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Chapter 1

Introduction

The present thesis has been motivated by the rapid development of the field
of cold molecules during the last decade. Before 1998 the coldest molecules
in the laboratory were at temperatures of about T" ~ 1 Kelvin, either in
supersonic beams or in helium nanodroplets. This is colder than in the
interstellar medium, where the lowest temperature for molecules is controlled
by the blackbody radiation at T' ~ 2.7 K. Spectacular progress has produced
samples of cold ( 7" < 1K) and ultracold (7" < 1 mK) molecules. Three main
routes are presently being developed:

e Sympathetic cooling by cryogenic helium has made it possible to cool
CaH down to = 400 mkin: the method is being further developed in
the group of John Doyle at Harvard, [273] and by Achim Peters in
Berlin. An essential requirement for the applicability of the method is
that the cross sections for elastic collisions must be much larger than
for inelastic collisions. A strong theoretical effort has been devoted to
the calculation of such cross sections [239, 33|

e Gerard Meijer and his group, first in Utrecht, and now in Berlin, have
developed a technique of Stark deceleration for polar molecules such
as CO, ND3, OH, using inhomogeneous time-dependent electric fields
[29, 28, 30]. Several laboratories are presently developing similar ex-
periments : deceleration of SO in Hannover (Prof. Tiemann’s group in
Hannover) aims at producing cold SO and O by predissociation; decel-
eration of YbF at Imperial College, London (Hind’s group) [113, 255]
aims at measuring an upper limit for the electron dipole moment as a
test of the standard model. Further developments concern the deceler-
ation of Rydberg molecules with a high dipole moment (work of Merkt
in Zurich and Softley in Oxford [218, 268], project in Pillet’s group at
Orsay [265])

e Since direct laser cooling is very efficient for atoms but not for molecules,
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another route forms ultracold molecules starting from ultracold atoms.
The photoassociation reaction, where two colliding atoms absorb a pho-
ton, creates a molecule in an excited electronic state, in a highly excited
vibrational level. The excited molecule may be stabilized by sponta-
neous emission, populating bound levels of the electronic ground state.
The method was implemented first in Orsay for Csy [83], then at Storrs
for Ky [200, 199], in Pisa for Rby [91], at NIST (Gaithersburg) for
Nay [80], yielding homonuclear diatomic molecules at T' ~ 2-50 puK |
in samples of typical densities 10'* cm™. Recent progress concerns
the formation of ultracold heteronuclear dimers: RbCs at Yale (2003)
[129, 128], KRb at Storrs and in Sao Paulo (2004) [271, 270, 181]. The

densities in the mixed atomic traps are higher, typically 102 cm™3.

e Several groups have been capable to trap the ultracold molecules, in
magnetic traps for triplet molecules [266, 270], or in dipole traps using
CO, lasers [84], for singlet or triplet molecules. Here the molecular

densities typically reach 108 cm™3.

e Since 2004, a wealth of new experimental results has been published
concerning the formation of molecules in a degenerate gas. The molecules
are formed either in an atomic Bose-Einstein condensate (BEC) [65, 51,
97, 280, 68] or in an atomic Fermi gas [225, 289, 253, 58, 120, 119, 224].
Most groups are using magnetic Feshbach resonances (D. Jin at JIIA,
R. Grimm in Innsbruck, W. Ketterle, MIT, C. Salomon, ENS, ...). The
molecules are formed in highly excited vibrational levels, which makes
them very sensitive to collisions. Recent results from the Innsbruck
group seem to indicate the presence of Css; molecules in the conden-
sates.

e Many groups are working at schemes to transfer the ultracold molecules
from excited vibrational levels to the ground level v=0 [231].

The experimental progress has been accompanied by a strong theoretical
effort. In particular, accurate methods have been developed to evaluate
elastic and inelastic atom-atom cross-sections, for collision energies where
long-range potentials play a key role. The cross-sections are either computed
by ab initio methods or fitted to observed data.

The theoretical work presented in this thesis can be considered as a con-
tinuation of the work by V. Kokoouline et al. [135, 137, 136] on the mapped
Fourier grid method, by A. Crubellier et al. [57] on the determination of
atom-atom scattering lengths using spectroscopic information on the last
bound vibrational levels of the dimer, and by J.-M. Launay et al. [248] on

14



the determination of an atom-diatom scattering length and inelastic cross
sections at ultra-low temperatures.

Indeed, atom-diatom collisions at ultra-low temperatures have become
an important and challenging research subject. Dense samples containing
both ultracold atoms and ultracold diatomic molecules are now available,
and their dynamics are controlled by the cross sections for elastic and in-
elastic atom-diatom collisions. The stability of molecular condensates will
depend on atom-diatom scattering lengths, and on cross-sections for vibra-
tional quenching collisions. This necessitates an important theoretical effort,
the dynamics of atom-molecule collisions being much more complex com-
pared to atom-atom collisions. A bottleneck is the accurate determination
of the potential surface, with an accuracy adapted to the very low kinetic
energy of the colliding partners.

Finally, the formation of ultracold triatomic molecules via atom-diatom
photoassociation would be a major breakthrough, opening the way to ultra-
cold chemistry.

The aim of the present thesis is to contribute to the understanding of
atom-molecule collisions at ultra-low kinetic energy. We have focussed on
two problems:

1. Improvement of the Mapped Fourier Grid method.
2. Computation of the last bound vibrational levels of an alkali trimer.

This thesis is organized as follows.
The Mapped Fourier Grid method is discussed in Chapter 2.
Essential facts about three-body systems are summarized in Chapter 3.
The potential energy surface of the lowest quartet electronic state of the
sodium trimer Nag is described in Chapter 4.
Numerical results concerning the highest, most weakly bound vibrational
levels of Nag are presented in Chapter 5.
The possibility of forming a trimer through photoassociation of its atomic
constituents is briefly discussed in Chapter 6.

Chapter 7 is the conclusion.
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Chapter 2

Mapped Fourier Grid

2.1 Grid methods

Grid methods are widely used to compute wavefunctions of molecular sys-
tems [142]. Any grid method is based on a collocation scheme [39, 170],
also called Lagrange mesh [26]. In such a scheme, an arbitrary wavefunction
@ is approximated by its projection Pcp, a linear combination of interpola-
tion functions, such that ¢ and Py have the same values in the collocation
points. The wavefunction ¢ is thus represented by its values at the colloca-
tion points. The Hamiltonian is represented by a matrix, which can be used
to compute bound and continuum states or to simulate the temporal evolu-
tion of a wavepacket. Quasibound states can be calculated using complex
absorbing potentials [203]. Spectral and collocation methods are discussed in
a famous monograph by D. Gottlieb and S. Orszag [94]. In atomic and molec-
ular physics, collocation methods have been used to study a great variety of
systems, using various sets of interpolation functions [191, 36, 161, 35, 67, 37].
Multidimensional grids have been implemented to study systems with more
than one degree of freedom [127].

2.2 The Mapped Fourier Grid

V. Kokoouline et al. [135] implemented a Mapped Fourier Grid in order to
interpret data obtained in photoassociation experiments performed in the
group ”Atomes et Molécules Froids” at Laboratoire Aimé-Cotton (Orsay).
In such an experiment, electronically excited diatomic molecules are formed
in an ultracold cloud of atoms when two colliding ground state atoms absorb
a photon emitted from a laser source [83, 215]. The electronically excited
molecules are generally formed in highly excited vibrational states, at energies
very close to the atom-atom dissociation limit. In order to represent their
radial (vibrational) wavefunctions on a grid, the grid step must be adapted

17



to the great variation of the local de Broglie wavelength from short to large
internuclear distances [135].

During a three-month’s practical in 2001 ("stage de D.E.A”), I used V.
Kokoouline’s Mapped Fourier Grid [135] to calculate very weakly bound vi-
brational levels of Rby and Css. By diagonalizing the Hamiltonian matrix
in the Fourier grid representation I obtained correct values for vibrational
energies and radial wavefunctions. However, the method did not only yield
physical solutions: the computed eigenvalues generally included a small num-
ber of unphysical, spurious levels, at energies lying between the physical en-
ergies. We may sometimes call the spurious levels ghosts (this seems to be
an established expression, see for example [272]). The origin of the spurious
solutions was unclear. Although they did not affect the accuracy of the com-
puted physical levels in our time-independent calculations, we were afraid
that they might be inconvenient in wavepacket propagation schemes, which
were being planned at the time in our group and which have been imple-
mented since [175, 176, 131, 130]. For this reason we decided to investigate
the ”ghosts” in greater detail. We found that they are inherent to the Fourier
transform algorithm itself and not due to any specific numerical or program-
ming error. We observed [276] that the spurious solutions do not arise if the
standard discrete Fourier transform described in Ref. [135] is replaced by
Borisov’s [35] sine-cosine transform algorithm.

This Chapter contains many results and equations which were already
given in our article [276]. However, we shall point out a few additional
details, and we shall address the non-trivial question of how to interpolate
the wavefunction between the grid points.

2.2.1 Adaptive coordinate

In the adiabatic or Born-Oppenheimer approximation, the relative motion of
two atoms is governed by the Hamiltonian H defined as follows:

- h? d*p

HpR) = ——=(R)+V(R) p(R 2.1

PR) = ~5- S (R) + V(E) o(R) 21)

Here ¢(R) is the radial wavefunction, R € [0, c0) is the internuclear distance,
p is the reduced mass of the two nuclei, and V' (R) is the molecular potential
energy, which may include a centrifugal barrier

R+ 1)
21 R?

The equilibrium distance of the potential is denoted R..
The stationary Schrodinger equation is

~

Hyp = Fyo (2.2)
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where E' is the energy associated with an eigenfunction ¢(R).

Our aim is to solve (2.2) for energies up to a maximum energy F,,,, using
an equidistant collocation scheme.

The local de Broglie wavelength

h
a \/QIU[Emax - V(R)]

for the maximum energy FE.. is generally far larger at large distances R
than at short distances (R ~ R.). Therefore it is useful to introduce a new
coordinate x adapted to the variation of the local de Broglie wavelength
AR).

Since A(R) diverges at classical turning points, we replace the true po-
tential V(R) in Eq. (2.3) by a reference potential Viet(R) in order to define
the

A(R) (2.3)

R~z

coordinate transformation, following V. Kokoouline et al. [135]. The refer-
ence potential must be a smooth function of the internuclear distance, and
it must lie below both Ep,, and V(R):

‘/ref(R) S Emaxa ‘/ref(R) S V(R> (24)

In calculations involving a single potential curve V(R), the reference po-
tential V.. was taken constant at distances smaller than the equilibrium
distance, and identical to the true potential V(R) at distances larger than
the equilibrium distance (see Refs. [135, 276]):

V(R.) , R < R,
V() = § VU (25)
V(R) , R > R,
The local de Broglie reference wavelength is given by
h
)\ref(x) = ) (26)
\/Q,U[Emax - ‘/;ef(R)]
it is used to define the Jacobian
dR Are
J(z) = — B Aret () (2.7)

dr 2

of the R < = coordinate transformation. The parameter 3 in the above defi-
nition was introduced by V. Kokoouline et al. [135] as a means of controlling
the density of grid points on the R-axis. A grid step Ax = 1 on the z-axis
corresponds to the step

(2.8)



on the R-axis.
The coordinate R as a function of x is found by integration, starting at
a point z = a:

Rz) = R(a)+ / " ) da (2.9)

For the choice § = 1, the grid step AR measures roughly the distance be-
tween two neighbouring nodes of a semi-classical oscillatory wavefunction
¢(R) at energy E... By reducing the parameter (3, it is possible to improve
the numerical accuracy until the results may be considered converged. [ is
typically chosen between 0.5 and 0.8, depending on the potential.

We note that the R — x coordinate mapping can be related to a classical
canonical coordinate transformation, in which the classically allowed region
in phase space is transformed into a rectangle [81, 276].

Using the coordinate z, Eq. (2.1) for the Hamiltonian takes the form

Hop(z) = T T(2) de I (@) dn p(r) + V(z) p(z) (2.10)

where p(z) and V(z) are short-hand notations for ¢[R(x)] and V[R(x)],
respectively. The kinetic energy operator!

. R 1 d 1 d
T = —— —— ——— 2.11
2u J(x) de J(z) dx (2.11)
can be rewritten as
. h? s 2 L d? s 7 9
T — | J 2 ]2 2 5 gy =3 g1 212
m {JQdﬂJQJFJQd;E?JQ R ‘]] (212)
or as 2 » ;
_3 1 4 72 _
= —— |2J 22— J 22— J A 4 g3 . 2.13
Au { Tazt T2 * ] (2.13)

The symmetric expression for the kinetic energy operator given in Ref. [135]
is obtained by multiplying Eq. (2.12) on the left by J 3 () and on the right
by J~2(z).

In Ref. [276], we explained that a numerical evaluation of the derivatives
J'(x) and J"(z) can be an important source of error, and that it is preferable
to calculate the kinetic operator directly from Eq. (2.11), unless J(z) and
its derivatives are known analytically.

As discussed in References [135] and [276], the stationary radial Schrédinger
equation

—o Ty 7T 7 P F V(@) e(r) = Eer) (2.14)

n this and in the other expressions for 7', terms of the form % f(x) are operators, not
numbers. The operator - f(z) can be rewritten as % + flz)L .
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can be solved very accurately and efficiently by expanding the wavefunction
o(x) in a set of N interpolation functions, using a set of N equidistant
collocation points on the z-axis. In Ref. [276], we compared three different
collocation schemes, using the following sets of basis functions:

1. trigonometric functions obeying periodic boundary conditions
2. trigonometric functions obeying strict boundary conditions
3. cardinal sine functions (Hardy functions).

The important conclusion was that the trigonometric functions obeying strict
boundary conditions, i.e. particle-in-a-box functions, seemed preferable com-
pared to the two other basis sets, since only they did not lead to the appear-
ance of ghost levels.

The two different trigonometric interpolation schemes, the periodic one
and the non-periodic one, are discussed in the following.

2.2.2 Discrete Fourier transform

We shall briefly review the standard Fourier transform algorithm, using the
same notations as in Ref. [276].
We define a set of N grid points

x; = ilAx (t=1,...,N) (2.15)

covering the interval [0, L] on the z-axis, along with N periodic Fourier in-
terpolation functions @;(x) such that

(z) = 6y  (ij=1,...,N). (2.16)

We now choose as grid step Az = 1, so that x; = ¢ and L = N. This
does not imply any restriction but allows to simplify a few formulas.

The interpolation functions are constructed from travelling plane waves
such that @;(x) is centered on the j-th grid point x;:

v

i) = 3 wila) ), (2.17)

k=—v
where
@ = X (218
up(x) = )
k \/N
and
eik%\’;]
Fj, = ) (2.19)



The interpolation functions @;(x) are explicitly given by

() {1 [r(z—3)] =) (2.20)

u;\r) = sin[w(xz—j . ) .
Nsin[%(z—j)] (.fl? 7& ‘])

they were already discussed by R. Meyer [191] (our function @; is the same

as Meyer’s function J;).

We define the collocation operator P7 by the relation

N

Pro(x) = ) a;(z)play) (2.21)

j=1

where ¢(z) is an arbitrary wavefunction. PFisa non-orthogonal projection
operator: in Eq. (2.21), it is used to project ¢ on the space spanned by the
plance waves ug. Using Eq. (2.16), one sees that ¢ and its projection pr ©
match in the grid points z; (i = 1,...,N):

PT| (@) = () (2.22)

We emphasize that pPF ¢ is a "skew” projection with respect to the L?-scalar
product.

In Ref. [276] we showed how T'¢ (”the action of the kinetic energy opera-
tor on the wavefunction”) can be evaluated numerically using the collocation
operator P7, given the values of ¢ at the grid points. The method has also
been discussed by M. Nest and P. Saalfrank [196].

It is interesting to compare the projection by collocation and the orthog-
onal projection based on the L? scalar product. The L?-projection of ¢ on
the space spanned by the N plane waves uy is given by

(uplu) (ay]y)

Pﬂﬂ(x) =

N ~

1=

J=1

where P, is the L2-projection operator and (-|-) denotes the L? scalar product

(o1la) = / J(x) () ala) d (2.24)

The functions (2.21) and (2.23) are generally different, except if ¢ lies in the
space spanned by the plane waves uy.
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Fourier interpolation and cardinal sine functions

We have found a simple formal relation between the Fourier interpolation
functions @;(x) and cardinal sine functions: using the Eisenstein series [227]

S f: (=" (2.25)

sin(7z) z24+m

m=—0oQ

we may express (2.20) as a " periodic superposition” of cardinal sine functions:

[e.e]

uj(x) = Z sinc[r(z —j —mN)] . (2.26)

m=—0Q

This expression shows that @;(z) is well approximated by the cardinal sine
function
sinc[m(z — 7)]

provided that
1 << j << N.

The function @y(x), on the other hand, can be written as

in(z) = Y sinc[r(z —mN)]
~ sinc(mz) + sinc[r(z — N)] . (2.27)

The peak of this function appears at both ends of the grid, which reflects the
fact that the basis functions

ug(z) (k=1,...,N)

obey periodic boundary conditions.?

2.2.3 Discrete sine and cosine transforms

D. Lemoine [161] and A. G. Borisov [35] both presented a mapped sine grid
method. We adopted Borisov’s method, since it allows to compute the kinetic
energy operator without using the derivatives of the Jacobian J(z).

2T would like to thank Prof. David Tannor for the comments he made on a poster I
presented at Gif-sur-Yvette in 2001. Prof. Tannor remarked that the Fourier interpolation
functions peaked near the right border (xz = N) of the grid must also be ”visible” at the
left border (z = 0), due to the periodicity of the basis set. Following this hint, I formed the
infinite sum (2.26), in an attempt to define a simple alternative set of periodic interpolation
functions. Afterward I realized that the sum (2.26) and the Fourier interpolation function
(2.17) are the same.
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In the following we present Borisov’s method from our own perspective,
using explicit continuous interpolation functions 3;(z) and ¢;(z). These func-
tions are analogous to the Fourier interpolation functions @;(z) described
above.

Grid points

We define the following set of equidistant grid points x; covering the interval
[0, L] on the z-axis:

L
x; = Az, Az = N (t=0,...,N) (2.28)

Basis functions

The basis functions

su(z) = \/% sin <k%x> (k=1,...,N —1) (2.29)
cr(z) = \/% cos <k%x> (k=0,...,N) (2.30)

are orthogonal in the following sense:

L
/ dr si(z) si(x) = Az (2.31)
0
L
. [ 280 (k=1=0)
/deck(a:)cl(x) N {5kle otherwise (2.32)

Discrete sine and cosine transformation

The discrete sine and cosine transformations of the first type [217] are given
by:

Si = sk(x;)) = /= sin (k—z) (2.33)
(i k=1,...,N—1)

2 T
Ci. = agpcp(x)a; = ”Nak COS <sz) o (2.34)

(i,k=0,...,N)
where
1 _ _
=4 V2 (k=0 k=N) (2.35)
1 (k=1,....N—1)
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S and C are unitary matrices of dimensions N — 1 and N + 1, respectively:

N-1

(SST)ij = ZsikSTkj = 0ij (2.36)
k=1
N

(CCT)ij = ZcikCTkj = 0ij (2.37)
k=0

Interpolation functions

The sine and cosine interpolation functions

N-1
5i(z) = si(w) ST (2.38)

k=1

N
Glr) = Y anl@) axClyjay (2.39)

k=0

are such that

$j(w:) = 0y (2.40)

Note that the transformation (2.39) relating ¢;(x) and ¢ (z) is only ap-
proximately unitary, due to the coefficients «, and «;.

Explicit expressions for the interpolation functions 5;(x) and ¢&;(x) are
obtained by evaluating the sums in Eqgs. (2.38) and (2.39):

5i(z) = 1 {sin [N = 1) (z — z;)] _ sin (2N — 1) & (z + ;)] }
j 2N sin [ (¢ — ;)] sin [Z (2 + ;)]
(z # 25)
) = (2.42)
. B oz]2- sin [(2N — 1) (x — x])} -
¢lz) = 2N { sin [%(m _ xj)] + cos [Nz(x — x])]

sin [(2N — 1) & (z + ;)]
sin [ 2 (z + ;)]
(z # x;)
éi(z;) = 1 (2.43)

+ cos [N%(x + ZE])} }

Eqgs. (2.42) is needed for the interpolation of the wavefunction ¢(x).
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Figure 2.1: Cosine interpolation function ¢ (z) for L = 13, N = 13. The
function vanishes in all grid points z; =7 (i = 0,...,13) except in z; = 1.

We note that the denominators in Eq. (2.42) can be rewritten as Eisen-
stein series using Eq. (2.25). The sine-interpolation function §;(x) can thus
be expressed as a linear combination of cardinal sine functions, similar to Eq.
(2.26).

Fig. 2.1 shows the interpolation function ¢ (x) for the case N = 13. Plots
of other interpolation functions are given in our article [276]. See also the
article by F. J. Lin and J. T. Muckerman [170], who refer to the interpolation
functions as ”discrete coordinate eigenfunctions”.

Collocation operators

We define the collocation operators PS and PC associated with the sine and
the cosine basis such that

Pp(x) = Si(x) p(x;) (2.44)

Plyp(z) = Zéi(x)cp(xi). (2.45)



PS and PC are used to project an arbitrary function ¢(z) onto the space
spanned respectively by the sine functions (2.29) and by the cosine functions

(2.30) such that ¢(x)
p(ri) =

p(r;) =

and its projections match in the grid points:

L N-1) (2.46)

(2.47)

We may express PS5y and P in terms of the sine and cosine functions

(2.29) and (2.30) as follows:

= sk(@) o} (2.48)

I
WE
8L
&
AS

(2.49)

The expansion coefficients ¢ and ¢§ thus defined are related to the values
¢(x;) of the wavefunction on the grid by a discrete sine and a discrete cosine

transformation, respectively:

S

Yy =

p(z;) =

o =

p(z;) =

N-1
ST () (2.50)
i=1
N-1
> Suwer (2.51)
k=1
N
Z o, CT i () (2.52)
=0
N
1 1
Z — Ciyp, — @g . (2.53)
=0 Q; Qy

Evaluation of the scalar product

Assuming that ¢1(z) and @o(z) can be expanded in the sine basis (2.29),
their scalar product (2.24) can be approximated as follows:

(p1lp2) =
ij=1
N—1

Q

,j=1

S [ e @ el 50 et

S J(w) er()" ealay) / do 51(z) 5(z)
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-1

= J(x;) p1(x;)" pao(x;) Az . (2.54)

=1

In this derivation we have used the fact that the product of a function f(x)
and an interpolation function §;(z) can generally be approximated as follows:

=z

fz)8(x) =~ Psf(:v)féz(x) = g 5i(x) f(x;)8:(z;) = f(z:)3:i(z) . (2.55)

7=1

Grid representation of the differential operator d/dx

The derivatives of s, and ¢, are

dé’k s
i) = kel (2:30)
de s
& = ~hps). (237

The derivatives of 5; and ¢; at the grid point ; are accordingly given by

D (2.58)

C§|H 9|»—
I ~13 &)

() o CTyj

oL &
B
—~
N

|
[]=
o | &
e

b
Il
o

= — k % sk(m;) g CTyj

D (2.59)



In Egs. (2.58) and (2.59) we have introduced a rectangular matrix D
N-1
Dij =Y Cy kST (2.60)
k=1

where i = 0,...,Nand j = 1,...,N — 1. The sum in Eq. (2.60) can be
calculated analytically (see the Appendix B). The result is

D, = —Qy % (—1)i+j [cot (W%) — cot (W%)} (Z £ j)
j —a; 1 cot (%) (=)
Potential energy operator

The grid representation of the potential energy operator is found by evalu-
ating V (z)p(z) at the grid points z;:

N-1
V(@)p@),ey, = D Vielz;)  (=1,...,N=1) (2.62)
j=1
where
Vij = V(z)dy  (5,5=1,...,N—=1). (2.63)

As in any grid method, the potential energy operator is represented by a
diagonal matrix V.

Kinetic energy operator

A grid representation of the kinetic energy operator is found by estimating
the value of T'p(x) at the grid points x;, using the projection operators (2.44)
and (2.45):

Po@|_ = I 0) ) e ple)
~ _g () % PC J Y (z) % PS () .
--r N 0) - P ) 5 ) )
= — h—; j.::g; J ) %Ek(x) J(xp) ™t ?(xk) p(;) »
g NiJ( 07 2 ) ) B ) )



=z

1
B +ﬂﬁ — J (@)™ oD}y J ()~ la—kajSO(xj)
B2 72 N
- o I2 ZJ(%)_IDTM J(z1) " Dyj p(z5) (2.64)
k=0

We have thus derived the following grid representation of the kinetic energy
operator:

e B B
T; = ﬂ 12 Z J(x;) "t DTy, J ()~ Dy (2.65)
k=0

(i,j = 0,...,N—1)

The matrix T defined by the above equation is not symmetric but can easily
be converted into a symmetric matrix T (see Sec. 2.2.4).

T can be calculated numerically from Eq. (2.65) using the values J(x;) of
the Jacobian at the grid points and the matrix elements D;; given explicitly
in Eq. (2.61). This method is convenient if numerical speed is not a priority:
it is simple to implement, and the number of grid points N can be chosen
freely. However, if N is very large, the computation of the (N x N)-matrix
T becomes very time-consuming: for each of its

N(N +1)
2
different elements, N + 1 terms must be summed, which means that the

numerical effort scales as N3.
A more efficient method is to compute T directly from the formula

2 N N

T = 2,LL 12 Z Z J (i) Sl CTd (1) ™ Chomm STy (2.66)

k=0 l,m=1

using the fast sine and cosine transform algorithms, following A. G. Borisov
[35]. The computational effort for each of the N? matrix elements then grows
only logarithmically with /N, compared to linearly if the summation in Eq.
(2.65) is carried out explicitly. It should be noted that the fast routines imply
certain restrictions on the number of grid points. The simplest routines
only work if N is an integer power of 2 [39]. Eq. (2.66) is the basis of
the wavepacket propagation schemes implemented by E. Luc-Koenig et al.
[175, 176] and by Ch. P. Koch et al. [131, 130].

A variant of the Fourier sine-cosine technique

Before A. G. Borisov’s article [35] came to our attention, we had combined
the discrete sine transform of the first type (2.33) with the discrete cosine
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transform of the second type [217, 35] in order to evaluate 7. We had found
the discrete cosine transform of the second type more appealing, because it
is slightly simpler. However, the collocation points for the transforms of the
first and of the second type are not the same. The collocation points for the
discrete sine and cosine transforms of the second type are

I R e Y P ¢ .
Yi = 5 = (Z 2)Ax (t=1,...,N)

where z; are the equidistant grid points defined in Eq. (2.28). The method
yields the following matrix representation of the kinetic energy operator,
which is analogous to Eq. (2.65):

1 72 N _ _
Ty = 575 > J(@) ' Dy J(y) " Dy (2.67)
k=1

Here D is a matrix similar to the matrix D defined in Eq. (2.60). The method
based on Eq. (2.67) gave correct numerical results (vibrational energies and
wavefunctions), without spurious solutions. However, we found the computed
eigenvalues to be about two digits less accurate compared to the eigenvalues
derived from Eq. (2.65). Furthermore, the computed eigenvalues were often
smaller than the exact values. This loss in accuracy may have been due to a
programming error, but it could also be linked to the fact that the collocation
points x; and y; are not the same. We did not investigate these aspects any
further, because the method based on formula (2.65) proved to be entirely
satisfactory.

2.2.4 Diagonalization of the Hamiltonian matrix

Evaluating both sides of the radial Schrodinger equation
fp(@) = Bel) (2.68)

at the collocation points z; (i = 1,...,N — 1) yields the following linear
system:

=2

-1

Hijp(x;) = E¢(z;) . (2.69)

1

J

Here H;; are the elements of the asymmetric Hamiltonian matrix
H=T+V, (2.70)
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related to a symmetric matrix

H=T+V (2.71)
by the transformation
Hy; = J(a)"? Hiy J ()72 (2.72)

corresponding to a rescaling of the wavefunction ¢(z). The scaled function
¢(x) and the unscaled functions ¢(x) are related as

plr) = plx)VJ(@) . (2.73)

The linear system (2.69) is thus transformed into the following linear
system for the values of the scaled wavefunction at the collocation points:

ZH B(z;) = Ep(x) . (2.74)

The symmetric matrix H can be diagonalized efficiently using standard
numerical methods. The procedure yields the eigenvalues E and, for each
eigenvalue F, the values of the rescaled wavefunction @(z) at the grid points
z (i=1,...,N—1).

It should be mentioned that the matrix elements Hij obtained by the
collocation method can be regarded as approximations to the integrals

/0 " 5i(z) H,(x) dz

- [ 5@ [—h— 5 (0) + V(@) 3(e) | ds

2p/J () dzx J(z) dx

(2.75)

which occur in the variational method (see the Appendix C). The validity
of such an approximation has been discussed by R. Meyer [191], for the
related case of trigonometric interpolation using a periodic basis set (the set
of function @;(z) in our notation).

2.2.5 How to interpolate the wavefunction

Given the values of the wavefunction (z) at the grid points x;, one needs
an interpolation formula in order to compute () at distances between the
grid points.

A linear interpolation must be ruled out, because the grid step may mea-
sure almost half the local de Broglie wavelength.
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The obvious alternative is to use the trigonometric interpolation functions
Si(z) introduced above. The remaining question is whether these functions
should be used to interpolate ¢(x) or its scaled equivalent p(x).

In order to give an answer, we shall first consider the Hilbert space of
rescaled wavefunctions @(x) defined on the interval [0, L] covered by the
grid. The scalar product of two arbitrary rescaled wavefunctions is defined
as

(@1]@2) = / 51(2) @l da . (2.76)

Eq. (2.31) shows that the sine interpolation functions §;(z) form an orthog-
onal basis set with respect to this scalar product. It therefore seems natural
to expand the rescaled wavefunction in the sine basis, in other words, to
interpolate it as follows:

p(z) = Si(w) p(xi) - (2.77)

p(z) = Si(w)p(w;) - (2.78)

However, numerically we found that the interpolation formula (2.77) can
yield very poor results for ¢(z) at short distances if ¢(x) belongs to a highly
excited vibrational level in a long-range 1/RS or 1/R? potential. In fact, the
factor J(z) in Eq. (2.73) can cause the amplitude of the rescaled wavefunc-
tion @(x) to be orders of magnitudes larger at large distances than at short
distances. Thus, if z; is a grid point in the outer region, @(z;) can be very
large, and the term
in Eq. (2.77) can have a noticible amplitude even at short distances. We
recall that the interpolation function §;(x) resembles a cardinal sine function
centered on x;, which means that its amplitude falls off very slowly, roughly
as 1/|z — x;|. It seems that only a few terms in Eq. (2.77), belonging to
grid points at large distances, can make the dominant contribution to the
waveamplitude at short distances and thus spoil the wavefunction there.

This problem does not arise if the unscaled wavefunction ¢(z) is expanded
in the basis functions 3;(x):

(2.79)



The above formula is very similar to the expansion in cardinal sine functions
proposed by V. Kokoouline et al. [135]. We found that Eq. (2.79) always
gave excellent results. Therefore we believe that it should replace Eq. (2.78).

The interpolation formula (2.79) is furthermore consistent with the ap-
proximation we made in order to derive the grid representation (2.65) of the
kinetic energy operator: it is the wavefunction ¢(x), not its scaled equiva-
lent @(z), that is approximated as PSp(z) in Eq. (2.64), that is, as a linear
combination of the sine functions sj(x).

It must be noted, however, that the basis functions sy (z) (k=1,..., N —
1), now considered as vectors in the Hilbert space of unscaled functions ¢(x)
with L? scalar product (2.24), are not strictly orthogonal. Their scaled coun-
terparts /J(z) sk(z) in the Hilbert space of scaled functions ¢(x) are not
orthogonal either, which follows immediately from the fact that the scaling

plr) < px)

does not affect the scalar product (p1]ps) of two states p; and ¢y. At this
point it does not matter which set of basis functions is used in the collocation
scheme: the questions related to the orthogonality of the basis functions are
fundamentally the same for the periodic basis set {uy} as for the sine basis

set {si}.

2.2.6 Ghost levels

In Ref. [276] we discussed the appearance of spurious solutions in calculations
of weakly bound vibrational levels of diatomic molecules. Spurious solutions
arising in pseudo-spectral methods were also reported by J. P. Boyd et al.
(37].

We observed spurious solutions only if we constructed the Hamiltonian
matrix using the periodic Fourier basis {u}. We found no spurious solutions
when we constructed it using the sine basis {sy}, provided that the grid step
was chosen reasonably small. It did not matter in this respect whether Eq.
(2.67) or Eq. (2.65) was used to compute the kinetic energy operator in the
sine basis.

In some calculations using the periodic Fourier basis {uy}, we found a
spurious solution at an energy below the energy of the physical ground state.
This can only be explained if the Hamiltonian matrix obtained by the collo-
cation method is not equivalent to the Hamiltonian matrix

(wel Hlug) — fy T (@) uj(x) Hup () da

(uplupy fOL J(x) uj(z) up (x) dx

Hyp =

(2.80)

used in the Ritz-Rayleigh variational method (see the Appendix C): the Ritz
variational principle guarantees that the lowest eigenvalue of the above ma-
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trix (the elements of which are true integrals, not sums) is an upper estimate
for the true ground state energy.

In the previous paragraph, we suggested that the underlying basis set of
the Mapped Fourier grid is not strictly orthogonal. It would be interesting
to find out whether the phenomenon of spurious solutions is related to this
"loss of orthogonality” caused by the change of coordinate R — z. In Ref.
[276] we showed that the periodic Fourier basis

w;(x) (t=1,...,N)
differs from the non-periodic sine basis
5i(x) (t=1,...,N—=1)

significantly only in that it comprises the function @y (x), which is peaked
exactly on the borders of the grid, x = 0 and x = L. The sine basis does not
have a similar member. It could be worth examining the orthogonality of
this particular basis function, @y (z), with respect to the other interpolation
functions u;(x) using the scalar product (2.24). For this purpose, the inter-
polation functions @;(x) should first be normalized to unity with respect to
the scalar product (2.24); next one could compute numerically some integrals
(@;|t;), in particular (Gy_1|ty) and (@y|@), in order to find out how much
they differ from zero. Perhaps this could also be done analytically, using an
analytical Jacobian function J(z).

Of course it might be possible that there is no simple explanation for the
appearance of spurious solutions in the Fourier grid method: in fact we do
not see any reason why the method should yield only physical solutions.

2.2.7 Mapped Fourier Grid for a multi-channel system

The collocation method is easily generalized to the case of several coupled
channels, involving more than one electronic state of the diatomic molecule
or the colliding atoms.

In the case of p coupled states, the radial wavefunction ¢(x) can be rep-
resented by a vector

p1(z)
p(r) = E (2.81)
ep()
such that each entry ¢ (z) describes the relative motion of the nuclei in the
k-th channel (k= 1,...,p). A
The grid-representation H of the multi-channel Hamiltonian H is ob-
tained by expanding pg(x) as
N-1

or(z) = Z_: Si(x) or(z;) (k=1,....p) (2.82)

i=1
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and evaluating Hop(z) at the grid points z; (i = 1,...,N), in the same
manner as in the single-channel case. The matrix H is of dimension (pN X
pN).

Mapping and radial interaction

I. Tuvi and Y. B. Band [262] showed how to formulate non-adiabatic radial
couplings such that their grid-representation is a Hermitian matrix.

Their method remains applicable for a mapped grid. If the scaled coor-
dinate x is used instead of the radial coordinate R, the differential operator

d
dR
in Tuvi’s and Band’s equations must be replaced by
1 d
J(z) dx

for the space of unscaled functions ¢(x) and by

for the space of scaled functions @(z).

2.3 Conclusion

We have described an efficient way for solving the single-channel or the multi-
channel radial Schrodinger equation numerically.

We found that Borisov’s sine-cosine transform technique [35] yields a very
accurate Hamiltonian matrix without spurious eigenvalues.

At present we do not see any default of the method or any simple possi-
bility of improving it. Of course this does not exclude that other numerical
methods such as Wavelet or B-spline techniques could have certain advan-
tages compared to the Mapped Fourier Grid.

In 2002, we used the Mapped Fourier Sine Grid to compute loosely bound
vibrational and scattering states of Rby, Csy and RbCs, for each diatomic
system using a model of two coupled electronic states. The work was aimed at
interpreting photoassociation spectra of Rby, Csy and RbCs, as an extension
of my ”stage de D.E.A.” and of the studies by V. Kokoouline et al. [137,
202, 134]. It was done in cooperation with M. Raoult, who computed an
energy-dependent ”short-range reactance matrix” summarizing the effects of
non-adiabatic couplings. Using the Mapped Fourier Sine Grid, we computed
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bound and discretized continuum levels to which we fitted the short-range
reactance matrix. The numerical values for the short-range reactance matrix
deduced from the fit agree very well with the accurate values computed by
M. Raoult. The work has not been published yet, and it is not described in
this thesis.

