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Kurzfassung 

 
 
 

Unter Ausnutzung von Nanofasern aus einem Tetraamminplatin- oder 

Hexaammincobalt-salz als strukturdirigierende Strukturen werden SiO2 und TiO2 Nanoröhren 

in einem Sol-Gel-Prozess hergestellt. Zwei Routen für das Wachstum der Nanoröhren werden 

in dieser Untersuchung angewendet.  

In einer generellen Wachstumsroute, d. h. durch Bildung der [Pt(NH3)4](HCO3)2 

Nanofasern und anschließendes Beschichtung und Kalzination, werden platinhaltige SiO2 

Nanoröhren mit Größen im Bereich von 100 nm zum 2 µm (Durchmesser) und bis zu 10 µm 

länge erhalten. Der innere Querschnitt der Pt-haltigen Nanoröhren ist rechteckig. Die Pt 

Teilchen bilden sich während der Kalzination bei 500 °C innerhalb der Röhre und in den 

porösen Wanden der Röhren. Nanodrähte aus Pt werden innerhalb von SiO2 Nanoröhren mit 

Durchmessern unter 50 nm beobachtet. Die Synthese von Pt-haltigen TiO2 Nanoröhren 

(300 - 400 nm im Durchmesser) ist ebenfalls mit dieser generellen Wachstumsroute möglich. 

Aufgrund der hoch-dispergierten Pt-Nanoteilchen innerhalb der TiO2-Wande kristallisiert das 

amorphe TiO2-Material bei der Kalzination bei 500 °C direkt ohne die Bildung von Anatase 

zum Rutile. Mit Nanofasern von [Co(NH3)6](HCO3)(CO3)·2H2O als Templat werden 

uniforme SiO2 Nanoröhren (100 - 200 nm im Durchmesser), die mit Ketten von Co 

Nanopartikeln gefüllt sind, erhalten. Der Querschnitt der Co-haltige Nanoröhren ist 

rhomboedrisch. Die Co-Nanopartikeln sind  in Nanoröhren, deren innere Durchmesser kleiner 

als 100 nm sind, zu einzelnen Ketten arrangiert. 

Bei der kontrollierten Wachstumroute wird das Metallalkoid als Schutzagenz verwendet, 

um die Aggregation zwischen den einzelnen [Pt(NH3)4](HCO3)2 Nanofasern zu vermeiden. 

Mit Tetraethylorthosilikat als Schutzschicht werden gleichmäßig dünne (100 - 200 nm) und 

ultralange (bis zu 40 µm) Pt-haltige SiO2 Nanoröhren erhalten. Mit Tetrabutylorthotitanat 

bilden sich Pt-haltige TiO2 Nanoröhren, die dünner als 100 nm und länger als 6 µm sind. Für 

diese ist zu erwarten, dass sie elektrische Leitfähigkeitsmessung besser kontaktiert werden 

können. 

Die Elektronenmikroskopie und die Röntgenbeugung sind die hauptsächlichen 

Werkzeuge, welche für die Probencharakterisierung in dieser Arbeit eingesetzt wurden. 

 
Stichwörter: Oxid-Nanoröhren, Templat, Nanofasern, Sol-gel Prozess 

 



 

Abstract 
 

Using nanofibers of aminoplatinum or aminocobalt compound as templates, SiO2 and 

TiO2 nanotubes have been prepared in a sol-gel process. Two growth routes were employed in 

this study.  

With the general growth route, i.e. at first the formation of [Pt(NH3)4](HCO3)2 nanofibers 

and the subsequent coating and calcination processes, Pt-containing SiO2 nanotubes in the 

range of 100 nm – 2 µm in diameter and up to 10 µm in length can be obtained. The 

cross-sections of the Pt-containing nanotubes are rectangular. The Pt particles formed during 

the calcination at 500 °C are dispersed within the tube and inside the tube wall. Continuous Pt 

nanowires are observed inside SiO2 nanotubes with diameters below 50 nm. The synthesis of 

Pt-containing TiO2 nanotubes (300 – 400 nm in diameter) in a high yield have been realized 

with the general growth route. With the highly dispersed Pt clusters inside the TiO2 wall, the 

amorphous TiO2 crystallized into rutile when calcined at 500 °C without the formation of 

anatase. Using nanofibers of [Co(NH3)6](HCO3)(CO3)·2H2O as templates, uniform SiO2 

nanotubes (100 – 200 nm in diameter) filled with chains of Co nanoparticles were obtained. 

The cross-sections of the Co-containing nanotubes are rhombohedral. Co nanoparticles are 

arranged into single chains in nanotubes with inner diameters less than 100 nm. 

The controlled growth route was based on the employment of metal alkoxides as capping 

agents in order to suppress the aggregations of intermediate nanofibers of [Pt(NH3)4](HCO3)2. 

With tetraethyl orthosilicate as the capping agent, uniformly thick (100 - 200 nm) and 

ultralong (up to 40 µm) Pt-containing SiO2 nanotubes were achieved. By employing tetrabutyl 

orthotitanate as the capping agent, Pt-containing TiO2 nanotubes with diameters below 100 

nm and lengths above 6 µm have been prepared, which might be better contacted with 

electrodes for electronic conductivity measurement. 

Electron microscopy and X-ray diffraction are main tools for sample characterisation in 

this work. 
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1 Introduction 

The discovery of carbon nanotubes (CNT) by Iijima in 1991 [1] in conjunction with outstanding 

physical and chemical properties of this kind of novel materials has aroused enormous interests in 

the scientific community. Up to now immense efforts have been undertaken worldwide to 

optimize the synthesis, to characterize the structure, and to determine the properties of the CNTs. 

In addition to multi-walled CNTs, it was also possible to produce single-walled CNTs consisting 

of only one concentric graphite-type layer by co-vaporizing carbon and transition metals [2-3]. 

Various potential applications of CNTs have been proposed, for example, as gas detectors [4-5], 

as field emitters [6-8], as tips for scanning-probe microscopy [9], and as quantum wires [10]. 

Depending on the method of preparation which controls the degree of graphitization, the helicity 

and the diameter, CNTs may behave as metallic, insulating or semiconducting nanowires. In 

addition measurements of Young’s modulus show that single nanotubes are stiffer than 

commercial carbon fibres [11]. 

Spurred by the wide and highly promising application potentials of CNTs, tubular variants 

of other materials, also of great interests to scientists, have been created in a variety of chemical 

compositions and by different manners. Non-carbon nanotubes (NTs) exist from metals, like Au 

[12] and Te [13], nitrides [14], sulfides [15] and a number of metal oxides, like V2O5, SiO2, TiO2, 

ZrO2, and MgO. An overview on oxide NTs was recently published by Patzke et al. [16].  

SiO2 NTs have attracted particular attention due to the widespread applications of SiO2 

materials in many fields. Above all, it is well known that SiO2 materials are extensively 

employed to support metal catalysts, e.g. Co/SiO2 catalyst in Fischer-Tropsch synthesis [17-20]. 

The increased surface area of SiO2 materials with a tubular structure in the nanometer regime 

could lead to unpredictable improvements regarding the catalytic effects. Meanwhile 

biochemically modified SiO2 nanoparticles have shown excellent enzymatic activities and 

detection capacities due to their large surface areas for the enzyme immobilization [21]. In 

addition, strong photoluminescence was observed in SiO2 NTs, hence applications as light 
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emitters in optical nanodevices were suggested [22].  

SiO2 NTs have been prepared mainly via a template method combined with the sol-gel 

technique. Due to the ability of sols to condensate on preformed morphologies, the generated 

SiO2 NTs represent replicas of the template structures. For example, silica NTs with tube 

diameter below 10 nm were created with templates like cylindrical micelles of alkyl ammonium 

salts [23] or self-assembled fibrillar peptides [24]. In the dimension of 30 - 40 nm, uniform silver 

nanowires serving as template were homogeneously coated with silica shells [25-26]. Recently, it 

was proved that a fibrous metal oxide, V3O7·H2O, could also act as the template to get silica NTs 

of 50 - 300 nm in diameter [27]. Moreover, the inner walls of a nanoporous anodic aluminum 

oxide membrane were explored to act as the template to generate pure SiO2 NTs with adjustable 

dimensions [22,28-29]. For these above-mentioned methods the templates were necessarily 

removed to generate hollow and pure silica structures, either by chemical dissolution of the 

inorganic templates [25-29], or by a simple calcination of the organic ones [23-24]. 

Among the metal oxides used for the formation of hollow fibers, semiconducting TiO2 is 

prevalent due to the wealth of its application, e.g., for catalysis [30-32], photocatalysis [33-35], as 

dye-sensitized solar cells [36], gas-sensors [37]. The nanostructure of a material appears to play a 

critical role in determining physical properties. For example, compared with a thin film electrode 

made of titania nanoparticles, a TiO2 nanowire electrode possesses a twofold higher photocurrent 

density [38]. The formation of such hollow TiO2 fibers leads to increased surface areas compared 

to filled fibers, and hence enhances the effectiveness of the material in a number of applications. 

For example, a film of TiO2 nanotubes (22 nm, inner diameter) prepared by anodization exhibits 

an ultrahigh sensitivity (104, conductivity change) to hydrogen (1000 ppm) [39,40].  

TiO2 NTs can be prepared with varying structures and sizes following different synthesis 

routes. The most popular synthesis route involves usually the assistance of anodized aluminum 

oxide (AAO) membranes, either by directly synthesis, i.e. preparing TiO2 NTs with different 

titanium precursors in sol-gel process [41-43] or by indirect synthesis, i.e. using a polymer mold 

as intermediate material and depositing TiO2 electrochemically [44]. The TiO2 NTs prepared in 

this way possess wall thicknesses in the range of 30-50 nm, while their outer diameter depends 
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on the pore size of the AAO membrane, which is generally in the range of 70-200 nm. Special 

templates, other than AAO, have been employed in combination with sol-gel methods, like 

organogel (dibenzo-30-crown-10-appended cholesterol gelator) [45], poly(L-lactide) fibers [46]. 

As proved several times, the presence of a template is not a prerequisite for the synthesis of TiO2 

NTs. After being treated with NaOH and the subsequent washing with de-ionized water, TiO2 

with anatase or rutile structure was converted to a tubular structure with multiple shells, 

characterizing a much smaller size: 9 - 10 nm in diameter and 50 - 200 nm in length [47-49]. 

Another important synthesis route is the anodic oxidation of titanium in analogy to the way to 

prepare an AAO membrane [39]. In these cases, the TiO2 NTs up to some 10 µm long and 

exhibiting outer diameters of 100 - 200 nm have been formed while the actual wall thickness 

depends on the synthesis conditions applied. 

Another fascinating aspect of NTs are the interior cavities, which could be used to 

incorporate metals for applications, e.g. in catalysis, as nanosensors, in separation. The 

procedures to fill nanotubes may be classified in three groups: (a) filling of pre-synthesized 

nanotubes by a wet-chemical method, which leads selectively to a decoration of the internal 

surface [50], (b) the physical method, where capillarity forces induce the filling of a molten 

material [51-52], and (c) evaporation by arc discharge in an inert atmosphere [53]. In addition, it 

is noteworthy to mention that Ga-filled MgO single crystalline NT was prepared by a liquid 

metal-assisted route and was suggested for application as wide-range nanothermometer [54].  

Several years ago, an alternative metal-salt-nanofiber template method was firstly 

established in our group to form SiO2 and TiO2 NTs [55-58]. One typical synthetic procedure is 

drawn in Scheme 1.1. At first template nanofibers (NFs) of amino-metal compounds, e.g. 

[Pt(NH3)4](HCO3)2, are prepared by solvent modification. Afterwards those NFs are coated with 

tetraethyl orthosilicate (TEOS). The subsequent calcination at 500 °C reduces the metal ions to 

metal clusters, which enter the porous walls of the NTs. In case of a Pt salt to TEOS or tetrabutyl 

orthotitanate (TBOT) ratio of 1:5, which is the optimum to obtain exclusively NTs, a Pt content 

of 40 wt.% in the tubes is obtained. In general, the obtained NTs mostly show close ends, 

although in Scheme 1.1 an open NT was drawn for clarity. 
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500 °C, 5 h   

e 1.1 Illustration of the synthetic procedure of metal-filled SiO2 NTs by use of 
alt-NF template method 

mpared with other studies mentioned above, this novel metal-salt-NF template method is 

geous since it realizes the filling of metals as well as the fabrication of NTs 

neously in an elegant and sufficient way. The easily achievable high amount of metal 

can provide many potential applications to the oxide NTs. For the thus-synthesized silica 

s adsorption and catalytic properties different from those of ordinarily supported Pt-SiO2 

ts prepared by aqueous impregnation method [59] are expected, since a large amount of Pt 

s are free-standing inside the tubes and, thus, more accessible to the reactants. For 

nthesized titania NTs [55] the doping by Pt metals could improve the conductivity of 

nductor titania, rendering this kind of NTs potential application as nanoelectronics. 

, it is well known that Pt-doped TiO2 often shows a high photocatalytic activity for 

 oxidation processes [60-63]. It is suggested that, on the one hand, platinum deposited on 

uld trap photo-generated electrons and subsequently increase the photo-induced electron 

 rate at the interface. Furthermore, the Pt particles could also provide catalytic sites where 

istic pathways different from those on naked TiO2 are enabled [60,61,63]. A promising 

tion with respect to anisotropic electric conductivity is the formation of continuous Pt 

res inside the thus-synthesized silica NTs, which mostly is found in very thin NTs [64]. 

ly, this template method was also applied to synthesize alumina and silica-alumina NTs 

ith Pt particles, the latter may exhibit characteristic acidic properties [65]. 
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However, based on this metal-salt-NF template method, only Pt-filled SiO2 NTs have been 

repetitively produced, which still show a broad size distribution of 0.1 - 2 µm in diameter. For 

preparation of TiO2 NTs, it was difficult to repeat even the only one successful batch, the 

productivity of which was actually very low.  

In this dissertation, great efforts were made to prepare SiO2 and TiO2 NTs with 

monodispersity and high aspect ratio by this template method. In addition to the Pt salt, i.e. 

[Pt(NH3)4](HCO3)2, further metal salts were explored for one-dimensional growth and to act as 

templates for the NT formation. Characterizations of the samples were made mainly by Scanning 

Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction 

(XRD), Thermogravimetric Analysis (TGA) and Infrared (IR) spectroscopy. 
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2 Crystal growth and sol-gel process 

This chapter is divided into two parts, (i) fundamentals of crystallography and (ii) sol-gel process 

respectively. 

2.1 Crystallography 

At first several terms in the field of crystallography are introduced, including anisotropy, 

morphology and habit. Then crystal growth is described in detail in combination with growth 

rates of different types of faces. At last defects as an important part of crystallography are simply 

described, especially screw dislocations. 

2.1.1 Anisotropy 

A crystal is a three-dimensional periodic ordering of atoms, ions or molecules. There are seven 

crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal and cubic. If 

different values of a physical property are observed in different directions, this phenomenon is 

called anisotropy [1]. Except the isotropic cubic crystals, anisotropy is characteristic of all other 

crystal systems.  

2.1.2 Morphology and habit 

Morphology is the study of the external boundary of a crystal, built up of crystal faces and edges 

[1]. The abundance of characteristic faces and, at least in ideal circumstances, the regular 

geometric forms (morphology) displayed externally by crystals result from the fact that crystals 

internally possess a crystal structure. The relationship between crystal structure and morphology 

may be summarized as: a) Every crystal face lies parallel to a set of lattice planes; parallel crystal 

faces correspond to the same set of planes; b) Every crystal edge is parallel to a set of lattice 

lines.  
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Figure 2.1 The three basic habits: a) equant, b) planar or tabular, c) prismatic or acicular with the 
relative growth rates in different directions shown by arrows [1]. 

 

In morphology, the term “habit” is especially used to describe the relative sizes of the faces 

of a crystal. There are three fundamental types of habit: equant, planar or tabular, and prismatic or 

acicular (needle-shaped) as shown in Figure 2.1. The three basic types of crystal habit may be 

understood in terms of the relative growth rates of the prism (z direction) and pinacoid faces (x or 

y direction).  

The morphology of a crystal can be interpreted from a thermodynamic point of view. The 

work spent to create reversibly and isothermally a unit area of a new surface is called specific 

surface free energy [2]. The more closely packed the given crystal face, the smaller is the density 

of the unsaturated bonds and thus its specific surface free energy. When considering the 

equilibrium of a crystal with its ambient phase (vapor, solution or melt), there exists obviously a 

morphology which is the most favorable in the sense that the surface energy of such a crystal is 

the minimal one at the given crystal volume. 

2.1.3 Crystal formation 

It is easier to understand the morphology of a crystal if the formation and growth of crystals are 

considered. Crystals grow from supersaturated solutions, supercooled melts and vapors. The 
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formation of a crystal may be considered in two steps. 

2.1.3.1 Nucleation 

Nucleation is the congregation of a few atoms to form a three-dimensional periodic array, called 

nucleus, which already shows faces, although it is only a few unit cells in size [1]. 

The classical theory of nucleation is also called the fluctuation theory of nucleation. In a 

homogeneous molecular system, there are two kinds of local density deviations from the normal 

state, called homophase and heterophase fluctuations [2]. Homophase fluctuations reflect the 

density deviations in the given phase. Due to the small sizes of clusters formed in this kind of 

density deviations, the chemical potential of the new phase is larger than that of the bulk phase, 

so the clusters are “lifeless”. Instead, heterophase fluctuations would lead to a visible transition to 

another phase. For these fluctuations to happen, the sizes of the clusters must exceed a critical 

value. In other words, the system should overcome an activation barrier whose height is given by 

the work of formation of the critical nuclei. 

