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Abstract

Auxins have been the first plant growth regulators discovered several decades ago. 

They  play  a  complex  and  important  role  in  the  dendritic  network  of  the 

physiological processes in plants. Nevertheless, a correlation between their chemical 

structure  and  its  biological  implication  could  not  be  found.  Many  theories  on 

correlations of structure and activity have been developed, which are based mainly 

on chemical intuition. This is the first approach to apply methods of computational 

chemistry  combined  with  biostatistics.  By  the  application  of  these  methods,  the 

distribution of the outer molecular orbitals on the molecule can be identified and 

also their impact on the biological activity. 

The use of Molecular Quantum Similarity Measures (MQSM) on structures of auxin-

like molecules resulted in a conceptual framework to classify auxin structures from a 

biostatistical point of view. Similarity matrices of both, Overlap and Coulomb, were 

used  for  semi-empirical  optimizations.  When  using  more  than  200  auxin-like 

molecules, the Coulomb Matrix was able to discriminate best between differences in 

activity, which is caused by the decisive influence of the electrostatic interactions. 

First, a classification of auxins (quantum objects) by different clusters methods was 

performed, followed by the creation of a biological consensus variable, which – in 

the beginning - depended on biological data (bioassays) from literature. Then those 

structural  groups  were  identified,  which  reveal  a  relation  with  the  appropriate 

biological  activity.  This  resulted  in  a  classification  of  all  molecules  in  a  defined 

biological sense. 

The  classification  of  molecular  quantum  similarities  solved  some  long-known 

confusing issues discussed in literature for years, like the inactivity of molecules like 

8Cl-NAA or the activity of benzoic and phenolic compounds, since these molecules 

were sorted in the reasonable group by the approach used in this thesis. 

Based  on  this  conceptual  model,  highly  standardized  bioassays  at  a  multi-

dimensional scaling level and with parallel screening of different auxins were carried 

out  for  the  very  first  time.  The  structure  activity  relationship  approach  was 

supported by ab-initio optimizations. 

The whole  concept  proved to be  valuable,  since new active molecules  (quantum 

objects)  predicted  via  statistical  grouping-analysis  of  MQSM  were  verified  in 
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different bioactivity assays. The uncommon structure of the new active auxin-like 

molecule, 2, 6-dibromo-phenol, a non-carboxylated compound, fitted perfectly in the 

structure-activity concept developed here. The variable hardness (η) was found to 

play  the  major  role  in  the  correlation  between  structure  and  activity  of  auxins. 

Hardness (η),  related with the biological activity of auxins, refers to a reaction of 

electronic arrangement. The chemical condition of the ring system determines the 

biological effects by the localization of the HOMO and HOMO-1 molecular orbitals. 

Keywords: Auxin,  structure-activity  correlation,  MQSM,  bioassay,  2,6-dibromo-

phenol
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Zusammenfassung

Auxine  wurden  bereits  vor  mehreren  Jahrzehnten  als  pflanzliche 

Wachstumsregulatoren beschrieben. Sie spielen eine komplizierte und zentrale Rolle 

im verzwiegten Netzwerk der physiologischen Wechselwirkungen in der Pflanze. 

Dennoch konnte bisher keine Korrelation zwischen ihrer chemischen Struktur und 

der biologischen Wirkweise gefunden werden. Viele Theorien zur Korrelationen von 

Struktur  und  Wirkung  sind  entwickelt  worden,  allerdings  stützen  sich  diese 

hauptsächlich auf chemische Intuition. Im Rahmen der vorliegenden Doktorarbeit 

wurden  erstmalig  Methoden  der  theoretischen  Chemie  zur  Ermittlung  von 

Korrelationsparametern angewendet. 

Im Rahmen dieser Arbeit wurde die Methode der “Molecular Quantum Similarity 

Measures” (MQSM) zur Strukturanalyse von auxinähnlichen Molekülen angewandt 

und lieferte ein erste konzeptionale Zusammenhänge, welche die Grundlage für die 

weiteren Arbeiten lieferte. Diese sollten eine Klassifizierung auxinartiger Strukturen 

vom  biostatistischem  Standpunkt  aus  ermöglichen.  Ähnlichkeitsmatrizen  von 

“Overlap-“  und  “Coulomb-”Eigenschaften wurden  für  semi-empirische 

Optimierungen verwendet.  Für  mehr  als  200  auxinähnliche  Moleküle  lieferte  die 

Coulomb-Matrix die beste Unterscheidung der Aktivitäten verschiedener Moleküle, 

woraus  gefolgert  werden  kann,  dass  elektrostatischen  Wechselwirkungen  einen 

entscheidenden Einfluss auf die Auxin-wirkung haben.

Zunächst  wurden  die  Auxine  (Quantum  Objekte)  durch  Einsatz  verschiedener 

Cluster-Methoden klassifiziert. Anhand der Klassifizierung konnte eine biologische 

Einheitsvariable erstellt werden, deren Relevanz mit Daten von Bioaktivitätstests aus 

der Literatur gezeigt werden konnte. Anschließend wurden jene Strukturgruppen 

identifiziert,  die  eine  enge  Korrelation  mit  der  jeweiligen  biologischen  Aktivität 

aufwiesen.  Auf  diese  Weise  konnten  alle  Molekülstrukturen  in  Bezug  auf  ihre 

biologische Aktivität hin klassifiziert werden.

Durch  die  Klassifizierung  auf  Basis  von  molekularen  Quantum-Ähnlichkeiten 

konnten so einige Phänomene im Bereich der Auxinwirkung geklärt  werden,  die 

schon seit Jahrzehnten kontrovers diskutiert werden: beispielsweise die Inaktivität 

von  Molekülen  wie  8Cl-NAA  oder  die  Auxinaktivität  von  Benzoesäure-  und 
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Phenolgruppen,  denn  solche  Moleküle  tauchten  in  der  Strukturklassifizierung in 

Bereichen auf, die ihrer Auinwirkung entsprechen.

Gestützt  auf  dieses  Konzept  wurde  hochgradig  standardisierte  biologische 

Aktivitätstests  parallel  für  mehere  Auxine  durchgeführt  und  multifaktoriell 

ausgewertet. Dieser Ansatz zur Klärung der Beziehungzwischen Auxinstruktur und 

Auxinwirkung wurde durch ab initio Optimierungen unterstützt. 

Schließlich konnte das  Konzept  eindrucksvoll  verifiziert  werden,  da neue,  aktive 

Moleküle (Quantum-Objekte), die mittels statistischer Gruppenanalyse aus MQSM 

vorhergesagt wurden, in Biotests genau die erwarteten Eigenschaften aufwiesen. Die 

ungewöhnliche  Struktur  des  neuen,  aktiven  auxinähnlichem  Moleküls  2,6-

diBromphenol,  einem  Molekül  ohne  Carboxylgruppe,  passte  perfekt  in  die 

entwickelten Zusammenhang zwischen Struktur und Aktivität. Als zentrale Variabel 

für diese Korrelaton stellte sich die “Hardness” (η),  welche das Arrangement der 

Elektronen  im  Molekül  widerspiegelt.  Die  chemischen  Eigenschaften  des 

Ringsystems  bestimmen  die  biologischen  Wirkungen  durch  die  Lage  der 

molekularen Orbitale HOMO und HOMO-1.

Stichworte: Auxin, Korrelation zwischen Struktur und Aktivität, MQSM, biologische 

Aktivitätstest, 2,6-di Bromphenol
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Chapter 1

Chapter 1

General Introduction

In plants,  where the most rapid physiological  response is  thousand times slower 

than in animals, we have: fewer specialized cell types, passive circulatory system, 

sessility,  most  cells  remain  totipotent,  a  cell  wall,  no  nervous  system  and  a 

photosynthetic  apparatus.  Rather  than  the  existence  of  a  common  biochemistry, 

plant  and  animals  share  points  of  contact  between  parallel  biochemical  systems 

(Verhey and Lomax 1993). It is not possible to expect the same cellular performance 

for chemical regulation.

The  expressions  “auxin”  and  “hormone”  were  used  synonymously  to  coin 

"correlation  carriers"  at  the  beginning  of  the  century  in  animals  and  plants, 

respectively. The hormone concept, as messenger substance, was accepted widely in 

biology. Besides auxin, several other plant messengers (phytohormones) are known 

today,  but  the  differences  expressed  when  compared  to  the  animal  system  are 

gaining increased attention day  by  day.  Contrary to  animals,  plants  rarely  have 

peptide  hormones  and  brassinosteroids  are  the  only  steroid  group  with 

physiological  significance  in  plants  (Haubrick  and  Assmann  2006;  Verhey  and 

Lomax 1993). During the last few years it has turned out that the hormone concept, 

developed for animals, cannot easily be transferred to plants. Many significant gaps 

still exist in our knowledge about “hormone perception” and physiological changes 

in plant messengers. Currently, the hormonal regulation of plant life is one of the 

“hot  spots”  in  biochemistry,  physiology  and  plant  molecular  biology  research 

(Kulaeva and Prokoptseva 2004).
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Chapter 1

However,  practical  applications  of  plant  growth  regulators  have  been  highly 

recommended and are being exploited. Herbicides, tissue culture and rooting are the 

most recognized applications (Arteca 1995). Bioregulators represent the second most 

important issue in modern agriculture (Sasson 1993). Despite of the wide use of these 

growth  regulators,  the  underlying  cause-effect  principles  are  only  partially 

understood. This relationship is fully depending on many factors, which influence 

interaction regularizations between hormones and their pleiotropic effects.

Plant growth regulators, overview.

Indole-3acetic  acid  (IAA)  was  the  first  plant  growth 

regulator to be isolated, and the most prominent auxin 

known so far. Auxins are generally characterized by a 

non-saturated  ring  (nucleus)  with  COOH  in  a  side 

chain. Besides indole-3-acetic acid (IAA), 4-cloro-indol-

3-acetic  acid  (4-Cl-IAA)  and  phenylacetic  acid  (PAA) 

(Sasse, 1991;  Arteca, 1995) occur as natural auxin. IAA is found in both free and 

conjugated forms, the later forms are usually inactive. A huge number of synthetic 

auxins  have  been  discovered within  the  last  decades,  which  are  mainly  used  in 

commercial applications (Davies, 1995).

Gibberellins were found to be the causal  substances 

when abnormal  rice  growth occurred due to  fungal 

infection.  The  fungus  produced  an  ent-giberelano 

structure, of which main exponent is called gibberellic 

acid  (first  commercially  available).  Chemically  these 

substances belong to the diterpens, of which around 90 

compounds were known in the 1990s,  actually there 

are 136 (Joo et al. 2005). 

Adenine  related  substances  provoke  cell  division  in 

plant  tissue  culture.  These  substances  were  called 

Fig. 1: Indole-3-acetic acid
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cytokinines.  The  first  synthetic  cytokinine  from  DNA  was  the  kinetin  (6-

furfurilaminopurine), which produces cytokinesis in tobacco culture. Later, zeatin [6-

(4-hidroxi-3-metil-trans-2-butenil-amino)  purin]  was isolated from immature corn. 

At  present,  there  are  approximately  20  purine  derivatives  known  (Binns,  1994; 

Davies, 1995).

Abscisic  acid  (ABA),  a  sesquiterpene  (15  C  atoms),  is 

another product broadly distributed in the plant kingdom . 

It can not only be found in higher plants, but also in algae, 

mushrooms,  etc.  and  is  associated  generally  with  the 

abscission processes and dormancy (Davies, 1995; Arteca, 

1995). 

The  last  compound  belonging  to  the  family  of  the  “classical”  phytohormones  is 

ethylene, a simple non-saturated hydrocarbon that causes multiple answers in plants. 

In fact, its gas state confers the possibility to move through 

the  intercellular  spaces.  It  is  biosynthesized  from 

methionine and responds to stress (Davies, 1995). 

Within  the  last  twenty  years,  further  plant  growth 

substances  have  been  described,  as  there  are  derivatives  from  brassinosteroide, 

polyamine,  jasmonat  (JA),  salicylat  (SA),  and  oligosaccharides.  In  general,  these 

compounds are part of signal transduction cascades, which regulate the expression 

of essential genes for growth, development and plant defense (Aldington et al. 1991; 

Arteca 1995).

Evolution of auxin concept

A putative physiologicaly active substance, extracted from coleoptile tips was named 

auxin. Later, indole-3-acetic acid had become firmly established an auxin of higher 

plant tissues (Letham  et  al. 1978; Went and Thimann 1937).  In the meantime, the 

number of putative auxins increased greatly up to hundreds of different chemical 

structures. Typically they represent small molecules with a common carboxyl group 

and usually a ring structure. Most are synthetic auxins, but only a few are naturally 

3
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occuring  auxins,  like  indole-3-acetic  acid,  phenylacetic  acid,  and  some  of  their 

derivatives.

The term “auxin” derived from the greek word “auxein” 

(= to increase) was introduced by Kölg and Haagen-Smit 

in 1931, when they isolated the compound Auxin-a (Kölg 

and Haagen-Smit  1931).  That was the beginning of the 

first  phase  of  evolution  in  the  auxin  concept 

characterized  by  the  molecular  structure  definition 

described  between  1930s  and  1970s  (Jönsson  1961; 

Katekar 1979; Koepfli et al. 1938; Went and Thimann 1937).

The main characteristic of this time period was the analysis of biological activities of 

many molecules, usually evaluated in many different types of “auxin tests”. Went 

wrote in 1935: “the physiological name growth-substance and the chemical name 

auxin are interchangeable … of the different growth stages (initiation, differentiation, 

elongation, and maturation) elongation is the most spectacular and the one that can 

best be measured since it involves the greatest change in dimensions….”, while root 

activity was not mentioned because of  their  exceptional behavior to auxin (Went 

1935).  Ten  years  later  Went  wrote  in  another  review:  “Chemical  isolation  and 

identification of indoleacetic acid from vascular plants has been accomplished. This 

makes  it  necessary  to  use  the  term  auxin  as  a  generic  name  for  all  substances, 

produced  by  plant  as  growth  hormones  or  as  correlation  carriers,  which  gives 

response in the Avena test” (Went 1945). Additionally, Went proposed the common 

structural characteristics of the substances and indicated that the effect of auxin on 

the growing cell resemble a chemical reaction. Went adopted “auxin” as a chemical 

name without scientific evidences.

Following  this  idea,  many  dissimilar  substances  (molecules  with  different  ring, 

without ring, with substituents in the rings or in the side chain, without side chain, 

etc.) were tested and the structural parameters for suitable biological activities were 

proposed, all under the name “auxin” (Fawcett  et al. 1956; Harper and Wain 1969; 

Jönsson 1961; Koepfli et al. 1938; Porter and Thimann 1965). 