Within the framework of this thesis, we used the Mapped Fourier Sine
Grid only to solve the adiabatic hyperradial Schrodinger equation of the
sodium trimer Nagz (see Chapter 5).

However, the sine-cosine transform technique has become the basis for
time-dependent wavepacket calculations developed in the group ”Atomes et
molécules froids” at Laboratoire Aimé-Cotton [175, 176, 131].

Recently, M. Leduc et al. [160] used the Mapped Fourier Sine Grid to
compute bound vibrational states of giant helium dimers, in relation to pho-
toassociation experiments [163, 162].
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2.4 Article ”Mapped grid methods for long-
range molecules and cold collisions”
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The paper discusses ways of improving the accuracy of numerical calculations for vibrational levels
of diatomic molecules close to the dissociation limit or for ultracold collisions, in the framework of

a grid representation. In order to avoid the implementation of very large grids, Kokoetlaid J.

Chem. Phys110, 9865 (1999] have proposed a mapping procedure through introduction of an
adaptive coordinatg subjected to the variation of the local de Broglie wavelength as a function of
the internuclear distand® Some unphysical level§ghosts”) then appear in the vibrational series
computed via a mapped Fourier grid representation. In the present work the choice of the basis set
is reexamined, and two alternative expansions are discussed: Sine functions and Hardy functions. It
is shown that use of a basis set with fixed nodes at both grid ends is efficient to eliminate “ghost”
solutions. It is further shown that the Hamiltonian matrix in the sine basis can be calculated very
accurately by using an auxiliary basis of cosine functions, overcoming the problems arising from
numerical calculation of the Jacobial{x) of the R—x coordinate transformation. @004
American Institute of Physics[DOI: 10.1063/1.1630031

I. INTRODUCTION the long-range region. Kokoouliret al. have overcome this

difficulty by defining a working grid in a coordinate adapted

Due to rapid progress in experiments with cold atom 7= ) .
samples, and more recently with cold molecule samplest,o the variation of the local de Broglie wavelen§their

there is an important need for modeling and theoretical inWOrk generalizes the mapped Fourier grid meghod, originally
terpretation. Numerical tools should be constantly refined foProposed for Coulomb potentials by Fatéilal,” to poten-

treatment of atomic collisions at very low energy and forials with R™" asymptotesi{=2). In the latter, the adaptive

determination of the bound vibrational levels of diatomic coOrdinate was defined through optimization of the use of the
molecules(mostly alkali dimers at presentlose to the dis- phase space. A similar procedure was introduced by Tiesinga

sociation limit. Among the many applications, we may em-€t all® for the calculation of bound vibrational states of al-
phasize: kali dimers by a filter method.

] ) ] o ] The definition of the adaptive coordinateould follow
(i) interpretation of photoassociation experiments, calcuzp, analytical procedure, considering the asymptotic form of

) lation qf formation rates for gltracold molecules; . the potential and a lower limit of the local de Broglie wave-
(i) determination of the scattering I'en?qths and of colli-jength. However, Kokooulinet al® have shown that a better
sion cross sections at low energies; optimization of the occupancy of the phase space was

(iii) calcu_lation of the coupling parameters between Ahchieved with a numerical change of variable, following
atomic and a molecular condensate. strictly the R-variation of the local de Broglie wavelength as
[E—V(R)]™ Y2, whereV(R) is the actual potential. The lat-

The Fourier grid Hamiltonian representatigfGHR), de- . ) . . o
9 b ¢ ) ter is generally defined by interpolation of resultsabfinitio

scribed in detail in several papef® now widely used to : :
solve the time-independent radial Satlirger equation, is an calculations at a set dR values, matched to analytical ex-

efficient tool for the problems mentioned above. Once a gri&)ressmns in the asymptotic region. The numerical method

of N equidistant points is defined, the energies and wavé€N involves calculations of the Jacobidfx) of the trans-

functions of bound levels of p-closed-channels problem are form:ition R—Xx, and of its first and second derivativéyx)
obtained through diagonalization ofpdN’x pN Hamiltonian andJ”(x). The method has already given accurate results for

. . -13 .
matrix. Inclusion of open channels is made possible througifalculations of grotoassomatlon spebtia’*and of predis-
optical potentials. From the computed wave functions, Sociation widths . _
accurate evaluation of the dipole transition moments or over- N the present work, we propose ways of improving the
lap integrals becomes straightforward through numerica[nethOd by.overcom|.ng two problems frequently encountered
quadrature. in calculations dealing with long-range molecules or cold

However, when applied to the present class of problemsSollisions. Indeed
the FGHR implemented with a constant grid step becomeg)  numerical errors may arise in the calculation of the

cumbersome, since the local de Broglie wavelength may derivatives of the Jacobian, reducing the final accu-
vary by several orders of magnitude from the short-range to racy:

(i)  besides, unphysical leve{sghosts”) are found when
dElectronic mail: francoise.masnou@lac.u-psud.fr the mapped Hamiltonian is diagonalized in a periodic
0021-9606/2004/120(2)/548/14/$22.00 548 © 2004 American Institute of Physics
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plane waveFourien basis. Their elimination is cum- Let us consider the radial Schiinger equation for the
bersome, and they may lead to errors in problems intelative motion of two atoms with reduced massn a po-
volving several coupled channels, due to a possiblgential V(R) with R™" asymptotic behaviorn(=3,5,6), typi-
coupling between spurious and physical levels. Thecal of studies on photoassociation or cold collisions
“ghosts” may also affect solutions of the time- 1 2

dependent Schdinger equation. (T+V) (R =| — o % +V(R) | W(R)=E¥(R). (2.1

For that purpose, the present paper checks the efficiency
numenc_al methods where the plape waves are replaced 9h theR axis in order to represent the radial wave functions
alternative basis sets. The discussion is focussed on the d

o . . ) . (R) for bound or continuum levels up to a maximum en-
termination of vibrational levels of diatomic molecules close . . .
to the dissociation limit. The first alternative choice is a setergy,Ema"' A Conit;mt grid Ste@R Is determined by. the
of mapped sine functions, already introduced by LemiGine Maximum valuePg™ of the classical momentug= xR
and Borisov® in the_ framework of different applications, pmax_ \/m 2.2)
namely thermal collisions between atoms and surfaces. The
second choice is a mapped version of the Hafcgrdinal ~ where —V i, is the minimum value of the potenti&(R).
sing function representation proposed by Colbert andAs discussed by Fattadt al? and Kokooulineet al.? this
Miller*1 for collinear reactive scattering. grid corresponds to a rectangle of lendtly and height
We show that use of a sine basis and in some cases ofZP3*in the (R,Pg) phase space.
Hardy basis seems sufficient to suppress the “ghost” levels. The need for a change of the grid step becomes obvious
We present a new way to calculate the Hamiltonian matrixin the case of weakly bound molecules or slowly colliding
using a combination of a sine and a cosine basis set whicatoms, where the local Broglie wavelength
avoids the numerical evaluation of the derivatives of the
Jacobian. We show on three examples that the mapped sine A(E,R h 2mh 2.3

grid method permits an accurate determination of energies )= w/Z,u[E—V(R)] - Pr’
and wave functions for levels very close to the dissociation

limit. may vary by several orders in magnitude from the inner to
The problem of “ghost” levels has been previously ad_the_outer regio_n. For these systems_ the classically aIIov_ved
dressed by Hua WHlin the context of discrete variable rep- r€gionS occupies only a small fraction of the rectangle in
resentation(DVR) of orthogonal polynomials. The appear- phase spac®due to a great yarlatlon of the classmal_ momen-
ance of “ghost” levels was explained by the errors stemmingtum Pr from short to long distances. Irj order to opnrmze the .
from the quadrature of the potential, especially for small and®ccupancy of phase space, we consider an adaptive coordi-
medium-sized basis sets. A “near variational” DVR was Natéx and its conjugated momentupy . The change of vari-
implemented to improve the accuracy of the quadrature angble fromR to x will be defined by the condition that the
to eliminate the “ghost” solutions. Errors coming from the classically allowed region in thex(p,) phase space be as
quadrature of potentials in DVR are also addressed in vari¢/0S€ as possible to a rectan_@*l%lt is then straightforward
ous articles such as Ref. 19. We shall see below that th&® S€t up an equidistant Fourier grid on thexis so that its
“ghost” levels in our problem seem to have a different ori- aSSociated rectangle ix,p,) phase space matches the clas-

gin, being linked to the behavior of the basis functions at theically allowed region. _ .
boundaries and also to the mapping procedure. We shall now consider the change Qf coordmat(_e in
The paper is organized as follows: Section Il recalls thed€tail. The conjugated momentum,, obtained by deri-

principles of the mapped representation with introduction of/ation of the ClaSSI29a| Lagrangian;(x,), verifies p,

an adaptive coordinate while Sec. Ill summarizes the col- = ¢£(%.X)/dx=pJ(x)"x=J(x) Pg, where

location method. Section IV recalls the Fourier grid method

and shows examples of calculations where “ghost” levels  J(x)= X’ (2.9
appear among the computed physical levels in vibrational

series of long-range molecules. Section V proposes two ais the Jacobian of the transformatiéti—x. The canonical
ternative choices for an expansion of the wave function. Theransformation R,Pg)— (x,p,) conserves the area in classi-
efficiency of the various basis sets is discussed in Sec. Vtal phase space since

through analysis of a few examples typical of the present

g’fhe standard Fourier grid method us¢squidistant points

class of problems. Section VIl is the conclusion. - ﬁ () 0
X Ipy
= 1 | =1, (2.5
Il. MAPPING PROCEDURE Fr 2Pr = (P’ ()IX)? 3(x)
: X Ipy

We recall below the main steps of the mapping Proce<y thatdr dp=dx dp,. For a given maximum energy

dure extensively described elsewh&Paysing slightly modi- = " classically allowed regiod in phase space is de-
fied notations for clarity sake. The main purpose is a changﬁr']“ga’ by

of coordinate which transforms a given radial wave function
into a new wave function with regular oscillations. H(X,Py) <Emax=(X,py) € S, (2.6
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whereH(x,py) is the classical Hamiltonian. This regighis o L
a rectangle of length. and height P, if the maximum fo dR¢* (R)¢(R) = fo dxJ(x) ™ (R(x)) $(R(x))
allowed value of the momentuhp,| is the same for alk
L _ —
p2 =f dxep™ (X) (X). (212
. _ max _ 0
vx: H(X,Dmax)—erV(X)—Emax, 2.7
Let A be an operator acting on the wave functg(R). We
which shows that the Jacobian has to be chosen as define a transformed operatarthat acts ony(x)
Prmax A(EmaxR) AP0 =Ap0) =IO (A) (%) (213
J(x)= = Pmax h . (2.9 . . .
V2uU[Emax—V(R)] We apply this rule to transform the differential operator

. . d/dR=[1/3(x)](d/dx)
Thus the Jacobiad(x) needs to be proportional to the local

de Broglie wavelengti\ (E,R) at energyE =E.« [See Eq. d 1 d 1
(2.3)]. The adaptive coordinateis obtained by integration arR- 00 ax OO (2.149

R dR" V2u (R N .
x(R)=f = s f dR' VE, o~ V(R)), 2.9 The kinetic and potential energy operators become
RinJ(R ) Pmax Rin

—

(2.15

A2 1 d 1 d 1
whereR;, is the inner turning point at enerds, .. For the C2u NS dx J(x) dx VI
maximum energyE=E, .., the classical momentum takes
on the values- pax@nd+ pmax, Which are now independent V=V(x). (2.16
of the distance, making the classical shefl a rectangle of
area DXL, where the length of the grid is defined from  As discussed in Ref. 8, the kinetic-energy operé2ot5 can
the classical turning points. This justifies grid calculationsbe rewritten as
with a constant stepsize i” The minimum number of grid 5 5 Lo
points is fixed by dividing the rectangle in elementary cellsT_ _ 1)1 d n @ 1 77X n ") _
of areah and putting one grid point per cell, so that the A [I)ZdE T A I(x)? 2 I()F T I(x)®
stepsize becomes @

This alternative expression is useful for numerical applica-
tions in the case where the Jacobian and its derivatives can
be computed through analytical formulas. But in calculations
where the potential is defined by a set of points with inter-
polation procedure, numerical errors frequently arise from
use of Eq.(2.17), due to the presence of the local term

AX=h/2pma= Th! Prmax- (2.10

In practice a more flexible definition of the Jacobi¥ix) is
needed: First, the Jacobian defined by E28 becomes
infinite at classical turning points. More importantly, the
derivation of Eqs(2.8) and (2.10 relies on classical argu-
ments. Since we must treat quantal tunneling effects, we 73 (x)?% J'(x)

need a higher density of grid points in order to represent the T,c=— > W+ I3 (2.18
nonclassical parts of the wave functions. Finally, for multi-
channel calculations, it is convenient to consider a commorThis is illustrated in Fig. 1 in case of calculations involving

enveloping potential/e,(R) located below all the potential the Cs 0, (6s+6p,;,) electronic staté'~** The adiabatic

curves. Therefore, the usual chdide potential is represented on the top figure. As in many situa-
tions, the potential is calculated by two different methads,
x(R)—fR dR" V2u fRdR' E V. (R initio calculations at short ranffeand multipole expansion
B RJend R") =h Pmax J Ry max. Ten ' in the asymptotic regiofit In the border region, a matching

(2.11)  of the potential value and first derivative does not guarantee
a matching of the second derivative. Also represented is the

In Eq. (2.11), the distanceR, is slightly smaller than the enveloping potentiaV.,(x) that was used to define the
position of the repulsive wall in the potential, while the pa- Jacobian: It is identical to the physical potential at distances
rameter3=1 must be adjusted to improve the description ofpeyond the equilibrium distand®,, and chosen constant for
the evanescent part of the wave function. The envelopinR<R, in order to avoid divergence of the Jacobian at the
potential Ve, is equal or deeper than the true potential  inner turning point. In the bottom figure, we may identify
For instance one may choose an asymptotic poteMjial  three regions where rapid variations of the Jacobian deriva-
=—C,/R" to derive analytical formulas fox. tives result into strong variations ®f, that may create com-

In the new coordinate, in order to eliminate the Jaco- putational problems. Small oscillations occur ¢t 380,
bian from the scalar product of two wave functiod§R)  where ab initio data for the potential are matched to
and '/’LR)’ it is convenient to_introduce rescaled wave func-asymptotic expansion. At~170, there is an avoided cross-
tions ¢(x) = vJI(X) ¢(R) and (x) = \/mt//(R). The scalar ing of V(R) with the Q] (6s+6p5;,) potential curve. Fi-
product then reads nally, for x=100, brute matching to a constant potential in-
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2000 - o N -
PO ~PY(x)= 2 U Y, (3.9
0
whereP is a projection operator such tH%tp is a projection
. =2000 of ¢ on the subspace spanned by thefunctions. It is con-
g venient to choose an orthonormal basis set
Q
>~ =4000 L
(udu) = | axi 00 0= 50ax, 62
-6000 | . . . -
whereAx is the constant stepsize on the grid. We defihe
2000 s 4 by the collocation principle ¢ and Py match atN grid
- Vool v pointsx; (i=1,...N), assumed here to be equidistant:
002 | W) =PP(X)|xoy, (X=X +iAX, i=1..N). (33
_ The collocation methdd'?® has been used many times for
& 000 applications in quantum-mechanf§2%?’ An isomorphism
< can be established between the seNdfasis functions, and
o2 a set ofN interpolation functiongj; (i=1,...N), verifying
-0.02 | Tj(x;) = 6;j , so that theth interpolation function vanishes at
every grid point but theth. In general a functioftj; is a
004 . . sharply peaked function centered on file gr_id point (an
) 200 400 600 “approximate Dirac peak}. The projection ofiy can be ex-
x pressed as

FIG. 1. Example of a mapping based on a numerical potential, where the o
JacobianJ(x) and its derivatives are calculated numerically.Variation, as ISd/(X)
a function of the working coordinate of the adiabatic potential curié(x)

for the O} (6s+6py,) state of Cg (dashed lingand the enveloping poten- —
tial Von(X) (full line) used to define the Jacobiafh) The local kinetic- ~ Where the values of the functiaf at the grid points appear

energy termT,(x) defined in Eq.(2.18 varies rapidly at the distances as the coefficients of the expansion onto the interpolation
indicated by the marks on theaxis (see text functionsTi;(x). Moreover, Eq.(3.4) yields an interpolation

of ¢ at any position between the grid points.
troduces an angular point. The latter effect could, of course, We recently found that an expansion over the interpola-
be suppressed: for a given potential, a smoother variation afon functionsti;(x) generally yields better results when ap-
the enveloping potential could be implemented; alternativelyplied to the wave functions)(x) instead of the rescaled

the improvement qf the mappeq Fourier method nnear the,nctions E(X)= VI #(x). For levels very close to the
classical turning point has been discussed recéhtgfining dissociation limit, the interpolation according to E@.4),

a procedure well-suited to calculations in a restricted energ)gtamng from known vaIueE(x-) may indeed produce spu-
1/

range. tHowever,l such refmem;agtsf.a're not |mplerr|1ent;er(]1 Icri]tth 'g[)us oscillations of the wave function at short distances, due
present paper, since we aim at defining a general metho a great variation in amplitude of the rescaled wave func-

can easily yield accurate values for a large number of vibra-. = . .
tional levels up to a maximum energy, in a variety of physi-t'oan!’(X)' We fou'nd it generally prgferable_to writ(x)

cal situations. Although the variations T, in Fig. 1 remain =~ i=1Ui(X) /(X)) instead ofy(x)~Xi_ Ti(x) ¢/(x;). How-
small in comparison with the potential energy, and can be&Ver, this is a subtle issue, involving the orthogonality of the
discarded in most applications, the high accuracy required iR@SiS sets, and we postpone its discussion to a forthcoming
problems involving cold molecules demands to suppresd'ticle. _ _

them by computing the kinetic operator directly from Eq. A Simple expression for the scalar product in the ap-
(2.15. This procedure, already discussed by Nest and’foximate space can also be derived

Saalfrank® and by Borisot® in view of different applica- . N

tions, requires a precise evaluation of tifelx operator and f Po* (X)Py(x)dx= 2, ¢* (X)) (X;)AX, (3.5

will be discussed below. 0 =1

N
;1 () P(x), (3.4

in which the collocation points appear as the quadrature

points. The Hamiltonian operatdiike any operatoris rep-

resented in the interpolation basis byNa< N matrix?® as

will be described in Secs. IV and V. Since the potential op-
Our goal is now to define a representation for the waveerator is diagonal, the numerical effort lies on the evaluation

functions and_the Hamiltonian in the coordinateAn arbi- of the kinetic-energy operator and the diagonalization.

trary functiony is approximated by an expansion on a set of  Several interpolation functiorig, constructed from ba-

N functionsu, (k=1,..N), sis setay,, can be chosen, and we describe three possibilities

IIl. COLLOCATION METHOD:
DEFINITION OF A REPRESENTATION,
INTERPOLATION FUNCTIONS
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5,(x)
u,(x)

8(x)
ug(x)

01234546 78 910111213

FIG. 2. Sine interpolation foN=13, Ax=1. The positions of the colloca-
tion points are indicated by the circlg®) The interpolation functiof$,(x)
(upper panglvanishes at all the grid poinis (i =0,...,13) excepx,, where
it takes the valu&,(x;)=1. Note thafS; has its maximum not at the grid
point x;=1 itself but slightly to the left, ak~0.84. (b) the interpolation
function3g(x) (lower panel vanishes at all the grid points excep and -0.5
closely resembles a cardinal sine function. 0

u;5(%)

10 11 12 13

oo |
-

56 7

e &
N+
w F
N S

. . . . L. . . FIG. 3. Fourier interpolation foN=13, Ax=1. The positions of the collo-
in the following sections(i) Fourier interpolation(ii) sine  cation points are indicated by the circles) The interpolation function
(or particle-in-a-boxinterpolation, andiii) cardinal singor Ty (x) has to be compared to the sine interpolation functpin Fig. 2.
Hardy) interpolation. These schemes mostly differ from each(b) The interpolation functiofiig, to be compared witls in Fig. 2b). (c)
other by the boundary conditions on the interpolation func-2U€ t© the periodicity of the basis set, the peak of the interpolation function
. . . U,3is visible at both ends of the grid. In the sine basis, there is no analogous
tions at the edge of the grid. A comparison was already prog;nction.

posed by Muckermahwho introduced “coordinate eigen-

functions” labeled here “interpolation functions” using both

a periodic (Fouriep and a fixed noddsing basis set. We

show in Figs. 2 and 3 examples of the sine interpolatiofo make the comparison with the other basis expansions
functions3;, and the corresponding Fourier interpolation €asier. We also address the issue of the “ghost” levels.
functionst; on a grid where= 1, 13 with stepsiz&ax=1, so
that the collocation points are located»at1,...,13. Fori R
=1, 12, thed; andT; look qualitatively similar, exhibiting a Let us consider the operat&”, defined in Eq(3.3) in
sharp peak in the vicinity of the collocation poti, and the general case, which describes the projection onto the sub-
being close to zero elsewhere. However, some difference$pace spanned by tiébasis functions

A. Fourier expansion

are visible: forx=1, the Fourier functiofii; has a vanishing ik(2m/L)x
derivative, whereas the derivative 8f is negative. In the U(X) = e—’ k=—v,...v, 4.1
interval 2<x< 13 both the Fourier functiofi, and the sine IN

functions; display small oscillations, but their amplitude is assuming an odd numbeéd=2v+1 of grid points. The

m_uch larger fof; The_ two funct|on316_and~56 are sw_mlar. functionsu,(x) are orthonormal according to the definition
Finally, whereas the sine basis comprises only 12 interpola-

tion functions, there is a Fourier interpolation functiop, of Eq. (3.2), and they are periodic in the interf L ]. The

S o discrete Fourier transform, involving a unitary matfxwith
which is also nonzero at=0, although the latter point is not 9 y

X . . matrix elements
a collocation point. We discuss below whether the problem

of “ghost” levels in case of a periodic representation is elk(2mIN)j .
partly linked to this behavior at the edges of the grid. ij:T: k=—wv,....», J=1,.N, (4.2)

allows the definition of interpolation functions
IV. MAPPED FOURIER GRID METHOD

AND THE PROBLEM OF “GHOST” LEVELS v .
uj(x)zkE uw()F  j=1,..N, (4.3

We recall here the main features of the plane wave ex- =—v
pansion, or Fourier expansion, that was used in previous
paper811-1328in combination with the mapping procedure.

We present the relevant equations with some details in order N
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i 0.01 : : 1e-06
1 (Xx=jAX) chost 4
X —_—
i IR 1 8e-07
Sin
=<1 (Ax ) . 4.
—————— otherwise. 4.9 0.01 |
N T X —~ 1 6e-07
sm - ‘
ax ! 5
8 4e-07
- - - = 0.008
An example of three interpolation functions was already ‘
given in Fig. 3 in the case of a grid with=13 points. The - ghost 1 2e-07
values of an arbitrary functiogr at the grid points are related =307, q
to the expansion coefficienig, on theu, basis by the dis- 0006 T os 200 500 sos sio
crete Fourier transforny.2) v v
" v gik(2mN)] FIG. 4. The rotational constants for some calculated vibrational levets
v ) — e - the Cs O, (6s+6p,,,) potential. The spurious levels are easily identified
Px))= k; . Fikhe= k; ) \/N - (4.6 by their anomalous rotational constants.

The evaluation of the derivatives of the interpolation func- Tt// )x= X,
tions is required for the representation of the Hamiltonian.

We have — i 122 d. F 1£ F 12,
25 J00 PRI T PRI R0
N X=X;
duJ 2 +
Ty =1 2 FulF), 4.7 1 7
L= =
2u L
aT N
_E ij, (48) Xjél ‘](XI 1/2D|kJ(Xk) leJJ(X ) 1/21//()( )
where the elements of the anti-symmetric square marix =f,—$(x-) (4.14
can be calculated analyticafl?
B. “Ghost” levels
Dyj=2i > Fk|IF|Tj , (4.9 By diagonalization of the Hamiltonian matrix, eigenval-
|=—v

ues and eigenvectors can be obtained with arbitrarily good
accuracy, provided that the grid step is chosen small enough
and thep parameter optimized. However, some spurious lev-
I—(k—j)} (4.10 els (hereafter referred to as “ghost” levelsisually occur.
They are easily identified by irregularities in the vibrational
progression and in the rotational constants. This is illustrated
g o in Fig. 4 where we have represented the numerical results for
—2 cofla) where a=—(k—j), the vibrational levels in the D (6s+6p,;,) potential of the
daf= N Cs, molecule. Two spurious levels were found when the
(4.1D kinetic-energy matrix was calculated from EQ.15 using
the discrete Fourier transform, onewdt= 197 (between the
sin(v+ Ya] physical levelsv=196 andv=197) and another ab’
, (4.12 =507 (between the physical levels=505 andv=506).
E) (We are using the index’ to number all the levels found in
2 the calculations, and to number the physical levels, so that
v=<v'.) The wave functions of the “ghost” levels are char-
acterized by their unphysical rapid oscillations and nonvan-
_ ishing amplitude in the classically forbidden region. This is
77( —J)} (k#]) 4.13 illustrated in Figs. 5 and 6, where we have drawn as a func-
' tion of R the wave functions for the physical level 196
0 (k=j). and for the “ghost” level just above it: At distances smaller
than the inner turning point, the latter wave function does not
manifest the expected exponential decrease but keeps on os-
The potential energy operator is represented by a diagongjjjating. This behavior can further be checked by consider-
matrix [see Eq«(2.16], while a symmetric representatidn  ing for both wave functions the coefficierag andb, of the
of the kinetic-energy operat¢Eq. (2.19] is obtained using  Fourier expansion, as illustrated in Figs. 7 and 8. In the pro-
the projection operatoP” jection of a function ¢ on the periodic Fourier basis:

2 | sin

II
ZI IN

+2 d
Nda
sin

(-1

sin
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FIG. 5. The wave functiony(R) of the vibrational levelv =196 for the
potential Qf (6s+6p,,,) of Cs, represented in the vicinity o) the inner

Willner, Dulieu and Masnou-Seeuws

a, (au.)

b, (au)

0 100 200 300

(b) the outer classical turning point. This wave function shows the expected k

Wentzel-Kramers—Birillouin-typ@VKB) behavior. The accuracy of the so-
lution is unaffected by the presence of the spurious level 197 (see Fig.
6). Whereas the grid covers the range 5.3aR< 10 a.u., only the inner

FIG. 7. The Fourier expansion coefficiefi& a, and(b) b, , defined in Egs.
(4.17 and(4.18 in the text, for the wave functiog(x) of the vibrational

regionR<19 a.u., where the wave function has a noticeable amplitude, idevelv =196 in the Cs0,; (6s+6p,,;) potential. The wave function is seen

shown here.
. ag 2 o s{ 27
X)~PFiy(x)= —=+\/= 2, a,co8 k—x
W00 =PIy0= T \ g &, aceos kg
. 2
+by sin ka , (4.15
the a, andby coefficients are calculated as
I N
20=1ho="\/ g 2 ¥(X), (4.16
N =1
2 N 27
a=\/=2 cosk—ijl| (k=1,.p), (4.17)
N\ N
o2 s k275] ket 4.1
K= Nj:N sin| k1 (k=1,...p). (4.18
15}
3 10}
S 05t
g 00
~ -05¢
-1.0 : : . . . . .
52 54 56 58 60 62 64 66 6.8
R (au)
1.0 . : : . .
S 05t ®)
< 00
A
s 05t

-1.0 . . . L .
0e+00 2e+05 4e+05 6e+05 8e+05 le+06
R (au)

FIG. 6. Same as Fig. 5 for the spurious lewél=197 (binding energy:
D—E, =1179cm?) found between the physical levels=196 and
v=197 of the Cg 0, (6s+6p,,,) potential.(@) The inner classical turning
pointR;, is indicated by the arrow. The outer turning pojnot indicatedl is

to be band-limited: Fok>280, its Fourier coefficients are negligible.

Whereas the physical level has a broad spectrum, displayed
in Fig. 7, the unphysical level, analyzed in Fig. 8, has no low
frequency component and a few high frequency components.

Trying to eliminate the “ghost” levels is a crucial issue
for future applications: Although they are easily identified in
the present single-channel time-independent treatment, they
induce numerical errors in a time-dependent approach, when
a wavepacket is written as a superposition of stationary
states. Besides, in any multichannel problem involving cou-
pling between bound and continuum levels, the “ghost” lev-
els may induce spurious resonances and modify the dynam-
ics.

We have not found a satisfactory mathematical explana-
tion for the occurence of the “ghost” levels, as they are
found to be influenced by several features of the chosen rep-
resentation:

(@

a, (au.)

b, (au)

0 .

-1 L L
310 320 330 340 350 360
k

FIG. 8. The Fourier expansion coefficierigs a, and(b) b, [see Eqs(4.17)

atR,,=17.4 . (b) The wave function extends over the entire grid and hasand (4.18 in text] for the wave functiony(x) of the spurious level
a non-WKB behavior, displaying rapid oscillations in the classically forbid- v’ =197 in the Cs 0, (6s+6p,,,) potential. The wave function has very

den region.

high momentum components and is not band-limited.
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some “ghost” levels but was not sufficient to elimi-
(a) nate them all. Nevertheless, when combined with a
1.5e+05 | . trigonometric interpolation ofR(x) instead of the
_ polynomial one, it proved to be successful. Unfortu-
; Loes05 | nately, the success was limited to this particular case,
= suggesting to explore another route;
= (v) in all cases, the number of “ghost” levels is signifi-
5.0e+04 | 1 cantly reduced when the kinetic-energy matrix is cal-
culated from Eq(2.15 instead of Eq(2.17), avoiding
0.064+00 numerical calculations of the derivatives of the Jaco-
bian. In such a situation, changing from a nonperiodic
400403 | to a periodic Jacobian in a mapped Fourier represen-
tation only shifts the positions of the “ghosts” in the
T 3.0e+03 | spectrum, without eliminating them.
<
g 200403 | We have, therefore, chosen to change the basis set, in
= order to explore whether the presence of “ghost” levels is
1.0e+03 | due to correlations between contiguous periods in the Fourier
basis set. We have considered two representations where all
0.0e+00 . basis functionsu,(x) have nodes at the boundaries of the
660 680 700 grid, with the hope that this condition would solve the prob-
* lem of “ghost” levels.

FIG. 9. Variation of the Jacobial(x) of the transformatiofR— x at the end
of the grid.(a) The Jacobian is defined via the local de Broglie wavelength
[see Eq(2.9) in text]. (b) The Jacobian has been made periodic.

(i)

(i)

(iii)

(iv)

V. FIXED-NODE REPRESENTATION

When we used a constant grid step, no spurious solu- We have considered two basis sets of dimendionl

tions at all were observed. However, the grid did notsuch that all basis functions verify

extend to very large distances, as this would have re- B B B

quired a huge number of grid points; u(0)=ue(L)=0, k=1,.N-1. (5.9)
the number of “ghost” levels and their positions in A, Sine or particle-in-a-box representation

the energy spectrum depends on the shape of the map- , . . . :
ping functionJ(x). Fewer “ghosts” are found when A particle in a box is described by a wave function

the Jacobian is calculated from a numerical envelopWhiCh strictly vanishes at the boundaries_of_ t.he grid, i..e.,
ing potential, close to the physical one, than when the?(0)= @(L) =0, which corresponds to an infinite potential

enveloping potential is defined by @, /R" analytic &t the grid edges. Several authlors®® have already dis-
function with rapid variation at short distance. This is cussed the implementation of such a basis, and we present

why use of a constant, or at least slowly varying, en-here our approach in combination with the mapping proce-

veloping potential at short distances is recommended?Y"®: _ _ . .
the accuracy in the determination of the Jacobian and We define the basis,(x) of sine functions
its derivatives seems very important. We have calcu- 5

lated them by interpolating the functid(x) between S(X)= \ﬁsin
the grid points making use of a cubic spline proce- N

dure, i.e., mtgrpolanon p_olynomla of ordgr 3. This together with the associated cosine basis
was not sufficient to eliminate unphysical levels.

Trigonometric interpolation can improve the accuracy, 2 .
as discussed below; Ck(X) = N005< kfx) (k=0,...N), (5.3

the “ghost” levels are also linked to the periodic

_boundary conditions_ Of_ the basi_s functiops, contrastwhich both satisfy the orthonormal condition of E®.2),

ing with the nonperiodic Jacobian function. We ex- with the particular casécy|co)=2Ax. As in the previous
perimented with a periodic Jacobian satisfying section, the discrete sine transform and discrete cosine trans-
J0)~IL), T (O)~I(L), 4.19 form, represented by the unitary matriceand C

as suggested by KokooulifeVe added a few extra _ N \E ; (kf-) i k=1 -1 54
points at the end of the gridx&L) and made the Sik=8i() NSkt w-N=1), ©49

Jacobian decrease smoothly frakL) to its initial

valueJ(0)=0, as illustrated in Fig. 9. In a calculation _ _ \/Z . S

involving two coupled channels{Cs, 0, (6s Cie= arCi(Xi) i = N ¥k €O I(N' i (1Lk=0,..N),
+6Pa 52", this periodic condition did suppress (5.5

(k=1,..N—1), (5.2)

k7T
EX
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where = 1#2 for k=0, N, and @,=1 otherwise, provide Ti(x)=1. (5.12)
the interpolation functiori;(x) and<;(x), which behave as
approximate Dirac peaksee Fig. 2

The projection operator®S and P¢, defined asPSy(x)

N-1 Ny BC Ny
o T =3 0S(X) (%) and PCyy(x) =3 oCi(X) ¥(x;), are used
5= kgl SK(X) S (5.6 to project the wave function on the sine functions and on the
cosine functions, respectively.
N The derivatives of the basis functions show the advan-
Ej(x)zgo Ck(X)akCL—aJ . (5.7  tage of considering simultaneously the sine and cosine basis,

as they transform into each other

The interpolation function;(x) are related to the basis
functions s, (x) via the unitary transformatioi5.4), while
the transformation betwedd)(x) andcy(x) is only approxi- -
mately unitary because of the coefficientg and «; in — s (X)=K—cy(X), (5.12
Eq. (5.7). dx L

The sums in Eqs(5.6) and (5.7) can be evaluated ana-
lytically, giving the interpolation functions in an explicit

form: d T
&ck(x)z —ktsk(x). (5.13
. T
1 sin (2N—1)Z(x—xj)
j(x)= N - In contrast, the space of the periodic Fourier functiohg)
sir{—(x—xj) is invariant under differentiation.
2L The derivatives of the interpolation functions can be ob-
- tained easily
sin (2N—1)i(x+xj)
p (x#x), (5.8
sinz(erxj) ds; 1 WD 51
&(Xi)—af ij (5.19
T ac; (X:) 7 D! (5.19
. —_— . = — a— By .
o sin (2N—1) - (x=X)) dx ™ Ll
Ci(x)= N p
Sin 5 (X—Xx;) . .
2L where we have introduced a rectangular malix
in (2N—1) —
- sin (2N— )Z(er X;)
+co Nt(x—xj) + p- N-1 !
sin ST (XFX) Dij= gl CikkSj, (5.16
T wherei =0,...N andj=1,...N—1. The sum in Eq(5.16) can
+eog N (x+x)) (X#X)), (5.10  pe calculated analytically
1 L i+j i—]j .
—aiE(—l)'“ cot 7| —cotf w5 (i#])
—aiECO[(’ITN) (i=]).

