2.5.1.6). The enzyme was distinctly up regulated in the leaves of A. 

nummularia while it was slightly down regulated in those of A. leucoclada 

at saline condition (Figs. 37 and 38).  

 

As for the other four protein spots more than one probable candidate protein 

were obtained for each spots (Table 8). This may be because of the corresponding 

Atriplex proteins were not included in the data bases or because of their low mass 

spectrum qualities or due to the mixture of numerous protein spots localized in the 

same pI or MW range. These proteins were just measured once by MALDI-TOFF-

MAS and with additional measurements they could be identified.   
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3.11 Energy dispersive X-ray microanalysis (EDXA) 
Ion contents (Na, Cl, K, P, S, Mg and Ca) and their distribution within the bladder 

cells, epidermal and guard cells of the adaxial and abaxial epidermal layers were 

determined for the adult and juvenile leaves of both Atriplex species. Results of 

EDXA analysis revealed that there were no major differences between the adaxial 

and abaxial epidermal layers. Thus, Table A3 (appendix) contains only the data of 

the adaxial epidermal cells. In A. nummularia controls, the bladder cells contained 

generally high amounts of Na and Cl in comparison to the epidermal cells (Fig. 39). 

The high accumulation of Na and Cl in the bladder cells was associated with 

relatively low K, Mg, P, Ca contents. The guard cells, on the other hand, were 

characterized by slightly high P and lower Na contents in comparison to the 

epidermal cells (Fig. 39). As shown in Fig. 39, S forms a relatively constant 

proportion in all measured cells under control conditions. Salinity significantly 

increases Na and Cl and trims Mg, P, S, K and Ca contents of the epidermal cells, 

guard cells and bladder cells (Fig. 39). These results are in agreement with those of 

atomic absorption spectrophotometerical ones. In some cases, numerous crystals 

were observed on the leaf surface of the plants grown at high salinity level after the 

collapse of the bladder hairs (Fig. 39). EDXA analysis of these crystals revealed that 

they consisted mainly of Na and Cl.  

The same pattern of ion content and distribution was more or less noticed in 

A. leucoclada plants under control conditions (Fig. 40). However, conspicuous high 

Mg and low Cl contents were observed in all measured cell types of A. leucoclada 

under control conditions (compared to A. nummularia). The same trend of increased 

Na and Cl and decreased Mg, P, S, K and Ca contents were observed in all 

measured cell types (i.e. epidermal cells, guard cells and bladder cells) of A. 

leucoclada leaves at high saline conditions (Fig. 40).  

At this salinity treatment (750 mol*m-3 NaCl), lower Na contents were 

detected in the leaf epidermal cells and in the guard cells of A. leucoclada as in A. 

nummularia (Fig. 40). By contrast, P contents in these parts were clearly higher in A. 

leucoclada. Additionally, the guard cells of A. leucoclada juvenile leaves showed 

high Cl contents at saline conditions (Fig. 40c).  
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Fig. 39: Representative energy-dispersive x-ray microanalytical spectra of the bladder cells 
(a), epidermal cells (b) and guard cells (c) of the juvenile leaves (adaxial epidermis)
of A. nummularia controls (left) and salt treated plants (right).   

Control 750 mol*m-3 NaCl 

a) a)

b) b)

c) c)
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Fig. 40: Representative energy-dispersive x-ray microanalytical spectra of the bladder cells 
(a), epidermal cells (b) and guard cells (c) of the juvenile leaves (adaxial epidermis)
of A. leucoclada controls (left) and salt treated plants (right).   

Control 750 mol*m-3 NaCl 
a) a)

b) b)

c) c)
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3.12 Effect of salinity on the leaf structure 
   3.12.1 Light and Scanning Electron microscopy 

Light microscopical investigations revealed that the leaves of both Atriplex 

species had similar anatomical structure. They have a dorsiventral anatomy, with 

adaxial (upper) and abaxial (lower) epidermal layers enclosing in between a 

mesophyll with numerous vascular bundles (Fig. 44a and 45b). The epidermal cells 

of both adaxial and abaxial sides have thick outer walls covered with thin smooth 

cuticle layers. Stomata of the anomocytic type are scattered on both the adaxial and 

abaxial surfaces with an irregular distribution. Accordingly, the leaf is 

amphistomatal. The stomatal density has been estimated as 32.4 ± 6.2 and 34.1 ± 

4.6 stomata*mm-2 in A. nummularia and A. leucoclada respectively. The stomatal 

aperture of A. nummularia was 17.1 ± 5.7 µm in length and 3.4 ± 0.2 µm in width 

while in A. leucoclada it was 13.5 ± 5.1 µm and 2.9 ± 0.3 µm in length and width 

respectively. The leaves of both Atriplex species are abundantly covered with 1 – 3 

layers of special epidermal trichomes, the so-called bladder hairs or vasiculated 

hairs (Fig. 41 and 42). These bladder hairs give the leaves (in particular the juvenile 

ones) their greyish appearance. The bladder hair consists of a thin stalk (of 1 – 3 

cells) bearing a large bladder cells with 140 – 200 µm in diameter. The stalk cells 

are characterized by a dense plasmatic content, while the bladder cell has a giant 

central water containing vacuole.  

The formation of such bladder hairs begins in the early stages of the leaf 

development. Study of transverse sections of the very young leaves revealed that 

the bladder hairs originate as embossments from the dermatogen. The first 

periclinal division leads to the bladder initial, while the stalk cell was formed by 

subsequent divisions or in some cases it develops directly to the large bladder cell. 

The new developing bladder hairs press against the older mature ones which begin 

to collapse after a stretching of the stalk cells. It was generally observed that the 

adult leaves of both Atriplex species have much less bladder hairs per unit leaf as 

the juvenile ones.  

The hypodermis beneath the upper and lower epidermis composed of 1 – 2 

layers of large, isodiametric, colourless, thin walled parenchymatus cells (Fig. 44a 

and 45a). The diameters of these cells ranged between 51.3 ± 12.5 and 75 ± 18.3 

µm in A. nummularia and A. leucoclada respectively. Large intercellular spaces  
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Fig. 41: Representative SEM photograph of a vacuum hydrated and transversely 
fractured surface leaf of A. nummularia control plant. ab, abaxial epidermis; ad, 
adaxial epidermis; bh, bladder hairs; bs, bundle sheath; me, mesophyll; vb, 
vascular bundle.   

bh

ad
me 

vb
bs

ab 

Fig. 42: Representative SEM photographs of the juvenile leaf surface of A. leucoclada (a) 
at control condition and (b) at high salinity level (750 mol*m-3 NaCl). Note the 
various stages of bladder hairs development and degeneration. Typical NaCl 
crystals (arrows) can be seen on the leaf surface at high salinity treatment (b).  

a)

b)
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Fig. 43: Representative scanning electron micrographs of A. nummularia
adult leaf surface at control conditions (a) and at 750 mol*m-3 NaCl 
(b). Note the open stomata in (a) and the closed stomata in (b).   

 

a) 

b) 
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occur between the hypodermal cells especially underneath the stomata 

(substomatal chamber) (Fig. 45a, 46a and 47a). Numerous large crystals of calcium 

oxalate (druses) were observed in the hypodermal cells particularly in the juvenile 

leaves of both Atriplex species (Fig. 44a). Atriplex leaves show the typical C4 

anatomy i.e., the mesophyll is well developed into mesophyll layer and bundle 

sheath layer, both are arranged concentric around the vascular strands. The 

mesophyll is formed out of one layer of thin walled, short columner cells. They were 

24.1 ± 5.9 µm and 13.2 ± 2.5 µm for the anticlinal and periclinal dimensions 

respectively in A. nummularia while those of A. leucocalda were bigger and reached  

39 ± 4.1 µm and 22.4 ± 6.0 µm. The mesophyll cells have large vacuoles and a few 

small organelles embedded in the cytoplasm. Generally, the mesophyll cells are 

arranged radially around the bundle sheath. The bundle sheath consists of 

isodiametric chlorenchymatous cells which are radially arranged around the 

vascular bundles. Their diameters were 64.0 ± 11.5 µm in A. nummularia and 47.3 ± 

16.1 µm in A. leucoclada. These cells have thick walls (especially the outer 

tangential ones), small vacuoles, and they are densely packed with large starch 

containing-chloroplasts. The cells of the bundle sheath are very small on the abaxial 

side. The lateral vascular bundles show the overall feature of an open lateral veins. 

The tracheary elements had diameters of 13.9 ± 3.2 µm and 12.7 ± 2.6 µm in A. 

nummularia and A. leucoclada respectively.   

Salinity did not affect the basic anatomical features of the leaves in both 

Atriplex species. In tendency, salinity slightly reduced the epidermal cell size of the 

adaxial and abaxial epidermises of both Atriplex species. The bladder hairs density 

seems to be less affected with salinity treatment rather aging. Stomatal density was 

slightly reduced to 29.5 ± 4.1 and 30.4 ± 7.2 stomata*mm-2 in A. nummularia and A. 

leucoclada respectively under saline conditions. Most stomata on the adaxial and 

abaxial sides of the NaCl-treated adult leaves were closed and their guard cells 

have distinctly thicker walls (Fig. 43b) and (A4, appendix). The stomatal aperture 

measured 11.7 ± 3.8 µm in length and 1.3 ± 0.3 µm in width for A. nummularia 

whereas it averaged 12.1 ± 4.1 µm in length and 1.4 ± 0.6 µm for width in A. 

leucoclada.    

The most obvious salt-induced changes concern the leaf thickness in both 

Atriplex species. Exposure to high salinity treatment significantly increased the leaf  
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Fig. 44: Transverse sections of the fully expanded mature leaves of A. 
nummularia a) at control condition and b) at 750 mol*m-3 NaCl salinity. 
ab, abaxial epidermis; ad, adaxial epidermis; bh, bladder hairs; bs, 
bundle sheath; cr, calcium oxalate crystal; me, mesophyll; st, stomata;
vb, vascular bundle.  
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Fig. 45: Transverse sections of the fully expanded mature leaves of A. 
leucoclada a) at control and b) at 750 mol*m-3 NaCl salinity. ab, abaxial 
epidermis; ad, adaxial epidermis; bh, bladder hairs; bs, bundle sheath; 
me, mesophyll; st, stomata; vb, vascular bundle.  
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Fig. 46: The structure of the mesophyll and bundle sheath of a) untreated and 
b) salt treated A. nummularia leaves. 

Fig. 47: The structure of the mesophyll and bundle sheath of a) untreated and 
b) salt treated A. leucoclada leaves. 

a) b)

b)a) 
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thickness by about 3.5 – 4 and 2.5 – 3 folds in A. nummularia and A. leucoclada 

respectively relative to the corresponding controls (Fig. 44b and 45b). This increase 

is mainly due to the extension of the hypodermal and mesophyll cells particularly in 

the anticlinal direction. Additionally, this leads to reduction in the intercellular spaces 

between the mesophyll cells by about 90 and 82% in A. nummularia and A. 

leucoclada respectively (compared to controls, Fig. 46 and 47). Furthermore, salinity 

resulted into a distinct decrease in calcium oxalate crystals within the mesophyll 

cells (Fig. 44b and 45b). In contrast to the hypodermal and mesophyll layers, no 

significant salt-induced changes were found in the size of bundle sheath cells. The  

tracheary element diameter was slightly affected by salinity. Their diameters 

declined in response to salinity, ranging 9.2 ± 3.1 µm and 8.9 ± 2.8 µm in A. 

nummularia and A. leucoclada respectively.  

 
3.12.2 Ultrastructure investigations 

 

The ultrastructure of the different leaf cells of A. nummularia and A. 

leucoclada is relatively similar. The epidermal cells are characterized by large 

central vacuoles, some chloroplasts, ER, mitochondria and prominent nucleus in a 

peripheral cytoplasm layer (Figs. 48a and b). Of central interest was the 

ultrastructure of the bladder hairs, particularly, the stalk cell. As can be seen in Figs. 

48c and 49a, the stalk cell of the bladder hair contains a large nucleus, several 

mitochondria, endoplasmic reticulum, chloroplasts and a few small vacuoles 

impeded into a dense cytoplasm. The nucleus of the stalk cell is especially larger in 

relation to cell size, filling up the central portion of the cell (Fig. 49a). On contrary, 

the bladder cell has an extremely large vacuole with a prominent nucleus imbedded 

in the peripheral cytoplasm. Numerous plasmodesmata were observed between the 

epidermal and stalk cells and between the stalk and the bladder cells (Fig. 49b). It 

was obvoius that the bladder hairs did not show any significant responses to salinity 

treatments with exception of increasing vesicles observed in the bladder cells 

especially in A. leucoclada (Fig. 55a).   