Many definitions of “auxin” were suggested, such as:

4
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• compounds that cause cell enlargement of plant cells (Nickell 1983);

• organic compounds, which promote growth (irreversible increase in volume) 

along the longitudinal axes, when applied in low concentrations to shoots of 

plants (Thimann 1948);

• plant  growth  regulator,  natural  or  synthetic,  are  identified  by  certain 

operational terms, as auxin which by derivation cause an increase in size … 

(Thimann 1969),

• the generic name for a group of substances resembling the endogenous auxin 

molecule indole acetic acid (IAA) in action or in structure, and can be divided 

into several classes: the indol compounds, the phenoxi-acids compounds, the 

benzoic-acids compounds... (Leschem 1973);

• a compound that has a spectrum of biological activities similar to, but not 

necessarily identical with those of IAA. This include the ability to: 1) induce 

cell elongation in coleoptile or stem sections, 2) cell division in callus tissue 

join to cytokinin,  3)  promote root  formation to the cut surface...  (Taiz and 

Zeiger 1998).

These varieties of definitions for auxins reflect the futility to establish a generally 

accepted definition.  The definitions of  auxins  are  usually  based on physiological 

activities observed. Since the physiological activity of auxins is completly pleiotropic, 

it  is  impossible,  to find a model on morphological level.  This problem could not 

circumvent by a definition based on structural characteristics,  since the structural 

distinctiveness or resemblance among auxins cannot be elucidate on their biological 

actions. 

The first  isolated causal  molecules  Auxin-a  and Auxin-b  are  now predicted as  a 

scientific fraud. The scientific scenario from 1930s did not allow for the estimation of 

such a molecular complexity and the experiments published by the Kögl lab were 

not well done (Wildman 1997). Not until the 1970s, IAA was conclusively identified 

in Picea, Pinus and at lest 18 angiosperms (Letham et al. 1978). 

This was also the beginning of the second phase in auxin research, in which auxin 

was regarded as a signal transduction concept, similar to that of hormone action in 

animals. Ray (Ray et al. 1977) proposed the so-called first receptor candidate ABP1, 
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being  the  beginning  of  the  molecular  basis  for  auxin  action.  A  great  number  of 

analyses  were  carried  out  on  the  following  topics:  auxin-perception,  -transport 

machinery, -transport routes, -tunning genes and interactions with other hormones 

(overviews: (Berleth et al. 2004; Leyser 2002; Woodward and Bartel 2005)). 

As a result of all these attempts, a modification of the perception of auxin from a 

generic  concept  as  plant  correlation  carriers  (Paál  1919)  towards  a  chemical 

definition of a set of chemical structures, which is not consistent biologically, has 

occurred.

Auxin perception, signal transduction and gene expression

The biological activities of auxins are related to phenomenon such as biosynthesis 

and conjugation from evolutionary point of view. The evidences suggest that the 

apical regions of both charophytes and liverworts synthesize IAA via a tryptophan-

independent pathway, with IAA levels being regulated, balanced by the rates of IAA 

biosynthesis and IAA degradation. Other terrestrial plants utilize the same class of 

biosynthetic  pathway,  but  they  have  the  additional  potential  to  utilize  IAA 

conjugation and conjugate hydrolysis reactions to achieve more precise spatial and 

temporal control of IAA levels (Cooke et al. 2002). That can even be considered being 

important for plant symbiont interaction (Grubb  et al. 2004; Ludwig-Muller 2004). 

However,  the  option  for  conjugation  or  hydrolysis,  respectively,  is  a  general 

biological  mechanism  used  to  maintain  internal  equilibrium  and  adjusting  its 

physiological processes. 

The plant hormone's way of action shows some uniqueness. On one hand, the term 

sensitivity, introduces the availability of the receptor as a new factor (Trewavas 1982; 

Trewavas  and  Cleland  1983;  Weyers  et  al. 1987)  while  on  the  other  hand,  the 

underlying concept of the structure-activity rule, stating that auxins act as a kind of 

co-enzyme or ergon at the growth center, which is a protein or enzyme surface of 

highly specific “shape”, is not consistent anymore (Audus 1961). 

 Auxin  perception  is  characterized  by  different  auxin-binding  sites  and  proteins 

described by different groups (Jacobsen 1984; Ray et al. 1977; Reinard et al. 1998). The 

6
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best  characterized  protein  is  the  so-called  Auxin-Binding-Protein  1  (ABP1). 

Definitively being an auxin-binding protein, its physiological role is debated and it is 

not involved in all the different physiological auxin effects (overwiew: (Napier et al. 

2002)).  Furthermore,  the  considerable  speculation  about  specialized  receptor 

functions  for  specific  transporters  like  PIN  (PIN-FORMED)  proteins  should  be 

considered  as  well  (Blakeslee  et  al. 2004;  Friml  et  al. 2002;  Geldner  et  al. 2001). 

Recently a new complex of three proteins SCFTIR1 out of which the transport inhibitor 

response 1 (TIR1) has been described as an auxin receptor (Dharmasiri  et al. 2005; 

Kepinski and Leyser 2005).

The  perception  of  the  auxin  molecules  follows  a  signal  transduction  system  to 

“inform” the different  cell  components.  Furthermore auxin signal  transduction is 

part of a multihormonal response network as well. Up to now, the only knockout 

plant for the one Gα identified in Arabidopsis showed a decreased cell division as a 

major trait in its phenotype which is part of the function of auxin – but auxin is not 

the only player in cell division. G protein subunits perhaps trigger a multi-signal of 

the  cell  cycle  affected  by  auxin,  and  other  hormones  (Scherer  2002).  The  two-

component systems in higher plants address several critical points with respect to 

cross talk, signal integration and specificity (Grefen and Harter 2004).

Considering auxin signal perception in plants,  further discriminations have to be 

obeyed. The pH may exhibit a fundamental role, and also the response time. Usually, 

long term effects,  like morphogensis  or  gene regulation use distinctive modes of 

action than fast auxin effects, which usually occur within minutes (are believed to 

occur on membrane bound receptors). Whereas slow auxin effects, like altered gene 

expression  profiles  occur  (possibly  via  a  signal  transduction  cascade)  in  the  cell 

nuclei.  Another group of  auxin-interacting proteins represent membrane proteins 

have been convincingly implicated in auxin influx and efflux (Berleth  et  al. 2004; 

Okushima et al. 2005).

Plant hormone receptors have proven to be elusive research targets. The successes of 

describing receptors from animals and bacteria have not yet been matched for plants. 

ABP1 is still  the most consequent candidate up to now. It  could also be the first 

biological receptor with the major part localized in the ER (Jones 1994; Woo  et al. 
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2002). However, the evaluation of a system in relation to the behaviour that might be 

expected as a  bona fide receptor, does not say much in favor of an auxin receptor. 

Some criteria are not fulfilled by phytohormones (Venis 1985)and especially auxins, 

such as:- 

• Binding specificity for different hormones analogues should be approximately 

in  accordance  with  the  relative  biological  activities  of  the  compounds. 

Unfortunately, the inactive auxin 2-NAA shows the best binding affinity to 

ABP1 (Edgerton et al. 1994);

• Binding should lead to a hormone-specific, biological response. First of all, the 

pleiotropic responses for  auxin-like molecules (Weyers and Paterson 2001). 

An ABP1-independent pathway was described recently, which is much more 

sensitive to IAA than the ABP1-dependent one (Yamagami et al. 2004);

• Binding may be limited to hormone-responsive tissue. But in plants this is a 

difficult term to define and still  this is one of the most discussed issues in 

phytohormone research since the 1980s (Trewavas 1982; Weyers and Paterson 

2001; Weyers et al. 1987).

Structure-activity 

Auxin  has  become an  indescribable  biological  phenomenon characterized  by  the 

parallel comprehension of the chemical and biological view-points. The assumption 

“structure generates properties” has been evaluated as a dynamic regularity of the 

hormone-receptor interaction exported from the animal model. Following the idea of 

“one receptor-one ligand” and based on bioassays  (Steward and Krikorian 1971) 

have  been  developed  some  speculative  concepts  about  the  auxin  molecular 

properties.

The first important attempt to formulate general rules for molecules exhibiting auxin 

activity was already formulated at the end of 1930s (Koepfli  et al. 1938; Went and 

Thimann 1937). They stated requirements for molecules with a high auxin activity as 

follows:

• a ring system as a nucleus;

• at lest one double bond in the ring system;
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• a side chain containing a carboxyl group with at least one atom removed from 

the ring;

• a particular space relationship between the carboxyl group and the ring. 

They  did  not  postulate  anything  on  the  physiological  impact  of  these  minimal 

requirements. Obviously, the rules are not compatible with the activities of certain 

naphthoic, benzoic acids and phenol derivatives, described as auxins later (Harper 

and Wain 1969; Jönsson 1961). 

After  the  initial  formulation  of  structural  requirements  for  auxin  molecules,  two 

different proceedings can be distinguished, mainly issued in the 1950s: the chemical 

and the physico-chemical approach.

Chemical approach: 

The theory of Hansch and Muir is related with the ortho-effect phenomenon (Hansch 

and Muir 1950), which deals with the Two Point Attachment theory. Here, a bond 

formation between the active site and an aromatic ring should occur. More detailed 

information on this type of chemical reaction between growth regulators and a plant 

substrate was published one year later: a reaction, in which the release of chloride 

ion is essentially connected with the physiological activity of the compound (Hansch 

et al. 1951). The analysis at this time was focused on benzoic derivatives. Muir et al. 

hypothized in 1967 that the position of attachment on the ring would depend on the 

particular combination of steric and electronic factors (Muir et al. 1967). Later, it was 

shown that  the  indole-3-acetic  acid  interaction  with  a  receptor  site  may be  non-

covalent in nature (Katekar 1979).

The second purely chemical approach postulated in order to fit an auxin molecule 

into an attachment site was the Separation Charge Theory (Thimann and Leopold 

1955). This has become one of the most known theories accepted in many text books 

even in the XXI century. Thimann himself found biological activities correlated to the 

N-H  in  the  indole  ring.  These  correlations  were  attributed  to  the  charge  of  the 

nitrogen.  But  the  low  activity  of  5,7-dichloroindole-3-acetic  acid  was  a  serious 

deviation, which could not be explained with this theory (Katekar 1979; Porter and 
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Thieman 1965). Jönnson, who analyzed the structure-activity relationship of more 

than 600 auxin molecules disregarded the Separation Charge Theory (Jönsson 1961). 

Further analysis using self-consistent field molecular orbital (SCF-MO) calculations 

did not support certain details of this theory. In fact for both natural auxin IAA and 

2,4-D, the site regarded as carrying a positive charge was shown to exhibit a net 

negative charge (Farrimond et al. 1980; Farrimond et al. 1981). Recent calculations at 

ab-initio levels confirm that the position of the N in the pyrrole ring makes the indole 

more  aromatic  than  its  isomers  and  a  substituent  at  position  3  does  not  change 

significantly  the  aromaticity  properties  of  the  indole  system  (Kiralj  and  Ferreira 

2003). 

Physico-chemical approach

Veldstra  suggested  that  the  action  of  an  auxin  consists  in  a  “physico-chemical 

influencing of a boundary”. The requirements were condensed into two points: 

• a basal ring system with a high surface activity

• a carboxyl group in a very definite spatial position with respect to this ring 

system (Veldstra 1944).

Later, due to the increase of activity by chlorination of the phenoxyacetic acids, he 

had to postulate that a high surface activity in the ring system was not sufficient for 

the auxin action. A certain balance between the lipophile and the hydrophile part of 

the molecule was assumed to be essential (Jönsson 1961).

Veldstra  made exhaustive  analyses  on  the  Two Point  Attachment  theory and he 

concluded that  hydrophilic  substituents  (OH,  NH2)  do  not  confer  activity  of  the 

resulting derivates, but only lipophilic ones (Cl, Br, I, CH3). A chemical attachment 

implies that a physiological response will occur, once the molecule is irreversibly 

fixed  to  the  receptor  (Veldstra  1953).   Velstrad´s  theory  assumed that  the  auxin 

molecule is not bound by strong chemical bounds at the site of action but is loosely 

and  reversibly  attached  by  many  weak  bonds  (hydrogen  bridges,  electrostatic 

attractions, van der Waals forces). 
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The Three Point Attachment theory attempt to explain certain phenomena, which 

were  found  to  be  inconsistent  with  Velstrad's  theory.  That  theory  bases  on  the 

findings that several compounds are essential for activity:

• a flat ring system,

• a hydrogen atom  to the carboxyl group,

• a special configuration of the side chain with respect to the ring, and

• the free rotation of the side chain at the bond joining to the ring seems to be 

structurally required for its activity (Fawcett  et al. 1955; Fawcett  et al. 1956; 

Wain and Wightman 1953). 

It  avoided  the  use  of  charge  separation  and  the  mechanism  suggested  two 

hydrophobic areas, either of which could complement aromatic ring systems, and a 

single positively charged site to accommodate the carboxylate group (Napier 2001). 

This theory did not consider the benzoic acids.

Binding site models

In the 1970s, biochemical based models were developed to elucidate the relationship 

between structure and activity. The first model using a binding site proposal was 

carried out  by Kaethner  (Kaethner  1977).  The Conformational  Change theory for 

auxin is far away from any rigid hypothesis like the Charge Separation theory above. 

Furthermore, the recognition conformation proposal coincides with the active auxin 

form  suggested  by  Jönnson  (Jönsson  1961)  and  the  modulation  conformation  is 

equivalent to the form proposed by Velsdtra (Veldstra 1944). Additionally, Kaethner 

proposed  a  “floor”  of  the  receptor  site  as  responsible  region  for  the  hydrogen-

bonding with the pyrrole nitrogen region of IAA, which is consistent with Thimann's 

theory (Porter and Thimann 1965). On one hand Thimann based his theory on the 

positive charge of N (analyzed above),  which is not true and on the other hand, 

Kaethner´s theory was not proved experimentally.

The binding site model of Katekar (Katekar 1979), frequently considered as the first 

binding site model (Napier 2001), was a result of an intuitive analysis supported by a 

methodical examination of data accumulated by other authors. Katekar provided a 
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comprehensive biological focal point breaking the realistic view: “it is so far too early 

to predict how these findings (from the structure-activity analysis of more than 600 

molecules) will influence the structure activity discussions” (Jönsson 1961). Katekar 

used just about 20 percent of the data from Jönson. 

The definition of Katekar´s auxin receptor site is  ex hypothesi complementary to the 

IAA  molecule.  Subsequently,  the  wide  diversity  of  the  remaining  synthetic  and 

natural auxin-like molecules were superimposed (Katekar 1979). This is inconsistent 

with the flexible  proposal  for  all  molecules  since  this  proposal  just  relies  on the 

deterministic conception of an IAA receptor. Katekar strengthened this inconsistence 

during his further analysis of IAA derivates for validating the theory (Katekar and 

Geissler 1982; Katekar and Geissler 1983; Katekar et al. 1987). 

Kaethner and Katekar consequently introduced the pharmacophore concept in auxin 

related research. Napier mentioned that, if these pharmacophoric models were to be 

proven  useful,  they  needed  to  be  applied  either  to  assist  in  discovery  of  novel 

ligands or for testing the structure of auxin-binding proteins (Napier 2001).