The matrix of the potential energy is again diagonal while the kinetic-energy operator is derived as previousl{#id4Eq.
now using instead oP” the projection operatorB® and P¢
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To(X)| o The Hardy functions are functions with limited bandwidth:
X Their Fourier transforms are nonzero only on the interval
[ = py,Px] in momentum space. Their orthonormal properties

1 l/ d C l d S 1/2, . .
- _MJ(X) P J(x)~ P J(X) ™ TP (x) result from those of their Fourier transforms:

X=X;
1 2N B f_ dxhiF (x)hy(x)
=50 17 2, 060 DI DI T (xy)
- °° 1 (e R
= — = dx f dpe 'PXie'PX
=Tij (X)), (5.18 j— (ZP Px P )
whereT is a symmetric matrix representation of the kinetic 1 (r
dp e —ip’ Xkelp X
energy prf
- _ 1w —12nt -1 ~12 1 ([ Px o
Tij_z__zz J(Xi) " Did(X) ~"Dygd(X)) = dpépxjf dp'e P ka dxe iPXeip’x
(519) px Px o0
1 72 Nt L b dpép(" ‘Xk)——smc[p (X — X ) ]= i AX.
2 L2 2, 0 SICHI 20 P T
; " Their derlvatlves at the grid points are easily obtained
X CieuM Sy (%)) V2 (5.20 - .
Since the matrixD is known analytically from Eqs(5.16 d—XJ(Xk)=d—XSir1C[ P(x=xj)]
and(5.17), the matrixT may be calculated directly from Eq. X=Xk
(5.19 by a numerical computation of the sum owemwhich 1 (=1 k
for a large basis can be time-consuming\®). An alterna- XG0 (j#k)
tive procedur®® starts from Eq.(5.20, making use of fast - . (5.23
sine and cosine transform algorithms, which yield exactly the 0 (j=K).

same matrixT, with a strongly reduced computational effort The symmetric representation of the kinetic-energy operator
(=N?InN). The fast sine and fast cosine transform algorithmis again obtained by using the associated projection operator
should also be used when one has to multiply some initiap*
wave function repeatedly by the Hamiltonian matrix, for ex-____
ample in wave packet propagation schemes. The fast aIng//(X )= X;
rithm has been implemented for a time-dependent treatment

L d d
of photoassociation of cold atorf$,and has proved very ~— —J(x)"Y2=PMI(x)" 1_ PHJ(X) Y2y(x)
efficient. However, if one is only interested in solving the 2u dx Y= x
stationary Schrdinger equation, the slower procedure using
Eqg. (5.19 is useful: The corresponding numerical routine is _ E 1,2
implemented very easily, and there is no restriction on the =~ 2, £, Ixi)~ (X )I(xi)
numberN of grid points. The fast routines only work if the

number of grid points is a product of powers of a few small dﬁj i _
prime numbers, such as#. X&(Xk)J(Xj) P(X) = Tijb(x;). (5.249

N—-1

C. Alternative representations

B. Hardy representation We also mention two other representations, not consid-
ered in the present work, which have proved useful in differ-
ent applications. Schwartz interpolation functions and
Lobatto shape functions are also characterized by the
Kronecker property;(x;) = &;; . Dunseattet al2® have used

Schwartz interpolation for problems involving the Coulomb
(j=1,..N-1). (5.2)  potential, while Manolopoulos and Wyt have used

Lobatto shape functions as radial basis functions in their
The Hardy functions verlf)h (Xj)= &;;, so they can be used work on the H+H, reaction.

as interpolation functions. The Fourier transforms of the,

The Hardy functions, or cardinal sine functions, have
also been used as a DVR basis by Colbert and Mikerd
Groenenboom and Colbéft

~ . w
hj(x)=sin H(X_Xi)

Hardy functions are orthogonal plane waves on the interva . RESULTS _
[—py.p] in momentum spacep(,= 7/AX): We have checked the performances of the different
methods to compute vibrational levels of long-range alkali
. {(X)=sind py(x—x;)]= 1 jp dpe PP dimer molecules, relevant to experiments with cold mol-
X 2py ecules. In a first step, we used a Morse potential, in order to

(5.22 compare with analytical solutions, then we used realistic nu-
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TABLE |. Comparison of the numerical accuracy for the levels of the Morse oscillator described in the text. A
mapped grid of 276 points was used for each of the three interpolation schemes “sine,” “Fourier,” “Hardy.”
The kinetic energy was evaluated using expressiboh5. The analytical valueg, and the errord\E, on the
calculated values are in crh The error on the last level was reduced by using a wider grid, with 400 points,

extending to 500 g

Level ESM™ AE, sine AE, Fourier AE, Hardy
0 —0.362 785 10" 0.11050<10°© 0.11048<10°© 0.1104810°©
1 —0.35853x 10* 0.386 70 10°° 0.386 6% 10°° 0.386 6% 10°°
2 —0.354 304 10* 0.647 46<10°© 0.647 48<10°© 0.647 47 10°©
165 —0.326 12 10* 0.10356<10°3 0.10356<10°3 0.10356<10°3
166 —0.210 770x 10 0.13045¢10°° 0.13047%10°° 0.13046<10°°
167 —0.120 49 10* 0.158 1% 1073 0.158 2% 1073 0.158 21x 1073
168 —0.552 941 0.1759810°° 0.176 54102 0.176 35¢10°°
169 -0.151714 0.1728010° 0.17323 1073 0.17304x10°3
170 —0.12538% 10?2 0.16541x 1073 0.262 6% 103 0.13286<10°3
Wider grid:

170 —0.125383% 1072 -0.11128%x 1074 -0.1110%10°* —0.11054<10°*

merical potentials for the GX'X; (6s+6s) ground state

and for the Cs 0, (6s+6p,,,) excited state.

A. Accuracy check using a Morse potential

(i)

Considering the analytical model potential designed by
Morse to reproduce the experimental vibrational energies of

a diatomic molecuf&
V(R)=Vye 28R"Ro)_ 2y e aR"Ro) (6.2)

we have chosen the equilibrium distanRg=8.77 g, the

well depthV,=0.016 627 a.u., and the width parameter
=0.372031199 a.u. to maké(R) as close as possible to
the Cs X 12; (6s+6s) ground-state potential. In fact, this
similarity is restricted to the region of the well depth, since at

large distances the Morse potential decays exponentially,

whereas the real potential displays aR®asymptotic be-

havior. The advantage of the Morse potential is the analytical

law linking the energies of the bound levels to the vibrational

guantum numbev

a%h?
EU:_ 2M (UD_U)2 (UzoilivmaxgvD)y (62)
V2uVy 1
VR - 6.3

UpT g 2

where u is the reduced mass of the nuclei. Choosjag

=121135.904 213218 88 a.u. for the reduced mass6k,

we obtainup=170.1, which means that the highest bound
level is v na=170. The vibrational energie&3", computed
from the analytical formula6.2), are then compared with

(i)

results of numerical calculations using the various basis sets.

Considering a grid witiN=277 points, extending fronR

=6.4 g to R=804g, and defining an adaptive coordinate

from Eq. (2.1, with Vo(R)=V(R) for R>R,, we have

compared the convergence of the various calculations by

varying the B parameter from 1 to 0.2. For the optimal
choice =0.7, we have performed calculations with two

choices for the evaluation of the matrix elements of the

kinetic-energy operato?:

When T is evaluated from expressia2.15, which
uses only the Jacobian and not its derivatives, we give
in Table | the three lowest and the six highest bound
levels. The errorAE,=E,—E2" is always found
positive, due to the fact that the method is “almost
variational,” as discussed in Ref. 28. The absolute er-
ror is very similar for the three methods, and remains
small except for the very last levels. In contrast, no
“ghost” level is found with the sine basis, while one
is found for each of the two other ones. For the Fou-
rier basis calculations, the “ghost” level is located
between the levels =161 andv =162, and for the
Hardy basis, it is located between the levels 119
and v=120. Finally, the error on the last level, for
which the wave function extends far into the forbid-
den region, can be reduced to POby using a grid
with 401 points extending from 6.4 to 509,afor the
value 8=0.6.

When T is computed from expressiof2.17), which
explicitly contains the derivatived’(x) and J"(x),

we report in Table Il the values of the bound level
energies, choosing only the physical levels when
“ghost” levels are found in the calculations. It is clear
that a loss in accuracy of more than one digit results
when the kinetic energy is evaluated according to Eq.
(2.17 instead of Eq.(2.15. Moreover, some of the
calculated eigenvalues are foutwver than the true
eigenvalues. These large errors should be attributed to
numerical errors in the derivativds(x) andJ”(x) of

the Jacobian, making the additional kinetic tefg,
described in Eq(2.18 inaccurate. The amplitude of
the numerical noise is about 100 times larger than the
errors of the lowest few calculated eigenvalues. The
choice of the basis sésine, Fourier, or Hardydoes

not influence the magnitude of the error in the eigen-
value, except for the last level where a much larger
grid is required. No “ghost” levels are found with the
sine basis or the Hardy basis. In contrast, calculations
with the Fourier basis provide two “ghost” levels, one
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TABLE Il. Same as Table I, but evaluating the kinetic energy from expregg8id) containing the derivatives
of the Jacobian.

Level E, AE, sine AE, Fourier AE, Hardy

0 —0.362 785 10* —0.624 74<10° 8 —0.624 741078 —0.624 741078
1 —0.35853x 10* —0.6233%10°2 —0.6233%1078 —0.6233%10°8
168 —0.552 941 —0.426 86<10°? —0.426 831072 —0.42686<1072
169 —-0.151714 —0.24930x 102 —0.249 30 1072 —0.249 30102
170 —0.12538% 102 0.4903% 1073 0.68856<10°° 0.505 78103

located between the levels=142 andv =143, and
one between the levets=169 andv =170.

tion of the minimum, and constant below. The kinetic-energy
operator is evaluated via E@2.15. The accuracy of the
calculations can be checked by verifying, for the upper lev-

The qualitative conclusion of this check for a Morse poten-g|s, the validity of the asymptotic Le Roy—Bernstein faw
tial is that the numerical accuracy is the same for all three 3
E,=D—[Hg(vp—v)]°, (6.4)

interpolation methods, but the sine—cosine method seems
preferable since it does not produce “ghost” levels. As welinking the dissociation energy of a levéd,—E, , to its vi-
shall see below, this conclusion is still valid for potentials brational quantum number. In Eq.(6.4), vp is a noninteger
with 1/R® or 1/R® long-range behavior, and might be a gen-parameter equal to the accumulated phase at threshold di-
eral one. vided by 7, while the parameteHg depends upoilCg and

For calculations involving a mapping procedure, expresthe reduced masg, and should beHg=2.2785<10 2 for
sion (2.15 for the kinetic energy gives results with signifi- C5;=6600 and the value qf given above in Sec. VIA. The
cantly better accuracy than expressi@l?, when the de- law is indeed verified for the last levels, as represented in
rivatives of the Jacobian are calculated numerically. Fig. 10. Fitting the energies of the levels=149 to v
=154, we findH"=(2.321+0.003)x 10" and v/=155.9
+0.4, so that the last level is either=155 orv =156. The
agreement with analytical results is satisfactory, but due to

We have used the three grid methods to compute vibrall® Presence of higher order terms of the multipole expan-
tional levels for the ground state of the Omolecule, in a  Sion In the asymptotic potential, the law is yenﬁed only ap-
model where hyperfine structure effects are neglected in oRrfoximately. The last computed level=155 is found att
der to perform single channel calculations. The potential had™9-7%10° a.u=2.1x10"% cm™*, its wave function is
been used previously for the interpretation of photoassocigdrawn in Fig. 11. An accurate determination of such wave
tion experiments? A grid extending from 6.1 to 400,awith functhns is |mportant' in multichannel calgulatlons mvoIvmg
N=323 points is used. The adaptive coordinate is chosefyPerfine structure in order to determine the scattering
from Eq.(2.11), with 8=0.6,E,,,=D+1x10"7 a.u., where length, or to mvestlgate_Feshba_ch resonances. Agam, no
D is the dissociation limit, and an enveloping potential iden- ghost” level was found with the sine calculations while the

tical to V(R) for distancesR=8.8 a, larger than the posi- Fourier and the Hardy calculations both yielded a “ghost”
level, respectively, located between the physical levels

=141-142 and)=132-133.

B. Calculations of vibrational levels for a potential
with 1/R® long-range behavior

0.04
[ ]
. 0.02 . . .
¢ = 001 @
0.03 } . . -
o = 000}
- ° 3
;./ . s -0.01 | ]
o 0.02 | * -0.02 : . .
= L 6. 6.5 7.0 7.5 8.0
1 ¢ R (au.)
2 ° 0.2 :
o b
0.01 | . 3 o1 ® ]
. <
= 00}
R
L] = L
0.00 : s : > 01
140 145 150 155 —02 . . ,
v 0 50 100 150 200
R (a.u.)

FIG. 10. Verification of the Le Roy—Bernstein lgaee text for the binding
energies D—E,)
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of

the

upper

vibrational

levelsv of
18Cs, X 134 (6s+6s) potential. One hundred fifty-six levels have been
computed. The plot shows the quantitiddE,)*® as a function of the
vibrational indexv: The linear variation is in perfect agreement with the Le
Roy—Bernstein law for a potential with asymptoticC4/R® behavior.

the

FIG. 11. The wave functiony(R) of the last computed vibrational level
=155 of the Cs ground state. The calculated binding energyDis E,
=9.7X10"° a.u=2.1x10"3 cm?, and the outer turning point is located
aboutR=94 g . Note that such calculations were performed with a mapped
sine—cosine grid method using only 322 grid points.



560 J. Chem. Phys., Vol. 120, No. 2, 8 January 2004 Willner, Dulieu and Masnou-Seeuws

° " " T 2e—-06
.. (@)
003} e ] S 1e=06 |
[} <
‘e = 0e+00
. =
R -.. S —1e-06 |
2 L . | -2e-06 .
g 002 .. 5.5 6.0 6.5 7.0
g o. R (au.)
= ° 3e-03
: . (b)
) ., 5 203}
0.01 ¢ ., s 1e-03
.o. &  0e+00
. > -le-03 |
[ ]
0.00 , , , —2e-03 ' ' .
500 510 520 530 0e+00 2e+05 4e+05 6e+05 8e+05

v R (au.)

FIG. 13. The wave functiog/(R) of the vibrational leveb =528 of 1*Cs,

in the Q} (6s+6p,,,) state. The calculated binding energyDs-E,=9.4
x10 Y em 1, and the outer turning point is located aboRp,=2.7

X 10° &, that is 14um. This function has been computed with a mapped
sine-cosine grid method using only= 706 points.

FIG. 12. Verification of the Le Roy—Bernstein lasee text for the binding
energies D—E,) of the upper vibrational levels of the 33Cs, 0} (6s
+6p,/,) potential. Levels up to =528 could be computeee Fig. 13 so
that the missing levels are at most two. The plot shows the quantBies (
—E,)¥8 as a function of the vibrational index The linear variation is in
perfect agreement with the Le Roy—Bernstein’s law for a potential with
asymptotic— C3 /R® behavior.

another estimation of the absolute accuracy of the calcula-

tions. The wave function for the last computed level,
=528, is represented in Fig. 13; the vibrational motion ex-
tends to several 100000 a.u., i.e., a few tens of microns. It is
remarkable that due to the mapping procedure, this wave
We have next considered the £$!3 1 (6s+6p,,)  function with 528 nodes is computed with a grid of only 706
potential, represented in Fig. 1. Calculations were performegoints.
with a grid of N=707 points, extending in th coordinate
from R=5.3 to R=8x10°. The adaptive coordinate was VII. CONCLUSION
defined from Eq(2.11), using the enveloping potentigl.,,
represented in Fig.(&), and for the parameters the values
B=0.8, Eqa=D+10 ¥ a.u., whereD is the dissociation
limit. Due to theC3/R® long-range asymptotic behavior of
the potential, the energies of vibrational levels close to th
dissociation limit should verify the analytical Le Roy-—
Bernstein formul®

C. Calculations of vibrational levels for a potential
with R™2 long-range behavior

In this paper we have discussed various ways of imple-
menting mapped grid methods for cold molecules, when lev-
els close to the dissociation limit have to be investigated, in
calculations requiring high accuracy. In the framework of the

apping procedure previously implemented for problems
where the dynamics at long-range markedly differs from the
short-range dynamid&?'1¢-23ye define an adaptive coordi-
E,=D—[Hs(vp—v)]°. (6.5 natex scaled on the local de Broglie wavelength, and we
introduce a discrete variable representatiom,iconsidering
results, making it possible to estimate the total number ofouner, sine=cosine apd Hardy basis sets. In .the seco.nd
case, we use both a sine basis set and an auxiliary cosine

bound levels. Such a fit is illustrated in Fig. 12, for calcula-__ . . ) e
. . : . . basis set, very convenient to evaluate first-order derivatives.
tions performed with the sine basis. The Le Roy—Bernstein . .

In each case, we have recalled the interpolation func-

law is verified up to the highest computed levels, yielding,. : S . ) )
vp=530.2-0.1. Thus the last bound levelis=530, butthe Lon'S and their derivatives. For a grid Bfpoints, the ener
gies and wave functions of the bound levels ip-ahannel-

h|ghes_t level we have been able to com_pute 4552_81'6W|th problem are then obtained by diagonalization gifdx pN

a binding energy as small @8 —E,_5,5=4.3X10" *° a.u. . .

—9.4x10 ™ cm L. In such calculations, we no longer find matrix computed through analytical formulas. The paper ex-
' ' ' plicitly gives those formulas in the three cases, unifying re-

“ghost” levels, in contrast with the results obtained with : :
lane wave expansion and already described in Sec. IV BSUItS that were separately presented in many earlier
P ' yapers:1>18For clarity sake, although the main interest of

The accuracy of the calculations can be estimated by co he method is multichannel calculations, we have only given
paring the valugd'=1.1974< 103+ 2x 107 a.u. fitted on ’ Y9

the numerical results for levels from=509 tov =526, to examples for single channel problems. Three main conclu-

the analytical valueH;=1.1986<10 2 a.u. corresponding sions can be drawn:
to C3=13.467. This yields a relative error of 18, which (i) When the adaptive coordinate is defined through a
should be considered as an upper bound, since the numerical potential, and even for analytical potentials,

The parameter$i; and v, can be fitted to the numerical

asymptoticC3/R® behavior is reached only at very large numerical errors arise in the evaluation of the deriva-
distances. We also note that the upper levels are very close, tives of the Jacobiad(x) for the coordinate transfor-
the spacing between the levals=526 andv =527 being mation. It is preferable to write the kinetic-energy op-
only 1.3x10 ** a.u., that is only 2.8 10 ° cm™?, yielding erator with products of the/dx operator, which can
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Chapter 3

Quantum dynamics of a
triatomic system

We introduce the general notion of Jacobi vectors for many-body systems.
The Jacobi coordinates for three particles are related to equivalent coordi-
nates: bond, Euclidean, and hyperspherical coordinates.

An overview on existing computational techniques is given at the end of
this Chapter.

3.1 Coordinates and Hamiltonian of a many-
body system

A set of f = 3N coordinates is needed to specify the positions of N particles.
If the interactions between the particles are weak, it is natural to assign a
three-component Cartesian position vector to each particle.

If the interactions are strong, however, it is more convenient to introduce
the centre of mass, three Euler angles, and 3N — 6 internal or vibrational
coordinates describing the relative positions of the particles. The Euler angles
indicate the orientation of the system with respect to the laboratory frame:
they are defined as the angles that rotate a body-fized Cartesian coordinate
system, for example the principal axis of inertia, into a non-rotating space-
fized coordinate system.

The Euler angles remain useful in the intermediate case where the par-
ticles interact strongly but do not form a rigid body; in this case Coriolis
coupling effects need to be taken into account.

It is in general impossible to distinguish between rotations and deforma-
tions: a closed sequence of changes in shape can in fact produce a net rotation
of the system. At the end of the sequence, the system has reassumed its ini-
tial shape but is rotated. This is known as the "falling cat” phenomenon: a
falling cat, after being dropped with its feet pointing upward, can turn in the
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air and land on its feet [172]! The cat achieves the net rotation of 180° solely
through changes of its shape, since its total orbital angular momentum must
remain zero.

The kinetic energy operator of a many-body system can be written as

[172])

T = TCM + Trot + Tvib + Tcor (31)
where T, CM, Trot, Twr and Tvib are the kinetic energy operators associated
respectively with translations of the system as a whole (the centre-of-mass
motion), with rotations, with vibrations, and with the Coriolis interaction.
The operators TCM, Trot, and Tvib can be expressed as differential operators
in the coordinates of the centre-of-mass, the Euler angles, and the vibrational
coordinates, respectively, whereas Thor is an operator in the vibrational and in
the rotational coordinates. The problem of distinguishing between rotations
and vibrations is discussed in a review article by R. G. Littlejohn and M.
Reinsch [172] (see also Ref. [281, 190]).

3.1.1 Jacobi coordinates

In a Cartesian coordinate system, the spatial positions of N particles can be
described by N position vectors s; (i = 1,..., V) joining the centre of mass
of each particle to the origin O. An equivalent set of coordinates consists of
N space-fixed Jacobi vectors r; defined as follows. Vector r; runs from the
centre of mass to the origin, and the vectors rs, ..., r 5 are obtained recursively.
In the first step, the system is divided into two subsystems, and the vector
joining their centres of mass is called ry. Each of two subsystems may in
turn be divided (unless it consists of only one particle) and its two fragments
can be linked by a Jacobi vector. The process is repeated until each particle
is reached by a Jacobi vector. This is illustrated in Fig. 3.1 for the case of
N = 4 particles.

The Jacobi vectors ry are related to the position vectors s; by a matrix
U such that

N
ri = Z Uiksk - (3.2)
k=1
U is orthogonal in the following sense:

Here m,, is the mass of the kth particle, and p; is the reduced mass for the
two fragments joined by the vector r;. The total mass of the system, 1, may
formally be regarded as a reduced mass by assuming that the origin O has
an infinite mass. Because of the orthogonality relation (3.3), various physical
quantities such as the total kinetic energy, the total angular momentum, and
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Figure 3.1: Two different sets of Jacobi vectors for a system of four particles
A, B, C and D. In both cases, the vector r; runs from the centre of mass of
the complex ABC'D to the origin O.

the tensor of inertia are easily expressed in Jacobi coordinates. The compo-
nents [;; (i, j = 1,2, 3) of the inertia tensor I with respect to orthonormalized
basis vectors (ey, e;, e3) are given by !

Lj = > ple; xry) - (e x ry) (3.4)

k=1
and the kinetic energy and angular momentum operators are:

N
. h? a .
T = — ]}Zl 2—’LLkAk , J=—-ih E rp X Vk s (35)

where A; and V; denote the Laplacian and the gradient operators for the
variable r;. Analagous expressions hold for the corresponding classical quan-
tities.

Kinematic rotations

For a system of more than two particles, there are several equivalent sets of
Jacobi vectors (see again Fig. 3.1). Whenever it is necessary to distinguish
between different sets, we shall label them using Greek indices («, 3, 7, ...)

'Eq. (3.4) can be rewritten using the vector identity

(axb)-(ecxd) = (a-c)(b-d)—(a-d)(b-c)
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The transformation between two sets of Jacobi vectors is called a kinematic

rotation:
N

= Doy (36)
1=1

The non-orthogonal matrix K ¥ is given by
Ki(ﬁa Z Uzk o k] T : (37)

The matrices U@ and U relating the Jacobi vectors r§“> and rgﬁ ) to the

position vectors s;, are defined as in Eq. (3.2).

Mass-scaled Jacobi vectors

The formulas (3.4) and (3.5) can be cumbersome, because they involve differ-
ent reduced masses, i1, ..., uy. It can be more convenient to use mass-scaled
Jacobi coordinates T; so that a single reduced mass p appears in the cal-
culations [207]. The scaled vector T; and the unscaled vector r; are related
according to:

T/l =T/l - (3.8)
The many-body reduced mass p can in principal be chosen arbitrarily. A spe-
cific choice will be made for the case of three-body systems [see Eq. (3.21)].
The tensor of inertia becomes:

L = ,uz e; X Tj) - (ej X Ty) . (3.9)

The kinetic energy and angular momentum operators become

. K2 _
T = —Y Ay, 3.10
Qlu; k (3.10)
N
J = —ih) T x Vi, (3.11)
k=1

where A, and V), are the Laplacian and gradient operators for the mass-
scaled Jacobi vector T. The kinematic rotation between two sets of mass-
scaled Jacobi vectors can now be Written as

Z KJYE (3.12)

with the orthogonal matrix K given by:

KPP =/ )U},f - — U (3.13)

,u(a)
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3.1.2 Hyperspherical coordinates

The hyperradius of a many-body system is defined as

p:\/f%+f§+...+ffv, (3.14)

where 7; is the length of the ith mass-scaled Jacobi vector r;. Its value is
the same for all sets of Jacobi vectors, and it measures the overall size of
the system (in the case where the centre-of-mass vector 7 is zero). Hyper-
spherical coordinates consist of the hyperradius p and 3N — 1 dimensionless
angles. They have been widely used in the description of three-body systems
(N = 3, see Sec. 3.2). More recently, there have been attempts to use them
for studies of Bose-Einstein condensates (N > 3) (see [34] and [249] and
references therein).

3.1.3 Symmetries

The Hamiltonian H of a system of NV particles in a field-free space commutes
with the following symmetry operations:

e Translations.

e Rotations about an arbitrary axis.

e Inversion [ of all the particles’ coordinates.
e Permutations of identical particles.

The translational invariance implies that the velocity of the centre-of-mass is
a constant. Therefore the centre-of-mass frame is used for computations, and
the motion of the centre of mass does not need to be considered. Taking into
account the other symmetries (rotations, inversion, permutations), one may
seek the eigenfunctions of the Hamiltonian H in the form of partial waves
@/Me19(ry, ..., ryy) characterized by quantum numbers J, M, ¢; and o defined
as follows. The quantum numbers J and M indicate the eigenvalues of J2
and jz, where J = —ih Zszl r; X V} is the total orbital angular momentum
operator and jz is its projection on the space-fixed z-axis:

jZSOJMEIU — FL2J(J+ 1) ,SOJMEIU (315)
szOJMEIU — hMQOJMEIU ) (316)

The quantum number ¢; is the eigenvalue associated with the inversion op-
erator I,

~

ISOJMEIU — EI(PJMGIU ’ (317)
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and the index o labels the irreducible representations of the permutation
group of N particles.

For the case of three-body systems (N = 3), the permutational symmetry
is known to have important consequences on the dynamics, see, for example,

Ref. [208].

3.2 Three-body systems

The configuration space of three particles can usually be divided into the
following regions:

e Potential wells where the three particles lie close together. At low en-
ergies, normal coordinates may be well-adapted in order to describe
the three-body bound states. At higher energies, hyperspherical coor-
dinates might be easier to handle.

e Three regions where two particles are bound closely together and the
third particle is far away. These regions correspond to the three asymp-
totic atom-diatom arrangements, conveniently described in Jacobi co-
ordinates.

e A region where the three particles are all at great distances from each
other. This region lies energetically above the threshold for break-up
into three bodies and is important, for example, in all studies con-
cerning the recombination of three atoms to form a diatomic molecule
and an atom (three-body recombination) or its inverse process, the
fragmentation of a diatomic molecule due to a collision with an atom
(collision-induced dissociation)

Many different coordinate systems have been developed over the years,
but they all serve the same purpose: indicate the positions of the three
particles A, B and C' in space.

3.2.1 Jacobi coordinates

The geometry in which the distance between particle C' and the centre of
mass of AB is large compared to the distance between A and B is called
the v-arrangement. In this geometry, the system ABC' is described most
naturally using the Jacobi vectors r, = AB and R, = (AB)C. The first
vector, r, joins B to A and the second vector, R, joins C' to the centre of
mass of the fragment AB.

The other two asymptotic geometries, in which either A or B is situated
far from the remaining two other particles, are respectively called the a- and
the f-arrangements.
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Figure 3.2: Jacobi vectors of the a-, 3-, and y-arrangements.

The three sets of Jacobi vectors, (r,,Ra), (rg,Rs), and (r,,R,), are
sketched in Fig. 3.2.

If the choice of arrangement is irrelevant and if there is no risk of con-
fusion, we may sometimes omit the arrangement index in the formulas, and
write, for example, r and R instead of r, and R,.

Let now (sa,sp,Sc) be the positions vectors, and (S, R, r) the centre-of-
mass and Jacobi vectors. The total mass of the system is denoted M:

M = my+mp+mc (3.18)

where m 4, mp and m¢ are the masses of A, B, and C, respectively. The
transformation (3.2) between position and Jacobi vectors now takes the form:

S s ma mp mo
! T
R |=U|ss |, U=|1 —;le_ —me (3.19)
r Sc 0 -1 1
The inverse matrix U~! is given by:
mp+me
N s
U = ]_ _ﬁa _mB"l‘Cmc . (320)
] —me
M mp+me

The mass-scaled vectors are denoted Ty and Ry (A = «, 3,7). The three-
body reduced mass p introduced in Eq. (3.8) can be chosen such that prod-
ucts of the Cartesian components of r) and Ry, like Ry, 7),, are not affected
by the scaling:

mampmc

. (3.21)
A+ mMmp+mc

H = N/ MHA-BCc UBC = \/
m
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The above definition implies Ry, 7y, = Ry, Thy- As a consequence, the paral-
lelogram spanned by the scaled vectors Ty and R, has the same area as the
one spanned by the unscaled vectors.

Note that the three-body reduced mass (3.21) is the same for all Jacobi
arrangements.

The mass-scaled vectors of the a-arrangement are given by

R, = ,/MAECR, (3.22)
1

£, = My, (3.23)
1

The kinematic rotation between the a- and the (3-sets can be written as

R\ cos®,g  sinP,yp R,
( s ) o ( —sin®,5 cos Py ) ( T, ) (3.24)

with an angle ®,43 given by

tanPug = - Bug € [1,37/2] . (3.25)
1

The inverse rotation uses the angle ®3, = —®,3. By considering the closed
sequence of kinematic rotations a — 3 — 7 — «a and knowing that each
of the angles ®,3, 3, and ®,, must lie between 0 and 37/2, one concludes
that

(I)ag + (I)ﬁy + (I)Wa = 47 . (326)

Case of three equal masses

If the three masses are equal, the lengths of the scaled and the unscaled
Jacobi vectors are related as follows:

7 3\ /4
- = |- ~ 0.931
o) mom
R 4 1/4
The kinematic rotation angles are:
47
S5 = gy = Oy = 3 (3.28)
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Internal Jacobi coordinates

The shape and the size of the ABC' triangle depend only on the lengths R
and r of the two Jacobi vectors and on the angle n (0 < 1 < 7) between
them. These quantities are called internal Jacobi coordinates [see also Eq.

(3.59)]:
R=|R|, r=lr|, 7 = arccos (%) : (3.29)

r

The potential interaction energy of the three-body system depends only on
the internal Jacobi coordinates and can be written V (R, 7, 7).

The vibrational kinetic energy operator in internal Jacobi coordinates has
the form: 2

A 1 o 10 1 1N 1 9 . 0
T = _ﬂ E@R—F;wrﬁ— <ﬁ+ﬁ)@a_’f] Slnﬁa—n} : (330>

The volume element is
d(R,r,m) = dRdr sinndn . (3.31)

We note that the singularities in 7 = 0 and n = 7 can be avoided by replacing
n with the variable ¢ = cosn [47].

We have not made use of Eq. (3.30), but it is interesting to compare it
to the kinetic energy operator in Smith-Whitten coordinates, Eq. (3.30)

Schrodinger equation

Whatever the choice of Jacobi arrangement, the kinetic energy operator (in-
cluding the rotational and Coriolis coupling terms) has the form of a Lapla-
cian in six dimensions. Eq. (3.10) takes the form

= A+ AR, (3.32)

or, more explicitly,

. h? | 02 0? 0? 0? 0? 0?
T'= e e on or Tor R

(3.33)

The Hamiltonian operator H of the three-body system is obtained from (3.32)
by adding the potential energy term:

= ——[As+ AR]+ V(R, 7). (3.34)

ZExpression (3.30) can be derived from (3.33) using the partitioned matrix method
outlined in the Appendix F and omitting the rotational degrees of freedom.
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A wavefunction (¥, R) describing a stationary state of the three-body sys-
tem must satisfy the time-independent Schrodinger equation

Hp = Eop. (3.35)

3.2.2 Fock hyperspherical coordinates

Fock coordinates [86] are closely related to Jacobi coordinates. They are
obtained by expressing the lengths R and 7 of the mass-scaled Jacobi vectors
R and 7 in cylindrical coordinates p and w:

R=pcosw , T =psinw . (3.36)

The hyperradius p measures the size of the three-body system, the other vari-
ables being angles: w is a hyperradial correlation angle [157] which depends
on the choice of Jacobi set (we have omitted the arrangement index \).

Space-fixed Fock coordinates

The orientations of the vectors R and ¥ may be indicated by polar and az-
imuthal angles (0g, ¢r) and (6,., ¢,), respectively. This leads to the definition
of space-fized Fock coordinates (p,w, Or, ¢r, Oy, ¢.):

R, = pcoswsinfgcospr
R, = pcoswsinfgsingg
R, = pcoswcosfp
T, = psinwsin#, cos o,
Ty = psinwsinf, sin ¢,
7, = psinwcosh, . (3.37)
The metric tensor (g;;) (¢,j = 1,...,6) for space-fixed Fock coordinates is
given by:
1 0 0 0 0 0
0 p? 0 0 0 0
0 0 p?cos?(w) 0 0 0
0 0 0 p? cos?(w) sin’(6g) 0 0
0 0 0 0 p? sin?(w) 0
0 0 0 0 0 p?sin?(w) sin?(6),)
(3.38)
Its determinant (related to the volume element) is
P10
lg| = 6 sin®(2w) sin?(#,.) sin®(0g) (3.39)
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The kinetic energy operator is easily found from Eq. (3.33) using (3.38) and
Podolsky’s formula [see Eq. (F.10)]:

T — _h_2 igpg’ﬁ_i_;isin%zﬂ)i_ki(l)z_‘_i (2)2
2u | pPOp" Bp  p?sin®(2w) Ow ow  p? \ih p? \ih
A X (3.40)

where L and 1 are the angular momentum operators associated with the

mass-scaled Jacobi vectors R and T:

~

L = —ihR x Vg, 1 = —iFrxV,. (3.41)

Body-fixed Fock coordinates

Body-fixed Fock coordinates are (p,w,n,a,3,7), where (a, 3,7) are three
Euler angles and 7 is the angle between the two Jacobi vectors, as in Eq.
(3.29) [see also Eq. (3.67)].

In the geometry where two atoms AB are close together and atom C' is
far away, the Jacobi length R = (AB)C is large compared to r = BC and the
hyperradial correlation angle w is small. In this geometry, the hyperradius is

essentially the same as the mass-scaled atom-molecule distance R:
R~ p, T~ pw (w—0). (3.42)

This geometry is illustrated in Fig. 3.3 for a fixed angle 1 between the two
Jacobi vectors r and R.

3.2.3 Hyperspherical harmonics

The Fock coordinates defined in Eq. (3.37) are but one of many hyperspheri-
cal coordinate systems which all have the hyperradius p in common and differ
from each other in the definition of the five hyperangles.
For every hyperspherical coordinate system, the total kinetic energy op-
erator has the form
. 10 ;0 A

T = ———p"—+ T, 3.43
where Tang is a second-order differential operator in the five hyperangles. Tang
corresponds to the kinetic energy associated with the hyperangular motion.
It is often written as

Tong = A2 (3.44)

where A? is the square of the grand angular momentum operator; its eigen-
values are K (K +4) (K =1,2,3,...) [188].
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Figure 3.3: Illustration of Fock’s hyperspherical coordinates (p,w) and mass-
scaled Jacobi lengths (7, R) for a fixed angle  between the two Jacobi vectors
r and R. The Jacobi coordinates do not join smoothly onto the hyperspher-
ical coordinates. The mass-scaled Jacobi lengths 7 and R needed to de-
scribe the classically allowed region 0 < w < wpay at a constant hyperradius
p = const lie respectively in the intervals [0, ey and [Ry, Ry]. The larger p,
the smaller the interval [R;, R;] needed for a change from hyperspherical to
Jacobi coordinates.

The eigenfunctions of A2 are called hyperspherical harmonics. Since they
form a complete basis set in the space of hyperangular functions, they can

be used to expand the three-body wavefunction for every fixed value of the
hyperradius [89, 114].

3.2.4 Smith-Whitten hyperspherical coordinates

Smith-Whitten hyperspherical coordinates treat the three particles on an
equal footing, and they naturally single out the principal axis of inertia
[205, 207, 122, 123, 124, 157]. These two properties make Smith-Whitten
coordinates very convenient.

They consist of the hyperradius p € [0, 00), two hyperangles: © € [0, 7/4]
and ® € [0,27), and three Euler angles: («,,v). F. T. Smith and R.
C. Whitten [246, 274] have defined © and @ implicitly by specifying the
projections of the mass-scaled Jacobi vectors R and T on the body-fixed
xyz-coordinate axis:

T, = pcos©Ocos? ,
ry = —psinOsind ,
r, = 0,

R, = pcosOsind ,
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R, = psin©cos?
R. = 0. (3.45)

The hyperradius p and the hyperangle © do not depend on the choice of
arrangement, whereas the hyperangles ®,, ®3, and ®., are related as follows:

By= 0y — Doy, D, =Dy — Dy . (3.46)

The identities in Eq. (3.46) are obtained by assuming that the Jacobi vectors
in Eq. (3.45) are those of the a-arrangement (® = ®,). The Jacobi vectors
of the - and ~-arrangements are then calculated using kinematic rotations
following Eq. (3.24). One sees that the vectors (Rg,rg) and (R, r,) can be
written in the form of Eq. (3.45) with ® replaced by ®5 and ®., given in Eq.
(3.46). Thus the Smith-Whitten coordinates are essentially the same for all
three arrangements.