2.1.3.2 Growth 

The process of growth of crystals takes place at the crystal-ambient phase interface where the 

latter can be a vapor, melt or solution. Obviously, the equilibrium structure of this interface, or in 

other words its roughness, determines the crystal shape on one hand and the mechanism of 

growth and in turn its rate of growth on the other [1].  

The growth of the nucleus, and then of the crystal, is characterized by a parallel 

displacement of its faces, called the rate of crystal growth [1]. Generally, the crystal faces are 

divided into three groups: flat (F), stepped (S) and kinked (K) surfaces depending on whether 

they are parallel to at least two densest rows of atoms, one densest row of atoms or are not 

parallel to any densest rows of atoms at all, respectively [2]. As shown in Figure 2.2, typical 

examples of F, S and K faces are in turn the (100), (110) and (111) faces of NaCl crystal. For a 

kinked face that intersects all densest rows of atoms and offers kink sites with much higher 

density than flat and stepped faces, the number of the unsaturated bonds reaches its highest value 

and so is the specific surface free energy of the face. Therefore, the kinked face will grow faster 
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than the latter. Then at a supersaturation state small enough to prevent 2D nucleation, the rate of 

growth in a direction normal to the particular faces will be highest for the kinked faces, smaller 

for the stepped faces and zero for the flat faces. It follows that the kinked faces should disappear 

first, followed by the stepped faces and finally the crystal will be enclosed during growth by the 

flat faces only and will cease to grow at all at a supersaturation small enough.  

In conclusion, the actual crystal faces which eventually enclose the crystal depend on the 

ratios of the growth rates of the various faces, the slower-growing ones becoming more 

prominent than those that grow more rapidly. Those faces, which do eventually develop, 

generally have low Miller indices (flat faces) and are often densely populated with atoms [1]. 

In addition, it should also be noted that the rate of crystal growth is a characteristic, 

anisotropic property of a crystal, affected by temperature, pressure, and degree of saturation of 

the solution [1]. 

 

 
 

Figure 2.2 A schematic representation of a NaCl crystal illustrating F, S and K faces. The long 
arrows give the directions of the densest rows of atoms or the directions of the first neighbor 
bonds [2].  

2.1.4 Defects 

According to their dimensionality, individual defects can be categorized to point, line and plane 
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defects. The type of line defect forms along a line, the line of dislocation. One type of line defects 

is called screw dislocation. In the region of the line of dislocation, the crystal does not consist of 

neatly stacked lattice planes, but of an arrangement of atoms that repeat through the structure in a 

helical manner (screw dislocation).  

Screw dislocations play an important role in crystal growth. The deposition of atoms on a 

step of the helix is always energetically favorable, and these steps persist during the growth of the 

crystal, permanently. As shown in Figure 2.3, a growth hillock is formed. Whiskers or ultrathin 

needle crystals often form with the screw dislocation parallel to the needle axis. They display 

remarkable mechanical properties. For example, the breaking strength of a NaCl-whisker of 1 µm 

diameter is as high as 110 kPmm-2. 

 

 

(a) (b) 

    
(c)                             (d) 

Figure 2.3 Consecutive stages from (a) to (d) of the formation of a growth pyramid around an 
emergency point of a single screw dislocation. The side faces of such pyramids represent in fact 
vicinal surfaces. Their slopes are proportional to the supersaturation [2]. 
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At the end of the introduction of crystallography, several points can be emphasized here that 

the growth of needle-shaped crystal could be explained either by the minimum surface free 

energy of crystal faces from the thermodynamic view, or by the relative rate of growth of 

different crystal faces from the kinetics. The amino-metallic compounds employed as templates 

for the growth of nanotubes must have a habit to grow into needles with a thickness in the 

nanometer regime. In addition, screw dislocation should greatly contribute to the 

one-dimensional growth of the templates that were used in this study. 

2.2 Sol-gel process 

Sol-gel derived materials may be advantageous over materials by other preparation methods. For 

the preparation of catalysts, for example, they offer a unique means of producing high surface 

area materials that are otherwise unattainable from conventional ceramic processing methods at 

high temperature [3,4]. 

In sections 2.2.1 to 2.2.3, a general overview about sol-gel process is given by introducing 

the sol-gel precursors, the reactions of precursors, and the influences of different reaction 

conditions. Afterwards, two important aspects in the sol-gel chemistry, also relevant to the 

present work, are covered, including the stability of sols in section 2.2.4 and the production of 

SiO2 spheres in section 2.2.5. At last, section 2.2.6 is especially dedicated to the sol-gel process 

of transition metal precursors, which is important for the synthesis of TiO2 nanotubes.  

2.2.1 Sol-gel precursors 

Metal alkoxides, M(OR)x, are popular precursors in the sol-gel process. The most thoroughly 

studied example is tetraethyl orthosilicate (TEOS), Si(OC2H5)4, which was also employed as the 

precursor of SiO2 in this study. The sol-gel process for the synthesis of metal oxides from metal 

alkoxide precursors is composed of five stages: precursor reaction solution, sol or gel formation, 

aging, drying and sintering. The first step in the process means hydrolysis and condensation of 

precursors.  
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The ligands or groups bound to the metal will change the reactivity of the species during the 

hydrolysis and condensation. The general trend for the hydrolysis of metal alkoxides is that larger 

and more extensively branched R groups give slower hydrolysis (or condensation) rates [5]. 

Based on this reason, tetrabutyl orthotitanate (TBOT), Ti(OBu)4, was used as the precursor of 

TiO2 in this study, instead of Ti(OEt)4.  

2.2.2 Hydrolysis and condensation 

The hydrolysis of metal alkoxides occurs by the nucleophilic attack of the oxygen in a water 

molecule on the M atom in both acid- and base-catalyzed systems [5]: 

M(OR)x + H2O       HO-M(OR)x-1 + ROH.         (2.1) 

Depending on the amount of water and the catalyst present, hydrolysis may go to 

completion, 

M(OR)x + 4 H2O       M(OH)x + 4 ROH      (2.2) 

or stop while the metal is only partially hydrolyzed, M(OR)4-n(OH)n. 

Two hydrolyzed monomers can link together to form a dimer in a condensation reaction 

eliminating a water molecule, 

(OR)x-1M-OH + HO-M(OR)x-1        (OR)x-1M-O-M(OR)x-1 + H2O  (2.3) 

or one hydrolyzed monomer can react with an alkoxide group from another monomer eliminating 

an alcohol, 

(OR)x-1M-OR + HO-M(OR)x-1        (OR)x-1M-O-M(OR)x-1 + ROH.  (2.4) 

After a dimer is formed, it hydrolyzes more easily than the monomer and thus the rate of 

condensation between the dimer and monomer is faster than the condensation between monomers. 

Hence, the growth of these materials occurs preferentially by the addition of monomers to 

oligomers, 

(RO)x-1M-O-M(OR)x-1     (RO)x-2M-(O-M(OR)x-1)2          M-(O-M(OR)x-1)x. (2.5) 

In this manner a three-dimensional network of –M-O-M- is formed, with the degree of 

polymerization and rate of growth controlled by reaction conditions (section 2.2.3). 

In our study, M = Ti or Si, x = 4 and R = -CH2CH2CH2CH3 for Ti, or –CH2CH3 for Si.  
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2.2.3 Influence of reaction conditions 

The rates of hydrolysis and condensation of metal alkoxides in the sol-gel process are influenced 

by a range of reaction conditions, including pH value, temperature, water/alkoxide ratio and 

solvent. 

2.2.3.1 pH value 

Above pH 7, condensation occurs preferentially between weakly acidic species that tend to be 

protonated (monomers) and strongly acidic species that are deprotonated (clusters). Therefore 

growth occurs primarily by monomer-cluster aggregation. The acidity of a silanol depends on the 

other substituents on the silicon atom. When basic OR and OH are replaced with OSi, the 

reduced electron density on Si increases the acidity of the protons on the remaining silanols [6].  

    Since dissolution and redistribution reactions provide a source of monomers required for 

reaction-limited monomer-cluster growth, the polymerization process is equivalent to nucleation 

and growth, and leads to compact and nonfractal near-equilibrium structures [5]. This process is 

also called Ostwald ripening, i.e. particles grow by the dissolution of smaller particles and 

deposition of soluble silica on larger particles. 

Below pH 7, the rate of hydrolysis increases and the rates of condensation and dissolution 

decrease. The predominant growth mechanism changes from monomer-cluster to cluster-cluster 

with decreasing pH and increasing time of reaction. Consequently, weakly branched structures 

predominate in the final particles. 

In this study, the sol-gel processes were carried out under basic conditions (pH = 8 - 9) so 

that the basic aminometallic compounds were stable. Therefore, the growth of particles could 

follow the rules of Ostwald ripening. 

2.2.3.2 Temperature 

When temperature increases, both the rates of hydrolysis and condensation increase, leading to a 

decrease of the gelation time. In addition, due to the greater solubility of silica at higher 

temperatures, larger sizes of particles form especially during the Oswald ripening process above 

pH 7, whereby particles grow in size and decrease in their number since highly soluble small 

particles dissolve and reprecipitate on larger, less soluble nuclei [5]. 
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    For the synthesis of TiO2 NTs, temperature must be drastically reduced in order to retard the 

rates of hydrolysis and condensation of TBOT, while it is not critical for TEOS due to its much 

slower rates. The comparison between the reaction rates of TEOS and TBOT will be further 

elaborated in section 2.2.6. 

2.2.3.3 Water/alkoxide ratio 

Increasing the value of water/alkoxide ratio r causes an increase in the hydrolysis and dissolution 

rates, both of which promote the formation of more compact structures. There is also a general 

trend: acid-catalyzed hydrolysis with low H2O:Si ratios (< 4) produces weakly branched 

“polymeric” sols, whereas base-catalyzed hydrolysis with a large r (> 20) produces highly 

condensed “particulate” sols. Intermediate conditions produce structures intermediate to these 

extremes [5]. 

In the designed base-catalyzed reaction system of this study, the water/alkoxide ratio was 

rather high (> 100), therefore, highly condensed sols were produced. 

2.2.3.4 Solvent 

In the sol-gel process solvents are added traditionally to prevent liquid-liquid phase separation 

between water and the metal alkoxide at the initial stages of the hydrolysis reaction. In addition, 

by controlling the concentrations of silicate and water, solvents can also influence the gelation 

kinetics.  

Solvents can be classified as polar or nonpolar and as protic or aprotic according to their 

solvating power. The nucleophilicity of anion and electrophilicity of cation can be influenced by 

the solvating power of solvents. For example, protic solvent molecules that form hydrogen bonds 

with hydroxyl ions at base-catalyzed conditions reduce the catalytic activity and, consequently, 

retard both hydrolysis and condensation. Moreover, polar solvents (e.g. water or alcohol) are 

normally used to solvate polar silicate species used in the sol-gel process [5].  

Being a protic and polar solvent, ethanol is chosen as the solvent for our reaction system. 

2.2.4 Stability of sols 

The stability and flocculation of sols is the most extensively studied aspect of colloidal chemistry. 
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The flocculation of dispersions is a consequence of attractive forces holding particles together 

when they collide. If the particles repel each other sufficiently and if they are small enough, they 

bounce apart on collision, and the dispersion is stable. 

An outstanding theory to explain the mechanisms of stability of sols was formulated by 

Derjaguin, Landau, Verwey and Overbeek and is now denoted by the acronym “DLVO” theory. 

The basic idea of the theory is that the stability of a dispersion is determined by the sum of 

attractive and repulsive forces between individual particles. The mutual attraction of particles is a 

consequence of the dispersion forces, often called London-van der Waals forces, and the mutual 

repulsion of particles is a consequence of the interaction of the electrical double layers 

surrounding each particle [7]. The London-van der Waals forces result from transitory 

dipole-transitory dipole interactions, which produce the long-range attraction between colloidal 

particles. The double layer is illustrated schematically in Figure 2.4. In the Stern layer, the 

potential drops linearly through the tightly bound layer of water and counterions. Beyond the 

Helmholtz plane or in the Gouy layer, the counterions diffuse freely. In DLVO theory, the 

repulsive barrier depends on two types of ions that construct the double layer: charge-determining 

ions that control the charge on the surface of the particle and counterions that are in solution in 

the vicinity of the particle and act to screen the charges of the potential determining ions. 

According to DLVO theory, as the concentration of counterions increases till a certain value, 

the double-layer repulsion is reduced to the point that the net interparticle potential is attractive 

and the colloid will coagulate immediately. The stability of the colloid correlates closely with the 

magnitude of the zeta-potential which is defined as the potential of the slip plane that separates 

the region of fluid that moves with the particle from the region that flows freely. Roughly 

speaking, stability requires a repulsive potential ≥30 - 50 mV.  

 

 



      - 16 - 

 

Figure 2.4 Electrical double layer [5]. 

 

The DLVO theory can successfully explain the stabilities of most of the sols including that 

of titania. In the case of silica sol, however, its stability does not conform to the DLVO theory, 

since it is apparently stabilized by a layer of adsorbed water that prevents coagulation even at the 

isoelectric point (the pH at which zeta-potential is 0. For silica, it is within pH 1.5 - 4.5, 

depending on the extent of condensation of the silicate species). To destabilize an aqueous silica 

sol, it is necessary to reduce the degree of hydration, for example, by adding salt to the sol to 

undergo ion exchange between an unhydrolyzed cation of Mz+ and the hydrated SiOH, 

≡Si-OH + Mz+       ≡Si-OM(z-1)+ + H+.     (2.6) 

So the removal of hydrated SiOH decreases the stability of the colloid [8]. That is also the 

mechanism responsible for the coating process of SiO2 on the nanofibers of aminometallic 

compounds. 
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2.2.5 Monodisperse spheres 

For preparations of monodisperse silica spheres, a widely used method was developed by Stöber, 

Fink and Bohn (SFB) [9]: alcohol, ammonia, and water are mixed, then TEOS is added, resulting 

in visible opalescence within ca. 10 minutes. The ratio of water to TEOS, r, is typically more than 

20, and the pH is very high. Both of these factors promote condensation and favor the formation 

of compact structures. A general trend for preparation of SFB spheres is that smaller particles and 

narrower size distributions are obtained with smaller alcohols as solvent. 

The mechanism for the growth of monodisperse particles is generally explained by the 

theory of LaMer and Dinegar [10] as illustrated in Figure 2.5. At first, the supersaturation of the 

hydrous oxide, Si(OH)4, is increased continuously till the critical concentration of nucleation, cN, 

is reached. During the extremely rapid nucleation process, the precipitation of particles reduces 

the supersaturation below the point co, where further nucleation is unlikely. At last, on the 

existing nuclei the growth continues until the concentration is reduced to the equilibrium 

solubility, cs. According to this theory, a single particle size can be achieved if the nucleation 

happens in a single burst of nuclei, whereas a range of sizes results if new nuclei form during the 

growth period.  
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2.2.6 Sol-gel process of transition metal alkoxides 

Transition metal alkoxides, M(OR)z, especially those of the d0 transition metals (Ti, Zr), are 

widely used as molecular precursors for glasses and ceramics. Several factors distinguish 

transition metal alkoxides from silicon alkoxides (Si(OR)4), the most commonly used precursors 

in sol-gel process. 

2.2.6.1 Low electronegativity 

Compared with silicon, the lower electronegativity of transition metals (Si 1.7, Ti 1.3, Zr 1.7) 

causes them to be more electrophilic and thus less stable toward hydrolysis, condensation, and 

other nucleophilic reactions [11]. Values of positive partial charge,δ(M), of several transition 

metal alkoxides are listed in Table 2.1 where they are compared to δ(Si). It is apparent that the 

values of δ(M) in all these transition metal alkoxides are higher than δ(Si).  

    At pH 7, a rough estimate of the minimum hydrolysis rate constant for Ti(OR)4 is k h = 

10-3 M-1s-1 [12], more than five orders of magnitude larger than that for Si(OR)4. The situation of 

condensation rates is similar, with kc(Si(OEt)4) = 10-4 M-1s-1 [13] and kc(Ti(OEt)4) = 

30 M-1s-1[14]. 

 

Table 2.1 Positive partial chargeδ(M) for metals in various alkoxides [11] 
Alkoxide Zr(OEt)4 Ti(OEt)4 Nb(OEt)5 Ta(OEt)5 VO(OEt)3 W(OEt)6 Si(OEt)4

δ(M) +0.65 +0.63 +0.53 +0.49 +0.46 +0.43 +0.32 

 

2.2.6.2 Unsaturated coordination 

Transition metals often exhibit several stable coordinations. When coordinatively unsaturated, 

they tend to expand their coordination via olation, oxolation, alkoxy bridging, or other 

nucleophilic association mechanisms [11]. For example, transition metal alkoxides dissolved in 

nonpolar solvents often form oligomers via alkoxy bridging. In polar solvents such as alcohol, 

either alkoxy bridging or alcohol association can occur. In comparison, for Si(OR)4 with a 

saturated coordination, neither oligomerization nor alcohol association is observed. 
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2.2.6.3 Molecular complexity 

Another factor that influences reaction kinetics is the extent of oligomerization (molecular 

complexity) of the metal alkoxides. The molecular complexity increases with the atomic size of 

the metal within a particular group. Moreover it also depends on the alkoxide ligand: for example, 

Ti(OEt)4 exhibits an oligomeric structure, whereas Ti(OPri)4 remains monomeric [15]. 

