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ZUSAMMENFASSUNG 

 
   Höhere Pilze aus der Klasse der Basidiomyceten (Ständerpilze) verfügen über ein bemerkenswertes 
biochemisches Potential zur Synthese von hochwertigen flüchtigen Aromastoffen. Die instrumentell-
analytische Untersuchung dieser Inhaltsstoffe insbesondere bei eßbaren Vertretern ist sowohl von 
grundlegender wissenschaftlicher Bedeutung als auch von potentiellem industriellen Interesse. 
 
   Frische Fruchtkörper der Wildpilze Polyporus sulfureus, Lentinus lepideus und Fistulina hepatica 
wurden im Pilzlehrpfad des Wisentgeheges Springe geerntet. Die flüchtigen Inhaltsstoffe wurden aus 
den zerkleinerten Fruchtkörpern durch kontinuierliche Flüssig-Flüssig-Extraktion isoliert und mit der 
Kapillar-Gaschromatographie-Massenspekrometrie-Kopplung (GC-MS) auf zwei unterschiedlich 
polaren Säulen (DB-5 und ZB-WAX) untersucht. Heteroatomhaltige Komponenten wurden mit der 
Gaschromatographie-Atomemissionsdetektor-Kopplung (GC-AED) gesucht, und Aromabeiträge mit 
der Gaschromatographie-Olfaktometrie (GC-O) abgeschätzt. 
 
   Aus den jungen frischen Fruchtkörpern von P. sulfureus, gewachsen auf Eichenholz, sind 40 
flüchtige Hauptkomponenten identifiziert und semi-quantifiziert worden; ebenso 43 
Hauptkomponenten aus L. lepideus, gewachsen auf altem Kastanienholz und 48 Hauptkomponenten 
aus F. hepatica, gewachsen auf Eichenholz.  
 
   Fünf Komponenten waren für den charakteristischen Geruch von jungen Fruchtkörpern von P. 

sulfureus verantwortlich: 1-Octen-3-on, 1-Octen-3-ol, 3-Methylbutansäure, 2-Phenylethanol und 
Phenylethansäure. Mit zunehmendem Alter der Fruchtkörper verschob sich das Spektrum zugunsten 
der nun besonders prägenden Aromastoffe 2-Methylpropansäure, Butansäure, 3-Methylbutansäure und 
Phenylethansäure. Somit sind die sensorischen Veränderungen auf die chemischen Ursachen 
zurückgeführt worden. Der Vergleich mit Literaturangaben ergab, dass die Aromazusammensetzung 
selbst in der gleichen Spezies von Wirtsholz, Standort und der Seneszenz abhängig sein kann. 
 
   Von den 19 erstmals beschriebenen Sesquiterpenen von L. lepideus haben sich 11 einer 
abschließenden Identifizierung entzogen. Die fünf intensivsten Geruchskomponenten der jungen 
Fruchtkörper waren n-Nonanal, (2E)-Nonenal, Germacene D, 2-Vinylmalonsäuremethylpropylester 
und Nonansäure. Das schwefelhaltige Sesquiterpen „Mintsulfide“ wurde zum ersten Mal als 
Pilzmetabolit nachgewiesen.  
 
   Das Aromaprofil der Fruchtkörper von F. hepatica war gekennzeichnet durch das häufige Auftreten 
von Monoterpenen. Zu den 11 sensorisch prägendsten Komponenten gehörten 1-Octen-3-on, 1-Octen-
3-ol, Linalool, Phenylacetaldehyd, Butansäure, (2E)-Methyl-2-butensäure, (E)-Zimtsäuremethylester, 
(9Z)-Hexadecensäuremethylester, Bisabololoxid B, Phenylethansäure sowie eine nicht identifizierte 
Verbindung mit muffigem Geruch. (2E)-Methyl-2-butensäure und Bisabololoxid B wurden zum ersten 
Mal als Pilzmetabolite beschrieben. 
 
   Das Potential von F. hepatica zur Aromabildung wurde zusätzlich für Zellkulturen unter sterilen 
Laborbedingungen untersucht. Submerskulturen in Standardnährlösung bildeten 39 flüchtige 
Hauptkomponenten, während aus Oberflächenkulturen, gewachsen auf Eichenholzpulver, 53 
Komponenten identifiziert und semi-quantifiziert wurden. Insgesamt bildeten die Oberflächenkulturen 
im Vergleich ein größeres Spektrum von Aromastoffen in viel höheren Konzentrationen, so auch für 
die Schlüsselkomponente 1-Octen-3-ol. Die Bildung der besonders interessanten Terpenoide hängt 
offenbar von den Kultivierungsbedingungen ab. Die enzymatischen Besonderheiten von F. hepatica 

beim selektiven Ligninabbau könnten zur Erzeugung von nichtphenolischen, methoxybenzenoiden 
Aromastoffen aus Ligninabfallströmen genutzt werden. 
 
 
Schlagwörter: Basidiomycete, flüchtig, charakteristisch, Aromastoff, F. hepatica, P. sulfureus, L. 

lepideus, Kultur  



 

SUMMARY 

 

   Basidiomycetes are capable of producing a wide diversity of volatile flavors with high value. The 
investigation of these compounds of edible mushroom fungi are of both theoretical and commercial 
significance. 
 
   The wild mushrooms Polyporus sulfureus, Lentinus lepideus, and Fistulina hepatica were harvested 
from trees in Wisent Park, Springe, northwest of Germany. The volatile constituents of their fresh 
fruiting bodies were isolated by continuous liquid–liquid extraction (CLLE) and investigated by high 
resolution gas chromatography–mass spectrometry (HRGC–MS) on two GC columns of different 
polarity (DB-5 and ZB-WAX), gas chromatography-atomic emission detector (GC-AED), and by gas 
chromatography–olfactometry (GC–O).  
 
   Forty major volatile compounds from the young fresh fruiting bodies of P. sulfureus  growing on 
oak tree, 43 major volatile compounds from the young fresh fruiting bodies of L. lepideus developing 
on downed old chestnut tree, and 48 major volatile compounds from the fresh fruiting bodies of F. 

hepatica habitating on oak tree, were identified and semiquantified, respectively. 
 
   Five odorous compounds were determined to be responsible for the characteristic flavor of the 
young fruiting bodies of P. sulfureus: 1-octen-3-one, 1-octen-3-ol, 3-methylbutanoic acid, 
phenylethanol, and phenylacetic acid. Four volatiles were determined as the characteristic odorants of 
the aged fruiting bodies of P. sulfureus: 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid, 
and phenylacetic acid. The manifest odor differences between young and aged fruiting bodies of P. 

sulfureus were thus elucidated. This investigation also revealed that the volatile composition of the 
fruiting bodies even from the same fungal species may greatly vary with its host, location and age. 
  
   Investigation on L. lepideus showed 19 new sesquiterpenoids including 11 unknown 
sesquiterpenoids were metabolites of this species. Five odorous compounds, were determined to be 
responsible for the characteristic flavor of the young fruiting bodies of L. lepideus: nonanal, (E)-2-
nonenal, germacrene-D, 2-vinyl malonic acid methyl propyl ester, and nonanoic acid. The sulfur-
containing sesquiterpenoid mintsulfide was identified for the first time in the fungal kingdom and a 
main odorant 2-vinyl malonic acid methyl propyl ester was proposed. 
 
   Investigation of the fruiting bodies of F. hepatica showed its wealth of monoterpenes. 11 odorous 
compounds significantly contributed to the overall flavor of the fruiting bodies of F. hepatica: 1-
octen-3-one, 1-octen-3-ol, linalool, phenylacetaldehyde, butanoic acid, an unidentified volatile 
compound with mouldy odor, (E)-2-methyl-2-butenoic acid, (E)-methyl cinnamate, (Z)-9-
hexadecenoic acid methyl ester, bisabolol oxide B and phenylacetic acid. (E)-2-methyl-2-butenoic 
acid and bisabolol oxide B were the first time to be reported as metabolites of fungi. 
 
   The biochemical potential of F. hepatica to produce flavors was further evaluated by cultivation in 
sterile laboratory environments. A total of 39 volatile compounds generated by the submerged cultured 
F. hepatica in standard nutrition solution (SNS), and 53 volatile compounds by the surface grown F. 

hepatica on oak wood powder, were identified and semiquantified, respectively. In general, the 
surface cultures contained a wider diversity of volatile classes and produced much higher 
concentration of key flavors such as 1-octen-3-ol. The results suggested that F. hepatica could produce 
a variety of terpenoids depending on medium. The enzymatic effects of F. hepatica on selective 
breakdown of lignin might be exploited to create natural non-phenolic methoxybenzenoid flavors from 
lignin wastes. 
 
 
Key words: Basidiomycete, volatile, characteristic, flavor, F. hepatica, P. sulfureus, L. lepideus, 
culture 
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M+ molecular ion 
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Introduction  1 

1. INTRODUCTION 

 

 

1.1. Mushrooms as sources of valuable secondary metabolites  

 

   Owing to the fungal metabolic versatility, ecological diversity, complex life cycles, and 

essential role in nature, fungi have attracted the attention of chemists, biochemists, biologists, 

geneticists, ecologists, and naturalists in myriad ways (Tkacz, & Lange, 2004). The use of 

fungi for the production of commercially important products has a long tradition, but it has 

increased rapidly over the past half century (Papagianni, 2004). 

 

   Commonly, mushrooms are described as macrofungi with distinctive fruiting bodies, which 

are large enough to be seen with human naked eyes and can be picked by hand. Based on this 

definition, more than 12,000 species have been considered as mushrooms. At least 2,000 of 

them are considered as edible (Chang, 1999). In terms of taxonomy, they belong to the class 

of basidiomycetes or to the ascomycetes (Mizuno, 1995). Modern molecular biology 

techniques have revealed that single mushroom species showing identical morphology may 

comprise many varieties in nature (Hawksworth, 2004). For example, Polyporus sulfureus 

species, has a number of varieties (Banik, Burdsall, & Volk, 1998). According to RFLP 

(restriction fragment length polymorphism) analyses of mtDNA (mitochondrial DNA), a 

single fallen tree accommodated at least four distinct parental strains of Lentinula edodes 

(Fukuda, & Mori, 2003). In view of this, and considering unknown wild species remaining 

unidentified, the number of mushroom strains seems to be immense.  

 

   Since ancient times, mushrooms have been part of normal human diets. Lentinus edodes, 

commonly called shiitake, was firstly cultivated in China early between 1000 AD and 1100 

AD (Sánchez, 2004). The production of macrofungi for alimentary use is so far the only 

profitable way of utilizing lignocelluloses wastes. In recent times, the amounts of consumed 

mushrooms, involving a larger number of species, have greatly increased (Mattila, Könkö, 

Eurola, Pihlava, Astola, Vahteristo, et al., 2001). Mushrooms have been realized as a rich 

source of protein and secondary metabolites with novel structures and interesting biological 

and pharmacological activities (Turner, & Aldridge, 1983). In food sciences, the overall 

harmonizing effect of a diet balanced with edible mushrooms, highly praised by the Chinese 

as early as 100 AD (Chang, 1996), is not a myth, but is continually supported by modern 

scientific investigations (Abraham, 2001; Itonori, Aoki, & Sugita, 2004; Wasser, 2002; 
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Wojtas, Bieñkowski, Tateyama, Sagami, Chojnacki, Danikiewicz, & Swiezewska, 2004; 

Zjawiony, 2004). For centuries, mostly in East Asia, more than 200 wild mushroom species 

have been collected and used for various traditional medical purposes, while being devoid of 

undesirable side-effects (Sagakami, Aohi, Simpson, & Tanuma, 1991; Sánchez, 2004). Many 

bioactive molecules with pharmaceutical activities, including volatile compounds, have been 

recently identified in various edible mushroom species (Cohen, Persky, & Hadar, 2002; Jin, 

Jung, Shin, Kim, Jeon, & Choi, 2003; Keller, Maillard, Keller, & Hostettmann, 2002; 

Tsukamoto, Macabalang, Nakatani, Obara, Nakahata, & Ohta, 2003; Yaoita, Matsuki, Iijima, 

Nakano, Kakuda, & Machida, 2001).  

 

   Apart from edibility and medicinal purposes, many edible mushrooms with a characteristic 

taste and aroma are highly appreciated not only by gourmet chefs but also by flavor and 

fragrance researchers. Presumably, it was their pleasant aroma that prompted the notorious 

Roman emperor Nero to name mushrooms “cibus deorum”, food of the gods (Berger, & Zorn, 

2004). The flavor compounds of edible mushrooms are an important factor to evaluate their 

quality as food materials and even medicine stuffs.  

 

1.2. Significance of producing natural flavors by mushroom fungi  

 

   The EU (CEC, 1991) and USA (CFR, 1993) legislations have clarified that “natural” flavor 

substances can only be prepared either by physical processes (extraction from natural 

sources), or by enzymatic or microbial processes, which involve precursors isolated from 

nature (Berger, Krings, & Zorn, 2002; Serra, Fuganti, & Brenna, 2005). The preference of 

consumers for “natural products” strongly drives the market to develop natural flavors. A 

flavor sold as natural product is often significantly more expensive than an identical one 

prepared by chemical synthesis. For example, the price of natural vanillin is 80 to 266 times 

of that of synthetic vanillin (Walton, Mayer, Narbad, 2003). Furthermore, chiral flavor 

compounds usually occur in nature as single enantiomers, which are not easily accessible by 

the less selective classical synthetic approaches (Brenna, Fuganti, & Serra, 2003). Meanwhile, 

the increasing sensitivity of the ecological systems supports the choice of environmentally 

friendly processes. As a result, academic research and industrial exploitation of the 

biosynthetic capabilities of many microorganisms have been stimulated in recent times. 

 

   As early as 1923, a first academic discussion on the capabilities of bacteria to form flavors 

was published (Omelianski, 1923). The importance of flavors originating from 
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microorganisms was not academically realized until 30 years later, and industrial research in 

the biotechnological production of natural flavors was not initiated until the early 1980s 

(Gatfield, 1999). Since the mid-1980s, a considerable number of monographs, multi-authored 

works, and conference proceedings have focused on the biotechnological production of 

flavors and aromas (Schrader, & Berger, 2001). The perspectives of generating flavors by 

fungi have been well outlined by several updated reviews (Agrawal, 2004; Berger, & Zorn, 

2004; Vandamme, 2003). 

 

    Among all fungal classes, basidiomycetes are probably the most promising candidates to 

generate desirable flavors. Starting from the early 1950s, researchers attempted to harness 

mushroom fungi for natural flavor production because of their enormous biochemical 

potential (Sugihara, & Humfeld, 1954). The class of basidiomycetes shows a complicated 

sexual cycle, pseudo-tissue formation, and the distinct ability to degrade native cellulose or 

lignin aerobically. The biotechnological potential of mushrooms is probably far from 

exploited. Volatile flavors from all chemical classes were found in basidiomycete fruiting 

bodies and cell cultures (Berger, Krings, & Zorn, 2002). Studies on flavors of mushroom 

fungi are not only of theoretical but also of commercial significance. Based on the updated 

researches, five main aspects may be summarized: 

  

• Although flavors formed de novo in fruiting bodies of mushrooms suffer from low yield, a 

detailed investigation of volatile compounds from specific mushroom is a critical and 

basic start to reveal the mechanism of flavor formation in its fruiting bodies. The full-

scale investigations may open up new avenues for discovering related enzymes and genes 

responsible for the flavor development. This will accelerate the process of engineering the 

biosynthesis of natural flavors. 

 

• New strains of interest may be isolated from the wild fruiting bodies (Trinci, 1995). 

Improved understanding of fungal metabolic activity in natural ecological settings may 

facilitate the searching and screening for attractive flavors. To optimize the selection of 

isolates from different substrates and habitats will increase the chance to find novel 

odorous metabolites (Wildman, 1995). The efficiency of biotransformations of low-cost 

compounds to high value volatiles may be improved by a careful selection of the strain 

(Kaspera, Krings, Pescheck, Sell, Schrader, & Berger, 2005). 
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• The increasing amounts of ligninocellulosic wastes from agriculture, such as rice and 

wheat straw, corn cobs, cotton stalks, and cereal hulls, as well as from woodland, animal 

husbandry, and manufacturing industries, are often landfilled or burned at great cost to the 

environment (Rinker, 2002; Anoliefo, Isikhuemhen, & Okosolo, 1999). Many natural 

flavors, being building blocks of the lignin macromolecule, can be selectively released by 

mushroom fungi. 

 

• The elucidation of flavor profiles contributes to the discovery of novel secondary 

metabolites from fungal kingdom, and may serve as a new method for a 

chemotaxonomical index of fungi (Brondz, Hoiland, & Ekeberg, 2004; Monaghan, 

Polishook, Pecore, Bills, Nallin-Omstead, & Streicher, 1995). Novel natural components 

of impact odor will attract interest from aroma-related industries, especially the perfume, 

fragrance and cosmetic companies, which are in a constant search for new and unusual 

volatile compounds and scents.  

 

• The investigation of volatile secondary metabolites of wild mushroom fungi may be 

beneficial for the monitoring of environment changes, as the living organisms evolve to 

meet environmental challenges (Hawksworth, 2004).  