  As described before, the major leaf veins of both Atriplex species are 

surrounded by the bundle sheath cells which having conspicuous morphological 

differences to the surrounding mesophyll cells. The bundle sheath cells have a 

dense cytoplasmic content (chloroplasts, mitochondria, ER, etc.) (Figs. 50). The  



 RESULTS 

 95

 

 

 
 
 
 
 
 
 
 
 

Fig. 49: Stalk cell ultrastructure (A) and portion of the bladder cell with an adjacent cell of the 
adaxial epidermis fro untreated control leaf of A. leucoclada (B). bc, bladder cell; ch, 
chloroplasts; cw; cell wall; e, epidermal cell; er, endoplasmic reteculum; m, mitochondria; 
n, nucleus; pd, plasmodesmata; va, vacuoles 

Fig. 48: Different portions of the adaxial epidermis of control leaf of A. leucoclada. (a) epidermal cell 
with its outer thick cell wall. Note the small vesicles adjacent to the radial cell wall (arrows). 
(B) portion of two adjacent epidermal cells showing the some cytoplasmic organelles. (c) stalk 
cell of a bladder hair. bc bladder cell; ch, chloroplasts; cw; cell wall; er, endoplasmic reticulum; 
g, golgi bodies; m, mitochondria; n, nucleus; s, strach and va, vacuoles.  
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Fig. 50: Bundle sheath cells surrounding a vascular bundle with the adjacent mesopyll cells from 
control leaf of A. leucoclada. Note the much more dense cytoplasmic contents in the bundles 
sheath cell as in the mesophyll cells (a, b), the thick walls of the bundle sheath cells with 
several plasmodesmata (arrows)  in (b). bs, bundle sheath cell; me, mesophyll cell and vb, 
vascular bundle.  

Fig. 51: Part of a mesophyll cell (a) and bundles sheath cell (b) from a control leaf of A. nummularia. 
Note the large chloroplasts with normal grana and large starch grains and the high number of 
mitochondria in the bundle sheath cell (b). ch, chloroplast; m, mitochondria; n, nucleus; s, 
strach and va, vacuole. 
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Fig. 53: Part of a bundle sheath cell of a salt treated leaf of A. nummularia.  
         ch, chloroplasts; m, mitochondria; n, nucleus; s. strach and ve, vesicles.  
 

Fig. 52: Part of the bundle sheath cell (a) and mesophyll cell (b) of a control leaf of A. nummularia.  
             gr, grana; pl, plastoglobuli and s, strach.   
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chloroplasts of the bundle sheath cells are long and relatively thick and have more 

grana and the stroma lamellae are shorter compared with those of the mesophyll 

cells (51a, b). There was much more starch accumulated in the bundle sheath 

chloroplasts as in the mesophyll ones (Figs. 52a and b). The bundle sheath cells are 

also characterized by a higher number of relatively big mitochondria in comparison 

to the mesophyll cells (Fig. 51b). Additionally, they have large cell nuclei located in 

the centre while that of the mesophyll cells are situated peripherally and are again 

somewhat smaller than the ones of the bundle sheath. The bundle sheath cells are 

characterized by a relative thick cell wall in comparison to the mesophyll cells (Fig.  

50b). Several plasomodesmata were observed between mesophyll and bundle 

sheath cells in the leaves of control and salt treated leaves in both Atriplex species 

(Fig. 50b).  

In general, salinity induced swelling of several organelles in both the 

mesophyll and bundles sheath cells like chloroplasts, golgi bodies, mitochondria, 

and cell nuclei (Fig. 53). These salt-induced changes were more obvious in the 

bundle sheath cells than the mesophyll cells. The numbers of chloroplasts 

decreased slightly and the overall shape of them was changed as a result of 

membrane swelling from elliptical to an elongate, cup or horseshoe shape in the 

NaCl treated leaves (Fig. 53 and 54a and b). Further, the thylakoid membranes 

were de-stacked and the granal and lamellar spacing increased. Several starch 

grains were accumulated in the chloroplasts of salt treated leaves (Fig. 54a). In 

some cases, the bundle sheath cells of high salt treated leaves have slightly large, 

somewhat misshaped cell nuclei when compare with those of the controls (Fig. 53). 

Salinity did not impact the ultrastructure of the mitochondria in both the bundle 

sheath and mesophyll cells. However, there were higher numbers of larger 

mitochondria in the bundle sheath cells of salt treated leaves compared to the 

control (Fig. 53, 45a). It was observed also that salinity led to increase the vesicle 

numbers in the bundle sheath and mesophyll cells as well as in the epidermal and 

bladder cells (Fig. 55 a and b).  
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Fig. 54: Part of a bundle sheath cell of a salt treated leaf of A. nummularia. Note the presence of 
many mitochondria of a large size, the large starch grains accumulated in the chloroplasts, 
the de-stalking of the chloroplasts (a) and the disrupted thylakoid membranes in (b).  

          ch, chloroplasts; m, mitochondria; s, strach and th, thylakoid membrane.  
  

Fig. 55: Numerous vesicles in the bladder cells of salt treated leaf from A. leucoclada (a) and in 
the xylem parenchyma of salt treated leaves of A. nummularia (b).  

          ch, chloroplast; n, nucleus; t, tracheary element; va, vacuoles; ve, vesicles and xp, xylem 
parenchyma.    
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4 DISCUSSION 
 

Considering the fresh weight as an indicator of plant growth capacity, it is 

obvious from the results obtained in the present study that the growth of both Atriplex 

species was significantly stimulated by moderate salinity (250 mol*m-3 NaCl) (Fig. 2a, 

b and 5a, b). Thus this salinity level could be considered as the optimal salinity. 

Growth stimulation under moderate salinities (100 - 200 mol*m-3 NaCl) has been 

reported previously for many Atriplex species such as A. nummularia (Uchiyama, 

1987; Dunn and Neales, 1993; Ramos et al., 2004), A. spongiosa (Storey and 

WynJones, 1979), A. undulata (Smith and McComb, 1981), A. hortensis (Jeschke 

and Stelter, 1983), A. barclayana (Nerd and Pasternak, 1992), A. halimus (Bajji et al., 

1998; Debez et al., 2003), A. griffithii (Khan et al., 2000), and A. centralasiatica (Qiu 

et al., 2003). The increase in tissue water content seems to account for the increase 

in plant fresh weight in both Atriplex species at moderate salinity as has been 

suggested for other plant species (Nerd and Pasternak, 1992; Prado et al., 2000). 

This is supported by the trends of water content, which correlated with those of the 

plant fresh weight (Fig. 9a, b).  

Although the presence of NaCl is rarely essential for the growth of halophytes 

(Flowers, et al., 1977), its absence in the nutrient solution markedly inhibited the 

growth of A. nummularia. Similar observation has been reported earlier by Brownell 

(1968) and Brownell and Crossland (1972) who found that A. nummularia plants 

grown in a sodium-free culture solution showed distinct symptoms of leaf chlorosis 

and their growth was reduced. Unlike A. nummularia, A. leucoclada showed distinctly 

better performance at control conditions. This might be due to the higher Na+ 

accumulation observed in A. leucoclada controls compared to those of A. 

nummularia (Fig. 14a, b). The requirement of Na+ for the conversion of pyruvate to 

phosphoenolpyruvate under light conditions (Murata et al., 1992), for the control of 

pyruvate translocation across membranes through a Na+/H+ symport (Ohnishi et al., 

1990), and for the maintenance of chloroplast structural integrity (Brownell and Bielig, 

1996), in addition to its osmotic role may explain its importance for the growth of both 

Atriplex species, particularly, A. nummularia. Our results suggest that A. nummularia 

could be considered as an obligate halophyte, and A. leucoclada as a facultative 

halophyte (Waisel, 1972). Supraoptimal levels of salinity inhibited the growth of both 
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Atriplex species in this study, with more adverse effect on A. leucoclada. It is worth 

noting that the fresh weight of high salt stressed A. nummularia plants was reduced, 

but still greater than their respective controls (111% increases). Similar observation 

has been reported previously by Ashby and Beadle (1957) for A. nummularia plants. 

While salinity threshold of both Atriplex species was similar (slightly above 50% 

SWS), the C50 was at salinity of 140 and 114% SWS in A. nummularia and A. 

leucocalada respectively. These results indicate that A. nummularia is comparatively 

more productive, in terms of maintenance of biomass production as A. leucoclada 

under saline condition. Reduced biomass as a response to high substrate salinity is 

quite common in halophytes (Greenway, 1968; Waisel, 1972; Priebe and Jäger, 

1978; Richardson and McKell, 1980; Aslam et al., 1986; Uchiyama, 1987; Ungar, 

1996; Wang et al., 1997; Koyro et al., 2006; Liu et al., 2006). It is assumed to be an 

adaptive mechanism for the survival under saline condition because it allows the 

plant to rely on multiple resources to cope with salinity stress (Zhu, 2001). 

Water homeostasis is indispensable for plant growth under saline condition. 

The initial effect of NaCl on plant growth is due to an osmotic effect, resulting from 

the low substrate water potential (Munns, 2002; Tester and Davenport, 2003; Ashraf 

and Harris, 2004). As a response, both A. nummularia and A. leucoclada lowered 

their shoot water potential as a consequence of decreased osmotic potential of all 

plant organs (Fig. 11 a and b). It was observed that the values of water potential 

obtained using the scholander apparatus were relatively higher than the expected 

values and than those of the external nutrient solutions. This may be attributed to a 

technical reason. The results show that both species were able to maintain a 

constant osmotic potential gradient between the leaf and root tissues and the 

external solution. This would explain the enhanced water content of both species 

especially at moderate salinities (Fig. 9a, b) and indicates that both Atriplex species 

had osmotically adjusted. Reduction of the tissue osmotic potential was associated 

with a substantial excessive accumulation of Na+ and Cl- and decreased K+ 

concentration in all plant organs of both Atriplex species (Fig. 14a, b and 22a, b). 

This reveals that these species use the accumulation of Na+ and Cl- for osmotic 

adjustment. An increase of ion accumulation for the decrease of plant osmotic 

potential is a common trait in many halophytic species such as A. nummularia (Ashby 

and Beadle, 1957), A. triangularis (Karimi and Ungar, 1984), A. semibacata (Viliers et 
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al., 1996), A. prostrata (Karimi and Ungar, 1984; Wang et al., 1997), and A. griffithii 

(Khan et al., 2000). Salt inclusion mechanism is considered to be less energy and 

carbon demanding compared to the adjustment by organic solutes (Wyn Jones, 

1981; Yeo, 1983; Raven, 1985; Munns, 2002; Koyro and Huchzermayer, 1999b).  

Data presented in Fig (34 and 35) show that tissue Na+ and Cl- concentrations 

of all plant organs of both Atriplex species were sufficient to explain, from quantitive 

point of view, more than 90% of the tissue osmotic potentials. Moreover, A. 

leucoclada plants exhibited larger capacity for osmotic adjustment than A. 

nummularia as it is obvious from Fig (11 a and b). This may be referred to its high 

affinity for Na+ accumulation even under control conditions, reflected in the higher ion 

(Na+ and Cl-) concentrations and higher AW in % DW values in comparison to A. 

nummularia (Fig. 8, 14 and 22). However, high Na+ and Cl- accumulation in excess of 

what is required for osmotic adjustment might lead to tissue dehydration and/or ion 

toxicity. Such conditions resulted ultimately in growth reduction, inhibition of new leaf 

initiation and the formation of small ones, some with symptoms of nutrient disorders 

as observed at high salinity especially in A. leucoclada (Fig. 2a, b).  

Salt inclusion mechanism in dicotyledonous halophytes is generally associated 

with high capacity to compartmentalize the harmful ions (at the cellular, intracellular 

and interorgan levels) to maintain low Na+ concentrations in the actively metabolic 

tissues. As evident from Fig. 14 and 22, the shoots of both Atriplex species were 

preferential sites for Na+ and Cl- accumulation, thereby the plants avoid ion 

accumulation in the root tissues. Such ion distribution between the root and shoot 

confirms that these species are salt includers (Flowers et al., 1977 and Flowers and 

Läuchli, 1983). In many halophytes, the adult leaves function as ion sinks to protect 

the actively growing and photosynthesizing tissues of the juvenile leaves (Yeo and 

Flowers, 1983; Jeschke, 1984; Pasternak, 1987; Cramer and Bowman, 1991; Koyro 

and Huchzermeyer, 1999b). This may be true for both Atriplex species since the 

adult leaves exhibited slightly higher Na+ concentrations as the juvenile ones (Fig.  