The influence of molecular complexity on the hydrolysis kinetics can be reflected from the 

solvent effect: Ti(OEt)4 dissolved in EtOH exhibits an oligomeric structure, and hydrolysis results 

in precipitation of monosized particles. Ti(OPri)4 dissolved in PriOH is monomeric and hydrolysis 

results in rapid precipitation of a polydisperse product [15]. Therefore, starting from a particular 

alkoxide, the kinetics and resulting structure can be controlled by appropriate choice of 

solvent [11].  

2.2.6.4 Alkyl chain length 

The size and electron-providing or -withdrawing characteristics of the organic ligand also affect 

the hydrolysis and condensation kinetics [5]. For a series of titanium n-alkoxides, the hydrolysis 

rate decreases with the alkyl chain length [12], consistent with the steric effect expected for an 

associative SN reaction mechanism. In addition, Livage et al. show a trend of decreasing δ(Ti) 

with alkyl chain length that should also contribute to slower kinetics [11]. 

Concerning the synthesis of TiO2 nanotubes by sol-gel process in this study, TBOT is 

employed as the precursor due to its long alkyl chain length. Nevertheless, the low 

electronegativity and unsaturated coordination of Ti atom in the alkoxide still result in a high 

reactivity, which requires that it has to be handled with strict control of moisture and conditions 

of hydrolysis and condensation in order to prepare homogeneous sols or gels rather than 

precipitates. 
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3 Experimental 

In section 3.1, the synthetic processes of a variety of oxide NTs filled with metal nanoparticles, 

mainly involving SiO2 NT filled with Pt, TiO2 NT filled with Pt and SiO2 NT filled with metallic 

Co, are described in sequence. The corresponding methods of characterization are introduced in 

section 3.2. 

3.1 Synthesis 

3.1.1 Oxide nanotubes with templates of [Pt(NH3)4](HCO3)2

Using [Pt(NH3)4](HCO3)2 as structure-directing agent for sols of metal alkoxides, including 

tetraethyl orthosilicate (TEOS) and tetrabutyl orthotitanate (TBOT), oxide NTs have been 

prepared. Two synthesis routes were employed and correspondingly nanotubes with two different 

appearances were produced.  

3.1.1.1 Chemicals 

[Pt(NH3)4](HCO3)2 (Chempur) 

Tetraethyl orthosilicate (TEOS, > 98%, p.a., Merck)  

Tetrabutyl orthotitanate (TBOT, p.a., Merck) 

Diethyleneglycol (DEG) 

Ammonia solution (concentrated) (p.a., Merck)  

Ammonia solutions (20 °C, pH values: 10, 10.40 and 10.64) (preparation: take 1 mL, 3 mL and 

7.5 mL concentrated ammonia separately and dilute them to 100 mL with distilled water) 

3.1.1.2 SiO2 nanotubes  

a) General growth of SiO2 nanotubes 

In a typical experiment 10 mL ethanol were dropped into a solution (called mother liquid) of 

0.0049 g (0.0125 mmol) [Pt(NH3)4](HCO3)2 dissolved in 1 mL ammonia solution (20 °C, pH 10). 

 



   - 21 - 

Along with the adding of ethanol, the mother liquid turned from a transparent colourless solution 

to a white cloudy suspension containing [Pt(NH3)4](HCO3)2 fibers, to which 14 µL TEOS 

(optimised molar ratio of template:TEOS = 1:5) were added. During the whole process the 

system was kept under vigorous stirring of 300 rpm. The reaction was completed after stirring for 

12 h and then the product of template-filled silica NTs was achieved. After being dried mostly in 

air and collected for calcination at 773 K (heating rate: 5 K/min) for 5 h in air, the product was 

converted to metal-filled silica NTs. 

b) Study on the formation mechanism of Pt templates 

In order to study the formation mechanism of template fibers of [Pt(NH3)4](HCO3)2, variations of 

different parameters, including temperature, rate of ethanol addition, Pt concentration in the 

mother liquid and ratio of ethanol to water were carried out according to the following Table 3.1. 

The ammonia solution used in this study has a pH value of 10. 

 

Table 3.1 Experimental parameters of the study on the formation mechanism of the Pt templates 

Temperature 
Rates of ethanol 

addition 
mL/min 

Pt concentration 
mol/L 

Ethanol/water 
ratio 

Effect of temperature and rates of ethanol addition 

20 °C 0.5 0.0125 (0.0048g Pt salt + 1mL ammonia*) 10:1 

0 °C 0.5 0.0125 (0.0048g Pt salt + 1mL ammonia) 10:1 

0 °C 10 0.0125 (0.0048g Pt salt + 1mL ammonia) 10:1 

Effect of salt concentration in mother solution 

0 °C 0.5 0.0125 (0.0048g Pt salt + 1mL ammonia) 10:1 

0 °C 0.5 0.003 (0.0048g Pt salt + 4 mL ammonia) 10:1 

0 °C 0.5 0.001 (0.0048g Pt salt + 10 mL ammonia) 10:1 

Effect of ethanol/water ratio 

0 °C 0.5 0.0125 (0.0048g Pt salt + 1mL ammonia) 1:1, 1:2 and 10:1 

*Ammonia indicates ammonia solution. 
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c) Controlled growth of SiO2 nanotubes 

Optimised procedures of synthesis 

Under a stirring rate of 300 rpm, 0.0125 mmol [Pt(NH3)4](HCO3)2 were dissolved in 1 mL 

ammonia solution (20 °C, pH 10), then 0.7 mL ethanol were added into the solution. Afterwards 

the system was kept inside an ice bath (ca. 0 °C) for at least 8 min, then 14 µL TEOS were added 

into it and stirred for 2 minutes. With increased stirring rate of 1000 rpm, 0.1 mL ethanol were 

injected rapidly into the mixture and 2 minutes later the stirring rate was decreased to 300 rpm 

and 10 mL ethanol were added at a rate of 0.5 mL/min into the reaction system. Monodisperse 

and ultralong template-filled SiO2 NTs were achieved after at most 4 hours of stirring. 

Factors influencing the morphology of the product 

The following two groups of samples were prepared for understanding the relationship between 

the reaction parameters and the morphology of the product. 

Group A:  

The rate of addition of 10 mL ethanol was varied as 0.25 mL/min (A0.25), 0.5 mL/min (A0.5) or 

2 mL/min (A2). All the other parameters were kept constant. 

Group B: 

The process of injecting 0.1 mL ethanol at 1000 rpm was omitted. The 10 mL ethanol were 

directly added at rates of 0.25 mL/min (B0.25), 0.5 mL/min (B0.5) or 2 mL/min (B2). Other 

parameters were kept constant. 

3.1.1.3 TiO2 nanotubes  

a) General growth of TiO2 nanotubes 

Optimised procedures of synthesis 

At 20 °C, 0.0048 g [Pt(NH3)4](HCO3)2 were dissolved in 1 mL ammonia solution (pH 10.40, 

20 °C). After that, 10 mL ethanol were droply added into the salt solution to form a fluffy 

suspension, which was afterwards soaked inside a cooling bath (around –30 °C), made by mixing 

ethanol and liquid N2. Meanwhile, a solution of 43 µL TBOT, 43 µL DEG and 5 mL ethanol was 

prepared and cooled in the same bath. The typical molar ratio of the reactants, i.e. Pt salt and 
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TBOT, was kept at 1:10. Liquid N2 was supplied continuously to keep the bath at –30 °C. One 

hour later, the solution of TBOT was dropped slowly into the suspension of the template. The 

resultant mixture was kept at –30 °C for 3 h and then warmed up naturally by stopping the 

addition of liquid N2. After 12 h, the sample of template-filled TiO2 NTs in the general growth 

route was achieved. The whole process was carried out with a stirring rate of 300 rpm.  

Without washing, the opalescent sample was dried in air, scraped from the glass plate and 

calcined in a Muffel furnace. Two different conditions were applied for the heating treatment: in 

one case at 500 °C for 5 h with a heating rate of 5 °C/min and in the other case at 700 °C for 5 h 

with a heating rate of 5 °C/min. 

Influences of reaction parameters on the synthesis 

The following experiments were carried out to study the effects of reaction parameters on the 

morphology of the products. Here, the molar ratio of Pt to TBOT was always kept at 1:10. 

 

Table 3.2 Experimental parameters of the TiO2 samples 
pH value of ammonia 

solution 
20 °C 

Cooling conditions 
DEG / TBOT 

mol/mol 

Role of cooling 
10.40 -70 °C for 3 h 7:1 
10.40 -30 °C for 3 h 7:1 
10.40 -20 °C for 3 h 7:1 

Role of pH value of ammonia solution 
10.00 -30 °C for 3 h 7:1 
10.40 -30 °C for 3 h 7:1 
10.64 -30 °C for 3 h 7:1 

Role of DEG / TBOT molar ratio 
10.40 -30 °C for 3 h 0 
10.40 -30 °C for 3 h 7:1 
10.40 -30 °C for 3 h 14:1 

 

 

 

 



   - 24 - 

b) Controlled growth of TiO2 nanotubes 

At 20 °C, 0.0048 g (0.0125 mmol) of [Pt(NH3)4](HCO3)2 were dissolved in 1 mL ammonia 

solution (pH 10.40, 20 °C) forming a mother solution to which 0.6 mL ethanol was then added. 

After cooling the mother solution at –30 °C for 2 minutes, a solution obtained by mixing 22 µL 

TBOT, 22 µL DEG and 10 mL ethanol, already being cooled at –30 °C for 10 minutes, was 

slowly dropped into it. During the process, the initially transparent solution turned into a white 

suspension. The resulting mixture was kept at –30 °C for 3 h and then warmed up naturally in air. 

After 12 h, the sample of template-filled TiO2 NTs by controlled growth was achieved. The whole 

procedure was carried out with a stirring rate of 300 rpm.  

    A drop of the sample was deposited on a sample holder of SEM. After evaporation of the 

solvent, the sample holder was heated at 500 °C for 5 h with a heating rate of 5 °C/min. 

3.1.2 SiO2 nanotubes with templates of [Co(NH3)6](HCO3)(CO3)·2H2O  

3.1.2.1 Chemicals 

Hexaammine cobalt(III) chloride, [Co(NH3)6]Cl3 (Aldrich) 

Amberlite IRA-402 (Cl form, strong base, Fluka) 

NaHCO3 (p.a., Merck) 

AgNO3 (p.a., Merck) 

65% HNO3 (p.a., Riedel-de Haen) 

Tetraethyl orthosilicate (TEOS, > 98%, p.a., Merck) 

Ammonia solution (p.a., Merck) (pH value: from 10 to 11.06) 

3.1.2.2 Preparation of [Co(NH3)6](HCO3)(CO3)·2H2O  

At first, a certain amount of ion-exchange resin of Amberlite IRA-402, having been soaked in 

distilled water longer than 2 h, was filled inside a glass colume (24 mmφ ×160 mm L). Then a 

saturated NaHCO3 aqueous solution was used to rinse the resin till all the effluent consists of 

only HCO3
-. Exchange completeness of Cl- by HCO3

– was proven using binary testing agents of 
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0.5 M AgNO3 and 2 M HNO3. 0.2 g [Co(NH3)6](Cl)3 were dissolved in 20 mL distilled water and 

then slowly passed through the completely HCO3
- replaced ion-exchanger. The purity of effluent, 

i.e. the [Co(NH3)6](HCO3)(CO3)·2H2O aqueous solution, was also examined using the binary 

testing agents of AgNO3 and HNO3 solution.  

For the preparation of powdered products, large amount of ethanol was poured into the 

[Co(NH3)6](HCO3)(CO3)·2H2O aqueous solution, the resultant fluffy light orange precipitates by 

a glass filter (ROBU, Por. 5, pore size: 1 – 1.6 µm) with the assistant of water vacuum pump. The 

precipitates were washed with ethanol for several times and dried in air.  

3.1.2.3 Synthesis of Co-containing SiO2 nanotubes:  

In a typical procedure, 0.0044 g powder of [Co(NH3)6](HCO3)(CO3)·2H2O was dissolved in 1 mL 

ammonia solution (pH = 10.64, 20 °C). Afterwards 10 mL ethanol was dropped into the solution 

and consequently fluffy precipitates appeared. Then 28 µL TEOS (molar ratio of TEOS to Co is 

10:1) was added. The whole reaction was carried out at room temperature and at a stirring rate of 

300 rpm. After 12 h stirring, the light orange product was desiccated in air. After the calcination 

at 400 °C for 5 h, hollow silica NTs were obtained. Either air or H2 was used as the calcination 

atmosphere. 

3.1.2.4 Factors influencing the morphology of product 

The following experiments were carried out to study the effects of reaction parameters 

(Table 3.3) on the morphology of products. In all experiments, 28 µL TEOS was added. Hence 

the molar ratio of Co to TEOS was kept at 1:10. 
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Table 3.3 Experimental parameters of the samples using Co templates 

Concentration 
g/mL 

pH of ammonia 
solution 

20 °C 

Rate of ethanol 
addtion 
mL/min 

Sample 
name 

Effect of concentration of template salt 

0.0011 (0.0044g Co salt in 4 mL ammonia*) 10.64 1.67 A1 

0.0022 (0.0044g Co salt in 2 mL ammonia) 10.64 1.67 A2 

0.0088 (0.0044g Co salt in 0.5 mL ammonia) 10.64 1.67 A3 

Effect of pH value 

0.0022 (0.0044g Co salt in 2 mL ammonia) 10.00 1.67 A4 

0.0022 (0.0044g Co salt in 2 mL ammonia) 10.64 1.67 A2 

0.0022 (0.0044g Co salt in 2 mL ammonia) 11.06 1.67 A5 

Effect of rate of precipitation 

0.0022 (0.0044g Co salt in 2 mL ammonia) 10.64 1.67 A2 

0.0022 (0.0044g Co salt in 2 mL ammonia) 10.64 0.67 A6 

    * Ammonia indicates ammonia solution. 

3.2 Characterization 

In the following all methods of characterization of the samples are described, including the 

working principle, the sample preparation, and the operative conditions of measurements. 

3.2.1 X-ray diffraction 

X-ray diffraction is an extremely important technique in the field of material characterization to 

obtain the constitutional and structural information from crystalline materials. Single-crystal 

X-ray diffraction requires single crystals of appropriate size (at least 10 to 100 µm in length) and 

is easier to solve structures of crystals than powder technique. However, the latter one can 

determine the constituents of a mixture of crystalline solid phases. 

3.2.2.1 X-ray powder diffraction 

a) Working principle 

X-rays are high-energy electromagnetic radiation with wavelengths ranging from about 1 to 
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10000 pm. The X-rays used to determine crystal structures usually have wavelengths of 

50 – 250 pm. When an X-ray beam is incident on a crystalline material, reflections 

(or diffractions) occur due to the interaction between the incident beam and the periodically 

aligned atoms. This scattering process is schematically illustrated in Figure 3.1.  

 
Figure 3.1 Diffraction of X-rays by a crystal. 

 

The waves scattered by each atom will reinforce in certain directions and cancel in others. 

The scattering from a given family of planes will only be strong if the X-rays reflected by each 

plane arrive at the detector in phase. This leads to a relationship known as Bragg’s law [1] 

θλ sin2dn =         (3.1) 

where λ  is the wavelength of the X-ray,  is the lattice spacing of the reflecting plane, and d θ  

is the diffraction angle. The integer  is known as the order of the corresponding reflection. 

Note that the angle of deviation of the X-ray is 

n

θ2  from its initial direction. This is fairly 

restrictive for a single crystal since, for a given λ , even if the detector is set at the correct θ2  

for a given  spacing within the crystal, there will be no diffracted intensity unless the crystal is 

properly aligned to both the incident beam and the detector. The essence of the powder diffraction 

technique is to illuminate a large number of crystallites, so that a substantial number of them are 

in the correct orientation to diffract X-rays into the detector.  

d

A set of parallel lattice planes is represented by the Miller indices (hkl), which are defined as 
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the smallest integral multiples of the reciprocals of the plane intercepts on the axes. A given θ  

value is correspondent to a set of parallel lattice planes (hkl). In the case of a set of equivalent 

lattice planes, the Miller indices are placed in braces, { }hkl . 

Experimentally, a powder diffraction peak is characterized by three sets of parameters: peak 

position, peak intensity and peak shape profile [2]. The position of the peak is determined by 

equation 3.1. The intensity of the peak is determined by the coherent interference of the 

individual atoms that decorate the crystal lattice. The peak profile depends on the type of 

radiation beams used and the exact experimental setup. 

For the approximation of the average grain size , the well-know Scherrer equation is 

commonly employed  

D

θβ
λ

cosL

KD =         (3.2) 

where Lβ  is the full-width-at-half-maximum of the peak profile. The coefficient K  has been 

found to be around 0.9 [3]. The accuracy of Scherrer equation depends on the precise shape of the 

grains and the grain size distribution [1].    

b) Sample preparation and operation conditions 

To avoid unwanted artefacts, the preparation of samples is an important consideration in powder 

diffraction experiments. One issue is that preferred orientation should be avoided. The grains of a 

sample may tend to align, especially if they have a needle or platelike morphology, so that 

reflections in certain directions are enhanced relative to others. Various measures such as mixing 

the powder with an inert material chosen to randomise the grains or pouring the sample sideways 

into the flat plate sample holder are in common use. A related issue is that a specimen in a 

diffractometer must be sufficiently powdered. It may be necessary to grind or sieve the sample, 

especially in the case of strongly absorbing materials. 