 

1.3. Brief review on the investigated wild mushroom fruiting bodies and 

noticeable volatiles  

   

   The mushrooms cultivated in the highest amounts worldwide are Agaricus bisporus (button 

mushroom), followed by Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster 

mushroom) (Sánchez, 2004). Their popularity is not only based on their nutritional value, but 

also on their unique flavor and aromatic properties (Cohen, Persky, & Hadar, 2002; Stoop, & 

Mooibroek, 1999). The secondary metabolisms of these industrially produced species are 

much better studied than those of wild species. As a result, a breakthrough in industrial 

production of natural volatiles from mushrooms was the formation of natural 1-octen-3-ol 

using enzymes from Agaricus bisporus (Morawicki, Beelman, Peterson, & Ziegler, 2005). 

This testifies that fundamental efforts on understanding the volatiles and their formation in the 

mushroom fungi may also be of commercial interest. This also inspires industrial and 

academic research to screen more wild species for the production of high value flavor 
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compounds. An extensive investigation on the volatile secondary metabolites of wild fruiting 

bodies is an indispensable part of the whole process.  

 

   The cultivation of mushroom fruiting bodies represents an economically important 

biotechnological industry, that has markedly expanded all over the world in the past few 

decades. Nevertheless, the number of commercially cultivated mushroom species currently 

amounts to only about 35, and around 20 of them are produced on an industrial scale 

(Sánchez, 2004).  The major problems up to now are that only a few species can be induced to 

fruit in culture (Cohen, Persky, & Hadar, 2002; Kües, & Liu, 2000). Furthermore, the search 

for secondary metabolites from wild filamentous fungi has been a consistent source of 

chemical innovation in screening programs for natural products (Monaghan, & Tkacz, 1990). 

Consequently, most of the investigated materials were the fruiting bodies picked in the wild.  

 

   70 years prior to this study, a paper on odorous volatiles from the fruiting bodies of 

mushroom was published (Aye, 1933). Considerable progress was not made until the birth of 

gas chromatography (GC). Searching the SciFinder database and on-line Web of Science until 

September 2005, a survey showed that more than 220 species of wild basidiomycete 

mushroom fruiting bodies have been examined for volatile compounds. Around 70% of them 

were investigated comparatively detailed in the past decade. Especially the French team of  

Rapior and Breheret has rendered outstanding services to the investigation of volatiles from 

fungal fruiting bodies. About 120 wild mushroom species have been screened by them since 

1994. The well-known mushroom aroma arises from a series eight-carbon aliphatic 

oxygenated compounds (briefly called C8 compounds), especially 1-octen-3-ol (Mau, Chyau, 

Li, & Tseng, 1997). After 1-octen-3-ol was firstly isolated from Armillaria matsutake 

(Murahashi, 1938), more and more volatiles were realized to be distinct and typical flavors of  

fruiting bodies of different mushrooms. A milestone example was the isolation of lenthionine 

from the fruiting bodies of Lentinus edodes (Morita, & Kobayashi, 1966). To avoid stale and 

redundant review, the reports published prior to 1994, are not restated. Here, except for the 

common C8 compounds, emphasis is given to noticeable volatiles formed de novo by fruiting 

bodies, together with their respective original wild mushroom species described in selected 

publications (Table 1).  

 

   As seen in Table 1, more and more compounds of other chemical classes were found to be 

responsible for the characteristic flavor of fungi. They may be divided into four main groups: 

terpenoids, sulfur-containing compounds, aromatic compounds, and miscellaneous classes. 
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The former three classes were most frequently highlighted in many literatures, although 

esters, lactones, methyl-branched short-chain fatty acids, etc., were also described. 

 

Table 1. Investigated Fruiting Bodies of Wild Mushroom Basidiomycetes and Noticeable Volatile Compounds 

Since 1994 

  

Mushroom species Noticeable compounds  References 

Agaricus blazei Benzaldehyde, benzoic acid Stijve, et al., 2002 

Agaricus bisporus (E)-Linalool oxide Venkateshwarlu, et al., 1999 

Agaricus esettei Benzaldehyde, phenylethanol Rapior, et al., 2002 

Amanita ovoidea Piperitol, α-fenchene, α-thujene, sabinene hydrate Breheret, et al., 1997 

Auricularia polytricha Dihydro-5-pentyl-2-(3H)-furanone acid Lee, et al., 1995 

Boletus erythropus Piperitone Breheret, et al., 1997 

Calocybe indica p-Anisaldehyde Venkateshwarlu, et al., 1999 

Clitocybe odora p-Anisaldehyde Rapior, et al., 2002 

Cortinarius herculeus Geosmin Breheret, et al., 1999 

Cystoderma amianthinum Geosmin Breheret, et al., 1999 

Cystoderma carcharias Geosmin, fenchol, fenchone, camphene hydrate Breheret, et al., 1997 & 1999 

Fomes fomentarius β-Phellandrene,  β-mycrene Faldt, et al., 1999 

Fomitopsis pinicola β-Barbatene, (E)-β-farnesene Faldt, et al., 1999; Rösecke, et al., 2000 

Gomphidius glutinosus Camphene, α-thujene Breheret, et al., 1997 

Gyrophragmium dunalii Benzaldehyde, phenylethanol Rapior, et al., 2000 

Gloeophyllum odoratum Drimenol, (R)-(–)-Linalool  Kahlos, et al., 1994; Rösecke, et al., 2000 

Lactarius rufus Rufuslactone  Luo, et al. , 2005 

Lactarius atlanticus Altanticones Clericuzio, et al., 2002 

Lentinellus cochleatus p-Anisaldehyde  Rapior, et al., 2002 

Lentinus edodes Sulfur- and nitrogen-containing volatiles Cho, et al., 2003; Eri, et al. 2004;  

Lepista  nuda (Z)-Linalool oxide Breheret, et al., 1997 

Marasmius alliaceus 2,4,5,7-Tetrathiaoctane, 2,3,5-trithiahexane Rapior, et al., 1997 

Phallus impudicus Dimethyl sulfide, trimethy sulfide, (E)-ocimene Borgkarl, et al., 1994 

Piptoporus betulinus (+)-α-Barbatene, Isobazzanene Rösecke, et al., 2000 

Pleurotus eryngii Benzaldehyde Mau, et al., 1998 

Pleutrotus ssp Sotolone Lizarrage-Guerra, et al., 1997 

Termitomyces shimperi Phenylethanol Nyegue, et al., 2003 

Trametes suaveolens Methyl anisate Rösecke, et al., 2000 

Tricholoma caligatum α-Thujene Breheret, et al., 1997 

Tricholoma matsutake Methional Cho, et al. 2005 

Tricholoma sulfureum Indole, 3-formylindole, linalool Rapior, et al., 1998 

Ustilago maydis (E, E)-Deca-2,4-dienal, vanillin Lizarrage-Guerra, et al., 1997 

Volvariella volvacea Octa-1,5-dien-3-ol Mau, et al., 1997 
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   Many terpenoids and sulfur-containing compounds are highly valued as flavors and 

fragrances so that a special fragrance chemistry on terpenoids and sulfur-containing odorants 

has recently formed (Candela, Fellous, Joulain, & Faure, 2002; Goeke, 2002). Sulfur-

containing compounds are appreciated, as they often show very low odor thresholds. They 

may change the overall olfactory impressions of fragrant mixtures, even if present only in 

trace amounts. Biochemistry of sulfur flavors in Lentinula edodes is thought to be similar to 

that of well-studied plants of the genus Allium, such as Chinese chive, garlic, and onion. Why 

the mushroom produces such large quantities of exotic sulfur species remains a mystery 

(Sneeden, Harris, Pickering, Prince, Johnson, Li, Block, & George, 2004). Little has become 

known on the biosynthetic pathways of terpenoids in the fruiting bodies of mushrooms. 

   

1.4. Analysis of volatiles from the fruiting bodies of mushroom fungi 

 

1.4.1. Sampling of volatile constituents from the fruiting bodies of mushroom fungi 

 

   Sample preparation is one of the most critical aspects of the analysis of complex matrices 

for trace components, and can also be the most time consuming (Poole, & Wilson, 2000). 

Volatile compounds are most often isolated by taking advantage of their volatility and 

nonpolar nature. In a typical analysis for volatiles in mushrooms, the fruiting bodies should be 

first homogenized. As reviewed in 1.3., volatile compounds in fruiting bodies of mushroom 

fungi comprise constituents belonging to different chemical classes and are present in 

dramatically different concentrations. Similarly, a large number of isolation strategies which 

have been adopted to fruits, vegetables, and tree leaves, may be employed to the mushroom 

fruiting bodies.  11 main sample preparation methods for isolating volatile constituents have 

been available so far (Chaintreau, 2001). However, no exclusive method for collection of 

volatiles from a complex system can be simultaneously described as optimal (Petersen, & 

Poll, 2000; Wilkes, Conte, Kim, Holcomb, Sutherland, & Miller, 2000). To date, no single 

technique can meet all the demands. The ideal method of choice should be cheap, rapid, 

simple, environmentally friendly, highly sensible and reproducible. Many comparative studies 

revealed that methods for isolation of volatiles depended on the type of matrices, the 

compounds of interest, and the required sensitivity (Cavalli, Fernandez, Lizzani-Cuvelier, & 

Loiseau, 2003; Lee, Kim, & Lee, 2003; Shen, Sha, Deng, Fu, Chen, & Zhang, 2005; 

Wanakhachornkrai, & Lertsiri, 2003). New attempts focus on the combination of two or even 

three methods, the development of new materials, and the introduction of new technologies. 
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Prior to GC analysis, at least seven main sample preparation methods have been employed for 

isolating volatile constituents from fruiting bodies of mushrooms (Table 2). 

    

Table 2. Methods of Sample Preparation for the Analysis of Volatiles from Fruiting Bodies of Mushroom Fungi 

Prior to GC Analysis 

 

Methods Fundamental principles Reference examples 

Continuous liquid–liquid extraction Partition Wu, et al., 2005 

Direct solvent extraction Partition Rapior, et al., 2000 

Dynamic headspace Volatility Kabbaj, et al., 2002 

Simultaneous distillation–solvent extraction Partition & volatility Cho, et al., 2003 

Solid phase microextraction Partition Zeppa, et al., 2004 

Steam distillation Volatility Eri, et al., 2004 

Stir bar sorptive extraction Partition Eri, et al., 2004 

 

 

 

   

 

 

Figure 1.  Apparatus of continuous liquid–liquid extraction 
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   Solid-phase microextraction is becoming increasingly popular in the field of flavor and 

fragrance analysis (Jelen, Kaminski, & Wasowicz, 2000). Nevertheless, it still demands 

improvements because the surface area of its adsorbent is sometimes too small to adsorb 

sufficient amounts of volatiles from faint or complex samples (Ishikawa, Ito, Ishizaki, 

Kurobayashi, & Fujita, 2004). Meanwhile, other sampling methods of volatiles, including 

new attempts such as liquid-phase microextraction (Jiang, Basheer, Zhang, & Lee, 2005), are 

currently used in parallel. In contrast, continuous liquid–liquid extraction (CLLE) (Figure 1) 

is still regarded as a versatile, reliable and robust sample preparation technique (Apps, & 

Tock, 2005). CLLE dates back at least to 30 years (Stage, & Gemmeker, 1963). The 

advantages of CLLE can be summarized as follows: 

 

• In contrast to the solvent-free sampling methods such as head space, the extract can be 

concentrated to allow the detection of trace volatiles (sub µg/L). Moreover, a small 

volume of a single concentrated extract (for example, 1 mL) supplies enough material for 

repeated analysis by GC and GC-MS with different columns, sensitivities, or detectors, as 

well as for GC-olfactometry, aroma dilution analysis, and for micropreparative-GC. 

 

• As a limited volume of solvent is continuously recycled, solvent purity is less critical than 

with the larger volumes used in batch extractions (Elss, Preston, Hertzig, Heckel, 

Richling, & Schreier, 2005). 

 

• Compared to other systems, the glassware is simple and the procedure is straightforward 

(Etievant, 1996). It requires no gas chromatographic inlet hardware beyond a split-

splitless injector. 

 

• The extraction process is gentle and can be run as long as necessary with little attention. It 

is especially valuable in exploratory studies on flavors, where the composition of samples 

in terms of viscosity, suspended solids and concentration of volatiles is variable and 

unpredictable (Apps, & Tock, 2005). 

 

 

1.4.2. Analysis of collected volatile constituents  

 

   Usually, the volatile compounds emitted by the fruiting bodies of basidiomycetes are 

analyzed by coupled gas chromatography–mass spectrometry (GC–MS) and GC-olfactometry 
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(Berger, & Zorn, 2004). An identification of a flavoring substance must pass scrutiny of the 

latest available analytical techniques. In practice, this means that any particular substance 

must be identified by at least two methods, e.g., by comparison of chromatographic and 

spectrometric data (which may include GC, MS, IR, and NMR) with those of an authentic 

sample (The American Chemical Society, 2005). 

 

   In this study, GC retention indices on columns of different polarity and mass spectrometric 

information given by MS with electron impact ionization (EI) were used. To ensure the 

integrity of the results, it is indispensable to check each peak with the hits given by the 

computerized matching of an unknown spectrum with databases. The retention indices on 

polar and apolar columns were calculated and compared to published data. The retention 

indices of some of the volatiles from the fruiting bodies of F. hepatica on DB5 column, which 

were not indicated in the earlier report (Wu, Krings, Zorn, & Berger, 2005), were re-examined 

and revised due to better-understanding of the computerized matching system (Table 11). The 

sensory properties of flavors, determined by GC-O, were additionally compared with those 

reported from literature. If necessary, an accurate mass determination by high resolution MS 

with chemical ionization (CI) was performed to confirm the identification of the compound. 

Additionally, GC-atomic emission detector (GC-AED) analyses were performed to detect 

sulfur-, chloride-, and nitrogen-containing volatiles. For those compounds that could not be 

identified, the molecular ions and the eight most intense ions were listed. 

   

   The volatile fraction of fruiting bodies of a mushroom consists of many compounds, of 

which only a small number significantly contributes to the flavor. GC-O has been used widely 

in the isolation and characterization of odorants from complex natural products for more than 

30 years (Srinivasan, 2005). Those compounds, which impressed the panelists intensively, are 

addressed as characteristic or key odorants (Belitz, Grosch, & Schieberle, 2004).  

 

1.5. Choice of wild fruiting bodies 

 

   Generally, the composition of volatiles is affected by differences in strain, substrate, fruiting 

conditions, developmental stage, and the age of the fresh mushroom sample. Nevertheless, 

selecting the fruiting bodies of Fistulina heaptica, Lentinus lepideus, and Polyporus sulfureus 

(Figure 2) for the investigation was not arbitrary. First of all, the fruiting bodies of the three 

fungi have been consumed as foods or medicinal stuffs. F. hepatica was once called “poor 

man’s beefsteak” (Jahn, 1990). P. sulfureus, commonly named “Chicken-of-The-Woods”, has 
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long been used in herbal medicine in China (Zjawiony, 2004). L. lepideus has been 

commercially consumed in East Asia and utilized to produce a latest natural immune 

enhancing medicine (Jin, Jung, Shin, Kim, Jeon, & Choi, 2003). Secondly, P. sulfureus arose 

our interest due to the unrevealed great differences of flavor between young and aged fruiting 

bodies. L. lepideus, a well-known sesquiterpene-producing fungus (Rösecke, Pietsch, & 

König, 2000), developed its fruiting bodies on chestnut trees, which was a newly-found host.  

 

                    

Polyporus sulfureus                      Lentinus lepideus                           Fistulina hepatica 

 

Figure 2.  Fresh fruiting bodies of the wild mushrooms (Wisent Park, Springe, Germany) 

 

1.6. Purposes of this study 

 

    Market-driven industrial research was concentrated on screening microorganisms and 

enzymes and applying the knowledge obtained for the development of suitable production 

processes (Gatfield, 1999). Natural flavors can be produced by two biotechnological 

processes, biotransformation (or bioconversion) and de novo synthesis. In general, compared 

to the selective biotransformation using precursors or concentrated enzymes, the de novo 

synthesis using the whole metabolic spectrum of mushroom fungi growing on basic 

cultivation media or natural hosts, produces a much wider range of aromas and suffers from 

much lower productivities or poor concentrations of the target compounds. Therefore, most of 

the studies on de novo synthesis of mushroom fungi were on a laboratory scale and thus 

lacked economic profitability (Bluemke, & Schrader, 2001; Cohen, Persky, & Hadar, 2002). 

However, as described above, attempts of this category have helped and will continue to aid 

the study of the enzyme systems involved, of the reaction pathways during the synthesis 

(Agrawal, 2004), and of relationships among metabolites-, strains-, medium-, and culture 

conditions. Meanwhile, novel odorants of interest or new fungal secondary metabolites may 

be discovered. Promising new technologies and materials, for example, the dynamic removal 

of the formed volatiles from the fermentation broth by in situ product removal, may help to  
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overcome the limitations of de novo synthesis. Mainly for these reasons, comprehensive 

investigations on volatile compounds formed de novo both by fruiting bodies of the three 

fungi and by cultures of F. hepatica were performed. 

  

• Volatile constituents from the fresh fruiting bodies of F. hepatica were investigated,  and 

characteristic odorants of this fungus were determined. 

 

• The composition of volatiles from young and aged fruiting bodies of P. sulfureus were 

analyzed, and characteristic odorants of them were determined. Significant odor 

differences between the young and aged fruiting bodies of this fungus were elucidated. 

 

• Volatile compounds from the young fruiting bodies of wild Lentinus lepideus grown on 

chestnut wood were comprehensively examined and compared with previously reported 

volatiles generated by this species. Characteristic odorants of the fruiting bodies of this 

fungus grown on chestnut wood were determined. 