The general molecular requirements for auxins were confirmed by using results from 

binding assay with ABP1 (Edgerton et al. 1994). The modelling of the ABP1 suggests 

a conformational change of the ligand to achieve a binding site, which incorporates a 

metal ion (Warwicker 2001). This metal ion was confirmed experimentally, but the 

conformational change has not been confirmed up to now (Woo et al. 2002). 

The growing capacity for computational chemistry permits novel variables (Tomic et  

al. 1998). Unfortunatelly, the model was reduced to a chemical point of view and the 

authors  used  a  classical  (animal-related)  concept  of  hormone  action.  The  use  of 

Molecular Quantum Similarity Measures (MQSM) and the  LogP and  LogD indices 

were announced as a new method to predict biological activity within a set of about 

100 compounds (Bertosa et al. 2003). Unfortunatelly, this issue is very contradictory 

to regular concepts in auxin research, mentioned above. The electronic and lipophilic 

effect of substituents on the ring cannot be assessed with some degree of reliability 

related with promotion of activity (Muir et al. 1967). Other concepts, mainly on the 

lipophilic  character  of  certain  substituents  being  a  determinant  factor  for  auxin 

activity  is  not  substantiated,  since  auxin  activity  does  not  increase  with  the 
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increasing lipophilic character, and molecules of similar lipid solubility have very 

different auxin activities (Farrimond et al. 1981; Porter and Thimann 1965; Veldstra 

1944). The existence of auxin carriers (Blakeslee  et al. 2004; Friml  et al. 2002) in the 

plasma  membrane,  even  with  directional  implications,  is  another,  very  complex 

factor perturbing the influence of the lipophilic variables. 

The pharmacophore identification problem is complicated substantially by the fact 

that ligands are very flexible molecules. Usually, ligands own many internal degrees 

of freedom. Each conformation may bind in the active site of the considered receptor 

(Dror et al. 2004). Most of the new approaches are focused on ABP1 as a supposed 

receptor (Bertosa et al. 2003; Kiralj and Ferreira 2005), but its high affinity for auxin 

molecules is only one additional variable, which has to be considered. The existence 

of more than this possible auxin receptor is already confirmed and widely accepted 

(Blakeslee et al. 2004; Dharmasiri et al. 2005; Kepinski and Leyser 2005; Napier et al. 

2002;  Ray  et  al. 1977).  Therefore,  the  pharmacophore  concept  (the  mapping  of 

common structural features of active analogs that bind to the same receptor (Buehler 

2003) can not overcome the structure-activity impasse of auxins. 

To  overcome  these  limitations  of  the  auxin  structure-activity  concept,  a  new 

computational-biostatistical  approach  was  developed,  that  focuses  on  the  auxin 

chemical space in the biological context. The pleiotropic effects of plant hormones is 

a  statistical  regularity  associated with the  multi-receptor  and signal  transduction 

systems.  Therefore  the  analysis  of  the  structural  consensus  of  the  auxin-like 

molecules is treated as the invariant part, from which the phytohormone phenomena 

is  statistically relative.  That does not  mean,  that  the phytohormone phenomenon 

depends exclusively on the ligand structure, but the ligand structure analysis is the 

point to define the degrees of freedom of the phenomenon.

The analyses presented in this work focus on the following main objectives:

1. to  define  a  flexible  methodology  for  analyzing  dependences  between 

structure and biological activities;

2. to search the region of Molecular Quantum Similarities Measures associate 

with the biological activities;
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3. to  classify  auxin  molecules  based  at  the  boundary  Molecular  Similarity  - 

Biological Activity;

4. the  development  of  parallel  bioassay  screenings  of  selected  molecules  to 

confirm the hypothesis of similarity;

5. the quantitative structure-activity relationships with fresh biological data.
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Abstract

Besides their central role in the development of insects, ecdysteroids are widely found in other organisms as well. It is well established that

ecdysteroids occur in various molecular forms as well as are valuable targets to identify structural requirements for the development of

insecticides in favour of plant protection. Therefore, very advanced 3D- and 4D-QSAR have been applied to ecdysteroids. Our work, at present, is

carried out by the arrangement use of quantum chemistry at semi-empirical level, molecular similarity measures and bio-statistical analysis. This

strategy proficient gets into details of structure–activity of different ecdysteroid analogs. On the other hand, due to the analysis of a hormonal

factor as multicellular scheme, in addition to the EC50 analysis in Drosophila melanogaster, the Calliphora test was taking into account. The

influence of functional groups and different molecular properties (a total of 778) were cause-effect related to a set of 96 analogs for both tests.

Additional theoretical analysis of hydrogen bonds and molecular orbitals were done as well. The work let to the achievement of a more realistic

assessment in relation to the structure–activity, and it confirm that, geometrically, not all functional groups are important for bioactivity, only

those whose contributions are involved in a quasi band of outer molecular orbitals. The discrimination of the most active molecules was done

better by the use of the autosimilarity diagonal together with some other quantum and geometric variables.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Ecdysteroids; Structure–activity; Plant protection; Biostatistical analysis; Molecular orbital

1. Introduction

Ecdysteroids by far are some of the most important steroid

hormones in the biosphere in terms of quantity and diversity.

Ecdysteroids are compounds related to ecdysone, a single

nuclear hormone that can control differentiation, program cell

death and proliferation in different tissues [1,2]. The so-called

‘moulting and metamorphosis hormone’ is produced by the

prothoracic glands after brain activation during insect

development. This exerts morphogenesis changes during

gene activation, although another group of juvenile hormones

controls the events of morphogenesis [3,4].

The ecdysteroids mediate their biological effects by either

direct activation of gene transcription after binding to its

receptor EcR-Usp or via hierarchical transcriptional regu-

lations of several primary transcription factors [2,5]. The

receptor of the ecdysteroids has a high affinity (KdZ30 nM)

and specificity with ecdysteroids. Following the classic steroids

action mechanism of binding of the ecdysone receptor (EcR) to

a ligand-nuclear inducible transcription factor, it must form a

heterodimer with ultraspiracle (Usp), the homologue of

retinoid-X receptor. The crystal structures of ligand-binding

domains EcR-Usp heterodimer, in complex with ponasterone

A, emphasizes the universality of heterodimerization as a

general mechanism common to both vertebrates and invert-

ebrates [4,6].

However, the fine structure of the molecular action

mechanism of ecdysteroids, interaction ecdysteroid–protein,

has not been explained until now. The hormone-receptor model

of three interaction sites [4] is still unclear, essentially due to
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the fact that one of these three sites (14a-OH) is lacking in

some active molecules [7,8].

Here, we focus on the following objectives: (1) to determine

quantitatively which key atoms or regions in the molecule

trigger the action of the biological machinery, starting from the

structure–activity relationship and the analysis of electronic

properties; (2) to consider a cause-effect relationship between

chemical features and biological activity of a series of

ecdysteroid analogues by means of a mathematical–statistic

approach by means of the uses of two biological approach.

2. Methods and techniques

2.1. Molecular modelling

First of all the three-dimensional molecular structure of the

ecdysone molecule (Fig. 1) was built in Hyperchem (Hyper-

cube). The geometrywas optimized by using theMMC[9] force

field, including electrostatic bond dipoles and considering all

non-bonded interactions. The quantum chemical calculations

were made at the semi-empirical level using PM3 [10] with the

MOPAC v. 6 program [11]. The ZINDO/S method (modified

version of INDO) [12] was used to visualize the molecular

orbitals using Hyperchem.

After the geometry optimisation of ecdysone, each analogue

that was chosen, up to 96 molecules in total, was optimised

once again in the same way. Different molecular variables were

calculated, such as: (a) ionisation potential; (b) the energy of

frontier orbitals (HOMO), and even that of contiguous orbitals

from HOMO-1 to -5; (c) the atoms more involved in these

molecular orbitals; (d) the oxygen atoms with contribution to

the HOMO-3 and HOMO-4 orbitals; (e) the spatial distribution

of HOMO, and HOMO-3 orbitals; (f) the distances between

intra-molecular atoms, bond lengths, valence angles and

dihedral angles (t) among all the atoms of the ring in the

molecules; (g) charge (defined by default in MOPAC, Cannolly

surface) of each atom. Additional information such as position,

quantity and kind of functional groups, were directly taken

from each molecule. At the end, a total of 778 variables per

molecule were calculated.

2.2. Molecular similarity

Additional analysis of molecular quantum similarity

measure (MQSM), applied to the molecules with Callifora

activity and Drosophila melanogaster EC50 test, expressed as

the integral of the scalar product between the first-order

molecular density functions associated to the molecules being

compared, and weighted by a positive definite two-electron

operator (U) [13,14]. In this study, Overlap-like and Coulomb-

like MQSM have been considered. In order to circumvent

expensive computational calculations, the promolecular atomic

shell approximation (ASA) [15–17] has been used to compute

density functions. In order to align the molecular structures, the

maximum similarity superposition algorithm [18] has been

used.

Once computed, the overall set of pairwise MQSM can be

stored in the so-called similarity matrix (SM): ZZ{ZAB},

where Z is a squared matrix of dimension N, i.e. the number of

compounds. The diagonal of the similarity matrix is composed

by the so-called quantum self-similarity measures (QS-SM),

which compare the molecule with itself.

2.3. Statistical analysis

A statistical analysis of the ecdysone molecule and its

analogues was performed using the calculated variables from

both the geometry and quantum chemical approach. The

energies data of ten outer molecular orbitals were analysed

through cluster analysis for 100 different molecules. In case of

confirmatory analyses like the influence of OH22 on the

biological activity, the t-test was applied. PCA was also a

valuable statistical method to make a mixture of the similarity

Coulomb and Overlap matrix in principal components and

reduce the repetitive information of the similarity matrix. The

main task, then, was to discriminate the molecular variables

involved in the biological activity by discrimination analysis

with Wilks’ lambda method. The computational software or

programs used were R v. 2.1.1 and SPSS v. 12 (SPSS GmbH).

2.4. Hydrogen bond analysis

Hydrogen bonds can be formed between hydrogen atoms

attached to electronegative atoms and lone pairs, especially on

nitrogen and oxygen [19]. ‘Non-bonding orbitals’ (NBO) could

be involved in the H-bonding between the ecdysteroid and

receptor through OH2 and OH22. After the optimization, a lone

pair is considered by more than 20% of contribution to the

eigenvector of an outer molecular orbital. Subsequently, the

interaction with a molecule of water near to the lone pair

oxygen-orbital was analysed by means of a new optimization

using geometric operations in Cartesian coordinates. This

process allowed provoking a destabilization of the lone pair

oxygen-orbital [20]. This was analysed by the semi-empirical

methods PM3, AM1 and MNDO.

Geometrical analysis of probable H-bonds for OH2, OH3,

O6, OH14 and OH22 were performed with PM3. Further

analysis of the electrostatic potential (MEP) was performed
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Fig. 1. Structural representation of the ecdysone rings.
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with Hyperchem. An ab initio single point calculation (DFT)

with the 6-31G* basis set was performed. A map function

range of 5:0!10K2e=a30 and the total charge density contour

value 1:0!10K3e=a30 were used in plotting MEP.

3. Results

The biological machinery at both cellular and multicellular

level mediates the influence of the molecular structure on

bioactivity. The application of two independent tests resulted

in models that were more realistic. The plot between structures

and effect (Calliphora activity or EC50) and its frequencies

(Fig. 2) shows the irregular character of the relation structure

function.

Analysis of the presence/absence of functional groups (OH),

in Calliphora, was the opening step in this statistical analysis.

Three categories were used: [Boil. activityO,Z,!1] in which

1 is the activity of the naturally occurring ecdysone (Fig. 2)

[21]. According to these analyses, the following functional

groups are involved in discrimination: OHs in position C22, C5

and C14, as well as C5 and C14 together (Fig. 1). Looking at

the discriminants cross validation (Tables 1 and 2), it is found

that (a) the first group [Biol. ActivityO1] is not statistically

suitable due to the existence of solely one molecule. Although,

the extracted variable OH groups in C5 and C14 together is

important from the biochemical point of view. (b) The second

[Biol. ActivityZ1] group has a prediction of 89.9% of

membership; and (c) in the third group [Biol. Activity!1],

not more than 54.5% are predicted. Furthermore, confirmatory

statistical analysis (t-test) showed that OH in C22 position is

significantly associated with biological activity (Fig. 3,

Table 3). However, at this stage of our work the structure–

activity relationship could not be totally explained by the

presence/absence of functional groups itself. In the structure–

activity relationship of ecdysteroids functional groups seem to

be necessary but not sufficient condition.

Then a functional analysis using geometric and quantum

chemical variables was integrated through statistic–mathemat-

ical methods. As result, some variables were able to

discriminate the biological differences.

3.1. Calliphora test

† Product of the contributions of atom O22 to the molecular

orbital HOMO-3 and the atom O3 to molecular orbital

HOMO-4 (O22,HOMO-3*O3HOMO-4): these are orbitals

with similar disposition on the ecdysteroids molecules from

the ring A to the side chain, related to the negative

electrostatic potential zones on the molecules and without

statistical differences from energetic point of view. This

shows the direct influence of a molecular orbital on the

activity of a functional group. The contributions of atoms

O3 and O22 to HOMO-3 and -4 are not continuous variable

with values 0 (contribution) or 1 (no contribution).

† Mean energy of HOMO-3 and HOMO-4

ð �xðHOMOK3;HOMOK4ÞÞ.
† Molecular self-similarity diagonal from the overlap-like

MQSM matrix.

If: Biol. act: 1(%10), 2(O20 and !60), 3(R100)

MOPositional ZO22;HOMOK4 � O3; HOMOK3

MOEnergetic Z �xðHOMOK3;HOMOK4Þ

S, Overlap Self-similarity

Discriminant equations:

D1 ZK211:485C0:012SK17:755 MOEnergy

C3:301 MOPositional
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Fig. 2. Biological activity of ecdysteroid analogs in Calliphora test (A) and

Drosophila melanogaster EC50 (B) [11]. In the graphic (starting from left to

right) the increment of the biological activity depending on structural variations

is shown (1Z100% of activity of the natural occurrence of 20-

hydroxyecdysone).

Table 1

Discriminant functions

Function

1 2

OH5_OH14 3.942 K2.171

OH_22 1.239 2.250

(Constant) K6.442 K1.480
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D2 Z 136:047K0:004SC11:960 MOEnergy

C1:150 MOPositional

LOODisc Z 0:69

At this stage, the test of D. melanogaster with EC50 was

considered as well. In case of D. melanogaster, discriminate

the molecules with more or less than 1!10K6 in EC50 binding

assay was a solution able to combine with the biological

activity results of Calliphora. Discrimination for higher

concentrations in a real hormonal activity will most likely

depend on biological variables as a propagated effect. The main

task was to identify common properties independently from the

existence of different atoms arrangements and to use the

existence of more molecules.

3.2. D. melanogaster

† Molecular self-similarity ‘Principal Component 1’ from the

Overlap-like MQSM matrix.