14 a and b). Salt tolerance of both Atriplex species is linked also to their capacity to 

remove or compartmentalize the excess of salts mainly Na+ and Cl- from the salt 

sensitive metabolic sites of the leaf into the bladder hairs on the leaf surface (Black, 

1954; Osmond et al., 1969; Mozafar and Goodin, 1970; Waisel, 1972; Schirmer and 

Breckle, 1982; Waisel, 1991). Na+ and Cl- concentrations of the bladder hairs (leaf 
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area base) of both Atriplex species were correlated with NaCl concentrations in the 

growing medium. Similar observation was also reported for many other Atriplex 

species such as A. vesicaria (Osmond et al., 1969), A. halimus (Mozafar, 1970; 

Mozafar and Goodin, 1970), A. confertifolia (Breckle, 1974), and A. nummularia 

(Uchiyama, 1987). Comparing the salt contents of the bladder hairs and leaf tissues 

reveals that about 21% and 50% of the leaf Na+ contents was excreted in the bladder 

hairs of the adult and juvenile leaves respectively in A. nummularia. In A. leucoclada, 

the bladders of the adult and juvenile leaves contained equal Na+ concentrations 

(about 60% of that of the leaves). These observations indicate the significant role that 

the bladder hairs play in salt removing from the leaves and thus prevent dangerous 

accumulation of toxic salts in their tissues. This conclusion is further confirmed by the 

EDAX analysis which show that the bladder hairs on the leaves of both Atriplex 

species contain extremely high Na+ and Cl- concentrations relative to other leaf cell 

such as the epidermal and guard cells (Fig. 39 and 40). Generally, Na+ and Cl- 

contents (leaf area basis) of the bladder hairs of the juvenile leaves were clearly 

higher than those of the bladders of the adult ones. In agreement with Kelley et al. 

(1982), this may be due to the fact that the formation of bladder hairs in both Atriplex 

species starts in the early stages of the leaf development. This suggests that the 

basic role of the bladders is the protection of the young developing leaves from toxic 

salt levels (Schirmer and Breckle, 1982). The low density of bladder hairs on the 

adult leaves, particularly, in A. nummularia is a prove that ion dilution as a result of 

increasing leaf succulence is the main strategy to avoid the toxic effect of harmful 

ions. At the cellular level, ion compartmentation into cell vacuoles separate the 

harmful ions from cytosolic enzymes, resulting in adequate K+/Na+ ratio in the 

cytosol, important for the metabolic activity (Koyro and Huchzermeyer, 1999b; 

Blumwald et al., 2000; Hasegawa et al., 2000; Munns, 2002; Tester and Davenport, 

2003). Additionally, it provides an osmotic driving force for the water uptake.  

As mentioned above, ion sequestration is a cost-effective mechanism with 

respect to the amount of energy and resources spent. However, this mechanism by 

itself is an energy-consuming process (accumulation of Na+ occurs against a 

concentration gradient) and usually accompanied by organic solutes synthesis (extra 

energy requirements) in the relatively small compartment cytoplasm (approximately 

10 % of the cell volume) to balance the low osmotic potential in the vacuole (Rontein 
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et al., 2002). It is believed that Na+ compartmentation is mediated by the action of 

Na+/H+ antiporters at the tonoplast and at the cell membranes. The proton gradient 

that drives the antiporter is generated by tonoplast H+-ATPases and 

pyrophosphatases (Sussman, 1994). In A. nummularia leaf cells, Milis et al. (1985) 

and Hassidim et al. (1990) found that Na+ fluxes across the tonoplast and the 

vacuolar Na+ content increased as the external Na+ concentration increased. Further, 

NaCl-dependent increase in Na+/H+ antiporter activity was correlated with an 

increase in plasma membrane H+-ATPase activities (Braun et al., 1988). Also, 

several studies have shown that enhanced vacuolar H+-ATPase activity is correlated 

with better growth in many halophytes like Spartina townsendii, Populus euphratica, 

Salicornia bigelovii and Salsola salsa under saline conditions (Koyro et al., 1993; Ma 

et al., 2002; Parks et al., 2002; Kefu et al., 2003). It would be therefore interesting to 

investigate the salt-induced changes of H+-ATPase and ion distribution at the cellular 

level in the leaves and roots of both Atriplex species and to integrate the results to 

the ongoing comparison between them.  

In the present study, increased leaf succulence of both Atriplex species was 

due to considerable enlargement of the hypodermis and palisade parenchyma (Fig. 

44 b and 45 b). The big vacuoles of these enlarged cells would allow a better and an 

effective Na+ compartmentation in these vacuoles and ensure adequate K+/Na+ ratio 

in the cytoplasm. Cell enlargement was accompanied with increased vacuolation in 

the mesophyll, epidermal and bladder cells of the salt treated leaves of both Atriplex 

(Fig. 55 a, b). Clearly, increasing vacuolation in response to salinity is an evidence 

for a high activity of salt compartmentation, which allows the leaf to translocate salts 

from the cytoplasm into the vacuoles or into the bladder hairs (Kurkova and Balnokin, 

1994; Koyro, 2002; Mitsuya et al., 2002). In addition, the mesophyll cells, in 

particular, the bundle sheath cells of salt treated leaves of both Atriplex species had 

more mitochondria as compared to those of the controls (Fig. 53 and 54a). The 

mitochondria of the salt affected plants were also larger. Although, the mitochondrial 

respiration was not measured in this study, the salt induced increase in mitochondrial 

number and size gives reason for the assumption that an additional supply of energy 

is required for salt compartmentalisation and osmotic adaptation.   

As Na+ and Cl- are compartmentalized in the cell vacuole, compatible solutes 

should be synthesized and accumulated in the metabolizing cell compartments to 
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counteract the increased osmolality of the vacuole (Hasegawa et al. 2000; Rontein et 

al., 2002; Tester and Davenport, 2003; Huchzermeyer and Koyro, 2005; Ashraf et al., 

2006). An important group of compatible solutes which are investigated in A. 

nummularia and A. leucoclada are the carbohydrates. As shown in Fig. (32 a, b), 

elevating water salinity increased the content of total soluble carbohydrates (TSC) in 

most plant organs of both Atriplex species. Accumulation of TSC in plants has been 

frequently reported in response to salinity stress and is thought to have an important 

role in the osmotic adjustment of salt-tolerant plants (Ashraf, 1994; Ashraf and Tufail, 

1995; Popp and Smirnoff, 1995; Bajji et al., 1998; Murakeozy et al., 2003). Several 

hypotheses have been mentioned to explain the accumulation of carbohydrates even 

with suppressed photosynthesis under salt stress. Carbohydrate accumulation in 

response to salinity is thought to result primary from the decreased export due to 

shortage of energy source (e.g. ATP) (Munns and Termaat, 1986) or ion deficiency 

(Marschner, 1995; Mehne-Jakobs, 1995). In both Atriplex species, carbohydrate 

accumulation might be also related to the disturbance of carbohydrate metabolism 

which regulated by various synthesizing and degrading enzymes that may be ion-

specifically controlled (Rathert, 1982; Singh et al., 1996). Regardless of salinity 

treatment, A. nummularia accumulated proportionally higher TSC contents in all 

organs compared to A. leucoclada. This may explain at least in part the higher dry 

matter content (DM in % FW) of A. nummularia compared to A. leucoclada (Fig. 7 a, 

b). Higher TSC accumulation in A. nummularia, especially in the root, may help to 

maintain the water absorption and its influx and transport to the shoot.  

Another group of compatible solutes are the amino acids, which reportedly 

accumulated under salt stress (Wyn Jones, 1981; Rabe, 1990; Ashraf, 1994; 

Mansour, 2000; Mirsa and Gupta, 2005). In this study, analysis of the amino acid 

composition reveals that increasing TotAA was mainly achieved by large fractions of 

proline (pro) (Fig. 33). Pro was found to accumulate in La, Lj, and R of both Atriplex 

species with raising salinity as has been previously observed in the leaves of A. 

spongiosa and Suaeda monica (Storey and Wyn Jones, 1979), A. halimus (Bajji et 

al., 1998), spinach (Di Martino and Fuggi, 2001), Populus euphratica (Watanabe et 

al., 2000) and sugar beet (Ghoulam et al., 2002). It was observed that A. leucoclada 

(less salt-tolerant) accumulated much higher pro (4 – 18 fold increase relative to 

controls) compared to A. nummularia (more salt-tolerant) (5 – 7 fold increase relative 
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to controls) at the highest water salinity level. Similar correlation between the level of 

salt tolerance and pro accumulation was also found in barley and cotton plants under 

water stress (Hanson et al., 1977; Ferreira et al., 1979) and in tomato (Tal et al., 

1979), soybean (Moftah and Michel, 1987), rice (Lutts et al., 1999) under salt stress. 

Results of this study show that the overall concentration of pro is too low to be 

significant for osmotic adjustment (Fig. 34 and 35). This does not preclude the 

importance of pro because it is mainly synthesized and restricted in the cytoplasm, 

providing merely about 10% of cell volume. Thus its importance as a cytoplasmic 

osmolyte might be higher than is suggested here from contents on the basis of total 

dry weight. In addition to its role as an osmoticum, pro is presumed to be 

osmoprotectant involved in stabilizing cellular membranes, protecting proteins and 

enzymes or acting as a stress signal (Rudolph et al., 1986; Lone et al., 1987; 

Bandurska, 1993; Mansour, 1998; Gadallah, 1999; Hoekstra et al., 2001; Maggio et 

al., 2002; Vinocur and Altman, 2005). Also it may function as free-radical scavengers 

(Bohnert and Shen 1999; Diamant et al. 2001; Lin et al., 2002; Misra and Gupta, 

2005) and as a nitrogen and carbon sources during the limited growth and 

photosynthesis under stress conditions (Tester and Davenport, 2003; Wang and 

Showalter, 2004; Mirsa and Gupta, 2005). 

Results of the present study show that A. nummularia controls had higher 

affinity for K+ uptake than those of A. leucoclada, leading to a significant participation 

in osmotic adjustment (Fig. 34 and 35). Nevertheless, NaCl treatment drastically 

decreased K+ concentrations of all organs of both Atriplex species. Similar results 

have been observed previously, and interpreted as a result of competition between 

K+ and Na+ uptake in the roots (Hajibagheri et al., 1987; Alberico and Cramer, 1993; 

Hasegawa et al., 2000; Zhu, 2003) or due to the changes in the membrane integrity 

caused by the displacement of Ca2+ by Na+ (Cramer et al. 1985; Marschner, 1995; 

Gupta et al., 2002; Tester and Davenport, 2003). Thus, the ratio Na+/K+ increased 

significantly with elevating water salinity in both Atriplex species as previously 

observed in A. hortensis, A. prostrata, A. amnicola, and A. nummularia (Jeschke and 

Stelter, 1983; Karimi and Ungar, 1984; Aslam et al., 1986; Uchiyama, 1987; Ramos 

et al., 2004). It has been assumed that Na+ can replace K+ to a certain degree in 

some cellular activities, especially in its osmotic functions in the vacuole, stomatal 

regulation and enzyme activation (Flowers and Läuchli, 1983; Mäser et al., 2002). 



   DISCUSSION    

 107

This might explain why the growth of both studied Atriplex species was stimulated at 

moderate salinities when K+ concentrations declined. However, the severe reduction 

in K+ concentration seems to be responsible for the general trend of inhibited protein 

synthesis in both Atriplex species as evident from the results of TSP (Fig. 36) in 

combination with the pattern of protein expression (2D-gel electrophoresis) (Fig. 37 

and 38). Further, decreased K+ concentration in the leaves might contribute to the 

low photosynthetic capacity presumably by disrupting the function of PSII as reported 

by Ball et al. (1987). Blumwald et al. (2000) and Lacerda et al. (2001) reported that 

salt tolerance is partially correlated with the ability to avoid the accumulation of Na+ 

and/or to maintain adequate levels of K+ in the shoots. As shown in Table 5, both 

Atriplex species were able to maintain low Na+/K+ ratio in the roots and the 

meristematic tissues (juvenile leaves and stems) where the metabolic demands are 

expected to be greatest and the sensitivity to Na+ is highest. In general, A. 

nummularia had lower Na+/K+ ratios compared to A. leucoclada and apparently, due 

to this reason, A. nummularia is more salt-tolerant than A. leucoclada at high salinity. 