 

• F. hepatica (DSMZ 4987) (Figure 3) was grown submerged and in surface cultures. 

Volatile compounds generated by both cultures were investigated and compared.  

 

 

      
On charcoal-agar medium                                                      On SNS-agar medium 

 

Figure 3.  Mycelia morphology of F. hepatica (DSMZ 4987) on agar medium 

 

 

 

 



Characteristic Volatiles from Young and Aged Fruiting Bodies of Wild P. sulfureus 13 

2. CHARACTERISTIC VOLATILES FROM YOUNG AND 

AGED FRUITING BODIES OF WILD POLYPORUS 

SULFUREUS (BULL.:FR:)FR.  

 

This chapter was published as: 

 

Wu, S. M.; Zorn, H.; Krings, U.; Berger, R. G. Characteristic volatiles from young and aged 

fruiting bodies of wild Polyporus sulfureus (Bull.: Fr.) Fr.. J. Agric. Food. Chem. 

2005, 53, 4524-4528. 
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3. VOLATILE COMPOUNDS OF THE WILD MUSHROOM 

LENTINUS LEPIDEUS GROWN ON CHESTNUT TREES (in 

press: Adv. Food Sci. copyright [2005] with permission from Advances in Food Sciences) 

 

 

3.1. Abstract 

 

   Young fresh fruiting bodies of wild Lentinus lepideus were harvested from downed old 

chestnut trees. The volatile compounds were isolated by continuous liquid–liquid extraction 

(CLLE) and investigated by high resolution gas chromatography–mass spectrometry (HRGC–

MS) on two columns of different polarity (DB-5 and ZB-WAX), gas chromatography-atomic 

emission detector (GC-AED), high resolusion-mass spectrometry (HR–MS), and by gas 

chromatography-olfactometry (GC-O). A total of 43 major volatile compounds were 

identified and semi-quantified. 19 sesquiterpenoids including 11 unknowns were newly found 

in this fungus. A sulfur-containing sesquiterpenoid mintsulfide was identified for the first 

time in the fungal kingdom, and a main odorant, 2-vinyl malonic acid methyl propyl mixed 

ester, was proposed. Five odorous compounds were responsible for the characteristic flavor of 

the young fruiting bodies: nonanal, (E)-2-nonenal, germacrene-D, 2-vinyl malonic acid 

methyl ester propyl ester, and nonanoic acid. The results showed that this wild variety of 

Lentinus lepideus formed a wide diversity of natural sesquiterpenoids, but lacked, in contrast 

to previous studies, cinnamic acid derivatives and 1-octen-3-ol. 

 

Keywords: Lentinus lepideus; volatile compounds; chestnut; characteristic; sesquiterpenoids. 

 

 

3.2. Introduction  

 

   The commercial importance of volatile secondary metabolites has prompted recent interest 

in understanding their formation and in engineering their biosynthesis (Dudareva, & Negre, 

2005). The biotransformation of sustainable low-cost substrates to high value natural flavor 

compounds by higher fungi and isolated enzymes has been highlighted by several reviews 
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(Agrawal, 2004; Berger, & Zorn, 2004; Serra, Fuganti, & Brenna, 2005). A comprehensive 

investigation of the genuine volatile constituents of a specific wild fungus is not only a basic 

start to reveal the pathways of flavor formation, but also an important prerequisite for 

industrial development. The production of R-(–)-1-octen-3-ol by Agaricus bisporus has set an 

example of technical applicability (Liu, Zhou, Zeng, & Ouyang, 2004; Morawicki, Beelman, 

Peterson, & Ziegler, 2005).  

 

   Lentinus lepideus is a creosote tolerant, brown rot basidiomycete. It is not only consumed 

mainly in east Asia as an edible mushroom, but also has been generally confirmed as an 

industrially important microorganism (Kim, Kang, Jin, Kim, Shim, & Choi, 2000). It has been 

utilized in paper manufactures (Ueno, Higaki, Onishi, & Watanabe, 1990), industrial waste 

treatment (Collett, 1992; Sakaguchi, Nakajima, Okada, & Iseda, 1990; Samson, Langlois, Lei, 

Piche, & Chenevert, 1998; Uesono, Deguchi, Nishida, Takahara, & Katayama, 1992), and 

recent production of a natural immune-enhancing medicine (Jin, Jung, Shin, Kim, Jeon, & 

Choi, 2003). The specific volatile compounds of L. lepideus have attracted scientific interest 

over the last sixty years. Early in 1940, two volatile compounds, methyl 4-methoxycinnamate 

and methyl cinnamate, from the fruiting bodies of this fungus growing on Scots pine sapwood 

were identified. The mycelium of this strain was found to generate methyl 4-

methoxycinnamate on malt-agar medium as well (Birkinshaw, & Findlay, 1940). A number of 

papers concentrated on the biochemistry of methyl 4-methoxycinnamate formation 

(Eberhardt, 1956; Nord, & Vitucci, 1947; Shimazono, Schubert, & Nord, 1958; Shimazono, 

1959). Since the arising of capillary gas chromatography, many volatile metabolites from this 

fungus, cultured on different artificial media, were reported (Abraham, Hanssen, & 

Mohringer, 1988; Collet, 1992; Ohta, Shimada, Hattori, Higuchi, & Takahashi, 1990; 

Shimada, Ohta, Kurosaka, Hattori, Higuchi, & Takahashi, 1989; Sprecher, 1981; Sprecher, & 

Hanssen, 1982; Taubert, 2000; Towers, Singh, Van Heerden, Zuiches, & Lewis, 1998; Wat, 

& Towers, 1975). Among them, cinnamic acid derivatives and sesquiterpenoids arose most 

general concern. However, nothing has become known about the biodegradation of chestnut 

lignocellulosic wastes by L. lepideus to flavor compounds. The fruiting bodies of L. lepideus 

are commonly found on dead pine tree in spring and show a scent reminiscent of pine resin, 

whereas the wild L. lepideus investigated in this paper was found on downed old chestnut 

trees. The study aimed at a comprehensive investigation of the volatile metabolites and 

characteristic odorants from the young fruiting bodies of wild L. lepideus grwon on old 

chestnut woods, and at comparing the results with those already documented for this fungus.  
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3.3. Materials and methods  

 

3.3.1. Materials 

   The fresh young fruiting bodies of wild L. lepideus were picked from downed old chestnut 

trees in “Wisent Park” (Springe, Germany) on October 31, 2003. 

 

3.3.2. Chemicals 

   Solvents were provided by BASF (Ludwigshafen, Germany) and Baker (Deventer, the 

Netherlands). All solvents were distilled before use. High purity water was prepared with an E 

pure water purification system (Barnstead, Dubuque, Iowa, USA). Sodium sulfate and sodium 

chloride were obtained from Carl Roth GmbH & Co. (Karlsruhe, Germany). 

 

3.3.3. Extraction of volatiles 

   Fresh fruiting bodies (250 g) were cut into cubes of about 2 cm × 2 cm × 2 cm size. The 

samples were mixed with 400 mL of methanol immediately, and 1 mL of methyl nonanoate 

(427 mg/L in pentane/ether (1:1.12)) solution was added as internal standard. The mixture 

was homogenized by Ultra-Turrax (Jahnke and Kunkel, Germany) and centrifuged at 18,800 

g at 5 °C using an RC28S centrifuge (Kendro Laboratory Products GmbH, Germany) for 20 

min. The supernatant fluid was recovered as a crude extract for continuous liquid–liquid 

extraction (CLLE): Saturated sodium chloride solution was added to the crude extract to a 

final volume of 1 L. This mixture was transferred to the CLLE apparatus, and 250 mL of 

pentane/ether (1:1.12) was placed into a 500 mL round-bottom flask connected to the CLLE-

apparatus. Following an extraction process of 24 h, the pentane/ether fraction was washed 

with high-purity water and dried over anhydrous sodium sulfate. The pentane/ether extract 

was concentrated at 42 °C using a Vigreux-column to a final volume of about 1 mL for GC 

analysis. 

 

3.3.4. High-Resolution GC–MS and High-Resolution EIMS 

 
   High-resolution GC–MS (HRGC–MS) analysis using a polar phase was conducted on a 

Fisons GC 8000 equipped with a (polyethylene glycol) ZB-WAX (30 m × 0.32 mm i.d. × 0.25 

µm film thickness, Phenomenex, USA) column connected to a Fisons MD800 mass selective 

detector. HRGC–MS analysis using a nonpolar phase was conducted on a HP5890 Series II 

GC equipped with a DB-5 (30 m × 0.32 mm i.d. × 0.25 µm film thickness, Varian, Germany) 
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column connected to a HP quadrupole mass spectrometer 5989A. Both HRGC-MS 

instruments were operated at 70 eV in the EI mode over the range of 33–300 amu. The linear 

carrier gas (He) velocity was 38 cm/s. The oven temperature program was held at 40 °C for 2 

min, raised at 5 °C/min to a final temperature of 250 °C, and held constant for 5 min at 250 

°C. The injection volume was 1 µL. 

 

   HR-EIMS data were collected on a GC–MS instrument at 70 eV consisting of an Agilent 

GC 6890N coupled to an AMD M 40 - QuAS3AR (AMD Intectra, Germany) double focusing 

sector field mass spectrometer in the positive ion mode and the same chromatographic 

conditions as for GC-FID analysis. Accurate masses were measured using PFTBA as the 

calibration gas. Chemical ionization (CI) was carried out using methane as reactant gas. 

 

3.3.5. GC-atomic emission detector  

   GC-atomic emission detector (GC-AED) analysis was carried out on a HP6890 series GC-

system equipped with an Optima-5-MS (30 m × 0.32 mm i.d. × 0.25 µm film thickness, J&W 

Scientific, USA) column (He flow rate 38 cm/s) and connected to a G2350A atomic 

emmision detector (Hewlett-Packard, USA). The oven temperature program was held at 50 °C 

for 5 min, raised to 280 °C at 10 °C/min, and held at 280 °C for 5 min. The injection volume 

was 2 µL. 

 

3.3.6. GC–olfactometry  

   GC–olfactometry (GC–O) was performed on a Sato Chrom GC equipped with a 

(polyethylene glycol) DB-WAX column (30 m × 0.32 mm i.d. × 0.25 µm film thickness, SGE 

GmbH, Germany) with a H2 linear velocity of 52 cm/s. One part was led to the flame 

ionization detector (FID); the other one, to a heated sniff-port (250 °C). The oven temperature 

was held at 40 °C for 2 min, raised at 5 °C/min to a final temperature of 250 °C, and held 

constant for 5 min at 250 °C. A panel of 10 persons was used to note the odor impression 

induced by eluting compounds; each panelist sniffed for about 15–20 min and then took over 

from the one recording the retention times and sensory statements. Characteristic odor 

impressions were considered to be valid, if at least 50% of the judges reproducibly signaled 

an intensively sensory perception. The injection volume was 2 µL. 
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3.3.7. Identification and semiquantification 

   Linear retention indices (RIs) were calculated according to the Kovats method using n-

alkanes (C7-C28) as external references (Kondjoyan & Berdagué, 1996). Mass spectral 

identification was completed by comparing spectra with commercial mass spectral databases 

WILEY, NIST, and LIBTX and by comparison with authentic reference standards if 

available. Experimental results of odor quality and retention indices of volatiles were 

additionally compared with published data (Adams, 1995; Burdock, 2002; Jennings, & 

Shibamoto, 1980; Kondjoyan, & Berdagué, 1996; Rychlik, Schieberle, & Grosch, 1998). 

Approximate concentrations of volatile compounds were calculated according to the internal 

standard method using methyl nonanoate and the HP ChemStation Software (Agilent 

Technologies, USA). 

 

 

3.4. Results and discussion 

 

   In order to achieve exhaustive recovery of the genuine volatile fraction of the fruiting bodies 

and to allow over a dozen of injections of the same extract containing solvent for GC-O, GC-

AED, GC-FID, and GC-MS, CLLE was chosen as the separation technique. In total, 43 

volatile compounds were identified in the extract from the young fruiting bodies of L. 

lepideus. They comprised 7 acids, 12 esters, 10 hydrocarbons, 4 alcohols, 4 aldehydes, 2 

ketones, and 4 others. In order of elution on a ZB-WAX column, they are listed in Table 6.  

 

3.4.1. 2-Vinyl malonic acid methyl propyl ester 

 

   The most abundant compounds were hexadecanoic acid and 2-vinyl malonic acid methyl 

ester propyl ester. Their respective approximate concentration attained one to five mg/kg 

fruiting bodies. 2-Vinyl malonic acid methyl ester propyl ester (RI 1772 on ZB-WAX) was 

the dominating odorant. The mass spectral data for this compound are listed in Table 7. A 

library  search using commercial MS databases (Wiley, NIST) yielded one reasonable 

suggestion, dimethyl-(2-methylallyl)-malonate, only. Despite of the wide compliance of the 

70 eV mass spectra this structure was excluded. An intensive molecular at m/z 186 and an 

intensive fragment ion at m/z 155 were missing in the EI mode as well as the ion at m/z 139.  
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Table 6. Major Volatile Compounds from the Young Fruiting Bodies of Wild Lentinus lepideus a 

 
Retention indices No. Compounds 
ZB-WAX DB5 

Approximate 
concentration b 

(µg/kg fruiting bodies) 
1 Decane c 1000 999 ++++ 
2 3-Methyl-2-pentanoned 1005 752 +++ 
3 2-Methylbutanoic acid methyl esterd 1009 771 ++++ 
4 3-Methylbutanoic acid methyl esterd 1019 766 +++ 
5 Acetic acid butyl esterd 1075 812 ++ 
6 2-Methyl-1-propanolc 1087 <700 + 
7 1,3-Dimethyl-5-methoxypyrazoled 1103 901 + 
8 3-Acetyl-2,5-dimethyl furand 1118 905 ++ 
9 Heptanald 1176 896 + 
10 Hexanoic acid methyl esterc 1186 936 + 
11 Limonenec 1190 1021 + 
12 3-Methyl-1-butanold 1199 731 ++ 
13 2-Pentylfurand 1224 991 + 
14 3-Methyl-3-buten-1-old 1242 726 + 
15 Octanald 1278 984 + 
16 Nonanalc 1380 1086 ++ 
17 (E)-2-Nonenald 1514 1139 ++ 
18 (E)-Caryophyllened 1564 1411 ++ 
19 β-Elemened 1576 1386 + 
20 2-Undecanoned 1587 1277 + 
21 Hexadecanec 1598 1599 ++ 
22 Benzoic acid methyl esterd 1603 1073 + 
23 Valencenec  1672 1364 ++ 
24 Bicyclogermacrened  1676 1486 ++ 
25 Germacrene-Dd 1683 1472 ++ 
26 β-Himachalened 1705 1457 + 
27 β-Bisabolened 1711 1498 +++ 
28 2-Vinyl malonic acid methyl propyl esterf 1772 1202 ++++++ 
29 Dodecanoic acid 1-methylethyl esterd 1821 1614 ++ 
30 2-Methyl-propanoic acid 1-(1,1-dimethylehtyl)-2-

methyl-1,3-propanediyl esterd 
1857 1578 ++ 

31 Hexanoic acidd 1861 864 ++ 
32 1-Dodecanold 1956 1466 ++++ 
33 Tetradecanoic acid 1-methylethyl esterd 2024 1812 ++ 
34 Mintsulfided, e 2105 1726 + 
35 Nonanoic acidd 2170 1272 ++ 
36 Hexadecanoic acid methyl esterc 2198 1906 +++ 
37 (Z)-9-Octadecenoic acid methyl esterc 2433 2081 +++ 
38 (Z, Z)-9,12-Octadecadienoic acid methyl esterc 2472 2073 ++++ 
39 Dodecanoic acidc 2496 1568 ++ 
40 Tetradecanoic acidc 2715 1771 ++ 
41 (Z)-9-Octadecenoic acidc >2800 1885 ++ 
42 Hexadecanoic acidc >2800 1976 ++++++ 
43 Octadecanoic acidc >2800 2181 +++ 
 

a   The volatile compounds are listed in increasing RIs order on a polar column ZB-WAX. 
b  +: 1-10; ++: 10-50; +++: 50-100; ++++: 100-500; +++++: 500-1,000; ++++++: 1,000-5,000. 
c The compound was confirmed by comparing with those mass spectra and RIs of authentic reference database of this 
institute. 
d The compound was identified by comparing mass spectrum with commercial mass spectral databases and RIs on two 
different polarity columns with published data. 
e Mintsulfide was specially detected by GC-AED using an Optima-5-MS column.  
f 

The compound was confirmed with HREI-MS. 

 

The CI mass spectrum, however, showed a protonated molecular ion (MH+) at m/z 187. The 

overall fragmentation pattern was in good agreement with a branched malonic acid ester 
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structure. The double peaks at m/z 155/154 and 127/126 were attributed to the α-cleavage of 

the alcoholic moieties, methanol and propanol respectively, of the two ester groups with and 

without hydrogen rearrangement  from the side chain of branched malonic acid. This 

hydrogen rearrangement was confirmed with a commercial available diethyl ester of 

ethylidene malonic acid. The symmetric diester exhibited only one double peak at m/z 

141/140 resulting from the cleavage of ethanol. Combining all spectral data the structure of 2-

vinyl malonic acid methyl propyl ester is proposed. 