Most commercially available diffractometers employ the Bragg-Brentano parafocusing 

geometry. This reflection mode uses a flat plate sample holder lying tangent to the focusing 

circle. With this arrangement, the divergent beam from the anode/monochromator is “focused” 
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into the receiving slit in front of the detector and thus yields peaks [3]. The principle advantages 

of the reflection mode are that firstly a large sample area can be irradiated and the high intensity 

thereby produced allows fast scan rates, and secondly no adsorption correction has to be made if 

an “infinitely” thick sample is used. The disadvantages of this reflection mode are that a larger 

sample volume is required and that the preparation of a flat sample tends to increase preferred 

orientation. 

In this study, the powder XRD patterns of samples were recorded on a Philips PW 1729 

Spectrometer (Bragg-Brentano parafocusing geometry, λ = 1.5418 Å, Voltage = 35 kV, Current 

Intensity = 40 mA) in collaboration with Dr. Xiaobo Yang at the Institute of Physical Chemistry, 

University of Hanover. The instrument was equipped with a fixed divergence slit and a 

scintillation counter. Since the samples were needle-like, the preferred orientation is inevitable. 

The intensity data were measured by step scanning in the θ2  range between 10° and 100°, with 

a θ2  step size of 0.05° and a measuring time of 2 or 5 seconds per point. 

3.2.2.2 Single-crystal X-ray diffraction 

a) Working principle 

The fundamental principle of X-ray single-crystal diffraction is based on the Bragg’s law. In 

practice, a single crystal is installed on a diffractometer and data are collected under 

computer-controlled operation. From these data the fractional coordinates describing the 

positions of the atoms within the cell, some characteristics of their thermal motion, the cell 

dimensions, the crystal system, the space group symmetry, the number of formula units per cell, 

and a calculated density can be obtained.  

b) Sample preparation and operation conditions 

For single-crystal X-ray diffraction, a big crystal of [Co(NH3)6]HCO3CO3·2H2O was selected 

from the dry powders precipitated from the aqueous solution of the cobalt salt with a large 

amount of ethanol. 

The XRD measurment of the single crystal was carried out on a Stoe IPDS (Imaging Plate 

Diffractometer System) in collaboration with Dr. Rudolf Wartchow at the Institute of Inorganic 
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Chemistry, University of Hanover. 

3.2.2 Electron Microscopy 

For characterization of materials dominated by particles with sizes in the nanometer range, 

electron beam methods are indispensable analytic tools. In this study, two kinds of methods have 

been involved: scanning electron microscopy and transmission electron microscopy. 

3.2.2.1 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy is the best-known and most-widely-used surface analytical 

technique. SEM, accompanied by Energy Dispersive X-ray Spectroscopy (EDXS), is considered 

a relatively rapid, inexpensive, and basically non-destructive approach to surface analysis. In this 

study, SEM was the primary tool employed for the characterization of samples. 

a) Working principle 

A SEM consists of a column, electronics and a number of detectors. Primary monochromatic 

electrons are emitted from an electron gun and accelerated down the evacuated column. After 

being de-magnified and focused with the aid of electro- and magnetostatic lenses and constricted 

by condenser apertures, the electrons are formed into a probe that is scanned on the sample 

surface. Simultaneously, secondary electrons and backscattered electrons are emitted from the 

sample and then detected by appropriate detectors. When the primary electron is scanned in a 

regular pattern covering a rectangular area, the signal output onto the detector gives a map of 

signal intensity coming from the sample, leading to the SEM image [1,2]. 

The beam electrons interact with atoms in the specimen by inelastic and/or elastic scattering 

when they bombard a point on the surface of the specimen. The signals resulting from these 

interactions (e.g., electrons and protons) escape from different depths within the sample due to 

their unique physical properties and energies. Secondary electrons, backscattered electrons and 

characteristic X-rays are the most widely utilized signals in a SEM [1,2].  

Secondary electrons (sample depth: nm range) are low-energy (2 to 5 eV) electrons ejected 

from outer shells of the sample atoms after inelastic interactions. The term “secondary” thus 
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refers to the fact that this signal is not a scattered portion of the probe, but a signal generated 

within the specimen due to the transfer of energy from the beam to the specimen [1]. Secondary 

electron intensity is a function of the surface orientation with respect to the beam and the detector 

and thus produces a topographic image of the specimen.  

Backscattered electrons (sample depth: several tens of nm to 100 nm) are electrons from the 

incident probe that undergo elastic interactions with the sample, while elastic interactions are 

defined by a change in trajectory of the beam electrons without loss of energy. They make up the 

majority of electrons emitted from the specimen at high beam voltage, and their average energy is 

much higher than that of the secondary electrons. The intensity of backscattered electron signal is 

a function of the average atomic number (Z) of the specimen, with heavier elements producing 

more backscattered electron signals. It is thus a useful signal for generating compositional 

images, in which higher Z phases appear brighter than lower Z phases. 

Characteristic X-rays (sample depth: in the µm range) are generated by inelastic interactions 

of the probe electrons with specimen atoms. During inelastic interactions, inner shell electrons of 

specimen atoms are ejected, with the result that vacancies are formed at their original positions. 

Afterwards, outer shell electrons move to the vacancies and their excessive energies are emitted 

in the form of X-rays characteristic for individual elements of the specimen atoms. By analysing 

the characteristic X-rays, the elements that constitute the specimen can be identified, and also 

quantitative calculation of their weight concentrations can be made. A widely used method of 

analysing characteristic X-rays is by the EDXS. 

b) Sample preparation and operation conditions 

Samples, suspended in proper solvents, were dropped directly on sample holders in order to keep 

the original morphology intact. Powder samples were at first dispersed in ethanol by a supersonic 

bath for several seconds and then dropped on a sample holder. After evaporation of the solvent, 

the sample is ready for SEM measurements.  

Because of the poor conductivities of most of the samples, part of the irradiated electrons 

may be absorbed. This charge causes many errors in the observations. In general, methods such 

as metal coating and observations with low accelerating voltage are done to prevent a specimen 
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from acquiring an electrostatic charge. For the samples in this study, the latter method was 

adopted. 

The SEM images were recorded on a JEOL JSM-6700F apparatus equipped with a 

cold-field emission gun (FEG). The instrument was operated at low accelerating voltages 

(Vacc = 1 or 2 kV) in order to minimize the charging of the specimens.  

EDXS measurements were carried out in collaboration with Dr. Jürgen Köpcke on a 

CAMECA SX-100 Microprobe installed with the OXFORD EDX-system at the Institute of 

Mineralogy, University of Hanover. 

3.2.2.2 Transmission Electron Microscopy (TEM) 

TEM is a powerful and unique technique to reveal the internal microstructure of materials at the 

nanometer level. In this study, it was routinely employed to study the distribution of metal 

nanoparticles inside the metal oxide nanotubes. 

a) Working principle 

A TEM is designed for observing transmitted images, in analogy to an optical microscope. 

Simply speaking, in a TEM, an electron beam is irradiated on a specimen. The specimen must be 

thin enough to realize the transmission of the beam through it. The transmitted beam is observed 

after being magnified by electron lenses. 

Three types of contrasts are usually contained in TEM images: diffraction absorption 

contrast, contrast produced by mass thickness or atomic number, and phase contrast [2]. In 

diffraction absorption contrast just electrons that have not been scattered by the object contribute 

to image formation. Diffracted electrons are absorped by an appropriate aperture that is inserted 

in the back focal plane of the objective lens. Mass thickness or atomic number (Z) produces 

contrast. Atoms with different Z exhibit different powers of scattering. With increasing Z of the 

atoms in an object, their scattering cross-section increases. Phase contrast arises from the phase 

differences between unscattered and diffracted electrons. This interference method allows to 

obtain high-resolution TEM images on thin specimen that act mainly as weak-phase objects, i.e. 

objects that do not influence the amplitude of an electron wave but slightly the phase. This kind 
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of contrast is sensitive to the atom distribution in the specimen and is the basis of high resolution 

TEM. 

Two kinds of modes are usually employed in TEM operations: image mode and diffraction 

mode. In the image mode, the internal structure of a thin specimen is observed. The 

thus-produced image has no depth profile as the electrons pass through the specimen. In the 

diffraction mode, either a spot pattern or a ring pattern is observed depending on the grain size 

and orientation of grains in the specimen within the selected area. The technique of Selected Area 

Electron Diffraction (SAED) is a powerful tool to identify a known phase and/or to determine the 

orientation of a crystal. 

b) Sample preparation and operation conditions 

Powder samples for transmission electron microscopy (TEM) were deposited on a holey carbon 

foil supported by a copper grid. The TEM images were recorded either on a Philips CM30 

microscope (accelerating voltage Vacc = 300 kV, LaB6 cathode) in collaboration with Dr. Frank 

Krumeich, ETH Zürich (Switzerland) or in our group on a JEOL-2100F (Vacc = 200 kV, FET 

cathode, point resolution 0,19 nm) in collaboration with Dr. Armin Feldhoff. 

3.2.2.3 Scanning Transmission Electron Microscopy (STEM) 

As its name suggests, the STEM is a combination of the SEM and the TEM. Thin specimens are 

viewed in transmission, while the images are formed by the scanning of an electron probe.  

a) Working principle 

A large annular detector is special for STEM, resulting in that each atom in the specimen scatters 

the incident probe in proportion to the square of the atomic number (Z), hence this kind of 

microscopy is also referred to as Z-contrast imaging. 

The key difference between STEM and conventional TEM lies in their modes of image 

formation. The former provides almost perfect incoherent imaging whereas the latter provides 

almost perfect coherent imaging [1].  

In comparison to SEM which gives a topographic image of the surface region of a bulk 

sample, STEM gives a transmission image through a thin region of the bulk. Backscattered 
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electrons in SEM give a Z-contrast image analogous to that obtained with the STEM annular 

detector, except at lower resolution and contrast. 

b) Sample preparation and operation conditions 

The STEM images of a sample of cobalt-containing SiO2 NTs were recorded on a CM30 

microscope (Philips, accelerating voltage Vacc = 300 kV, LaB6 cathode) in collaboration with 

Dr. Frank Krumeich, ETH Zürich (Switzerland). 

3.2.3 Thermogravimetric analysis 

In this study Thermogravimetry (TG) and Differential Thermal Analysis (DTA) were employed 

to determine phase transformations of samples as a function of temperature. 

a) Working principles 

TG is defined as a technique in which the mass of a substance is measured as a function of 

temperature whilst the substance is subjected to a controlled temperature program [1]. An 

apparatus called a thermobalance is used to obtain a thermogravimetric curve. 

Thermogravimetric data can be presented in two ways. The TG curve is a plot of the mass 

against time or temperature, with the mass loss plotted downward and mass gains plotted upward 

relative to a baseline. Alternatively, data can be presented as a derivative thermogravimetric 

(DTG) curve, which is a plot of the rate of change of mass with respect to time or temperature 

against time or temperature. 

In DTA, the temperature difference between a substance and a reference material is 

measured as a function of temperature while the substance and reference material are subjected to 

a controlled temperature program [1]. In a DTA curve, the temperature difference should be 

plotted on the ordinate with endothermic reactions downward and temperature or time on the 

abscissa increasing from left to right.  

b) Operation conditions 

In this study, TG and DTA curves of samples were recorded in collaboration with 

Dr. Claus H. Rüscher at the institute of mineralogy, University of Hanover. The instrument is a 
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Setsys evolution 1650 (Setaram) simultaneous analyzer operating in the range of 20 – 800 °C 

with a heating rate of 5 °C/min under a helium flow of 5 mL/min. α -alumina was used as 

reference in a 0.3 cm3 alumina crucible.  

3.2.4 Infrared Spectroscopy 

a) Working principle 

Infrared (IR) spectrum is tied up with the changes in the vibrational state of molecular bonds. The 

requirement for a vibration to be infrared active is that during the vibration there must be a 

change in the electric dipole of the molecule. Diatomic molecules with the same atoms, in 

principle, cannot be excited to vibrate, because they do not have any dipole moment. Molecules 

consisting of various types of atoms, however, can always interact with infrared radiation.  

The basis of the IR experiment is to pass infrared radiation through a substance and measure 

which energies of the applied radiation are transmitted by the sample. 

IR spectroscopy has become one of the most important analytical methods for preparative as 

well as analytical chemists. It provides a direct evidence on the constitution of an unknown 

sample since inherent correlations exist between the position of absorption bands and particular 

structural groups. From the “fingerprint region” in the range between about 1500 and 650 cm-1, 

substances can be specifically identified by spectral comparison. Besides, each component of a 

mixture can be quantitatively determined from the IR spectrum, if absorption bands are 

unaffected.  

b) Operation conditions 

The IR spectrums of samples before and after thermal treatment were recorded in collaboration 

with Dr. Claus H. Rüscher, using a Bruker IFS 66v FTIR Spectrometer at the institute of 

mineralogy, University of Hanover. 
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3.2.5 N2 Adsorption 

a) Working principle 

The adsorption isotherm is usually defined as the relationship, at constant temperature, between 

, the quantity of adsorptive expressed in moles per gram of solid, and , the relative 

pressure, while  being the saturation vapour pressure of the adsorptive [5].  

n opp /

op

N2 adsorption at 77 K is a standard and wide used method to determine the specific surface 

area and pore size distribution of porous materials. The physical adsorption of N2 by non-porous 

solids, in the vast majority of cases, gives rise to a Type II isotherm as shown in Figure 3.2 

(dashed line). As to porous solids, their isotherms are dependent on the pore sizes. According to 

IUPAC (International Union of Pure and Applied Chemistry) recommendations [6], pores are 

classified with respect to their sizes as  

micropores: width (or diameter) below 2 nm,  

mesopores: width between 2 and 50 nm, and  

macropores: width greater than 50 nm.  

    For a typical mesoporous solid, e.g. porous silica, the physical adsorption of N2 gives rise to 

a Type IV isotherm as depicted in Figure 3.2 (solid line). A characteristic feature of a Type IV 

isotherm is its hysteresis loop.  

For the interpretation of Type IV isotherm, a model proposed by Zsigmondy [7] assumed 

that the initial part of the isotherm (ABC in Figure 3.1), adsorption is restricted to a thin layer on 

the walls, until at D, the inception of the hysteresis loop, capillary condensation commences in 

the finest pores. As the pressure is progressively increased, wider and wider pores are filled until 

at the saturation pressure the entire system is full of condensate. Since a problem of nucleation 

arises during the condensation process of a liquid phase from the vapour and in the converse 

process of evaporation (FJD in Figure 3.2) this problem is avoided, the two processes do not 

necessarily take place as exact reverses of each other. That can account for the occurrence of 

hysteresis in mesoporous solids. 
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Figure 3.2 A Type II isotherm (dashed line) and a Type IV isotherm (solid line) [5]. 

 

Determination of specific surface area 

To obtain specific surface areas from the adsorption isotherm, the Brunauer-Emmett-Teller (BET) 

method has proved remarkably successful for a non-porous material. 

    The BET treatment is based on a kinetic model of the adsorption process put forward by 

Langmuir, i.e., a state of dynamic equilibrium in which the rate at which molecules arriving from 

the gas phase and condensing on to bare sites is equal to the rate at which molecules evaporate 

from occupied sites. By adopting the Langmuir mechanism (well adapted to the adsorption of a 

monolayer) but introducing a number of simplifying assumptions, Brunauer, Emmett and Teller 

in 1938 [8] were able to construct their well-known equation for multilayer adsorption,  
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where the BET parameter c  gives information regarding interactions of adsorbate (N2 

molecules) with adsorbent, and  is the monolayer capacity or moles of adsorbate per gram of 

adsorbent. The specific surface area A is defined as the surface area of 1 g of the solid and is 

calculated by the simple equation [5] 

mn

LanA mm=            (3.4) 

where  is the average area occupied by a molecule of adsorbate in the completed monolayer 

on the surface of the solid. In case of N

ma

2 at 77 K, = 0.162 nmma
2.  is the Avogadro constant. L

As mentioned above, the application of BET method in determination of the specific surface 

area of nonporous materials is very successful, but for a solid with presence of micropores, the 

specific surface area derived by BET procedure will be erroneously high due to its distorted 

isotherm in the low-pressure region.  

Standard isotherm and t -plot 

For a given gas adsorbed on a series of nonporous substances differing in total area but similar in 

properties (such as metal oxides), the different isotherms were found to be superposable by mere 

adjustment of the scale of units of adsorption. Therefore, a single curve can represent the 

isotherms of a group of nonporous solids, though with some scatter, and it is called the standard 

isotherm [5]. 