In the body-fixed Cartesian coordinate system, the products of inertia
vanish, which can be infered from the identities

7Ty + RyRy =0, 7, =0, R.=0. (3.47)

The xyz axis thus coincide with the principal axis of inertia. The principal
moments of inertia are 3

I, = pp*sin?@ ,

I, = pp*cos’O

I = up*. (3.48)
© = 0 corresponds to linear and © = 7 /4 to perpendicular geometries.

The fact that the out-of-plane principal moment I, is the sum of the other
two is a property of all planar many-body systems.*

3Using the angles (6, ¢) defined in Eq. (F.28), we have

1—sinf 1+sinf
L=p’—F—, Ly=p’—F—, L=pp

4The diagonal elements of the inertia tensor of an N-particle system are

N

I, = Zmi(y¢+%)27
i=1
N

I, = Zmi(zi—ka:i)z,
i=1
N

Lo = > miwi+y)°
i=1

where m; is the mass of the i-th particle and (z;,yi, z;) are its Cartesian coordinates. If
all particles lie in the xy-plane, the z-components z; vanish, so that I, + I, = I..
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Smith-Whitten coordinates cover the configuration space twice. When
the angle ® is increased gradually from 0 to 2w, the points A, B and C
move on an ellipse in the body-fixed z-y-plane [154]. When ® = 7, the ABC
triangle has reassumed its initial shape but is rotated by 7 around the body-
fixed z-axis with respect to its initial orientation. Only when & = 27, the
triangle has regained both its initial shape and orientation.

Conversion into bond lengths

The Smith-Whitten coordinates defined in (3.45) are converted into mass-
scaled bond lengths ) using:

1 — cos(20) cos(20,) "/
2

TN = p A=a,0,7) . (3.49)

Symmetry operations

The symmetry operations for a system of N particles have been listed in
Sec. 3.1.3. We now show how these operations (rotations, inversion, permu-
tations) are performed for a system of three particles using Smith-Whitten
coordinates.

Rotations can be realised through changes in the Euler angles (o, 3,7).

The inversion I can be performed in two ways, either by a transformation
® — & + 7 or by a rotation of 7 around the body-fixed z-axis perpendicular
to the ABC plane.

A permutation of two identical particles joined by the Jacobi vector r
affects neither the centre of mass nor the principal axis of inertia of the three-
body system. The permutation is therefore equivalent to the transformation

r— —T, R—R.

It can be expressed as the product of a transformation ® — —® and a
rotation of 7 around the body-fixed y-axis:

Ty Ty . —Ty
iy | (2= =2) [ =7, | Dy(m) | —7,
7 o B e (3.50)
R, R, R,

Here 7., 7, R, and Ry are the projections of the two mass-scaled Jacobi
vectors ¥ and R on the original body-fixed z- and y-axis. The rotation
D, (7) is achieved through changes in the Euler angles (a, 3,7) and leads to
a nmew body-fixed coordinate system BF’ whose z- and x- axis are reversed
with respect to the original system. The projections of the new mass-scaled
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Jacobi vectors —F and R on the new body-fixed z- and y-axis are therefore
given by

v (3.51)

Alternatively, the permutation can be written as the product of a trans-
formation ® — 7 — ® and a rotation of m around the body-fixed z-axis:

Ty —Ty R —Ty
iy | (@—7—@) Ty Dy(m) | =7y
R, . R, | & (3.52)
Ry _Ry Ry

Classical motion

The expression for the classical kinetic energy in Smith-Whitten coordinates
has been derived by B. R. Johnson [123] (we have verified the calculation):

T = g [ 7+ p? (02 + &% — 4dw, cos O sin © + w? + w?sin® O + w;, cos” @)}

(3.53)
From Eq. (3.53), we obtain the projections of the angular momentum on the
body-fixed zyz-axis:

Jo = 0T)0w, = Lw, ,
Jy, = 0T/ow, = [w,,
J. = 0T/0ow, = I|w, —sin(20)d] . (3.54)

Jy and J, are the familiar expressions for the angular momentum of a rigid
rotor [150], whereas .J, contains an extra contribution involving the time
derivative of the hyperangle ® due to Coriolis coupling between the Euler
angles and the vibrational coordinates.

We briefly consider the case of vanishing total angular momentum, J, =
Jy = J, = 0. The classical motion is planar [123] in this case, and the space-
fixed z’-axis can be chosen so that it coincides with the body-fixed z-axis.
In this case only one Euler angle « is needed: it describes the orientation of
the body-fixed x- and y-axis with respect to the space-fixed x’- and y/-axis.
Since J, is assumed zero, one might believe that the body-fixed z- and y-axis
will not rotate. However, this is generally wrong. In fact Eq. (3.54) shows
that for J, = 0, the angular velocity w, equals sin(20)®, which is generally
non-zero. A change in the shape coordinate ® thus leads to a rotation of the
principal axis of inertia with respect to the space-fixed frame, and therefore
the Euler angle v is not constant.
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Kinetic energy operator in Smith-Whitten coordinates

The kinetic energy operator in Smith-Whitten coordinates is derived in the
Appendix F, following Johnson’s procedure [123, 124]. The result is a sum
of a vibrational, a rotational and a Coriolis coupling term:

T - Avib + Trot + Tcor ; (355>

where the vibrational energy term T is given by

R[10 .0 4 1 0 o 4 1 &

Tvi = 5 | =53 F 57 D) —— S 28 an o T 9/n\ a9 )
b 24 [,05 6pp op * p? sin(20) 00 sin >89 * p? cos?(0) 0¢?
(3.56)

the rotational energy term Trot has the form

. 1|J2 gz
Tt = = |22+ 2 . 3.57
A A I, " Izsmel (3:57)

and the Coriolis coupling term Tcor can be written as

ih cosf . O

Tcor T o . 9 Y2
up?sin® 6> 0¢

(3.58)

3.2.5 Modified Smith-Whitten coordinates

In order to describe reactive collisions between atoms and diatomic molecules,
J.-M. Launay [157] as well as R. T. Pack and G. A. Parker [207] use hy-
persperical coordinates that are essentially the same as the Smith-Whitten
coordinates given in Eq. (3.45). Pack and Parker [207] have called their co-
ordinates the Adiabatically Adjusting Principal Axis Hyperspherical (APH)
coordinates.

The only important difference between the original Smith-Whitten co-
ordinates and their modified versions lies in the labelling of the body-fixed
coordinate axis, in other words, in the definition of the three Euler angles.
J.-M. Launay and R. T. Pack et al. have defined the body-fixed coordinate
system such that the body-fixed z-axis aligns with the internuclear axis when
the molecule becomes linear. Thus the body-fixed z-axis is the axis of least
inertia, and the y-axis is perpendicular to the molecular plane. This choice
allows to minimize rotational coupling in linear geometries if the three-body
wavefunction is expanded in symmetric top eigenfunctions [157].% Tt should
be noted that the three moments of inertia are of the same order of magni-
tude in equilateral geometries (I, = I, ~ I,)) but not in linear ones (I, =0,

5The symmetric top functions D,(,‘L],Z(oz, B,7) are discussed in the Appendix G.
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I, = I, # 0). Therefore, if both linear and equilateral geometries are ener-
getically accessible, it is preferable to choose the axis of least inertia as the
quantization axis (the body-fixed z-axis).

The Hamiltonian given by J.-M. Launay and M. Le Dourneuf in Ref.
[157] is obtained from Eq. (F.39) in the Appendix by substituting ¢ — 7 — 6
and ¢ — % and by relabelling the principal axis of inertia (zyz — zxy).

3.2.6 Internal Cartesian coordinates

R. T. Pack [206] has shown that the shape and size of the ABC-triangle
can be described by a set of Cartesian-like coordinates (u,v,w) such that
the kinetic energy operator for the vibrational motion resembles the kinetic
energy operator of one particle. We have not used these coordinates in any
computations, but they are interesting for a number of reasons:

e (u,v,w) are useful for plotting potential surfaces [122]. One uses as
axis (u/p,v/p,w/p), where p is the hyperradius.

e They provide a unified view on other coordinate systems [172].
e They are convenient for the Fourier Grid method [206].

The (u,v,w)-coordinates are defined as follows:

u € (—o00,+00) : u = R?2-7* = R?-7?
v € (—00,+00) : v = 2R-T = 2R7 cosny (3.59)
w € [0,400) w = 2|[RxT| = 2R7siny.

Here R and T are the mass-scaled Jacobi vectors, and 1 , (0 < n < )
is the angle between them. The coordinate w is invariant under kinematic
rotations: w is four times the area of the triangle ABC. The value w = 0
corresponds to linear configurations. The hyperradius p is

p = (RR+™)Y? = (W + 02 +uwH)Y4 (3.60)
The volume element in (u, v, w)-space is

d(u,v,w) = %dudvdw, (3.61)

and the kinetic energy operator for the internal motion has the simple form
[206]:
. h? 0? 0? 0? 10
Ty = ——4p* | ==+ =—+=—+—| . 3.62
b 241 P 0u2+8v2+8w2+w0w (362)
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The first-derivative term in the kinetic energy operator can be eliminated
. . . 1

by introducing a rescaled wavefunction 1°#° = w2). The volume element

then becomes

1
d*ed (y, v, w) = deu dvdw , (3.63)
and the kinetic energy operator takes the form

o, 1

This simple form of the kinetic energy operator could make the (u,v,w)-
coordinates particularly convenient for the Fourier grid method [206, 127].

The coordinates (ug, vg, w) of the f-arrangement are obtained from those
of the a-arrangement by a rotation around the w-axis:

~scaled L -1
TVlb — w2 TVlb w 2 —

ug cos 2®,3 sin 20,53 0 Ug
vg | = | —sin2®,5 cos 20,5 0 Vg (3.65)
w 0 0 1 w

with ®,4 given by Eq. (3.25). By introducing cylindrical or spherical coor-
dinates in (u, v, w)-space, and choosing the w-axis as the principal axis, one
thus obtains coordinates which describe the three particles equivalently.

The internal Cartesian coordinates are related to some other coordinate
systems as follows:

e The mass-scaled Jacobi coordinates (R, 7,n) are parabolical coordinates
with respect to the (u,v,w)-system. This follows directly from the
definition (3.59).

e The Smith-Whitten coordinates (p,©,®) defined in Sec. 3.2.4 are
spherical coordinates in the (u, v, w)-system :

u = —p®cos(20)cos(20)
v = p?cos(20)sin(2P)
w = p*sin(20) . (3.66)

e The Fock hyperspherical coordinates (p,w,n) defined in Sec. 3.2.2 are
spherical coordinates in the (v,w,u)-system (note that the principal
axis is u, not w):

v = p’sin(2w) cos(n)
= p?sin(2w) sin(n)
u = p*cos(2w) . (3.67)
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3.2.7 Bond coordinates

Bond coordinates (a, b, ¢) consist of the three distances between the particles,
a=BC, b=CA, c=CA, (3.68)

and they describe the three particles equivalently. Nevertheless they are
inconvienent for numerical calculations because their range is restricted by

the triangular inequality:
at+b<c. (3.69)

The triangular inequality can be avoided by using perimetric coordinates
rather than bond lengths. Perimetric coordinates [127] are closely related
to bond coordinates but their allowed range is not complicated in such a
manner.

The unscaled Jacobi coordinates (R, r,n) are converted into bond lengths
(a, b, ) using

2
_ 2 ma o ma
a = \/R + (mA+mBr) 2RmA+mB r cosmn ,

b = \/R2+< o 7‘>2+2R B __ 1 cOST) (3.70)
ma+mp ma+mp )
c = r.
The inverse relation is given by
) 2
R = mpa?4mab? < mamp ) c2
ma+mp ma+mp ’ (3 71)
_ b2—a’4+(ma—mp)c? :
cosn = e
r = c.

3.3 Computational methods

A large variety of numerical methods for computing bound and scattering
states of triatomic systems have been developed since the 1960s.

Pioneering work on reactive scattering was done by G. Schatz and A.
Kuppermann [148, 235, 147], who performed quantum mechanical calcula-
tions for the linear, planar, and three-dimensional H + H, exchange reaction
using a coupled-channels propagation technique.

3.3.1 Time-independent methods

The time-independent methods are the more traditional ones. They are still
widely used, in particular for the analysis of resonances and threshold effects,
and for the investigation of collisions at very low energies (”cold collisions”).
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Coupled-channels method for non-reactive scattering

Non-reactive collisions between atoms and a diatomic molecules are easier
to study than reactive ones. Examples of non-reactive collisions are those
between a chemically inert rare-gas atom and a stable diatomic molecule,
such as Ar + Hy [221, 263], He + Hy [20], He + CO [152, 19], or He + I
[239].

These collisions can be modelized using a coupled-channels formalism
based on the Jacobi vectors of one single arrangement: for every fixed atom-
molecule distance R, the wavefunction is expanded in eigenfunctions of the
atom and the diatomic molecule, leading to a system of coupled differential
equations for the relative motion of the atom and the dimer. Such equations
were first derived by A. M. Arthurs and A. Dalgarno [14] for the scattering
of a structureless particle by a rigid rotator. The approach has become
known as the Arthurs-Dalgarno expansion. It has been generalized since
[204, 152, 261].

The coupled-channel method for non-reactive atom-molecule scattering is
implemented in the MOLSCAT computer package developed by Jeremy M.
Hutson and Sheldon Green® and in the Molcol package developed by D. R.
Flower et al. [85] 7

Hyperspherical propagation methods

In a hyperspherical propagation method, the six coordinates are separated
into five "fast” hyperangles and the ”slow” hyperradius. This separation al-
lows to solve the Schrédinger equation in two steps. In the first step, the
angular Schrodinger equation is solved, leading to a system of coupled hy-
perradial differential equations. In the second step, the coupled equations
are solved by propagating a solution, or a set of solutions, along the hyper-
radius. The scattering matrix can be obtained by matching these solutions
to wavefunctions of the three Jacobi regions.

Hyperspherical propagation methods have been used in molecular physics
for over twenty years, starting with linear models, in which the three atoms
are restricted to move on a straight line (see Refs. [156, 165, 166] and refer-
ences therein).

J. G. Frey and B. J. Howard [89] extended the hyperspherical formalism
to three spatial dimensions in order to compute the ground state energy of the
weakly bound van-der-Waals trimers (Hs)s, (D2)3 and Nes. They expanded
the wavefunction in hyperspherical harmonics and used the resulting set of
coupled hyperradial equations to propagate the wavefunction’s logarithmic

6MOLSCAT is available on the internet at http://www.dl.ac.uk/CCP/CCP6/molscat/
or http://www.giss.nasa.gov/tools/molscat/.
"Molcol is avalaible at http://ccp7.dur.ac.uk/molcol.html.
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derivative matrix along the hyperradius, for a fixed energy F. Bound state
energies were found iteratively using a bound-state matching condition (see
the Appendix H). The same method was adopted by J. M. Hutson and
co-workers to compute binding energies for Hy , (Hy)3, Neg and Ars [114, 56].

Unfortunately, the hyperspherical harmonics are not well suited as basis
functions for highly excited or scattering states. We recall that they are the
eigenfunctions of the angular kinetic energy operator of three free particles.
Clearly, they span the entire configuration space, including regions which
are energetically forbidden in the presence of a potential. A large number of
hyperspherical harmonics is therefore needed to expand a wavefunction that
is localized mainly in the classically allowed region.

J.-M. Launay et al. [157] and R. T. Pack et al. [207] have overcome
this problem by using potential-adapted basis functions which have a large
amplitude only in the energetically allowed regions of configuration space.
The potential-adapted basis functions are obtained through diagonalization
of a p-dependent angular reference Hamiltonian that includes the potential
energy. By expanding the wavefunction in potential-adapted basis functions
rather than in hyperspherical harmonics, the necessary number of coupled
differential equations is greatly reduced, and it becomes possible to study
reactive atom-diatom collisions of the type

A+ BC — AB+C .

J.-M. Launay’s method is described in detail in Sec. 5.1 of Chapter 5.
Recently, R. T. Pack et al. [54, 208] extended the hyperspherical method

to energies above the three-body threshold and obtained converged results
for the

Ne, + H — Ne + Ne 4+ Ne

recombination and collision-induced dissociation reactions.

Although the potential-adapted angular basis set can be much smaller
than the basis set of hyperspherical harmonics, it usually remains fairly large
in the case of alkali trimers. In order to study K 4+ K5 collisions, G. Quémener
et al. [220] haved solved systems of more than 1000 coupled differential
equations!

The situation is different for rare gas systems such as Hes, Nes, and
Ars. B. D. Esry et al. [75, 31] have studied these systems in the adiabatic
approximation, using a single p-dependent adiabatic angular basis function.

V. Kokoouline and C. H. Greene have adopted an adiabatic hyperspher-
ical approach in their unified theoretical treatment of dissociative recombi-
nation of the Hi and D3 ions [139, 13§]
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The ABC quantum reactive scattering programme® developed by D. Sk-
outeris, J. F. Castillo and D. E. Manolopoulos [243] is closely related to
Launay’s and Parker’s methods. The essential difference is the way in which
the angular basis functions are defined. For each hyperradial distance p, Sk-
outeris et al. compute an orthogonal angular basis set from a non-orthogonal,
multi-arrangement basis set of vibrational-rotational diatomic eigenfunctions
of each arrangement. While the primitive basis of pseudo - hyperspherical
harmonics used by Launay et al. to compute the potential-adapted set is
complete (any function of the five hyperangles can be expanded in this basis
set), it seems that the primitive multi-arrangement basis set used in ABC
is incomplete, because the primitive basis functions fill the three arrange-
ment valleys but not the strongly forbidden regions. In particular it is not
clear whether we could have used the ABC programme for Na + Nagy on the
lowest quartet surface *A%: the classically allowed region of this surface is
noticibly enlarged by the strong three-body interaction (see Chapter 4). In
the ABC programme, the three-body interaction is ignored in the definition
of the angular basis set. Therefore it may be possible that the angular basis
functions do not cover the entire classically allowed region. This would need
to be tested numerically.

Algebraic methods

In an algebraic method, the wavefunction is approximated by a linear combi-
nation of basis functions which must cover the energetically accessible regions
of configuration space. The resulting eigenvalue problem is solved numer-
ically. Algebraic methods have been used to compute bound vibrational
levels of triatomic molecules [143, 24, 25, 256, 257, 232] as well as scatter-
ing states for reactive encounters between atoms and diatomic molecules
[55, 285, 286, 287, 284]. Various coordinate systems have been used: Jacobi
coordinates of one arrangement, Jacobi coordinates of all three arragange-
ments, and hyperspherical coordinates.

W. H. Miller [193] has rewritten the Schrodinger equation in the form of
coupled integro-differential equations using basis functions of all three Jacobi
arrangements. These equations can only be solved algebraically due to the
non-local integral coupling terms.

J. Tennyson et al. [257] have developed the DVR3D suite of programmes
for the computation of vibrational-rotational levels of triatomic molecules.”
The method is based on a Discrete Variable Representation (DVR) using
orthogonal polynomials. We have not used DVR3D, because the package

8 ABC is available on the internet via the Computer Physics Communications Program
library (http://www.cpc.cs.qub.ac.uk/cpc/).

9DVR3D is available via the Computer Physics Communications Program Library on
the internet (http://www.cpc.cs.qub.ac.uk/).
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is not designed for extremely weakly bound or low-energy scattering states
(very weakly bound states are discussed in Chapter 5).

3.3.2 Time-dependent methods

In a time-dependent method, the temporal evolution of a wavepacket is simu-
lated by solving the time-dependent Schrodinger equation numerically. Com-
pared to the stationary methods, the time-dependent approach has the ad-
vantage of providing a time-dependent wavefunction, and it may be instruc-
tive to follow the temporal evolution of a wavepacket. A time-dependent de-
scription must be used if the three particles are placed in a time-dependent
external field.

A discussion of the existing time-dependent methods is beyond the scope
of the present work, but we wish to mention the works by John Z. H. Zhang
et al. [213, 288], Stuart C. Althorpe et al. [10, 6, 7, 125, 8, 9], R. Kosloff et
al. [2, 141, 142], and many others [241, 229, 238|. Time-dependent methods
have also been adapted to compute bound [127] and quasi-bound states [242,
180, 209].

For the calculation of chemical reaction dynamics, John Z. H. Zhang’s
group has developed ”Dynasol”, a software package with graphical user in-
terface.'®

3.4 Summary

A particular coordinate system must be chosen if one wishes to describe a
system of three particles numerically. There is no coordinate system which
is superior to all the others in all respects. The decision which coordinates
to choose will depend on the properties of the specific system to be studied,
in particular on whether the system is reactive or not.

Non-reactive collisions between an atom and a tightly bound diatomic
molecule can be treated using ”standard” methods, based on space-fixed
or body-fixed Jacobi coordinates. The MOLSCAT and Molcol computer
packages have been designed for such collisions.

The modelization of reactive systems is much more demanding, since the
initial and final arrangement of particles may differ. In this case more than
one set of Jacobi vectors are needed for a complete analysis of the scattering
state.

1Dynasol is available on the internet at
http://p150.chem.nyu.edu/dynasolver/index.html
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Chapter 4

Potential energy surface of the
sodium trimer

The relative motion of three spin-polarized ground state sodium atoms is
governed by the potential energy surface associated with the 1A} electronic
state of Nas. This surface determines the vibrational motion of Nas, and, at
higher energies, the reaction dynamics of collisions between sodium atoms in
the 3s ground state and sodium molecules Nay in the a®%F state, in the case
where the individual spins of the three atoms are "aligned”.

In this Chapter, we present the 1*A! electronic state of Nas and the
potential energy surface computed by J. Higgins et al. [100]. We did not
perform any quantum-chemical computations ourselves.

The scattering calculations described in Chapter 5 are based on a pairwise-
additive model potential energy surface constructed from a potential energy
curve for Nay computed by M. Gutowski [96].

4.1 Introduction

Molecules and ions consist of positively charged nuclei and negatively charged
electrons. Their most complete description is provided by their time-dependent
wavefunction, whose temporal evolution is governed by the Schrodinger equa-
tion. Unfortunately, this equation cannot be solved analytically, not even for
the simplest of all molecules, Hy. Approximate and numerical methods are
needed in order explain the rich variety of observed phenomena.

The problem of solving the complete Schrodinger equation can be simpli-
fied due to the great difference in mass between the heavy nuclei and the light
electrons: in an intuitive picture, the electrons move much faster than the
nuclei, and one may expect that their motion will adapt itself almost instan-
taneously to any changes in the positions of the nuclei. Therefore, the usual
approach is to solve the stationary Schrodinger equation for fixed positions of
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the nuclei. One thus obtains electronic wavefunctions and electronic energies
which parametrically depend on the nuclear coordinates. The energy of the
electrons as a function of the nuclear coordinates is refered to as a potential
energy surface (PES). The motion of the nuclei is treated in a second step,
using the potential energy surfaces, and possibly couplings between different
surfaces, as input data. The quantum-mechanical equations for the nuclear
motion are derived from the Schrédinger equation (involving electronic and
nuclear degrees of freedom) by expanding the total wavefunction in a basis
set of electronic wavefunctions, which parametrically depend on the nuclear
coordinates. In the Born-Oppenheimer approximation, all adiabiatic correc-
tions and all non-adiabatic couplings between different electronic states are
neglected.

Sophisticated methods for the calculation of potential energy surfaces
have been developed over the years. A detailed description of them is beyond
the scope of the present work.

Today ab initio potential energy surfaces are available for the lowest quar-
tet states (total electronic spin S = 3/2) of all homonuclear alkali trimers:
Liz [53, 247, 40], Nag [100, 247], K3 [247], Rbs [247], and Csg [247].

The doublet ground states 12E’ (total electronic spin S = 1/2) of the
alkali and hydrogen trimers X3 and of their isotopes are doubly degenerate
for the equilateral geometry of the nuclei. In this geometry, the two surfaces
present a conical intersection, which has attracted a lot of attention over the
last two decades [260, 259, 52, 269, 5, 4, 279, 149]. The conical intersection
gives rise to the Jahn-Teller effect, a geometrical phase effect [189, 282]. The
doublet states are not discussed in this thesis.

4.2 Sodium atom

The sodium atom ?*Na is composed of a nucleus which is surrounded by 11
electrons. The nucleus consists of 11 protons and 12 neutrons. The sodium
atom is the second-lightest of the alkali atoms (Li, Na, K, Rb, Cs). Its
electronic ground state corresponds to the configuration 1s? 2s? 2p% 3s. The
total angular momentum (spin and orbital) of the ten inner-shell electons are
zZero.

The inner-shell electrons and the nucleus are called the core. The total
angular momentum of the core is that of the nucleus, and its total electric
charge is that of one proton only. In the simplest model, the core is regarded
as a pointlike charge with no internal structure: in this model, the sodium
atom is the same as the hydrogen atom. In a more realistic model, the
core is attributed an electric polarizability, so that it becomes polarized by
the Coulomb field of the valence electron. The core thus creates an electric
dipole field, in addition to its Coulomb field, and both the dipole field and
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Reference method 7, D, Cs/10°  Cg/10°
(first author) in ag in cm~! in a.u. in a.u.
Konowalow [140] T 1.68 1.64
Li Li [169] E 9.6208 174.45 £ 0.36  1.63(74) 1.570(61)
Friedman [90] E 9.471(1) 175.76(35)

Magnier [179] T 9.81 174
Marinescu [184] T 1.427 1.119
Férbert [79] E

Derevianko [64] T 1.556 .
Gutowski [96] T 9.834 176.173 1.5869 1.3728
Higgins [100] T 9.83 176.17 1.59 1.37
Ho [101] E+T 9617 +£0.12 174.96 + 1.18 .
Samuelis [233] E 9.6208 1.5610 1.1188
Soldén [247] T 9.853 174.025

Table 4.1: Comparison of experimental (E) and theoretical (T) potential
energy curves for the a 3X state of Nas.

the Coulomb field interact with the charge of the valence electron, leading
to a lifting of the degeneracy between two states with the same principal
quantum number n but different angular quantum numbers [ and [’. In this
Chapter, we do not consider the inner-shell electrons explicitly, we shall only
use the "polarizible core + electron” model.

4.3 Triplet state of the sodium dimer

Compared to the singulet states of alkali dimers, fewer information is avail-
able on the triplet states, because the latter are more difficult to prepare ex-
perimentally [252]. Spectroscopic observations of rotational-vibrational levels
of the triplet Nay potential are reported in Refs. [169, 252, 233, 62]. A com-
parison of characteristic values of the ”a” potential found experimentally and
theoretically by various groups is given in Table 4.1. The overall agreement
seems to be quite good. Observations of the hyperfine structure are reported
in Refs. [78] and [233].

The long-range dispersion coefficients (Cg, Cs, Cyg, etc) are the same for
the X 12; and the a *% states. At long distances, the X and the a curves

only differ in the exchange term VX1 which vanishes exponentially with

the distance. The asymptotic forms of the two curves are given by
Vi(r) = +yexchy 6 8 0 (4.1)

where + and — refer to the a and X states, respectively. Explicit expressions
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for the exchange energy are derived in Refs. [244] and [198]. Sometimes the
dispersion energy is represented as a damped dispersion series,

Cy

,r.n

n

where the D,,(r) are damping functions, which are unity at long distance but
tend to zero for r — 0 [42]. In Ref. [140] the exchange energy is approximated
by a decreasing exponential, VeXCh(r) = Be ", W. T. Zemke and W. C.
Stwalley [283] point out that the exchange energy for two ground state alkali
atoms is better described by the expression

Vexeh(py = opee (4.3)

of B. M. Smirnov and M. I. Chibisov [244]. Using molecular spectroscopy,
C. Samuelis et al. [233] have determined pricise numerical values of the
coefficients o and 3 in Smirnov’s expression.

We note that the asymptotic form for the dispersion energy (4.1) needs
to be corrected for very large distances due to relativistic retardation effects
[48]: the interaction energy then decreases as 1/r" rather than 1/r°.

Van der Waals interactions among atoms and molecules are discussed in
several review articles (see Refs. [183, 60, 102, 223, 49, 42, 118, 264]).

See also Refs. [173], [144], [250].

Potential curve by M. Gutowski

P. Solddn et al. [248] used the Nay a 33 potential curve calculated by M.
Gutowski [96] as input data in their numerical calculations regarding low-
energy collisions between Na and Nay. As we adapted their code to compute
bound state energies of Nas (see Chapter 5), we used the same potential
curve as input data. This curve is plotted in Fig. 4.1. It is characterized by
a well depth D = 176.170 cm™! = 253.469 K and an equilibrium distance
re = 9.8265 ag = 5.2000 A. The long-range dispersion coefficients are

Cs = 1586.9 a.u. = 7.6477 x 10° cm =1 A® (4.4)

and
Cg = 1.3728 x 10° a.u. = 1.8527 x 108 cm 1A% . (4.5)

Unfortunately, Ref. [96] does not give error bars for Cs and Cs.

4.4 Lowest quartet state of the sodium trimer

The first spectroscopic data for the quartet spin state of an alkali trimer was
obtained by J. Higgins et al. [99]. In their experiment, sodium atoms were
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Figure 4.1: Ab initio potential energy curve for Nay in the a 3X1 state,
calculated by M. Gutowski et al.
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attached to helium droplets, where they tend to form small clusters preferably
in high spin states [252, 98, 226]. The sodium trimers were excited by laser
to the 2 *E’ state, and the emission spectrum from relaxation to the 1 A4}
state was recorded.

4.4.1 Electronic model Hamiltonian

In order to explain the essential features of the potential energy surface 1
* A}, we define a simple model Hamiltonian for the motion of the three outer-
shell electrons, interacting with each other and with the positive ionic cores.
The ionic cores, which consist of the nuclei and the inner-shell electrons,
are assumed fixed in space and treated as point charges with no internal
structure. The model Hamiltonian can thus be written as

~

O = VAB L {/BC | oA

+ T+ VA +VE+VE
+ T+ Vi + v+ vl
+ T+ Vi + VP +VF
+ Vig+ Vas + Vi . (4.6)

Here VAB VBC VCA are the potential interaction energies among the ionic
cores. VA, VB and V¥ are the interaction energies of the ith electron (i =
1,2, 3) with the cores. Vi5, Vo3 and V3; are the electron-electron energies. 77,
T, and T3 are the kinetic energies of the electrons.

A more realistic Hamiltonian would include core polarization terms, which
cannot be written as sums of products of two-body interactions [178, 179].
In addition, relativistic corrections would be necessary in order to explain
the fine and hyperfine structure in observed spectra.

We note that the model Hamiltonian of Eq. (4.6) can be rewritten as a

sum of one- and two-electron-Hamiltonians:

H=H{ +HE + ASA — AA — AP — AS (4.7)
where
HAP = TV+ T+ VA+VE+VA+VE + Vi + VAP
HBC = Ty+ T+ VE+VE+VE 4+ VE + Vg + VEC
HSA = Ty+ T+ VE+ VA VO + VA 4V + VA (4.8)
and

o' = T+
oy = T+ VY
HP = T34+ VE. (4.9)
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The form of the electronic Hamiltonian (4.7) suggests that the electronic
states of the diatomic fragments AB, BC and C'A could be used as basis sets
for calculating potential energy surfaces of the triatomic molecule ABC'. In
fact the expression (4.7) is the starting point for the ”diatoms-in-molecules”
(DIM) method [72, 73], in which the electronic structure of a polyatomic
molecule is calculated using the electronic states of its monoatomic and di-
atomic fragments. In principle, DIM is applicable to molecules composed of
an arbitrary number of atoms. It has been applied to a wide range of small
molecules (see Ref. [167] and references therein).

4.4.2 Electronic wavefunction of the quartet state

The wavefunction (1, 2, 3) of the three valence electrons in the quartet spin
state (total electronic spin S = 3/2) factorizes as

¢(1,2,3) = gO(I'l,I'Q,I'g) X(O'l,O'Q,O'g) (410)

where rq, ro and r3 are the space coordinates of the three electrons and oy,
09 and o3 are their spin coordinates. The quartet spin function x(oy, 02, 03)
is totally symmetric with respect to permutations of two electrons. Hence
the orbital function (ry, ry, r3) is totally antisymmetric.

Spin function

We denote S, the operator defined in the spin-space of three electrons such
that 1 — iS,a/h generates an infinitesimal rotation of the spin function of
three electrons about the z-axis. At present, it does not matter whether the
z-axis is defined with respect to the positions of the nuclei or with respect
to the laboratory. The spin function characterized by the spin projection
number Mg = 3/2 is the product

X+4++ = X+(01)x+(02)x+(03) (4.11)

where x is a one-particle spin function and eigenfunction of the one-particle
spin operator §,:

) h

S X+ = +§X+ :
The three other quartet spin functions (eigenfunctions of S, with eigenvalues
h/2, —h/2, —3/2h) are obtained from y,. through successive application
of the lowering operator S_ = 5, —iS,,.

Orbital function

An approximate three-electron orbital is obtained by antisymmetrizing the
product wave function

s4(ry)sP(ry)s% (r3)
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where s4, s% and s¢ denote spherically symmetrical orbitals centered on the

nuclei A, B and C. The resulting antisymmetrical orbital is

1

v o= NG [s7(r1)s (r2) s (r3) — 57 (r2)s" (11)s (r3)
+54(r) 57 (r3)s (r1) — 54 (r3)s7 (r2)s  (r1)
+ 5™ (r3)s%(r1)s% (r2) — s (r1)s”(r3)s% (12)] - (4.12)

It is easy to check that this function is a basis of the A/, representation of
the Djg;, point group (one may use the character table in Ref. [150].

The orbital (4.12) depends parametrically on the nuclear coordinates. For
nuclear geometries other than equilateral, it does not transform according
to the Af representation of the Dg, symmetry group but according to a
representation of the other symmetry group. However, in order to keep the
notation simple, the lowest quartet state is labelled 1 * A}, throughout, that is,
for any geometrical arrangement of the nuclei. The five point groups that are
relevant for a system of three identical nuclei are represented in Fig. 4.4.2.

For geometries in which one atom C' is situated at a large distance from
diatomic molecule AB, the electronic wavefunction is conveniently expressed
in terms of orbitals p4? of the diatomic molecule and orbitals s¢ of the
isolated atom:

$ = L [SOAB(rla r9)s% (r3) + P (1o, 13)s (r1) + P (13, rl)sc(rz)]

V3
(4.13)

Of course, the orbital 42 (ry,r3) must be antisymmetric with respect to
permutations of ry and rj.

If one of the three atoms separates adiabatically from the two others, the
adiabatic electronic state

Na3(14A’2)
correlates to the state
Na(3s) + Nag(a®Z}) .

In fact there are no other electronic states, except excited ones, that could
be physical states of Nay and Na after the dissociation. Therefore the wave-
function ¢ in Eq. (4.13) is the lowest orbital of ¥} symmetry. In the limit
of two separated atoms A and B, the molecular orbital 4?8 can be written
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Figure 4.2: Symmetry groups of a homonuclear triatomic molecule.
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as

AB—LsAr sB(ry) — s (ry)sP (v
© —\/5[ (r1)s”(r2) (rz)s”(ry)] (4.14)

4.4.3 Pairwise additive potential energy surface

For any triatomic system ABC, a simple model potential energy surface can
be constructed using the atom-atom potentials VAZ, VB¢ and V4. For large
internuclear separations, the atom-atom potentials correlate respectively to
the energies (F4 + E), (Ep + E¢), and (Ec + E,), where Ey, Ep and E¢
are energies of the isolated atoms A, B and C.

The pairwise additive potential energy surface is defined as

Vap(a,b,¢) = VAB(e) + VB9 (a) + VOAb) — Ea — Eg — Ec,  (4.15)

a, b, and ¢ being the three internuclear distances. This expression is analo-
gous to the form of Hamiltonian in Eq. (4.7). However, despite this formal
resemblence, Vy, is not deduced immediately from (4.7), because the one-
and two-electron Hamiltonians on the right-handside of Eq. (4.7) do not
commute.