 

Table 7. Accurate Mass Detection of Fragment Ions of Proposed 2-Vinyl malonic acid methyl propyl ester 

 

m/z  /  [%] Determined mass 

[u] 

Elemental composition 

 

Calculated mass 

[u] (±  mu) 

187 [MH+, CI] 187.0935 C9H15O4 187.0970 (+ 0.0035) 

186 [trace] n.d.a n.d.a  

155 [40] 155.0686 C8H11O3 155.0708 (+0.0022) 

154 [15] 154.0632 C8H10O3 154.0630 (-0.0002) 

139 [7] 139.0403 C7H7O3 139.0395 (-0.0008) 

127 [100] 127.0750 C7H11O2 127.0759 (+0.0009) 

126 [25] 126.0738 C7H10O2 126.0681 (-0.0057) 

111 [15] 111.0488 C6H7O2 111.0446 (-0.0042) 

95 [57] 95.0428 C6H7O 95.0497 (+0.0069) 

  a  not determined. 

 

3.4.2. Distinctive individuality of volatile secondary metabolite of this wild species 

 

   The presence of sulfurous and chlorine volatile compounds in the sample was selectively 

and sensitively evaluated using a GC equipped with an atomic emission detector (GC-AED). 

No chlorine-containing volatile compounds were detected. One sulfur-containing compound, 

mintsulfide, was detected by GC-AED and further comfirmed by GC-MS. The predominant 

chemical classes within the volatile constituents were sesquiterpenoids, fatty acids and their 

esters. Carboxylic acids and their esters were frequently found in the volatile metabolites from 

edible basidiomycetes. However, a rare branched carboxylic acid esters, 2-methyl-propanoic 

acid 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester, showed the specificity of volatile 

composition of this fungus. Although this ester was not previously reported as a secodary 

metabolite in the fungal world, it was detected in green tea flower (Baik, Bock, Han, Cho, 

Bang, & Kim, 1996), propolis (Greenaway, May, Scaysbrook, & Whatley, 1991), black 

bream and rainbow trout (Guillén, & Errecalde, 2002).  
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   The abundantyl occuring sesquiterpenoids were the most distinctive feature of this wild 

fungus. Altogether, 19 sesquiterpenoids were detected in the young fruiting bodies. Markedly 

different from previously reported varieties of this species, another eight sesquiterpenoids 

were identified: (E)-caryophyllene, β-elemene, valencene, bicyclogermacrene, germacrene-D, 

β-himachalene, β-bisabolene, and mintsulfide. In terms of functionality, they comprised seven 

sesquiterpene hydrocarbons, and one sesquiterpene sulfide. The sulfur-bearing mintsulfide 

has never been reported as a native secondary metabolite in the fungal kingdom before. As a 

minor constituents, mintsulfide has been found in essential oils of different higher plants 

(Goeke, 2002; Maurer, & Hauser, 1983; Morteza-Semnani, & Saeedi, 2005).  

 

Table 8.  Unknown Sesquiterpenoids from the Young Fruiting Bodies of Wild Lentinus lepideus 
 

Retention indices No. 
 ZB-WAX DB5 

Characteristic mass spectral ions (EI) a 
 
 

Approximate 

concentrations 

(µg/kg fruiting 
bodies)b 

1 1446 1365 M+, 204 (20.38); 162 (24.30), 161 (100.00), 147 (15.52), 134 
(16.41), 133 (13.28), 121 (22.97), 119 (23.52), 105 (19.73)  
 

+++ 

2 1468 1303 M+, 204 (26.30); 147 (52.48), 133 (77.41), 121 (82.56), 119 (78.05), 
107 (79.42), 105 (100.00), 93 (57.05), 91 (66.29)  
 

+++ 

3 1497 1391 M+, 204 (30.23); 162 (21.96), 161 (100.00), 147 (66.03), 133 
(23.12), 121 (19.25), 119 (36.53), 105 (30.20), 91 (21.70)   
 

++ 

4 1502 1383 M+, 204 (4.63); 136 (100.00), 135 (29.73), 121 (91.15), 107 (31.31), 
105 (15.17), 93 (33.56), 91 (19.71), 79 (16.81) 
 

+ 

5 1550 1408 M+, 204 (16.60); 161 (70.21), 84 (40.35), 69 (100.00), 56 (84.99), 70 
(60.14), 55 (94.80), 43 (39.75), 41 (68.20)  
 

++ 

6 1622 1343 M+, 204 (27.94); 121 (80.67), 120 (40.17), 119 (100.00), 105 
(62.99), 93 (65.36), 91 (88.71), 81 (47.15), 79 (45.28) 
 

++ 

7 1646 1458 M+, 204 (9.20); 147 (20.35), 121 (56.63), 119 (100.00), 107 (22.46), 
105 (42.17), 93 (60.97), 91 (24.66), 79 (30.54)  
 

++ 

8 1742 1519 M+, 204 (11.01);  133 (48.24), 121 (97.67), 119 (100.00), 105 
(62.01), 93 (98.13), 92 (41.51), 91 (65.33), 79 (45.95)  
 

+++ 

9 1882 1475 M+, 222 (0.61); 107 (25.73), 95 (31.44), 93 (24.71), 91 (24.31), 84 
(100.00), 81 (30.49), 69 (30.48), 43 (45.67)  
 

++++++ 

10 2065 1611 M+, 220 (35.64); 136 (48.83), 135 (62.62), 121 (37.28), 109 
(100.00), 108 (39.83), 107 (42.40), 93 (46.58), 81 (41.18)  
 

++ 

11 2159 1496 M+, 222 (0.75); 119 (73.02), 93 (63.63), 83 (44.39), 69 (100.00), 57 
(39.28), 55 (55.10), 43 (40.81), 41 (43.82) 
 

++ 

 

a  Characteristic mass spectral ions consisted  of molecular ion (M+) and the other eight ions with the first highest relative 

abundance given by GC-MS on a ZB-WAX column.  
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b  +: 1-10; ++: 10-50; +++: 50-100; ++++: 100-500; +++++: 500-1,000; ++++++: 1,000-5,000. 

 

   Additionally, 11 unkown sesquiterpenoids were detected in the fruiting bodies of this 

fungus (Table 8). Temporarily, their identities remained uncertain because no references 

mass spectra are available in the databases. Besides, their respective retention indices could 

not be matched with those of the published data. So far, more sesquiterpenoids have been 

reported from plants than from microorganisms, fungi, marine invertebrates, and insects. The 

present data show that diversity of sesquiterpenoids of fungi is not necessaarily inferior to 

higher plants (Fraga, 2001; Schrader, & Berger, 2001). However, gerneration of 

sesquiterpenoids by L. lepideus was highly affected by strain specificity and culture 

conditions. Another six strains of L. lepideus CBS 450.79 (Taubert, 2000), FPRL 7B, CBS I, 

CBS II, IFB 27a, and IFB 27b (Sprecher, & Hanssen, 1982) were studied for their capability 

to produce desirable volatiles. Out of them, only FPRL 7B showed positive results to generate 

sesquiterpenoids de novo. Twenty one sesquiterpenoids were previously detected in the liquid 

culture of strain FPRL 7B (Table 9). 

 

Table 9.  Previous Identified and Semi-identified Sesquiterpenoids from Lentinus lepideus FPRL 7Ba 

 
Sesquiterpenoid group 
 

Compound  References 

Sesquiterpene hydrocarbons α –copaene; α –elemene; (E)-β-farnesene; γ-muurolene;  
α-muurrolene; δ-cadinene; cadina-1,4-diene; calacorene; 
C15H22

b; C15H24
b 

 

Hanssen, 1982 

Sesquiterpene alcohols δ-cadinol ;  (+)-T-cadinol; (-)-α-cadinol;  
(-)-T-muurdol; cubenol; epicubenol, (E)-farnesol; drimenol  
 

Hanssen, 1985 

Sesquiterpene ethers Lentideusether; isolentideusether; 10-hydroxylentideusether Abraham, & 
Hanssen, 1988 

 
a FPRL 7B was obtained from Forest Products Research Laboratory, Princes Risborough, UK. 
b The compound was partly identified. 

 

    In contrast to previous studies on L. lepideus, no cinnamic acid derivatives were detected. 

Methyl 4-methoxycinnamate was frequently reported as a characteristic secondary metabolite 

of L. lepideus species (Birkinshaw, & Findlay, 1940; Nord, & Vitucci, 1947; Eberhardt, 1956; 

Ohta & Shimadam, 1991; Shimazono, Schubert, & Nord, 1958; Taubert, 2000; Wat, & 

Towers, 1975). Phenylalaine ammonia-lyase, hydroxylase and three O-methyltransferases 

were proposed to contribute to the formation of cinnamic acid derivatives (Ohta & Shimadam, 

1991; Power, Towers, & Neish, 1965; Wat, & Towers, 1975). 
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3.4.3. Characteristic odorants of the fruiting bodies 

 

   The charcteristic eight carbon atom (C8) compound 1-octen-3-ol, commonly found in high 

concentration in many edible mushrooms, was not detected. Only one C8 aldehyde, octanal, 

was determined as a minor constituent. GC-O investigation revealed that no mushroom-like 

flavor was perceivable. Another variety of L. lepideus, strain CBS 450.79, was recently 

investigated for its volatiles in submerged culture (Taubert, 2000). Among the 22 volatiles 

identified, no terpenoids were detected. Only two compounds, the general fusel oil constituent 

2-methyl-1-propanol and 3-methyl-1-butanol, coincided with the results in this study. 

Furthermore, five cinnamic acid derivatives and 1-octen-3-ol were typical characteristic 

compounds produced by strain CBS 450.79.  

 

   Fruiting bodies of L. lepideus gathered on pine trees were characterized as aromatic and 

reminiscent of pine resin. In contrast, the fresh young fruiting bodies studied here were 

collected on downed old chestnut trees and emitted a very faint pure and fresh aroma. To 

create a reliable flavor profile by GC-O, ten trained testers were employed. Five volatile 

compounds were determined to contribute significantly to the overall flavor of the young 

fruiting bodies (Table 10).  

 

Table 10.  Characteristic Odorous Compounds from the Young Fruiting Bodies of Wild Lentinus lepideus 

 
Retention Indices Characteristic odorants GC-O 

Odor Description DB-WAX  
(GC-O) 

ZB-WAX  
(GC-MS) 

DB-5 
(GC-MS) 

Nonanal Slightly rotted citrus 1375 1380 1086 

(E)-2-Nonenal Stale and moldy 1512 1514 1139 

Germacrene-D Butter 1683 1675 1472 

2-Vinyl malonic acid methyl propyl ester Walnut 1787 1772 1202 

Nonanoic acid Waxy and cheese 2210 2198 1906 

 

   Obviously, the compound responsible for the stale flavor of the young basidiocarps was 

primarily (E)-2-nonenal. During GC-O, germacrene-D and 2-vinyl malonic acid methyl 

propyl ester reminded the panelists of the pleasant flavor of some fatty foods, such as butter 

and walnut. However, their contribution to the overall flavor of the extract was somewhat 

weakened by the three nine-carbon atom (C9) compounds nonanal, nonanoic acid and (E)-2-

nonenal. (E)-2-nonenal is an oxidation product from lipids either by auto-oxidation or by 
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lipoxygenase catalyzed degradation (De Buck, De Rouck, Aerts, & Bonte, 1998). Due to its 

very low odor threshold, (E)-2-nonenal is considered as an impact flavor constituent in foods, 

drinks and fragrances. One unfavorable aspect of (E)-2-nonenal is the papery off-flavor of 

stale beer. As a key quality parameter, its concentration should be less than 0.05 µg/L in fresh 

beer. 

 

   Altogeter, the results may assist in evaluating the biochemical potential of this wild strain 

and in developing advanced techniques of cultivation of fruiting bodies on chestnut wood 

wastes. 
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4. VOLATILE COMPOUNDS FROM THE FRUITING BODIES 

OF BEEFSTEAK FUNGUS FISTULINA HEPATICA 

(SCHAEFFER: FR.) FR. (published in Food Chem. 2005, 92, 221-226; copyright 

[2005] with permission from Elsevier) 

 

 

4.1. Abstract 

 

   The volatile compounds from the fruiting bodies of wild Fistulina hepatica (Schaeffer:Fr.) 

Fr. were isolated by continuous liquid–liquid extraction (CLLE), and investigated by high 

resolution gas chromatography-mass spectrometry (HRGC–MS), GC-atomic emission 

detector (GC-AED), and gas chromatography-olfactometry (GC–O). Forty eight major 

volatile compounds were identified and semi-quantified. Eleven odorous compounds 

significantly contributed to the overall flavour of Fistulina hepatica: 1-octen-3-one, 1-octen-

3-ol, linalool, phenylacetaldehyde, butanoic acid, an unidentified volatile compound with 

mouldy odour, (E)-2-methyl-2-butenoic acid, (E)-methyl cinnamate, (Z)-9-hexadecenoic acid 

methyl ester, bisabolol oxide B and phenylacetic acid. 

 

Keywords: Fistulina hepatica; volatile compounds; GC–O; HRGC–MS; flavour 

 

 

4.2. Introduction 

 

   Fistulina hepatica (Schaeffer: Fr.) Fr. is an annual edible fungus of the class 

basidiomycetes, seven to 30 cm wide and two to 8 cm thick, reddish to brown, fleshy and 

juicy, with a slightly sour tannic taste. It is distributed in temperate and subtropical hardwood 

forest ecosystems. It grows on numerous hardwood species, such as oak trees, in late autumn. 

Because of its appearance, it is aptly and commonly named as beefsteak or ox-tongue fungus. 

This fungus is consumed as salad or cooked and was once called the poor man’s beefsteak 

(Jahn, 1990).  
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   As fungal metabolites represent a wide diversity of chemical species (Cole & Schweikert, 

2003), the investigation of the secondary metabolism of fungi arouses great scientific interest. 

Starting from the early 1950s, researchers attempted to harness fungi for natural flavour 

production because of their enormous biochemical potential. Most of the studies on the 

secondary metabolites of Fistulina hepatica, however, focused on acetylenic compounds, 

several of which show antibacterial activities (Barley, Graf, Higham, Cathryn, Jarrah, & 

Jones, 1987; Bianco Coletto, 1981; Farrell, Keeping, Pellatt, Martin, & Thaller, 1973; Jones, 

Lowe & Shannon, 1966; Schwope, Givan & Minto, 2003; Tsuge, N., Mori, T., Hamano, T., 

Tanaka, H., Shin-Ya, K., & Seto, H., 1999). Furthermore, polysaccharides, D-arabitol, amino 

acids, chlorogenic acid, ergosterol, and hydrocarbons of this fungus were examined 

(Casalicchio, Bernicchia, Govi, & Giovanni, 1975; Casalicchio, Paoletti, Bernicchia, & Govi, 

1975; Frerejacque, 1939; Nano, Binello, Bianco, Ugazio, & Burdino, 2002; Paris, Durand, & 

Bonnet, 1960). Nothing has become known about the volatile secondary metabolites of this 

fungus so far. 

 

   In this study, major volatile compounds from the fruiting bodies of wild F. hepatica were 

identified, and the characteristic compounds shaping the flavour of this fungus were 

determined by GC-olfactometry. 

 

 

4.3. Materials and methods 

 

4.3.1. Materials 

   Ripe fruiting bodies of wild F.hepatica were harvested on the oak trees in October 2003 

from Wisent Park, Springe. 

 

4.3.2. Chemicals 

   Solvents were provided by BASF (Ludwigshafen, Germany) and Baker (Deventer, the 

Netherlands). All solvents were distilled before use. High purity water was prepared with an E 

pure water purification system (Barnstead, Dubuque, Iowa, USA). Sodium sulphate and 

sodium chloride were obtained from Carl Roth GmbH & Co. (Karlsruhe, Germany). 

 

4.3.3. Methods 
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4.3.3.1. Preparation of extract 

   Fruiting bodies (250 g) were cut into cubes of about 2 × 2 × 2 cm size. The samples were 

mixed with 400 mL of methanol immediately, and 1 mL of methyl nonanoate (42.7 mg/L in 

pentane/ether (1:1.12)) solution was added as internal standard. The mixture was 

homogenised by Ultra-Turrax (Jahnke and Kunkel, Germany) and centrifuged at 3,300 g  at 5 

°C for 20 min. The solvent layer was recovered as crude extract for continuous liquid–liquid 

extraction (CLLE). 

 

   CLLE: Saturated sodium chloride solution was added into the crude extract to a final 

volume of 1 L. This mixture was transferred to a CLLE-apparatus and 250 mL of 

pentane/ether (1:1.12) were placed into a 500 mL round flask connected to the CLLE-

apparatus. Following an extraction process of 24 h, the pentane/ether fraction was washed 

with high purity water and dried over anhydrous sodium sulphate. 

 

   The pentane/ether extract  was concentrated at 42 °C using a Vigreux-column to a final 

volume of about 1 mL for GC-analysis. 

 

4.3.3.2. High resolution GC–MS (HRGC–MS) 

 

   HRGC–MS analysis, using a polar phase, was conducted on a Fisons GC8000 apparatus 

equipped with a (polyethylene glycol) ZB-WAX (30 m × 0.32 mm i.d. × 0.25 µm film 

thickness, Phenomenex, USA) column (He flow rate 38 cm/s) and connected to a Fisons 

MD800 mass selective detector. 

 
   HRGC–MS analysis, using a non-polar phase, was conducted on a HP5890 Series II GC 

equipped with a DB-5 (30 m × 0.32 mm i.d. × 0.25 µm film thickness, Varian, Germany) 

column (He flow rate 38 cm/s) and connected to a HP quadrupole mass spectrometer 5989A. 