The substantial differences in Na+ and K+ accumulation between the two Atriplex 

species may attribute basically to the difference in the selective ion uptake and 

transport capacities at root level as reported by Wang et al. (2002). In this study, the 

calculated selective absorption of K+ over Na+ (SAK: Na) which was very low in both 

Atriplex species under control conditions increased steadily with increasing water 

salinity. Interestingly, SAK: Na was higher in A. nummularia than A. leucoclada at the 

whole range of salinity treatments. Additionally, the selective transport capacity of K+ 

over Na+ (STK: Na) from R to Sh, from Sj to the Lj and from Sa to La was generally 

higher in A. nummularia compared to A. leucoclada at the whole range of salinities. 

Together, these observations strongly suggest that A. leucoclada transfers higher 

amounts of Na+ to the shoots, and it is not capable to maintain an adequate K+ 

concentration in its tissues under salt stress as does A. nummularia.  

Increasing external NaCl concentration resulted also in a significant reduction 

in Ca2+ and Mg2+ contents of all organs of both Atriplex species (Fig. 18 a, b and 20 

a, b). These effects were previously reported for A. canescens (Richardson and 

Mckell, 1980), A. nummularia (Uchiyama, 1987), Beta vulgaris ssp. maritima (Koyro 

and Huchzermeyer, 1999a), A. griffithii (Khan et al., 2000), Salvadora persica 

(Maggio et al., 2000) and many other halophyte species (Gul et al., 2000; Koyro, 
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2000; Ghoulam et al., 2002; Wyn Jones and Gorham, 2002; Ashraf et al., 2006; Liu 

et al., 2006). A high Na+ concentration is thought to displace Ca2+ from the plasma 

membrane, causing a loss of integrity and leakage of cytosolic K+ from cells, 

influencing K+/Na+ selectivity (Cramer et al., 1985; Epstein, 1998; Cramer, 2002; 

Tester and Davenport, 2003). Although Ca2+ contents were depressed in all organs 

of the salinized plants, there was not a continuous decline at salinities higher than 

250 mol*m-3 NaCl. Rather, Ca2+ contents are maintained at nearly similar levels (in A. 

nummularia) or slightly increased (in A. leucoclada). This might be due to a dilution 

effect resulted from the severe growth inhibition at the high water salinity or due to an 

elevation of the cytosolic free Ca2+ caused by high salinity level as reported by Lynch 

et al. (1989) and Okazaki et al. (1996). The increase of Ca2+ concentration may also 

result from dissolving of calcium oxalate crystals observed in the mesophyll cell of 

the control leaves (Fig. 44a). These crystals disappeared completely in response to 

high water salinity treatment (Fig. 44b), suggesting that they may serve as Ca2+ as 

well as oxalate buffer when the uptake of Ca2+ is hindered at the high NaCl salinity 

level (Koyro et al., 1997; Koyro et al., 1999). It is probable that increasing Ca2+ 

contents at the high salt treatment is related to the function of Ca2+ as a secondary 

messenger (Knight and Knight, 2001). Thus, increase of Ca2+, in particular, in all A. 

leucocalda organs at high salt treatment reflects the dependency of A. leucoclada 

plants on Ca2+ to alleviate Na+ toxicity (Knight et al., 1997; Epstein, 1998; Sanders et 

al., 1999).  

Mg2+ is essential for chlorophyll and protein synthesis and about 25% of the 

leaves Mg2+ is located in the chloroplasts (Marschner, 1995). It plays also an 

important role in the activation of some key enzyme in plants like RubisCo and ATP 

synthase (Marschner, 1995; Koyro, 2000) and carbohydrate synthesis (Greger and 

Linberg, 1987). Thus reduction of Mg2+ concentration observed in the leaves of both 

Atriplex species under salt stress may contribute to the reduction of protein 

synthesis, chlorophyll content and hence the declined photosynthesis rates. In 

agreement with Fischer and Bussler (1988) and Marschner (1995), reduced Mg2+ 

concentrations in the leaves might also have contributed to the carbohydrate 

accumulation observed in both Atriplex species under salt stress (Fig. 32 a, b).  

NO3
- concentration decreased sharply in all plant organs of both Atriplex 

species as a result of the competition with Cl-. Many authors attributed the reduction 
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of NO3
- uptake at high salinity to a direct competition between Cl- and NO3

- (Kafkafi et 

al., 1982; Cramer et al., 1985; Feigin et al., 1987; Bar et al., 1997; Zhu, 2002), while 

others referred this reduction to the declined water uptake under salt stress (Lea-Cox 

and Syvertsen, 1993). Reduction of NO3
- uptake might be also attributed to the 

disturbance of sugar metabolism under salt stress. High NO3
- assimilation rates are 

important for the synthesis of N-containing compounds (i.e. proline) that have crucial 

role in the osmotic adjustment (Jefferies, 1980; Ashraf, 1994; Mansour, 2000; Mirsa 

and Gupta, 2005). However, NO3
- assimilation would occur on the expense of NO3

-, 

leading also to reduce its concentration in the leaves (Fig. 24a, b). As known NO3
- 

assimilation is a high-consuming energy process and may be occurred at expense of 

CO2 assimilation. This may explain the reduction in the carbon content (% dry weight) 

observed in the leaves of both Atripex species at high salinity (Fig. 29 a, b). Unlike A. 

leucoclada, A. nummularia plants grown at salinities of 100 – 150% SWS tend to 

accumulate high NO3
- concentration in their organs to level that exceed the controls 

in the adult leaves and roots. This may be related to the salt tolerance of A. 

nummularia as assumed by Kafkafi et al. (1982). However, low nitrate concentrations 

seem to be responsible for the reductions in the total N-content (% dry weight) as 

observed in both Atriplex species in response to salinity (Fig. 30a, b). Similar 

conclusions were reported previously (Feigin et al., 1991; Pessarakli, 1991; Al-

Rawahy et al., 1992). When compared to A. nummularia, A. leucoclada plants grown 

at the highest water salinity exhibited generally lower total N-content. This might be 

attributed to the accumulation of free amino acids (mainly proline) and enhanced 

protein level in A. nummularia at high saline condition. It is tempting to speculate that 

the reduction in the N-content may affect the photosynthetic capacity, since about 

50% of leaf N-content is located in the photosynthetic machinery (Evans, 1989; Pons 

and Westbeek, 2004). Additionally, reduction of leaf N-content as a result of high 

salinity might lower the net photosynthesis by decreasing the chlorophyll contents 

(Marschner, 1995; Ignatova et al., 2005); chloroplast size (Lawlor, 2002) and grana 

number (Laza et al., 1993).  

Sulphate concentration, the least abundant anion in both Atriplex species, 

generally decreased with increasing water salinity. As has been suggested by Pérez- 

Pérez-Alfocea et al. (1993) and Santamaria et al. (1998), the reduction in tissue 

SO4
2- can be explained by the antagonism between Cl- and SO4

2- ions. Sulphate 
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assimilation might be also responsible for the low SO4
2- concentrations observed 

especially in the plant leaves of both Atriplex species. Assimilation of SO4
2-, however, 

is necessary for the incorporation of sulphur into amino acids, protein, coenzymes 

and reduced sulfate compounds such glutathione (Rennenberg, 1989; Marschner, 

1995). Glutathione plays a key role in detoxification of oxygen radicals and hydrogen 

peroxide which are expected to be increased under salinity stress (Noctor et al. 2002; 

Pfannschmidt 2003; Huchzermeyer and Koyro, 2005). Increased total S-content 

observed in the adult leaves at the optimal salinity levels (Fig. 31) might be due an 

increase in the assimilation of S and the biosynthesis of S-containing organic 

compound such as, GSH to mitigate the salt-induced oxidative stress. High salinity, 

however, reduced the S-contents in both Atriplex species. This is not surprisingly 

since the SO4
2- contents were reduced in response to increasing water salinity. Low 

sulphur content may affect the synthesis of sulphur containing amino acids and 

hence LHC polypeptides (Marschner, 1995). This could explain the reduction of 

chlorophyll contents in the leaves (Burke et al., 1986; Dietz et al., 1989) and then the 

photosynthesis. Additionally, low sulphur content reduces the root hydraulic 

conductivity, stomatal aperture, net photosynthesis (Karmoker et al., 1991) and then 

the leaf area and the plant growth (Edelbauer, 1980; Burke et al., 1986).    

Although Na+ was reported to play crucial roles in the photosynthesis of C4 

plants, high Na+ concentrations significantly inhibited the net photosynthesis (A) of 

both studied Atriplex species (Tables 3a and 4a). Interestingly, the leaves of both 

Atriplex species grown at this salinity continued to photosynthesize, although at a 

reduced rate, when as much as 30% of their dry weight was ash. There are many 

earlier reports, which show that plant photosynthetic capacity is inhibited by salt 

stress (Brugnoli and Björkman, 1992; Dunn and Neales, 1993; Alarcón et al., 1994; 

Ashraf, 1999; Bayuelo-Jimenez et al., 2003; Qiu et al., 2003; Koyro et al., 2006). 

Inhibition of photosynthesis in response to increasing salinity could be an important 

factor limiting the accumulation of dry matter and hence inhibits the growth of both 

Atriplex species. Figures (13 a, b) show that the required light intensity to saturate 

the photosynthesis of both Atriplex species decreased with increasing water salinity. 

This is likely a consequence of the lower chlorophyll concentrations per unit area. 

Commensurate with the reduction in photosynthetic ability, the CO2 compensation 
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point (Lc) increased in response to water salinity (Tables 3b and 4b). Similar results 

were found by Everard et al. (1994), Lutts et al. (1996) and El-Shintinawy (2000).  

Reduction of the net photosynthesis (A) coincided with progressive decrease 

in the leaf transpiration rates (E) (Tables 3a, 4a), leading to a conservation of water. 

Similar characteristics for water conservation have also been reported for many 

halophytic species under saline conditions (Ayala and O’Leary, 1995; Wang et al., 

1997; Carrol et al., 2001; Liu and Stützel, 2002; Debez et al., 2006; Koyro et al., 

2006). Lower transpiration rate also represents an adaptive mechanism to cope with 

high water salinities, since it could reduce salt loading into the leaves and hence 

prolong the leaf lifespan by maintaining salts at subtoxic levels (Everard et al., 1994; 

Volkmar et al., 1998; Koyro, 2006). It is worth noting that reduction in the 

transpiration rate was more severe in A. nummularia compared to A. leucoclada at 

the high water salinities, further suggesting that A. nummularia is better adapted to 

high salinities. Salt-induced reduction in the diameters of the tracheary element of the 

leaves might contribute to low water conductance and hence low water loss through 

transpiration (Belda and Ho 1993; Lovisolo and Shubert 1998). Decreased 

transpiration rate was also due to the partial closure of the stomata as can be seen in 

Fig. (43b). EDAX-microanalysis revealed that Na+ contents of the stomatal guard 

cells increased in response to high water salinity. In agreement with Thiel and Blatt 

(1990), the replacement of K+ by Na+ as a result of excessive Na+ accumulation in 

the guard cells might be responsible for the inhibition of stomatal opening and hence 

declined the transpiration rate at high salinity. Interestingly, the guard cells of the salt 

treated leaves of A. leucoclada maintained lower Na+ but higher K+ and P contents 

compared to A. nummularia (Fig. 39c and 40c). This indicates that the guard cells of 

A. nummularia can effectively utilize Na+ instead of K+ to achieve the regulation of 

turgor and hence control the transpiration rate compared to A. leucoclada, which 

needs adequate K+ concentration for the turgor regulation. For both Atriplex species, 

salt-induced reduction in the transpiration rate was proportionally much higher than 

that of photosynthesis, leading to improve the water use efficiency (WUE). Such an 

increase in the WUE has been recorded for many halophytic species in response to 

salinity stress (De Jong, 1978; Osmond et al., 1980; Ayala and O’Leary, 1995; 

Naidoo et al., 1995). According to Naidoo and Mundree (1993) and Koyro (2000), 

increasing WUE is an important feature for the long-term survival of plants and would 
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be an advantage in saline environments. Interestingly, A. nummularia showed slightly 

higher WUE than A. leucoclada at the highest water salinity, further indicating that 

this species is highly adapted to grow under saline and arid conditions.  