The use of the pairwise-additive potential energy surface as a model sur-
face may be justified by the following arguments:

e In the asymptotic limit where one atom (say C') is infinitely far away
from the two others (A and B), the pairwise additive surface describes
the interaction between A and B ezactly.

e The isotropic atom-molecule van der Waals coefficient C3*"™°! of the
pairwise-additive potential energy surface is exactly twice the atom-
atom van der Waals coefficient (g, and one may expect that this is a
reasonable first estimate for C&*™°!,

e In the geometry of three well-separated atoms, pairwise forces appear
in a first- or second-order perturbation analysis, whereas a three-body
contribution only arises in third-order [27]. The three-body correction
is known as the Axilrod-Teller-Muto term (see the Appendix D).

However, the pairwise-additive surface may differ significantly from the true
potential energy surface for geometries in which all three atoms are close
together.

!By substituting Eq. (4.14) for ¢4 in Eq. (4.13), on obtains Eq. (4.12) - but this
must not be seen as a mathematical proof that the 1A} state correlates to the a3%;}
molecular state and the 3s atomic state. It should also be noted that in the case of excited
electronic states, such as those correlating to the limit 3s+3s+ 3p, it is much more difficult
or impossible to relate each state of the equilateral geometry univoquely to a particular
state of the atom-diatom geometry.
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We note that the global minimum of a pairwise additive potential surface
is simply the sum of the minimum values of each pair potential. The mininum
is reached at the geometry where the internuclear distances are each equal
to the equilibrium distances of the pair potentials.

Pairwise-additive surfaces are usually used in calculations if better data
is not available. For example, B. D. Esry et al. [74] have used a pairwise-
additive surface for Rbs in order to study the recombination of three atoms
at ultra-low temperatures.

We have constructed the pairwise-additive potential surface for the 1 A/
state of Nag using the Nay a®>¥] ab initio potential curve by M. Gutowski
[96]. At large internuclear distances, the latter is characterized by long-
range atom-atom dispersion coefficients Cg and Cg (see Sec. 4.3), which
can be related to long-range atom-molecule dispersion coefficients using Egs.
E.10 and E.12 of the Appendix E. The atom-molecule Cg coefficient of the
pairwise additive surface is exactly twice the atom-atom Cy coefficient :

Cs(Nay —Na) = 3173.8 a.u. ; (4.16)

it does not depend on the orientation of the Nay molecular axis with respect
to the atom-molecule axis Na - Nas.

The coefficient Cg(Nas—Na) is twice the coefficient Cs(Na—Na) plus a
correction which depends on the distance between the two atoms in the Nay
molecule and on the orientation of the Nas molecular axis with respect to
the Na atom. We have determined the atom-molecule Cy coefficient with
the internuclear distance of Nay fixed at the equilibrium value re = 9.8265
a.u.= 5.2000 A. For linear Na-Na, configurations we obtain

Cl(Nay — Na) = 2.7557 x 10° a.u., (4.17)
and, for perpendicular configurations:
Cy(Nay — Na) = 2.7442 x 10° a.u.. (4.18)

The value of the ”pairwise additive” Cg coefficient in Eq. (4.16) is a rough
estimate for the true atom-molecule Cy coefficient (see Sec. 4.4.5 and Ref.
[228]).

4.4.4 Three-body forces for the geometry of three sep-
arated atoms

We briefly consider the situation in which all three atoms are at great dis-
tances from each other.

Van der Waals forces among three atoms were first calculated by B. M.
Axilrod and E. Teller [15] and Y. Muto [195]. The induced dipole-dipole-
dipole interaction energy between three s-state atoms has become known as
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the Axilrod-Teller-Muto (ATM) term. It has the form [27]

1 4 3 cosacos 3 cosy
a3b3c?

EY | (a,bc) = Z{PC x 3 (4.19)
where «, § and «y are the inner angles of the triangle formed by the atoms A,
B and C'. The ATM term can also be derived classically by considering the
instantaneous interaction energy of three fluctuating dipole moments [92]. It
has been widely used in the analysis of three-body phenomena occuring in
gases [110], liquids [95], solids [174] and clusters [66, 92].

Energy corrections resulting from the interaction of three multipoles of
higher orders, 21, 22 and 2%, have been derived by R. J. Bell [27] and by M.
B. Doran and I. J. Zucker [66]:

‘/3(3)(@, b,c) = Z Zﬁggﬂflllm(a, b,c) . (4.20)

l1l2l3

The geometrical factors Wy, i, (a, b, ¢) depend on the size and shape of the
triangle formed by the three atoms. The factors Zl’fgg reflect intrinsic elec-
tronic properties of the interacting atoms. Upper and lower bounds of two-
and three-body multipole coefficients for hydrogen, noble gas, alkali and al-

kaline earth atoms are given in Refs. [254] and [251].

4.4.5 Asymptotic atom - dimer interaction

We now consider the situation where atom C' is located at a great distance
from the diatomic molecule AB. This situation differs from the one treated
in the previous Section in that the overlap of the atomic orbitals centered on
A and B is no longer assumed negligible.

A perturbative analysis of the atom-molecule interaction energy now uses
as unperturbed basis functions the products pABy¢ of molecular orbitals
©AB(ry,ry) and atomic orbitals ¢ (r;). The operator of the electrostatic
atom-molecule interaction energy can be expanded in a multipole series. The
energy correction due to the atom-molecule interaction can be calculated
by perturbation theory, using the multipole moments associated with each
atomic and each molecular state. A second-order perturbation calculation
yields dispersion coefficients C,,(r,n), which depend parametrically on the
internuclear distance r between A and B, and on the orientation 7 of the
internuclear AB axis with respect to the atom C' (in our notation, 7 is the
angle between the two Jacobi vectors). See Refs. [102, 223, 49, 42, 11].

The lowest-order multipole moment of a homonuclear Y-state diatomic
molecule such as Nay is the quadrupole moment. The dipole moment is zero
because of the geometrical symmetry of the charge density associated with
the Y-state. The multipole moments of an s-state atom all vanish due to
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the spherical symmetry of the charge density. In a first-order perturbation
calculation, the interaction energy between a homonuclear Y-state molecule
and an s-state atom is therefore zero. In a second-order perturbation calcu-
lation, the lowest order correction to the energy is the 1/R% dipole - induced
dipole interaction.

The n-dependent atom-molecule dispersion coefficients C,,(r,n) can be
expressed using spherical dispersion coefficients CZ0%(r) [267]. The latter are
obtained by expanding the atom-molecule interaction potential in Legendre-
polynomials (see the Appendix I).2

Dispersion coefficients for the long-range Na(3s) - Nay(a®3]") interaction
have been calculated by M. Rérat and B. Bussery-Honvault [228] using a
method of dynamic polarizabilities at imaginary frequency. For the Nay
equilibrium distance fixed 7 = 5.2 A, they have published the values

C" = 3216 a.u. , C2%2 = 997 au. . (4.21)

The corresponding Cy coefficients for perpendicular and for linear Na—Nay
geometries are [228]:

1
cl = o004 —_ 22 — 3662 au. | (4.22)
V5
1
Cy = O — ——C2% = 2993 a.u. . (4.23)

25 °

We note that their computed value for C0% is quite similar to the Cg coeffi-
cient (4.16) of the model pairwise-additive surface.

Dispersion coefficients for the Na—Nay(v, j) interaction

In the approach outlined above, the positions of the cores A*, BT and
Ct were assumed fixed, and only the motion of the electrons was treated
quantum-mechanically. The atom-molecule dispersion coefficients considered
above therefore depend on the distance r between A and B and on the angle
1 between the two Jacobi vectors r and R.

In an alternative approach, one might define atom-molecule dispersion co-
efficients C7V'7"% describing the asymptotic behaviour of the atom-molecule
potential coupling matrix Vi, arising from the Arthurs-Dalgarno expan-
sion [14, 204, 152]. The dispersion coefficients C/*7"% can be calculated from
the r- and n-dependent coefficients, or from the spherical dispersion coeffi-
cients CLOL using the vibrational wavefunctions x,;(r) of the AB molecule
(see the Appendix I).

20ur notation CLOL is consistent with Visser’s notation in Ref. [267], where molecule-
molecule dispersion coefficients are denoted CL=L*L. In the case where "molecule” b is an
S-state atom, we have Ly = 0 and L, = L.
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4.4.6 Ab initio potential surfaces

The striking feature of the existing ab initio potential energy surfaces for spin-
aligned alkali trimers [100, 53, 247] are the strongly attractive non-additive
forces for geometries near the equilateral (Ds;) equilibrium configuration.
These surfaces are considerably deeper than their pairwise-additive counter-
parts. The three-body terms for the equilibrium geometries are reported to
vary from &~ 120% for Li to 50% for Cs, compared to the value of the pairwise
additive surface [247].

PES by J. Higgins et al.

Historically, the potential energy surface for Nags calculated by J. Higgins et
al. [100] was the first ab initio surface for a spin-polarized alkali trimer. N. J.
Wright and J. M. Hutson used this potential energy surface in their work on
localized anharmonic modes and transition-state spectroscopy of Nag [278].
P. Honvault et al. used the surface to compute cross-sections for reactive Na
+ Nay collisions at ultralow energies [248, 219].

The ab initio potential surface has a global minimum value of —849.37
cm~! at the equilateral triangle geometry with the bond distances at r =
4.406 A, which is much smaller than the equilibrium distance r¢ = 5.2 A of
the triplet Nay potential.

The three-body contribution is unrealistically large for atom - dimer ge-
ometries, leading to an atom-molecule van der Waals coefficient Cg that is
roughly four times as large as the calculated values in Eqs. (4.22) and (4.23).
This error can be corrected (or at least reduced) by multiplying the three-
body term with a smooth switching function [219].

The pairwise additive and the full ab initio PES by J. Higgins et al.
[100] are compared in Figs. 4.3 and 4.4, for perpendicular and for linear
configurations.

The full PES for linear configurations is plotted in Fig. 4.4.6 using John-
son’s mapping procedure [122]. The three pathways for linear abstraction
reactions,

AB+C < A+ BC
BC+A < B+CA
CA+B «— (C+ AB

are clearly visible. In Figs. 4.6, 4.7, 4.8 and 4.9, the pairwise additive PES is
plotted as a function of only the hyperradius for various nuclear geometries.
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Pairwise additive PES

Iin 3.0

-528.5 cm™ W\

Rin a,

Full PES

Iin ao

0 5 10 15 20 25

Figure 4.3: Potential energy of Nag in the 1 Al state, for perpendicular
geometries. The spacing between equipotential lines is 50 cm™!. Top: Pair-
wise additive PES. The lowest contour (surrounding the well) corresponds to
—500 cm ™!, Bottom: The full PES. The lowest contour corresponds to —800
cm ™t
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Figure 4.4: Potential energy of Nag in the 1 A}, state, for linear geometries.

The spacing between equipotential lines is 20 cm™!. Top: Pairwise additive

PES. The lowest contour (surrounding the well) corresponds to —340 cm ™.

Bottom: Full PES. The lowest contour corresponds to —380 cm™!.
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CA+B

BC+ A
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A + BC
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Figure 4.5: Potential energy surface 1*A}, of Naz in Johnson’s (z,y, z) coor-
dinates, for linear configurations (z = 0). The three-body contribution to
the potential energy is included. The spacing between the contour lines is
50 cm ™!, and the three innermost closed contours correspond to V = —350
em~!. The three minima of V = —385.3 ecm™! are located at symmetrical
configurations with one atom in the middle between the two others. These
minima become saddlepoints if the coordinate z is allowed to vary. The three
straight dashed lines starting from the origin indicate the configurations in
which two atoms are at the same position, and they correspond to infinite
potential ridges separating the three potential valleys. The six linear asymp-
totic geometries (AB+C, A+ BC, BC+ A, B+CA, CA+ B, and C+ AB),
in which two atoms are at their equilibrium distance and the third atom is
far away, are indicated near the corresponding asymptotic regions.

93



200 T T T T

100 — —
0 —

~ -100~ —

= L J
o
R=|

>, -200 — —
on

b5 = 4
5

-300 — —

L (r= req) perpendicular |

-400 symmetric linear _

L equilateral |

-500 — —

_600 | 1 | 1 | 1 | 1
10 20 30 40 50

hyperradius pin a;

Figure 4.6: Solid line: Pairwise-additive potential energy of Nag for Dg,
symmetry (equilateral triangle). The potential has a global minimum of
—528.51 ecm™'= —760.41 K at the hyperradius p = 12.932 a; = 6.8435 A,
corresponding to the two-body equilibrium distance r = 9.8265 ag = 5.2000
A. The minimum of the potential, —528.51 cm™", is three times —176.17
cm™!, the minimum of the two-body triplet potential. As the hyperradius
tends to infinity, the three interatomic distances become infinite, and the
potential tends to the three-body continuum threshold (chosen as zero).
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Figure 4.7: Solid line: Pairwise-additive potential energy for perpendicular
symmetries Cs, and Dsj,, with atoms B and C' at their two-body equilibrium
distance r = 9.8 ag = 5.2 A, and atom A on the perpendicular bisector of
the line joining B and C'.
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Figure 4.8: Solid line: Pairwise-additive potential energy for linear symme-
tries Cy, and Dy, with atoms B and C' at their two-body equilibrium
distance r = 9.8 ag = 5.2 A, and atom A on the internuclear axis of B and

C.
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Figure 4.9: Solid line: Pairwise-additive potential energy for D, symmetry
(one atom in the middle of the two others).

4.5 Conclusion

We have described the main characteristics of the lowest quartet state of Nag.
The potential energy surface is such that abstraction and insertion reactions
are energetically allowed when a sodium atom Na collides with a sodium
dimer Nay, even at very low collisional energies.

In this thesis, we have not considered the hyperfine structure of Nas.
However, hyperfine interactions play a crucial role in ultracold collisions be-
tween two alkali atoms [192]. Therefore we expect that effects arising from
hyperfine interactions can also be important in Na 4+ Nay collisions. It may

turn out that the effects are negligible for many purposes, but this ought to
be clarified.
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Chapter 5

Loosely bound vibrational
states of the sodium trimer

The work presented in this Chapter may be seen as an extension of the
reactive scattering calculations performed by P. Honvault and J.-M. Launay
et al. [248], who computed cross-sections for collisions between a sodium
atom and a rotating and vibrating sodium dimer:

Na + Nay(v, j) — Na + Nay(v',5') .

By adapting J.-M. Launay’s reactive scattering code, we have computed
bound state energies of Nag just underneath the threshold at which the Nas
trimer may dissociate into Na and Nay. In order to interpret these bound
levels, we introduce a short-range phase shift x4 which is closely related to the
usual asymptotic phase shift § but is continuous across the bound-continuum
threshold. In contrast to true scattering computations, we did not compute
any cross-sections.

Throughout this Chapter, the sodium trimer Nag is assumed to be in the
lowest quartet electronic state 14A45. Our computations are based on the
pairwise-additive potential energy surface, constructed from M. Gutowski’s
[96] potential energy curve for Nay (see Chapter 4). The potential energy
surface of this state has no barriers, so that two arbitrary points in the
classically allowed region of configuration space can be connected by a path
lying entirely in the classically allowed region. As a consequence, a ”chemical
reaction” may occur if a ground state sodium atom collides with a sodium
dimer. The incident atom may replace one of the two atoms in the molecule
- even at low scattering energies.

Our computations are limited to the case of zero total angular momentum

J =10.
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5.1 The hyperspherical method developed by
J.-M. Launay et al.

In order to model reactive collisions between an atom and a diatomic molecule,
J.-M. Launay et al. developed the numerical method known as the hyper-
spherical diabatic-by-sector method [157, 164, 167]. For each reactive system,
a potential energy surface, usually the result of ab initio calculations, is used
as input data. The scattering matrix and state-to-state differential cross-
sections are obtained by solving the time-independent Schrodinger equation
for the nuclear motion numerically.
Up to now, the method has been used to study the following reactions:

K+K, — Ky+K [220]
Li+Li, —  Lip+Li [59]

Na + Nay — Nay (109, 248, 219
S+H, — SH+H 108, 23]
C+H, — CH+H (45, 17, 21]
O+H, — OH+H 107, 12, 13]
N+H, — NH+H [104, 106, 22]
F + Dy — DF + D [103, 186, 105, 106]

Ne + Hf  —  NeH* +H  [111, 112]

He + Hf  —  HeH' +H  [164]

H + HCI — H, + Cl [38]
Hy+Cl — H+HC 159]
F+H, — FH+H 158, 153]
H+H — Hy+H [157]

The method can be summarized as follows.

In a first step, the hyperradial kinetic energy operator associated with
variations of the hyperradius p is omitted. The remaining Hamiltonian only
involves partial derivative terms in the five hyperangles; we refer to it as the
angular Hamiltonian. It is the sum of the angular kinetic energy operator
and the potential energy. Its eigenfunctions are functions of the five hyper-
angles. We call them potiental-adapted angular basis functions, in order to
distinguish them from hyperspherical harmonics. The angular Hamiltonian,
its eigenvalues and eigenfunctions, depend parametrically on the hyperra-
dius p. The hyperradial axis is divided into small sectors; within each sector,
the total wavefunction is expanded in the potential-adapted angular basis
functions, leading to a set of second-order coupled hyperradial differential
equations.

In the second step, a fixed energy is chosen, and the hyperradial equations
are used to propagate a logarithmic derivative matrix along the hyperradius,
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starting deep in the classically forbidden region, where the three particles are
close together, and ending at a large hyperradius. On the hypersphere where
the propagation is stopped, the logarithmic derivative matrix is analysed
in terms of asymptotic solutions using the Jacobi coordinates of all three
arrangements. The matching procedure yields the reactance matrix which
can be converted into the scattering matrix and state-to-state cross sections.

Finally, a remark concerning the terminology. In the case where the atoms
are identical, it may be argued whether or not it makes sense to speak of a
reactive collision.

In calling the scattering process

Na + Nay — Na + Nay

a reaction, we simply wish to emphasize that the corresponding scattering
wavefunction may, in principle, have an important amplitude in the entire
classically allowed region, in all three arrangement valleys.

5.2 Loosely bound vibrational levels of Naj

In the following, our computations of vibrational levels of Nag are laid out
in detail.
Atomic mass
We have used the following numerical value for the mass of the sodium atom:
m(BNa) = m = 41877.8969 a
The corresponding values for the reduced masses are
p(Na-Na) = $m = 20938.94845 ay ,
1(Na-Nay) = 2 m = 27918.59793 ay .

The corresponding value for the reduced three-body mass of Nas is

11(Nag) = \/gm — 24178.21505 a .

5.2.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation [236] is adopted to separate the mo-
tion of the ”"slow” nuclei from the motion of the ”fast” electrons.

The wavefunction of Nas is written as the product of a nuclear wavefunc-
tion (™) and an electronic wavefunction (),

(A, B,C,1,2,3) = ™A, B,CW (A B,C;1,2,3) , (5.1)
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where (A, B,C) and (1,2, 3) are the nuclear and the electronic coordinates,
respectively. The electronic wavefunction /() depends parametrically on the
nuclear coordinates A, B, and C.

5.2.2 Symmetry of the wavefunction

The spin of a single ?*Na nucleus is i = 3/2. The spin of the electron is
s = 1/2. Both particles are fermions.

The 23Na atom consists of the nucleus and eleven electrons: it is a boson.

The complete wavefunction (A, B, C,1,2,3) must therefore be antisym-
metric with respect to any permutation of two nuclei (A < B or B <« C
or C' « A) and with respect to any permutation of two electrons (1 < 2 or
2—3o0r3«1).

We neglect any effects linked to spin-orbit coupling, and we restrict our
study to the spin-stretched states, where the nuclear and electronic spins are

?parallel”. The nuclear function ™ and the electronic function () then

factorize each into a spin () and an orbital (¢) function :

P (A B, C) = x™I)(A B,C) ™) (A, B,C), (5.2)
V(A B, C;1,2,3) = <>(1,2,3) (A, B,C;1,2,3).  (5.3)

The nuclear spin function Y™ (A, B, C') is completely symmetric under per-
mutations of the nuclear coordinates (A, B,C) and is characterized by the
total nuclear spin quantum number

I = Lpae = 3/2+43/2+3/2 = 9/2. (5.4)

The electronic spin function X(el)(l, 2,3) is completely symmetric under per-
mutations of the electronic coordinates (1,2,3) and is characterized by the
total electronic spin quantum number

S = Smax = 1/2+1/2+1/2 = 3/2. (5.5)

X (1,2, 3) is refered to as the quartet spin function, since its degeneracy is
25 + 1 = 4. The complete spin function is the product of ™) and ()

(A, B,C,1,2,3) = ™A, B,C)x“(1,2,3) ; (5.6)
it is characterized by the total spin quantum number F' = 6:
F = Foax = lnax + Smax = 9/243/2 = 6. (5.7)

Hence the total wavefunction factorizes into a spin function and an orbital
function:

Y(A,B,C,1,2,3) = x"9(A B, C)x(1,2,3) x
X <nuc (A,B,C) (A, B,C;1,2,3) . (5.8)
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In the following, we assume that (A, B, C;1,2,3) is the orbital of the
1* A}, electronic state of Naz (see Chapter 4). This state changes sign when
two nuclei are permuted. This can easily be seen for the situation of equilat-
eral geometry, where the electronic wavefunction is a basis of the A/, repre-
sentation of the Ds;, point group. Therefore the wavefunction @™ (A, B, C)
describing the relative motion of the nuclei must be symmetric as to ensure
that the total wavefunction (A, B, C, 1,2, 3) is antisymmetric under permu-
tations of the nuclei.l.

The potential energy surface V(A, B,C) associated with the 114} state
(see Chapter 4) is used as input data for the Calculations concerning the
nuclear motion. The electronic wavefunction ¢V (A, B, C; 1,2, 3) itself does
not appear in the scattering calculations.

5.2.3 Coordinates and the Hamiltonian

The positions of the nuclei A, B, and C' in the centre-of-mass frame are
indicated using the modified form of Smith-Whitten coordinates defined in
Ref. [157]. These coordinates consist of the hyperradius p describing the size
of the ABC triangle and two hyperangles 6§ and ¢ describing its shape (see
Chapter 3).

The complete expression for the Hamiltonian can be found in Ref. [157].
The kinetic energy operator is also derived in the Appendix F. Its complete
form is not needed here, because our calculations are restricted to the case of
zero total orbital angular momentum, J = 0. In this case the wavefunction
does not depend on the Euler angles, and the rotational and Coriolis coupling
terms in the Hamiltonian can be omitted. Only the vibrational part must be
retained.

We write the nuclear orbital wavefunction as

MO(A, B,C) = w(p,6,9) .

We shall omit the label "nuc” on ¢, as there is no risk of confusion.
The Hamiltonian for J = 0 is given by

. P10 .0 W
H= -2/ 1 272 0 .
217 05" ap+ +V(p,0,9) (5.9)

!This can also be seen by considering the asymptotic limit of three separated atoms.
The nuclear wavefunction then describes the motion of three bosonic atoms, and therefore
it is clear that it has to be symmetric. The statement that the nuclear wavefunction is
symmetric when the nuclei are fermions may seem contradictory but is readily explained
by the fact that the electronic wavefunction depends parametrically on the nuclear coor-
dinates.
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where 1 is the three-body reduced mass, V' is the potential energy, and A% is
the square of the grand angular momentum operator for J = 0:

A 4 0 0 1 02
A = ———— —sin20— — — .
0 52000790 cosd 0¢?

(5.10)

As discussed in Chapter 3, H takes the form

A 2 A
H = h_ig 5 0 +H(ang)(p)

“oupap” op

where H®)(p) is the p-dependent angular Hamiltonian
X B2 .
HE® (p) = —AG+V(p.0,0) . (5.11)
1

Our task is to solve the stationary Schrodinger equation for a fixed energy
E:

LI 50 g eb.g) = Bepbe). (.12
Q/J,Osapp ap P P, v, @ - Pp,v, @) .

5.2.4 Adiabatic angular basis functions

We refer to the eigenfunctions go,(fng) (p;0,¢0) (k=1,2,3,...) of the angular
Hamiltonian (5.11) as adiabatic angular basis functions. They depend para-
metrically on the hyperradius p, and they are solutions of the p-dependent
angular Schrodinger equation

()™ (5:0,0) = ex(p) ™ (430,6) (5.13)

Fig. 5.1 shows the lowest 157 computed eigenvalues
() (k=1,...,157)

as functions of the hyperradius p (thin black lines). At large hyperradius
(p — o0) each cigenvalue e\ (p) tends to a distinct vibrational-rotational
energy E(v, ) of the diatomic molecule Nay(v, j) where v is the vibrational
index, j is the rotational index. We did not compute any curves with
asymptotic limits above the threshold for break-up into three free sodium
atoms. The lowest curve €™ (p) tends to the energy E(v =0,j = 0) of the
vibrational-rotational ground state Nag(v=0, j=0). The dashed line and the
dot-dashed line in the figure are the pairwise-additive potential energy V', for

two different geometries:
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Figure 5.1: Potential energy curves and p-dependent eigenvalues of the an-
gular Hamiltonian for **Naz(1?A)) resulting from the pairwise-additive po-
tential energy surface. Thick dashed line: Potential energy for equilateral
triangle geometry Ds,. Thick dot-dashed line: Potential energy for linear
geometry C, with two atoms kept at their equilibrium distance req = 9.8
ag. Thin solid lines: The lowest 157 eigenvalues €x(p) (k= 1,...,157).
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e The dashed line indicates the potential energy for the geometry in
which the three sodium atoms form an equilateral triangle. As p tends
to infinity, this curve tends to the three-body dissociation limit, chosen
as the zero in energy and equal to the energy of three separated ground
state sodium atoms at rest.

e The dot-dashed line indicates the potential energy for the linear geome-
tries in which two atoms remain together, separated by the atom-atom
equilibrium distance r, = 9.834 ag. As p — o0, this curve tends to the
miniumum —176.173 cm ™! of the atom-atom interaction potential (see
Chapter 4).

Formally, the nuclear wavefunction ¢(p, 0, ) can be expanded at each

hyperradial distance p in the set of adiabatic basis functions go,(:mg) (p;0,0):

1 & (an
p(p,0,¢) = WZ@’(“ 2 (p:0, d)ur(p) - (5.14)
k=1

For numerical purposes, the infinite series in the above equation must be
truncated at a finite value N. The Schrodinger equation (5.12) then takes
the form of a system of N coupled second-order differential equations for the
hyperradial functions ug(p):

S ) (55— ) 1™ 00 sr)| = (8- ewlplluwto).

20
(5.15)
where the bracket notation (...|...) indicates the scalar product in the space
of functions of the hyperangles:

T/ ™
(alb) = /0 " i sin29/02 do a*(6,6) b(6, ) .

Using the product rule of differentiation, the coupled hyperradial equa-
tions (5.15) can be rewritten as

(f_pz - i_; + ;—’j [E - ek/(p)]] uk/(p)—i—; {2Pkfk(p>a% + Qk/k(m} ur(p) = 0.

(5.16)
The non-adiabatic terms Py and Q. can be arranged in two matrices, P
and Q, the elements of which are given by

(ang)

Pui(p) = <30,(§“g)(p) %(P)> ) (5.17)
2 (ang)

Qrilp) = <90§§“g)(p) aggg (,0)>. (5.18)
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P and Q have certain symmetry properties, because the angular Hamiltonian
H@9) is hermitian.?

Unfortunately, the non-adiabatic terms (5.17) and (5.18) are difficult to
evaluate numerically. It is clear that they may vary rapidly in the vicinity
of each avoided crossing between any pair of adiabatic potential curves e (p)
and €;41(p). We have therefore not attempted to solve the coupled equations
(5.16) numerically.

An alternative to the adiabatic angular basis could be a constant, p—
independent basis set, consisting of hyperspherical harmonics, for example.
However, a constant basis is not well-adapted either, because the shape of the
classically allowed region varies with the hyperradius. A very large number
of angular basis functions would be needed in order to represent the angular
wavefunction accurately at all hyperradial distances.

The choice of angular basis set will be further discussed in Sec. 5.2.10.

5.2.5 Sector basis functions

The diabatic-by-sector method developed by J.-M. Launay et al. can be
seen as a compromise between an adiabatic and a constant basis set. In this
method, the hyperradial axis is divided into small adjoining sectors, and a
potential-adapted constant basis set is used within each sector.

In our calculations, the range 8.2 ag < p < 50.0 ag on the hyperradial
axis is divided into 297 sectors [a,, by (p = 1,...,297) such that b, = a,4;.
The sector midpoints are denoted ¢, = (a, + b,)/2. The angular Schrédinger
equation (5.13) is solved for each distance p = ¢, through a variational ex-
pansion of gp,(fng) (¢p; 0, ¢) in a large primitive basis of symmetry-adapted hy-
perspherical harmonics with zero total angular momentum J = 0, yield-
ing a set of N = 135 eigenfunctions gp,(fng)(cp;ﬁ, ¢) and eigenvalues € (c,)
(k = 1,...,N). The hyperspherical harmonics retained in the primitive ba-
sis set are of even parity, and they are fully symmetric with respect to the
permutation of two nuclei.

We have not performed any convergence tests, since these had already
been carried out by P. Honvault and J.-M. Launay [248]. However, our

2Differentiation of the identity

0= <<p§ffng) (p) ‘w;(fng) (p) >
with respect to p gives

0 = Pu(p)+ Perlp)

890(8/‘“%)
and 0 = Qw(p) +Qurilp) +2 5p (p)
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results for weakly bound levels (see Sec. 5.2.9) prove a posteriori that the
potential-adapted angular basis set {gp,(cang), k=1,...,135} is converged and
sufficiently large.

For other reactive systems, J.-M. Launay et al. have also performed scat-
tering calculations for non-zero angular momentum, using angular basis func-
tions with J > 0. In this case each angular basis function was a product of a
symmetrical top function of definite parity and a primitive two-dimensional
angular basis function [157]). We note that these (J > 0) angular basis
functions are not hyperspherical harmonics, and they lead to rotational and
Coriolis coupling terms.

5.2.6 Estimation of the level density

Before we proceed in our description of the diabatic-by-sector method, we
shall briefly describe how we obtained a first estimate for the total number
of bound states and of the level distribution in energy.

The non-adiabatic terms P and Q in the coupled hyperradial differen-
tial equations (5.16) cannot be neglected if the equations are to be solved
correctly. However, by ignoring them, one can easily calculate bound levels
for each adiabatic potential curve €,(p) and thus obtain an estimate for the
total number of bound states and for their distribution in energy. Such an
estimate is based on the assumption (which may be false!) that the non-
adiabatic terms induce shifts of the level positions, to lower and to higher
energies, but do not significantly alter the density of states.

The hyperradial Schrodinger equation associated with the k-th adiabatic
curve is

n* ([ d? 15

2u <dp2 4p?
We recall that at large hyperradial distance (p — 00), each curve ex(p) tends
to a distinct asymptotic energy. The asymptotic energies of the curves used
in our computation (k < 135) all lie below the (Na + Na + Na) threshold to
three-body break-up. Each curve therefore tends to a different vibrational-
rotational level E, ; of an isolated Nag(v, j) diatomic molecule in the a®%;
electronic state. The lowest curve €1(p) tends to the Na + Nay(v=0, j=0)
dissociation threshold.

If the non-adiabatic couplings between the adiabatic hyperangular basis
functions go,(f“g) were negligible, the Nas complex would posess true bound
states above the Na + Nay(v=0, j=0) dissociation threshold. However, due
to the strong non-adiabatic coupling, there can be no such states. All true
bound states lie below the Na + Nag(v=0, j=0) threshold. Above this thresh-
old, there may only be meta-stable states, corresponding to a temporarily
bound triatomic complex that will eventually decay into an Na atom and an

)uk<p>+€k<p>uk<p> — Bulp).  (5.19)
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Nas dimer.

Neglecting all non-adiabatic couplings, we have calculated for each adia-
batic potential curve €,(p) (k= 1,...,135) a discrete set of vibrational ener-
gies by solving Eq. (5.19) numerically using the Mapped Fourier Sine Grid
described Chapter 2. The grid extended from p,;, = 8.2 ag t0 pmax = 50.0 ag.
The numerical values of the k-th adiabatic potential curve ex(p) on the
grid were obtained from the values of €,(p) in the sector midpoints (p =
€1, - .., C297) by a cubic spline interpolation. We could have avoided the spline
interpolation by choosing sector midpoints ¢, as grid points. However, for
our purpose, this would not have made any difference, since we were inter-
ested only in a first rough estimate of the level distribution and did not aim
at achieving the highest possible accuracy.

Considering as bound only those levels with energies below the Na +
Nay(v=0, j=0) dissociation threshold, we found that only the lowest 69
curves support any bound levels. For the lowest curve, €1(p), we obtained 31
levels. For the 69th curve, which dissociates to the Na + Nag(v = 2, j = 28)
threshold, we found only one bound level. We have counted a total of 640
bound vibrational levels, 13 of which have binding energies less than 1 cm ™.
The computed energies of all the 640 levels are shown in Figure 5.3.

Due to the finite size of the grid, only the states with classical turning
points lying well within the borders of the grid could be calculated. The
true density of states of our pairwise-additive model potential surface may
therefore be greater than the computed one.

Another important numerical error arises from the choice of the grid step.
In order to keep the calculations simple, we defined the grid step using the
mapping procedure oulined in Ref. [276]. At short distances, up to the
equilibrium distance of the lowest potential curve, the grid step was chosen
constant. At larger distances, the grid step was chosen proportional to the
local de Broglie wavelength

2 15\ ?
271' (ﬁ[Emax — El(p)] — 4—p2) (520)

associated with the lowest adiabatic curve €;(p) where Fy,. is a fixed energy
above the atom-diatom threshold. The grid step thus defined was large
compared to the many sharp variations of the adiabatic hyperradial potential
curves €x(p) (k=1,2,3,...). We recall that the adiabatic curves are not very
smooth due to the large number of narrowly avoided crossings (see Fig. 5.1).
The computed level positions may therefore be quite inaccurate. However,
we may hope that this error does not too much influence the resulting density
of states.

Clearly the Mapped Fourier Grid method is not well suited for solving
the coupled hyperradial equations (5.16) accurately, since the grid step would
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Figure 5.3: Calculated vibrational level positions of Nag, using the hyper-
spherical adiabatic approximation. The zero in energy corresponds to the
Nag(v = 0,5 = 0) + Na dissociation threshold. The energies were computed
using a Mapped Fourier Grid covering the interval 8.2 a.u. < p < 50.0 a.u.
(a) All computed levels. (b) Zoom on the levels near threshold.
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have to be adapted to the sharp features of the adiabatic potential curves and
the non-adiabatic terms. In the mapped grid method described in Ref. [276],
the grid step is not much shorter than half the local de Broglie wavelength,
but it would have to be much shorter in the present case. We believe that
numerical methods involving shorter steps, such as finite difference methods,
would be better adapted.

In spite of all the shortcomings of the present method, it turns out that
our first estimate of the level density agrees very well with results obtained
by a much more accurate approach (see Sec. 5.2.9).

Our estimate ought to be compared with numerical results by J. Wright
and J. M. Hutson [278], who computed 900 bound states of Nag using a DVR
technique. Their computations are based on the potential energy surface
by J. Higgins et al. [100], which incorporates the three-body contribution.
Unfortunately Wright’s and Hutson’s published results cannot be compared
directly to ours, because the 900 levels they computed comprise states of all
symmetries, whereas the states we computed are all of bosonic symmetry.
Furthermore, the potential energy surface they used is considerably deeper
than the pairwise additive surface we used.

In order to predict the true density of states of Nags, our computations
would need to be redone using a more realistic potential surface. The re-
alistic surface must include a three-body term with the correct asymptotic
behaviour. Such a surface could be modelized by introducing a damping
function in order to reduce the three-body term at large hyperradii using
the method by G. Quémener et al. [219]. Furthermore, the grid ought to be
extended to a larger hyperradius.

5.2.7 Coupled hyperradial equations in the sector method

In each sector [ap,by] (p = 1,...,297) on the p hyperradial axis, the wave-

function ¢(p, 6, ) is expanded in the angular basis functions go,(fng)(cp; 0, )
(k=1,...,N):

N
1 an;
o(p,0,0) = sz’i 2 (3 0, d)ur(cyi p) - (5.21)
k=1

The Schrodinger equation (5.12) then leads to a system of NV coupled second-
order differential equations for the hyperradial functions wuy(c,; p),

h* [ d? 15 an
—@ <d—p2 - 4—p2) ur(cp; p) + Zngk’g)(cp?p)uk/(cp;p) = Eug(cyp) -

k/
(5.22)
The coupling matrix elements are given by
Hio® (ep) = (@™ ()™ (o) 0" (c,)) - (5.23)
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The bracket notation on the right-hand side of the above equation indicates
the p-dependent integral over the angular coordinates,

w/2 2r ~
/ df sin 26 / dp 1™ (cy: 0, ) H@2) (p) 0™ (¢, 0, ¢) ;
0 0

it is computed at the boundaries a, and b, and at the middle ¢, of the pth
sector and further evaluated inside the sector using a three-point Lagrange
interpolation formula [157]. The (N x N)-matrix H®8) (c,; p) thus represents
the angular Hamiltonian in the p-th sector. It is diagonal at the sector
midpoint ¢, and becomes non-diagonal as p deviates from c,. The non-
diagonal coupling elements are maximum at the sector boundaries.