 

   Both of the instruments of HRGC–MS were operated at 70 eV in the EI mode over the 

range 33–300 amu. Chemical ionisation (CI) was carried out with methane as reactant gas. 

The oven temperature programme was held at 40 °C for 2 min, raised to 250 °C at 5 °C/min, 

and held at 250 °C for  10 min. The injection volume was 1 µL.  

 

4.3.3.3. GC-atomic emission detector (GC-AED) 
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   GC-AED analysis was carried out on a HP6890 series GC-system equipped with an 

Optima-5-MS (30 m × 0.25 mm i.d. × 0.25 µm film thickness, J&W Scientific, USA) column 

(He flow rate 38 cm/s) and connected to a G2350A atomic emission detector (Hewlett-

Packard company, USA). The oven temperature programme was held at 50 °C for 5 min, 

raised to 280 °C at 10 °C/min, and held at 280 °C for 5 min. The injection volume was 2 µL. 

 

4.3.3.4. GC–olfactometry (GC–O)  

   GC–O was performed on a Sato Chrom GC equipped with a (polyethylene glycol) DB-

WAX column (30 m × 0.32 mm i.d. × 0.25 µm film thickness, SGE GmbH, Germany) with a 

H2 flow rate of 52 cm/s. One part was led to the FID, the other one to a heated sniff-port (250 

°C). The oven temperature was held at 40 °C for 2 min, raised to 230 °C at 5 °C/min, and held 

at 230 °C for 15 min. Ten panellists noted the descriptions induced by compounds when they 

eluted from the sniffing port. Characteristic odour impressions were considered to be valid 

when at least 50% of the judges reproducibly signalled a sensory perception. The injection 

volume was 2 µL. 

 

4.3.3.5. Identification and semi-quantification 

   Retention indices (RIs) were calculated according to the Kovats method using n-alkanes as 

external references (Kondjoyan & Berdagué, 1996). Mass spectral identification was 

completed by comparing spectra with commercial mass spectral databases WILEY, NIST and 

LIBTX. Experimental results of odour quality and retention indices of volatiles were 

additionally compared with published data (Adams, 1995; Burdock, 2002; Jennings & 

Shibamoto, 1980; Kondjoyan et al., 1996; Rychlik, Schieberle & Grosch, 1998) and, if 

available, authentic standards. For non-identified compounds, the characteristic mass spectral 

ions were given. Approximate concentrations of volatile compounds were calculated 

according to the internal standard method, using methyl nonanoate and the HP ChemStation 

Software (Agilent Technologies, USA). 

 

 

4.4. Results and discussion 

 

4.4.1. Volatile compositions of the fruiting bodies  
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Table 11. Major Volatile Compounds from Fresh Fruiting Bodies of Wild F. hepatica 
a  

 
RIs No. Compound 

 ZB-WAX DB5 

Approximate concentrationb 
(µg/kg fruiting bodies) 

1 Hexanalc 1069 786 ++ 
2 2-Methyl-1-propanolc 1081 <700 ++++ 
3 Sabinened 1097 968 + 
4 1-Butanolc 1133 <700 ++++ 
5 Limonenec 1175 1021 +++ 
6 1,8-Cineoled 1179 1019 ++ 
7 3-Methyl-1-butanold 1194 731 ++ 
8 3-Octanoned 1236 970 ++ 
9 Octanalc 1270 984 + 
10 1-Octen-3-onec 1282 961 + 
11 (E)-2-Heptenald 1297 955 ++ 
12 6-Methyl-5-hepten-2-oned  1317 988 + 
13 4-Hydroxy-4-methyl-2-pentanoned  1339 809 ++ 
14 Ethanedioc acid dimethyl estere 1395 800 +++ 
15 (E)-2-Octenald  1400 1058 + 
16 1-Octen-3-olc  1439 972 +++++ 
17 Citronellald  1457 1152 + 
18 2-Ethyl-1-hexanolc 1476 1026 ++ 
19 Benzaldehydec 1491 931 ++ 
20 Linaloold  1536 1088 ++ 
21 1-Octanolc 1543 1069 ++ 
22 2-Methyl-propanoic acidd 1579 793 ++ 
23 Benzoic acid methyl esterd 1591 1073 +++ 
24 Phenylacetaldehyded 1616 1011 ++++ 
25 Butanoic acidc 1642 863 ++ 
26 Pentanoic acidc 1679 906 ++++ 
27 2-Methyl-pentanoic acidd 1755 846 ++ 
28 (+)-Cuparened 1785 1488 ++++ 
29 Dodecanoic acid 1-methylethyl esterd 1821 1614 + 
30 (Z)-2-Methyl-2-butenoic acidd 1849 898 ++ 
31 Hexanoic acidc 1858 864 + 
32 (E)-2-Methyl-2-butenoic acidc 1862 941 + 
33 1-Dodecanolc 1956 1466 ++ 
34 Cinnamic aldehyded 2007 1250 + 
35 (E)-Nerolidold 2028 1549 ++++ 
36 (E)-Methyl cinnamated 2046 1353 ++++ 
37 δ-Deca-2,4-dienolactoned 2143 1465 ++ 
38 Nonanoic acidc 2176 1272 + 
39 Hexadecanoic acid methyl esterc 2198 1910 ++++ 
40 (Z)-9-Hexadecenoic acid methyl esterc 2237 1895 ++ 
41 Decanoic acidc 2282 1376 + 
42 Octadecanoic acid methyl esterc 2405 2111 ++ 
43 (Z)-9-Octadecenoic acid methyl esterc 2424 2082 +++ 
44 (Z, Z)-9,12-Octadecadienoic acid methyl esterc 2472 2075 ++++++ 
45 Bisabolol oxide Bd 2525 1749 ++ 
46 Phenylacetic acidd 2613 1257 ++ 
47 Hexadecanoic acidc >2800 1965 ++++ 
48 (Z, Z)-9,12-Octadecadienoic acid d >2800 2128 +++++ 
 
a   The volatile compounds are listed in increasing RIs order on a polar column ZB-WAX. 
b  +: 1-10; ++: 10-50; +++: 50-100; ++++: 100-500; +++++: 500-1,000; ++++++: 1,000-5,000. 
c The compound was confirmed by comparing mass spectra and RIs with those of database using authentic standard 
references established by this institute.. 
d The compound was identified by comparing mass spectrum with commercial mass spectral databases and RIs on two 
different polarity columns with published data. 
e The compound was indicated by comparing mass spectrum with commercial mass spectral databases.  
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   Altogether, 48 volatile compounds were detected in the extract of Fistulina hepatica. 

According to the quantification by internal standard, 36 of them were presented in 

approximate concentrations of more than 10 µg/ (kg fruiting bodies). Table 11 summarises 

these 48 volatile compounds and their RIs on polar and non-polar columns. The volatile 

compounds are listed in an increasing RIs order on a polar column.  

 

   According to Pollien, et al. (1997), a number of 8–10 judges is required to create a reliable 

flavour profile by GC–O. To evaluate the flavour profile of F. hepatica fruiting bodies, panels 

of ten testers were employed. A compound was considered to contribute significantly to the 

overall aroma profile of the fungus, if at least 50 % of the panel ascertained the characteristic 

odour impression imparted by the respective substance. The contribution of a single flavour 

substance to overall aroma profile may be assessed by comparing the individual odour 

threshold to the concentration detected in the fruiting bodies. The most abundant volatile 

detected was 9,12-octadecadienoic acid methyl ester. 

 

   To evaluate the presence of sulphurous, chlorine and nitrogen compounds in the sample, GC 

equipped with an atomic emission detector (GC-AED) was employed. No sulphur-, chlorine- 

and nitrogen-bearing volatile compounds were detected by GC-AED.  

 

   More than 80% of the identified volatiles contained 4–14 carbon atoms. Among them, C8 

and C10 compounds were predominant. These results are in good agreement with typical 

mushroom flavours (Buchbauer, Jirovetz, Wasicky, & Nikiforov, 1993). If the volatiles are 

classified according to their most likely origin, the compounds originate from lipid oxidation 

and degradation, such as aliphatic alcohols, aldehydes and ketones from C4 to C10 are the 

majority group of compound. Most of the compounds containing more than 15 carbon atoms 

were long chain free fatty acids or their methyl esters. 

 

4.4.2. Characteristic flavour compounds of the fruiting bodies 

 

   Eleven volatiles, summarised in Table 12, were found to contribute significantly to the 

characteristic flavour of F. hepatica. Four of them, namely 1-octen-3-one, 1-octen-3-ol, 

phenylacetaldehyde, and phenylacetic acid belong to the C8 group. 
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Table 12.  Characteristic Odorous Compounds from the Fruiting Bodies of Wild F. hepatica  

 
Retention Indices Identity GC-O 

Odor Description GC-O 
(DB-WAX) 

GC-MS 
(ZB-WAX) 

GC-MS 
(DB-5) 

1-Octen-3-one  Shiitake  1279 1282 961 

1-Octen-3-ol   Shiitake  1435 1439 972 

Linalool   Flowery  1528 1536 1088 

Phenylacetaldehyde    Fruity  &  sweet   1614 1616 1011 

Butanoic acid  Fermented  soybean  1647 1642 863 

Unknown Mouldy  1799 -a -a 

(E)-2-Methyl-2-butenoic acid  Lovage  1867 1862 941 

(E)-Methyl cinnamate  Fruity  2047 2046 1353 

(Z)-9-Hexadecenoic acid methyl ester Old leather  2236 2237 1895 

Bisabolol oxide B Honey & flowery 2511 2525 1749 

Phenylacetic acid  Sweet & honey 2601 2613 1257 

 
a: trace concentration, index value could not be determined. 
 

   The overall flavour of the final extract was dominated by sweet and wild flowery 

impressions. GC–O investigations revealed three main groups of odorous compounds: rather 

unpleasant odours, shiitake-like, fruity and flowery. The impression ‘sweet’ was mainly 

attributed to the aromatic compounds phenylacetaldehyde and phenylacetic acid, and to the 

heterocyclus bisabolol oxide B. Furthermore, (E)-2-methyl-2-butenoic (tiglic) acid and (E)-

methyl cinnamate also slightly contributed to the ‘sweet’ impression. A strong fermented 

soybean-like odour was imparted by butanoic acid. (Z)-9-Hexadecenoic acid methyl ester 

exhibited a flavour reminiscent of old leather. An unknown volatile emitted a mouldy odour. 

Though butanoic acid and the unknown compound were present in trace concentrations only, 

they imparted strong stimuli due to their low threshold values. Several shiitake-like flavours 

were sniffed in varying intensities during the GC-O investigations with 1-octen-3-ol giving 

the strongest impact. Besides further C8 compounds, 1-octen-3-ol is the well-known typical 

flavour compound formed in fruiting bodies of higher fungi by enzymatic oxidative 

degradation of linoleic acid. 1-Octen-3-ol is also the most important C8 mushroom aromatic 

compound (Zawirska-Wojtasiak, 2004). Mosandl, Heusinger and Gessner (1986) indicated 

that a fruity mushroom-like flavour is attributed to (R)-(–)-1-octen-3-ol rather than to (S)-(+)-
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1-octen-3-ol. The flowery and fruity sensations are primarily assigned to phenylacetaldehyde, 

(E)-methyl cinnamate, linalool, bisabolol oxide B and (E)-2-methyl-2-butenoic acid. 

 

   Among the identified 10 characteristic odorous compounds, C8 derivatives (1-octen-3-one 

and 1-octen-3-ol), phenylethyl derivatives (phenylacetaldehyde and phenylacetic acid) and 

monoterpenoid compounds (linalool) have been well studied and reported from fungi 

(Borgkarlson, Englund, & Unelius, 1994; Breheret, Talou, Rapior, & Bessiere, 1997; 

Venkateshwarlu, Chandravadana, & Tewari, 1999). 

 

   Methyl cinnamate was detected in Lentinus lepideus Fr. (Birkinshaw, & Findlay, 1940) as 

early as 64-years ago. Later it was also found in Inocybe corydalina and Inocybe pyrodora 

(Schmitt, 1978). The RIs suggested (E)-methyl cinnamate rather than (Z)-methyl cinnamate. 

Viňa and Murillo (2003) reported that both isomers of methyl cinnamate occurred 

simultaneously in 12 varieties of aromatic herb Ocimum spp. The structure of bisabolol oxide 

B was derived from the characteristic ions at m/z 143, 161, 179. The missing molecular ion 

(m/z 238) was confirmed by chemical ionisation yielding an intensive MH+-ion at m/z 239. 

Bisabolol oxide B has never been reported as a native fungal flavour before. However, it 

resulted from the biotransformation of (–)-α-bisabolol by Glomerella cingulata and by 

Aspergillus niger (Miyazawa, Nankai, & Kameoka, 1995). (E)-2-Methyl-2-butenoic acid is 

accessible via regioselective biocatalytic hydrolysis of 2-methyl-2-butenenitrile (Hann et al., 

2004). It has been identified as a spicy volatile in fruits and flowers (Idstein, Bauer, & 

Schreier, 1985; Kollmannsberger, Lorenz, Weinreich, & Nitz, 1998; Morales, & Duque, 

2002; Ngassoum, Jirovetz, & Buchbauer, 2001), and it exhibits biological activity as a beetle 

defence substance. To the best of our knowledge, this is the first report on (E)-2-methyl-2-

butenoic acid from a fungal source. The unequivocal identification of the (E)-form rather than 

(Z)-form (angelic acid) was performed by comparison with authentic standard substances. 

From plants, both isomers were isolated (Burger, Nell, Spies, Le Roux, & Bigalke, 1999; 

Cataneda, Gomez, Mata, Lotina-Hennsen, Anaya, & Bye, 1996; Idstein, et al., 1985; 

Kollmannsberger, et al., 1998; Morales, et al., 2002; Ngassoum, et al., 2001; Raman, & 

Santhanagopalan, 1979). 2-Methyl-2-butenoic acid and butanoic acid were also found to be 

the main characteristic odour components from the fresh and dried fruit shell of Tetrapleura 

tetraptera (Thonn.) (Ngassoum, et al., 2001). 

 

 



Volatile Compounds from the Fruiting Bodies of Beefsteak Fungus F. hepatica 33 

4.5. Conclusion 

 

   Forty eight volatile compounds, from the fruiting bodies of wild F. hepatica, were identified 

and approximately quantified. Most of them were C4–C14 compounds, and no sulfur-, 

chlorine- and nitrogen-bearing volatiles were detected. The overall flavour of the volatile 

extract was sweet and resembled wild flowers. Eleven volatile compounds were determined to 

be characteristic odorous compounds of this fungus: 1-octen-3-one, 1-octen-3-ol, linalool, 

phenylacetaldehyde, butanoic acid, (E)-2-methyl-2-butenoic acid, (E)-methyl cinnamate, (Z)-

9-hexadecenoic acid methyl ester, bisabolol oxide B, phenylacetic acid, and an uncertain 

mouldy compound. (E)-2-Methyl-2-butenoic acid and bisabolol oxide B have never 

previously been identified as native volatile secondary metabolites of fungi. 
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5. VOLATILES FROM SUBMERGED AND SURFACE 

CULTURED BEEF-STEAK FUNGUS FISTULINA HEPATICA 

(submitted) 

 

 

5.1. Abstract 

 

   Cultures of Fistulina hepatica DSMZ 4987 were grown submerged in standard nutrition 

solution (SNS) or on oak wood powder (OWP), repectively. The harvested cells were 

disintegrated, their volatile constituents isolated by continuous liquid–liquid extraction 

(CLLE), investigated by gas chromatography and by high resolution gas chromatography–

mass spectrometry (HRGC–MS), and compared. Altogether, 39 volatile compounds were 

generated by the submerged liquid cultures, while 53 volatile compounds by the surface 

cultures, most of them in much higher concentrations than by the submerged cultures. The 

surface cultures contained aldehydes, methoxybenzenoids, and hydrocarbons, which were 

absent from the submerged cultures, and emitted a much stronger mushroom aroma. 

Accordingly, the concentration of 1-octen-3-ol in the surface cultures was more than 100 

times higher than in the submerged liquid cultures. 20 compounds, mainly long chain fatty 

acids and their methyl esters, and short chain aliphatic alcohols, were common to both 

systems. 

 

Keywords: Fistulina hepatica; volatiles; cultures; oak wood; non-phenolic 

methoxybenzenoids; terpenoids 

 

 

 

5.2. Introduction 

 

   Since the early 1950s it was attempted to produce natural flavours by fungi, because of their 

enormous biochemical potential (Sugihara, & Humfeld, 1954). Driven by both, an increasing 

consumer preferences for natural aromas, and by improved biotechnological means research 

on fungal biotransformations experiences a revival (Berger, & Zorn, 2004). Particular 
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attention is paid to basidiomycetes because of their complex metabolism and the food status 

of the edible representatives. 

  

   The trivial name of F. hepatica is explained by the shape, size and colour of the fruiting 

bodies which resemble a roasted piece of beef. Unlike most other brown rot fungi, F. hepatica 

is not hazardous to trees and forests, but rather cherished by the wood industry, as it produces 

attractive reddish brown staining on the surface of oak wood with little effects on the 

mechanical properties of wood (Schwarze, Baum, & Fink, 2000). Furthermore, the fungus 

was attested to generate new antibacterial substances (Schwope, Givan, & Minto, 2003). 