In both Atriplex species, salinity impacted the photosynthesis a priori by an 

enhanced stomatal closure which leads to substantial reduction of CO2 diffusion to 

the carboxylation sites (Lauteri et al., 1997; Khan et al., 2000). This interpretation is 

supported by the linear proportionality of net photosynthesis (A), transpiration rate 

(E), the stomatal resistance (Rs) and the internal CO2 concentration (Tables 3a and 

4a). Similarly, a positive correlation between photosynthesis and stomatal 

conductance has been found in Atriplex prostrata (Björkman et al., 1972; Wang et al., 

1997), Avicennia marina (Ball and Farquhar, 1984), cotton leaves (Brugnoli and 

Björkman, 1992); Atriplex nummularia and Atriplex hastata (Dunn and Neales, 1993) 

and Atriplex centralasiatica (Qiu et al., 2003). In agreement with Delfine et al. (1998), 

Tuffers et al. (2001), salt-induced changes observed in the leaf structure (i.e., 

increasing in the leaf thickness and succulence) of both Atriplex species (Fig. 44b 

and 45b) contribute also to the reduction of photosynthetic rate by decreasing CO2 

diffusion. In addition, the severe reduction of photosynthesis at high water salinities 

may attribute also to non stomatal limitations (Everard et al.,1994; Dionisio-Sese and 

Tobita, 2000; Sobrado, 2005).  

Leaf chlorophyll content is another factor which can limit the net 

photosynthesis. As a general effect of increasing water salinity, Chl(a) and (b) 

contents (leaf area base) decreased significantly in both studied Atriplex species 

(Fig. 12 a, b). NaCl-induced decrease in chlorophyll content is widely reported 

(Karimi and Ungar, 1984; Viliers et al., 1996; Ashraf and Rehman, 1999; Delfine et 

al., 1999; Khan et al., 2000; Kaya et al., 2001). The disruption of the chloroplast 

membrane, instability of the pigment protein complex and enhanced chlorophyllase 

activity may contribute to the decrease in chlorophyll content at high salinities (Ashraf 

and Bhatti, 2000).  

Low CO2 assimilation rates of the salt treated plants means that the plants 

receive excess light energy, resulting into an increase in the ROS generation and 

hence induce an oxidative stress (Sicher, 1999). It is conceivable that salt stressed 

Atriplex plants developed some scavenging mechanisms in the light reaction system 

or they utilize the excessive energy for ion excretion or sequestration. The increase 
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in leaf succulence in addition to the reduction in chlorophyll content observed in both 

Atriplex species with increasing water salinity may lead to a reduction of the flow of 

electrons through the photosystem (reduction of apparent quantum efficiency) 

(Tables 3b and 4b). Additionally, the presence of 2 – 3 layers of bladder hairs, filled 

with salts on the leaf surfaces may form a strongly-light reflective mate on the leaves 

(Osmond et al., 1980; Sharma, 1982; Freitas and Breckle, 1992). This light-reflecting 

layer is thought to protect the photosystems from over reduction and photoinhibition 

under stress conditions (Osmond et al., 1980; Cornic, 1994; Mooney et al., 1997; 

Streb et al., 1997). Reduction in the total chlorophyll contents seems to be also an 

adaptive mechanism to cope with salt stress, since it may lead to decrease the over 

reduction of photosynthetic electron transport chain and hence the generation of 

ROS (Wang et al., 2003; Christian, 2005). Results of the current study showed that 

the reduction in Chl(b) was proportionally higher than that of Chl(a) and consequently 

the ratio Chl a/b was increased (Fig. 12 d). The reduction in Chl(b) content (mostly 

located in the LHC) could be interpreted as an adaptation in the LHC capacity. This 

can lead to reduce (optimize) the photosynthetic efficiency (Tables 3b and 4b) and 

hence reduces the oxidative stress (Moorthy and Kathiresan, 1999; Koyro, 2006).  

Enhanced rates of leaf dark respiration (DR) in response to salinity might be 

also responsible for low net photosynthesis. Salt-induced increase in respiration is 

related to the high energy costs needed for salt-compartmentation and the 

biosynthesis of organic solutes (Tattini et al., 1997; Di Martino et al., 2003). This 

would presumably occur at the expense of net CO2 assimilation and the result is 

growth reduction (Schwarz and Gale, 1981; Tottini et al., 1997). Our results showed 

that the DR rates in A. nummularia were higher than those of A. leucoclada at the 

whole range of salinity treatments (Tables 3b and 4b). This reflects the higher energy 

requirements for salt economy (transport and sequestration of ions) and biosynthesis 

of compatible solutes in A. nummularia plants even under control conditions. In both 

Atriplex species, the highest respiration rates were observed for plants grown at the 

optimal salinity level. This might be due to the fact that maintenance respiration of 

rapidly growing plants (at 250 mol*m-3 NaCl) is generally much higher than that of the 

more slowly growing plants (Koyro and Huchzermeyer, 1999b).  

Suppression of photosynthetic activity is also related to the ion toxicity resulted 

from high Na+ and Cl- or due to nutrient deficiency in particular, K+, Ca2+, Mg2+ and 
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nitrogen. This impacts many aspects of the photosynthesis as discussed above. 

Impairment of the photosynthesis may also be attributed to the salt induced changes 

in the chloroplasts. De-stacking of the thylakoid membranes was the most obvious 

salt-induced change in the chloroplasts (Fig. 54a, b). This effect was also noted by 

Kelley et al. (1982), Hernández et al. (1995) and Parida et al. (2003), although other 

investigators did not observe de-stacking of the membranes (Bruns and Hecht-

Buchholz 1990, Hernández et al. 1995, Mitsuya et al. 2000). As thylakoid stacking 

represents functional integrity of photosystems and optimal energy harvest and 

distribution, several investigators suggested that the photosynthetic membranes 

disarrangement occurred under salinity treatment disturbed the normal functioning of 

thylakoid membranes in energy capture and utilisation (Parida et al., 2003).  

Large starch grains accumulated in the chloroplast of salt stressed leaves of 

both Atriplex species (Fig. 54a, b). A dramatic accumulation of starch in the 

chloroplasts was observed in some species such as Atriplex hastata and Suaeda 

maritima under saline conditions (Hajibagheri et al., 1985). The occurrence of starch 

grains in the chloroplast, in spite of decreased CO2-assimilation rates, suggests that 

the export and utilization of carbohydrates under salt stress appears to be more 

reduced than photosynthetic CO2-fixation (Jeannette et al. 2000; Pego et al. 2000). 

At the molecular level, reduction of the photosynthetic activity in both Atriplex at  high 

salinity treatment was associated with a marked decreased in the abundance of 

RubisCo large subunits (protein spot No.25) and PPDK (protein spot No.4) as shown 

in the 2D- gel electrophoresis (Fig. 37b and 38b). RubisCo with its large subunit was 

the most abundant protein in the leaves of both Atriplex species under the control 

conditions. It was markedly down-regulated in response to high water salinity 

treatment in the leaves of both Atriplex species. This is matched with the 

disarrangement (de-stacking) of the thylakoid membranes observed at high salinity 

treatment. RubisCo is the first enzyme in the Calvin-Benson cycle of the 

photosynthetic fixation of CO2 (Fig. 56). It catalyzes the reaction of ribulose 1, 5-

bisphosphate and CO2 to form 2 (3-PGA). Thus the rate of photosynthesis depends 

largely on the quantity and activity of Rubisco (Lorimer, 1981; Makino et al., 1983). 

This could explain, at least in part, the reduction of photosynthesis observed in both 

Atriplex species at high salinities. The synthesis and activity of RubisCo were 

reported to decrease under salt stress (Wyn Jones and Pollard, 1983; Nieva et al., 
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1999; Rivelli et al., 2002). Pyruvate orthophosphate dikinase (PPDK) with the PEPC 

are crucial for the operation of the C4 photosynthesis (Fig. 56). It catalyzes the 

reversible phosphorylation of pyruvate and hence plays an important role in the 

regeneration of phosphoenolpyruvate (PEP), the primary acceptor of CO2 (Taiz and 

Zeiger, 1991; Kondo et al., 2000; Häusler et al., 2002). This reaction is critically 

controlled by light/dark-mediated regulation and is possibly a rate-limiting step in the 

C4 photosynthesis (Edwards et al., 1985). Therefore, salt-induced depression of 

PPDK in Atriplex plants negatively impacted the C4 acid cycle and consequently the 

net photosynthesis. This further confirms that stomatal factors were not solely 

responsible for the reduction in photosynthesis at high salinity levels.  

Further, high salinity increased the abundance of plastidic fructose 1,6-

bisphosphate aldolase (ALdP) (protein spot No. 42) in the leaves of A. nummularia 

while its abundance was decreased in A. leucoclada leaves (Fig. 37 and 38). Zörb et 

al., (2004) found that Fructose 1,6-biphosphate aldolase was increased in salt-

treated maize shoots. As shown in Fig. (56), ALdP is a key metabolic enzyme in the 

carbon reduction cycle (Calvin cycle). It catalyzes both the condensation of 

dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP) to 

form fructose 1,6-bisphosphate (an aldol condensation) and the reverse reaction, the 

cleavage of fructose 1,6-bisphosphate to the two triose phosphates (Anderson et al., 

2005). ALdP is located in the chloroplast (starch synthesis) and the cytosol (sucrose 

biosynthesis) (Perham 1990, Marsh and Lebherz, 1992). Therefore it is extremely 

important to maintain a balance between export and regeneration in order that the 

Calvin cycle does not become depleted of intermediates (Fridlyand et al., 1999; 

Raines et al., 1999). The salt-induced up-regulation of ALdP in the leave of A. 

nummularia may explain the higher TSC content and the accumulation of starch in 

the chloroplasts (Fig. 54). On contrary, decreased expression of the ALdP in A. 

leucoclada may inhibit the photosynthesis and alter the starch metabolism in the 

leaves as a result of an accumulation of triose phosphates and a depletion of 

ribulose-1,5-bisphosphate and 3PGA as has been showed by Haake et al. (1998). 

This may explain the lower TSC contents and the severe growth inhibition observed 

in A. leucoclada under salt stress.  

MDH (protein spot No. 43) has also been differentially regulated in the leaves 

of both Atriplex species. Whereas the abundance of this protein was significantly 
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increased in the leaves of A. nummularia, it was markedly decreased in those of A. 

leucoclada at high water salinity (Fig. 37 and 38). MDH is a key enzyme in the plant 

cell metabolism, particularly, in C4 photosynthesis pathway as it generates the 

reducing power for the various biosynthesis processes (Kumar et al., 2000). This role 

is of great importance under stress conditions (Hare et al., 1998). MDH is existed in 

various isoforms, and located in different subcellular organelles such as cytoplasm, 

chloroplasts, and mitochondria (Fig. 56). The cytoplasmic MDH catalyzes the 

formation of malate from OAA, which inters in the mitochondria through the 

dicarboxylate transporter where the mitochondrial MDH catalyzes the conversion of 

malate into OAA (Gietl, 1992). Thus the mitochondrial and cytoplasmic forms function 

together to balance the reducing equivalents between the cytoplasm and 

mitochondria via an oxaloacetate-malate shuttle (Gielt, 1992; Musrati et al. 1998). 

Additionally, the chloroplastic MDH form is an essential component of the malate-

pyruvate shuttle (Fig. 56), an important mechanism for a shuttle exchange of 

substrates and reducing equivalents across the cell membranes. In this respect, 

MDH catalyzes the reduction of oxaloacetate to malate in the mesophyll chloroplasts. 

Malate is then shuttled from the mesophyll to the bundle sheath cells where it is 

decarboxylated to pyruvate and CO2. The CO2 released in the bundle sheath cells 

through NADP specific malic enzyme is re-assimilated into carbohydrate by the 

reductive pentose phosphate pathway. Thus, malate in addition to acting as a carrier 

for CO2 transport, also serves as a carrier of light-generated reducing equivalents 

from the mesophyll to the bundle sheath chloroplasts, where they are used for the 

reductive assimilation of CO2 into carbohydrate (Fig. 56). The pyruvate (Pyr) 

generated by the decarboxylation is shuttled back to mesophyll cells to regenerate 

the primary CO2 acceptor phosphoenolpyruvate (PEP) by pyruvate orthophosphate 

dikinase (PPDK) in the mesophyll chloroplasts (Edwards and Walker 1983; Orgen, 

1984; Setoyama et al., 1988). NADP-MDH showed high activity in the mesophyll 

cells of C4 plants, especially in the NADP-malic enzyme type (Taiz and Zeiger, 1991). 