It is convenient to arrange NN linearly independent solutions of the coupled
equations (5.22) in an (N x N)-matrix u(cy; p)

Ui ... UIN
u(cy;p) = Lo : (5.24)
unNi ... UNN
so that wy;(cp, p) is the k-th component of the j-th solution in sector p.

The coupled hyperradial differential equations (5.22) can thus be written in
matrix form:

h2 d2 15 an,
{_ﬂ (d—pz - 4—p2) +H®) (¢, p) — E|u(cyp) = 0. (5.25)

In principle, these equations could be solved using a finite difference prop-
agation method such as the well-known Numerov propagator (see, for exam-
ple, Refs. [54] or [32] #). However, in order to compute bound state energies
or the reactance matrix, only the logarithmic derivative matrix is required.
Wavefunctions and their derivatives are not needed explicitly. The logarith-
mic derivative matrix of u(c,; p) is defined as

Z(eip) = o) u i) (5.26)

it verifies a matrix Riccati equation (see the Appendix H).

5.2.8 Basis transformations at sector boundaries

In order to find the transformation law for the logarithmic derivative matrix
Z(cy; p) at the boundaries of the pth sector, we first consider the transforma-
tion of the wavefunction u(c,; p) and its derivative u'(c,; p). Note that we

37 The Data Analysis BriefBook” [32] can also be consulted on the World Wide Web at
http://physics.web.cern.ch/Physics/DataAnalysis/BriefBook/
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did not actually propagate u(c,; p). In our numerical computations, only the
logarithmic derivative was used.

An approximate relation between the solution matrices of sectors p and
(p+ 1) is derived from Eq. (5.21):

ng(ang (0, 0) ulcy;p ZSO(ang (Cpr13 0, 9)ulcprasp) . (5:27)

The above relation is approximate because the two angular basis sets

(o™ ()} and  {9™ ()}

are not complete, their dimensions being finite (N = 135 in the present case).
Eq. (5.27) would be exact if they were complete (N — o).

In the case of outward propagation, the wavefunction of sector p, given by
the left-hand side of Eq. (5.27), is projected on the basis functions of sector
(p + 1). The solution matrix u(c,;p) is thus transformed into u(cpi1;p)
according to

u(cpi130) = Wi(cpi1,6p) uley; p) - (5.28)

The elements of the non-orthogonal transformation matrix W (c,41,¢,) are
defined as the overlap integrals

(08 (o) | 0" () ) - (5.29)

The fact that the transformations W(c,11,¢,) (p = 1,2,3,...) are not
orthogonal should not be seen as a short-coming of the method. If they were
orthogonal, the two angular basis sets would span the same subspace, and it
would not be necessary to perform a basis change in the first place!

The logarithmic derivative matrix (5.26) transforms as

Z(cpr1ip) = Wlcp1,6) Z(cpi )W (Gpr1, ) (5.30)

The transformations W (c,11,¢,) (p = 1,2,3,...) being not orthogonal, the
symmetry of the logarithmic derivative matrix is lost during the propaga-
tion. A logarithmic derivative matrix that is initially symmetric becomes
increasingly non-symmetric as it is propagated from sector to sector. Clearly
the angular basis sets must be chosen large enough in order to ensure that
the physically important block of the reactance matrix remains sufficiently
symmetric.

The procedure for tnward propagation is analagous. The wavefunction of
sector (p+ 1), given by the right-hand side of Eq. (5.27), is projected on the
basis functions of sector p. The solution matrix u(cy; p) is computed from
u(cpt1; p) according to

ll(Cp; P) = W(sz Cp—i—l) u(cp—i-l; /0) ) (5'31>

Wk/k(cp-‘rb Cp) =
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and the logarithmic derivative matrix transforms as
Z(cp;p) = W(cp, cpin1) Z(cpras )W H(cp, cpra) (5.32)

The elements of the non-orthogonal matrix W(c,, ¢,+1) are given by

(D (c) | 03" (cp) ) - (5.33)

The matrices W(c,, ¢p+1) and W (cp41, ¢,), which are used respectively for
inward and for outward propagation, are each other’s transpose, not inverse.

Since each sector basis is incomplete, the diabatic-by-sector propagation
method is not reversible. To see this, one may project a wavefunction from
the basis p onto the basis p + 1 and then back onto the basis p. Clearly one
does not obtain the original wavefunction. In other words, some information
about the wavefunction is lost at each sector boundary.

In order to propagate the logarithmic derivative matrix across the sectors,
we have used a Fortran code written by J.-M. Launay. The code is based on
D. E. Manolopoulos’ version [182] of B. R. Johnson’s logarithmic derivative
propagator [121].

Wi (Cp, Cpy1) =

5.2.9 Logarithmic derivative shooting method

To the best of our knowledge, Frey and Howard [89] and Hutson and Jain
[114] were the first to use the coupled hyperradial equations in order to
compute bound state energies of triatomic systems.

We have adopted a very similar approach. It differs from the cited works
only in the choice of the hyperangular basis set in which the three-body
wavefunction is expanded. Frey and Howard [89] and Hutson and Jain [114]
expand the wavefunction in hyperspherical harmonics, whereas we expand it
in the potential-adapted diabatic basis sets which differ from sector to sector.

Our method is an example of the so-called shooting method for the solu-
tion of ordinary coupled differential equations [39]. For a selected trial energy
E we define two logarithmic derivative matrices, Z 4 and Zp, such that they
correspond to hyperradial wavefunctions which decay exponentially when p
tends to zero and when p tends to infinity, respectively. Z, is propagated
along the hyperradius p in the outward direction, starting in the energet-
ically forbidden region at short hyperradial distance. Zpg is propagated in
the inward direction, starting in the energetically forbidden region at long
distance. Basis transformations are performed at the sector boundaries us-
ing Eq. (5.30) with Z = Z, for outward and Eq. (5.32) with Z = Zp for
inward propagation. We refer to the determinant of the difference of the two
matrices,

det[Z A — Z B]
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as the matching determinant. It is computed at a fixed point in the classically
allowed region. If the energy equals that of a bound state, the matching
determinant vanishes. Bound state energies can thus be found by repeating
the propagation at different energies and searching for zeros of the matching
determinant.

In order to describe a solution of the i-th adiabatic hyperradial equa-
tion (5.19) in the classically forbidden regions, it is convenient to define the
function

kilp) = + v 2ulei(p) — E] (5.34)

where E is the energy, p is the three-body reduced mass and ¢;(p) is the ith
adiabatic potential curve.

We shall use the symbol

Z 4 (cp, p)

to specify the element ”i5” of the logarithmic derivative matrix Z4(cp, p)
belonging to sector p and evaluated at the hyperradius p. The symbol
Zpij(cp, p) is defined analagously.

The outward propagation is started at the inner border (p = a; = 8.2 ag)
of the first sector (p = 1) by setting

ZA,ij(Claal) = 5@"@‘(@1)‘ (5-35>

The inward propagation is started at the outer border (p = bagy; = 50.0 ag)
of the last sector (p = 297) by setting

Zp,ij(c207,bag7) = dijki(bagr) - (5.36)
The matching determinant

det[ZA(cpv p) - ZB(va p)]

is evaluated for a fixed sector number p at a fixed distance p € [a,, b,] using
the Fortran routines DGECO and DGEDI of the Sun Performance Library.

Numerical results are shown in Fig. 5.4. In an energy range of 0.5 cm ™!
below the Na - Nag(v=0, j=0) atom-diatom dissociation limit, we find a total
of eight bound vibrational states of Naz. This result is in excellent agreement
with the simple estimate described Sec. 5.2.6 which suggested that there are
seven vibrational levels in this energy range (see Fig. 5.3).

We believe that the numerical accuracy of the computed bound state
energies is limited mainly by two factors.

Firstly, as mentioned before, the angular basis set is incomplete in each
sector. Therefore some accuracy is lost as the logarithmic derivative is prop-
agated along the hyperradius. For this reason the numerical values for the
bound state energies depend to some extent on the hyperradius at which the
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matching determinant (arbitrary units)

: -1
energy in cm

Figure 5.4: The matching determinant det[Z4(E, p) — Zg(FE, p)] as a func-
tion of the energy E, evaluated at two hyperradial distances: p = 18.1 aq
(full line) and p = 20.1 ay (dashed line). The determinant vanishes at bound
state energies. The zero in energy corresponds to the Na - Nag(v = 0,7 = 0)
atom-diatom dissociation threshold.
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Figure 5.5: The matching determinant for energies near the bound state
energy = —0.20(4 £ 4) cm™!, evaluated for eight different distances p.

matching determinant is evaluated. However, by computing the determinant
at different hyperradial distances, we have estimated this error and found it
negligible compared to the spacings between the levels (see Fig. 5.5). From
this we conclude that the sector basis sets are sufficiently large.

Secondly, the propagation scheme is restricted to the interval 8.2 ag; <
p < 50.0 ag, whereas the true wavefunction is defined on the interval 0 <
p < oo. This could significantly affect the accuracy of the computed binding
energies of levels that are so weakly bound that the amplitudes of their
wavefunctions are non-negligible beyond the borders of the grid, especially
at long distance. This error is more difficult to estimate because our method
only yields the logarithmic derivative matrix but not the wavefunction itself.
The wavefunctions are therefore difficult to visualize. Of course one could
test the convergence of the computed energies by extending the grid to larger
hyperradial distance. While there is no principle obstacle to extending the
grid beyond p = 50 ag, it cannot be done easily with the current version of the
code. Asmentioned in Sec. 3.3 of Chapter 3, the primitive hyperangular basis
set, which is used to compute the potential-adapted basis set, becomes very
inconvenient in the three asymptotic atom-diatom regions of configuration
space. Moreover, the wavefunction of the least bound level may extend to
arbitrarily large distances, depending on the value of the scattering length.
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5.2.10 Alternative methods for solving the hyperradial
equations

There are a few alternatives to the diabatic-by-sector method.

Instead of using the sector-basis sets, one may expand the wavefunction
in a truely adiabatic, p-dependent angular basis set. Undoubtedly this is con-
ceptually very appealing. The adiabatic basis can be constructed numerically
by diagonalizing the angular Hamiltonian on a fine mesh of grid points on the
p-axis. The number of mesh points would have to be larger than the number
of sectors in the sector method, in order to ensure that the non-adiabatic
couplings are represented accurately. However, the adiabatic basis set would
be optimum at all distances, not only at the sector midpoints.

A good compromise between the sector-basis sets and the adiabatic ba-
sis could be the split-diabatic basis set invented by B. D. Esry and H. R.
Sadeghpour [76], a p-dependent, potential-adapted basis set which is nei-
ther diabatic nor adiabatic and which varies less violently than the adiabatic
basis.

V. Kokoouline [133] has computed bound vibrational states of the helium
trimer *Hes by solving the coupled hyperradial equations in the adiabatic hy-
perangular basis using a hyperradial discrete variable representation (DVR),
combined with a smooth variable discretization [201]. While there can be
no principal obstacle to applying the same method to ?*Nag, we believe that
the DVR basis set would not be very efficient in the case of Nags, because
the non-adiabatic hyperradial couplings between the adiabatic hyperangular
states are much more violent for Nas than for Hes: in the case of Hes, the
spacing between the grid points on the p hyperradial axis can be adapted to
the local hyperradial de Broglie wavelength, but for Naz the grid step would
have to be adapted to the sudden variations of the non-adiabatic couplings,
as we already mentioned in Sec. 5.2.6.

The ”Smooth Variable Discretization Enhanced Renormalized Numerov
propagator” (SVDERN) developed by G. A. Parker and F. D. Colavecchia
et al. [210, 54] is designed to propagate the R-matrix (the inverse of the
logarithmic derivative matrix) along the hyperradius, using an adiabatic hy-
perangular basis. The SVDERN propagator could thus replace the loga-
rithmic derivative propagator by Johnson and Manalopoulos we used in our
computations.

Furthermore, the three-point Numerov recursion formula, Eq. (22) of
Ref. [54], which is the basis of the SVDERN propagator, can be read as a
generalized eigenvalue problem. By solving this system numerically, perhaps
iteratively, it might be possible to compute bound state energies and wave-
functions. The proposed method is analagous to B. Lindberg’s method [171]
of solving the one-dimensional Schrodinger equation. We think that this alge-
braic method might provide a very interesting alternative to the logarithmic

119



derivative shooting method.

Numerov’s finite difference formula relates a given grid point on the p
hyperradial axis only with the two neighouring grid points, whereas a DVR
scheme relates each grid point with all the other grid points. The Numerov
propagator is equivalent to a tridiagonal matrix representation of the Hamil-
tonian, whereas a DVR or pseudo-spectral scheme yields a full matrix. There-
fore, if the grid step must be very small for some reason or the other (for
example, if the grid step is dictated by the sharp variations of the potential
coupling matrix), one may expect that the Numerov-representation of the
Hamiltonian will be much more efficient than the DVR-representation.

5.3 Asymptotic analysis using Jacobi coordi-
nates

In the previous Section, we have shown that the hyperspherical diabatic-by-
sector method can be used to compute correct energies of vibrational levels
of spin-polarized Naz. The major shortcoming of the method is probably
that it does not yield the wavefunctions and that it offers little insight into
the structure of the bound levels. Furthermore, as explained before, it does
not allow to compute the energies of states that are too weakly bound.

In order to obtain a better picture of weakly bound states, we have com-
puted their energies by a different method. We have introduced an alternative
phase shift which has some similarities with a quantum defect and which al-
lows us to distinguish between "resonant” and "non-resonant” bound states.

Before we present our method and the results, we shall try to convey the
main ideas of quantum defect theory. We shall also review the stationary
scattering formalism of rearrangement collisions for the general case of three
distinct atoms A, B, and C and arbitrary total angular momentum J > 0.

5.3.1 The quantum defect

In its original sense, the quantum defect §; is a parameter in the Rydberg

formula
const

(n — (5[)2

for the energy levels of an electron in the Coulomb field of an ionic core.
The formula can be derived by writing the radial wavefunction of the excited
electron at large distances as a linear combination of regular and irregular
Coulomb functions and applying the bound state boundary condition. The
energy levels corresponding to higly excited states are thus given by a single
formula with only one parameter: the quantum defect.

Ew = — (5.37)
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The concept of a quantum defect can be extended to multichannel systems
and to potentials which fall off faster than the Coulomb potential.

Although the expression ”quantum defect” has its origin in the interpre-
tation of bound levels, quantum defect theory is explained more easily using
the language of collision theory. In the following, we try to give a short
overview which is not intended to be exhaustive or mathematically rigorous.

The basic requirement for the applicability of quantum defect theory is
that the configuration space can be divided into an inner region, in which all
the particles may interact strongly, and one or several asymptotic regions, in
which the system splits into two fragments, such as an atomic core and an
electron, or a diatomic molecule and an atom. In each asymptotic region,
the radial wavefunction u(E,r) for the relative motion of the two fragments
can be expressed as a linear combination of two energy-smooth reference
functions f(E,r) and §(E,r) such that

u(E,r) = f(E,n)A(E,r)—g(E,r)B(E,r) (5.38)

u'(E,r) = f(E,r)AE,r)—g(E,r)B(E,7) (5.39)
where r is the distance between the two fragments, E is the energy, and the
prime indicates the radial derivative, 9/0r. If f and g are exact solutions
of the radial Schrédinger equation that includes the exact potential, the
coefficients A(E,r) and B(E,r) do not depend on r, otherwise they verify
the so-called variable phase equations [46].

Traditionally, the function f(E,r) is chosen regular in the origin (r = 0),
and the function g(F,r) is defined such that it is locally dephased by 90° with
respect to f(E,r) in the classically allowed region at short distances. While
f(E,r) does not necessarily have to be regular in the origin, it is essential
that f and g are linearly independent and continuous in energy. J. P. Burke
et al. [44] defined them simply by imposing a JWKB-like initial condition
at the boundary between the inner and the outer regions. Assuming that

the wavefunction u(FE,r) is analytic in energy, the coefficients A(E,r) and
B(E,r) are analytic as well and can be extrapolated across thresholds.

The usual reactance matrix K (FE) and the scattering matrix S(E) are
recovered from A(E,r) and B(E,r) using the energy-dependent linear trans-
formation between the base pair of short-range solutions f(E,r) and g(E,r)
and a base pair of long-range solutions f(F,r) and g(E,r). By definition,
the latter are mutually dephased by 90° in the limit » — oc.

The original form of quantum defect theory was developed by M. J. Seaton
in order to describe the properties of an electron in the Coulomb field of an
ionic core (see his review article [240]). For these systems, the long-range
reference functions f(E, R) and g(E, R) are Coulomb functions, which means
that they never approach the sinusoidal free-particle solutions [236].

If the asymptotic interaction between the two fragments falls off faster
than 1/r, the long-range functions f(F, R) and g(F, R) for open channels
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are chosen to behave like j;(kr) and n;(kr), respectively, when r — oo,
where j; and n; are the Riccati-Bessel and Riccati-Neumann functions (i.e.
the regular and irregular solutions of the radial Schrodinger equation for a
free particle). The long-range functions for closed channels are defined such
that they behave like rising and falling exponentials, exp(xr) and exp(—xr),
respectively.

The energy-dependent linear transformation between the analytic base
pair (f,g) and the pair of long-range functions (f, g) can often be described
analytically using simple energy-dependent quantities, such as Milne’s ac-
cumulated phase [126] or parameters measuring deviations from the JWKB
approximation at energies close to thresholds [192, 222]. Using these quan-
tities, the coefficients A and B defined in Eqgs. (5.38) and (5.39) can be
converted into the standard Jost functions or the K-matrix or the S-matrix.

We may cite three main applications:

e search for bound states,
e parametrization of resonances,

e analysis of threshold effects.

Quantum defect theory has been used extensively by many groups in order
to interpret spectra of Rydberg atoms and molecules, as well as threshold
phenomena in atomic and molecular collisions (see the reviews M. J. Seaton
[240], by M. Aymar et al. [16] and by H. R. Sadeghpour et al. [230]).

There have been few attempts up to now to extend quantum defect theory
to collisions between atoms and molecules. M. Raoult and G. G. Balint-Kurti
[221] studied the rotational predissociation of Ar-Hy within the framework of
multichannel quantum defect theory (MQDT), and I. Fourré and M. Raoult
[87] calculated bound states of the van der Waals complex Ar-NO using
quantum defect techniques.

As far as we know, the present study is the first attempt to define a
quantum defect for a reactive atom-diatom system.

Notations and formal relations

We shall denote short-range quantities by a bar. The functions f(E,r) and
g(E,r) are defined by specifying their behaviour at some finite distance,
whereas f(E,r) and g(E,r) are defined by their asymptotic behaviour for
r — 00.

In analogy to Egs. (5.38) and (5.39), the wavefunction u and its radial
derivative v’ can be expressed in terms of the long-range functions f and g
as follows

u = fA—gB (5.40)

W = f'A-¢B (5.41)
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The pairs (f, g) and (f, ) are related to each other by an energy-dependent
matrix S (not to be confused with the S-matrix or scattering matrix) such

that P ; o g
/9 _ g ff Pfg
(5 2)-(L )2 &) (542

By comparing Egs. (5.38) and (5.40), one sees that the pairs of coefficients
(A, B) and (A, B) are related as follows:

(5)= (% 5)(5) (5.43)

In the case of multi-channel systems, these quantities become matrices,
and we shall denote them by bold captital letters: u for the solution matrix,
(F, G) and (F, G) for the short-range and the long-range reference functions.

5.3.2 Scattering matrix for rearrangement collisions

We now consider a collision of an atom A with a diatomic molecule BC'" at
an energy sufficiently low so that a break-up into A + B + C' cannot occur.
In the most general case, all three arrangements of atoms are possible final
states:

A+ BC

A+BC — { B+CA . (5.44)
C + BA

This means that all three sets of Jacobi coordinates are needed for a complete
analysis of the scattering event.

In each arrangement valley A, outside the reaction region, the wavefunc-
tion can be expressed conveniently using the Arthurs-Dalgarno expansion
(see the Appendix I)

U{%l (Rx)

P BLC) = D Vi (R i) o () = (5.45)

vjl
where r), and R, are the Jacobi vectors of the A\-arrangement, ]‘-IZM are cou-
pled spherical harmonics, gpf\fj}?) is a vibrational wavefunction of the diatomic

molecule of the A-arrangement, and u{fgl(R,\) is the radial wavefunction de-
scribing the relative motion of the atom and the diatom. The indices v and
J are the vibrational and rotational quantum numbers associated with the
diatomic molecule of the A-arrangement, [ is the rotational quantum num-
ber associated with the Jacobi vector R, J is the total angular momentum
quantum number, and M is the quantum number associated with rotations
of the complete system about a fixed axis in an inertial frame of reference.
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Eq. (5.45) can be cast in a more general form, valid for all three arrange-
ment valleys:

M (vib) “%\;’[z(RA)
AB,C) = 3 S0 DM (B, 1) D () 2 (5 46)

R
A=a,B3,y vjl A

This expression can be used to check whether the wavefunction ¢/™ (A, B, C)
has the correct permutational symmetry with respect to atom exchange.

The Schrédinger equation for the wavefunction (5.46) leads to three sets
(A = «,,7) of coupled second-order differential equations for the radial
wavefunctions u))};(R»):

[_;Z (dcll; - Z(ZRJ;D) _E] M (Ry)

+ > WLV NG ull(Ry) = 0. (5.47)

o' gl

Here pu, is the reduced mass for the relative motion of the atom and the
dimer in the A-arrangement, F is the total energy, and (vjlJ|V|v'j'l'J) are
the elements of the potential energy coupling matrix V(R,). The coupled
equations (5.47) are derived in the Appendix I. Note that they are valid only
in the three asymptotlc regions of conﬁguratlon space where the overlap of the
basis functions V) M(Ry,7) gog\vj )(7‘,\) and Y7} M(Ry, ) gog\, ,),(r,\/) belonging
to different arrangemen‘cs Aand ) is neghglble

For each Jacobi arrangement (A = «, 3,7), it is convenient to split the
potential V' into the atom-atom potential and the atom-molecule interaction
potential such that

V(A B,C) = VA(at_at)(m) + Vfat_mOI)(TA,RA,UA) (5.48)

where 7, is the angle between the two Jacobi vectors ry and R. The coupled
equations (5.47) then take the form

R (& 1)
_ _ By — E
{ 24 (dRi RS ) R ] i ()

+ ) LTV I GTTY wf(R) = 00 (5.49)

auy

where E),; is the energy of a rovibrational level of the diatomic molecule of
the A-arrangement.

The boundary conditions for the coupled equations (5.49) depend on the
particular collision process one wishes to describe. Usually one specifies the
initial state of the ABC system, i.e. its state before the collision. An example
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of an initial state is the situation where atom A is at an infinite distance from
molecule BC(v, ) and the relative angular momentum is characterized by
the fixed quantum number .

In principal, the functions u{fgl(R,\) can be time-dependent wavepackets.
However, we assume that they are real and stationary. In the stationary
picture, the scattering process can be visualized by writing each radial wave-
function u)};(Rx) at large distances Ry as a superposition of an incoming
and an outgoing plane wave,

o—i(kxy; Ra—lm/2) oilkav; Ra—1m/2)

A vi] —
\V k)\vj ot \V k)\vj

with coefficients A),;; and B),j; chosen such that the set of radial wavefunc-
tions {u)};} mimics a specific scattering process.

uf{li(Ry) = By (5.50)

S-matrix

For each initial state \N'v'j'l' and each energy FE, we define the set of ra-
dial wavefunctions u(s)ﬁﬁ v () describing the scattering from the ini-
tial state A'v'j'l" to all possible final states. In the asymptotic regions of
configuration space, these functions are

JM
u(S))\vjl,Xv/j/l/ ()
exp(—ikyy; ) 1 exp(ikyy; Ry) G

\/va Sxvjinorjr — (—1) m Mojl N5

(5.51)

where k),; is the wavenumber for channel \vjl:

1
knj = ﬁ\/zm (E— Ey;) - (5.52)

Here p, denotes the reduced mass associated with the two fragments of the
A-arrangement, and FE),; is the combined energy of the isolated atom and
the isolated diatomic molecule. The quantities SY ,;; are the elements of
the JM-block of the scattering matrix S.

If E > E),j, the channel A\vjl is said to be open. For each open channel,
the functions exp(—iky,;) and exp(iky,;) are respectively associated with a
stationary flux of colliding particles and scattered particles. The S-matrix
can thus be translated into differential cross sections.

125



If £ < E),;, the channel \vjl is said to be closed, and the wavenumber
kxyj is imaginary. Closed channels do not contribute to the flux of particles.
In the asymptotic regions, the closed-channel components of the S-matrix
solution u® are

(S)JM

u ,\vjl,xv'j'l'(RA)
_exp(kaRy) ) PR ) o
S —O SV VS 1 L (—1) T — Pl Nl
v Fwj v Fwj
(5.53)
where )
aj = ;L\/% (Bry — E) . (5.54)
K-matrix

The S-matrix solutions (5.51) are complex-valued. Real-valued solutions,
known as K-matrix solutions, are obtained by forming suitable linear combi-
nations of the S-matrix solutions. In the asymptotic regions, the K-matrix
solutions behave as follows:
u(K)ii\;'[l,Xv’j’l’(RA)
Sin(k:,\ijA — l7T/2) COS(]C)\U]'R)\ - l7T/2)

= 5}\1)- I
I
\V k)\vj \V k)\vj

K}\]'If‘jil,)\/v/j/l/ .
(5.55)

The numbers K3, /5 on the right-hand side are the elements of the reac-
tance matrix K, also called reaction matrix or simply K-matrix. Note that
Eq. (5.55) only applies if the channel Avjl is open. Per definition, the closed-
channel components of our K-matrix solution u®) are the same as those of
the S-matrix solution u®.

It is convenient to express the K-matrix solutions u
solution matrices F and G such that

X) in terms of two

K)IM _ M JM JM
U g (B) = Fiyjiaw i (Bx) — Ggjiaw i (Bx) Kipjiye - (5.56)

The functions F5Y \p (Ry) and G,y (Ry) are defined by their asymp-
totic behaviour at large distances (R) — 00) as follows:
If the channel Avjl is open,

M Jilkxo ) < sin (ko By — Im/2) ¢
F,\UM/U/]-/;/ — Ol N Mgl N §'1
vV k)\vj \V k)\vj

(5.57)
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nl(k’)\ij)\) COS(]{?)\U]'R)\ — l?T/Q)

m Mol NI — — m Oroji N/ 1

(5.58)
where j, and n; are the Riccati-Bessel and Riccati-Neumann functions (see
the Appendix M).

If the channel A\vjl is closed,

JM
G)mjl,)dv’j’l’ -

exp (K R))
F){L}%,)\’U’j’l’ _> ?’lﬁz] 6)\”0]‘[,)\"0’]"1’ (5'59>
JM eXp(—fi/\ujRA)

6>\Ujl7>\l7_)ljlll (5-60)

Glvjiyv i —

v B

when Ry, — oo.

The "reference functions” F /{7@%/\,7},]-,1, and Gi%l,,\'v'j'l' are assumed to be
exact solutions of the coupled differential equations (5.47) resulting from
the Arthurs-Dalgarno expansion. Therefore the reactance matrix K ,\sz\fz Nl il
does not depend on the distances Ry. At large distances, where interchannel
coupling is negligible, the matrices F and G are diagonal. If F and G were
not chosen to be exact solutions of the coupled equations, the reactance
matrix K would not be a constant but verify the K-matrix version of the
variable phase equations [46].

Every solution matrix can be partitioned into blocks corresponding to
open ("O”) and closed channels (”C”). For example, the K-matrix solutions
(5.56) can be written as

u® —

uby ube | { Foo Foc }_{ Goo Goc } { Koo Koc }
u(CKO) ug(c) ~ | Feo Fec Geo Gee Kco Koo |-
(5.61)

Each column of the matrix u® represents a particular solution.

In the following, we choose ky,; to be positive if the channel Avjl is closed.
The block

then summarizes all the solutions corresponding to physical states. They are
charactized by a negligible amplitude of the wavefunction in the forbidden

regions of configuration space.
(K)
Upc
0 )
cc

The block
has no physical meaning because it contains the rising exponentials exp(x,; R»)
from Eq. (5.59)
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The open-open block of the S-matrix is obtained from the K-matrix by
the Caley transformation

Soo = (1+iKpo) (1 —iKpo)™" . (5.62)

Three identical particles

If the three particles are identical, the arrangement index A can be omitted
in most of the above expressions. If the particles are bosons, Eq. (5.46) takes
the form

uyi (R)

e"M(AB.C) = 83 VMR o ()

vjl

(5.63)

where S is the symmetrisation operator and R = (R, R) and r = (r, #) are the
Jacobi vectors of a selected arrangement, for example, the y-arrangement.
The coupled equations (5.49) take the form

B2 l(+1) .
+ Z<Ujlj|v(at—mol)|vlj/llj> uJM

v/j/l/

(R) = 0 (5.64)

,U/j/l/

where g is the reduced mass for the relative motion of the atom and the
diatomic molecule (not to be confused with the three-body reduced mass
defined in Chapter 3).

5.3.3 Matching on the hypersphere

We now return to our study of the sodium trimer Nagz(*A5).

In Sec. (5.2.9), we explained how the hyperradial logarithmic derivative
matrix Z can be propagated along the hyperradius, either in the inward or
in the outward direction. In the following, we shall discuss results obtained
from a logarithmic derivative matrix that was propagated in the outward
direction, from p = 8.2 ag to p = 50.0 a,.

We extracted the reactance matrix K [defined in Eq. (5.56)] from the
hyperradial logarithmic derivative matrix given at p = 50.0 using the long-
range reference functions F(R) and G(R). The numerical method for con-
verting the hyperradial logarithmic derivative matrix into the K-matrix was
developed by J.-M. Launay et al. and is described in Ref. [167]. It is
quite complicated, because the three sets of Jacobi coordinates do not join
smoothly onto the hypersperical coordinates: a segment of the surface of the
hypersphere p = const corresponds to a certain finite interval

RY™ < Ry, < RY™ (5.65)
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for the Jacobi length Ry (see Fig. 3.3 of Chapter 3).

It should be mentioned that G. A. Parker et al. [211] have found an ele-
gant way to bridge the gap between hyperspherical and Jacobi regions using
tangent-sphere coordinates. However, in our work the matching procedure
developed by J.-M. Launay et al. proved to be entirely satisfactory.

5.3.4 Potential coupling matrix for Na - Nay

The three sodium atoms A, B and C' being identical, the Arthurs-Dalgarno
expansion is the same for all three Jacobi arrangements. The radial wave-
functions can therefore be written as
i (R)

where R is the distance between C' and the center of mass of A and B. They
are solutions of the coupled equations (5.64).

For the case of zero total angular momentum (J = 0), we have computed
some elements of the diabatic potential energy coupling matrix V®=mel(R)

(vjlJ |V Et=meD 517 gy (5.66)

using a Fortran routine (vri.f) written by J-M. Launay? and using the
pairwise-additive potential energy surface described in Chapter 4 as input
data.

The diagonal elements of the coupling matrix (5.66) are plotted in Fig.
5.6 as functions of the distance R between the atom and the molecule. The
two lowest thresholds are the ones for break-up into

Na + Nag(v=0, j=0)
and
Na + Nag(v =10, =2) .

These thresholds lie at —163.7492 cm ™! and —163.4298 cm™!, respectively,
measured from the threshold to three-body (Na + Na + Na) break-up.

The influence of the non-diagonal elements on the scattering process can
be assessed from Fig. 5.7. At the distance R = 40 ag, the off-diagonal term
coupling the two lowest rotational states (v = 0,7 =0) and (v =0, j = 2) of
the Nay molecule measures roughly 10% of the energy gap between the two
states. This means that the diabatic coupling is probably not quite negligible
at this distance. At the distance R = 50 agy, however, the ratio between the
coupling element and the energy gap is only 2%.

4Fortran routines for computing the potential coupling matrix are also available on
the World Wide Web at http://ccp7.dur.ac.uk/molcol.html, as part of the Molcol
package [85].
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Figure 5.6: Diagonal elements Vj; of the potential coupling matrix for the
case of zero total angular momentum (J = 0).
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Figure 5.7: Coupling between diabatic channels. The ratio V;;/(Vi; — Vj;)
(" coupling element over energy gap”) is plotted as a function of the atom-
molecule distance R.

By diagonalizing the potential coupling matrix at various distances R,
we obtained adiabatic potential curves which do not cross. By comparing
the adiabatic curves and the diabatic curves, we concluded that the non-
adabiatic coupling between the adiabatic states is probably negligible for all
distances R larger than ~ 50 ay and hence for all hyperradial distances p
larger than ~ 50 ag®

In the following, we shall denote V(R) the lowest of the adiabatic po-
tential curves, which has its asymptotic limit at the Na + Nay(v=0, j=0)
threshold. There is no risk of confusion, V' (R) being the only adiabatic curve
used explicitly in our scattering calculations. At distances R > 35 ag, we

5We recall that the hyperradius p and the atom-diatom distance ~ R become asymp-
totically equal, provided that the separation r between the two atoms forming the diatomic
molecule is limited. At this point it is not necessary to distinguish between mass-scaled
and unscaled Jacobi vectors, because the scaling factors are approximately 1 (see Eq.
(3.27) of Chapter 3).
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approximated it as®

Cs Cs Cuo
where
Ce 3174.60 a.u. (5.69)
Cs 6.6257 x 10° a.u. (5.70)
Cip = 1.03686 x 10° a.u. . (5.71)

We obtained these values by fitting the right-hand side of (5.68) to the com-
puted values of the adiabatic potential curve V(R). The Cj coefficient (5.69)
obtained from the fit is practically the same as the exact value (4.16) 3173.8
a.u. (= twice the dispersion coefficient of Gutowski’s potential curve for the
triplet state of Nay). However, the Cy coefficient (5.70), also derived from the
fit, is too large compared to the two coefficients (4.17) and (4.18) for linear
and for perpendicular geometries, 2.7557 x 10° a.u. and 2.7442 x 10° a.u.
We have not tried to explain this discrepancy, but it ought to be examined
more carefully.

5.3.5 Scattering at energies above threshold

In the following, the threshold for break-up into Na and Nay(v=0, j=0) is
chosen as the zero in energy:

(5.72)

Bound states of Nag are found at negative energies (E < 0), scattering
states of Na 4+ Nay occur at positive energies (E > 0). At energies just above

6In the actual numerical computations, we used the mass-scaled Jacobi length R and
mass-scaled dispersion coefficients C), such that

66 68 CIO
where
Cs 4887.61 a.u.
Cs = 1.1779 x 10° a.u.
Cio = 2.12846 x 10% a.u.

The unscaled and the scaled dispersion coeflicients are related as follows (case of three

equal masses):

n/4
/3
e ()"



the (E = 0)-threshold, one of the three sodium atoms may escape to infinity,
leaving behind a sodium molecule Nay in its vibrational-rotational ground
state (v = 0,7 = 0).

The threshold for break-up into Na and a rotationally excited molecule
Nay(v = 0,7 =2) is at

E(w=0,j=2) = 0.3194 cm™" . (5.73)

Our scattering computations, described in this and the next few sections, are
restricted to the energy range

—07cm™! < F <03cm™!. (5.74)

We did not extend the calculations to energies above 0.3 cm™!, because
this would require taking into account the first excited channel (v = 0,5 =
2,1 = 2). In principal, this can be done very easily, but our first priority was
to understand the purely elastic scattering process.

It may also be possible to extend the present calculations to somewhat
lower energies. At sufficiently low energies, however, the interval (5.65) where
the reactance matrix is extracted becomes strongly forbidden energetically,
and the short-range reference functions f and g defined below will diverge
exponentially within this interval, which could cause numerical difficulties
(this remains to be tested).

In the energy range

Ocm™! < F <03 cm™! (5.75)
the only open channel is the elastic one,
Na + Nay(v=0, 7=0) — Na + Nag(v=0, j=0)

and the physically significant open-open block of the reactance matrix K(F)
is simply a number, Kj;(F), where the index 7”1 ” stands for the channel
numbers (v = 0,5 = 0,1 = 0), v and j being the vibrational and rotational
index of the Nay molecule and [ being the partial wave number associated
with the relative motion between Na and Nas.