Recently, it was reported that the fruiting bodies of a wild F. hepatica contained a wide 

diversity of volatile secondary metabolites, such as (E)-2-methyl-2-butenoic acid and a wealth 

of odorous terpenoids (Wu, Krings, Zorn, & Berger, 2005).  

 

   To extend the earlier studies and to prepare for a biotechnological process using F. hepatica 

cells, the F. hepatica strain DSMZ 4987 was grown in submerged culture and, in parallel, on 

oak wood powder (OWP). Aim of the present study was to investigate the major volatile 

compounds generated under two different conditions of growth and to compare with those 

reported for the fruiting bodies. 

 

5.3. Experimental 

 

5.3.1. Strain and media 

 

   The examined strain of F. hepatica (DSMZ 4987) cultured on charcoal-agar medium (30 

g/L malt extract; 3 g/L medical charcoal; 20 g/L agar) was purchased from Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ). It was inoculated on standard 

nutrition solution (SNS)-agar and maintained at 4 °C.  

 

   The SNS was prepared on the basis of Sprecher medium (Sprecher, 1959): 30 g/L D-(+)-

glucose monohydrate, 4.5 g/L L-asparagine monohydrate, 1.5 g/L potassium dihydrogen 

phosphate, 0.5 g/L magnesium sulfate, 3.0 g/L yeast extract granulated, and 1 ml/L trace 

element solution. The composition of the trace element solution was 80 mg/L  iron (III) 

chloride hexahydrate, 90 mg/L zinc sulfate heptahydrate, 27 mg/L manganese sulfate 

monohydrate, 5 mg/L copper sulfate pentahydrate, and 400 mg/L Titriplex III. For preparing 
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SNS-agar medium, agar (15 g/L) was added to the SNS. The pH of the SNS was adjusted to 

6.0 using sodium hydroxide prior to sterilisation. The medium was autoclaved at 120 °C for 

20 min. 

 

   German oak (Quercus robur L.) wood stripes were provided by a timber workshop in 

Hannover, Germany. They were rinsed with bidistilled water and air-dried at room 

temperature. The dried stripes were ground using a commercial blender and sieved through a 

1 mm sieve.  The  powder was autocaved in Erlenmeyer flasks at 120 °C for 40 min. The 

bottom of each 1000 mL of Erlenmeyer flask was evenly covered with 6 g of OWP. 

 

5.3.2. Culture conditions  

 

5.3.2.1.  Submerged liquid cultures  

   To prepare pre-cultures, 10 mm × 10 mm agar plugs from the leading mycelia edge were 

inoculated into a 300 mL Erlenmeyer flask containing 100 mL of the SNS, and homogenised 

using an Ultra Turrax (Janke & Kunkel, Staufen, Germany). After cultivation in the dark for 

14 days at 24  °C on a rotary shaker (Infors, Multitron, Switzerland) with 150 rpm, the pre-

cultures were homogenised. 20 mL of homogenised pre-cultures were transferred into a 500 

mL Erlenmeyer flask containing 250 mL of fresh SNS for preparation of the main cultures. 

These were cultivated in the dark for another 21 days at 24  °C  and 150 rpm to make up for a 

total cultivation period of 35 days.  

 

5.3.2.2. Surface cultures 

   6 g of autoclaved OWP in each 1000 mL Erlenmeyer flask were inoculated with 20 mL of 

pre-cultures. The flasks were statically incubated at 25 °C and ambient light for 35 days. 

 

5.3.3. Isolation of volatiles 

 

5.3.3.1. Isolation of volatiles from sterilized SNS medium 

   750 mL of the sterilized SNS medium were mixed with 400 mL of methanol, and 1 mL of 

methyl nonanoate (46.8 mg/L in pentane/ether (v/v, 1:1.12)) solution was added as internal 

standard. 850 mL of a saturated sodium chloride solution were added and the mixture 

submitted to continuous liquid–liquid extraction (CLLE): using pentane/ether (v/v, 1:1.12) as 

an extraction solvent. After 24 h the pentane/ether phase was washed with water, dried over 
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anhydrous sodium sulfate, and concentrated at 42 °C using a Vigreux-column to a final 

volume of about 1 mL for GC analysis. 

 

5.3.3.2. Isolation of volatiles from OWP 

5.3.3.2.1. Extraction of volatiles from OWP 

   25 g of autoclaved OWP were soaked in 500 mL of pentane/ether (v/v, 1: 1.12) in darkness 

for 72 h at 4  °C. The mixture was filtered, and 1 mL of methyl nonanoate (468 mg/L in 

pentane/ether (v/v, 1:1.12)) solution was added as internal standard. The organic fraction was 

dried over anhydrous sodium sulfate and concentrated at 42 °C using a Vigreux-column to a 

final volume of about 1 mL. The GC-FID chromatogram showed that further purification of 

the extract was necessary. 

 

5.3.3.2.2. Silica gel fractionation of the volatile extract   

   20 g of silica gel 60 (0.040-0.063 mm, Merk, Darmstadt, Germany) were dried at 150 °C for 

24 h and then homogenised with 4.5 % (w/w) of bidistilled water for 12 h before use. The size 

of the silica gel-column was 15 mm × 200 mm. The column was washed with 20 mL of 

pentane before elution and its temperature was maintained at 10-15 °C during the elution 

using a Julabo UC cooling system (Julabo Labortechnik, Seelbach, Germany). The volatiles 

were eluated with pentane, pentane/ether (v/v, 1:1.12), ether and finally with methanol at an 

elution speed of 75 mL/h. The volume of each solvent was 150 mL and the collection 

container was kept at 0 °C. All of the eluates were dried over anhydrous sodium sulfate and 

concentrated at 42 °C using a Vigreux-column to about 1 mL.  

 

   Thus, the volatiles listed below were confirmed as either enzymatic breakdown products of 

OWP, or as de novo formed products of F. hepatica.  

 

 

5.3.3.3. Isolation of volatiles from cultures 

   Three flasks of the main cultures (750 mL) were filtered at 4 °C and  the supernatant  was 

kept at 0 °C. The separated wet mycelia were disrupted as follow: The mycelia were mixed 

with 70% (v/v) of methanol, and the mixture was ground at 5 °C for 30 min using a KDL-A 

Dyno-Mill (Willy A. Bachofen, Basel, Switzerland). The diameter of glass beads (Carl Roth, 

Karlsruhe, Germany) was 0.25-0.50 mm. According to a previous study on disruption of 

filamentous fungi (Taubert, Krings, & Berger, 2000), the amounts of mycelia (w), 70% 

methanol (v) and glass beads (v)  were 5-35 g, 50 mL and 80 mL, respectively. The cell 
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homogenates were centrifuged using an RT-7Plus centrifuge (Kendro Laboratory Products, 

Langenselbold, Germany) at 3,300 g at 0 °C. The centrifugated supernatant was combined 

with the filtered supernatant of the first step. The combined solutions were mixed with up to 

400 mL of methanol, and 1 mL of methyl nonanoate (46.8 mg/L in pentane/ether (v/v, 

1:1.12)) solution was added as internal standard. Then, the mixture was subjected to CLLE. 

   Surface cultures were disrupted as described above for the wet mycelia and the centrifuged 

supernatant was submitted to CLLE. 

    

5.3.4. Chemicals  

 

   Solvents were provided by BASF (Ludwigshafen, Germany) and Baker (Deventer, the 

Netherlands). All solvents were distilled before use. High purity water was prepared with an E 

pure water purification system (Barnstead, Dubuque, Iowa, USA). Sodium sulfate and sodium 

chloride were obtained from Carl Roth (Karlsruhe, Germany). Magnesium sulfate and iron 

(III) chloride hexahydrate were supplied by RdH Laborchemikalien (Seelze, Germany). Zinc 

sulfate heptahydrate and copper sulfate pentahydrate were from Fluka (Buchs, Switzerland). 

The other reagents were received from Merck (Darmstadt, Germany).  

 

5.3.5. Analysis of volatiles 

 

5.3.5.1. High resolution GC–FID  

   High resolution GC–FID (HRGC–FID) using a polar phase was performed on a Trace GC 

equipped with a (polyethylene glycol) DB-WAX column (30 m × 0.32 mm i.d. × 0.25 µm 

film thickness, SGE, Germany). HRGC-FID using an apolar phase was carried out on a 

Fisons GC8000 equipped with a DB-5 column (30 m × 0.32 mm i.d. × 0.25 µm film 

thickness, Varian, Germany). The linear velocity of H2 was 52 cm/s. The oven temperature 

was held at 40 °C for 2 min, raised at 5 °C/min to a final temperature of 250 °C, and held 

constant for 5 min at 250 °C. The injection volume was 1 µL cool on column.  

 

5.3.5.2. High resolution GC–MS  

   High resolution GC–MS (HRGC–MS) analysis using a polar phase was conducted on a 

Fisons GC 8000 equipped with a (polyethylene glycol) ZB-WAX (30 m × 0.32 mm i.d. × 0.25 

µm film thickness, Phenomenex, USA) column connected to a Fisons MD800 mass selective 

detector. HRGC–MS analysis using an  apolar phase was conducted on an HP5890 Series II 

GC equipped with a DB-5 (30 m × 0.32 mm i.d. × 0.25 µm film thickness, Varian, Germany) 
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column connected to an HP quadrupole mass spectrometer 5989A. Both HRGC-MS 

instruments were operated at 70 eV in the EI mode over the range of 33–300 amu. Helium 

was used as the carrier gas at a linear velocity of 38 cm/s. Chemical ionization (CI) was 

carried out with methane as reactant gas. The oven temperature program was the same as 

described above. The injection volume was 1 µL cool on column. 

 

5.3.5.3. Identification and semiquantification 

   Linear retention indices (RIs) were calculated according to the Kovats method using n-

alkanes (C7-C28) as external references (Kondjoyan & Berdagué, 1996). Mass spectral 

identification was completed by comparing spectra with commercial mass spectral databases 

WILEY, NIST, and LIBTX, and by comparison with authentic reference standards if 

available. Odor qualities and retention indices were additionally compared with published 

data (Adams, 1995; Burdock, 2002; Jennings, & Shibamoto, 1980; Kondjoyan, & Berdagué, 

1996; Rychlik, Schieberle, & Grosch, 1998). Approximate concentrations of volatile 

compounds were calculated according to the internal standard method using methyl 

nonanoate and the HP ChemStation Software (Agilent Technologies, USA). 

 

5.4. Results and discussion 

 
   The initially dispersed oak wood powder was completely overgrown after 35 days of 

cultivation. The colour of surface cultured mycelia turned from old-cotton into yellow ochre. 

The same visual change was also observed during the storage of mycelia on SNS-agar plates. 

In contrast, the submerged mycelial pellets remained cotton-white to the end. After 35 days of 

growth, the whole surface cultures weighed 35.26 g. The wet mycelial pellets isolated from 

the 750 ml of submerged liquid cultures weighed 45.87 g. 

 

5.4.1. Volatile compounds generated by F. hepatica in SNS medium 

 

   In total, 39 volatile compounds generated by submerged cultures of F. hepatica were 

identified. They comprised 16 alcohols, 12 esters, 8 acids, 2 ketones, and a lactone (Table 

13). The most abundant compounds were linoleic acid and its methyl ester. Their approximate 

concentration attained 500-1,000 µg/L. The predominant chemical classes within the volatile 

constituents were short chain aliphatic alcohols, long chain fatty acids and their esters. 

Although four C8 “mushroom-flavour” compounds were detectable, they were present at no 

more than 10 µg/L, which was much lower than their concentration level in the fruiting bodies 
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of a wild F. hepatica (Wu, Krings, Zorn, & Berger, 2005). Comparable concentrations of the 

key mushroom flavour compound 1-octen-3-ol have been reported for submerged SNS-

cultures of the basidiomycete strains Kuehneromyces mutabilis, Pleurotus sapidus, 

Nigroporus durus, and Polyporus umbellatus (Abraham, & Berger, 1994). 

 

Table 13.  Major Volatile Compounds from Submerged Liquid Culture F. hepatica in SNS Medium a 

 
RIs No Compounds 

 ZB-WAX DB5 

Approximate concentrationb 
(µg/L) 

1 2-Pentanonec 983 <700 ++++ 
2 Butanoic acid methyl esterc 992 710 +++ 
3 2-Butanolc 1022 <700 + 
4 1-Propanolc 1030 <700 ++++ 
5 Acetic acid butyl esterc 1070 812 + 
6 2-Hexanoned 1074 790 + 
7 Pentanoic acid methyl esterc 1081 823 + 
8 2-Methyl-2-propanolc 1102 914 + 
9 2-Pentanold 1117 706 + 
10 1-Pentanold 1255 760 + 
11 1-Hexanold 1351 864 + 
12 4-Methyl-pentanoic acid methyl esterc 1436 1085 + 
13 1-Octen-3-old, f 1453 974 + 
14 1-Heptanold 1462 971 + 
15 1-Octanold, f 1556 1070 + 
16 4-Terpineol c 1589 1175 + 
17 (E)-2-Octen-1-olc 1611 1059 + 
18 L-(-)Menthol c 1631 1160 + 
19 Nonanolc 1665 1172 + 
20 α-Terpineol d 1687 1186 + 
21 2-Hydroxy-benzoic acid methyl esterc 1747 1190 + 
22 1-Decanold 1767 1275 + 
23 Hexanoic acidd 1866 990 + 
24 1-Dodecanold, f 1961 1466 + 
25 γ-Nonalactoned 2005 1358 + 
26 Tetradecanoic acid methyethyl esterc 2023 1812 + 
27 Octanoic acidd 2070 1182 + 
28 Pentadecaoic acid methyl esterc 2108 1820 + 
29 Nonanoic acidd, f 2180 1272 + 
30 Hexadecanoic acid methyl esterd, f 2202 1915 +++ 
31 (Z)-9-Hexadecenoic acid methyl esterd, f 2237 1890 + 
32 Octadecanoic acid methyl esterd, f 2409 2112 ++ 
33 (Z)-9-Octadecenoic acid methyl esterd, f 2426 2085 +++ 
34 (Z, Z)-9,12-Octadecadienoic acid methyl esterd, f 2476 2076 +++++ 
35 Tetradecanoic acidd 2715 1770 ++ 
36 Pentadecanoic acidc >2800 1857 ++ 
37 Hexadecanoic acidd, f >2800 1958 ++++ 
38 Octadecanoic acidd >2800 2158 +++ 
39 (Z, Z)-9,12-Octadecadienoic acidd >2800 2130 +++++ 
 

a   The volatile compounds are listed in increasing RIs order on a polar column ZB-WAX. 
b  +: 1-10; ++: 10-50; +++: 50-100; ++++: 100-500; +++++: 500-1,000. 
c The compound was identified by comparing mass spectrum with commercial mass spectral databases and RIs on two 
different polarity columns with published data. 
d The compound was confirmed by comparing mass spectra and RIs with those of database using authentic standard reference   
  established by this institute. 
f The compound was detected in the fruiting bodies of wild F. hepatica as well. 
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5.4.2. Volatile compounds generated by surface cultures of F. hepatica on OWP 

 

   F. hepatica typically grows on oak trees. To find out more about the effects of natural 

substrates on the metabolism of volatiles and to seek for a sustainable outlet of oak wood 

wastes, F. hepatica was cultured on sterilised OWP. Altogether, 53 volatile compounds were 

identified as products of F. hepatica grown on oak wood (Table 14).  

 

   Among the compounds identified were 20 alcohols, 14 esters, 7 hydrocarbons, 4 fatty acids,  

4 methoxybenzenoids, 2 ketones, and 2 aldehydes. The most abundant compounds were 2-

methyl-1-propanol, hexadecanoic acid, linoleic acid and its methyl ester. Their approximate 

concentration were 1,000-5,000 µg/kg. The key flavour 1-octen-3-ol, 1,2,3,4-

tetramethoxybenzene, propiovanillone, and the diterpene biformene were present in 

appreciable amounts. Fourteen volatiles found in the surface cultures also occurred in the 

fruiting bodies of a wild F. hepatica. Most of them were either lipid- or lignin-derived 

volatiles. Surprisingly, no other characteristic odorants of the fruiting bodies of wild F. 

hepatica but 1-octen-3-ol was formed by the surface cultures. The most abudant compounds 

linoleic acid, its methyl ester, and its breakdown product 1-octen-3-ol were created in similar 

proportions in both the surface cultures and in the wild fruiting bodies. This suggests that the 

activities of lipoxygenase and hydroperoxide lyase, which catalyse the degradation of linoleic 

acid to 1-octen-3-ol, were similar on OWP and in the fruiting bodies on live oak trees. 