† Energetic difference between the Molecular Orbitals

HOMO-2 and HOMO-3. Show the relative depth of

HOMO-3 in the molecular system.

† Angle among the atoms O3, O6 and the atom in the side

chain to contribute to the outer molecular orbitals HOMO-3

or HOMO-4.

If: EC50: 1(!10K7), 2(R10K7) EC50

SPCA_1ZOverlapSelf-Similarit (Principal component 1,

Overlap matrix)

ED2;3 Z ðHOMOK2energyÞKðHOMOK3energyÞ
aZAng3,6schH3-H4
Discriminant equation:

DZ 66:092C0:727SPCA_1 C0:024aC3:118ED2;3

Fig. 3. Representation of biological activity of ecdysteroids as affected by OH

in C22 position. Vertical lines represent standard errors. Significant t-value at

the 0.01 level.
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LOODisc Z 0:718

By assuming that the constant equilibrium is a function of the

structure of a molecule, two non-linear approximation of the

free energy formalism ligand-receptor binding was done by

means of discriminant analysis. The molecular variables are

adequate in case of both biological systems and chemical.

Biochemical and modelling viewpoint as well, because they

are recognized as very reactive regions and atoms (Fig. 4). It is

inferred that in order to make predictions of biological activity

from the molecular structures (Fig. 4): (1) the functional groups

are an indispensable part of the molecule but, (2) not all spatial

dispositions are important to provoke a biological reaction and,

(3) only some of them are spatially important, once these

functional groups contribute to the reactivity properties of the

molecule (e.g. the contribution of the atoms O3 and O22 and

another atoms in the side chain to molecular orbital HOMO-3

and -4 or O6 to HOMO-2). As a result, they become strong

causal candidates of the biological activity. Based on this, the

equations described in Fig. 5 were statistically proven with

good prediction fitness to activity and EC50.

In biological systems, the Coulombic field is not the total

representation of the electronic characteristics of the whole

molecule. Behind each possible reaction, there is a theory able

to support the molecule electronic constitution. HOMO is

always the key external molecular orbital, but in this, QSAR

HOMO-3 and HOMO-4 are the most important. Relating to

this point, something irregular can be seen in these compounds.

First, it is necessary to take into account the irregular

distribution of the outer molecular orbitals on the large

molecules like steroids. The energetic average of the difference

between HOMO and HOMO-3 is not statistically related to the

biological activity for the 21 studied molecules (results not

shown). Considering the vicinity of the lowest degenerated

molecular orbitals, HOMO is not sufficient to obtain a reliable

biological activity. HOMO-3 has spatial resemblance in most

of the molecules analysed, with the exception of some inactive

molecules (Fig. 6, right panel). The curves show explicitly an

energetic comparison among the different outer molecular

orbitals for all the molecules (99) analysed (central panel). The

statistical overview, by means of Cluster analysis of the

energetic behaviour of outer MO, indicates the proximity of

Fig. 4. Spatial representation on ecdysone of the main molecular variables related with the biological activity. (A) Geometric variables: interatomic distances

(represented by brown lines), angles (represented by yellow lines), the atoms O3 y O22 are taxpayer to HOMO-3 orbital and the O6 is the mayor taxpayer to HOMO.

(B) and (C) are three-dimensional representations of HOMO and HOMO-3 respectively (for interpretation of the reference to colour in this legend, the reader is

referred to the web version of this article).

Table 3

Biological activity of ecdysteroids with and without OH in C22 position

Calliphora N Mean St. Dev. St. Error Confidence interval Min Max

Min Max

Without (OH

in C22)

6 0.103 0.133 0.054 K0.036 0.243 0 0.33

With (OH in

C22)

15 0.936 0.934 0.241 0.419 1.453 0.1 4.00

The t-test substantiates the significant differences with aZ0.05 (tZ0.04517**).
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the HOMO-2 and HOMO-3 and HOMO-4. This quasi band

could be valid from biological point of view (Fig. 6, left panel).

The contributions of the concerning atoms O3 (ring A), O6

(ring B) and other (side chain) to this quasi band became

important for biological activity. Therefore, the influence of

some atoms should not be reduced to a simple geometrical

spatial disposition, because the importance of the spatial

disposition is mediated or conditioned by their electronic

influence. OH22 functional group has forced energetic

changes, with statistical significance on HOMO’s -2, -3 and -

4 in ecdysteroid analogs (in case of molecules analysed in

Calliphora) by presence or absence (Fig. 7).

Two oxygen atoms on the ecdysone molecule are involved

in ‘n’ MO (Table 4). Consequently, H-bond between molecules

of water and functional groups of ecdysone were predicted by

mean of the semi-empirical MO methods (Table 4, Fig. 8). The

change in contribution of the oxygen (OH in C22) to HOMO-2

was significant for PM3 and MNDO. However, for C3-OH in

HOMO-3, the change in contribution of the oxygen was only

significant when the PM3 method was used. The electrons of

this oxygen (C22) are contributors to HOMO-2. This is a more

external orbital than HOMO-3, the one for which the electrons

of the oxygen (C3) are contributors. This result strengthens the

hypothesis of H-bond formation by OH in C22 position.

In the case of the present model, comparing biological

activities (Fig. 2) with structures represented in Fig. 9, two

aspects remain unexplained. First, the analogues A and B have,

respectively, 0.33 and 0.20 of biological activity without OH in
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Fig. 6. Energetic behaviour of the outer molecular orbitals for all the molecules. The graph demonstrates degeneration on the most external molecular orbitals in the

molecules with OH in 2, 3 and 5 positions. The convergence of energy for highest occupied molecular orbitals, from HOMO-3, HOMO-4 and HOMO-5 is shown

without statistical difference. It is possible to observe the three-dimensional position of HOMO-3 for different molecules as well.

Fig. 5. Plots of Discriminat equation D1 versus Discriminat equation D2 for the studied molecules from Calliphora test (A). The discriminate analysis for the second

case with D. melanogaster by means of other three variables and established by another equation is also show (B). Leave one out test (LOO) are 0.69 and 0.72,

respectively.
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C22. Second, 5-b-Ecdysterone has four times the biological

activity of the ecdysone.

The first assumption showed that OH in C22 is the decisive

outcome, including the analysis of ligand-receptor interaction

by H-bond. This disagreement could be solved, on one hand,

with conjugations on other points of the side chain, where C26

is the most chemically likely biologically active point

following the known reaction metabolism of ecdysone.

Nevertheless, it needs a previous hydroxylation and the

newly formed functional group will be on the outer side of

the active molecular geometry (Figs. 4 and 10). On the other

hand, it seems to be that no other reaction points are necessary;

they only act as a catalyser of the biochemical activity, so that

the analogous A and B form two new compounds metabolically

by means of hydroxylation in position C22.

On the second aspect, it is interesting to mention that the OH

in C5 position performs degeneration on the most external

orbitals in the molecules where it exists (5-oxiecdysterone,

Ponasterone C) (Fig. 6). Nevertheless, using the electrostatic

potential (MEP) as a further analysis to clarify the action of

these molecules (Fig. 11) we found that: both molecular

regions influenced by OH at the C2, C3 and the side chain are

the two most important areas to develop H-bonds. Addition-

ally, the MEP is more negative on areas at the positions C2, C3

and O6 continuously, in the two molecules with 5-b-OH on the

OHs. This is additional evidence for H-bond in this area and a

reason to become 5-b-oxiecdysterone in the most active

molecule, but in case of ponasterone C the OH22 is not in a

clear position because of the OH24. An influence of 5-b-OH to

the OH3 contribution on HOMO-3 is observed by means of the

transposition of the ring A in ecdysteroids. Comparative

calculus assumed even that 5-a-OH influence HOMO by way

of O6. The O6 is a common important atom for all molecules

and rest influence to the hydroxyl at ring A positions.

4. Discussion

Here we described the modelling of the interaction between

the ecdysteroid receptor and different analogs of ecdysteroids

via QSAR. The biological activity of ecdysteroids demands

very specific chemical reactivities and physical properties. The

existence of molecules, which show no correlation between

biological activity and EC50, could be attributed to biological

variables in terms of mechanism. It depends normally on the
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column. Following, the significant influence of OH22 on energetic variation of HOMO-2, HOMO-3 and HOMO-4 was statistically confirmed (Mann–Whitney U-

test, aZ0.05). The standard errors are represented (vertical lines).
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properties of the ligand, changes of the balance between states

of the receptor, channels, etc. [22]. In fact, EC50 as affinity

binding assay is one more variable, which contributes to the

biological activity as independent variable. Additionally, we

will have also a dynamic binding where the affinity could be

changed in the process. Finally, the trigger of a signal, as part

of the efficacy of the cellular response, is mediated, as a key

element, by the receptor structure [23]. Therefore, the use of

both systems helps to determine the basic regions on the

molecule being able to influence biological activity.

The OH groups in the molecule can act like alkyl or

halogen. This depends on whether it modulates activity by

virtue of effect on the physical properties (e.g. changes in the

molecular electrostatic potential) or if they influence the

chemical reactions significantly [24,25]. The OH groups in

position C5, C14, C22 play a role in the binding behaviour.

However, the sole existence of the functional group is not a

sufficient condition for strong discrimination. As a conse-

quence the molecular analysis has to be performed both

partially and complete.

The spatial orientation of all oxygen atoms in steroids is not

necessarily a restriction to carry out a reaction with the

enzyme. In fact, there is a coincidence also reported by Brosa

[26] that oxygen atoms are important, but not all of them. This

approach [26] is not rational from the energetic point of view.

The ligand, a steroid molecule with plane restriction will not

need more than two main points to reach sufficient associated

bond energy, once in contact with the receptor. Our results,

from statistical and computational chemistry analysis show that

the OH in C22 or another groups in the side chain are able to

contribute to HOMO-3 or HOMO-4. Therefore, it becomes the

most probable point of interaction in this region. Also it is

already known, from the model of a putative receptor described

before [4], that the side chain is the key region for interaction.

On the other hand, the crystal complexes (2:1 indole-

progesterone) of indole show two hydrogen bonds to the

carbonyl oxygen at position O3 and O20 of the progesterone

[27]. A model with the two equally important regions in

ecdysteroids was predicted as well by means of CoMFA

models [28]. Furthermore, the OH group in C14 is proposed to

be a controversial third point, [4] although it could be a

decisive piece of coordination with other groups, in some

molecules like 5-b-oxiecdysterone. Harmatha [8] reported that

this OH is not required for activity in ecdysone. The finding

supports that two points bonding are adequate to support a

reaction with the receptor. However, due to the common

steroidal importance of O6 (with frequently contribute to

HOMO-1) we found that an angle respect to the atom O3 and

one atom in the side chain with contribution to HOMO-3 or

HOMO-4 is a predicted variable. Parallel results were found

by protein docking EcR-LBD analysis, but only related to

OH22 [29].

Our analysis indicated that hydroxyls exert an influence on

the electronic structure of the ecdysteroid molecules. In

androstene the hydroxyl groups are also involved in changes

on the electronic structure. Energies and enthalpies of mono

Fig. 8. H-Bond formed between the water molecule and ecdysone with the hydroxyls groups in position C2 and C22, as calculated by the PM3 Hamiltonian.

Table 4

The energy of highest occupied MOs in ecdysone

HOMO-3 HOMO-2 HOMO-1 HOMO LUMO

PM3

Ecdysone K10.98 (28% O2) K10.75 (27.44% O22) K10.48 K10.20 K0.25

Ecdysone–H2O C22 K11.05 K11.02 (0.8% O22) K10.54 K10.28 K0.32

Ecdysone–H2O C2 K11.07 (0.2% O2) K10.77 K10.51 K10.25 K0.28

AM1

Ecdysone K10.70 (7.54 % O2) K10.69 (24.15 %O22) K10.24 K10.09 K0.16

Ecdysone–H2O C22 K10.80 K10.75 (10.94 %O22) K10.34 K10.21 K0.26

Ecdysone–H2O C2 K10.78 (31.62 % O2) K10.61 K10.35 K10.19 K0.26

MNDO

Ecdysone K11.05 (41.67 % O2) K10.93 (34.26% O22) K10.56 K10.44 K0.40

Ecdysone–H2O C22 K11.09 K11.03 (2.22 % O22) K10.55 K10.43 K0.38

Ecdysone–H2O C2 K11.10 (39.42 % O2) K10.96 K10.58 K10.44 K0.41

Changes in the energy and oxygen contribution to each consequent eigenvector when H-bond in C2 and C22 position is carried out by theoretical methods.
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and di-hydroxy structures were the lowest [30]. Moreover, ab

initio calculations of testosterone and epitestosterone showed

changes on the enthalpy, dipole moment and energies of

HOMO and LUMO [31]. Accordingly, it is convenient to

remark that HOMO exerts its influence on the referred

reactions by interactions with the hydrophobic pocket of the

receptor [32]. Consequently, the study of three-dimensional

characteristics in ligand-receptor interaction by means of

molecular orbitals has already proved to be useful as descriptor

[27]. In addition, the OHs have a qualitative influence on the

energy, localization and degeneration of the HOMOs. Further

intermolecular forces which may be important for biochemical

reactions.

Particular attention should be paid to the region of the atoms

C2 and C3 (Fig. 1). These are key points, since the direct

involvement of ponasterone A has been reported in the

Fig. 9. Ecdysteroid and other molecules analysed in this work.
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stabilization of the EcR-LBD structure [6]. In fact, the helical

conformation of H2 is stabilized by interactions between the

ponA C2- and C3-hydroxyl groups and residues of the H1-H2

loop, helix H5 and the ß-sheet [6]. An analysis of the

electrostatic potential (MEP) show the importance of this

zone due to a negative potential in the most active molecule

(Fig. 11). This is closely related to the possibility to form

H-bonds [33].

We decided to use water to develop this kind of bond with

ecdysteroids, due to the aspects mentioned above and results

published elsewhere: steroid-receptor interaction by means of

H-bond (3–10 Kcal/mol) like 3D-QSAR and successful

application on hydrophobic effect of substituents with respect

to alterations in pharmacodynamic (pKi) as well as chemical

equilibrium (pKM) constants [24]. There are two main

contributions to the H-bond: electrostatic attraction between

oxygen and hydrogen and covalent contribution, which arises

as a result the overlapping orbitals [34]. Usually, the MOs are

delocalized on a large part of the molecule. Nevertheless, it can

happen that they become very localized, with very specific

lone-pair or p or s character. In the former case, the lone-pair

part of the MOs will be labelled nx [35]. The stabilization of the

zwitterionic structure occurs based on the destabilization of the

MO localized essentially at the oxygen electron lone-pair

Fig. 9 (continued)
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(ecdysone), o-orbital, and concomitant with the stabilization of

the MO essentially localized at the functional oxygen electron

lone-pair, o-orbital (water) [20].