In order to analyse the hyperradial logarithmic derivative matrix and to
obtain the K-matrix, we generated the two reference functions F(R) and
G(R) defined in Eq. (5.56) numerically. In the interval (5.65) needed for the
matching procedure, we approximated F(R) and G(R) by diagonal matri-
ces, neglecting all interchannel coupling outside the hypersphere p = 50.0
ag. The diagonal elements F,,(R) and G,,(R) associated with the closed
channels

v # (v=0,7=0,1=0)

were approximated by rising and falling exponentials, respectively.
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The reference functions f = Fi;(R) and g = G11(R) associated with the
open channel

v =(v=0,7=0,1=0)

are defined as the solutions of the radial Schrédinger equation

J'(R) + {/ﬁ— 2“;(}3)] y(R) = 0 (5.76)

obeying the asymptotic boundary conditions
f(R) = k™Y?sin(kR),  g(R) — —kY2cos(kR) (R — o0) . (5.77)
Here k is the asymptotic wavenumber, related to the energy E as

h2k>
B= (5.78)

The physical solution u(R) = w11 (R) (the "open-open” block of the solution
matrix u) is written as

u(R) = f(R)—g(R)K (5.79)

where K = K;; is the open-open block of the K-matrix.

In their study of Na + Nay collisions at ultra-low energy, P. Honvault
and J.-M. Launay [248] computed the functions f and ¢ in Eq. (5.77) using
the de Vogelaere integration technique [63]. In principal, we could have used
the same numerical routine. However, we opted for an alternative method,
based on the Milne equation [194], with the aim of extending the scattering
calculations to negative energies and of searching for bound states. We real-
ized later that we might as well have used the de Vogelaere algorithm, or any
other suitable integration technique. This will be discussed in Sec. 5.3.9.

Since the precise manner of generating the functions f and ¢ does not
seem to matter much, we shall describe our method based on the Milne
equation [194] only briefly. We write f and g in a phase-amplitude form such
that

f(R) = a(R)sin¢(R) , (5.80)
g(R) = —a(R)cos¢(R) . (5.81)

The quantities a and ¢ are refered to, respectively, as the Milne amplitude
and the accumulated phase. The Milne amplitude is a solution of Milne’s
equation

21 1

a’(R) + ﬁ[E — V(r)]a(R) —

=0 (5.82)
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a non-linear second-order differential equation. It is derived in Appendix J.
We rewrite Milne’s equation (5.82) as a system of two coupled first-order
differential equations and solve it numerically using the fourth-order Runge-
Kutta algorithm [39, 187] with a self-adjusting step size. The integration is
started at a large distance, where the potential energy (5.68) is negligible
compared to the energy E, using the initial values a = k=2, @ = 0. The
accumulated phase ¢(R) is given by the identity

¢(R) = const +/ %. (5.83)

The integration constant in the above equation is chosen such that f and
g verify the asymptotic boundary conditions (5.77). We computed the in-
tegral (5.83) from our numerical values for [a(R)] ™2 and - [a(R)]™2 on the
non-equidistant grid of integration points R; (1 = 0,1,2,3,...) by applying
Hermite’s trapezoidal rule [39] to each interval [R;, R;11]. The integration is
stopped at the inner boundary of the matching interval (5.65).

From the hyperradial logarithmic derivative matrix given at the hyper-
radius p = 50 ag and the values of the reference functions F and G in the
matching interval (5.65), we extracted the K-matrix using the matching code
developed by J.-M. Launay. We have used the matching routine as a ”black

7

box”.
From the K-matrix element K1;(FE), we calculated the asymptotic s-wave
phase shift §(F) modulo 7 using the identity

tan5(E) = Kll(E). (5.84)

The computed phase shift and its derivative with respect to the energy
are plotted in Fig. 5.8, together with an alternative phase shift to be defined

in Sec. 5.3.6. The derivative of §(F) is singular at threshold (F = 0), in
accordance with the threshold law [150] for the s-wave phase shift:”

tand oc EY? . (5.85)

"Threshold laws and effective range expansions for scattering by long-range 1/R™ po-
tentials (n > 2) can be derived elegantly using the variable phase equation for the partial
wave phase shift [168]. The leading terms of the Jost function at low energy can be found
similarly, using the variable phase equations for the Jost function [275].

In the low-energy limit (kK — 0) the tangent tand; of the [th partial wave shift J; is
proportional to k211 where k is the asymptotic wavenumber, provided that the potential
tends to zero faster than 1/R2+3.
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5.3.6 Scattering at energies below threshold

At energies below the atom-diatom threshold, the only physical states of the
triatomic system Na + Na + Na are bound states of Naz. However, at ener-
gies sufficiently close to the Na + Nag(v=0, j=0) threshold, the trimer may
perform vibrations of very large amplitude, such that it separates temporarily
into an atom and a molecule. We therefore find it appealing to regard such
vibrations as collisions between Na and Nas at negative energy. One may ex-
pect that in those regions of configuration space in which the atom is far away
from the remaining dimer, the bound state wavefunction of Nag resembles a
continuum wavefunction, in the sense that it factorizes approximately into a
vibrational-rotational function of Nay, and a radial wavefunction describing
the relative motion (the ”collision”) of Na and Nay. We have therefore tried
to analyse the radial wavefunction for negative energies in terms of two oscil-
lating reference functions f(R) and g(R), in much the same manner as it is
analysed for positive energies in terms of regular and irregular Riccati-Bessel
functions.

Following J. P. Burke et al. [44], we defined the pair of short-range
reference functions f and g by identifying them at a fixed distance R, with
the two linearly independent semi-classical solutions

B R
fsc(R> = [kloc(R)]_1/2 Sin/R kloc(R,> dR, (586)
and
R
Gse(R) = —[kioe(R)] ™2 cos /R kioe(R') dR' (5.87)

where kio.(R) is the local wavenumber

bioe(R) = 3 /3R~ V(R)] (5.88)

As before, the energy F is measured with respect to the Na 4+ Nay(v=0, j=0)
threshold, and V/(R) is the adiabatic potential curve (5.68). The reference
functions f and g and their derivatives thus satisfy the initial conditions

f(RO) = fTSC(RO) 9 g(RO) = gSC(RO) 9 (589)

f'(Ro) = [e(Bo) . §'(Ro) = Goe(Ro) - (5.90)
These initial conditions imply that f and g are mutually dephased by 90°
at distances R ~ Ry. Furthermore, they guarantee that f and g are smooth

functions of the energy, at any fixed distance R and for all energies larger
than V(Ry).
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In analogy with Eq. (5.79) we write®

u(R) = f(R)—g(R)K (5.91)

which defines the short-range reactance matrix K. In the present single-
channel formalism, K is simply a number. We define the short-range phase
shift 4 modulo 7 implicitly by the relation

K = tanyu . (5.92)

We might call p a quantum defect. However, because of its close analogy
with the ordinary long-range phase-shift §, we prefer to call u simply the
short-range phase shift. f and g being continuous functions of the energy,
the short-range phase shift u(E) is continuous as well, notably at threshold
E=0.

We chose somewhat arbitrarily

R() = 32.57 ag , (593)

which is equivalent to the mass-scaled distance Ry = 35.0 ag [see Eq. (3.27)].
At this distance the potential (5.68) measures

V(Ry) = —0.7153 cm™" . (5.94)

It might be possible to extend the computations to lower energies by choosing
a smaller value for Ry.

We generated the functions f and § numerically for selected energies in
the interval (5.74) by integrating the Milne amplitude a(R) in the outward
direction, starting at Ry = 35 ag and stopping at a distance where the po-
tential (5.68) was negligible compared to the energy (E < 0 or £ > 0).

Fig. 5.9 shows f and g for zero energy (E = 0) as functions of the
mass-scaled distance R. In the range (Ry,o0), f and g each have only two
nodes. Since the local de Broglie wavelength in the classically allowed region
increases when the energy E decreases, one could expect the number of bound
levels in the energy range

V(Ry) = —0.7153cm™ < F < 0cm™! (5.95)

to be of the order of only two. If the energy-dependence of the logarithmic
derivative of the wavefunction u(R) was negligible at the distance Ry, there
should be one or two, at most three, bound states in the energy range (5.95).
However, our numerical results which are presented below show that the

- 8We use the bar on the symbols f and g to distinguish between the short-range functions
(f,g) and the long-range functions (f,g). The bar on R is used to distinguish between
the mass-scaled distance R and the unscaled distance R.
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Figure 5.9: Short-range reference solutions f and g at zero energy for dis-
tances R > 35 ag.
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density of states is considerably larger due to resonances in the short-range
phase shift p(E).

We computed the short-range reactance matrix K by analysing the hy-
perradial logarithmic derivative matrix on the hypersphere p = 50 ag using
the reference functions f(R) and g(R) in the "open” channel

(v=0,j=0,1=0) = "1

and the usual rising and decaying exponential functions in the other channels.

From the element K(FE) = K;(E) of the short-range reactance matrix
K we obtained the short-range phase shift u(E), a laddition d’un multiple
de m pres®. Tt is plotted in Fig. 5.8, along with the conventional phase shift
O(E).

5.3.7 Resonances

In the energy range (5.74), the calculated short-range phase shift u(E) passes
through ten resonances, seven of which lie below the bound-continuum thresh-
old (see Fig. 5.8). Fig. 5.10 shows the behaviour of the phase shift u(FE)
near the resonance Fy = 0.064357 cm™'. The three resonances found above
threshold manifest themselves also in the long-range phase shift §(F).

In the vicinity of each resonance, the short-range phase shift u(E) in-
creases rapidly by roughly 7 over an energy range I', the width of the res-
onance. At energies sufficiently close to the centre Ej of the resonance, the
phase shift can be approximated by the formula

w(E) = p(Ey) — arctan (5.96)

2(E — Ep)
which is analogous to Eq. (134,10) of Ref. [150] (Landau and Lifchitz,
Mécanique Quantique) describing a resonance in the long-range phase-shift
d(F). The fitted values Ey and I" are given in Table 5.1.

According to Landau and Lifchitz [150], the width of a resonance in the
conventional phase-shift 6(E) can be interpreted as the probability per unit
time for the system to decay. Naively, one could try to interpret resonances
in u(E) in the same manner, be the energy positive or negative. The width
of each resonance in p(FE) could thus be seen as the probability per unit time
for a quasi-bound Nagz complex to decay into an Na atom and an Nay(v=0,
j=0) molecule. Of course, if the energy is negative, the distance between the
two fragments must remain finite. At negative energies, the Na atom and the
Nay molecule remain weakly bound by the van der Waals force, and they will
collide after one vibrational period to form once again a quasi-stable trimer
such that the three atoms remain close together for a while.

9modulo 7
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Figure 5.10: The short-range phase shift ¢ and its derivative g—ﬁbﬁ as functions
of the energy E near the resonance Fy = —0.064357 cm™*.
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Position Fy in cm™' Width I' in em™" Level index w

0.210879 0.00023 -
0.259748 0.016 -
0.178728 0.015 -
-0.064357 0.00019 3
-0.204273 7.2 x107° 5
-0.31222 0.0095 6
-0.341782 0.0026 7
-0.432213 0.0057 8
-0.475856 0.0022 9
-0.603184 0.021 10

Table 5.1: Resonances in the short-range phase shift p(£). The index w
indicates the vibrational level of Nag associated with the resonance (see the
main text and Table 5.2)

Perhaps this simple picture is correct only if the relative motion of the
Na atom and the Nay(v=0, j=0) molecule is semi-classical. In this case
the reference functions f(R) and g(R) display many regular oscillations and
resemble continuum wavefunctions, except in the outer classically forbidden
region. In order to interpret the motion in the classically allowed region at
intermediate distances, the short-range phase shift p could then be used in
much the same manner as one uses the asymptotic phase shift  to analyse
the oscillating continuum functions.

It is well known [245, 93, 82] that every isolated resonance in the asymp-
totic phase shift 6(F) can be related to a time-delay of the scattered wavepacket.
We think that it should be possible to extend the theory of time-delay to res-
onances below threshold, provided that the relative motion of the colliding
partners is locally that of a free particle, so that the stationary radial wave-
function is approximated sufficiently well by a plane wave on a sufficiently
large interval.

Quasi-bound states of triatomic systems are discussed, for example, in
Ref. [146).

5.3.8 Bound states

If the energy F is negative, the short-range reference functions f and g behave
asymptotically as

f(R) — exp(kR)A(E) (5.97)
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g(R) — exp(kR)B(E) (5.98)
when R — oo. Here k is given by
_ V/2u(=E)
-

The coefficients A and B in Eqgs. (5.97) and (5.97) are energy-dependent
amplitude functions. The wavefunction u(R) accordingly behaves as

(5.99)

u(R) — exp(kR)[A(E) — B(E)K(E)] (R — o0) . (5.100)
At energies E such that
A(E)-B(E)K(E) = 0 (5.101)

the wavefunction u(R) decays exponentially when R — oo. Such energies
correspond to bound states.!® By comparing Egs. (5.97), (5.98) and (5.80),
(5.81), one sees that the Milne amplitude a(R) diverges as exp(kR) and that
Milne’s accumulated phase ¢(R) converges to an energy-dependent value
B(E):

lim ¢(R) = B(F) . (5.102)

R—oo

The bound state condition (5.101) can thus be written as
sin B(E) + cos B(E) K(E) = 0. (5.103)
By searching for zeros of the function
D(E) = sinf(E) + cos 3(E) K(E) (5.104)

(see Fig. 5.11), we obtained numerical values for the energies of ten weakly
bound states in the energy range

—06cm™! < F <0cm™!. (5.105)

These energies are listed in Table 5.2, along with values obtained by the
hyperradial method described in Sec. 5.2.

The values £ and E® agree very well, in the sense that the differences

|E ) — E(l)\ are small compared to the spacings between two different vibra-

tional levels. The logarithmic derivative matching method does not yield the

0The condition (5.101) can be generalized to the case where more than one channel are
treated like locally open channels. If there are N locally open channels, the bound state
condition takes the form

det[A(E) — B(E)K(E)] = 0

where A, B and K are square matrices of dimension N x N.
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Figure 5.11: The quantity D = sin(/5) 4 cos(5) K as a function of the energy
E. Bound state energies are zeros of D.
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Level Computed energy Comment
using HS coord. using HS + Jacobi coord.

w E® in em™! E® in cm™!

1 not found -0.001615 -
2 -0.0440 -0.05472 -
3 -0.0642 -0.06446 R
4 -0.11715 -0.12102 -
5 -0.2041 -0.204291 R
6 -0.3093 -0.309728 R
7 -0.3407 -0.341034 R
8 -0.4257 -0.42578 R
9 -0.4710 -0.471537 R
10 -0.5205 -0.5205 R

Table 5.2: Computed energies of highly excited vibrational levels of Nag(*A).
The zero in energy lies at the threshold for break-up into Na and Na,. The
energies B were obtained by the hyperradial method described in Sec.
5.2.9. The energies F® were deduced from the reactance matrix K and the
short-range phase-shift p. Energies near resonances of u are marked by the
letter "R”.
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energy of the very last, least bound level (”1”), which is readily explained by
the fact that the wavefunction of the last level is not negligible outside the
hypersphere (p = 50 ag).

In order to make appearant the link between the resonances and the
bound state energies , we have plotted the latter in Fig. 5.3.8 together with
the energy derivative of the short-range phase shift u(E). The figure shows
that each resonance of u(E) is directly linked to a bound state, and only
the weakly bound states 717, 72”7, and ”4” (see Table 5.2) are not caused by
resonances.

In the previous paragraph, we suggested interpreting the width of the
resonances in 4 as the probability for a metastable Nag trimer to decay into
a weakly bound Na + Nay(v=0, j=0) van der Waals complex. If this inter-
pretation is justified, we may expect that at large distances (R > 35 ag) the
amplitudes of the stationary normalized wavefunctions for the non-resonant
bound states 717, 72” and ”4” will be larger than those of the resonant states
73”7 and 757, 76”7, 777, 87,797 710”. In order to verify whether this hy-
pothesis is true, it would be necessary to compute not only the phase shift,
but also to generate the complete normalized wavefunctions of these weakly
bound levels. Unfortunately, this cannot be done easily with the scattering
code we used. A DVR method should be more appropriate. However, we
are not aware of any DVR code designed to compute the very weakly bound
states that are the subject of the present study.

It should be noted that all computed values E® are slightly smaller
than the corresponding values E®. In the case of the very weakly bound
levels 727, 73", perhaps also ”4”, this systematic error might be explained by
the neglect of the wavefunctions’ exponentially decreasing tails outside the
hypersphere (p = 50 ag) in the hyperradial method.

In our calculations using the Jacobi coordinates there are probably many
other sources of error:

e Some accuracy may be lost due to the matching between hyperspherical
and Jacobi coordinates.

e At energies sufficiently far below the E(v = 0,5 = 0) threshold, the
exponential growth of our reference functions f(R) and g(R) starts
at a short distance, such that f(R) and g(R) tend to become linearly
dependent within the matching interval (5.65). If the linear dependence
is too strong, the K-matrix cannot be computed correctly.

e All interchannel coupling was assumed negligible outside the hyper-
sphere p = 50 ay.

e Our adiabatic potential curve V' (R) may not have been realistic enough.
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Figure 5.12: Resonances and bound state energies. Full red line: the energy-

derivative 3—%. Dashed blue lines: bound state energies.
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It is striking that the numerical error is larger in the case of the non-
resonant states 71”7, 72”7, and ”"4”, compared to the resonant states. This
could be explained by our earlier hypothesis, namely that the wavefunctions
of the non-resonant states have a relatively large amplitude at large distance,
i. e. outside the hypersphere p = 50 ag. For these levels, the numerical values
E® deduced from the short-range reactance matrix K, should therefore be
considered as more reliable than the values E") which were obtained using
only hyperspherical coordinates.

We expect that the computed value for the binding energy of the very
last bound level (717) is extremely sensitive to any changes in the long-range
part of the adiabatic potential V' (R), in particular to the value of the Cg
coefficient. It would be important to check to what extent the results for
the other bound levels depend on the numerical values of the Cg, Cg and Cg
coefficients used to approximate the potential at large distances. If it is true
that the wavefunctions of the non-resonant states 717, 72”7, 74” extend far
into the Jacobi regions, their energies should be more sensitive to the form
of the potential curve V(R).

5.3.9 Comment on the Milne equation

Many authors [44, 192, 126] have used the Milne equation (5.82) in order
to generate a base pair of linearly independent solutions f(R) and g(R) of
the radial Schrodinger equation numerically and to obtain the accumulated
phase parameter 5(E) defined in Eq. (5.102).

We believe that the method has two major drawbacks.

Firstly, it is difficult to test the numerical accuracy of the solutions f(R)
and g(R) if these are constructed from the Milne amplitude a(R) and Milne’s
accumulated phase ¢(R) using Eqgs. (5.80), (5.81) and (5.83). In fact f(R)
and g(R) given by these equations are such that their Wronskian

WIf,g] = f(R)g'(R) — f'(R)g(R) (5.106)

equals exactly one, W|[f, g] = 1, whether the Milne amplitude a(R) solves
Milne’s equation (5.82) or not. Therefore, if f(R) and g(R) are generated
from Milne’s amplitude and the corresponding accumulated phase, the Wron-
skian (5.106) cannot be used to check whether f(R) and g(R) solve the radial
Schrodinger equation (5.76).

Secondly, the Milne amplitude may vary violently if the JWKB approxi-
mation fails. In this case a very small step size may be needed to solve the
Milne equation numerically, leading to a loss in numerical accuracy. This is
especially worrying, because there is no simple means to check the accuracy
of the computed functions f(R) and g(R), their Wronskian being constant
by definition.
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In order to investigate the Wigner threshold law, we integrated Milne’s
amplitude in the inward direction, starting in the asymptotic region at large
distance using JWKB-like initial conditions a = k=2, ¢’ = 0 at an energy-
dependent distance where the potential Cs/R® potential was negligible. We
found it impossible to compute the amplitude correctly at extremely low
energies because it assumed a step-like behaviour. We did not experience the
same kind of problem when integrating the Milne amplitude in the outward
direction, again starting with JWKDB-like initial conditions: in this case the
Milne amplitude became oscillatory (not step-like) at large distances,

a(R) — A+ Bsin(kR+ ) (R — 00) (5.107)

A, B and v being constants such that a(R) is positive at all distances, i.e.
0 < B < A. In the limiting case where the JWKB approximation is valid
on the entire range Ry < R < 00, the constants A and B were found to be
A~ kY2 B =0, as expected.

To summarize, we believe that it is generally more convenient to gen-
erate the reference functions f(R) and g(R) independently from each other
by solving the radial Schrodinger equation directly using a standard integra-
tion technique, such as the Numerov algorithm (see the Appendix K) or de
Vogelaere’s method [63].

The Milne amplitude and Milne’s accumulated phase could, however, be
useful in order to study deviations from the JWKB approximation. If needed,
Milne’s accumulated phase parameter G(F), defined for negative energies, can
be obtained from the ratio between f(R) and g(R) at distances sufficiently
far in the forbidden region:

tan B(E) = _éﬁo% . (5.108)

5.3.10 Determine the scattering length from spectro-
scopic data?

The accurate determination of atom-atom scattering lengths is a challenging
problem [115]. In our group, A. Crubellier et al. [57] determined the Na-
Na scattering length using the long-range part of the atom-atom interaction
potential and experimental data for loosely bound levels close underneath
the atom-atom dissociation threshold.

The present numerical study of bound states of Nag was partly motivated
by the wish to find out whether the scattering length [150] for collisions
between Na atoms and Nag(v=0, j=0) molecules might be deduced from
spectroscopic data of weakly bound vibrational levels of Nag, assuming that
such data could be obtained experimentally.
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Fig. 5.8 shows that the computed short-range phase shift p(FE) modulo
m is approximately constant, except near the resonances. Each resonance
is associated with a rapid increase of p by approximately 7 as the energy
E is scanned across the resonance. Thus the phase shift g (modulo 7) at
threshold might be approximated reasonably well by the phase shift at the
bound state energies ”17, 72”7 or "4”.

If the energy of one of the non-resonant states could be measured exper-
imentally, the corresponding short-range phase shift ;1 or the element K of
the short-range reactance matrix could be obtained by requiring the radial
wavefunction (5.91) to vanish exponentially at large distance (R — oo) at the
experimental value of the energy. The experiment could replace the numeri-
cal method that we used to describe the reaction region, where the potential
is not known sufficiently well as to allow to predict the correct value of the
scattering length.

In order to generate the radial wavefunction (5.91), only the long-range
part of the atom-molecule interaction potential V' (R) would need to be known
accurately.

The short-range phase shift p thus determined could be related to the
scattering length « using the long-range behaviour of the short-range refer-
ence functions f and g. The quality of the result will depend on the precise
manner in which f and g are defined. Clearly, they should be chosen as to
minimize the energy-dependence of the short-range phase shift p(F). For
this purpose one could try to define them by a JWKB-like initial condition
at a distance shorter than the distance Ry = 32.57 ag we used in our com-
putations (see Eq. 5.93).

The method proposed is roughly equivalent to the following intuitive way
of proceeding:

1. Measure the energy Eyounq 0f one of the very weakly bound non-resonant
states of Na-Nas.

2. Generate the corresponding radial wavefunction upounq(R) by solving
the radial Schrodinger equation numerically through inward integration
at the energy Floung. Start the integration in the outer classically for-
bidden region where the wavefunction behaves as ~ exp(—kR). Stop at
a distance Ry where the information regarding the adiabatic potential
curve V(R) becomes insufficient.

3. At the distance Ry, match the zero-energy wavefunction u,e., to the
bound-state wavefunction Upoung:

uzero(R) == ubound(R)
u, (R> = u{mund(R) (R:RO)

zero
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4. Integrate tzeo(R) in the outward direction using the radial Schrodinger
equation for zero energy. Stop at a distance where ,¢,,( R) has reached
its asymptotic form

Ugero(R) = (r — a) X const.

The parameter o thus obtained could be an estimate for the scattering
length.

At the present stage, we do not know how such weakly bound states could
be measured experimentally. Besides, it must be tested whether the available
information regarding the long-range part of the Na-Nay potential is accurate
enough to obtain an estimate for the scattering length, or at least to predict
its sign, if experimental data for these weakly bound states was available.
Finally, it would be very important to clarify the possible influence of the
interactions that give rise to the atomic hyperfine structure.

5.4 Solving the coupled equations in the three
Jacobi regions

Jacobi coordinates provide a much more natural description of the triatomic
system than hyperspherical coordinates if one atom is relatively far away from
the two others. Their geometrical meaning is clear, and they are better suited
than hyperspherical coordinates for analysing the relatively weak interactions
between the atom and the molecule at intermediate and large distances.

The existing version of the reactive scattering code developed by J.-M.
Launay et al. does not allow to take into account any residual couplings be-
tween the asymptotic channels vjl outside the hypersphere p = puax (as be-
fore, v and j label the rotational-vibrational states of the diatomic molecule,
and [ is the partial wave number for the relative motion between the atom
and the dimer). Therefore the hyperradial logarithmic derivative matrix
must be propagated up to a relatively large hyperradius ppa.., before it can
be analysed in terms of asymptotic solutions expressed in Jacobi coordinates.

It would be a great step forward if the hyperradial logarithmic derivative
matrix could be analysed on a smaller hypersphere. The numerical efficiency
of the scattering code could probably be greatly improved, and it would
become possible to study the role of the weak couplings between the atom
and the molecule at large and intermediate distances.

The project of analysing the wavefunction on a smaller hypersphere is
not finished yet. We shall summarize what has been accomplished so far,
and describe a numerical method that could be used to convert a ”short-
range” reactance matrix, obtained at a relatively short hyperradius, into the
asymptotic reactance matrix.
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5.4.1 The problem of linear dependence

In order to improve the description of collisions between Na and Nag, it would
be desirable to stop the propagation of the hyperradial logarithmic derivative
matrix Z(p) at a hyperradius py considerably smaller than 50 ag. In principal,
the asymptotic K-matrix could be obtained by analysing Z at the distance
po << 50 ag using the reference functions F(R) and G(R) obeying the K-
matrix boundary conditions described in Sec. (5.3.2). Our initial aim was
therefore to generate the matrices F(R) and G(R) by inward integration, in
direct analogy to the method described in Sec. 5.3.5. The integration was to
be started at a very large distance R, where the atom-molecule interaction
potential is negligible, and stopped at the inner border R™" of the matching
interval (5.65). The only difference between the proposed scheme and the
existing one is that the matching interval (5.65) would lie closer to the origin,
so that F(R) and G(R) would no longer be diagonal due to the interchannel
couplings at distances shorter than = 50 a.

It is a well-known phenomenon that linearly independent solutions of
differential equations can become numerically indistinguishable due to the
limited number of digits on a computer. The problem can sometimes be
overcome by propagating not the solution matrix itself but its logarithmic
derivative matrix, using for example, the Johnson-Manolopoulos propagator
[121, 182].

However, in the present case, knowing the logarithmic derivatives of F
and G is not sufficient for converting the hyperradial logarithmic derivative
matrix into the K-matrix: the functions F and G themselves and their ra-
dial derivatives F/ and G’ are needed for the matching procedure linking
hyperspherical and Jacobi coordinates.

J.-M. Launay [155] tested the following stabilization technique in order
to propagate F and G from large to small distances.

At a certain distance R;, where the N numerical solutions summarized
in the (N x N)-matrix F(R) = F(R) start to become linearly dependent,
the matrix F(© is replaced by

FO(R) = FOR)SY (5.109)
where S;}) is the stabilizing matrix
s = [FOR)] . (5.110)
The procedure is repeated at several distances, Ry, Rs3, ..., Ry such that
Ry < ... < Ry < Ry. (5.111)
The stabilizing matrices
st — [F (R, (m=1,2,...,M) (5.112)
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are stored in memory. The solution F™) obtained after M stabilizations is
related to F© using

FOD(R) = FO(R)SWSP...s0 (5.113)

The matrix FM)(R) is well-conditioned at short distances (R ~ Rj;), in
particular in the matching interval (5.65), whereas F(°)(R) is well-conditioned
at long distances (R — 00). This means that the product of all stabilizations
tends to be singular, symbolically:

sWs?... s ~ (5.114)
The stabilization procedure for G is analagous:
GM(R) = GO(R)SYSY...s4" (5.115)

By analysing the hyperradial logarithmic derivative matrix using the stabi-
lized functions F™) and G™) one obtains a "local” K-matrix K that is
related to the asymptotic K-matrix K = K© as follows:

KO = sg®...gl Ko [S%M)}_l--- [Sﬁ?]_l [sgq‘l . (5.116)
The above equation suggests that the local K-matrix K®) might be con-
verted into the asymptotic K-matrix K numerically by performing the
following series of operations:

-1
KOM-1)  _ Sg\/I)K(M) [S%M)}

1
- M-1 — M-1
KWM-2) S(G )K(M 1) [S( )]

KO = SPK®[sP]

-1

-1
KO = sYKO [S;P] (5.117)

Although these equations are formally correct, J.-M. Launay found that the
algorithm was unstable [155].

In order to examine this problem, we implemented two different numerical
methods for solving the coupled equations (5.47) arising from the Arthurs-
Dalgarno expansion.

In the first method, we generated the reference functions F(R) and G(R)
numerically by solving the coupled equations (5.47) directly, either by a
fourth-order Runge-Kutta scheme which is easy to implement but not very
precise, or by the Numerov propagator described in the Appendix K.
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In the second method, we expressed the wavefunction and its radial
derivative in terms of two amplitude functions and rewrote the coupled
second-order differential equations (5.47) as a system of coupled variable
phase equations. The variable phase equations are derived by comparing the
wavefunction at each distance R to two linearly independent reference func-
tions F™ (R) and G™(R). We defined the reference functions as solutions of
the second-order equations without the non-diagonal coupling terms. Thus
Frf and G™ are diagonal matrices at every distance R. We solved the result-
ing variable phase equations using the fourth-order Runge-Kutta method, by
propagating the amplitude matrices along the radial coordinate R, either in
the inward or in the outward directions, using various initial conditions. The
reference functions F*f and G™ were generated "on the fly”, in the course
of the propagation along R. The amplitude functions are very convenient,
as they allow to monitor the effect of channel couplings very easily. They
become constant if the non-diagonal coupling terms are negligible.

In the numerical tests, we retained only the three lowest channels of the
Arthurs-Dalgarno expansion. The corresponding diabatic potential curves
(see Fig. 5.6) tend to the thresholds

E(w=0,j=0),
E(v=0,j=2),
E(v=0,j=4).

The potential coupling elements, used as input data, were computed using
the code vr1.f mentioned in Sec. 5.3.4.

The numerical details of the various methods are not important at this
point. Our aim was only to find out whether the linear dependence of numer-
ical solutions is linked to the integration method used. We found that this is
not the case: every method we used gave the same results. The phenomenon
of ”linear dependence” is "mathematical”, not "numerical”: each numerical
solution, seen individually, is correct, but the various solutions become in-
distinguishable in the course of the integration, unless all channels retained
in the computations are open.

Fig. 5.13 shows the open-channel components Fi;(R) and G11(R) of the
solution matrices F(R) and G(R) for the two-channel model

7 177

(v=0,j=0,l=0) (open)
and

72" = (v=0,7=2,1=2) (closed) .



functions obtained by inward integration

linear dependence at short distance
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Figure 5.13: The reference functions Fy;(R) and G11(R) obtained by inward
integration.
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For a fixed energy between the thresholds E(v =0,j =0) and E(v =0,j =
2), we integrated F and G from large to small distances using K-matrix
boundary conditions such that

(Fu Flz)ﬁ<sin<k:RWE 0 ) (R—oc) (5.118)

F21 F22 0 eXp(liR)
and
G G —cos(kR)/Vk 0 .
( Ga1 Go ) - < 0 exp(—kR) S

(5.119)
At distances larger than approximately 50 ag, Fi; and Gp; are mutually
dephased by 90°, although this is not clearly visible in the figure. The figure
shows that F}; and G717 are not JWKB-like. In fact their amplitudes grow
toward the inner region, which can only be due to the interaction with the
closed channel 72”. This growth in amplitude is much more pronounced for
Fi1 than for Gq1, which may be explained by their different nodal structures
at distances R =~ 40 ag, where channel 72" is still "locally closed” but starts
to influence the behaviour of both Fj; and G7;. For numerical purposes,
F11 and G1; must be considered linearly dependent at distances smaller than
approximately 30 ag: their nodes are same.
We suspect that the scheme (5.117) for the computation of the K-matrix
fails because F and G are stabilized separately. The stabilizations ensure
that each of the matrices F, G, F/, G’ remains well-conditioned, but they do

not guarantee that the matrix
F G
< FoQ ) (5.120)

of dimension (2N x 2N) is well-conditioned, too!

5.4.2 Linear dependence: a simple model

In order to understand the numerical problems arising from exponentially
diverging solutions, we consider the simple equation

y'(x) —y(z) =0. (5.121)
Two linearly independent solutions are given by
f(z) = coshz , g(x) = sinhz . (5.122)

Clearly they become indistinguishable numerically when z is sufficiently
large. This can be seen by computing the Wronskian

W(z) = f(z)g'(z) — g(z)f'(x) (5.123)
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error in
single precision mode

error in

double precision mode

0.0 0.000D+00.0 0.000D+00
1.0 0.238D-06.0 0.666D-15
2.0 -0.954D-06.0 -0.178D-14
3.0 0.153D-04.0 -0.284D-13
4.0 0.610D-04.0 0.114D-12
5.0 0.000D+00.0 0.182D-11
6.0 0.391D-02.0 0.728D-11
7.0 0.312D-01.0 -0.582D-10
8.0 -0.250D+00.0 0.000D+00
9.0 -0.100D+01.0 0.373D-08
10.0 0.230D+02.0 0.298D-07
11.0 -0.100D+01.0 -0.119D-06
12.0 -0.100D+01.0 0.191D-05
13.0 -0.100D+01.0 -0.763D-05
14.0 -0.100D+01.0 -0.610D-04
15.0 -0.100D+01.0 0.000D+00
16.0 -0.100D+01.0 -0.781D-02
17.0 -0.100D+01.0 0.000D+00
18.0 -0.100D+01.0 0.000D+00
19.0 -0.100D+01.0 -0.400D+01
20.0 -0.100D+01.0 -0.100D+01

Table 5.3: Numerical error for the Wronskian f¢’' — ¢’ f using Fortran’s single
and double precision modes.

using the numerical values for f, ¢’, g and f’. Although the Wronskian equals
exactly 1, the numerical result is zero if x is sufficiently large (see Table 5.3).

In order to illustrate a simple stabilization method we show how the
Wronskian of cosh  and sinh z can be computed numerically for very large
values of x.

In a Gedankenexperiment we integrate f = £ and g = ¢ from « = 0
to z = 1. At x = 1 we perform the first stabilization:

1 1
( JJ:,((?)((?) gg/ill))((i)) ) N ( J{I((g((?) g/((oo’>((fc)) ) ( géé giéf; ) (5.124)
where S](c? Sj(cl) g’(O)(l) _g(o)(l)
(55? 5§§)> - (—f’“”(l) FO(1) ) (5.125)
o FO) gW(1) 10
(f/(1>(1) g/u)(l)) = (0 1) . (5.126)



In the interval
1<z <2,

the Wronskian (5.123) is computed from the Wronskian
W) = fO(x)gW(x) — [ (x)g" () (5.127)
of the stabilized solutions using the identity
-1
Wiw) = (S5sh) = sfs) W) . (5.128)
The stabilized solutions f™(x) and g(™ (x) for the interval

m <z < m+1 (5.129)

can be defined iteratively. The Wronskian W (z) in this interval can be
computed as follows:

_ (gm glm) _ otm) gm) ™!
W(z) = (Sff Sgg” ~ Sg Sy ) x
3
(2) q2) _ o o
X (Sff Sgg = Sof ng) X

(1) M) o) 11 m
x (St = sipsiy) W @) (5.130)

In our example, the stabilizing matrices are all explicitly given by
S(m) S(m) oo
o | = ( CO'Shhl1 Sukllhll ) ‘ (5.131)
Sg f Sg g — sin CoS
Thus the numerical values

S}?)Ségn) _ S;?)S}T (m=1,2,3,...)

are all very nearly 1, which explains why the iterative procdure (5.130) will
give a very accurate result for the Wronskian at distances where it cannot
be computed directly.