In this study, salt-induced changes in the cytosolic MDH expression would affect the 

synthesis of OAA and hence interfere with the function and activity of TCA cycle 

(Salisbury and Ross, 1986). It may also affect the amino acid synthesis since OAA is 

the precursor for amino acids biosynthesis (Salisbury and Ross, 1986). In 

accordance with Kumar et al. (2000), increased MDH abundance under salt stress 
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appears to be an adaptive feature, leading to the maintaining of high activity of TCA 

cycle, optimum photosynthesis and maintaining high capacity for amino acids 

synthesis. This suggests that salt tolerance of A. nummularia may be correlated with 

increased MDH under high salinity level compared to A. leucoclada.  

High salinity treatment induced a significant increase in the abundance of 5-

methyltetrahydropteroyltriglutamate-homocysteine transmethylase (HMT) in the 

leaves of A. nummularia while it decreased its abundance in those of A. leucoclada 

(Fig. 37 and 38). This enzyme catalyzes the biosynthesis of methionine (Met) from 

homocysteine by transferring the methyl group from 5-methyltetrahydropteroyltri-L-

glutamate to L-homocysteine in the presence of magnesium and phosphate ions 

(Fig. 57) (Guest et al., 1964). Hence, increased expression level of this protein 

should increase the methionine concentration in A. nummularia stressed leaves. 

Methionine has two major fates: incorporation into proteins or conversion into S-

adenosyl-L-methionine (SAM). The majority of methionine is converted into SAM for 

the transmethylation reactions as reported by Zörb et al. (2004). This reaction is 

catalyzed by S-adenosyl-L-methionine synthase (SAMS) in the presence of ATP (Fig. 

57). SAM is the major methyl-group-donor for several transmethylation reactions in 

the plant cell (Tabor and Tabor, 1984; Heby and Persson, 1990; Boerjan et al., 

1994). It is a precursor for the biosynthesis of the phytohormon ethylene (Tiburcio et 

al., 1990, Kende, 1993) and polyamines (Heby and Persson, 1990; Moffatt and 

Weretilnyk, 2001). It is also required for the biosynthesis of phenylpropanoid 

compounds which have broad biological functions, including structural constituents of 

the cell wall (Higuchi, 1981; Lewis and Yamamoto, 1990; Campbell and Sederoff, 

1996). In this study, SAMS was distinctly up-regulated in the leaves of A. nummularia 

while it was slightly down-regulated in those of A. leucoclada in response to salt 

stress (Fig. 37 and 38). It can be speculated that the induction of SAMS in A. 

nummularia may be related to increased Met content caused by the upregulation of 

5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase. This may 

ultimately lead to increase lignin and betaine contents in the stressed leaves of A. 

nummularia. Together, these observations foreshadow a link between the induction 

of these genes and the better performance of A. nummualria at high salinity stress. 

Similar conclusion was also reported for salt stressed tomato (Espartero et al., 1994; 

Sánchez et al., 2004), 
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Fig. 56: Schematic representation showing the role of some C4 photosynthesis-related 
enzymes (NADP-ME type). 3-PGA, 3-Phosphoglycerat; ALdP, fructose 1,6-
bisphosphste aldolase; CA, carbonic anhydrase; FBP, fructose 1,6-bisphosphste; 
GPDH, Glucose-6-phosphat-Dehydrogenase; MDH, malate dehydrogenase; Mit, 
mitochondrion; OAA, oxaloacetate; PEP, Phosphoenolpyruvat; PEPC,
phosphoenolpyruvate carboxylase; PGK, Phosphoglycerat-Kinase; PK, pyruvate 
kinase; PPDK, pyruvate orthophosphate dikinase; Pyr, Pyruvate; RuBP, Ribulose1-
5-phosphat; TP, Triose phosphat; RubisCo, ribulose 1, 5-bisphosphate 
carboxylase-oxygenase. 

Fig. 57: Schematic representation showing the role of 5-
methyltetrahydropteroyltriglutamate-homocysteine transmethylase (HMT) and S-
adenosyl-L-methionine synthase (SAMS) in the plant N-metabolism. 
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maize roots (Zörb et al., 2004), and A. nummularia leaves (Tabuchi et al., 2005). 

In conclusion the tolerance to NaCl was clearly different between the two 

Atriplex species. Whereas A. nummularia could grow normally (even better as the 

respective control) at salinity up to 150% SWS, the growth of A. leucoclada is 

severely inhibited at this salinity level. Neither reduced water uptake nor declined 

photosynthetic capacity appeared to be major reason for the reduced growth in both 

species. Rather, reduced growth seems to be due to ion toxicity and disturbed 

mineral nutrition, especially in A. leucoclada. The selective uptake and transport 

capacities, ion compartmentation and the regulation of salt loads to prevent build-up 

of toxic concentrations seem to be the main features which enable both Atriplex 

species to grow at high NaCl salinity.  

Our results suggest that both species can be grown productively under saline 

condition up to 50% SWS. It has been observed however, that although animals may 

maintain live weight while grazing Atriplex species, they invariably loose condition 

(Casson et al., 1996). This may attribute to the increase in water intake (Atiq-Ur-

Rehman et al., 1994) to counter the high amount of salts accumulated in Atriplex 

species (Wilson, 1996). As reported by Hopkins and Nicholson (1999) and Aganga et 

al. (2003), Atriplex species can be an effective fodder component in mixed diets for 

livestock. The advantages would be that adverse effects due to the high ion content 

of the plant tissues could be minimized, that animal performance and economic 

returns may be higher than direct grazing of the plant shoots. Finally, it should be 

mentioned that this study is the first step for developing these Atriplex species as 

cash crops (particularly A. leucoclada). And further field investigations are 

recommended to observe the performance of these species, since several responses 

underlying salt tolerance may be overlooked when operating outside the field context.  
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Fig A1: Gravel/hydroponic culture (quick check system) (QCS) of (a) A. nummularia and (b) 
A. leucoclada. The water salinity increased in the arrows directions.    

(a) 

(b) 
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Fig. A2: Representative delayed extraction MALDI-TOF mass spectra of protein spots 4, 11 
and 25, following in-gel trypsin digestion. The spots were excised from 2DE-gels of A. 
nummularia leaves.  
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Fig. A3: Representative delayed extraction MALDI-TOF mass spectra of protein spots 28, 42
and 43, following in-gel trypsin digestion. The spots were excised from 2DE-gels of A. 
nummularia leaves.  
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Fig. A4: An enlarged view of the upper epidermis of A. nummularia leaves a) 
untreated and b) treated with 750 mol*m-3 NaCl. Note the thick outer walls 
in both (a) and (b) and the very thick walls of the guard cells and the small 
aperture of the stomata under high salinity treatment.    

(a) 

(b) 
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Table A1: Effect of different water salinity levels on the leaf number per plant and the growth (expressed as fresh weight in g) of 
the different organs of A. nummularia. ALN, adult leaf number per plant; JLN, juvenile leaf number per plant; LN, leaf 
number per plant; ALFW, adult leaf fresh weight; JLFW, juvenile leaf fresh weight; LFW, leaf fresh weight; ASFW; adult 
stem fresh weight; JSFW, juvenile fresh weight; SFW, stem fresh weight; ShFW, shoot fresh weight; RFW, root fresh 
weight and PFW, plant fresh weight. 

 
Each value represents the mean of nine replicates. Means within a column followed by the same letter are not significantly different at P< 
0.05 as determined by LSD test.  
 

Tearments ALN JLN LN ALFW JLFW LFW ASFW JSFW SFW ShFW RFW PFW Sh/R ratio 

Ctr. 25.2a 328.9a 354.1a 9.6a 24.1a 33.8a 13.7a 5.8a 19.5a 53.2a 13.2a 66.4a 4.1a 

 ± 4.2 ± 100.4 ± 104.3 ± 0.9 ± 9.2 ± 9.9 ± 2.8 ± 3.2 ± 5.9 ± 15.8 ± 4.4 ± 20.2 ± 0.2 

125 mM 117.3b 1153.1b 1270.4b 93.1bc 168.5b 261.6b 34.7b 31.8b 66.5bc 328.0b 44.2b 372.2b 7.6b 

 ± 13.7 ± 150.8 ± 164.4 ± 8.7 ± 28.3 ± 35.6 ± 5.9 ± 0.3 ± 6.1 ± 41.7 ± 10.9 ± 51.9 ± 1.1 

250 mM 127.0b 1338.1b 1465.1b 102.5b 180.9b 283.3b 42.5c 37.2b 79.7c 363.0b 34.3b 397.4b 10.7c 

 ± 16.3 ± 277.0 ± 280.2 ± 8.8 ± 17.7 ± 25.3 ± 5.4 ± 5.7 ± 6.7 ± 19.5 ± 4.3 ± 21.4 ± 1.2 

500 mM 103.3b 1101.6b 1204.9b 79.0bc 160.7b 239.7b 28.1b 29.6b 57.7b 297.4bc 30.3ab 327.7b 10.0bc 

 ± 7.6 ± 211.1 ± 207.2 ± 13.6 ± 7.3 ± 18.6 ± 4.4 ± 8.9 ± 10.0 ± 28.2 ± 6.8 ± 34.7 ± 1.6 

750 mM 54.7c 455.6c 510.2a 39.9d 69.9c 109.8c 9.5a 7.8a 17.3a 127.1c 13.2a 140.3c 9.7bc 

 ± 12.9 ± 94.7 ± 107.3 ± 4.9 ± 10.4 ± 13.9 ± 2.1 ± 2.4 ± 4.6 ± 18.0 ± 2.7 ± 20.7 ± 0.7 
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Table A2: Effect of different water salinity levels on the leaf number per plant and the growth (expressed as fresh weight in g) of 

the different organs of A. leucoclada. ALN, adult leaf number per plant; JLN, juvenile leaf number per plant; LN, leaf 
number per plant; ALFW, adult leaf fresh weight; JLFW, juvenile leaf fresh weight; LFW, leaf fresh weight; ASFW; adult 
stem fresh weight; JSFW, juvenile fresh weight; SFW, stem fresh weight; ShFW, shoot fresh weight; RFW, root fresh 
weight and PFW, plant fresh weight. 

 
Tearments ALN JLN LN ALFW JLFW LFW ASFW JSFW SFW ShFW RFW PFW Sh/R ratio 

Ctr. 83.8a 1297.0a 1380.8a 30.5a 117.9a 148.4a 28.6a 61.9a 90.6a 238.9a 22.9a 261.9a 11.2a 

 ± 1.4 125.8 ±126.5 ± 3.4 ± 9.1 ± 12.5 ± 11.5 ± 19.6 ± 30.5 ± 41.5 ± 9.3 ± 50.5 ± 3.0 

125 mM 93.8a 2044.6b 2138.3b 35.6a 162.4a 198.1ab 34.7a 74.8a 109.5a 307.6a 24.9a 332.5a 12.1a 

 ± 26.6 ± 438.6 ± 452.9 ± 12.7 ± 44.5 ± 53.3 ± 2.5 ± 21.3 ± 42.8 ± 96.0 ± 4.5 ± 100.5 ± 1.6 

250 mM 109.8a 2071.1b 2180.9b 57.6b 176.1a 233.7b 30.5a 69.4a 99.9a 333.6a 28.3a 361.9a 11.9a 

 ± 5.9 ± 353.2 ± 355.1 ± 4.6 ± 33.9 ± 33.3 ± 1.6 ± 12.7 ± 13.1 ± 46.5 ± 5.3 ± 50.0 ± 1.8 

500 mM 84.8a 1560.9ac 1645.7ab 29.4a 125.4a 154.8a 20.9b 49.5a 70.4ab 225.2a 19.4ab 244.5a 11.9a 

 ± 4.3 ± 134.4 ± 130.4 ± 7.5 ± 14.8 ± 7.9 ± 2.9 ± 2.9 ± 5.4 ± 12.9 ± 3.5 ± 14.7 ± 2.2 

750mM 45.9b 512.7c 558.6c 8.3c 23.7b 32.0c 5.7c 6.9b 12.6b 44.7b 5.3b 49.9b 8.5a 

 ± 6.1 ± 55.3 ± 50.0 ± 0.6 ± 5.1 ± 5.3 ± 1.2 ± 1.5 ± 2.6 ± 7.41 ± 1.15 ± 8.4 ± 0.9 
    
   Each value represents the mean of nine replicates. Means within a column followed by the same letter are not significantly different at P <    

0.05 as determined by LSD test.  
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Bladder hairs Epidermal cells Guard cells Species Element

Control 750 NaCl Control 750 NaCl Control 750 NaCl 
Na 31.99 45.54 12.79 40.10 7.27 40.28 