Three semi-empirical methods (MNDO, AM1 and PM3)

were used to investigate H-bond on OH in positions C3 and

C22. PM3 is more accurate than AM1 and both are more

accurate than MNDO. However, semi-empirical NDDO

calculations cannot predict the geometry of the hydrogen

bond accurately [36]. Only PM3 can predict hydrogen bonds

everywhere [26]. Therefore, PM3 has been used to optimize the

geometry. The resulting geometry of water-OHs at positions

C2, C3 and C22 are in agreement with possible hydrogen

bonding [37,38] whereas O6 and OH14 are not likely able to

form a hydrogen bond with significant probability.

Agonists like RH5849, tebufenozide and chromafenozide

are used as insecticides (without equal potency EC50), although

they have only some common regions with the ecdysteroids. In

the two better correspondences analyse, only three similar

positions are important as a hydrogen-bond acceptor; C22 is

one of them [39]. Consequently, not all the properties of the

ecdysone molecule influence its biological effects; it has to be

considered that the interaction of ligand and receptor is a

dynamic one. Only some molecular properties of the frontier

molecular orbitals and some atoms must be present. Therefore,

we suggest that OH22 should be involved in a direct reaction to

induce intermolecular forces while the other functional groups

of the side chain are contributors to the molecular properties.

As soon the molecule is attached to the receptor, rings A and B

can interact whenever the distance between O3 and O22 of

11.3398G0.3303 Å act as a geometric restriction for the action

of the atom in position C3. The second most probable group is

in the ring A, not clearly identified between OH2 or OH3 or

both together. OH14 could facilitate intermolecular connection

between the side chain and the ring A from electronic

viewpoint.

5. Conclusions

Not all of the hormone molecule may be essential for the

ultimate interaction of the hormone with the ‘receptor

substance’ in the target cell. The overlap similarity matrix

plays an important role in this analysis as an overall molecular

descriptor. Therefore, not all functional groups are important to

display biological activity from a purely geometrical point of

view. The contribution of some atoms to three of the outer

Molecular Orbitals localized along the molecules, are

implicated in the structure-function as well. Although a

functional group (OH) at position C22 is highly probable

point of reactions for the biological activity in ecdysone

analogs. It provokes variations of the energy of the HOMOs -2,

-3 and -4 and is able to form H-bonds as well. OH22 is not a

requisite key point in the side chain, in some molecular analogs

other atoms are important, once they provided the fulfil

condition of belonging at the orbital HOMO-3 or HOMO-4.

Fig. 11. Electrostatic potentials on the molecular surface computed at Hartree–Fock 6-31G*. Colour ranges, in e=a30: green, represent the electron deficit regions; red,

electron excess regions. (A) 5-(-Oxiexdysterone, (B) Ecdysone, (C) Pod-Ecdysone B, (D) Analog C (for interpretation of the reference to colour in this legend, the

reader is referred to the web version of this article).

Fig. 10. Reactions of ecdysone metabolism.
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Elsewhere, in the ring B O6 definitely is the second essential

point, common for all the steroid molecules, which in case of

ecdysteroids make their contribution repeatedly to HOMO2. In

addition, O3 (ring A) contribute to HOMO-3 or HOMO-4 as

well. All these atoms are belonging to a quasi band amount

HOMO-2, HOMO-3 and HOMO-4, energetically and spatially

related to the biological activity. The angle between these three

groups is crucial for the activity in the molecule. Both of the

analysed systems are able to observe a common relationship

respect to the predictors. Finally, the electrostatic potentials on

the molecular surface reinforce the analysis above showing the

same important points analysed before.
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Chapter 4

Abstract

An computational-biostatistical approach, supported by ab-initio optimizations of auxin-like molecules, 

was  used  for  to  find  biologically  meaningful  relationships  between  quantum variables  and  fresh 

biological data from different bioassays. It is proven that the auxin-like recognition requires different 

molecular assembling states. We suggest  that the carboxyl  group is not the determining factor in 

explaining the biological auxin-like conduct. The biological effects depends on the chemical condition 

of the ring system. The aim to find new active molecules (quantum objects) via statistical grouping-

analysis of  Molecular Quantum Similarity Measures was verified in bioactivity assays. Finally,  this 

approach  led  to  the  discovery  of  a  new active  auxin-like  molecule,  2,  6-dibromo-phenol,  a  non-

carboxylated compound. This  is  the first  publication on structure activity  relationship  of  auxin-like 

molecules,  which relays on highly  standardized bioassays,  multi-dimensional  scaling,  and parallel 

scrennings of different auxins.

Keyword Index

Auxin, structure-activity relationship, molecular quantum similarity measures (MQSM), plant growth 

regulation (PGR)
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Introduction

The analysis of chemical messengers is still one of the hot spots in plant physiology, biochemistry and 

molecular biology (Kulaeva and Prokoptseva, 2004), although phytohormones like auxin have been 

described decades ago (Went, 1935, 1945). Indole-3-acetic acid (IAA) and its analogs were found to 

be  the  typical  auxin,  mainly  evaluated  by  cell  elongation  tests  (Koepfli  et  al.,  1938,  Porter  and 

Thimann, 1965, Thimann, 1958, Thimann and Schneider, 1938, 1939, Went and Thimann, 1937). 

However, the chemical space, which encompasses the term „auxin“, is actually not easily achieved, 

since  hundreds  of  substances  were  found  to  exhibit  an  auxin-like  activity  in  several  different 

bioassays. The classification of this huge group of auxins was attempted before by chemical intuition, 

but  without  convincing  results  (Jönsson,  1961,  Katekar,  1979,  Koepfli  et  al.,  1938,  Porter  and 

Thimann, 1965, Went and Thimann, 1937). Different reasons can be found for the inadequacy: 

• most structure analysis was performed between 1930 and 1970, in a technological scenary 

unable to provide substances sufficiently purified;

• the term „auxin“ is a physiological definition, but a well-defined auxin molecular structure is 

still not available. The existence of different auxin binding proteins, the wide diversity of the 

auxin  molecules  and  the  pleiotropic  effects  of  auxin  prevented  the  establishment  of  a 

convincing correlation beween structure and biological activity up to now;

• all  attempts  to  elucidate  this  relationship  based  on  biological  assays  were  performed  in 

different labs and under different conditions and complicated the comparison of the different 

results obtained.

The  biochemical  mechanisms  of  auxin-like  molecules  are  thought  to  be  in  charge  of  particular 

specificities on their structure – activity relationships. These represent the result of an evolutionary 

process in plant kingdom (Cooke et al., 2002, Dibbfuller and Morris, 1992). IAA is still known to be an 

active molecule in all bioassays (Woodward and Bartel, 2005), and is reliant on its plasticity properties 

and metabolic interactions. 

In a previous work, we were able to present a computational approach dealing with semi-empirical 

optimizations of the auxin molecules themselves. Our approach used Molecular Quantum Similarity 

Measures for the analysis of more than 240 auxin-like molecules (Ferro et al., 2006b). The finding of 

similarities in these molecules by focusing basically on intermolecular interaction descriptor, enabled 

us, to cluster the auxins into different groups (Tab. 1). It was postulated that the auxin-like molecular 

recognition depends more on specific molecular assembling states than on a specific ring system or 

side chain. 

Here, we present the relationships between similarity groups published before (Ferro et al., 2006b) in 

the context of their biological activities. Furthermore, this is the first publication on structure activity 

relationship  analysis  of  auxins,  which  relays  on  highly  standardized  bioassays,  performed for  all 

different  auxins  in  parallel.  By  an  integral  approach  we  were  able  to  detect  both  nominal  and 

continuous  cause  –  effect  relationships  from  quantitative  analysis,  which  are  objects  to  explain 

biological attributes such as: 

• pleiotropic activity,
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• a high number of active molecules, 

• differential specificity exposed by auxin-like molecules. 

The data obtained from bioassays and biostatistical analysis enabled us to refine further the structure-

activity relationships of auxin-like molecules.

Results and Discussion

Analysis and Clustering of Biological Activities

Auxins are defined mainly by a set of physiological actions, but the structure-effect relationship is still 

based on chemical intuition. Recently,  we presented a computational approach dealing with semi-

empirical  optimizations  of  the  auxin  molecules  themselves  (Ferro  et  al.,  2006b)  using  Molecular 

Quantum Similarity Measures and additional quantum variables for the analysis of about 250 different 

auxin-like molecules. Additional statistical analysis identified relationships between eleven structural 

similarity groups. These groups could be assigned to five distinct groups according to their biological 

activity.  However,  the  high  variance  especially  of  bioassay  data  prevented  a  clear  discrimination 

between the five bioactivity groups. This originates in the limitations of bioactivity data, which were 

available from literature. Due to different background those datas might not be comparable at all. 

Nevertheless,  the  clustering  of  auxins  according  their  molecule  structures  revealed  convincing 

congruences with known biological functions. For instance, the naturally occurring Indole-3-acetic acid 

(IAA) and its  synthetic  analogs 1-Naphthalene-acetic  acid (1-NAA) and 2,4-Dichlorophenoxyacetic 

acid  (2,4-D)  belonged  to  a  group  sharing  the  same  quantum  spatial  regions.  Furthermore, 

neighbouring compounds within a group share similar biological activities as well (Ferro et al., 2006b). 

To obtain a better correlation of structural properties with its biological activity, we decided to choose 

representatives  out  of  each  group  for  bioactivity  analysis in  defined  and  standardized  bioassay 

systems. A list of the substances, which are the subject of this analysis, is shown in Tab. 1. 

An  ideal  bioassay  offers  information  from the  primary  reaction  (Veldstra,  1944)  but  due  to  their 

pleiotropic effects, many factors in the plant may influence the biological activity of auxin, e.g. the 

interactions with carriers influences membrane-permeability (Benkova  et al.,  2003, Paponov  et al., 

2005), the effect of auxin on endocytosis (Paciorek et al., 2005), or the rapid auxin conjugation (Cooke 

et  al.,  2003).  It  is  difficult  to distinguish between the primary reactions or  even between primary 

effects. Therefore, we decided to analyse the representatives of the different structural groups on the 

„classical“ auxin effects, callus, rooting and elongation growth (Fig. 1). Tab. 2 summarizes the means 

out of ten measured values from the different measurements performed. As expected, the biological 

activity depends on the structure and concentration of the substance, as it can be seen by the different 

responses of 1-NAA and 2, 6-Br-Phe depending on their concentration. However, IAA did not induce 

callus significantly in any concentration, but roots only. The low activity of the compounds ILA and IAM 

is likely linked to the metabolic pathways of IAA (Carreno-Lopez et al., 2000) and not with their self 

activity. Some substances, like IAA and 1-NAA applied to maize seedlings at lower concentrations 

showed  significant  inhibitory  effects  on  root  growth  (Fig.  1).  This  result  is  consistent  with the 
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observation that the auxin-overexpressing mutants tend to inhibit root elongation and auxin-deficient 

mutants often show long primary root growth (Woodward and Bartel, 2005). 

Due to the multi-receptor and / or signal system of auxin, it is assumed more than one way of action. 

Therefore various parameters were used for the evaluation of the biological activity (Niklas, 2003, 

Campanoni and Nick, 2005). These parameters derived from the standardized experiments (Fig. 1 

and Tab. 2) and are defined as follows (Fig. 2b): 

• Elongation of etiolated maize seedlings (hyp) in different concentration ranges: 10-9–10-7M 

(Hyp 9-7), 10-9–10-4M (Hyp 9-4), and 10-7–10-4M (Hyp 7-4), measured tobacco root length in 

same concentration range as above: 10-9–10-7M (Rl 9-7), 10-9–10-4M (Rl 9-4), and 10-7–10-4M 

(Rl 7-4). Furthermore callus induction (Call Ind) and Root induction (R ind) of tobacco explants 

were recorded as a yes-/no-response and calculated using the equation in Tab. 2 or just as a 

yes/no answer (Root ind and Call ind). 

• The value ED50 represents  the number  of  single  data  points,  showing the effect  on the 

application of  the substance,  e.g.  An ED50 = 50 corresponds to  five out  of  ten explants 

showed an response to the substance applied.

• Furthermore, we used the logP (Tab. 2), analysed by Veldstra (1944), as a variable based on 

lipophilicity  evaluated  with  the  QSAR  method.  The  lipophilicity  LogP  correlates  with 

membrane permeability and receptor binding of sample auxin molecules (Bertosa et al, 2003). 

• Many putative auxin receptors have been described (overview: Napier et al., 2002), but best 

characterized  one  is  the  so-called  Auxin-Binding-Protein  1  (ABP1).  Definitively  being  an 

auxin-binding protein, its physiological role is debated and it is not involved in all the different 

physiological auxin effects. Nevertheless, several auxin-like substance have been analyzed 

for their binding behaviour to ABP1. Therefore, dissociation constants (Tab. 1) are valuable 

parameter, representing the fast auxin effects.

All resulting variables were submitted to a cluster analysis (Fig. 2b) as described in the Experimental 

Procedures/Statistical Analysis below. Interestingly, two separate clustered branches emerged from 

this analysis, representing the two prominent auxin responses: the effect of  auxin on (elongation) 

growth in the upper branches and the effect of auxin on morphogenesis in the lower branches. 

The reliability of the performed cluster analysis was confirmed, when using an ABP1-overexpressing 

tobacco mutant instead of wild type tobacco for the same experiments as presented in Fig. 1. It is 

noteworthy that the response of auxin on the auxin binding protein ABP1 is in the upper branches of 

Fig. 2b, indicating a physiological role of ABP1 on elongation growth only. ABP1 binds a series of 

auxins with affinities that, for the most part, correlate with the efficacy of the compound to stimulate 

cell elongation (Chen  et al., 2001, Jones, 1994, Jones  et al., 1998). Fig. 3 summarizes the vector 

construct  used  for  tobacco  transformation  and  the  successful  expression  of  ABP1 in  the  ER  of 

transgenic tobacco was confirmed by purification of recombinant ABP1 using Strep tag based affinity 

purification. Using these transgenic plants, we performed bioassays on callus and root formation, as 

presented  in  Fig.  1.  No  differences  to  effects  to  wt-plants  were  observed,  indicating  that  ABP1 
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participitates in elongation growth, but not in morphogenesis. This behaviour could be predicted from 

the cluster analysis of Fig. 2.

Principle Component Analysis

To reduce the dimensionality in our dataset without  loosing the characteristics of our dataset  that 

contributed  most  in  its  variance,  we  have  chosen  the  Principle  Component  Analysis  (PCA),  a 

technique that can be used to simplify a dataset. PCA can be used for reducing dimensionality by 

keeping lower-order principal components and ignoring higher-order ones. The idea is that such low-

order components often contain the "most important" aspects of the data. The PCA (Fig. 4) provides 

the chance to explore the individual contribution of the auxin like substances to distinguish biological 

effects. Three principal components were found to be informative with a percentage of variance of 

49.88% (growth factor),  24.94 % (root  induction factor),  and 13.99 % (callus induction factor).  An 

assessment of the relative biological activity (Fig. 4) shows a relation between chemical structure and 

biological activity by means of a multidimensional approach of the auxin effects. 