The example may not be very convincing, since Eq. (5.130) only states
the trivial fact that the Wronskian is constant. However, the scheme (5.130)
fails if the stabilizations are not performed at sufficiently small intervals. For
instance, if the first stabilization is performed at x = 100, the numerical
value for X oo

S1y Sk = Sof Sty
will be exactly zero, and the numerical value for W (x) at distances x >> 1
will be wrong.
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One can construct other simple examples using the functions sinh z and
cosh x to show that the stabilizations are useful. For example, using the
stabilization technique, it is possible to invert the matrix

coshx sinhxz
sinhxz coshz

numerically at any distance x, without using the analytical value of its de-
terminant.

5.4.3 A modified stabilization scheme

We now return to our study of the coupled equations (5.47) and the prob-
lem of computing the K-matrix, assuming that the hyperradial logarithmic
derivative matrix is given at a relatively small hyperradius.

In analogy to Eq. (5.124), we define the following scheme in order to
stabilize the solution matrix (5.120) at M distances

Ry < Ry_1 < ... < Ry < Ry :
F(R) GM™(R)\ _ “D(R) GU(R) N [ SE st
F/(m)(R) G/(m)(R) - Fl(m 1) (R) G/(m—l)(R> S(Gn;?) Sgr&)
(5.132)

with a stabilizing matrix given by

m m I(m— I(m— T
SISy \ ( GV (R,)  —F! 1)(Rm>) L (5.133)
sm - glm) -G U(R,)  Fm (R,

According to this scheme,
(Rm) G (R,,) (10
where ”1” stands for the unit matrix of dimension (N x N).

In the two adjoining intervals [R,, 11, R] and [R,,, Ry—1], we write the
wavefunction u(R) (we may assume that it has been deduced from the hy-
perspherical region) as

u(R) = FM(RA™ — G™(R)B™ . (5.135)
and as

u(R) = FD(R)AD _ Gon-D(R)BID | (5.136)



By comparing these two equations one sees that the amplitudes (A(m), B(m))
and (A~ B™D) are related as

S%n}?) _S%n}?) A(m) _ A(m_l) 137
Cam g gm | = | go-n | - (5.137)
SGF SGG
The corresponding K-matrices
K™ = B [AM™] (5.138)
and .
Km= = Bm=b [Am=D)] (5.139)

are related as
-1
K= =[-8 4 sg'gKW} [s;f’;) - S;E'QKW} . (5.140)

The above equation suggests that the "local” K-matrix KM obtained from
an analysis of the wavefunction on the hypersphere, might be converted into
the asymptotic K-matrix K© in a series of steps using the stabilizing matri-
ces (5.133). The original recurrence relation (5.117), which J.-M. Launay had
found unstable, is recovered from (5.140) by setting Sgr = 0 and Spg = 0.

We have presented the steps leading to the recurrence relation (5.140) in
the way in which we had discovered it naively, starting from the initial idea
of integrating two linearly independent K-matrix reference functions F and
G in the inward direction and using a stabilization technique.

In reality, their is no reason whatsoever for starting the propagation at
a large distance! In fact the reference functions F™ and G used in each
interval [R,, 11, R,,] do not depend on the values of the functions used in the
other intervals. In each interval [R,,.1, R,,], the 2N functions summarized
in the matrices F™ and G form a complete and well-conditioned basis
set in the space of solutions of the coupled equations (5.47). Since the basis
functions F"tY) and G™+1 do not depend on the basis functions F™ and
G(™) | the basis functions in each sector can be generated independently from
those of the other sectors. In particular, there is no need for storing them;
they can be generated at the time when they are needed.

The propagation scheme could thus be the following:

1. Generate a base pair of reference functions F*)(R) and G™M)(R) in the
matching interval (5.65), which in our present notation is the interval

[RM7 RM—I] .

In order to minimize the problems of linear dependence within this
interval, define F™) and G™) by the initial condition

F(M)(Rmid) G(M)(led) .
(F'<M><Rmid> G’<M><Rmid>) = (diag) (5:141)
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where R4 is the midpoint

Ry — Ry
2

of the matching interval. (diag) is a diagonal matrix of dimension
(2N x 2N), which could be defind such that F™) and G) and their
derivatives match semiclassical solutions at the distance R;q.

2. Use the existing matching code to determine two coefficient matrices
AM) and BM) such that

u(R) = FM(RAM _ gM(R)BM) (5.142)

where u(R) is the solution matrix that matches the N wavefunctions
given on the hypersphere.

3. Compute the "local” K-matrix

KM — BOD[ACMO] T (5.143)

K®™) could then be transformed into the asymptotic K-matrix K in a
series of M steps,

KM — gWM-H 5 K®» 5 KO - KO (5.144)

using the recurrence relation (5.140). For that purpose, a well-conditioned

matrix
F™M™(R) G™(R
( F/<m>(( R)) Gr(m>(( R)) ) (5.145)

would have to be generated for each sector [R,,, R,—1] by solving the coupled
equations (5.47) within the sector. For each sector boundary a transforma-
tion matrix relating the basis sets of sectors [R,,11, Rn| and [R,,, R,,—1] would
have to be computed, so that K™ can be transformed into K™~1:

(m)  q(m)
Srr Sra (5.146)
SGF SGG

_( GUO@®) R\ FC(R) GO(R)
B (—G'<m—1>(R) Fm=1(R) ) (F’(m)(R) G’(m)(R)) '

The right-hand side of (5.146) cannot be evaluated at an arbitrary distance
R, due to the problems of linear dependence: it must be evaluated at the
boundary R = R,,, where both

FO) (R) G (R)
( F(R) G(R) )

Fm=D(R) G U(R)
and (F'<m—1>(R) G’(m‘l)(R))
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are assumed to be sufficiently ”well-conditioned”.

We believe that the method (5.144) could be numerically stable, provided
that the sectors are chosen small enough. However we did not test it.

In fact, the suggested method means that 2N linearly independent so-
lutions of the coupled equations (5.47) would have to be generated only to
convert the short-range K-matrix, which represents only N solutions, into
the asymptotic K-matrix.

5.4.4 K-matrix propagator

A far more efficient procedure could be obtained by defining, for each inter-
val [R,,, R,,_1], the basis functions F™(R) and G(™)(R) such that they are
diagonal. This could be achieved, for example, by setting all non-diagonal ele-
ments of the potential coupling matrix V(R) in Eq. (5.47) artificially to zero
and solving the resulting uncoupled equations in each interval [R,,, R, _1]
using JWKB-like initial conditions. The diagonal functions F(™ and G
could thus be generated numerically very rapidly, for example using the
single-channel version of the Numerov propagator (Numerov’s integration
method is described in Appendix K). The matrices (5.146) for the transfor-
mations at sector boundaries then become diagonal as well. Of course, the
diagonal functions F™ and G do not solve the coupled equations (5.47),
except at distances where the non-diagonal elements of the potential coupling
matrix are negligible. This means that the K-matrix K (R) is no longer a
constant but verifies the K-matrix version of the variable phase equations, a
system of N coupled non-linear first-order differential equations.

Thus, instead of computing 2N solutions of N coupled second-order linear
differential equations, one now needs to solve only a system of N coupled
first-order non-linear differential equations, and one may expect that the
numerical effort will be considerably less. It should be noted that every K-
matrix K (R) may become singular for certain values of R. This should not
a problem: if K™ shows signs of becoming singular, the propagation could
be continued using the inverse matrix, [K(m)] _1, until the inverse matrix in
its turn shows signs of becoming singular.

Only the functions F*)(R) and G™)(R) used in the matching interval
(5.65) must be ezact solutions of the coupled equations (5.47), since they
serve to analyse the hyperradial logarithmic derivative matrix. The short-
range K-matrix K®™) obtained by the matching procedure could be trans-
formed into K=Y (Ry, ;) using the transformation matrix (5.146) (with
m=M, R=Ry_1).

Given the diagonal sector basis functions F® =Y (R) and GM~Y(R), one
could use the variable phase equations to propagate the K-matrix

K(M—l) (R)
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from Rp;_1 to Rj;_s, where one transforms it into
K(M_2) (R)

and so on. The final result will be the asymptotic K-matrix K@ (R).

It should be possible to reduce the number of closed channels in the course
of the propagation. In order to eliminate channel ¢ at the sector boundary
R,,, one could define Fi(jm) (R) and ng) (R) as rising and falling exponentials:
F'™(R) = 6;exp(riR) (5.147)

2

J
G"™(R) = 6 exp(—w;R), j=1,...,N. (5.148)

ij
Then the K-matrix K™ deduced from K1 at the boundary R,, is such

that that all elements Ki(fl)(R) (j =1,...,N) can be omitted at distances

R > R,,. Of course more than one channel might be omitted at the same

distance.

The suggested K-matrix propagation method is very similar to the variable-
phase algorithm developed by R. Martinazzo et al. [185]. Martinazzo’s al-
gorithm could perhaps be used without any further modification, but the
matching interval would have to be treated separately.

5.5 Note regarding Efimov and halo states

It should be mentioned that a system of three particles may posess bound
or quasi-bound states at energies closely underneath the threshold for break-
up into three free particles: Efimov states and halo (or Borromean) states
[71, 75, 69, 117].

As far as we know, the Efimov effect has not yet been observed exper-
imentally, but it has been the subject of many theoretical investigations.
Most of the models rely on hyperspherical coordinates.

If at least one of the two-body subsystems posesses a bound state, there
cannot be any true three-body bound states at energies above the threshold
for break-up into one particle and a bound two-body complex. There can
only be long-lived metastable states, since the formation of a two-body bound
subsystem will release enough kinetic energy for the third body to be ejected
from the three-body complex.

However, a recent study on Rbs suggests that Efimov states could have
a very long lifetime due to the fact that the overlap integral (the Franck-
Condon factor) for a transition between the Efimov state and an atom-diatom
scattering state is extremely small [132].

It might be interesting to examine theoretically and numerically whether
Efimov states exist for Naz. Since these states are diffuse (by definition), it
would probably not be necessary to analyse them using Jacobi coordinates.
A hyperspherical description might be sufficient.
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5.6 Conclusion

We have computed energies of very weakly bound vibrational states of the
sodium trimer Nag in its quartet spin state, using a pairwise-additive model
potential energy surface as input data. Our calculations show that J.-M.
Launay’s hyperspherical reactive scattering code, which had previously been
used only for energies above the atom-diatom breakup threshold, can easily
be extended to energies below this threshold.

We have analysed the hyperradial logarithmic derivative matrix on the
hypersphere p = 50 a, using two energy-smooth reference functions, thereby
treating the weakly bound states and the low-energy scattering states on
the same footing. We have computed a ”short-range phase shift” and found
that it shows a number of sharp resonances, both in the bound and in the
continuum part of the spectrum. Each resonance below threshold might
be associated with a quasi-stable vibrating Nag trimer that can temporarily
dissociate into a weakly bound Na + Nay(v=0, j=0) van der Waals complex.
In contrast, each resonance above threshold is undoubtedly associated with
a quasi-bound Nag complex that may permanently dissociate into Na and
Nay(v=0, j=0). We did not translate the asymptotic scattering phase shift
into elastic cross sections, since this had already been done by P. Honvault
et al. [248].

The influence of quasi-bound states on cross-sections in non-reactive atom-
molecule collisions has been investigated numerically by N. Balakrishnan et
al. [18, 263]. In their quantum mechanical investigation of rovibrational
relaxation of Hy and Dy by collisions with Ar atoms, they demonstrated a
dramatic change in the behaviour of the rate coefficients at low temperatures
when the van der Waals potential supports a quasibound level very close to
the dissociation threshold. We expect that similar effects might be observed
in the collisions of Na and Nas, although these collisions are of the reactive
type.

We pointed out that the computation of the potential-adapted hyperan-
gular basis functions is very time-consuming. In order to improve the nu-
merical efficiency, we suggest analysing the hyperradial logarithmic derivative
on a smaller hypersphere and converting the short-range K-matrix into the
asymptotic K-matrix in a series of steps, perhaps using an existing K-matrix
propagation scheme. It should thus become possible to study collisions in-
volving molecules in much higher excited vibrational states than is presently
possible, and to study the effects of the relatively weak interchannel cou-
plings at intermediate and large distances between the Na atom and the Na,
molecule.

The proposed K-matrix propagation scheme is not the only way in which
the numerical efficiency could be enhanced. In particular it might be possible
to compute the potential-adapted hyperangular basis functions in a more

164



efficient manner, for example using Faddeev equations or B-spline techniques
[75, 138]. The B-spline technique could be more flexible compared to the
expansion in hyperspherical harmonics, since the B-splines can be tailored
to cover the energetically allowed region. Thus it could become possible to
compute the potential-adapted hyperangular basis set at arbitrary distances
(far beyond p > 50 ag). However, we think that computing the hyperangular
basis set by a new method does not promise the same conceptual advantages
as using Jacobi coordinates at intermediate and large distances. Besides, it
would require very important modifications of the existing code.
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Chapter 6

Prospects for the
photoassociation of Naj

This last Chapter is based on notes I made during a visit to Prof. E. Tie-
mann’s group at the Institute of Quntum Optics (University of Hannover).

6.1 Motivation

Photoassociation reactions between two colliding atoms and a photon have
been observed for well over ten years. Photoassociation spectroscopy has
became a routine technique.

Interestingly it seems that the formation of a triatomic system by pho-
toassociation has never been observed, in contrast to photodissociative pro-
cesses (the decay of a metastable triatomic molecule into a dimer and an
atom under emission of a photon). At the present stage we are not aware
of any established theoretical model describing the ”inverse” process: the
formation of a triatomic molcule by absorption of a photon.

A triatomic molecule, for example the sodium trimer Nag, can split into
three sodium atoms Na, or into a sodium atom Na and a sodium molecule
Nay. This means that there may be two very different approaches to forming
a trimer. A photoassociation reaction could start when three atoms collide,

Na(3s) + Na(3s) + Na(3s) + hv — Nag(3s + 3s + 3p)
or when an atom collides with a diatomic molecule,
Na(3s) + Nay(3s + 3s) + hv — Nag(3s + 3s + 3p) .

The energy of the photon is needed to lift the system from a three-body or
two-body continuum state in the electronic ground state to a bound vibra-
tional state of an electronically excited molecule. If the triatomic molecule
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is formed from an atom and a dimer, the photon is also required for the
conservation of the total momentum.

There may be many variants and limiting case of these schemes, because
the diatomic molecule has many internal degrees of freedom: electronic, vi-
brational, rotational. In particular it should make an important difference
whether the dimer is initially in a low-lying or in a very loosely bound vibra-
tional level. If the dimer is very weakly bound, the two schemes obviously
resemble each other.

The atom-atom photoassociation cross-sections are known to depend crit-
ically on the overlap integrals (the Franck-Condon factors) between the radial
wavefunction in the entrance (continuum) channel and the radial wavefunc-
tion in the exit (bound) channel. The overlap must be sufficiently large for
the photoassociation process to be efficient. The concept of overlap integrals
can be generalized to electronic transitions in a triatomic system, and one
might use it to estimate which of the two proposed processes, photoassocation
of Na and Nay or of three Na atoms, is more likely.

6.1.1 Photoassociation of three atoms

Let us consider three ground state sodium atoms in a cold gas.
By absorbing a photon they may reach a potential energy surface corre-
lated to the threshold for dissociation into

Na(3s) + Na(3s) + Na(3p) .

Here we shall only use a simple classical picture.

We may assume that the three atoms spend comparitively more time in
the regions of configuration space where they are slow, which means that
they are more likely to absorb a photon in these regions. If the three atoms
are excited from the electronic ground state to the excited state when their
mutual distances are large, they will have a large potential energy on the
excited surface - we may assume that their energy lies above the atom-diatom
dissociation threshold. After the absorption of the photon, the three atoms
may collide, and two of them may form a deeply bound diatomic molecule,
thereby releasing enough energy for the third atom to escape to infinity.
The described process is a quenching process on the excited potential energy
surface. It is not the desired formation of a bound triatomic molecule.

Can the three atoms absorb the photon at the moment where they are
close together, near the minimum of the excited potential energy surface?
In this case they might reach a deeply bound vibrational level of the excited
state. Unfortunately, the probability of such an event will generally be small,
because the three atoms will be fast when they are near together, and the
time they spend near the minimum of the ground potential energy surface
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will be short - unless they are in resonance with a quasibound vibrational
state of Nag in the ground electronic state.

This simple argumentation suggests that the prospects for a photoasso-
ciation of three free sodium atoms may not be particularly good, except if
resonances with quasibound states of Nag could be exploited.

Also it cannot be ruled out that there are long-lived quasi-bound states
closely underneath the threshold for break-up into Na(3s) + Na(3s) 4+ Na(3p).
In such states, the three atoms could be relatively far away from each other,
so that they do not immediatly decay into a strongly bound Nay molecule
and an Na atom. Of course, the question is then whether such weakly bound
states could be called molecules.

6.1.2 Photoassociation of an atom and a dimer

A more promising route to forming stable triatomic molecules might be to
prepare a mixture of ground state Na atoms and Nay molecules.

Let us consider an Na atom and an Nay(v,j) molecule in a low-lying
rotational-vibrational state (v,j). As they approach each other slowly on
the ground potential energy surface Na(3s) + Na(3s) + Na(3s), they will
eventually reach a point at which they may absorb a photon that transfers
them to a weekly bound vibrational state on the ezcited potential energy
surface Na(3s) + Na(3s) + Na(3p), in close analogy to the atom - atom
photoassociation reaction.

In Chapter 5 we reported numerous resonances in the Na - Nagy(v=0,7=0)
elastic scattering phase shift. We mentioned that each resonance corresponds
to a quasi-bound Nag trimer. One may expect that similar resonances ex-
ist for the potential energy surfaces correlated to the Na(3s) + Na(3s) +
Na(3p) dissociation threshold. Every resonance, on the ground as well as on
the excited potential energy surface could perhaps be exploited for a pho-
toassociation reaction.

We would like to point out the important difference between this proposed
mechanism, forming a trimer from an atom and a dimer, and the idea we
mentioned before, forming a trimer from three free atoms. We suggested
that there is a region in configuration space where the slowly colliding Na
atom and the Nay molecule may absorb a photon. At an energy above the
Na(3s) + Na(3s) + Na(3s) dissociation threshold, the three Na atoms may of
course reach the same region in configuration space. However, their relative
motion will be much faster, and the probability for absorbing the photon
will therefore be greatly reduced (unless the total energy is concentrated on
a fast vibrating and rotating Nay dimer, which is very unlikely: how should
this dimer have been formed?)
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6.2 Electronic states of an equilateral homonu-
clear alkali trimer

A large number of different electronic states might intervene in a photoasso-
ciation of three identical alkali atoms. In this Section we construct the states
adapted to Dsj, equilateral geometry, for the two different thresholds s+ s+ s
(all three atoms in the s ground state) and s 4+ s + p (two atoms in the s
ground state, one atom in the p excited state).

The D3, point group has the following 12 elements (we use the notation
of Ref. [150]):

e E: the identity.!
e o, reflexion by the horizontal plane.
e (3, C2: rotations of 120° and 240° about the vertical axis,

e 0,C3, 0,C2: rotation-reflexions. The element ¢;,C3 is also denoted Ss.
Note that the element ¢,C% is not equal to S3:

Sz = (04,C3)(04C3) = 0;C5 = Cs .

o U, UB, US: rotations of 180° around the horizontal axis passing
trough core A, B, and C', respectively.

o 02 0B 5 rotations of 180° around the horizontal axis passing trough

core A, B, and C, respectively, followed by the reflexion oy,.

Tables 6.1 is the Dg;, multiplication table. For each pair (A, B) of group
elements A and B, it indicates the product AB. Its entries are arranged
according to the following scheme:

Table 6.2 is the Ds;, character table taken from Ref. [150]. For each irre-
ducible representation (left column), the table gives the character of each of
the six classes. The letters "2” and "y” are meant to indicate that the z-
and y-components of a vector (z,y, z) are the basis of an E’ representation,
whereas the z-component is the basis of the A}, representation, assuming that
the z-axis is chosen as the principal axis of symmetry.

'Note that the symbol E also indicates two-dimensional representations of a point
group
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E C3 C? | o onCy opC2| U UP US| o2 oF  oF
C3  C? E |onCs opC2 o | US U UP | o o oF
C? E Cs |onC2 o opCs| UP  USY U ob o¢ ol
o, o0nC3 o0pC2| E Cs C? ol oB o¢ vt vk U§
O'}L03 O'hC?% Oh 03 03% E O'g 0'{)4 0'1])3 UQC U2A UQB
ahC§ Op O'hC;J, Cg E C3 0'5 O'g O'f UQB UQC Uéq
Uéq UQB UQC 0'{)4 0'1])3 O'g E 03 Cg Op O’hC;J, ah0§
U QB U 20 U 54 oB ag 0;4 C§ E Cs Jh0§ o, op,Cs
U2C U2A UQB O'g 0'{14 0'1])3 03 03% E O'h03 ah(]§ Oh
oh 0B GO | up UB US| on onCs onC2| E Oy C2
o ¢ e | UP USY UL |onC2 oon  0nCs| CF E  C3
ag 0'{)4 oB U2C U2A U QB o, Cs oy, C’% oy, Cs C§ E

Table 6.1: Multiplication table of the Dj;, symmetry group.

D3y, E o, 2C3 253 3Us 3o,
Al 1 1 1 1 1 1

a 11 1 1 -1 -1
A 1 -1 1 -1 1 -1
Az |1 -1 1 -1 -1 1
Eiz,yl 2 2 -1 -1 0 0
E" 2 -2 -1 1

Table 6.2: Character table for the Ds, point group.
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6.2.1 Orbitals for a single electron

The orbital wavefunction of an electron in a spherically symmetrical potential
can be written ., (r), where n, [, and m are the principal, angular momen-
tum, and magnetic quantum numbers, respectively, and r is the cartesian
position vector pointing from the centre of symmetry to the electron. Any
such wavefunction, centered on one of the cores, A, B, or C, is a stationary
state of the electron, provided that the internuclear distances AB, BC, and
C'A are large compared to the typical size of the orbital.?

Since we shall only consider orbitals with the same principal quantum
number (n = 3 in the case of Nag in its ground electronic state), we drop this
quantum number in our notations. An s-orbital (,0(r) is denoted s(r). The
p-orbitals @,1,m(r) (m = —1,0,1) are denoted p_1(r), po(r), and p;(r), but
we shall never use them; we shall use linear combinations instead, p,, p, and
P2, which are real-valued and easier to visualize. p, is the same as py (up to
a factor of module 1) and is symmetrical under rotations about the z-axis.
The p,- and p,-orbitals are obtained from p, by rotations of 90° about the y-
and the x-axis, and they are symmetrical under rotations about the z- and
the y-axis, respectively.

We now consider the situation in which the three cores form an equilateral
triangle (D3, geometry). The results obtained here could also be useful for
the geometries of lower symmetry Cs, and CY, since the latter are subgroups
of D3p,. Linear geometries (Cuop, and Dyop) need to be examined separately,
as they are continuous groups and not subgroups of Dgy,.

The molecular plane spanned by the atoms A, B and C' is refered to as
the horizontal plane. In the Dsj, geometry, the principal axis of symmetry is
perpendicular to this plane, and we may think of it as pointing upwards. As
we look downwards onto the molecular plane, the three cores A, B, and C'
appear anti-clockwise.

In order to facilitate the symmetry operations involving atomic orbitals
centered on the cores, we define three cartesian coordinate systems (zyz)4,
(ryz)P and (zy2)°, centered on A, B, and O, respectively. They are related
to each other by rotations of £120° around the principal axis (see Fig. 6.1).
The z4-, 2B- and z%-axis are all taken parallel to the principal axis, and
they point upwards. The z4-, 8- and 2%-axis are chosen so that they point
outwards, away from the centre of the ABC triangle. The y“-, y®- and
y“-axis are finally chosen such that each coordinate system is right-handed.

By centering the orbitals s, p,, p, and p, on core A and by orienting them
with respect to the cartesian coordinate system (ryz)“, we obtain orbitals
s4, pA, pzj‘, and p?. s- and p-orbitals centered on B and C' are defined

2The size of the orbital may be defined as the diameter of the classically allowed region
of the electron in the core’s Coulomb field.
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Figure 6.1: Cartesian coordinate systems centered on A, B and C. The
z-direction is perpendicular to the molecular plane.

analogously. The p-orbitals are sketched in Fig. 6.2.

We note that the p, and p, orbitals are unchanged by reflections by the
molecular plane, whereas the p, orbitals change sign. The behaviour of the
various s- and p-orbitals under Dg;, symmetry operations is summarized in
Table 6.3.

The twelve orbitals considered here can be divided into four basis sets,
each consisting of three orbitals:

LS I (A U I Vo o it I (e e I

The Dsj;, symmetry operations only relate orbitals belonging to the same
set (see Table 6.3), which means that each of the four sets is a basis of
a three-dimensional (and hence reducible) representation of Ds,. We have
not constructed the irreducible representations, because we use the single-
electron orbitals only as ”building blocks” for the three-electron states (see
the next paragraph).

6.2.2 Orbitals for three electrons

Using the single-electron orbitals defined in Sec. 6.2.1, we may easily con-
struct three-electron orbitals adapted to D3, symmetry, considering the fol-
lowing four cases separately :

e s+ s+ s :only s-orbitals are occupied.

e s+s+p, :two electrons are in s-orbitals, one electron is in a p,-orbital.
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Figure 6.2: Schematic representation of atomic p-orbitals centered on A, B
and C: (a) the p,-orbitals, (b) the p,-orbitals, and (c) the p,-orbitals. The
p.-orbitals are positive for z > 0 and negative for z < 0.
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E (5 C§ o, opCs JhC’% U2A UQB U2C 0;4 Jf JUC
SA SB SC SA SB SC SA SC SB SA SC SB
SB SC SA SB SC SA SC SB SA SC SB SA
SC SA SB SC SA SB SB SA SC SB SA SC
i - U I N - - I Y S - B S A 4
p? oS pi| p2 oS pd | oS P2 opd | S PP
pS i B oS it pE | B pt oS | PE O pt p€
vy o oS | ) o 0§ | -p) =S B | -p) S —pF
A i I R A i B i e I U T o
pS it pB | S pt PP —pP —pt —pl | —pP —pd —pC
i o2 oS | —pd —pP ¢ | -pt —p¢ —pP| pt S PP
pf oS¢ pt|-pf ¢ —pd | -p¢ —pZ —pi| p¢ 5 p?
pS pd PP oS —pd —pP | -pP —pd Y| PP pd pf

Table 6.3: Symmetry properties of single-electron orbitals s, p,, p,, and p.,
centered on the cores A, B and C for the Dj, equilateral triangle geometry.
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e s+s+p, :two electrons are in s-orbitals, one electron is in a p,-orbital.
e s+s+p. :two electrons are in s-orbitals, one electron is in a p,-orbital.

We only consider the situation where there is exactly one valence electron
near each core. Ionic states are not considered in this thesis.

The three-electron orbitals for Dsj,-symmetry are listed on the next pages.
They are generally neither symmetrical nor antisymmetrical with respect to
electron exchange. Therefore they must not be seen as physical states but
only as building blocks for constructing the physical spin-orbit states with
the correct permutational symmetry.

Orbitals which can be simply obtained from the listed ones by permuting
the coordinates (1,2, 3) are not indicated.
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Orbitals (s + s+ s)
The orbital

p{ A} °1(1,2,3) = [s°(1)s7(2) s9(3) +57(1) s"(2) s°(3)
+ s5(1)s9(2) s*(3) + (1) s5(2) s4(3)
+ s9(1) s7(2) s7(3) + (1) s9(2) s7(3) ] / V6
(6.1)
is the basis of the A/ representation.
The orbital
p{Ay $°1(1,2,3) = [s(1)7(2) s9(3) — s7(1) s"(2) s°(3)
+ sP(1)s9(2) s4(3) — s9(1) s5(2) s4(3)
+ (1) s1(2) s (3) — s1(1) s€(2) s%(3)] / V6
(6.2)
is the basis of the A/, representation.
The orbitals
(o {E $*}(1,2,3) = [25%(1)s5(2)s9(3)
— sP(1)s%(2) s4(3)
—s9(1)s%(2) s%(3)] / V6
| e{E s°}(1,2,3) = [s7(1)s9(2)s1(3) — s9(1) s(2) s7(3)]/ \/(5 |
6.3

form the basis of an E’ representation. An equivalent (complex-valued) basis
is given by

;

ol s°}(1,2,3) = [s(1

(6.4)
eE" $33(1,2,3) = [s4(1)sP(2)s59(3)

\

The basis functions (6.3) and (6.4) are related as

{ o = (o1 +ips)/V2
¢ = (pr1—ip2) /V2
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Orbitals (s + s+ p,)
The orbital

oAy °p:3(1,2,8) = [s7(1) s%(2)pf (3) + 57 (1) s7(2) 95 (3)
+ s7(1)s9(2)p(3) + 57(1) s7(2) p2 (3)
+ s9(1) s7(2) p (3) +5"(1) 57 (2) 97 (3)] / V6
(6.6)
is the basis of the A/ representation.
The orbital
Pl Ay $°po}(1,2,3) = [s7(1)s%(2)p((3) — s7(1) s°(2) p{ (3)
+ s7(1)s9(2) pr(3) — s°(1) s7(2) p7 (3)
+ (1) s(2) p (3) - sM(1) s“(2) 97 (3)]/ V6
(6.7)
is the basis of the A/, representation.
The orbitals
(PP s 3(1,2,3) = [254(1)sP(2)p0(3)
— s7(1)s9(2) p (3)
—s9(1)s4(2)p; (3)] / V6
[ oA B $pa}(1,2,3) = [s%(1)s9(2)pr(3) — s€(1)s4(2)pl(3)] / V2
(6.8)

form the basis of an E’ representation. An equivalent (complex-valued) basis
is given by

;

S{E sp.}(1,2,3) = [sA(1

o E %, }(1,2,3) = [s4(1)sP(2)pd(3)

\

The basis functions (6.8) and (6.9) are related as

{ ¢ = (o1 +ips)/ V2
o

NN . (6.10)
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Orbitals (s + s+ p,)
The orbital

e{Ay $°p,}(1,2,3) = [s%(1)s%(2)p (3) + s7(1) s*(2) py (3)
+ s%(1)s9(2)p) (3) + s9(1) s%(2) p; (3)
+ s9(1)s*(2)pl(3) + sM(1) s9(2) pP (3)] / V6
(6.11)

is the basis of the Af, representation.
The orbital

p{A] s%p,}(1,2,3) = [s7(1)s7(2) py (3) — s7(1) s™(2) 1}y (3)
+ s7(1)s9(2)p;(3) — s7(1) s7(2) py (3)
F s A pPE) - 511 @) pE3)] ) VE
(6.12)
is the basis of the A/ representation.
The orbitals
(o p}1,2.3) = [257(1) ")) (3)
— $B(1)5(2) p(3)
= s9(1) s (2)py(3)] / V6
| oA s, }(1,2,3) = [s%(1)s9(2)p,(3) — s9(1)s*(2) py/(3)]/ V2
(6.13)

form the basis of an E’ representation. An equivalent (complex-valued) basis
is given by

of B s°p,}(1,2,3) = [s7(1)s"(2)p5(3)
p

S

e {E spy}(1,2,3) = [s7(1)s"(2)p

= <Q

\

The basis functions (6.13) and (6.14) are related as

{ 0 = (o1 +ips)/V2

o = (pr1—ip2) V2 (619
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Orbitals (s + s+ p,)
The orbital

P AT $%p:3(1,2,8) = [s7(1)s”(2)pf (3) + 57(1) s7(2) £ (3)
+ s7(1)s9(2)p2(3) + s7(1) s7(2) p2(3)
+ s9(1) s"(2) p7(3) +57(1) s7(2) 7 (3)] / V6
(6.16)
is the basis of the A/ representation.
The orbital
p{AL s°p:3(1,2,3) = [s1(1)s%(2)p(3) = s7(1) " (2) pT(3)
+ s7(1)s9(2)p2(3) — s°(1) s”(2) p2(3)
+ (1) sM(2) p7(3) - s"(1) s“(2) 97 (3)] / V6
(6.17)
is the basis of the AJ representation.
The orbitals
[ o{E s?p(1,2,3) = [257(1) sP(2) pE(3)
— s%(1) s9(2) p2(3)
— s9(1)s4(2)p?(3)] / V6
| oA B s%p:3(1,2,3) = [$5(1)s9(2)p(3) — s€(1)s4(2)p7(3)] / V2
(6.18)

form the basis of an E” representation. An equivalent (complex-valued) basis
is given by

/

p{E" s°p.}(1,2,3) = [s%(1

o E" s%p.}(1,2,3) = [s4(1)sB(2)pY(3)

\

The basis functions (6.18) and (6.19) are related as

{ o = (o1 +ips)/V2

o = (or—ioy) /3 . (6.20)
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6.2.3 Spin functions

We denote x, (o) and x_(o) the eigenfunctions of the single-electron spin
operator §,, with respective eigenvalues i/2 and —h/2:

. h . h

Sxa(0) = gxil0) . Ex0) = —gx (o). (621)
o is the single-electron ”spin coordinate”, with possible values +1/2 and
—1/2. Explicitly,

X+(1/2§ - 1, X+(—1/2§ - (1)f (6.22)

Symmetry properties for D3, geometry

The behaviour of the single-electron spin functions y (o) and y_(o) under
Ds;, symmetry operations is summarized in Table 6.2.3. We have not used
these relations, but they might be useful in order to establish selection rules
for transitions between spin-coupled states.

In a rotation of angle ¢ around the axis n, the spin function x(o) of a
spin-1/2 particle transforms as:

X — e Sy = {Cos (g) —2in-§ (sin g)] X . (6.23)

In the (xi,x_) basis, the rotation operator e9™ is represented by the
matrix

—igns __ ? 1 0 s ? n, Ny — iny
e = Cos (2) ( 01 ) i sin (2 e +in,  —n. . (6.24)

Like the orbital angular momentum states, the spin states are pseudo-

vectors: in rotations they behave like vectors, but they are unaffected by the

inversion:®

Ixi(0) = xi(0) . Ix_(0) = x_(0). (6.25)
Thus [ is represented by the unity matrix:

1:((1) (1’) (6.26)

Egs. (6.24) and (6.26) can be used to obtain matrix representations of
rotations and reflexions in the (x4, x_) basis (a reflexion can be expressed

3In principal one could also assume that the inversion gives a minus sign: Iy = —Y, so
that I? = E, as required. We have not investigated this alternative.
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as rotation of 180° followed by the inversion). In the (x,, x_) basis, the Dsy,
elements are represented by the following matrices:

1 0 -1 0
RNCEY o= (0 )
. s 27
e 's e's 0
o= (T8) ea- ()
.27 ™
e's 0 e's 0
¢ = ( 0 612;) GQ = ( 0 e‘ig)
-1 0 i 0
"h:<01) UhQ:(O—i)
-5 o
e's 0 e's 0
onCs = ( 0 eisgr) onCsQ = ( 0 e_i%)
9 éds 0 9 e”i%
s = 0 ei% onGiQ = 0 éF
0 —i 0 1
= (S0)  me = (1))
0 e 1% ei%ﬂ
B _ B _
Uy = <e‘15§ 0 ) Vs N (elg 0 )
0 e's 0 e_i%ﬂ
Uy = <€15§ 0 ) UsQ = (6_1g 0 )
0 —1 0 1
A _ A _
- (19)  we-(40)
B 0 6_12’7” B . 0 '3
. (e‘lg 0 Q= AF 0
0 e i3 ei%ﬂ
c _ c _
fo () e (5
(6.27)

The above set of matrices is a binary representation of Dgj,: each group el-
ement is represented by two different matrices. The rotation of 27 around an
arbitrary axis is denoted @ following Ref. [150]. It commutes with all group
elements. Strictly speaking, the binary representation is not a representation
of the symmetry group, since it does not reflect the group structure exactly.
In particular, two matrices representing two commuting group elements do
not necessarily commute. This can be demonstrated by the following exam-
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ple:
L (-0 0 i\ [0 -1\
“hU2_(01)(—io)—(10 = %
0 —i i 0 0 1
A _ _ A
U?”h_(—io)(Oi)—(—lo)—“vQ

This clearly shows the need for introducing () in order to obtain a complete

group.

However, the binary representation is a true representation of the double
group Dy, defined as the direct product of Djj, and the group formed by
the two elements E and (). Since () commutes with all elements of Dsy,, the
order of Dy, is 2 x 12 = 24 (twice the order of D3j,). Table 6.2.3 is the first
quadrant of the D3, multiplication table. It indicates the products AB, for
all elements A and B belonging to Ds,. The products (QA)B, A(QB) and
(QA)(QB) are not listed due to lack of space, but they can be found very

easily from the table using the identities

(QA)B =Q(AB),  A(@B)=Q(AB), (QA)(QB)=AB. (6.28)
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Table 6.4: Multiplication table of the binary point grou