 

   Interestingly, no remains of the strong pungent off-flavor of OWP were detectable after 

cultivation. This was mainly due to the complete disappearance of the characteristic odorants 

of OWP butanoic acid, 2-methylpropanoic acid and acetic acid. They may, like the medium 

and longer-chain aliphatic carboxylic acids of OWP, have served as an immediate carbon 

source for fungal growth. 
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Table 14.  Volatile Compounds Created by Surface Cultured F. hepatica on Oak Wood Powders a  
 

Retention indices No. Compounds 
ZB-WAX DB5 

Approximate concentration b 
(µg/kg cultures) 

1 Butanoic acid methyl ester c, f 981 710 ++++ 
2 Decane c 998 1000 ++++ 
3 2-Methyl-butanoic acid methyl ester c 1008 771 +++ 
4 (-)-α-Pinene c 1012 927 ++++ 
5 3-Methyl-butanoic acid methyl ester c 1019 766 ++ 
6 2-Butanol c, f 1030 <700 ++ 
7 1-Propanol c, e 1043 <700 ++++ 
8 2-Hexanone d 1077 788 + 
9 Pentanoic acid methyl ester c 1085 823 + 
10 2-Methyl-1-propanol c, e 1094 <700 ++++++ 
11 Undecane c, w 1098 1100 +++++ 
12 1-Butanol c, w 1147 <700 ++ 
13 Hexanoic acid methyl ester c 1184 915 + 
14 1-Pentanol c, f 1252 760 + 
15 Octanal c 1282 1004 ++ 
16 1-Hexanol c, e, f 1353 862 ++ 
17 2-Nonanone d 1379 1093 + 
18 Tetradecane c 1398 1400 ++ 
19 Ethanedioic acid dimethyl ester d 1409 826 ++ 
20 (Z)-Linalool oxide d 1431 1068 + 
21 1-Octen-3-ol c, f 1452 976 +++++ 
22 Pentadecane c 1500 1500 ++ 
23 Benzaldehyde c 1506 933 + 
24 1-Octanol c, f 1557 1076 ++ 
25 (-)-Isopulegol d 1564 1145 + 
26 D-Fenchyl alcohol d 1574 1110 + 
27 4-Terpineol c, f 1588 1175 ++ 
28 Hexadecane c 1600 1599 ++ 
29 (E)-2-Octen-1-ol c, f 1613 1060 ++ 
30 L-(-)-Menthol c, f 1631 1160 ++ 
31 1-Nonanol c, f 1658 1172 + 
32 α-Terpineol c, e, f 1687 1193 ++ 
33 1-Decanol c, f 1760 1275 ++ 
34 p-Cymen-8-ol d 1843 1420 ++ 
35 1,2,3-Trimethoxy-benzene d 1955 1309 + 
36 Tetradecanoic acid methyl ester c 1998 1706 ++ 
37 (E)-Nerolidol c 2033 1562 ++ 
38 Pentadecanoic acid methyl ester d, f 2102 1816 +++ 
39 Tetradecanol c 2169 1665 ++ 
40 Hexadecanoic acid methyl ester c, f 2205 1916 +++++ 
41 1,2,3-Trimethoxy-5-(2-propenyl)-benzene d 2221 1550 ++ 
42 Hexadecanoic acid 1-methylethyl ester d 2232 1981 ++ 
43 Heptadecanoic acid methyl ester d 2309 2028 ++ 
44 1,2,3,4-Tetramethoxybenzene d 2321 1533 +++++ 
45 Octadecanoic acid methyl ester c, f 2415 2117 +++ 
46 (Z)-9-Octadecenoic acid methyl ester c, f 2434 2086 ++++ 
47 (Z, Z)-9,12-Octadecadienoic acid methyl ester c, e, f 2480 2079 ++++++ 
48 Biformene d 2642 2048 ++++ 
49 Propiovanillone d 2693 1582 ++++ 
50 Pentadecanoic acid d, f >2800 1857 +++ 
51 Hexadecanoic acid c, e, f >2800 1971 ++++++ 
52 Octadecanoic acid c, e, f >2800 2162 ++++ 
53 (Z, Z)-9,12-Octadecadienoic acid c, e, f >2800 2131 ++++++ 
 

a The volatile compounds are listed in increasing RIs order on a polar column ZB-WAX. 
b +: 1-10; ++: 10-50; +++: 50-100; ++++: 100-500; +++++: 500-1,000; ++++++: 1,000-5,000. 
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c The compound was confirmed by comparing mass spectra and RIs with those of database using authentic 

standard references established by this institute. 
d The compound was identified by comparing mass spectrum with commercial mass spectral databases and RIs 

on two different polarity columns with published data. 
e The compound was also detected in the oak wood powders themselves, but its concentration remarkably 

increased due to fermentation. 
f The compound can also be generated by the submerged cultured F. hepatica in SNS medium. 

 

5.4.3. Comparison of volatile compounds derived from submerged cultures and from 

surface cultures 

 

   The production of volatiles is well known to depend on the culture conditions. Overall 

similarities and differences of volatile products between the surface cultures and the 

submerged liquid cultures can be summarized by comparing Table 13 and Table 14. 

 

   Generally, the concentrations of the volatiles from the surface cultures were much higher 

compared to of those of the submerged cultures. A similar phenomenon was also observed 

with solid-state cultures and submerged cultures of the basidiomycete  Pleurotus ostreatus 

(Kabbaj, et al., 2002). While 20 compounds were produced in both culture systems, 

significant differences became apparent. With the exception of 1-pentanol and 1-nonanol, 

which were present in similar concentrations, the concentrations of 15 volatiles formed in the 

surface cultures were five to ten times higher than those of the submerged cultures. 

Pentadecanoic acid methyl ester, hexadecanoic acid methyl ester, and hexadecanoic acid in 

the surface cultures were found in 10 to 50 times higher concentrations compared to the 

submerged cultures. In particular, the concentration of 1-octen-3-ol in the surface cultures 

exceeded 100 times the level of the submerged cultures. Accordingly, an intensive fresh 

mushroom aroma was emitted from the surface cultures, while the submerged cultures 

imparted a faint mushroom flavour only.  

 

   The volatiles common to both were mainly lipid-derived. Except for 2-hexanone, 19 

compounds represented either alcohols or long chain fatty acids or their methyl esters. An odd 

long chain fatty acid, pentadecanoic acid, was formed in both cultures, while it was not 

detected in the fruiting bodies of the wild F. hepatica. Remarkably, a wide range of short and 

medium chain aliphatic acids detected in the liquid cultures and in the fruiting bodies, were 

absent in the surface cultures. No hydrocarbons, only one benzenoid compound, and only 

three terpenols were found in the liquid cultures. In contrast, six aromatic compounds and 
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seven hydrocarbons including two terpene hydrocarbons appeared in the surface cultures. 

Two aldehydes were identified in the surface cultures, while none was detected in the liquid 

cultures. Compared to SNS, the most notable changes of volatile classes associated with the 

presence of OWP referred to methoxybenzenoids and terpenoids.  

 

5.4.4. Methoxybenzenoid volatile compounds 

 

   When grown on OWP, F. hepatica formed three non-phenolic methoxybenzenoids (1,2,3-

trimethoxybenzene, 1,2,3-trimethoxy-5-(2-propenyl)-benzene, 1,2,3,4-tetramethoxybenzene), 

and a methoxyphenone (1-(4-hydroxy-3-methoxyphenyl)-1-propanone). The two non-

methoxybenzenoids benzaldehyde and p-cymen-8-ol, are known as biodegradation results of 

wood decaying fungi (Millington, Leach, Wyllie, & Claridge, 1998; Rocha, Delgadillo, & 

Correia, 1996). The presence of methoxybenzenoids is an indicator of the attack of lignin by 

F. hepatica. 1,2,3-Trimethoxybenzene and 1,2,3-trimethoxy-5-(2-propenyl)-benzene 

(elemicine) have been confirmed as lignin units by pyrolysis GC-MS (Camarero, Bocchini, 

Galletti, & Martínetz, 1999). 1,2,3,4-Tetramethoxybenzene and 1-(4-hydroxy-3-

methoxyphenyl)-1-propanone (propiovanillone) were also described as genuine structural 

fragments of lignin (Kersten, Kalyanaraman, Hammel, Reinhammar, & Kirk, 1990; Ishizu, 

Nakano, & Migita, 1962).  

 

   1,2,3-Trimethoxybenzene was previously found as one of the key flavour compounds of a 

fermented tea Puer-tea (Kawakami, 2002). Elemicine, a major volatile in many higher plants 

(Mansour, Maatooq, Khalil, Marwan, & Sallam, 2004), is a natural insecticide possessing also 

antioxidant activity (Park, Lee, Shibamoto, & Takeoka, 2003). Three strains of 

basidiomycetes isolated from Puer-tea can autonomously generate elemicine (Gong, 

Watanabe, Yagi, Etoh, Sakata, Ina, & Liu, 1993).  

 

   Propiovanillone was found in toasted or combusted wood (Cutzach, Chatonnet, Henry, & 

Dubourdieu, 1997; Fine, Cass, & Simoneit, 2002) and in a smoke flavouring of Thymus 

vulgaris L. (Guillén, & Manzanos, 1999). While wood combustion produces desirable 

phenolic methoxybenzenoids flavours such as propiovanillone, many undesirable volatile 

methoxyphenols are simultaneously released (Kjällstrand, Ramnäs, & Petersson, 1998). 

Contrary to the thermal decomposition, the more selective “enzymatic combustion” (Kirk, & 

Farrell, 1987) by fungi leads to a different spectrum of volatiles without significant amounts 

of methoxyphenols. 
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   A wide variety of extracellular fungal enzymes including laccase, manganese peroxidase, 

lignin peroxidase, phenoloxidase, chloroperoxidase, glyoxal oxidase, aryl alcohol oxidase, 

and versatile peroxidase are involved in the biodegradation of lignin (Hakala, Lundell, 

Galkin, Maijala, Kalkkinen, & Hatakka, 2005; Ortiz-Bermúndez, Srebotnik, & Hammel, 

2003). However, fungal degradation on lignin seemed to depend on species (Adaskaveg, 

Gibertson, & Dunlap, 1995; Otjen, Blanchette, Effland, & Leatham, 1987). According to a 

recent proposal on the mechanism of fungal attack on non-phenolic lignin (Kapich, Steffen, 

Hofrichter, & Hatakka, 2005), the non-phenolic methoxybenzenoids found here might result 

from manganese peroxidase-initiated lipid peroxidation. 

 

5.4.5. Terpenoids produced by F. hepatica 

 

   Earlier investigations on the fruiting bodies indicated that edible basidiomycetes are capable 

of synthesising a variety of volatile terpenoids (Breheret, Talou, Rapior, & Bessiere, 1997; 

Rösecke, Pietsch, König, 2000). Nine terpenoids, including monoterpenes,  sesquiterpenes 

and diterpene were present in the surface cultures. Three of them L-(-)-menthol, α-terpineol, 

and 4-terpineol were also detected in lower amounts in the submerged cultures. α-Pinene and 

(Z)-linalooloxide were metabolites of several basidiomycetes (Abraham, & Berger, 1994; 

Breheret, Talou, Rapior, & Bessière, 1997; Rösecke, Pietsch, König, 2000). Amounts of D-

fenchyl alcohol in cork slabs obviously increased upon the attack of the cork by a saprophytic 

basidiomycete Armillaria mellea (Rocha, Delgadillo, & Correia, 1996). D-fenchyl alcohol 

was also detected in the fruiting bodies of wild basidiomycete Cystoderma carcharias 

(Breheret, Talou, Rapior, & Bessière, 1997). (E)-Nerolidol occurred in the fruiting bodies of 

the same species (Wu, Krings, Zorn, & Berger, 2005). The diterpene biformene was first 

isolated and identified from Dacrydium biforme, and was later also detected in essential oils 

of plant leaves (Carman, & Grant, 1961). Fruiting bodies of the basidiomycete Fomitopsis 

pinicola were reported to contain biformene (Rösecke, Pietsch, König, 2000). These results 

confirm that various terpenoids are formed by basidiomycetes on wooden substrates. The 

monoterpene alcohol (–)-isopulegol, a constituent of some essential oils (Rajeswara-Rao, 

Kaul, Syamasundar, & Ramesh, 2003), has been used in the flavour and fragrance industry. It 

was also found in the liquid cultures of ascomycete Ceratocystis coerulescens (Koch, & 

Sinnwell, 1987). Alternatively, (–)-isopulegol can be obtained from citronellal through 

biotransformation using the euascomycete Paecilomyces varioti (Deodhar, Pipalia, & 
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Karmarkar, 2002). (–)-Isopulegol is reported here as a product of basidiomycetes for the first 

time. 

  

   Under different culture conditions, altogether17 terpenoids were formed by F. hepatica. The 

species therefore may lend itself to the detailed study of the pathway of formation of volatile 

terpenoids and related genes and enzymes in basidiomycetes. 

 

5.5. Conclusion 

 

   Laboratory cell cultures of basidiomycetes may, under suitable conditions, be developed 

into multicellular fruiting bodies with stipe, cap and gills indicating a totipotent fungal 

physiology (Money, 2002). Accordingly, different sets of chemical and physical conditions of 

cultivation of submerged grown pellets, hydrophobic surface mats (Smits, Wick, Harms, & 

Keel, 2003), and of intact fruiting bodies (Wu, Krings, Zorn, & Berger, 2005) must result in 

biochemical differentiation. Best investigated are surface cultures which were shown to 

produce reactive oxygen species (Cohen, Jensen, Houtman, & Hammel, 2002) and numerous 

enzymes catalysing the efficient degradation of lignin (Kapich, Steffen, Hofrichter, & 

Hatakka, 2005) and of other uncommon substrates (Zorn, Bouws, Takenberg, Nimtz, 

Getzlaff, Breithaupt, & Berger, 2005). Some mechanistic insight has been gained into these 

processes, and some immediate chemical inducers, such as 2,5-dimethoxybenzyl alcohol (for 

laccases) (Gonzalez, Terron, Zapico, Tellez, Yaguee, Carbajo, & Gonzalez, 2003) and iron 

(for general mRNA regulation and iron acquisition) (Assmann, Ottoboni, Ferraz, Rodriguez, 

& de Mello, 2003) have been identified. Little is known, however, on the role of water 

activity (Fernandes, Loguercio-Leite, Esposito, & Menezes Reis, 2005) and light (Idnurm, & 

Heitman, 2005) on cellular differentiation. Candidate genes controlling light responses are 

now being searched using opsin or phytochrome motives or by insertional mutagenesis. 

Substrate effects on the composition of the exo-proteome were reported recently (Zorn, 

Peters, Nimtz, & Berger, 2005). 

  

   Not enough causal correlations are available to design optimised cultivation systems for the 

production of volatile flavours. The data presented show that the biotechnologically favoured 

submerged variant is not promising for this purpose, but surface cultivation suffers from a 

number of technical and operational drawbacks, such as substrate transport limitations, down-

stream and monitoring problems. Novel cultivation approaches are obviously needed to 

produce fungal flavours successfully on a larger scale. 
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6. APPENDIX 

 

 

6.1. Volatile compounds from standard nutrition solution (SNS) medium 

 

6.1.1. Introduction 

 

   Standard nutrition solution (SNS) was prepared according to Sprecher (1959) and has been 

found to be suitable for higher basidiomycetes. The autoclaved SNS medium emits a slight 

flavor of commercial yeast accompanied by a faint sweet scent. Volatiles from sterilized SNS 

medium itself are mainly due to presence of yeast extract and chemical reactions during 

sterilization, such as Maillard reaction and sugar degradation. Despite hundreds of volatiles 

identified in yeast extracts, the volatile composition of the sterilized SNS medium remained 

uninvestigated. Above all, volatile compounds from the medium itself cannot be ignored, 

when volatile secondary metabolites produced by submerged liquid cultures demand 

comprehensive determination. The results of investigation on volatiles through fermentation 

in SNS should either eliminate or quantitatively deduct those compounds originating from the 

chemical blank. For this reason, the present study was undertaken to determine the volatile 

composition of sterilized SNS. 

 

6.1.2. Materials and methods (seen in 5.2.) 

 

6.1.3. Results and discussion 

 

 
6.1.3.1. General description of volatile compositions 

 

   In order to achieve exhaustive recovery of the genuine volatile fraction, CLLE was chosen 

for extraction. Table 15 lists the compounds identified by GC-MS analysis, semiquantitative 

concentrations, as well as retention indices both on a polar and an apolar column. A total of 

28 volatile compounds were identified and quantified in the autoclaved SNS medium. These 

included 2 pyrazines, 2 sulfur-bearing compounds, 2 alcohols, 4 aldehydes, 5 acids, 6 

hydrocarbons, and 7 esters. According to the quantification by internal standard, 25 of them 

were present at low concentration of no more than 50 µg/L. The most abundant compound 

detected was 2-methyl-1-propanol.  
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Table 15.  Volatile Compounds Identified in the Sterilized Standard Nutrition Solution a 

 
RIs No Compounds 

 ZB-WAX DB5 

Approximate concentration b 

(µg/L) 

1 Decane c 1000 1000 +++ 

2 2-Methyl-butanoic acid methyl ester d 1009 771 ++ 

3 3-Methyl-butanoic acid methyl ester d 1019 766 + 

4 4-Methyl-decane d 1054 1060 + 

5 2-Methyl-decane d 1057 1067 + 

6 Dimethyl disulfide d, e 1064 746 ++ 

7 Hexanal c 1069 786 + 

8 2-Methyl-1-propanol c 1087 <700 ++++ 

9 Undecane c 1100 1100 +++ 

10 1-Butanol c, e 1139 <700 + 

11 Hexanoic acid methyl ester c 1182 936 + 

12 Dodecane c 1200 1199 + 

13 Pyrazine d, e 1208 712 + 

14 Heptanoic acid methyl ester d 1279 1013 + 

15 2,5-Dimethyl-pyrazine d, e  1310 895 + 

16 Dimethyl trisulfide d, e 1354 976 ++ 

17 2-Methyl-octanoic acid methyl ester d 1380 1154 ++ 

18 2-Furancarboxaldehyde d, e 1448 830 ++ 

19 Acetic acid c 1466 <700 ++ 

20 Benzaldehyde c, e 1496 933 ++ 

21 Nonanoic acid ethyl ester c 1521 1297 ++ 

22 2-Methyl-propanoic acid d, e 1575 793 ++ 

23 Hexadecane c 1600 1600 + 

24 Phenylacetaldehyde c, e 1618 1011 ++ 

25 Butanoic acid c, e 1644 860 +++ 

26 Pentanoic acid c, e 1677 906 +++ 

27 3-Methyl-butanoic acid c, e 1689 873 ++ 

28 Dodecanoic acid 1-methylethyl ester d 1822 1616 + 
 

a   The volatile compounds are listed in increasing RIs order on a polar column ZB-WAX. 
b  +: 1-10; ++: 10-50; +++: 50-100; ++++: 100-500. 
c The compound was confirmed by comparing with those mass spectra and RIs of authentic reference database of the 

institute. 
d The compound was identified by comparing its mass spectrum with commercial mass spectral databases and RIs on two 

different polarity columns with published data. 
e The compound was previously reported as a volatile component of yeast extract by Ames & Mac Leod (1985). 
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Figure 4. HRGC chromatogram of volatiles from sterilized SNS (ZB-WAX) 

 

 

 

 

Figure 5. HRGC chromatogram of volatiles from sterilized SNS medium (DB5) 

 

6.1.3.2. Comparison with those previous investigation on yeast extracts 

   As shown in Table 15, 10 volatiles match well with a previous investigation on the volatiles 

of a yeast extract (Ames, & Leod, 1985). At least 10 compounds in the SNS originate from 

yeast extract itself. Sulfide compounds and pyrazine volatiles in yeast extract were well 

described and discussed by Izzo and Ho (1991). The former were most likely produced by the 
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thermal degradation of methionene while the latter resulted from Strecker degradation and 

Maillard reaction.  