 ± 0.00 ± 0.00 ± 0.20 ± 4.57 ± 1.12 ± 4.71 
 Mg 13.95 1.05 21.17 1.04 21.57 1.99 

 ± 0.00 ± 0.00 ± 2.33 ± 0.25 ± 4.61 ± 0.14 
 P  3.86 0.51 22.48 1.34 24.89 3.43 
 ± 0.00 ± 0.00 ± 4.19 ± 0.33 ± 5.23 ± 0.96 

 S  6.67 1.45 4.55 1.69 6.32 6.91 
 ± 0.00 ± 0.00 ± 0.30 ± 0.21 ± 0.64 ± 0.45 

 Cl 24.82 49.91 3.46 48.42 2.53 27.09 
 ± 0.00 ± 0.00 ± 0.27 ± 2.83 ± 0.18 ± 3.76 

 K  14.41 0.78 20.77 4.08 23.03 16.37 
 ± 0.00 ± 0.00 ± 1.99 ± 1.38 ± 3.59 ± 2.89 

 Ca 2.31 0.96 14.78 3.02 14.38 3.82 

A. nummularia 

 ± 0.00 ± 0.00 ± 2.08 ± 0.19 ± 2.42 ± 0.54 
Na 32.62 38.05 6.66 27.89 7.54 27.37 

 ± 8.00 ± 3.32 ± 2.01 ± 5.61 ± 0.00 ± 0.00 
 Mg 28.85 0.95 35.06 2.87 32.96 3.77 

 ± 4.48 ± 0.78 ± 7.97 ± 1.14 ± 0.00 ± 0.00 
 P  5.81 0.57 23.51 10.41 25.26 12.65 
 ± 2.91 ± 0.26 ± 2.29 ± 3.71 ± 0.00 ± 0.00 

 S  7.93 1.58 11.20 3.67 7.36 3.40 
 ± 2.92 ± 0.82 ± 2.62 ± 0.86 ± 0.00 ± 0.00 

 Cl 11.45 57.54 0.76 38.25 0.30 32.42 
 ± 2.55 ± 1.26 ± 1.31 ± 3.63 ± 0.00 ± 0.00 

 K  11.90 0.65 18.63 14.55 22.50 17.41 
 ± 2.74 ± 0.59 ± 3.28 ± 3.27 ± 0.00 ± 0.00 

 Ca 1.13 0.65 4.77 2.36 4.10 2.99 

 
A. leucoclada 

 ± 0.40 ± 0.57 ± 0.27 ± 0.57 ± 0.00 ± 0.00 
 
Each value represents the mean of three replicates. Means within a column followed by 
the same letter are not significantly different at P < 0.05 as determined by LSD test. 

Table A3: Element contents (expressed as weight percent) of the adaxial bladder cells, 
epidermal and guard cells of the juvenile leaves of A. nummularia and A. leucoclada
at control and high salinity (750 mol*m-3 NaCl) condition. 



   APPENDIX 

 xi

 
Spot 
No. 

Experimental 
pI/MW 

Probable candidate names obtained from Swiss- Prot, 
TrEMBL and NCBInr database 

 
 
 
 
1 

 
 
 
 

6.5 ± 0.1 / 97.0 ± 5.3 

• Phosphoenolpyruvate carboxylase. pI: 6.04, MW: 109.48  
• Potassium channel. pI: 6.31, MW: 99.21. 
• Lipoxygenase. pI: 6.34, MW: 97.45. 
• Nitrate reductase. pI: 6.33 – 6.61, MW: 98.81 - 101.42. 
• Putative disease resistance protein. pI: 6.26 - 6.60, MW: 

101.44 – 94. 51. 
• Plasma membrane ATPase. pI: 6.25 – 6.54 , MW: 104.09 – 

105.52. 
• Sucrose synthase isoform. pI: 6.40, MW: 91.65. 

 
 
 
 
 
3 

 
 
 
 
 

6.2 ± 0.2 / 97 ± 7.0 
  

• Alpha-xylosidase precursor. pI: 6.32, MW: 99.64. 
• Sucrose synthase. pI: 5.98 - 6.28, MW: 92.24 – 93.20. 
• Potassium channel. pI: 6.27, MW: 93899.23. 
• Disease resistance protein. pI: 6.14 - 6.26, MW: 97.26 – 

101.44. 
• Nitrate reductase. pI: 6.04 – 6.44, MW: 98.81 – 101.77. 
• Lipoxygenase. pI: 6.01 - 6.31, MW: 96.63 - 100.08. 

 
 
 
 
 
 
 
 
4 

 
 
 
 
 
 
 
 

5.5 ± 0.2 / 95.0 ± 7.1 

• Phosphoenolpyruvate carboxylase. pI: 5.57 - 5.94, MW: 
108.37 – 109.99. 

• Probable disease resistance protein. pI: 5.87 - 6.14, MW: 
95.79 – 102.64. 

• Calcium-transporting ATPase. pI: 5.76, MW: 109.06. 
• Glycine dehydrogenase. pI: 5.64 – 5.94, MW: 105.54 – 

105.56. 
• Probable potassium transporter. pI: 5.51, MW: 95.45. 
• Heat shock protein 101. pI: 5.81 – 5.90, MW: 100.9 – 101.29.
• Lipoxygenase. pI: 6.01 – 6.16, MW: 96.64 -  97.18. 
• ATPase, plasma membrane-type. pI: 5.53 - 5.82, MW: 

104.13 – 105.01. 
• Sucrose synthase. pI: 5.78 - 5.94, MW: 92.00 – 93.01. 

 
 

11 

 
 

6.5 ± 0.2 / 80.0 ± 3.2 

• Chloride channel protein. pI: 6.81, MW: 85.41. 
• Ethylene receptor. pI: 6.92, MW: 82.64. 
• Sodium/hydrogen exchanger. pI: 6.58, MW: 83.47. 
• Photosystem I P700. pI: 6.74, MW: 83.04. 
• 5-methyltetrahydropteroyltriglutamate-homocysteine 

transmethylase.pI: 5.9 – 6.1, MW: 85.05 – 85.22. 
• Methionine synthase. pI: 6.0 – 6.2, MW: 85.3 – 88.0.  

 
 
 
 

12 

 
 
 
 

6.5 ± 0.3 / 80.0 ± 2.5 

• Chloride channel protein. pI: 6.28, MW: 83.54. 
• Ethylene receptor 2. pI: 6.53 - 6.61, MW: 81.70 – 82.89. 
 
• Sodium/hydrogen exchanger. pI: 6.58, MW: 83.47. 
• Phenylalanine ammonia-lyase. pI: 6.26 – 6.32, MW: 77.78 – 

78.99. 
• Photosystem I P700. pI: 6.46 – 6.74, MW: 81.74 – 83.33. 

 
 
 

13 

 
 
 

6.5 ± 0.1 / 78.0 ± 2.2 
 
 

• Photosystem I P700. pI: 6.46 - 6.74, MW: 81.74 – 83.33. 
• Phenylalanine ammonia-lyase. pI: 6.26 – 6.32, MW: 77.78 – 

78.99. 
• Sodium/hydrogen exchanger 8. pI: 6.58, MW: 83.47. 
• Chloride channel protein. pI: 6.28, MW: 83.54. 

Table A4: Probable candidate names of salt responsive proteins which regulated by a 
factor of at least two folds in gels of both A. nummularia and A. leucoclada
leaves. Protein spots identification using the pI and MW was conducted by quiring 
the SWISS-PROT, TrEMBL and NCBInr data bases.  
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24 

 
 
 
 
 

5.7 ± 0.3 / 56.0 ± 4.1 

Calcium-dependent protein kinase. pI: 5.93 - 6.13, MW: 58.08 – 
60.06. 
• Light-independent protochlorophyllide reductase subunit 

B. pI: 5.95 - 6.42, MW: 58.22 – 58.34. 
• Phytoene dehydrogenase. pI: 5.77 – 6.22, MW: 52.19 – 

53.69. 
• Photosystem II P680. pI: 5.97 – 6.16, MW: 55.99 – 56.33. 
• Ribulose bisphosphate carboxylase large chain. pI: 6,27 - 

6.68, MW: 52.17 – 53.16. 
•  Sucrose-binding protein. pI: 6.08, MW: 57.22. 
• Tyrosine decarboxylase. pI: 5.89 – 6.20, MW: 54.42 – 59.52. 

 
 
 
 
 
 
 

25 

 
 
 
 
 
 
 

6.5 ± 0.2 / 52.0 ± 2.6  

• Cytochrome P450. pI: 6.52, MW: 54.44. 
• Glutathione reductase. pI: 6.31 – 6.56, MW: 53.14 - 53.87. 
• Putative glycosyltransferase. pI: 6.52 – 6.57, MW: 50.07 – 

53.09. 
• Photosystem II 44 kDa reaction center protein. pI: 6.34 - 

6.71, MW: 50.04 – 51.87. 
• Ribulose bisphosphate carboxylase large chain precursor. 

pI: 6.27 - 6.68, MW: 52.17 – 53.16. 
• Threonine dehydratase biosynthetic. pI: 6.27, MW: 54.79. 
•  Probable vacuolar ATP synthase subunit H. pI: 6.58, MW: 

50.28. 
 
 
 
 
 
 
 

28 

 
 
 
 
 
 
 

5.8 ± 0.3 / 45.0 ± 2.7 

• Chalcone synthase. pI: 5.75 – 6.24, MW: 42.01 – 43.74. 
• S-adenosylmethionine synthetase. pI: 5.67 -  6.02, MW: 

42.55 – 42.65. 
• Alcohol dehydrogenase 1. pI: 5.91 – 6.20, MW: 40.01 – 

41.57. 
• ATP synthase a chain. pI: 6.19, MW: 42.99. 
• Aspartate aminotransferase. pI: 6.10, MW: 44.36. 
• Choline monooxygenase. pI: 5.81, MW: 42.63. 
•  Glutamate dehydrogenase. pI: 6.07, MW: 44.67. 

Chaperone protein. pI: 5.76, MW: 46.44. 
 
 

39 

 
 

7.3 ± 0.2 / 33.0 ± 2.0 

• Peroxidase 1 precursor. pI: 7.17, MW: 33.29. 
• Cell division control protein. pI: 7.13, MW: 34.00. 
• Ferredoxin--NADP reductase, chloroplast precursor. pI: 

7.07, MW: 35.20. 
 

 
 
 

42 

 
 
 

6.5 ± 0.1 / 37.0 ± 3.5  

• Alcohol dehydrogenase class III,                      (S- 
(hydroxymethyl)glutathione dehydrogenase). pI: 6.78, MW: 
40.82. 

• Fructose-bisphosphate aldolase. pI: 6.96, MW: 38.86. 
• Chalcone synthase. pI: 6.72, MW: 42.71. 
• Gibberellin oxidase, (Gibberellin C-20 oxidase ). pI: 6.90, 

MW: 43.44. 
 
 
 
 

43 

 
 
 
 

6.5 ± 0.1 / 37.0 ± 3.5 
 
 
 
 
 
 
 

• Malate dehydrogenase. pI: 6.33 – 6.39, MW: 33.41 – 35.68 
• Glyceraldehyde-3-phosphate dehydrogenase. pI: 6.2 – 

6.68, MW: 36.096 – 36.67.  
• Ribose-phosphate pyrophosphokinase. pI: 6.31, MW: 

36.15. 
• Aldose reductase. pI: 6.51, MW: 35. 81 
• Ferredoxin-NADP reductase. pI: 6.54, MW: 34.78 



   APPENDIX 

 xiii

 
 
 
 
 
 
 

44 

 
 
 
 
 
 
 

6.1 ± 0.2 / 39.0 ± 2.6 

• Alcohol dehydrogenase 1 (EC 1.1.1.1). pI: 6.15 - 6.29, MW: 
40.48 -  40.88. 

• S-adenosyl-L- methionine:norcoclaurine 6-O-
methyltransferase. pI: 6.27, MW: 38.69. 

• Fructose-bisphosphate aldolase. pI: 5.96 - 6.21, MW: 38.45 
- 38.45. 

• Arginase. pI: 6.11, MW: 37.34. 
• Glutamine synthetase. pI: 5.94 - 6.21, MW: 39.20 – 39.57. 
• Calcium-activated outward-rectifying potassium channel 

1. pI: 6.25, MW: 40.72. 
• DNA-directed RNA polymerase alpha chain. pI: 5.91 - 6.33, 

MW: 38.30 – 39.15. 
• Thioredoxin reductase. pI: 6.26, MW: 40.63. 
• Vacuolar ATP synthase subunit C. pI: 6.06, MW: 39.98. 