A convenient means of detecting the superposability of the isotherm under test in 

comparison with that of the standard is provided by the -plot of Lippens and de Boer [9]. This 

 represents the statistical thickness of the film, being equal to the multiplication of the number 

of statistical molecular layers in the film, , and the thickness of a single molecular layer, 

namely 

t

t

mnn /

σ  (3.54 Å [10] for N2 at 77 K). Based on the -curve, which is a plot of the standard 

isotherm with  as the dependent variable, the isotherm under test are then re-drawn as a -plot, 

i.e. a curve of the adsorbed amount plotted against  rather than against . The change of 

independent variable from o  is affected by reference to the standard -curve.  

t

t t

t opp /

opp /  t t t

 



   - 39 - 

If micropores are introduced into a solid, corresponding to the enhanced uptake in the 

low-pressure region of the isotherm, its -plot curve rise steeply at this region and then gradually 

level off, exhibiting linearity at higher pressures [11]. The linear part can be extrapolated to the 

adsorbed amount axis, and the intercept provides the amount adsorbed in micropores, which 

could be used to calculate the micropore volume. The slope of the linear part can be converted to 

the external surface area of the solid [12,13].  

t

If both micropores and mesopores are present in the solid under study, the deviations of the 

-plot from linearity can be observed in both low and high-pressure regions [11].  t

Determination of mesopore size distribution 

For the calculation of pore size distribution of mesoporous solids, Barrett-Joyner-Halenda (BJH) 

method is a very useful characterization technique [14]. In this approach, the adsorption process 

in mesopores was considered to consist of the formation of the adsorbed layer on pore walls and 

subsequent condensation of the adsorbate in the interior of the pore. The desorption process was 

assumed to proceed in the opposite way, i.e., by capillary evaporation from the interior of the 

pore followed by a gradual decrease in the thickness of the adsorbed film on the pore surface. In 

order to develop a useful tool for the analysis of porosity, Barrett et al. assumed that the 

formation of the adsorbed film is essentially independent of the pore size, pr , and used the 

statistical film thickness curve  for a macroporous reference adsorbent. And as a result the 

Kelvin equation is changed to 

t
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=            (3.5) 

where  is the molar volume of the liquid adsorbate, LV γ  is its surface tension, R  is the 

universal gas constant, and T  is the absolute temperature. The value of , with a unit of nm, 

can be obtained from the empirical Halsey equation [11]:  

t
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)/ln(/5354.0 oppt −=           (3.6) 

For any point  on the isotherm, the volume  of all the pores having )/,( o
ii ppn pv

pr -values up to and including  is given by . From the curve of  against p
ir LiVn

pv pr  the 
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size distribution curve, i.e.  against pp drdv / pr  is immediately obtainable. 

b) Sample preparation and operation conditions 

The measurements of N2 adsorption isotherm at liquid N2 temperature on two samples, i.e. SiO2 

NTs before and after calcination, were carried out in Heyrovsky Institute of Physical Chemistry 

in Prague in collaboration with Dr. J. Rathousky, using a gas sorption analyzer (Micromeritics 

ASAP 2010). Both samples were degassed at 200 °C for 16 h prior to the measurement. The 

specific surface area was calculated using the BET equation. The pore size distribution was 

calculated by employing the BJH method. 
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4 Oxide nanotubes with templates of [Pt(NH3)4](HCO3)2

In this section, the synthesis and characterization of oxide nanotubes (NTs), including SiO2 

and TiO2, are described in detail using the nanofibers of [Pt(NH3)4](HCO3)2 (called “Pt salt” 

for simplicity in the following) as templates and are dealt with in three separated parts. At first, 

the oxide NTs prepared in the general growth route are characterised by a number of methods. 

One characteristic of the general oxide NTs is the broad size distribution of NTs in diameters, 

which origins from the template fibers of the Pt salt (called “Pt templates” for simplicity). 

Secondly, the growth mechanism of Pt templates was studied and suggested. Thirdly, the 

enhanced oxide NTs were prepared, based on the kinetic control over the anisotropic growth 

of Pt templates using TEOS monomer as a capping agent.  

4.1 General growth of oxide nanotubes 

Following the general synthesis route with the Pt templates as introduced in Figure 1.1 in 

Chapter 1, i.e., at first the formation of template nanofibers, then the coating with metal 

alkoxides and finally the heating treatment, oxide NTs, including SiO2 and TiO2, have been 

successfully prepared.  

The general growth of oxide NTs is explained with examples of the Pt templates, SiO2 

NTs and TiO2 NTs in order to understand the evolution of morphology. Besides electron 

microscopic techniques like SEM, EDX, TEM, SAED, the samples were also characterised 

with XRD, thermogravimetric methods and IR spectroscopy. 

4.1.1 Pt templates 

As the structure-directing agents, the one-dimensional (1D) Pt templates developed through 

solvent modification determine the morphology of final NTs. Here the solvent modification is 

defined as the process of adding a large amount of ethanol into the aqueous solution of Pt salt. 

As a consequence white precipitates of the Pt salt, i.e. the Pt templates, were obtained. To 

ensure the completeness of the precipitation, the ratio of ethanol to water was usually set as 
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10:1. 

4.1.1.1 Characterization with Electron Microscopy 

For comparison, SEM images of the purchased Pt salt and the Pt templates are both exhibited in 

Figure 4.1. 

In Figure 4.1A, it is seen that the particles are larger than 5 µm. Although most of the 

particles are not regular, there are still some particles showing rectangular edges (arrowed 

parts) in the purchased salt. Generally speaking, the commercial [Pt(NH3)4](HCO3)2 has 

already exhibited a 1D morphology, although quite vaguely. 

Instead, in the Pt templates prepared by dissolution and re-precipitation in Figure 4.1B, 

the 1D morphology of the Pt salt is obvious. The regular geometric forms displayed externally 

by the Pt templates indicate its internal periodicity of atomic configuration, or in other words 

its crystalline structure. In addition, the size distribution of the Pt templates is rather broad, 

roughly speaking, spanning both nanometer and micrometer regimes. The nanometer-thick 

fibers (NFs) range mostly between 50 - 300 nm in diameter and 1 - 6 µm in length. The 

micrometer-thick fibers (MFs) are mostly 1 - 2 µm in diameter. It is necessary to mention here 

that, in analogy to the process of crystal growth, the size distribution of the fibrous Pt 

templates depends on many processing parameters, like temperature, pH value etc. Hereby, 

this sample is quite representative in its appearance, prepared under typical conditions listed 

in the legend. 

Moreover, bearing in mind the concepts about the relative growth rate and habit 

introduced in Chapter 2, it could be concluded that this kind of Pt salt intends to grow into 

prismatic morphology due to the relative growth rates of the prism and pinacoid faces.  

Accidentally, one tubular Pt template was observed as shown in Figure 4.1C. Its outer 

diameter is near 100 nm. This observation reflects that template fibers with hollow interiors 

could exist as well as those with solid cores. In addition, starting from the aqueous solution of Pt 

salt, not only solid single crystals, but also hollow ones have been cultivated by vapour 

diffusion in C. Hippe’s thesis [1]. The growth mechanism of hollow tubes is supposed to be the 

preferential deposition of building blocks (atoms, molecules or ions) on the circumferential 

edges of the seeds because these sites had relatively higher surface energies than other sites on 

the surface [2] or since these locations dissipate the latent heat easily [3] during the 
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precipitation process. However, it still remains one unsolved question about the condition of 

occurrence of hollow or solid fibers in one sample. 
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Figure 4.1 SEM images of (A) commercial [Pt(NH3)4](HCO3)2, (B) templates: fibers of 
[Pt(NH3)4](HCO3)2 after solvent modification (Parameters for the preparation of Pt templates 
were: 0.0125 M, room temperature and 1 ml ethanol/min) and (C) view of a tubular template 
nanofibers. 
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The TEM image of a fibrous template is shown in Figure 4.2. It was observed that the solid 

fiber, which was homogeneous at its original state, decomposed quickly under the electron 

beam in TEM. In the darker area the density of Pt element should be correspondingly higher. 

The situation should be similar to that which happens during the calcination. The Pt salt is 

reduced by the electrons and hence decomposed, releasing gases like H2, N2 and NH3. The 

electron diffraction of the Pt template is therefore difficult to perform. 
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Figure 4.2 TEM image of a fibrous template. 
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Figure 4.3 XRD powder patterns of (A) commercial salt and (B) Pt templates. 

 

4.1.1.3 Formation of the needle-shaped Pt templates 

By a rapid solvent modification, i.e. dripping ethanol into aqueous solution of the Pt salt, 

needle-shaped Pt templates of this salt was easily yielded, with more regular morphology and 

smaller size (even till 50 nm) in comparison with the 5-µm-thick commercial salt. The 

crystalline nature of the Pt templates is certified from both its morphology of tetragonal prism 

shown in SEM image (Figure 4.1) and the X-ray diffraction peaks of its powder pattern 

(Figure 4.3). 

According to the theory of crystal growth in section 2.1.3, the formation of the template 

prisms should be divided into two processes: nucleation and growth. During the growth 

process, the growth rates of certain faces are relatively faster and these faces constitute the 

faces of prism in the final morphology of crystal. Instead, the faces with relatively slower 

growth rates form the faces of pinacoids. From the viewpoint of thermodynamics, the 

equilibrium morphology of the prismatic crystal is confined by the minimization of specific 

surface free energies [4].  

In order to determine the relative growth rates of faces, in principle the Electron 

Diffraction installed in TEM is the effective tool. However, for the Pt templates, this tool is 

inapplicable due to the rapid decomposition of Pt templates under electron beam (as shown in 

Figure 4.2). 
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Moreover, it is also necessary to mention that a broad size distribution (100 nm to 2 µm in 

diameter) was characteristic for the thus-prepared Pt templates no matter what parameters of 

preparation were applied. The detailed study on the formation of Pt templates will be dealt with 

in section 4.2. 

4.1.2 SiO2 nanotubes 

With TEOS acting as the coating agent, walls of SiO2 formed around the rectangular template 

fibers in a sol-gel process, resulting in white template-filled SiO2 NTs. After a heat treatment 

at 500 °C for 5 h in air, the Pt salt decomposed and auto-reduced to metallic Pt [5],  

[Pt(NH3)4](HCO3)2      Pt + 2 N2 + 5 H2 + 2 CO2 + 2 H2O,  (4.1) 

resulting in black Pt-containing SiO2 NTs. 

4.1.2.1 Electron Microscopy 

The appearance of both the template-filled and metal-containing SiO2 NTs were characterized 

with electron microscopies. 

a) Scanning Electron Microscopy 

In the SEM image recorded at low voltage as shown in Figure 4.4A, it could be noticed that 

the template-filled SiO2 NTs exhibit clear and smooth surfaces, which indicate the complete 

consumption of TEOS on the surface of Pt templates in the sol-gel process. The 1D structures 

in this sample are observed to be the plaster cast of the Pt templates, containing fibers with 

diameters in regimes of both nanometer (ca. 50 - 400 nm) and micrometer (ca. 1 - 2 µm) and 

with lengths of ca. 1 - 6 µm. Due to the broad size distribution native to both the Pt templates 

and in turn the current sample, the change in thickness of individual fibres could not be 

observed by only comparing their SEM images. 
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Figure 4.4 SEM images of (A) template-containing SiO2 NTs at a low magnification and (B) 
at high magnification and (C) SiO2 NTs doped with Pt metals after the heat treatment at 
500 °C for 5 h. The ratio of Pt:SiO2 is 1:10 here.  
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The closed ends of the salt-filled SiO2 NTs are evidenced in Figure 4.4 B, which was 

recorded at a four times higher magnification than the micrograph in Figure 4.4A. Moreover, 

some defects or irregularities (indicated with arrows) in the morphology of this sample have 

been observed. 

From the SEM image taken at a high voltage as shown in Figure 4.4C, rectangular SiO2 

NTs with hollow cavities could be clearly observed. The white points decorating the grey 

background of tube walls are ascribed to nanoparticles of metallic Pt. What happened during 

the heat treatment could be interpreted as at first the autoreduction of the Pt templates into Pt 

nanoparticles [6] and afterwards the dispersion into the SiO2 walls due to the high thermal 

mobility of Pt particles. The process of autoreduction and dispersion might have happened 

simultaneously.  

As to the change of opening state of NTs after heat treatment, a possible reason could be 

the mechanical abrasion happened during the sample preparation. It should be especially 

serious when the sample was scraped from a glass plate with a steel spoon to achieve dry 

powders. Other possible reasons are discussed in section 4.2. 

b) Transmission Electron Microscopy and Electron Diffraction study 

The hollow interior of calcined samples has been observed in TEM. Because of the high 

electron scattering potential of platinum, Pt particles appear with a black contrast under the 

selected imaging conditions (bright-field), whereas the regions containing SiO2 are grey [7].  

As shown in TEM images exhibited in Figure 4.5, the SiO2 NTs could be classified into 

empty and filled tubes according to their filling states. On the one hand, for the empty tubes, 

they are not only open ended (Figure 4.5A) but also closed ended (Figure 4.5B). Therefore the 

chance that the Pt templates have escaped from the interior to the exterior of tubes would be 

little. On the other hand, for the filled ones, the filling degrees are different. As shown in 

Figure 4.5A, a tube being fully filled is indicated with an arrow, the Pt content of which is 

apparently higher than the other tubes.  

In some cases the filling in tubes results even in continuous nanowires of Pt as shown in 

Figure 4.5C. Apparently, those NTs that contain continuous nanowires inside usually have 

inner diameters around 50 nm. The inverse conclusion must, however, certainly not be drawn, 

since some NTs with inner diameters around 50 nm do not contain nanowires inside. But the 
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chance for Pt nanowires is higher in those thinner NTs. 

 

 

 

 

Fully filled 

(mostly) closed 

 
Figure 4.5 TEM images: (a) coexistence of filled and empty NTs; (b) frequent occurrence of 
hollow NTs; (c) continuous nanowires of Pt inside some NTs. 
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The reason for the unevenness in filling states could relate to the unequal states of 

template fibers. Possibly due to the formation of defects during the crystal growth, different 

phases and forms of the template fibers might have been produced. For example, single 

crystals of Pt(NH3)4CO3·H2O were cultivated by solvent vapor diffusion in C. Hippe’s work 

[1], which has a completely different diffraction pattern from the commercial salt, 

[Pt(NH3)4](HCO3)2. Different phases of templates have different densities, which lead to the 

different filling states of tubes. Moreover, hollow fibers of the metal salt (Figure 4.1C) have 

been observed beside solid ones, and hence the formation of empty NTs is explainable. Note 

that some empty NTs are close-ended, so the solid Pt templates for them must have a low 

density, which diffuse evenly into the SiO2 walls and/or immigrate through the porous SiO2 

walls during the calcination.  

From the selected area electron diffraction pattern shown in Figure 4.6, the crystallinity 

of the Pt particles is confirmed while the SiO2 is proven to be amorphous. The observed 

reflections agree perfectly with those of face-centered cubic platinum metal. The ring pattern 

comprising weak spots indicates that the grain size of Pt particles is in the nanometer range or 

below.  

 

                 

 
Figure 4.6 Selected area electron diffraction (SAED) pattern of Pt-containing SiO2 NTs. The 
reflections are generated by nanocrystalline Pt and are indexed accordingly. The measured 
d-values (d111 = 2.28 Å; d200 = 1.95 Å; d220 = 1.37 Å; d311 = 1.18 Å) agree well with the 
theoretical ones for fcc Pt (a = 3.944 Å, PDF 4-836). 
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The crystallinity and distribution of Pt particles are further exhibited with the HRTEM 

investigation of a tube wall as shown in Figure 4.7. The single-crystalline characteristic of a 

randomly chosen Pt particle is indicated by the presence of lattice fringes depicted in the inset, 

which corresponds to planes of the type {111} [7]. From the interior of tube to the exterior, 

both the concentration and the grain size of Pt particles are decreasing. Close to the inner 

surface of the NT, rather large Pt particles with diameters of approximately 5 - 15 nm appear. 

Smaller Pt particles with diameters of approximately 1 - 2 nm are embedded in the silica 

matrix and distributed in the whole tube wall. Pt particles on the outer surface of SiO2 NTs 

have been scarcely observed. The indications are that the Pt particles are rather mobile during 

the calcination process and also the SiO2 walls are porous materials. 
 
 

 

Interior of the tube 

 
Figure 4.7 HRTEM image of a tube wall. Small Pt particles appear not only at the inner 
surface (top) but also inside the wall. The inset shows a further magnified Pt particle, with the 
lattice fringes corresponding to planes of the type {111}. 
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4.1.2.2 X-ray Diffraction 

The XRD patterns of three different samples, including the Pt templates, template-filled SiO2 

NTs and Pt-containing SiO2 NTs, are shown together in Figure 4.8 for comparison. 
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Figure 4.8 XRD pattern of (A) Pt templates; (B) SiO2 NTs filled w
Pt-containing SiO2 NTs after the calcination at 500 °C for 5 h. 
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templates of V3O7·H2O, possessing similar dimension of 50 - 300 nm in diameter as our 

sample but exhibiting less diffraction intensity, showed out this broad peak clearly in the 

powder pattern [9]. 

Comparatively, the same sample after heat treatment at 500 °C shows the identical 

diffractogram of metallic Pt (pattern C), where the broad peak of amorphous SiO2 in the 

region of 20 - 30° is highly suppressed by the strong diffraction peaks of Pt. The broad X-ray 

diffraction peaks are in consistent with the small sizes of metallic Pt particles in the low range 

of nanometer. As pronounced by the HRTEM image of an individual tube wall (Figure 4.7), Pt 

nanoparticles were highly dispersed inside silica matrix after the heat treatment.  

From the powder pattern, the Pt particles are around 16 nm as calculated with Scherrer 

equation. But the size distribution of Pt particles in this sample was approximately counted as 

2 – 30 nm in TEM [5]. Here the application of Scherrer equation is limited due to the big size 

distribution of Pt particles. 

4.1.2.3 Thermogravimetric analysis and Infrared spectroscopy 

The behaviour of thermal decomposition of the SiO2 NTs filled with Pt templates has been 

studied by TG and DTA analysis as shown in Figure 4.9 (black line). The heating rate was 

designed as 5 °C/min in order to be close to the situation of calcination. For comparison, the 

corresponding behaviour of the commercial Pt salt is listed together (grey line). 

In general, the TG curve of the sample of SiO2 NTs in Figure 4.9A has four steps at 

50 – 500 °C. The slope of the curve is highest between 150 - 200 °C. Concretely speaking, the 

weight loss started at 50 °C, happened most acutely in the range of 150 - 200 °C and slowed 

down in the range of 200 - 300 °C. Afterwards there is a slowly but lasting weight loss till the 

temperature approaches 500 °C. In the first run of heat treatment, the weight loss is about 

23%. Another three runs of heat treatment till 800 °C were carried out, without causing any 

significant weight loss. The indication is that the decomposition of the template-filled SiO2 

NTs under the heat treatment till 500 °C has been mostly completed.  