 

   Studies on the aroma extract dilution analysis and published data of odor threshold of 

volatiles may assess the contribution of each component to the flavor of medium. GC-O 

investigation revealed that 2-methyl-1-propanol, 2-methyl-propanoic acid, butanoic acid, 3-

methyl-butanoic acid, and phenylacetaldehyde resulted in the strongest odor impressions. 

Therefore, they were responsible for the flavor profile of sterilized SNS medium. Two of 

them, 3-methyl-butanoic acid and phenylacetaldehyde were also previously determined as the 

impact odorants of the dry yeast extract through aroma extract dilution analysis (Kotseridis, & 

Baumes, 2000). 

 

6.2. Volatile compounds from oak wood powders 

 

6.2.1. Introduction 

 

   Oak trees are the most popular natural host of many wild mushroom fungi. Numerous 

studies were carried out on the volatile compositions of oak wood, because oak wood is 

widely used to maturate various alcoholic beverages (Cadahía, de Simón, & Jalocha, 2003; 

Pisarnitsky, Klimov, & Brazhnikova, 2004). However, composition of oak wood depends on 

many factors, including the variety, climate, age, location, etc. For example, in wine industry, 

effects of oak-related volatile compounds on wine aroma were studied by many researchers 

(Gómez-Plaza, Pérez-Prieto, Fernández-Fernández, & López-Roca, 2004; Morales, Benitez, 

& Troncoso, 2004).  

 

   The objective of this study was the determination of volatile compounds of sterilized oak 

wood powders (OWP). The volatile compounds originating from OWP were eliminated or 

quantitatively deducted from the volatiles of surface cultures of F. hepatica using OWP as a 

substrate. 

   

6.2.2. Materials and methods (as in 5.2.) 

 

6.2.3. Results and discussion 
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   The volatile extract of the OWP analyzed by GC-FID (Figure 6 & 7) showed that further 

purification of the extract was required. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 6. HRGC chromatogram of volatiles from OWP (DB-WAX)  
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. HRGC chromatogram of volatiles from OWP (DB5)  
 
 
 
 
 

I.S. 



Appendix  53 

 
Table 16.  Elution Sequence of Compounds on Silica Gel-LC-Column (water content 4.5% (w/w)) 

 

Fraction Volume (mL) Solvent Polarity Eluate 

1 150  Pentane Apolar Ether, hydrocarbons 

2 150 Pentane/Ether 

(1:1.12) 

Moderate polar Alcohol, aldehyde, ketone, phenol, 

ester 

3 150  Ether Polar Acid, primary alcohol, lactone 

4 150  Methanol Highly polar Acid, lactone 

 

    After fractionation with silica gel column using solvents with different polarity (Table 16), 

the volatile compounds in the pentane eluate were branched long chain hydrocarbons. These 

hydrocarbons were non-natural compounds and originated from lubricating oil, which was 

commonly used in the timber workshop. The chromatograms of the other three eluates are 

shown as follow (Figure 8–10). 
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Figure 8. Fractionation of OWP extract: Pentane/Ether fractions 
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Figure 9. Fractionation of OWP extract: Ether fractions 
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Figure 10. Fractionation of OWP extract: Methanol fractions 

 

   Table 17 lists the compounds identified by GC-MS analysis, semiquantitative 

concentrations, as well as retention indices both on a polar and an apolar column. Altogether, 

48 volatile compounds were identified and quatified in the solvent extract of autoclaved 

OWP. These included 1 aldehyde, 4 hydrocarbons, 5 ketones, 8 alcohols, 11 esters, 14 acids, 

and 5 others. According to the quantification by internal standard, most of them were present 

at concentration of more than 100 µg/kg. The most abundant compound detected was acetic 

acid with more than 10 mg/kg. This is in agreement with previous reports (Balaban, & Uςar, 

2004; Fengel, & Wegener, 1984). 
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Table 17.  Major Volatile Compounds from Oak Wood Powder a 

 
Retention indices No. Compounds 

ZB-WAX DB5 
Approximate concentration 

(µg/kg) 
1 2-Pentanone d 990 <700 + 
2 1-Propanol d 1030 <700 + 
3 Acetic acid butyl ester d 1066 812 ++ 
4 Hexanal c 1067 786 +++ 
5 2-Methyl-1-propanol c 1081 <700 ++++ 
6 3-Pentanol d 1093 763 +++ 
7 Undecane c   1099 1102 +++ 
8 4-Methyl-3-penten-2-one d 1114 778 ++++ 
9 1-Butanol c 1132 <700 +++ 
10 1,1-Diethoxy-hexane d 1230 1085 + 
11 Acetic acid hexyl ester d 1259 1008 + 
12 Heptanoic acid methyl ester d 1273 1013 + 
13 6-Methyl-5-hepten-2-one c 1319 988 + 
14 4-Hydroxy-4-methyl-2-pentanone c 1338 811 +++ 
15 1-Hexanol d 1341 862 + 
16 Hexanoic acid 2-propenyl ester d 1360 1071 ++ 
17 2-Methyl-octanoic acid methyl ester d 1375 1154 +++ 
18 Acetic acid c 1454 <700 +++++++ 
19 4-Hepten-1-ol d 1487 870 +++++ 
20 Nonanoic acid ethyl ester c 1520 1285 +++ 
21 1,1-Diethoxy-nonane d 1522 1377 + 
22 Propanoic acid c 1543 <700 ++++ 
23 5,5-Diethoxy-2-pentanone d 1563 1134 + 
24 2-Methyl-propanoic acid c 1571 790 + 
25 1-Methyl-4-(1-methylethyl)-cyclohexanol d 1621 1162 +++ 
26 Butanoic acid c  1631 860 +++ 
27 Pentanoic acid c 1673 906 + 
28 α-Terpineol c 1676 1177 +++ 
29 Naphthalene d 1698 1160 +++ 
30 2-Methyl-naphthalene d 1809 1270 +++ 
31 Dodecanoic acid 1-methylethyl  ester d 1824 1620 +++ 
32 1-Methyl-naphthalene d  1844 1288 + 
33 Hexanoic acid c  1849 992 +++ 
34 Tetradecanoic acid 1-methylethyl  ester d 2026 1818 +++ 
35 Octanoic acid c 2062 1185 +++ 
36 Triacetin 2077 1350 +++ 
37 Nonanoic acid c 2169 1273 ++ 
38 β-Eudesmol d 2192 1633 ++++ 
39 Hexadecanoic acid ethyl ester d 2243 1984 +++ 
40 (Z)-9-Hexadecenoic acid ethyl ester c 2257 1954 +++ 
41 Decanoic aicd c 2275 1376 ++ 
42 (Z, Z)-Octadecadienoic acid methyl ester c 2474 2079 +++ 
43 Dodecanoic acid c 2487 1568 +++ 
44 Tetradecanoic acid c  2710 1769 +++ 
45 Hexadecanoic acid c >2800 1977 +++++ 
46 3,4,5-Trimethoxy-phenol d >2800 1599 +++++ 
47 Octadecanoic acid c  >2800 2157 +++ 
48 (Z, Z)-9,12-octadecadienoic acid c >2800 2140 ++++++ 
 

a   The volatile compounds are listed in increasing RIs order on a polar column ZB-WAX. 
b  +: 10-50; ++: 50-100; +++: 100-500; ++++: 500-1,000; +++++: 1,000-5,000; ++++++: 5,000-10,000; +++++++:10,000-
15,000. 
c The compound was confirmed by comparing with those mass spectra and RIs of authentic reference database of this 
institute.. 
d The compound was identified by comparing mass spectrum with commercial mass spectral databases and RIs on two 
different polarity columns with published data. 
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6.3. Major volatile compounds from the aged fruiting bodies of wild P. 

sulfureus 

 
Table 18. Major Volatile Compounds from Aged Fruiting Bodies of Polyporus sulfureus a 

 
Retention indices No. Compounds 

ZB-WAX DB5 
Approximate concentrationb 

(µg/kg) 
1 Butanoic acid methyl ester d 992 710 +++++ 
2 Decane d 1000 1001 ++++++ 
3 2-Methylbutanoic acid methyl ester c 1003 770 +++++ 
4 3-Methylbutanoic acid methyl ester c 1010 766 ++++ 
5 3,7-Dimethylnonane c 1060 1074 +++++ 
6 Hexanal d 1072 786 +++ 
7 2-Methyl-1-propanol d 1083 <700 +++++ 
8 Undecane d 1092 1100 +++++ 
9 1-Butanol d 1136 <700 +++ 
10 Limonene d 1177 1023 +++ 
11 3-Methyl-1-butanold 1195 732 +++ 
12 1-Dodecene c 1234 1389 +++ 
13 Octanal d 1273 985 ++ 
14 Nonanal d 1375 1088 ++++ 
15 Methyl acetoacetate c 1396 801 ++++ 
16 1-Octen-3-ol d 1440 972 ++ 
17 Benzaldehyde d 1494 935 + 
18 (E)-2-Nonenal c 1509 1139 + 
19 1-Octanol d 1546 1066 ++ 
20 Propanoic acid d 1552 <700 +++ 
21 2-Methylpropanoic acid c 1585 790 ++++ 
22 Butanoic acid d 1647 860 ++++ 
23 α-Terpineol d 1679 1180 + 
24 3-Methylbutanoic acid c 1685 878 +++++ 
25 Hexanoic acid d 1865 990 +++ 
26 Phenylethanol d 1892 1086 ++++ 
27 1-Dodecanol c 1959 1466 +++ 
28 Tetradecanoic acid 1-methylethyl ester c  2027 1818 ++++ 
29 Octanoic acid d 2070 1185 ++++ 
30 Pentadecanoic acid methyl ester c 2102 1812 +++ 
31 Nonanoic acid d 2182 1273 ++++ 
32 Hexadecanoic acid methyl ester d 2202 1913 +++++ 
33 (Z)-9-Hexadecenoic acid methyl ester d 2227 1898 ++++ 
34 Octadecanoic acid methyl ester d 2409 2110 +++ 
35 (Z)-9-Octadecenoic acid methyl ester d 2429 2085 +++++ 
36 (Z, Z)-9, 12-Octadecadienoic acid methyl ester d 2475 2077 +++++ 
37 Dodecanoic acid d 2498 1569 +++ 
38 Phenylacetic acid d 2592 1251 +++ 
39 Hexadecanoic acid d >2800 1962 +++++++ 
40 Heptadecanoic acid c >2800 1912 ++++ 
41 Octadecanoic acid d >2800 2160 +++++ 
42 (Z, Z)-9, 12-Octadecadienoic acid d >2800 2128 +++++++ 
 

a The volatile compounds are listed in an increasing RIs order on a polar column ZB-WAX.   
b +: 10-50; ++: 50-100; +++: 100-500; ++++: 500-1,000; +++++: 1,000-5,000; ++++++: 5,000-10,000; +++++++: 10,000-
15,000. 
c The compound was identified by comparing mass spectrum with commercial mass spectral databases and RIs on two 
different polarity columns with published data. 
d 

The compound was confirmed by comparing with those mass spectra and RIs of authentic reference database of this 
institute. 
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6.4. HRGC chromatograms of volatile extracts described in the main body 

of this dissertation 

 

6.4.1. HRGC chromatograms of volatile extract from the young fruiting bodies of wild 

P. sulfureus 
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Figure 11. HRGC–MS chromatogram of the volatile extract from the young fruiting bodies of wild P. sulfureus 

(ZB-WAX)  

 

Figure 12. HRGC–MS chromatogram of the volatile extract from the young fruiting bodies of wild P. sulfureus 

(DB5)  
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6.4.2. HRGC chromatograms of volatile extract from the aged fruiting bodies of wild P. 

sulfureus 
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Figure 13. HRGC–MS chromatogram of the volatile extract from the aged fruiting bodies of wild P. sulfureus 

(ZB-WAX)  

 

 

Figure 14. HRGC–MS chromatogram of the volatile extract from the aged fruiting bodies of wild P. sulfureus  

(DB5)  
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6.4.3. HRGC chromatograms of volatile extract of the young fruiting bodies of wild L. 

lepideus 
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Figure 15. HRGC–MS chromatogram of the volatile extract from the young fruiting bodies of wild L. lepideus  

(ZB-WAX)  

 

 

 

Figure 16. HRGC–MS chromatogram of the volatile extract from the young fruiting bodies of wild L. lepideus 

(DB5)  
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6.4.4. HRGC chromatograms of volatile extract from the fresh fruiting bodies of wild F. 

hepatica 
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Figure 17. HRGC–MS chromatogram of the volatile extract from the fresh fruiting bodies of wild F. hepatica 

(ZB-WAX)  

 

Figure 18. HRGC–MS chromatogram of the volatile extract from the young fruiting bodies of wild L. lepideus 

(DB5)  
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6.4.5. HRGC chromatograms of volatile extract from liquid cultures of F. hepatica 

growing in SNS medium 
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Figure 19. HRGC–MS chromatogram of the volatile extract from the submerged liquid cultures of F. hepatica 

(ZB-WAX)  

 

 

Figure 20. HRGC–MS chromatogram of the volatile extract from the submerged liquid cultures of F. hepatica  

(DB5)  
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6.4.6. HRGC chromatograms of volatile extract of surface cultures of F. hepatica 

growing on OWP 
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Figure 21. HRGC–MS chromatogram of the volatile extract from surface cultures of F. hepatica on OWP  

(ZB-WAX ) 

 

 

Figure 22. HRGC–MS chromatogram of the volatile extract from surface cultures of F. hepatica on OWP  

(DB5)  
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6.5. Mass spectra of several volatile compounds 
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Figure 23. Mass spectrum of proposed 2-vinyl malonic acid methyl propyl ester  
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Figure 24. Mass spectrum of bisabolol oxide B  
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Figure 25. Mass spectrum of (E)-2-methyl-2-butenoic acid (tiglic acid)  

 
 
 

6.6. Calculation of relative retention indices (RIs) 

 

   Retention indices (RIs), also commonly called Kovats indices, were calculated using the 

following formula based on the formula proposed by Van Den Dool and Kratz (1963). 

 

                                                                       (log (tR(i) –td)– log (tR(N)–td)) 

                       RI (i) = 100 · N + 100 · n  · 

                                                                      (log (tR(N+n) –td) – log(tR(N)–td))  

 

 

Where:  RI (i) is the retention index of compound i 

                N is the number of carbon atoms in alkane N 

                n is the number difference of carbon atoms between alkane (N+n) and   

                alkane N  

               tR(i) is the retention time of compound i 

               tR(N) is the retention time of alkane N 

               tR(N+n) is the retention time of alkane (N+n) 

               td is the dead time determined by butane 
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6.7. Proof of contamination of submerged liquid cultures  

 

   To be sure that the submerged liquid cultures submitted to extraction were not contaminated 

during the aerobic cultivation, they were controlled using a light microscope and inoculating 

on agar plates. One mL homogenized liquid culture was diluted in 100 mL sterilized 

physiological saline solution, and then 200 µL diluted culture was well-distributed and 

incubated on SNS-agar plate at 25 °C.  

 

6.8. Enzymatic effects on flavor of the fruiting bodies of F. hepatica 
 
   In order to enhance enzyme catalyzed flavor generation after cell disruption, according to 

the literature (Venkateshwarlu, Chandravadana, & Tewari, 1999; Zawirska-Wojtasiak, 2004), 

the cut pieces of the fruiting bodies were stored for 15 min prior to enzyme inactivation with 

methanol (Figure 26: sample SM1). However, F. hepatica showed marginal changes in the 

flavor profile (Figure 26: sample SM2). Based on investigation with GC-MS and GC-O, none 

of these treatments resulted in any significant changes on volatile quality and quantity. 
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Figure 26. Endogenous enzymatic effects on volatile compositions of fruiting bodies of F. hepatic
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