Structure- function Relationships

Considering the relativity of the physiological effects and the formation of two groups of clustered 

variables (Fig. 2B, Fig. 4), it does not make sense to assume an unified structure - activity solution 

(Bertosa  et al.,  2003).  Auxin induction of root and callus are qualitative events, which depend on 

structure and concentration. Root induction is hardly linked to callus induction and it is dependent 

more on the properties of the molecule than on its concentration (Fig. 2B). 

The molecular classification according to effects (by cluster analysis,  Fig.  4)  revealed one group, 

which is able to produce root and callus ( ), a second group producing callus only ( ), and a third one, 

which is inactive ( ). 

These  groups  could  be  discriminated  in  two  ways  by  the  use  of  chemical  descriptors  in  a  first 

approach (morphogenesis): 

1.The variables molecular volume, HOMO energy, hardness [η=½(HOMO-LUMO], and one factor of 

Quantum Similarity measure Overlap not related to IAA (Fig.5A). The Overlap-self similarity matrix 

was processed by factorial analysis and shows similarity factors not related to the IAA molecule.

(eq. 1a)

(eq. 1b)

The influence of the indol-N-atom on the HOMO orbital, positions 10 and 11 on HOMO and HOMO-1 

and once more the hardness (η) are considered (Fig. 5, B).

2 0.994 0.008 35.121 6.867 1.136 3 _D Vol HOMO F Sim Ovη ε= − − − + + −

1 40.472 0.017 58.952 56.082 0.379 3 _D Vol HOMO F Sim Ovη ε= − + + + −
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(eq. 2a)

(eq. 2b)

The 68.2% and 77.3 % grouped cases, respectively, were correctly classified by cross-validation. The 

joint use of descriptors of electronic molecular structures and intermolecular interaction descriptors 

facilitated the explanation of the biological behavior (Ferro  et al., 2006a). The indole-N-atom is an 

important contributor in both HOMOs. In all cases it is the most negative atom from the molecule as 

well,  which has being  commonly  used as  a  molecular  descriptor  (Vaes  et  al.,  1996).  The indole 

compounds were very  specific  in  root  induction,  with  a  few or  no callus being induced.  Even in 

molecules without  self  activity  (IAA metabolites)  the indole  ring system is  an attractive  molecular 

prerequisite for root induction. Additionally, correlation between biological activity and the existence of 

the N-indole was found by Porter and Thimann (1965), independent of the charge separation theory 

as explanation. Porter and Thimann (1965) as well as Kaethner (1977) created an special region for 

this N-indole in his binding site proposal. These remarks makes it

clear that the important role of the N-indole region for auxin action is documented long before. We 

proved statistically the importance of this region regarding to its significance to the outer molecular 

orbitals (HOMO and HOMO-1).

A statistical overview of the occupied outer molecular orbital elucidates the energetic closeness of 

HOMO and HOMO-1 orbitals, to which COOH, do not contribute significantly in indole compounds 

(Fig. 6). These two orbitals are energetically far away from the rest of the Molecular Orbitals. It means 

that auxin-like molecules, contrary to the bigger molecules such as ecdysteroids, the most probable 

orbitals to produce a reaction are HOMO and HOMO-1 (Ferro  et al. 2006a). 1-NAA and 2,6-Br-Phe 

induced rooting or  callus depending on the concentration,  even if  the second structure  does not 

contain  a  COOH group.  The  contributions  of  atoms at  positions 10  and  11  to  molecular  orbitals 

(HOMO, HOMO-1) infer a statistical resemblance between different ring systems depending on their 

substitutions.  TIBA orbital  localizations  are  quite  different  from  the  other  molecules  due  to  the 

influence of the two iodine atoms in ortho-position (Fig. 6).

The second approach (growth) is focused on the first group of the cluster (Fig. 2). The relative activity 

of  the  substances  is  characterized  basically  by  the  length  of  the  primary  root.  In  this  case  the 

hardness (η) results in a very significant variable. The linear regression equation without outliers is:

  Biological Activity = 43,4098 + 159,8590 η (eq. 3)

Hardness results in a variable, responsible for the biological activity for the three time in the present 

work. The linear dependence is strongly related, but the outliers indicate that some points (molecules) 

do not line up with the rest of the analyzed molecules. Among the outliers, very familiar compounds 

can be found in both forms, active (IAA, IBA, and 1-NAA) and inactive (Trysben, 3-Me-PHAA, PHAA). 

In order to know the cause of these behaviours we performed a discriminant analysis between the 

1 10.323 56.750 2.247 8_ 1.855 10 _ 2.358 11D N HOMO C HOMO Pη= + + − +

2 1.226 6.265 3.167 8 _ 1.660 10 _ 1.296 11D N HOMO C HOMO Pη= − + + −

42



Chapter 4

molecules  adjusted  linearly  and  outliers.  Despite  of  the  small  statistical  sample,  the  discriminant 

analysis considers the influence of the double significance at positions 8 and 9 to HOMO or HOMO-1 

and the significance of C15 to HOMO (HOMO LUMO graphical distribution, Fig 7). These are two 

recognized auxin region: C15 is the position C4 for indole rings or C8 for naphthoxyacetic acid and 

substitutions in this regions are very important, like 4-Cl-IAA or 8-Cl-NAA. while the region 8 and 9 

correspond to the position of the N-H of the indole system in non-indole compounds.

2,6-dibrom-phenol

Attractive and fully irregular results of the present work consist the positive biological activity of a non-

carboxylated compound (2, 6-dibromo-phenol) as expected by a previous classification (Ferro et al., 

2006) (Fig. 1 and 4). It is the first time that, in practical terms, a new active compound is found via 

quantum similarity measures (Carbó-Dorca, pers. com.).

Statistically,  the  distances  between  the  COOH  group  and  the  ring  system  were  not  significant. 

Biological  activity  and  metabolism of  phenol  derivates  have  already  been  identified  to  be  active 

disubstituted phenols at positions 2 and 6. But the issue was focused on the mimic of conformational 

geometries and charge separation of the COOH and NH2 groups in respect to the ring (Farrimond et 

al., 1980, Harper and Wain, 1969, 1971). NO2 is a withdrawing substituent, while for unpolarized π-

systems the dominant interaction is π-repulsion (Hunter  et al., 2001). Electron availability (Katekar, 

1979) and the softness as measure of the chemical polarizability are influencing the degree of auxin-

like activity. The ring system and its substitutions generate the decisive factors.

Of the nearly 3200 known naturally occurring organohalogen compounds, more than 1600 contain 

bromine (Gribble, 1999). 2,6-Br-Phenol is a versatile molecule known as pheromone and in marine 

algae (Whitfield et al., 1999, Leonovich, 2004). As a biological remark is interesting to say that recent 

experiments  with  Gene  Silencing  Activity  of  siRNAs  with  a  ribo-difluorotoluyl  nucleotide  has 

demonstrated the importance of stacking interactions rather than hydrogen bonding in the fidelity of 

DNA replication (Xia et al., 2006). 

Common analysis of both approaches 

The chemical space, which encompasses the auxin definition, suggests a multi-dimensional molecular 

space characterized by the plasticity of its biological interactions. The hardness (η) gap between anti-

bonding and bonding molecular orbitals and therefore a reflection of the molecular stability (Gilman, 

1997) was commonly implied in every statistical result of this paper. Soft molecules are more active 

than hard molecules if  electron transfer or rearrangement is necessary for the reaction (Pearson, 

1986). This suggestion has been statistically confirmed for auxin-like molecules both by the analysis of 

self-similarity Coulomb matrix of almost 250 molecules (Ferro, et al. 2006b) and hardness with fresh 

biological data. 

However, the explanation of the auxin behaviour could not be reduced to a chemical variable. The 

existence of a large number of auxin-like molecules and their pleiotropic effect implies the principle of 

“a separate key to a back door” to the enzyme-substrate correlations in auxins (Veldstra, 1944). The 
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physiological activity of a phytoregulator is a result of the interaction of its effector chemical fragments 

with the receptors of those systems which form the given character (quality) (Gafurov and Zefirov, 

2004). Therefore, it can be seen that the abilities of the substituents to bind to the accessory binding 

areas (Katekar and Geissler, 1983) are the reasons, for statistically outlier of the structure-activity or 

for other variables reported for the discriminant analysis. 

Other variables not commented before, because of the low percentages of the cross-validation of the 

multivariable analysis, were found statistically significant in specific situations. First, the number of Br 

and  F  is  critical  as  well.  Halogen  substitutions  in  organic  molecules  will  affect  their  metabolic 

degradations as well as their intrinsic activity and are very decisive in auxin activity (Katekar, 1979, 

Sexton,  1963).  Second,  the  existence  of  position  4  (the  methylene  carbon  sp2  hybrids)  was 

determinant  for  molecules with high activity at  lower concentrations (between 10-9 and 10-7).  It  is 

reported before as buffer area to isolate the COOH from the ring system (Katekar, 1979, Katekar and 

Geissler, 1982, 1983). 

The carboxyl  group has been considered as the vital  molecular site in auxins.  Paradoxically,  it  is 

chemically  and physically  identical  in  all  compounds,  of  which acidity  is  separated from the ring 

electronic effects by the buffering effect of the intervening methylene group (Katekar and Geissler, 

1982, 1983). In contrast, tryptophan (indole) is the only heterocyclic aminoacid ring system, whose 

electronic structure has been preserved throughout all auxin analogs (Fig. 6). The COOH group does 

not influence any outer molecular orbital related to the activity (Fig 6). However, if a substance with 

fluoride substitutions in the carbon, which is more approximate to the side chain, is able to change the 

electronic structure and also the biological activity is totally different (Fig 6) (Zhang and Hasenstein, 

2000). Therefore, differences in activity may be due to differences in ability to bind to the electron 

acceptor. 

The structure-activity findings are consistent with both unspecific reactions like callus induction and 

very specific reactions like root induction. An analysis of the packing behaviour depending on size and 

chemical nature of the aromatic rings in the Protein Data Bank showed that the Tryptophan (indole) 

prefers edge-to-face interactions (Samanta  et al.,  1999). Additional  molecular interactions analysis 

confirms an obvious way to effect binding to a tryptophan by hydrogen bond to the indole NH proton. 

One way of edge-to-face interactions with indole ring is the formation of a NH…π bond (Taylor, 2002). 

Tryptophan could be the only heterocyclic amino acid, which may confer to the specificity of indolic 

auxins in root induction and particularly is responsible for the high activity of Indole-3-butiryc acid 

(IBA), whose distance between ring system and COOH is uncommon for active auxins (Jönsson, 

1955).

Indolic compounds can induce roots at different concentrations without any influence on other tissues. 

Other molecules like 1-NAA or 2,6-Br-Phe provoked root inductions or a mass of undifferentiated plant 

cells (callus) at highest concentrations, which can be regarded as response to stress. Others are able 

to  produce solely  callus.  This  suggests  unspecific  non-bonding interactions  of   non-indolic  rings. 

Successful biological auxin-like activity requires, essentially,  both the preferred geometries of non-

bonded contact and the likelihood of their occurrence.
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Experimental

Bioassays

Maize seeds from KWS SAAT AG (Einbeck, Germany) and tobacco leaf explants (Nicotiana tabacum 

cv. samsun) were used to perform assays of growth and morphogenesis. 

The maize seeds were soaked in sterile water to stimulate the germination. After 8 hours they were 

place on soaked cotton wool for 14 hours. After a negative selection of non-germinated and extreme 

seedling size, the maize seeds were rolled (10 seeds per roll) in filter paper. Each of them were 

placed vertically in a plastic flask, which contained 50 mL of the particular substance (auxin-type) 

solution (Tab. 1). The whole procedure was done under dark conditions at 20°C and the evaluations 

were accomplished four days later. 

The  sterile  tobacco  leaf  explants  were  placed  in  a  MS  medium  (Murashige  and  Skoog,  1962) 

supplemented with vitamins. The whole experiment was performed under a 12h photoperiod at 20°C. 

The different substances were always tested in parallel to achieve full comparability. The evaluation of 

data was performed after six weeks of growing. 

Hypocotyl lengths of old seedlings and root lengths were measured, mean and standard deviation of 

ten measurements were calculated (Tab. 2). Callus and root formation at explants were either present 

(positive) or absent (negative).

Bioassays using an ABP-1 overexpressing mutant

We have established an ABP1 over-expression mutant in tobacco (Nicotiana tabacum cv. samsun) 

using the dual  plasmid system (binary vector)  pGreen II  –  pSoup for  Agrobacterium tumefaciens 

(Hellens et al., 2000). Transformation was performed as described by (Yao et al., 2003). In short, ABP-

1 (acc. no. AF389278), under the control of a constitutive promoter, was targeted into the ER lumen. A 

Strep-tag was integrated between ABP1 and the ER-retardation signal KDEL (Fig. 3a). After selection 

of using increasing concentrations of Phosphinothricin, ABP1 expressing clones were identified and 

verified.  To verify  the  expression of  recombinant  ABP1,  the  protein  was purified  from transgenic 

tobacco plants (Fig.3b) using the StrepTag purification kit (IBA GmbH, Göttingen, Germany). SDS-

PAGE and staining was performed as  described  by Lauer  et  al.,  2005.  Additionally,  these ABP1 

overexpressing plants were used to analyze the activities of substances like IAA and 2,6-Br-Phe, and 

2-NAA.  Detailed  data  on  transgenic  plants  overexpressing  proteins  dealing  with  auxin  signal 

perception will be published elsewhere (Ferro et al., in preparation).

Statistical assessment 

First of all a molecular representation, based on Naphtoxyacetic acid, was carried out. This represents 

schematically the atom positions of any kind of auxin - like molecule, and it was able to be treated 

statistically (Fig. 7). 

A statistical featuring of biological variables was done using a classification of the range standardized 

(-1 to 1) by different  methods of  cluster  analysis.  This yielded a consistent  dendrogram with two 
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groups of related variables. Based on that, two different classifications of the molecules for each case 

were achieved.

The repetitive information of the similarity matrixes was eliminated by Principal Component Analysis 

(Ferro  et al.,  2006b). These components can fully consider a discreet distribution of  the quantum 

objects within a three-dimensional similarity space. Therefore, all molecules are not identically related 

from the quantum point of view and the components are used to find relations with effects.

Next, discriminant analysis were performed to find relationships between the biological classifications 

and molecular properties by means of both descriptors of intermolecular interaction and quantum-

chemical  descriptors  related to intramolecular  electronic  properties (Ferro  et  al.,  2006a,  Raevsky, 

1999). Lineal Regression analysis was carried out in particular cases where it was consistent with the 

phenomenological facts. 

Molecular Modelling and Quantum Molecular Similarity Measures

The  first  molecular  conformations  were  optimized  using  the  MM+ force  field  (in  the  Hyperchem 

program, no cutoffs for non-bonded interactions and electrostatic interaction bond dipoles (Allinger, 

1977))  and additionally  semi-empirical  PM3 calculus  (MOPAC v.  6,  March  1997,  Stewart,  1991). 