By analysing the TG curve of the commercial Pt salt, weight loss happened in two steps: 

37% at 190 – 255 °C and 12% at 255 – 310 °C, which should be corresponding to the 

following reactions in sequence: 
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Initial decomposition: 2322343 24)()()( CONHOHPtHCONHPt ++→   (4.2) 

Redox reaction:   OHHNPtNHOHPt 22232 222)( +++→+    (4.3) 

By comparing the two TG curves, it can be learned above all that the low amount of 

weight loss after 300 °C should come from the SiO2 coating, perhaps due to the residual water 

or solvent molecules in the micropores and the dehydration of Si-OH groups around 400 °C. 

From the DTG curve of the sample in Figure 4.9B, its weight loss is clearly observed to 

have four processes in the range of 50 - 120 °C, 140 - 250 °C, 250 - 310 °C and 370 – 450 °C, 

centered at 93 °C, 198 °C, 290 °C and 410 °C in sequence. The two processes in the middle 

should come from the Pt templates. Interestingly, compared with the commercial Pt salt, the 

peak centered at 238 °C (initial decomposition) of the SiO2 NTs has an obvious shift of 40 °C 

to lower temperature. Instead, for the other peak of commercial Pt salt at 290 °C (redox 

reaction), no shift is observed. The reason behind this shift is attributed to the nanometer size 

and in turn the large surface area of the Pt templates in the SiO2 NTs, whereas the commercial 

Pt salt contains particles in the micrometer regime. This size effect has influence on the initial 

decomposition, but no apparent effect on the redox process. 

In the DTA curve of the sample in Figure 4.8C, a weak and broad endothermic band is 

observed in correspondence with the thermogravimetric effect in the range of 50 – 300 °C. 

This band is composed of a broad peak positioned near 200 °C (related to the initial 

decomposition of the Pt tempaltes) and two shoulders on both sides of it. No thermal effect 

above 300 °C is obvious. Consistent with the DTG curves, there is a shift to low temperature 

for the SiO2 NTs compared with that of the pure commercial Pt salt as well. 

Furthermore, the sample was subjected to IR measurements. The IR spectra before and 

after the heat treatment are plotted as grey line and black line in Figure 4.9D respectively. The 

three highlighted positions are characteristic peaks for amorphous SiO2. The peaks near 1100, 

800 and 450 cm-1 are assigned to the asymmetric stretching of SiO4 tetrahedron, the 

symmetric stretching of SiO4 tetrahedron and the Si-O-Si bending respectively [10]. It can be 

observed that the SiO2 absorption peaks of the template-filled sample have an obvious shift to 

lower energies (especially the asymmetric stretching of SiO4 tetrahedron being up to 44 cm-1) 

relative to the metal-containing sample. Besides, for the SiO2 NTs filled with Pt templates, 

there are an absorption band resulting from deformation vibration in a water molecule at 1595 
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cm-1 and an absorption band of carbonate at 1378 cm-1. After the heat treatment in the 

thermogravimetric analysis, both absorption peaks disappeared. 

The interaction between the templates and the SiO2 walls, i.e. the hydrogen bonding 

and/or the electrostatic interaction formed between [Pt(NH3)4]2+ and silanol groups on the 

wall surface, could account for the shift of the characteristic IR absorption peaks of 

amorphous SiO2. In the sample after the heat treatment, the templates have been reduced into 

metallic Pt particles dispersing in the SiO2 matrix and hence this interaction does not exist 

anymore. The dehydration of Si-OH groups during the heat treatment could also contribute to 

the shift, but with a much less pronounced effect. On the other side, from this shift of IR 

absorption peaks, it can be deduced that the interaction between the template and the SiO2 

wall should be to a great extent some specific forces other than the van der Waals forces, since 

the latter exist ubiquitously and make no difference of valent states and kinds of compounds. 

Further discussions about the interaction will be given in the next section. 

4.1.2.4 Coating process 

In order to interpret the coating mechanism of TEOS on the surface of the template, 

understanding of the fundamentals of the adsorption process and sol-gel chemistry are 

required.  

At first, the structure-directing effect of the Pt templates has been examined with a blank 

test, whereby the same prescription procedure was followed as the general route except for an 

absence of the templates. It was observed that the blank test sample was still transparent and 

colourless after 12 h stirring. Observed under SEM, it looks like cracked membrane deposited 

on the sample holder. The amorphous product, compared with the regular morphology of 1D 

nanostructures, could be ascribed to the sols formed following the hydrolysis and 

condensation of TEOS, since the reaction time, 12 h, was relatively short to form a gel 

(a global rate of condensation, , is  for TEOS [11]). Based on the 

experimental facts, a preliminary conclusion could be made that the amine group in the Pt 

templates can increase the condensation rates of metal alkoxides, acting as a catalyst. 

ck
11410 −−− sM

As discussed in section 2.2.4, the stability of silica sol does not obey DLVO theory since 

it is apparently stabilized by a layer of adsorbed water that prevents coagulations even at the 

isoelectric point. The presence of non-hydrolyzed cations can reduce the degree of hydration 
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through ion exchange between the cation and the hydrated SiOH. Due to this assertion, it 

seems that the sample composition of the templates, i.e. aminoplatinum complex, favoured 

the coating of silica sols on it. Actually, the composition of the template is not a crucial factor 

since, for synthesis of SiO2 NTs, many other feasible templates including Ag nanowires 

[12,13], peptides [14], V3O7·H2O [9], possess entirely different compositions and properties. 

A common feature for all those template methods is the lyophilic surface of the templates, 

specifically hydrophilic for sols of SiO2 polymers. The hydrophilic template tends to adsorb 

molecules existing in the solvent by mainly two kinds of interactions: universal interactions of 

the London dispersion forces (formerly called van der Waals forces) and specific interactions, 

including electrostatic and electron donor-acceptor interaction (called hydrogen bonding with 

water molecules as the medium) [15].  

According to the IR observation in section 4.1.2.3, the specific interactions contribute 

more to the coating of silica sols on the templates than general van der Waals forces. Under 

the basic condition the silanol anion could act as an electron donor to form hydrogen bonding 

with the coordinative amine of the central Pt2+. On the other hand, an electrostatic interaction 

between the silanol anion and the complex cation, [Pt(NH3)4]2+, could also form [5]. Owing to 

these interactions with the templates, the repulsive electrical double layers on the silanol 

surfaces are disturbed, thus it could be imagined that a layer of silanol species is formed, 

being adsorbed on the surface of the templates. The follow-up adsorbates, i.e. silanol species, 

deposit on the first layer due to their reduced double layers and the -Si-O-Si- bonds are 

formed by rapid condensations. In this way, the condensation rate of silica sols is increased, 

that results in the formation of silica walls around the templates. 

Attention should also be given to the short-range nature of the specific interactions, i.e. 

the hydrogen bonding and electrostatic interaction. The intensity of the interactions decreases 

sharply along with the distance (up to 50 nm according to the wall thickness) to the surface of 

the template, while the relative contribution of the van der Waals forces increases. Because of 

the weak forces, flabby walls of silica have been observed around the template when the ratio 

of TEOS to Pt is as high as 40:1 [6]. 
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4.1.3 TiO2 nanotubes 

Attempts have also succeeded in applying this template method to the preparation of TiO2 

NTs. In this section, firstly a thorough characterization of the as-synthesized TiO2 NTs is 

exhibited. Then several factors influencing the synthesis of TiO2 NTs are introduced and 

discussed. At last, there are comprehensive discussions about the coating process and the 

crystallinity of the TiO2 NTs. 

4.1.3.1 Microstructures of TiO2 nanotubes 

The as-synthesized TiO2 NTs were thoroughly characterized by employing a variety of 

techniques such as SEM, TEM, EDXS and XRD.  

a) Electron Microscopy 

The 1D morphology of the sample after drying and calcination was firstly observed by SEM. 

From the SEM images in Figure 4.10, the tubular structures with rather uniform diameters 

throughout the sample are evident. In Figure 4.10A, it can be seen that the sample which 

features 2 – 5 µm in length and 300 - 400 nm in outer diameter. In comparison to the 

prismatic morphology of SiO2 NTs (Figure 4.4), the TiO2 NTs look like round columns. For 

the two open tubes in image D, the wall thickness is observed to be about 100 - 120 nm, i.e. 

thicker with respect to the hollow interior than for SiO2 NTs. Although the interior is 

rectangular for both open tubes, the outer morphology is round instead, owing to the 

incompact coating of TiO2. In addition, the coating process around the template was quite 

ubiquitous since the sample has a high yield of TiO2 NTs, without significant by-products. 

  

A B 

Figure 4.10 SEM images: A) an overview; B) a close observation at a high magnification.  
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The sample has been further observed by TEM. In Figure 4.11, the tube wall has a 

thickness about 100 - 150 nm (darker regions), consistent with the observation in Figure 

4.10B. The tube length is up to 6 µm. Compared with that of SiO2 NTs (Figure 4.4), the TEM 

image of TiO2 NTs is different in two aspects. One is the darker wall of tube, which is related 

to the higher electron scattering potential of TiO2 compared with that of SiO2. The other is the 

absence of black Pt particles being observed repeatedly in the SiO2 sample. With this TEM 

image, it is restrained to determine whether the Pt particles are present or not inside the tubes. 

In Figure 4.11B, the close-up of the wall of a TiO2 tube is shown. The black points correspond 

to the Pt nanoparticles with sizes of approximately 3 nm. It is very rare to observe particles as 

large as 100 nm. Since they are highly dispersed inside the TiO2 matrix, the Pt nanoparticles 

are not observable in Figure 4.11A. 
 

 

A

 

B 

 
Figure 4.11 TEM images of (A) an overview of the TiO2 NTs calcined at 500 °C; (B) A 
close-up of the wall of a TiO2 tube. 
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b) Element analysis with Energy Dispersive X-ray Spectroscopy  

The presence of Pt element is ensured with the EDXS result shown in Table 4.1. The 

measured percentage of Pt in weight, 28.885%, is slightly lower than the calculated value, 

32.773%, with a corresponding deviation of 11.9%.  

The discrepancy could be ascribed to either the experimental error from the measurement 

of 22 µl TBOT with a pipe having the lowest measure limit as 10 µl during the synthesis, or 

an uneven distribution of Pt element throughout the sample, or both of them.  
 

Table 4.1 Element analysis of TiO2 NT (Pt/TBOT=1:5, calcined at 500 °C) with EDXS 
Spectrum No. C wt.% O wt.% Ti wt.% Pt wt.% 
Spectrum 1 6.09 30.94 33.33 29.64 
Spectrum 2 6.37 33.26 32.24 28.13 

Average 6.23 32.1 32.785 28.885 

 

c) X-ray diffraction 

The XRD powder pattern A shown in Figure 4.12 tells us that the fresh product directly after 

the sol-gel process is amorphous with essentially no diffraction peaks. The possible reason 

will be elaborated in the discussion part of section 4.1.3.3. 

The sample obtained after the calcination at 500 °C (pattern B) can be assigned to rutile 

phase of TiO2. The size distribution of polycrystalline rutile is around 5 nm according to 

Scherrer equation mentioned in Section 3.2.2.1 of Chapter 3. This result is consistent with 

previously reported observation of TEM, whereby Pt nanoparticles of 1 – 3 nm are highly 

dispersed in this sample. The particles are too small to give reflections. The state of Pt in the 

current sample calcined at 500 °C is regarded as being amorphous. 

When the calcination temperature is further increased up to 700 °C (pattern C), the 

diffraction peaks of rutile TiO2 (annotated as *) are narrower and stronger, indicating the 

increase of both the amount and the size (ca. 10 nm, according to Scherrer equation) of rutile 

nanoparticles in the sample. What attracts more attention is the appearance of additional 

strong peaks annotated as ·, which agree well with the diffractogram of crystalline Pt. 

Therefore the previous Pt nanoparticles (1 – 3 nm, counted in TEM) has aggregated and 

crystallized into bigger particles (ca. 20 nm, according to Scherrer equation) during the 
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calcination at 700 °C. 

Based on the results of powder XRD, it is clear that the crystallization of Pt in the TiO2 

sample is more difficult than that in the SiO2 sample. Further elaboration will be carried out in 

the part of discussion (section 4.1.3.3). 
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Figure 4.12 XRD patterns of TiO2 NTs: A) as-synthesized; B) 500 °C for 5 h in air; C) 700 °C 
for 5 h in air. On the patterns peaks annotated with * belong to Rutile and those 
with · belong to Pt. 
 

4.1.3.2 Influences of reaction parameters 

In comparison with the case of SiO2 NTs, the coating with TBOT on the template surface 

appeared much more difficult than TEOS, due to the much faster hydrolysis and condensation 

speed of TBOT at the presence of the template and the large quantity of water. Although as 

demonstrated above the synthesis of TiO2 NTs has been successfully achieved, the demand of 

painstaking control over the synthesis procedures caused a lower reproducibility of complete 

coatings of TBOT on the template than for TEOS. Several parameters are very sensitive for 

the synthesis of TiO2 NTs, such as temperature, pH value, and the addition of Diethylene 

Glycol (DEG.). With illustrations of SEM investigations, the roles of these parameters will be 

discussed below. 

a) Role of cooling 

From viewpoints of reaction kinetics, in order to decrease the reaction rates of TBOT, 

measures like decreasing the reaction temperature and the concentration of reactant are 
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generally employed. In a typical synthesis, TBOT was diluted with ethanol to ca. 0.025 mol/L. 

On the other hand, the temperature was decreased to –70 °C [1].  

While keeping other parameters constant, the mixing of the template suspension, the 

TBOT solution and the consequent sol-gel process were carried out at different temperatures. 

As shown in Figure 4.13, the image A, B and C were samples prepared at –70 5 °C, –30± ± 5 

°C and 0 °C respectively. Most of the components in sample A are 0D nanoparticles, which 

could be attributed to the TiO2 particles yielded from the part of TBOT which has not been 

successfully coated on the templates. Instead, the sample B prepared at the relative high 

temperature, –30 5 °C, comprises only 1D nanostructures. The sample C prepared at 0 °C 

has a lower yield of 1D nanostructures than the case of –70

±

± 5 °C.  

From these comparisons, the effect of cooling on the coating of TBOT is obvious: too 

much cooling could lead to a too slow deposition rate of TBOT on the template. Before the 

complete coating is achieved, the forthcoming warm-up in air might accelerate the 

condensation among TBOT monomers and thus result in the formation of particles. On the 

other hand with an insufficient cooling (sample C prepared at 0 °C), at first the hydrolysis of 

TBOT and then the condensation among TBOT monomers might have been reached before 

any significant deposition on the surface of the template. The experimental facts show that a 

3-hours-long cooling at –30 5 °C is adequate for the sufficient coating, hence it is chosen as 

a constant in the following experiments. 

±

b) Role of DEG / TBOT molar ratio 

From Figure 4.13, the effect of adding diethylene glycol (DEG) to the TBOT/ethanol solution 

can also be observed by comparing the case with DEG in image C and the case without DEG 

in image D. Apparently, the yield of TiO2 NTs is much higher in the sample C than in the 

sample D. It must be pointed out that, although sometimes a complete yield of TiO2 NTs could 

also been achieved without DEG, this chance is much less than the case with DEG. Therefore, 

the presence of DEG is advantageous for the synthesis of TiO2 NTs. 

Glycol is usually employed as a stabilizer to greatly reduce the hydrolysis rate of 

titanium alkoxides [16, 17]. The working mechanism is mainly about formations of glycolates 

or mixed alkoxide/glycolate derivatives as shown in the reactions below (with ethylene glycol 

as an example): 
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Figure 4.13 SEM images of samples prepared at different parameters listed in the sequence of 
temperature, ratio of DEG/TBOT, pH value: A) –70± 5 °C, 7:1, 10.40; B) –30 5 °C, 7:1, 
10.40; C) 0 °C, 7:1, 10.40; D) –30 5 °C, 0, 10.40; E) –30

±
± ± 5 °C, 7:1, 10.00. The bar in every 

image is 5 µm. 
 

Ti(OBu)4 + HOCH2CH2OH           Ti(OCH2CH2O)(OBu)2 + 2 HOBu (4.4) 

Ti(OBu)4 + 2 HOCH2CH2OH          Ti(OCH2CH2O)2 + 4 HOBu.  (4.5) 

It has been reported that the glycolated precursors are more resistant to hydrolysis than 

titanium alkoxides, and could be kept in air for several months without observing any 

precipitation from the solution [18]. 
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Moreover, it is necessary to mention that an increase of tube thickness of TiO2 NT is 

obvious when DEG is added (300 – 400 nm) in comparison with the case without DEG 

(ca. 100 nm). The presence of residual DEG in the tube wall after the coating should be 

responsible to that increase. Further efforts will be engaged in BET measurements to calculate 

the specific surface area of TiO2 NTs with and without the addition of DEG. 

c) Role of the pH value of ammonia solution 

Another parameter meaningful for the complete deposition of TBOT on the template is the pH 

value of ammonia solution. From the comparison of sample C (pH = 10.40) with sample E 

(pH = 10) in Figure 4.13, it could be concluded that the pH value of ammonia solution has an 

influence on the yield of TiO2 NTs: 100% in sample C and ca. 10 % in sample E. Reproduced 

experiments confirmed the influence of pH value on the coating: only trace amount of tubes 

were produced as the case in sample E. At a higher pH value, 10.64, the appearance of the 

product was similar to sample E, only with a slightly different yield of NTs. That means the 

optimum pH range is very narrow for the preparation of TiO2 NTs. 