 
 
 
 
 
 
 

56 

 
 
 
 
 
 
 

5.9 ± 0.1 / 28.0 ± 3.0 

• L-ascorbate peroxidase, cytosolic. pI: 5.72, MW: 27.43. 
• Chloroplast envelope membrane protein. pI: 5.71 - 6.07, 

MW: 26.75 – 27.64. 
• Hydroxyacylglutathione hydrolase. pI: 5.93 - 6.14, MW: 

28.16  - 28.97. 
• Probable aquaporin. pI: 6.03, MW: 28.74. 
• Proteasome subunit alpha type 3. pI: 5.75 - 6.11, MW: 27.23 

– 27.29. 
• Ribonuclease 2 precursor. pI: 5.82, MW: 27.23. 
• Plastid-specific 30S ribosomal protein. pI: 5.89, MW: 26.80. 
• Stress-related protein. pI: 5.86, MW: 27.54. 
• Vesicle-associated membrane protein. pI: 6.00, MW: 27.45. 

 
 
 
 
 

58 

 
 
 
 
 

7.0 ± 0.1 / 27.0 ± 3.1 

• Probable glutathione S-transferase. pI: 6.77, MW: 25.66. 
• Adenylate kinase. pI: 6.91, MW: 26.93. 
• NAD(P)H-quinone oxidoreductase chain K. pI: 6.90, MW: 

27.83. 
• Proteasome subunit alpha type 7-A. pI: 6.86, MW: 27.33. 
• Vacuolar ATP synthase subunit E. pI: 7.13, MW: 26.34. 
• Putative cytochrome c biosynthesis ccmC-like 

mitochondrial protein. pI: 6.89, MW: 26.08. 
 

 
 
 
 

59 

 
 
 
 

7.2 ± 0.2 / 27.0 ± 2.3 

• Embryonic abundant protein. pI: 7.14, MW: 27.63. 
• Vacuolar ATP synthase subunit E. pI: 7.13, MW: 26.34. 
• Adenylate kinase. pI: 6.91, MW: 26.93. 
• Alpha-expansin 23 precursor. pI: 6.96, MW: 27.28. 
• Aquaporin TIP3.1. pI: 7.20, MW: 28.30. 

 
61 

 
 
 
 
 

7.0 ± 0.1 / 25.0 ± 2.0 

• ATP synthase delta chain. pI: 6.88, MW: 22.29. 
•  Adenylate kinase. pI: 6.91, MW: 26.93 – 27.33. 
• NADH-ubiquinone oxidoreductase 27 kDa subunit. pI: 6.92, 

MW: 23.17. 
• Ubiquinol-cytochrome c reductase iron-sulfur. pI: 6.93, 

MW: 23.20. 
• Vacuolar ATP synthase subunit E. pI: 7.13, MW: 26.34. 
• Germin-like protein. pI: 7.08, MW: 21.75. 

 
 
 
 

64 

 
 
 
 

9.2 ± 0.2 / 23.0 ± 2.0 
 

• Putative alpha-expansin. pI: 9.26 - 9.75, MW: 24.25 – 25.65. 
•  NADH-ubiquinone oxidoreductase. pI: 9.56, MW: 23.68 – 

27.68. 
• Proline-rich protein precursor. pI: 9.58, MW: 22.23. 
• Mitochondrial  Ribosomal protein.  pI: 9.48 - 9.69, MW: 

20.62 - 22.01. 
• Chloroplast 30S ribosomal protein S2. pI: 9.70, MW: 21.91 

– 27.23. 
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65 

 
 
 
 
 
 
 
 

6.3 ± 0.3 / 25.0 ± 3.0 

• Probable shikimate kinase. pI: 6.38, MW: 24.84. 
• Carbonic anhydrase. pI: 6.06 – 6.19, MW: 23.27 – 25.57. 
• Chloroplast envelope membrane protein. pI: 6.07 – 6.44, 

MW: 26.94 – 27.40. 
• Dehydrin DHN2. pI: 6.35, MW: 24.49. 
• Glutathione S-transferase. pI: 6.06 - 6.34, MW: 23.35 – 

24.63. 
• NADH-ubiquinone oxidoreductase 27 kDa subunit. pI: 6.44, 

MW: 23.15. 
• Osmotin-like protein. pI: 6.39, MW: 25.18. 
• Proteasome subunit alpha type. pI: 6.17, MW: 27.44. 
• Peroxiredoxin. pI: 6.13, MW: 24.08. 
• Superoxide dismutase [Mn], mitochondrial precursor. pI: 

6.24, MW: 22.69. 
• Vacuolar ATP synthase subunit E. pI: 6.50, MW: 27.16. 
 

 
 
 
 
 
 
 
 
 

67 

 
 
 
 
 
 
 
 
 

5.5 ± 0.2 / 20 ± 2.8 

• ATP synthase B chain. pI: 5.33 – 5.41, MW: 20.11 – 20.88. 
• Auxin-induced protein 22D. pI: 5.52, MW: 21.69. 
• Chlorophyll a-b binding protein. pI: 5.59, MW: 23.93.  
• Dehydration-responsive element-binding protein. pI: 5.49, 

MW: 20.64. 
• Ferritin-1. pI: 5.26 - 5.56, MW: 23.11 - 23.76. 
• Germin-like protein. pI: 5.26 – 5.65, MW: 21.55 – 22.17. 
• Glutathione S-transferase. pI: 5.45 – 5.65, MW: 23.69 – 

24.11. 
• Nodulin. pI: 5.45 - 5.73, MW: 20.24 – 21.55. 
 
•  Proteasome subunit beta type. pI: 5.31 – 5.61, MW: 22.75 – 

23.86. 
•  Superoxide dismutase [Mn]. pI: 5.58, MW: 22.56. 
•  GTP-binding protein.  pI: 5.60, MW: 23.311. 

 
 
 
 
 

68 

 
 
 
 
 

5.3 ± 0.2 / 22.5 ± 3.2 

• Germin-like protein. pI: 5.26 – 5.65, MW: 21.55 – 22.17. 
• Glutathione S-transferase. pI: 5.45 – 5.65, MW: 23.69 – 

24.11. 
• Nodulin. pI: 5.45 - 5.73, MW: 20.24 – 21.55. 
• Oxygen-evolving enhancer protein. pI: 5.52 - 5.95, MW: 

20.02 – 21.72. 
• Superoxide dismutase [Mn]. pI: 5.46 - 5.89, MW: 22.35 – 

23.00. 
• GTP-binding protein.  pI: 5.60, MW: 23.311. 

 
 

69 

 
 

6.5 ± 0.1 / 20 ± 2.0 

• ATP synthase subunit I. pI: 6.35, MW: 21.26. 
• Germin-like protein. pI: 6.46, MW: 21.46. 
• NAD(P)H-quinone oxidoreductase subunit I. pI: 6.42, MW: 

21.16. 
 

71 
 

7.8 ± 0.1 / 20 ± 2.0 
• Oxalate oxidase. pI: 7.80, MW: 21.20. 
• Germin-like protein. pI: 7.75 – 7.95, MW: 21.02 - 21.18. 

 
 
 
 

72 

 
 
 
 

9.2 ± 0.2 / 22.0 ± 2.5 
 
 
 
 
 
 

• Putative 3-methyladenine DNA glycosylase. pI: 9.12, MW: 
23.15. 

• ATP synthase B chain. pI: 9.13 - 9.48, MW: 20.06 – 20.98. 
• Cytochrome b6. pI: 9.10 - 9.14, MW: 24.12 - 24.16. 
• Phospholipid hydroperoxide glutathione peroxidase. pI: 

9.05, MW: 19.30. 
• Photosystem I assembly protein.  pI: 9.25 – 9.44, MW: 20.6 

– 22.95. 
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74 

 
 
 
 
 
 
 
 
 

9.5 ± 0.3 / 18.0 ± 3.0 

• Photosystem I reaction center. pI: 9.05 - 9.38, MW: 17.27 - 
17.85. 

• Water stress-inducible protein. pI: 9.19, MW: 17.32. 
• Chaperone protein. pI: 9.44, MW: 20.65. 
• Disease resistance response protein. pI: 9.06, MW: 20. 371 
• Germin-like protein. pI: 9.04 – 9.30, MW: 19.56 – 21.40. 
• Phospholipid hydroperoxide glutathione peroxidase. pI: 

9.01 - 9.05, MW: 19.30 – 19.43. 
• Probable glutathione peroxidase. pI: 9.28, MW: 19.33. 
• Multiple stress-responsive zinc-finger protein ISAP1. pI: 

9.14, MW: 17.63. 
• Mitochondrial 22 kDa protein. pI: 9.44, MW: 21.65. 
• Ribonuclease. 9.00 - 9.27, MW: 22.64 - 23.51. 

75 7.5 ± 0.2 / 18.0 ± 0.1 • Ribulose bisphosphate carboxylase small subunit 1. pI: 
7.60, MW: 16.25. 

 
 

76 

 
 

7.2 ± 0.4 / 20.0 ± 3.5 

• Dehydrin. pI: 7.10, MW: 18.46. 
• Germin-like protein. pI: 6.7 - 7.08, MW: 19.99 - 21.74. 
• 18.3 kDa class I heat shock protein (HSP 18.3). pI: 6.76, 

MW: 18.27. 
 

 
 

77 

 
 

7.2 ± 0.3 / 18.0 ± 1.0 

• Dehydrin. pI: 7.10, MW: 18.46. 
• Nucleoside diphosphate kinase III. pI: 7.07, MW: 17.12. 
• NAD(P)H-quinone oxidoreductase subunit I. pI: 7.51, MW: 

20.09. 
 
 

78 

 
 

5.7 ± 0.2 / 16.0 ± 1.0 

• ATP synthase epsilon chain. pI: 5.83 – 6.1, MW: 14.46 – 
15.15. 

• Superoxide dismutase. pI: 5.75 – 5.93, MW: 14.94 – 15.37. 
• Serine carboxypeptidase. pI: 6.03, MW: 16199.23. 

 
 
 
 

83 

 
 
 
 

7.2 ± 0.1 / 10.0 ± 2.0 

• Probable nonspecific lipid-transfer protein. pI: 7.03, MW: 
10.92. 

• Hypothetical mitochondrial protein. pI: 6.96, MW: 12.12. 
• Cytochrome c oxidase polypeptide. pI: 7.14, MW: 7.04. 
• 2S sulfur-rich seed storage protein. pI: 7.03, MW: 8.60. 

 
 
 
 

84 

 
 
 
 

9.4 ± 0.1 / 15.0 ± 2.5  

• Ubiquinol-cytochrome c reductase complex 14 kDa 
protein. pI: 9.30, MW: 14470.76. 

• Hypothetical mitochondrial protein. pI: 9.12 – 9.41, MW: 
12.00 – 16.45. 

• Probable cytochrome c. pI: 9.04 - 9.37, MW: 12.05 - 12.39. 
• Hypothetical mitochondrial protein. pI: 9.12 – 9.41, MW: 

12.00 – 16.45. 
• NAD(P)H-quinone oxidoreductase chain 4L. pI: 9.03 – 9.43, 

MW: 11.27 – 11.33. 
 
 
 
 

86 

 
 
 
 

5.3± 0.2 / 15.0 ± 2.0 
 
 
 
 
 
 
 
 
 
 

• Thioredoxin H-type. pI: 5.37, MW: 13.58. 
• Superoxide dismutase [Cu-Zn]. pI: 5.16 – 5.44, MW: 14.97 – 

15.70. 
• Salt stress-induced protein. pI: 5.19, MW: 15.06. 
• Ribulose bisphosphate carboxylase small chain. pI: 5.12 - 

5.50, MW: 14.11 - 14.66. 
• L-asparaginase precursor. pI: 5.06 - 5.27, MW: 13.45 - 

13.60. 
• ATP synthase epsilon chain. pI: 5.13 - 5.44, MW: 14.47 – 

14.66. 
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87 

 
 
 
 

5.3± 0.2 / 14.0 ± 1.6 

• L-asparaginase precursor. pI: 5.06 - 5.27, MW: 13.45 - 
13.60. 

• ATP synthase epsilon chain. pI: 5.13 - 5.44, MW: 14.47 – 
14.66. 

• Ribulose bisphosphate carboxylase small chain. pI: 5.12 - 
5.50, MW: 14.11 - 14.66. 

• Thioredoxin H-type 1. pI: 5.12 - 5.37, MW: 13.39 – 13.58. 
• Plastid-specific 30S ribosomal protein 3. pI: 5.08, MW: 

13.79. 
• 50S ribosomal protein. pI: 5.30, MW: 14.35. 
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