Subsequently, the final geometry was performed with quantum chemical optimizations at the ab-initio 

level,  using Gaussian.  The basis set  defined for  most  molecules was 6-31G* (Petersson and Al-

Laham, 1991). In case of the remaining molecules, which includes Iodine atoms was used the base 

CEP-31G (Stevens et al., 1984).

Next, an analysis of Molecular Quantum Similarity Measure (MQSM) was applied to the molecules 

used  for  the  biological  tests.  The  Quantum  similarity  methods  used  in  the  present  paper  are 

essentially the same than those exposed in the previous work on auxins by the same authors (Ferro 

et al., 2006b). A Molecular Quantum Similarity Measure (MQSM) (Carbó et al., 1980) can be defined 

as  the  scalar  product  between the  first–order  molecular  density  functions  (DF)  of  two compared 

molecules, weighted by a non–differential positive definite operator (Ω): 

( ) ( ) ( ) ( )1 1 2 2 1 2,AB A BZ d dρ ρΩ = Ω∫ ∫ r r r r r r  (eq. 4)

where A and B are the two molecules being compared, 1r  and 2r  are the electron coordinates, and 

Aρ  and Bρ  the corresponding first–order density functions. 

According  to  the  form  of  the  weighting  operator,  different  types  of  MQSM  can  be  defined.  As 

previously described (Ferro et al., 2006b), two kinds of MQSM have been used in the present study: 

the so–called Overlap QSM (Carbó et al., 1980), and the Coulomb QSM (Carbó and Domingo, 1987). 

The molecular DF has been adjusted using the Promolecular Atomic Shell Approximation (ASA) (Amat 

and Carbó-Dorca, 2000, Gironés et al., 1998). This electron density fitting algorithm adjusts the first–

order molecular electronic density functions to linear combinations of spherically symmetric functions. 

In the present study, the presence of bromine and iodine atoms forced the election of the Huzinaga 

basis set, which provides fitted functions from H to Rn (Amat and Carbó-Dorca, 1999). The number of 

terms  in  the  expansion  of  the  atomic  basis  set  for  each  atom  can  be  found  at 
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http://iqc.udg.es/cat/similarity/ASA/table432.html, whilst the ASA exponents and coefficients for each 

atom can be downloaded from the web site (http://iqc.udg.es/cat/similarity/ASA/Huzinaga432/).

Similarity measures also depend on the relative orientation of the molecules being compared. In this 

study the field–based maximum similarity superposition algorithm (Constans et al., 1997) was used to 

superimpose molecular structures. Once calculated, the whole set of pairwise MQSM are stored in the 

Similarity Matrix (SM):  { }ABZ=Z , where Z is a squared matrix of dimension N, i.e. the number of 

molecules. 

Conclusions

Here we made an assessment of structure–property relationship of auxin–like molecules. Our strategy 

based on a multi-dimensional scale of the biological activity and a dynamic view of the structural 

requirements. It was demonstrated that the mixture of both electronic structure and intermolecular 

interaction descriptors was able to discriminate this multi-dimensional biological view. Our findings can 

open the spectrum of new structural relationships emerging from new molecules. For the first time, 

QMSM method has been useful  to detect  a new active molecule with  unexpected characteristics 

showing empirical and experimental evidence. A compound without COOH (2, 6-Br-Phenol) in the side 

chain  was  able  to  induce  root,  callus  and  inhibit  root  elongation.  Any  influence  of  ABP1  over-

expressed mutant on root induction was not detected with IAA or 2,6-Br-Phenol. Hardness (η = 1/2 

HOMO-LUMO) represents a variable, statistically related to auxin activity. The molecular regions 8, 9 

and 15 are statistically detected as significant depending on their influence on the outer Molecular 

Orbitals.
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Figures and Legends

Figure Captions

Figure 1: 

Effects of  auxin-like molecules on maize root  inhibition (left  panel).  Concentrations of  substances 

applied are indicated at the top of the panel. Control was done without any hormone added. One 

representative out of ten seedlings is shown. Measurement of 2Cl, 6NO2-Phe (A), and 2,6NO2-Phe 

(B) have been measured again two days later. These later analyses is shown at the right corner (A 

and B respectively).

Right panels show the influence of the different substances on tobacco leaves, either on root induction 

(upper right panel) or on callus induction (lower right panel). The concentrations applied are indicated 

at the left.  Only those substance, which exhibted any effect, are shown but not those substances 

without any influence on the tobacco explants. The detailed values are summarized in Tab. 2.

Figure 2: 

The matrix left represents the relationship among the different variables. The variables are plotted in 

rows and columns as indicated. Colors scheme proceeds from red → yellow → blue with increasing 

relationship  of  the  variables.  The  corresponding  dendrogram  at  the  right  is  a  multiscaling 

representation of the analyzed variables in all molecules tested by the different bioassays. It clearly 

can be seen that the dendrogram falls in two main branches. In the upper group auxin effects, related 

to elongation growth can be found, whereas in the lower group morphgenetic effects are combined. 

The two separated groups are also represented by the blue areas in the matrix.

Figure 3:

To proove the relevance of the clustering found in Fig. 2, we carried out all morphogenesis related 

bioassays using an ABP1 overexpressing tobacco mutant. The upper panel A represents a scheme of 

the cassette used for transformation of tobacco in the vector pGreen. As it is true for ABP1 in wt 

plants, the recombinant ABP1 is targeted into the ER lumen due to the KDEL sequence. Lower panel 

shows the purification of  recombinant  ABP1 from transgenic tobacco leaves. The purification was 

performed using the separation on a Streptavidin column, which interacts with the Streptavidin binding 

moeity tagged to the recombinant ABP1. Lane 1 contains a molecular weight marker, lane 2 the crude 

protein extract, lanes 2 and 3 different fractions eluted from streptavidin column containing purified 

ABP1.

Figure 4: 

Graphical  representation  of  the  PCA coefficients  for  the  informative  PCAs  callus  induction,  root 

induction,  and elongation growth.  The coordinate system lists  the coefficients against  the various 

substances tested. This graph correlates the  relative biological activity of each substance tested for 

with the physiological event, respectively.
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Figure 5: 

Overview of the structure-activity relationships of auxin-like molecules.

The scatter plots (panels A, B, C) correlate quantitative bioassay results (of callus (1A), root induction 

(1B), and root inhibition (2A)) with Hardness η. Bioassay data are also shown in Tab. 2. Each dot 

represents a molecule tested. Especially in panel C, a bordered group exhibits a linear dependence 

(triangles). Some outliers above and below are most interesting from the biological point of view (see 

text). Panel F shows details on the exceptions of outliers from the lineal dependence in panel C. Panel 

D is  a  representation of  the discriminant  functions from eq.  1A and 1b,  and panel  E shows the 

discriminant  functions  from  eq.  2a  and  2b.  Different  shapes  represent  the  different  molecular 

characterizations. 

Figure 6: 

Graphical view of spatial representation of the outer molecular Orbitals, HOMO and HOMO-1 in auxin-

like molecules. Dendrogramm rechts

Figure 7: 

Representation of the atom distributions to homogenize the analysis of auxin-like molecules by fix 

positions. 
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Table 1. Substances for the biological and chemical analysis.
Name Structure CAS pKd

ABP1
LogP Class 1 Che. Class. 

Induction 2
Out-
lier

Indole-3-acetic acid (IAA)
N

OH

O 87-51-4 5,4 1,41 3 abc root/call x

Indole-3-butyric acid (IBA)
N

OH

133-32-4 5 2,30 5 abc root/call x

DL-Indole-3-lactic acid 
(ILA) N

OH

OH
O

832-97-3 - 1,22 1bc root/call

Indole-3-acetamide (IAM)
N

O

NH2

879-37-8 2,1 0,53 3 abc root/call

3-Methyl-1H-indole
 (Skatole) N

83-34-1 - 2,29 5 abc -

1-Naphthalene acetic acid 
(1-NAA)

OH

O
86-87-3 6,1 2,24 3 abc root/call x

2-Naphthaleneacetic Acid 
(2-NAA)

HOOC

581-96-4 5,9 2,81 7 ab inactive

1-Naphthoic Acid
COOH

86-55-5 - 3,10 9 a inactive x

2-Naphthoic Acid
HOOC

93-09-4 - 3,28 2 abc -
2,3,5-Triiodo Benzoic acid 
(TIBA)

I

I

COOH

I
88-82-4 5,1 5,03 4 abc callus

 Picloram N
Cl

NH2

Cl

Cl

COOH

1918021 - 0,30 - callus

Trysben Cl
COOH

Cl

Cl 50317 - 2,71 9 a callus x
2-Fluorobenzoic acid
 (2-F-BA)

F
COOH

445-29-4 - 1,70 2 abc - x

Dicamba O

Cl

COOH

Cl 1918-00-9 - 2,21 - callus

3-Fluor Phenylacetic acid
HOOC

F

331-25-9 - 1,65 11c callus

2,4-Dichlorophenylacetic 
acid (2,4-Cl-PAA)

HOOC

Cl

Cl

19719-28-
9

- 1,75 2 abc callus

2,6-Dichlorophenylacetic 
acid (2,6 Cl-PAA)

HOOC

ClCl 6575-24-2 - 2,47 4 abc callus

Phenoxy acetic acid 
(PHAA)

O
OH

O 122-59-8 3,8 1,34 11c inactive x

2,4,5-Trichlorphenoxyace-
tic acid (2,4,5-T)

O
OH

O

Cl

Cl

Cl
93-76-5 - 3,31 7ab callus

2,4-Dichlorphenoxyacetic 
acid (2,4-D)

O
OH

O Cl

Cl

94-75-7 - 2,81 4 abc -(callus)

2- Nitro Phenoxyacetic 
acid (2NO2-PHAA)

O
OH

O NO2 1878-87-1 - 1,13 4 abc inactive

2,4-Dibromophenoxyacetic 
acid (2,4 Br-PHAA)

O
OH

O Br

Br

10129-78-
9

- 1,86 3 abc callus

3 Methyl Phenoxy acetic 
acid (3Me-PHAA)

O
OH

O

Me

1643-15-8 - 1,78 4 abc inactive x

2,6-Dibromophenol (2,6-
Br-Phe)

OH
Br Br 608-33-3 - 3,36 5 abc root/call

2-Chloro-6-nitrophenol 
(2Cl-6NO2-Phe)

OH
Cl NO2 603-86-1 - 2,55 6 abc root/call

2,6-Dinitrophenol (2,6-
NO2-Phe)

OH
O2N NO2 573-56-8 - 1,37 7 ab inactive

Chemicals are from: Duchefa, Fluka and ABCR GmbH & Co KG, and Sigma-Aldrich. Picloram (4-Amino-3,5,6-
Tricloro picolinic acid), Trysben (2,3,6-Trichloro Benzoic Acid); Dicamba (3,6-Dichloro-2-methoxybenzoic acid); 
1 Clasification (Ferro et al. , 2006b); 2Quantitative information, Table 2.
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Table 2: 

Quantitative bioassay result. Each number was calculated by the equation:  ∑

∑







=
j

j

i

i c
c

y

Y
 

Root length [cm] Hypo length [cm] Root induction Callus induction
Sustance -9,-7 -9 , -4 -7, -4 -9,-7 -9 , -4 -7,-4 -9, -4 -7, -4 -9, -4 -7, -4

IAA 6,096 4,772 2,788 5,362 5,045 4,567 0,38 0,47 0,17 0,18
IBA 8,924 7,054 4,523 5,155 4,944 4,830 0,24 0,42 0,19 0,34
1-NAA 6,558 5,092 3,003 5,175 4,976 4,806 0,06 0,11 0,56 1,00
TIBA 13,161 12,533 12,227 5,529 5,325 5,209 0,04 0,06 0,00 0,00
Picloran 11,595 9,103 6,338 5,403 5,109 4,899 0,00 0,00 0,46 0,82
Dicamba 11,642 8,894 5,730 5,350 5,173 5,065 0,13 0,23 0,44 0,79
DL-ILA 11,974 11,764 11,861 5,280 5,175 5,083 0,08 0,15 0,12 0,13
245-T 9,290 7,394 5,233 4,394 4,511 4,467 0,12 0,03 0,75 0,64
2-NAA 12,923 12,503 12,716 5,714 5,714 5,820 0,00 0,00 0,03 0,05
2,6 Cl-PAA 9,600 7,407 4,367 4,999 5,011 4,985 0,03 0,00 0,25 0,39
Trysben 13,927 12,697 11,769 5,534 5,509 5,493 0,00 0,00 0,16 0,29
2NO2-PHAA 10,348 9,622 9,107 5,332 5,159 4,965 0,00 0,00 0,00 0,00
3Me-PHAA 10,945 10,250 9,746 5,045 5,091 5,092 0,00 0,00 0,00 0,00
3-F-PAA 7,317 6,961 6,349 4,779 4,922 5,151 0,00 0,00 0,36 0,64
PHAA 8,904 8,896 8,792 5,015 4,932 4,720 0,00 0,00 0,00 0,00
Naphthoic a. 10,515 9,367 7,731 5,012 4,938 4,920 0,00 0,00 0,00 0,00
2,4 Br-PHAA 8,835 6,955 4,375 4,903 4,792 4,635 0,01 0,02 0,30 0,54
2,6-Br-Phe 9,127 7,820 3,906 5,152 5,185 3,572 0,12 0,21 0,19 0,34
2Cl-6NO2-Phe 12,905 12,258 12,297 5,573 5,419 5,308 0,00 0,00 0,13 0,23
2,6-NO2-Phe 12,698 11,575 10,751 5,703 5,648 5,549 0,00 0,00 0,03 0,05
I-3-Acetamide 12,132 11,662 11,470 5,379 5,282 5,083 0,19 0,34 0,04 0,00
2,4-Cl-PAA 9,230 7,911 6,441 4,918 4,901 4,794 0,00 0,00 0,09 0,16
skatol 11,954 11,481 11,014 5,650 5,554 5,344 - - - -
2,4-D 10,839 8,035 3,946 5,517 5,127 4,650 - - - -
2-F-BA 12,226 12,710 13,799 5,094 5,155 5,228 - - - -
2-Naphtoic acid 14,107 12,232 10,848 5,902 5,638 5,497 - - - -

Root and hypocotyl length were clustered in cm at different concentration ranges: 10-9-10-7 M (=-9, 

-7), 10-9-10-4 M (=-9, -4), and 10-7-10-4 M (=-7, -4). Data for root and callus induction bases on a yes-

no answer, calculated by the equation above
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Chapter 5

Supplementary Discussion.

Plant bioassays: a poor structural mirror 

About one century ago the concept of hormone was coined by Starlin in the Royal 

Society.  Until  now, the hormone concept  plays  a  crucial  role  in a  wide range of 

research fields from chemistry to molecular biology. In our current concept of signal 

transduction mechanisms, hormone receptors occupy a central position- Our view 

on the structure function relationship of hormones has followed a progression of 

technology, that is needed to understand biological processes in details (Tata 2005).