    A basic catalyst like ammonia solution was supposed to activate both the hydrolysis and 

the condensation of TBOT [19]. However, there was no specific study on this effect. Actually, 

it is proven here that the reaction rate of TBOT is not in direct proportion to the pH value of 

ammonia solution because at the lower value, i.e. 10, hydrolysis and/or condensation of 

TBOT should be faster than that at the higher value, i.e. 10.40, based on the lower yield of 

NTs in the former case.  

4.1.3.3 Discussion 

a) Coating of TBOT on the templates 

In analogy to the coating of TEOS, a blank test was also carried out for the coating of TBOT, 

i.e. an experiment with the same prescription as the synthesis of TiO2 NTs except the absence 

of the templates.  

Compared with the case of TEOS, the blank test sample was somewhat opalescent. That 

is reasonable because of the several orders of magnitudes higher rates of hydrolysis and 

condensation of TBOT in comparison with TEOS. However, it is a stable sol, without visible 

precipitates even after being deposited in air for 1 day. A gel-like network could only be 
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observed after being deposited in air for at least 2 days. 

In comparison, with the presence of the templates, the precipitation happened frequently 

if great care has not been taken during the synthesis of TiO2 NTs. If kept in stillness, the 

resultant mixture departed as a clear solution in the upper part and a white sendiment in the 

lower. Neither sol nor gel could be formed.  

Based on these experimental facts, it is clear that the presence of Pt templates can 

increase the rate of coating of TBOT with the same coating mechanism as that of TEOS 

(section 4.1.2.4).  

b) Crystallinity of the TiO2 nanotubes 

As for the crystallinity of the TiO2 NTs, there are three points worth being discussed: the 

amorphous state of the template-filled TiO2 NTs, the phase transformation temperature of 

TiO2 and the elevation of the crystallization temperature of platinum. 

First of all, it is surprising to observe that the Pt templates after being coated with TiO2 

have lost its crystallinity according to the XRD measurement (Figure 4.11A). Neither has the 

TiO2 coating exhibited any crystallinity. In comparison, a good crystallinity has been observed 

for the Pt templates coated with amorphous SiO2 (Figure 4.7B). Obviously, it is the TiO2 

coating that causes the disappearance of the crystallinity of the Pt templates.  

For the amorphous state of the Pt templates coated with TiO2, a plausible reason could be 

the highly dispersion of Pt templates inside the TiO2 coating. Due to the unsaturated 

coordination of TiO2 material, strong electron donor-acceptor interactions might have taken 

place between Ti atom and the N atom in NH3 and/or O atom in HCO3 anion of the template, 

Pt(NH3)4(HCO3)2. Hence, the Pt templates could have been brought into the TiO2 matrix as 

soon as the coating is achieved. Alternatively it could also happen during drying of the 

powder product due to the increased surface area and free vacancies in the TiO2 wall after the 

evaporation of solvent molecules. Both assumptions are in accord with the experimental facts 

although they are not yet testified. 

Secondly, it is noticeable that, after the calcination at 500 °C, a pure rutile phase has been 

formed (Figure 4.11B) instead of anatase or mixture of them. It is well known that TiO2 exists 

in two tetragonal crystalline modifications, a metastable phase, anatase, and a stable phase, 

rutile. The transformation temperature from anatase to rutile phase of the conventional 
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polycrystalline or single crystalline titania materials is >800 °C [20,21]. Evidently, the sample 

in the current study crystallizes into rutile at a much lower temperature without the formation 

of anatase. 

The size effect of nanomaterials could account for this phenomenon. Due to the decrease 

in the size of TiO2 particles, the amount of atoms on the surface increases. Hence when the 

sample is subjected to the same heat treatment, more stable phase, i.e. rutile phase, is easier to 

be formed. On the other hand, it could be assumed that the presence of Pt might promote the 

phase transformation since this process is reported to be very sensitive to dopants, e.g. silicon 

[22].  

Thirdly, when subjected to the same 5-hours-long calcination at 500 °C, the Pt templates 

coated with TiO2 does not crystallize to metallic Pt (Figure 4.11B), whereas metallic Pt 

nanoparticles have been detected for the case of SiO2 (Figure 4.7C). Moreover, when the 

sample was instead calcined at 700 °C (Figure 4.11C), the X-ray diffraction peaks of metallic 

Pt appear. Therefore, it could be concluded that the TiO2 walls have significantly inhibited the 

crystallization of Pt metal in contrast to the SiO2 walls. Bearing in mind that the content of Pt 

inside the NTs is as high as 19.6wt.%, it is amazing that Pt could keep its amorphous state 

without aggregation and crystallization. 

Two reasons can account for this inhibiting effect of TiO2 walls on the crystallization of 

Pt metal. Firstly it could be explained by the encapsulation of the Pt metal particles by a 

reduced TiOx overlayer [23]. The encapsulation layer is reported to have two atomic layers of 

a Ti-O film on top of Pt clusters, which is highly strained and forms a dislocated network [24]. 

Hence, the Pt clusters are highly dispersed instead of being aggregated to form observable 

crystals. Secondly, although no charge transfer occurs on stoichiometric TiO2, Ti3+→  Pt local 

charge transfer is observed on defective TiO2 [25]. Since the amorphous TiO2 wall prepared in 

our study is highly defective, the dispersion of Pt clusters inside the TiO2 matrix could have 

been effectively stabilized by this charge transfer. However, at elevated temperature, i.e. 700 

°C, the thermal mobility of Pt clusters is strongly enhanced, leading to the aggregation of Pt 

clusters and the further crystallization. 

In summary, the unsaturated coordination of TiO2 might be the origin for the occurrence 

of all three aspects discussed above on the crystallinity of the TiO2 NTs.  
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It is well known that Pt-doped TiO2 often shows a high photocatalytic activity for various 

oxidation reactions [26-29]. Platinum deposits on TiO2 trap photo-generated electrons and 

subsequently increase the photo-induced electron transfer rate at the interface. On the other 

hand, they also provide catalytic sites where different mechanistic pathways from those on the 

naked TiO2 are enabled [27-29]. For the prepared TiO2 NTs doped with a large amount of Pt, 

special applications in photocatalysis are expected. 
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4.2 Growth mechanism of templates of [Pt(NH3)4](HCO3)2

In this section, attentions have been focused on the detailed observation of the morphology of the 

template and the possible formation mechanism, by varying several parameters including the 

temperature, rate of ethanol addition, concentration of the mother solution (the aqueous solution 

of the Pt salt) and ratio of ethanol (added in order to precipitate the template NFs) to water. The 

experimentally established formation mechanism of the templates does contribute to and 

meanwhile is proven by the controlled growth of silica NTs. In combination with knowledge in 

fields of the sol-gel technique and the crystal growth, the experimental facts were discussed 

reasonably. Scanning Electron Microscopy (SEM) was the main tool for the sample 

characterization in this study. 

4.2.1 Influences of different parameters on the morphology 

In this part, the template formation is thoroughly investigated by varying related parameters at the 

step of precipitation. Hereby the morphology of the template is defined not only as the geometric 

form of the template but also its size distribution. The goal is to obtain Pt templates comprising of 

pure NFs with a narrow distribution in diameter. 

4.2.1.1 Temperature and rate of ethanol addition 

From all images shown in Figure 4.14, one common feature is the preferred 1D morphology of 

the template, independent of the size distribution. By a simple process of solvent modification, i.e. 

the adding of ethanol into aqueous solution, the tetraaminoplatinum compound naturally grows 

into 1D structures, this habit is supposed to be determined by the highly anisotropic bonding in 

the crystallographic structure [5] similar to asbestos and chrysolite [30]. The crystallinity of the 

templates has been confirmed by X-ray powder diffraction (section 4.1.1.2), which agrees very 

well with the pattern of the commercial [Pt(NH3)4](HCO3)2. 

The size distribution of the templates depends on the temperature of precipitation to a 

certain extent. If the two cases shown in Figure 4.14A and 4.14B are compared, it is obvious that 

the distribution in thickness of the fibers prepared at 0 °C (0.1 - 1.5 µm) is narrower than that 
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prepared at room temperature (RT) (0.1 - 3 µm), while the length of the nanometer-thick fibers 

(NFs, thickness in 50 – 1000 nm) is shortened from >10 µm at RT to ca. 5 µm at 0 °C.  

The narrower distribution in thickness can mainly be ascribed to the downsizing of the 

micrometer-thick fibers (MFs, thickness in 1 – 3 µm) with the decreasing temperature. This 

downsizing fact could normally be a result of smaller sizes of nuclei at lower temperature. 

However, less aggregation of NFs seems to be more responsible (section 4.2.2). The relative 

decrease in length could be ascribed to an increase in the number of nuclei at 0 °C than at RT 

because, with the same precipitating rate, more nuclei would be generated at a lower temperature. 

Additionally, in both pictures, the rectangular cross-section of the templates could be observed, at 

this scale of course mainly those MFs.  
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Even though the drastic effect of the temperature on the size distribution of the templates, it 

is still infeasible to obtain uniform NFs by further cooling the system, because the aqueous 

solution system would be frozen not far below 0 °C. 

Another effective factor to the size distribution of the templates is the rate of ethanol 

addition. If other factors are kept constant and the rate of ethanol addition is increased from 0.5 to 

10 mL/min, the µm-thick fibers in the template mixture (Figure 4.14B) are replaced by the 

submicrometer-thick fibers (Figure 4.14C). A plausible reason for that observation will be 

discussed in section 4.2.2. However, in spite of the further increase of rate of ethanol addition to 

1000 mL/min, a broad size distribution, i.e. 50 - 1000 nm in thickness, is still present in the 

templates, the case of which is similar to Figure 4.14C. Therefore, a different method must be 

developed in order to obtain uniform template NFs.  

4.2.1.2 Morphology dependence on the salt concentration in the mother solution 

The study on the morphology of a sample through varying the concentration of the mother 

solution is intended to prepare templates with a narrow distribution in thickness. For the 

observation of the sample prepared with the Pt concentration at 0.001 M, the presence of TEOS is 

a prerequisite to keep the original form of the template, since the pure template prepared at such a 

low concentration is subjected to a severe deformation in its morphology during the evaporation 

of solvent on the surface of SEM holder. Therefore, in all cases samples exhibited here are with 

addition of TEOS in order to make the comparison reasonable.  

When the Pt concentration decreased from 0.0125 M (Figure 4.15A) to 0.003 M 

(Figure 4.15B), the relative amount of NFs in template mixture decreased too, while both the 

relative amount and the size of MFs increased (the reason will be discussed in section 4.2.2). In 

addition, trace amounts of 20 - 30 nm particles were observed in both two samples, which could 

be attributed to Pt/silica clusters formed by rapid condensations of silica sols at the presence of 

trace amount of electrolyte, i.e. [Pt(NH3)4]2+ and HCO3
- [31].  
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the MFs should be formed prior to the preferred NFs, but here it is too arbitrary to argue that 

there is a clear temporal separation between them. Although the problem, i.e. the broad size 

distribution of the templates, has not been solved through varying the concentration of the mother 

solution, relatively higher value of concentration seems to be advantageous to the formation of 

NFs. In the subsequent study, a salt concentration of 0.0125 M was usually adopted. 

4.2.1.3 Bundles of NFs observed at ethanol/water of 1:1 

The focus is hereafter put on the formation mechanism of MFs contained in the templates, which 

could not be removed by varying parameters such as the temperature, rate of ethanol addition or 

Pt concentration of the mother solution. Attention has been paid to the temporal occurrence of 

MFs owing to the previously established conclusion about its precedence over that of NFs. Two 

possibilities could exist, the anisotropic growth of micrometer-thick nuclei or the lateral 

aggregation of NFs. 

The usual procedure to prepare the templates through the solvent diffusion is by adding 

10 mL ethanol dropwise but continuously into 1 mL ammonia solution of the Pt salt (the mother 

solution). The samples of the templates in Figure 4.14 were all prepared after 10 mL ethanol were 

added, from which only completed morphology of the templates could be observed. In order to 

catch the moment in-situ during the formation of the templates, the continuous addition of 

ethanol was interrupted at 1 mL ethanol. Several drops of the precipitate were collected on a 

sample holder of SEM. It was necessary to blow away the solvent with a dry airflow for the sake 

of obtaining the original appearance. The break of adding was compelled since, as to the limited 

amount of precipitates at this low rate of ethanol to water, it took several times of collection till 

an adequate amount of precipitate was retained on the sample holder.  

As shown in Figure 4.16, here again NFs is not the only morphology, instead they are 

accompanied by bundles of NFs due to the lateral aggregation. These bundles, having a lateral 

size of 1 - 3 µm, could be classified as the precursors of the investigated MFs. In a close 

observation in Figure 4.16B, the big bundles have already smooth sides but rather rugged ends. 

When 10 mL ethanol are added, the rugged ends are smoothed as shown in Figure 4.16C. 

Referring to the obvious increase in size of MFs as precipitating speed decreases (comparison of 
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Figure 4.14B and 4.14C), the larger size of MFs in Figure 4.16C than those in Figure 4.14B could 

be attributed to a delay of precipitation during the interrupted sampling. Moreover, in Figure 

4.16C the relative amount of NFs appears to be less than that in Figure 4.14B, very probably due 

to the consumption of NFs of the formation of bundles.  
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4.2.2 Discussion of the formation mechanism of Pt templates 

As the template formation mechanism, an illustration is given in Figure 4.17 on the basis of the 

observations. 

As ethanol/water ratio and time evolve 

Mixture of NFs and MFs [Pt(NH3)4](HCO3)2 

aqueous solution 

1. Nucleation 

2. Anisotropic growth 3. Aggregation 

4. Aging 

Nuclei 

Intermediate NFs

Bundles

 
Figure 4.17 Illustration of the formation of Pt templates as time and ethanol volume evolve. 
 

 The formation of the Pt templates follows the routine procedures of nucleation and growth. 

Along with the dropwise addition of ethanol, the aqueous solution is consequently concentrated 

and further comes to a state of supersaturation due to the insolubility or sparing solubility of the 

Pt salt in ethanol. Once the concentration of building blocks (ions) becomes sufficiently high, 

they aggregate into small clusters (nuclei) through a homogeneous nucleation. With the 

continuous providing of building blocks, the nuclei serve as seeds for further anisotropic growth 

to form intermediate NFs (50 – 100 nm). However, the intermediate NFs grown at the initial 

stage do not keep their independency from each other, but feature a strong tendency to aggregate 

into bundles (being discussed in following paragraphs), resulting in a broader size distribution of 

the templates (0.1 - 3 µm, approx.). Hereafter, as ethanol/water ratio and time evolve, the rugged 

ends of bundles disappear at the aging process.  

According to the formation mechanism in Figure 4.17, determinative steps are that of 

nucleation and aggregation in order to obtain monodisperse NFs, whereas for achieving NFs with 
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high aspect ratios the steps of anisotropic growth and again aggregation are of utmost importance. 

In combination with the above-given experimental observations, these two aspects will be 

discussed respectively.  

Monodispersity 

First as to the topic of being monodisperse, a single burst of nucleation that consumes the excess 

solute can achieve a single particle size; if new nuclei form during the growth period then a range 

of sizes results (theory built up by LaMer and Dinegar [33]). Therefore, the size distribution of 

the templates precipitated at a rate of 10 mL/min (Figure 4.14C) was narrower than that of 

0.5 mL/min (fig. 4.14B) owing to the faster nucleation in the former case. Whereas it was still by 

no means monodisperse since new nuclei could have formed during the further “too fast” growth.  

In contrast, slow growth instead lead to another specific problem, i.e. the aggregation of NFs, 

which resulted in the frequently occurring MFs. Note that the aggregation became more severe 

(larger size) and frequent (relatively higher content) in the case of Figure 4.16 when there was a 

temporal delay of precipitation. Therefore, it could be inferred that the adding of ethanol could 

stabilize the intermediate NFs, or in other words prevent them from the aggregation. Moreover, 

the case of lower concentration in the mother solution as shown by comparing Figure 4.15A and 

4.15B was equivalent to a retarding of the rate of ethanol addition and hence resulted in larger 

MFs with a higher frequency. Besides the rate of ethanol addition, a lower temperature can also 

limit the aggregation of NFs as demonstrated in Figure 4.14A and 4.14B.  

Bearing in mind all those features of the intermediate NFs, a mechanism accounting for the 

aggregation of NFs could be deduced. At the transitional stage of ethanol/water ratio 1:1, the 

surfaces of intermediate NFs were highly hydrated with a large amount of adsorbed water 

molecules. Accordingly, the system had a high surface free energy that favoured from the view of 

thermodynamics the minimization of surface area through either the dissolution or, more 

probable and often observed, the aggregation of NFs once they encountered each other 

occasionally side by side in the stirred medium. When more ethanol, which replaces water 

molecules at the surface, was added, the system became stable. In addition, the aging, during 

which the surfaces of bundles were smoothed or flat-shaped, could also have been driven by such 
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a thermodynamic force. 