The assignment of the specific region within a complex chemical space of an organic 

molecule  that  is  responsible  for  the  biological  process,  is  a  bold  but  critical 

endeavour. It is hampered by the fact that the biological action interacts only with a 

very small fraction (1x10-50%) of the relevant chemical space (Dobson 2004). In this 

direction,  molecular biology has the potential  to revolutionize pharmacology and 

medicine (Lipinski and Hopkins 2004).

In animals, a typical receptor is present and responds to hormone concentration in 

the range of a few μM. The relative activity is the only variation of the response and 

depends solely on the concentration. Even events like the propagation of the effect of 

receptor occupation may be important for the specific effect of the hormone. But not 

all hormone molecules in the target cell may be necessary for the ultimate interaction 

of the hormone with the "receptor substances" . Some parts of the molecule may act 

as  transport  vehicle,  which protects  the molecule during its  biological journey. It 

should  be  emphasized  that  the  molecular  variables  are  able  to  cause  biological 

effects.  Certain  flexibilization  of  the  idea  about  how  the  molecular  orbitals  are 
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influencing the biological  activity could be very interesting.  From our results we 

could not rule out something conclusive, but the biological activity depends on the 

spatial distribution of the outer MO (Molecular Orbitals) on the molecule and the 

energetic differences among them. The use of intermolecular descriptors, which is 

based  on  the  electronic  structure,  resulted  in  very  good  information  on  the 

interaction between ligand and receptor.

In  plant  science,  especially  true  for  hormones,  like  auxin,  the  pharmacological 

methods are not accurate. In fact, the cart was put before the horse, since molecular 

biology has changed the reflexions about the methods used for the work on plant 

hormones (Kepinski and Leyser 2005; McCourt 1999). All plant growth bioassays, 

which  are  based  upon  the  responses  of  the  preformed  organs,  the  immediate 

stimulus merely "unblocks" some previous limitations, but in action, the molecules in 

question function as a part of a matrix of interacting and interlocking events. This 

philosophy is very different from the classical concept of hormonal action in animals 

(Steward  and  Krikorian  1971).  Therefore,  the  auxin  molecular  diversity  was  not 

conceived under biological rules,  but these biological rules were used to confirm 

chemical dependences in the biological systems.

Auxin, its molecular diversity and pleiotropic activity

Three main problems are dealing with auxins,

1. High  amount  of  active  molecules.  That  is  a  biological  controversial  issue 

because  of  the  hormone  concept.  Affinity  is  described  by  the  equilibrium 

constant for complex (AB) formation (Keq= [AB]/[Afree] [Bfree]), the free energy 

of  the  complex  formation  is  ∆GAB  =  -RTlnKeq.  Specificity  is  conveniently 

defined as the difference in affinity between ligands A and A´ (∆∆GAA´ = ∆GAB 

-  ∆GA´B ).  Really in the hormone definition does not include the specificity, 

however it is one essential characteristic for this kind of molecular interaction. 

A very high specificity requires more stringent discrimination mechanisms, 

when competitors are similar and abundant, but more variable when there are 

few and distinct  competitors  present  (Szwajkajzer  and Carey 1997).  Auxin 
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may depict the other paradigm in respect to hormone specificity (Clevenger 

2003).The core problem is, auxins are dissimilar and abundant. 

2. Pleiotropic  physiological  effect.  Another  controversial  issue  is  a relative 

behaviour of compounds strongly influenced on the type of assay performed, i.e. in 

Avena IAA is 1000 times more effective as 2,4-D; in split pea test 2,4-D is 12 times as 

effective  as  IAA,  but  in  straight  growth  test  IAA  and  2,4-D  have  comparable 

activities. The auxin specificity nature is depending on what kind of effect they 

are inducing (Steward and Krikorian 1971). It is very difficult to follow the 

reaction proper from phenomenological point of view by a single biological 

test. 

3. The high molecular diversity. This is a very crucial point, since most structure 

activity theories on auxins have not been proven by strong and reproducible 

experiments. Only basing on experimental evidences with many exceptions or 

without  sufficient  and  /  or  a  representative  statistical  samples,  reliable 

experimental data are highly needed (Farrimond et al. 1981; Hansch and Muir 

1950;  Kaethner 1977;  Katekar  1979;  Porter  and Thimann 1965;  Tomic et  al. 

1998a). In fact, in one hand it is very difficult to select chemical descriptors 

that are able to manage such different structures. On the other hand, in order 

to unify the molecular individualities, strategies for the selection of statistical 

variables is a difficult task. 

How to face the problems

So  far  the  broader  range  of  auxin  molecular  diversity  was  analysed  by Jönnson 

(Jönsson 1961). His work was also the key source for the comprehensive Katekar's 

publications (Katekar 1979; Katekar and Geissler 1982; Katekar and Geissler 1983; 

Katekar et al. 1987). While Jönnson´s work was forgotten, the intuitive principles of 

Katekar´s work is still the basis for most of the auxin research. Since the 1960s - 1970s 

clear and common dogma for an auxin molecule is well accepted: a rich electronic 

surface  formed  by  different  ring  systems  frequently  combined  with  halogen 

substituents  and a  high interface  activity.  But  the base  of  this  view was already 

established by Veldstra about 20 years before (Veldstra 1944; Veldstra 1952; Veldstra 
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1953; Veldstra and Vandewesteringh 1951b; Veldstra and Vandewesteringh 1952). 

Furthermore Veldstra emphasized the importance of a balance between a defined 

hydrophilic part (carboxyl group) and a lipophilic part (ring system) (Veldstra and 

Vandewesteringh 1951a). 

The way to  face the  structure activity-relationship must  be,  first  of  all,  by using 

electronic descriptors of intermolecular interactions (Bertosa et al. 2003; Tomic et al. 

1998a; Tomic et al. 1998b). That is a way to have much information about different 

molecules.  In  case  of  auxin  we  are  exactly  in  the  core  problem  of  the  possible 

interaction ligand-receptor.

First of all, it has to be figured out, which kind of similarity actually correlates with 

the  biological  activity.  In  case  of  auxin  the  difficulties  aggravate  due  to  the 

problematic historical background of plant bioassays (Steward and Krikorian 1971; 

Veldstra 1944; Veldstra 1953; Weyers and Paterson 2001). 

This scenario led to our strategy:

• first, a consensus variable was developed, in which the general information 

on biological activities independent from test and tissue could be included. 

The reference point for this was just the maximal activity of the appropriate 

substance;

• second, different substances were biotested in parallel using different assays 

combined with a procedure similar to statistical multi-scaling analysis. These 

analyses  are  able  to  eliminate  the  redundant  information raising from the 

biological context, thereby focussing on the  proper reaction.

The  statistical  treatment  of  similarity  matrices  of  both,  Coulomb  and  Overlap 

operators,  was  preceded by a  Principal  Component  Analysis,  which allowed the 

minimisation  of  the  highly  repetitive  information.  Different  methods  of  cluster 

analysis  were  applied  and  the  relationship  between  the  resulting  clusters  and 

biological  activity  was  tested.  According  to  the  statistical  consensus  boundary 

between chemical  similarities  and biological  properties,  the compounds could be 

grouped  in  different  classes.  A  confirmatory  multiple  analysis  of  means 

distinguished  five  biological  activity  groups.  In  this  way  molecules  with 

contradictory properties in biological acitvity and structural requirements, could be 
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enlightened, as it is true for the well-known inactivity issue of 8-Cl-NAA (Katekar et 

al. 1987). 

The second approach necessarily followed the cyclic scientific method: hypothesis 

formulation, experimental design, and data analyses (Box et al. 1978). Thereby, some 

new insights were unraveled and the approach was convincingly confirmed by the 

(predicted by structure) activity of a compound without classical characteristics of 

auxins. The substance 2,6-bromophenol does not even contain a COOH group, but 

nevertheless,  it  belonged  to  the  group  of  active  substances  in  the  structural 

classification made earlier by Molecular Quantum Similarity Methods (MQSM). 

Moreover, variables were used, which are able to characterize the electron structure 

of molecules. This new approach is enabled by recent methods of calculus with high 

precision,  like  ab-initio  prediction  and  which  gave  good results,  thereby  solving 

some old problems related with the inclusion of the atom N in the indole ring (Kiralj 

and Ferreira  2003).  The statistical  analysis  of  the energies  of  the outer molecular 

orbitals arrived at the conclusion that HOMO and HOMO-1 can form a quasi-band, 

while the other orbitals are energetically spoken far away from them. The additional 

analysis  of  participation of  the different  atoms on each of  these  outer  molecular 

orbitals allowed the explanation of most of the biological information comprehended 

in auxin molecules.

The multi-scaling analysis based on the finding of similarities among the biological 

variables and allowed us to discriminate between two groups of variables.  These 

variables  are  also  linked  in  a  very  fine  manner  with  the  two  central  biological 

mechanisms related to auxin: morphogenesis and growth (cell elongation). Control 

experiments using an ABP1-over- expressing mutant confirmed that the position of 

the results (from binding assays) for these hormones are related with process of cell 

elongation. This has been found by different means and authors before. 
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Two sets of structural requirements for auxin-like molecules 

The biological evidences suggested that the high diversity of auxin molecules can 

only  be  explained  when  more  than  one  set  of  biological  descriptors  are  used. 

Therefore,  we  splited  the  analysis.  The  results  pointed  out  one  region  in  the 

molecules with very high importance. This region is defined by the existence of the 

N-indole  atom.  The  second  region  is  somehow  modifiable  ,  depending  on  the 

HOMO - HOMO-1 localization between the atomic positions 10 - 11 (morphogenesis) 

and 15 (growth).

It should be emphasized that the distance between the carboxyl group and different 

parts of the ring had no significant influence from our sample (data sets), including 

the distances in respect of the more negative atoms in the ring. Therefore, it can be 

concluded that the balance between the hydrophilic and lipophilic regions (Veldstra 

and Vandewesteringh 1951a) is important, especially for cell growth, in which the C-

sp2 carbon (at position 4 - Fig7 - Chapter 4) was found to be a determinant variable 

for biological activity. The buffer area, postulated by Katekar (Katekar and Geissler 

1982),  can  be  important  for  the  occurrence  of  hight  activities,  but  strict  distance 

relationships are dispensable.

Morphogenesis (root induction) seems to be dominated by ring interactions and by 

the  recognized  N-indole  region  (Kiralj  and  Ferreira  2003).  The  significance  is 

Fig.  7:  Probably  "accessory  binding  areas":  Significant  regions of  the  molecular  orbitals  related  to  

events of morphogenesis (M) or growth (G). Region buffer important for growth regulation (b). 
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supported by the observation that indole compound acts strongly on root induction 

but hardly on callus induction. It can be postulated that callus formation depends on 

the mimetic representation of the orbital structure of the N-indole ring in other kind 

of ring. Other rings might provoke non-specific interactions (callus induction). 

General reflexions

Finally, a common variable was declared, which influences the biological activity of 

auxins at every level: the chemical hardness (η) is determined by the gap between 

the  Highest  Occupied  Molecular  Orbital  (HOMO)  and  the  Lowest  Unoccupied 

Molecular Orbital (LUMO). The gap between anti-bonding and bonding molecular 

orbitals represents a reflection of the molecular stability (Gilman 1997). In short, soft 

molecules are more active than hard molecules if electron transfer or rearrangement 

is necessary for the reaction (Pearson 1986). This is exactly allocated by our results. 

The  reaction  of  auxins  involves  electron  arrangements  independently  from  the 

biological signal system. This variable "hardness" (η) is the fundamental variable for 

all  auxin molecules  and their  activities,  thereby this  variable  elucidates  the  high 

variation of the auxin effects.

Actually, hydrogen bonding and stacking interactions are getting a more significant 

role  being  the  prime  reason  for  electrostatic  interactions  in  biological  systems. 

Experiments  in  gene  silencing  activity  of  siRNAs  with  a  ribo-difluorotoluyl 

nucleotide  revealed  that  the  stacking  interactions  play  a  major  role,  rather  than 

hydrogen bonding in the fidelity of DNA replication (Rebek et al.  1987; Xia et al. 

2006). 

Indole-3-acetic acid is a derivative from tryptophan, the only heterocyclic one of the 

usual amino acids. Therefore, the packing of the indole ring system is common in 

proteins. Here, it was proven by ab-initio Electronic Structure Calculation that the 

electronic structure of the indolic hetero-ring is conserved between both tryptophan 

and IAA, even when changes at the end of the side chain occurred. Therefore, IAA 
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could inherit the different packing characteristic of tryptophan (Samanta et al. 1999; 

Taylor 2002). 

The strategies used for this thesis are the key of the chemical design, which will 

result in the generation of new synthetic auxins and/or comprehensive bases of the 

action mechanism. These approach have to fulfil  the following requirements. This 

may be also extended to the the phytohormone context. It is already shown that the 

field of molecular interactions could be more complicated than expected (Gafurov 

and  Zefirov  2004).  Gafurov  confirmed  the  existence  of  auxin  and  gibberellin 

mimetics by experimental evidences basing the molecular design on the following 

postulates:

1. even weak but simultaneous stimulating influences on some systems with a 

given character, can cause a strong responds; 

2. to  achieve  this  objective,  these  influences  should  be  complementary  and 

coordinated;

3. the physiological  activity  of  a  molecule  is  a  result  of  the interaction of  its 

effector chemical fragments with the receptors of those systems which form 

the given character (quality);

4. physical  and  chemical  properties  of  the  effector  fragments  and  the  whole 

molecule do not determine the regulation influence qualitatively.

Outlook and future prospect

Quantum Chemical Methods and biostatistical analysis will further assist in clarifing 

the statistical regularities of the biological matrix, representing interactions within 

the auxin scenery. A feed-back approach of computational chemistry and molecular 

biological methods will be a promising strategy to further unravel the phenomenon 

of the pleiotropic effects of phytoregulators (auxin).

The  use  of  these  techniques  will  open  up  new  perspectives  in  auxin  and  plant 

hormone  regulators  research.  The  classification  of  the  diversity  of  auxins-like 

molecules will unravel the connections at the biochemical and the molecular level. 

The new variables, developed in this thesis are strongly linked to fresh biological 
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evidences and they will enable us, to develop better classifications for the almost 

1000 auxin-like molecules known from literature. 

A consequent experimental design could assist to find new proteins involved in the 

metabolism  of  auxins.  The  analysis  will  focus  on  ligand  structure  and  binding 

assays.  The  general  mechanism bases  on  the  concepts  of  ligand-specific  receptor 

conformations  and  conditional  efficacy  and  should  consider  the  ligand-specific 

physiological response.

The introduction of point mutations can (at least theoretically) be used for further 

analysis of the interactions between ligand and different amino acids. The existence 

of more than one receptor in the auxin signal transduction chain demands to the 

discrimination of the structural-binding relationships for each receptor – ligand pair 

and the evaluation of the physiological relationships for each of them. Further non-

additive influences  from the molecular and biochemical  context  can be expected, 

which will result in a very complex system. 
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