High aspect ratio 

There are two relevant steps influencing the aspect ratio of NFs: the anisotropic growth and 

aggregation. In Xia’s group, silver nanowires with aspect-ratios up to ~1000 were achieved on 

the one hand with the presence of poly(vinyl pyrrolidone) (PVP), which possibly adsorbed on the 

surfaces of silver nanoparticles and prevented them from aggregations, and on the other hand 

through the slow dissolution of silver particles into the solution [12, 13]. Correspondingly, in our 

case at room temperature a slow rate of ethanol addition (Figure 4.14A) led to NFs with 

significantly higher aspect ratios. However, at 0 °C (Figure 4.14B and 4.14C) this effect of the 

rate of ethanol addition on aspect ratios was not that significant. This indicates that, with respect 

to the solubility of the Pt salt, the decrease in temperature is equivalent to an increase in the rate 

of ethanol addition. In both cases, the building blocks were supplied much rapidly and as a result 

new nuclei could be generated for the growth of new NFs. That is the reason for the formation of 

NFs with lower aspect ratios in the case of a lower temperature and a faster precipitation. 

Although the anisotropic growth was favoured through reducing the rate of ethanol addition, 

the aggregation of NFs, a negative factor for getting a high aspect ratio, was promoted at a low 

rate of ethanol addition instead. That aggregation could not be effectively inhibited by varying 

the concentration as demonstrated in section 4.2.1.2. Other methods like an addition of special 

adsorbates in order to prevent the aggregation and in turn obtain NFs with high aspect ratios 

should be tested while keeping a low rate of ethanol addition.  

At the end of this part, we can conclude that, for the template fibers prepared from this 

particular Pt salt by a rapid solvent diffusion, it might be impossible to yield monodisperse ones 

with high aspect ratios through varying above-mentioned parameters mainly due to the severe 

aggregation of intermediate NFs. According to the assumed formation mechanism of templates, 

the experimental observations have been clarified and, furthermore, it showed the pending 

difficulty to solve.  
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4.3 Controlled growth of Pt-containing oxide nanotubes 

In the controlled growth of Pt-containing oxide NTs, the metal alkoxides were ingenuously 

employed as both the stabilizers for the anisotropic growths of the Pt templates, and the coating 

agents to form the tube walls. Monodispersed (100 - 200 nm) SiO2 NTs with high aspect ratios 

(100 - 400) have been successfully prepared. For the case of TiO2, thin (40 - 100 nm) tubes were 

synthesized with improved aspect ratios (up to 100) in spite of a decreased productivity. 

4.3.1 SiO2 nanotubes with high aspect-ratios 

4.3.1.1 Strategy for the controlled growth 

The strategy for the controlled synthesis was developed as follows: TEOS was added into the 

mother solution before the formation of the Pt templates, allowed to undergo a short period of 

intensive hydrolysis. Afterwards, at an extremely rapid stirring rate (e.g. 1000 rpm) a pulse of 

ethanol was injected into the already saturated solution. A homogeneous nucleation was induced 

that lasts also a short period for a “focusing” process [22] of nuclei. Then the stirring rate was 

decreased to the typical one (e.g. 300 rpm) and a large amount of ethanol was pumped with a 

rather slow rate of adding into the nuclei-abundant suspension, for the purpose of providing a 

well-controlled slowly supply of building blocks for the anisotropic growths of template NFs. 

Because of the presence of hydrolysed TEOS in the suspension, the aggregation of NFs has been 

prohibited.  

4.3.1.2 Monodisperse SiO2 nanotubes with high aspect ratios 

a) Morphology characterization with Electron Microscopy 

Reproduced syntheses proved the applicability of this strategy with quality-improved products. 

After primary optimisation of various parameters, neat product of template-filled SiO2 NTs, 

featuring high aspect ratios (Figure 4.18A, 100 - 400) and narrow size distributions (80 - 150 nm 

in the outer diameters from Figure 4.18B), were obtained.  
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After the calcination at 500 °C for 5 h in air, the structure-directing Pt templates was 

reduced and at the end Pt-containing SiO2 NT was resulted as shown by a typical TEM image in 

Figure 4.19. Except the reduction in diameter, the inner morphology of this sample is similar to 

that prepared with the general route. In some cases continuous Pt nanowires could be observed 

inside the thin NTs bearing an analogy to the former observation (Figure 4.4C). The short length 

of NTs (1 - 2 µm) might result from a mechanical abrasion during the sample preparation for the 

TEM measurement.  

 

 

Figure 4.19 A typical TEM image of metal-containing SiO2 NTs after calcination. 

 

Moreover, the observation of a bundle of open SiO2 NTs as depicted in Figure 4.20 confirms 

the authenticity of the formation mechanism of Pt templates illustrated in Figure 4.17. It is the 

presence of the SiO2 walls that makes the aggregation of intermediate NFs observable. The 

relative amount of bundles of NTs in one sample could be varied greatly by changing the 

pre-hydrolysis time of the capping agent, TEOS. The optimised pre-hydrolysis time was 2 min at 

0 °C without significant observations of bundles. When the pre-hydrolysis time was set to 1 min, 

the amount of bundles was about 50%. The shorter the pre-hydrolysis time, the higher the relative 

amount of bundles. Further specific studies on this aspect will be carried out in section 4.3.1.3.  
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Figure 4.20 SEM image of a bundle
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molecules from SiO2 walls.  

To this mesoporous solid, the BJH method can be applied to yield a reliable estimate of the 

pore size distribution. The pore size distribution of the calcined sample is shown in Figure 4.21C. 

It is seen that the pores in this material are mostly distributed in the range of 5 - 25 nm, centered 

at 12.2 nm. The pore size distribution of the sample without calcination (unshown result) is 

similar to that of the calcined sample. The calculated values should be attributed to the mesopores 

on the walls of NTs. The hollow cavities of NTs with diameters in 100 - 200 nm act like 

macropores, which are beyond the applicability to the N2 adsorption and the BJH method. In 

order to determine macropores, Hg porosimetry, which is not available in our institute, must be 

applied. 

In summary, there are micropores, mesopores and macropores inside the sample after 

calcination at 350 °C.  
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Figure 4.21 (A) N2 Adsorption isotherms at 77 K, (B) t-plots and (C) pore size distribution of the 
SiO2 NTs with controlled growth. 
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4.3.1.3 Factors influencing the morphology 

It was found that the rapid injection of a pulse of ethanol (0.1 mL ethanol) for a homogeneous 

nucleation was playing a significant role on the morphology of the product. Besides, the 

morphology of the product also depended greatly on the adding rate of ethanol after the rapid 

injection. 

Two groups of samples were prepared as shown in Figure 4.22. The samples in Group A 

were prepared with the rapid injection process, while those in Group B were prepared without 

that process. The subscripts indicate the corresponding rate of ethanol addition (mL/min). 

From the SEM images, a great amount of information about the morphology of the product 

can be collected. Firstly, the three samples in Group A are compared. Apparently, the fibers in 

sample A0.5 are most uniform (100 - 200 nm) and rather long (15 - 20 µm), without detectable 

bundles. Prepared at a lower rate of ethanol addition, sample A0.25 are composed of fibers up to 

40 µm in length and with a cross-section size distribution of 50 - 400 nm. Bundles of NTs can be 

observed. The sample A2, which was prepared at a faster rate of ethanol addition, has even more 

bundles inside. So that the optimal rate of ethanol addition is 0.5 mL/min. 

The Group B is quite different from Group A. The fibers in sample B0.5 are also very 

uniform in diameter, whereas they are greatly reduced in length (5 - 10 µm). The case at a lower 

rate of ethanol addition, sample B0.25, contains also a large amount of bundles. However, there is 

no observation of bundles in the case of sample B2, being different from sample A2.  

In order to make a clear comparison, these results are summarized in Table 4.2. Three 

parameters are employed to describe the morphology of the product: the distribution of NTs in 

diameter, length of NTs and relative amount of bundles. From Table 4.2, it can be concluded that 

the sample has a narrowest size distribution when the rate of ethanol addition is 0.5 mL/min. The 

length of NTs increases when the adding rate of ethanol decreases. The rapid nucleation process 

is also advantageous to grow longer tubes. Both the rate of ethanol addition and the rapid 

nucleation process influence the formation of tube bundles. In order to produce uniform NTs 

without the formation of bundles, an adequate adding rate of ethanol should be adopted, i.e. 

0.5 mL/min, together with the rapid nucleation process.  
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Figure 4.22 SEM images of the as-synthesized SiO2 NTs. The samples in Group A were prepared 
with the rapid injection process, while those in Group B were prepared without that process. The 
subscripts indicate the correspondent adding rate of ethanol in the unit of milliliter per minute 
(mL/min). 
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Table 4.2 Influencing factors on the morphology of the product 
Sample Size distribution Length  Tube bundles 
A0.25 50 - 400 nm 40 µm some 
A0.5 100 - 200 nm 15 - 20 µm Nearly zero 
A2 100 - 500 nm 10 - 20 µm many 
B0.25 50 - 400 nm 20 - 40 µm many 
B0.5 100 - 200 nm 5 - 10 µm Nearly zero 
B2 100 - 500 nm, 1 – 2 µm 5 - 7 µm Nearly zero 

 

4.3.1.4 Discussion 

a) The mechanism for the controlled growth of SiO2 nanotubes 

Also mentioned previously, the employment of capping agents in artificial 1D nanostructures is 

very popular and successful, as the case of silver nanowires by PVP [12, 13], and CdSe nanorods 

[34] and Co nanorods [35] by trioctyl phosphine oxide (TOPO). The supposed function of 

capping agents was to kinetically control the growth rate of various faces by interacting with 

these faces through adsorption and desorption [12, 13, 34, 35]. Although this hypothesis is still an 

empirical one, it worked well with experimental observations and was frequently used. In the 

present system, hydrolysed TEOS was used as a capping agent and succeeded not only in limiting 

the aggregation among intermediate NFs but also in promoting the anisotropic growth of 

Pt-containing SiO2 NTs with high aspect ratios up to 400. 

The shapeliness of the new product is obliged to the effective capping effect of TEOS. Upon 

the pre-adding, TEOS would undergo a rapid hydrolysis in the environment of ammonia solution, 

water and ethanol, producing a large amount of silanol monomers in a form of (RO)4-xSi(OH)x (x 

varies from 1 to 4). The silanol would be deprotonated at the basic condition and therefore 

mutually repulsive and relatively stable according to the DLVO theory [31]. However, the 

duration for the hydrolysis should be controlled on the one hand because at pH = 10 (20 °C) the 

condensation between silanol monomers is very fast and should be avoided to the best, on the 

other the double layer repulsion is greatly reduced with the presence of electrolyte, i.e. 

[Pt(NH3)4](HCO3)2.  
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When nuclei appear upon the injection of ethanol, the deprotonated silanol molecules 

(monomers or small polymers) are adsorbed to a larger extent than water and ethanol molecules 

(inferred from Lundelius’s rule [15], which claimed that the extent of adsorption is usually higher 

from solvents in which the adsorptive is less soluble) on the specific facets of nuclei. The 

interactions between the silanol species and the nuclei were assumed to be electron 

donor-acceptor interaction (hydrogen bonding) and/or electrostatic force [1]. In this way, the 

aggregation of NFs, possibly due to the adsorptive layer of water molecules, is effectively 

prohibited.  

With a suitable supply of building blocks by adding ethanol, the nuclei would grow in the 

single direction without or with little adsorptive layer of silanol molecules. The adsorptive layer 

of silanol is simultaneously growing along the same direction as the crystalline. In addition, there 

is also lateral growth, whereby the silanol layer is becoming thicker and thicker by further 

condensation of silanol on it. However, bearing in mind that these forces are short-range ones, the 

adsorptive force would decrease along the thickening process. Hence, the tube wall became 

irregular when too much TEOS was added [5]. Gradually, with the 1D growth on the one hand, 

and the lateral layer growth on the other, the final template-containing SiO2 NTs are resulted.  

To a certain extent, the capping effect of TEOS was comparable with its coating effect that 

has been very often employed to coat any pre-formed morphologies, but what has been 

demonstrated here was its “selective coating” in this particular system of 1D growth of the 

nanostructures. In the modified growth route, the two functions of TEOS were elegantly 

combined together to yield the shapely product. Compared with using conventional surfactants 

[12, 13, 34, 35], the ingenious employment of reactant itself (TEOS) as a capping agent in our 

method avoided the introduction of additional substances to the reaction system and thus 

simplified the cleaning procedure.  

b) The reason for open-ended nanotubes 

The open state of tube ends observed in Figure 4C-D could be explained based on the 

above-discussed capping mechanism. For silanol species it is difficult to deposit on the ends not 

only for the thermodynamic reason, for that the capping happened, but also for the kinetic barrier 
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since the corresponding facet is kept growing in a well-controlled manner and always active on 

deposition of building blocks. However, whether the hollow appearance of open-ended NTs 

comes from a loss of the templates is still not clear, since tubular template has also be observed as 

described in section 4.1.1.1. Nevertheless, the encouraging side of the matter is the free access of 

possible functional molecules into the inner part of the open NTs.  

c) Rapid nucleation process 

Based on the theory of LaMer and Dinegar [33], which has been described in section 2.2.5, a 

single particle size can be achieved if the nucleation happens in a single burst of nuclei, whereas 

a range of sizes results if new nuclei form during the growth period. This theory has been 

popularly and successfully applied to prepare monodispersed nanoparticles, e.g. CdSe [34], 

Co [35] nanocrystals. 

For the controlled growth of SiO2 NTs in our study, the extremely rapid nucleation process 

has succeeded in promoting the length of NTs, although it has no obvious influence on the 

distribution of NTs in diameter possibly due to the slower growing rates in comparison with the 

two cases mentioned above. 

d) The morphology of the product during the controlled growth 

In the following, the relationship between the three parameters of the morphology of the product 

and the influencing factors are discussed on the basis of controlled growth. 

Length 

It was concluded that the length of the NTs tends to increase with the decrease of the providing 

rate of building blocks, i.e. [Pt(NH3)4](HCO3)2. This conclusion is reasonable since a slowly 

providing of builiding blocks could avoid the formation of new nuclei and thus promote the 

anisotropic growth of crystalline fibers. Besides, the reason that the rapid nucleation is 

advantageous to the anisotropic growth is also the same.  

Distribution in diameter 

As demonstrated in section 4.3.1.3, the providing rate of building blocks is closely connected 

with the size distribution of the NTs. Here, the formation of bundles is not under consideration. 
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The theory of the focusing and defocusing processes [34], which were popularly suggested for 

the kinetic control of growth of monodisperse nanoparticles, is employed here to interpret the 

mechanism in combination with the capping effect. 

When the providing rate is suitable so that the concentration of building blocks is higher 

than the solubilities of all the particles (nuclei) present, all particles grow, regardless of size. 

Amongst them, the smaller particles grow faster than the larger ones, and as a result, the size 

distribution is focused to be nearly monodisperse.  

When the providing rate is very slow so that the concentration of building blocks drops 

below a critical threshold, the defocusing process occurs: the smaller particles are depleted and 

the larger ones grow. Thus the size distribution broadens.  

For the two situations discussed above, TEOS monomers have acted as capping agents to 

avoid the aggregation and realise the kinetic control of size distribution. However, when the 

providing rate of building blocks is too fast, there is not enough time to allow the effective 

adsorption of capping agents on the new surface of particles after the deposition of building 

blocks. Therefore, aggregation among particles happens, leading to a broad size distribution.  

Bundles 

The flocculation of dispersions is a consequence of attractive forces holding particles together 

when they collide [35]. The formation of bundles of NTs could be regarded as the flocculation of 

dispersions of NTs. Besides, the fundamental reason for the formation of bundles of NTs should 

be attributed to the residual attractive forces, i.e. possibly also electrostatic forces and/or 

hydrogen bonding, among the template fibers of [Pt(NH3)4](HCO3)2 in spite of the shield of SiO2 

walls. The thinner the SiO2 walls, the stronger the residual attractive forces. That is the reason for 

the observation of bundles with a fast adding rate of ethanol (A2). 

The chance for the formation of bundles is higher when the length increases, since longer 

fibers are easier to meet each other from the view of chances and more difficult to depart from 

each other due to the larger area in contact. Thus both cases with a slow adding rate of ethanol 

(A0.25 and B0.25) contained bundles. Besides, the absence of bundles in sample B2 could be 

explained from the view of the short length of NTs.  
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4.3.2 Controlled growth of TiO2 nanotubes with high aspect ratios 

The stategy for the controlled growth of SiO2 NTs was also applied to the synthesis of TiO2 NTs. 

However, due to the acute reaction of TBOT with moisture, the strategy has been modified: the 

TBOT ethanol solution was employed as both the precipitating agent and the capping agent. The 

as-synthesized sample was dropped on the SEM sample holder and then calcined at 500 °C for 

5 h.  

4.3.2.1 Morphology 

The SEM images of the calcined sample were shown in Figure 4.23. First of all, the yield of TiO2 

NTs is not 100 %. In image A, besides two cross-linked NTs (one of them is mechanically broken 

at the cross point), some amount of 0D particles can also be observed. A 6-µm-long NT with 

some particles decorated on part of its wall is shown in image B. From an open TiO2 tube 

image C, it is learned that the NT owns a rectangular cross-section in not only its interior but also 

its exterior. The NT has a diameter of 90 - 100 nm and a tube thickness of ca. 20 - 30 nm. 

Actually NTs as thin as 40 nm has also been observed in image D. The bump on the tube wall 

should consist of TiO2 nanoparticles. In addition, broken tubes are frequently observed as those in 

image D. The fragmentation of NTs could be due to the shrinkage of tube walls and 

simultaneously the strong connection between the tube and the sample holder. 

4.3.2.2 Discussion 

With respect to planned conductivity measurements, the new TiO2 NTs (40 - 100 nm in diameter, 

up to 6 µm in length) are much more applicable than the conventional ones (section 4.1.3, 

300 - 400 nm in diameter and 3 - 4 µm in length) since more effective contact could be realized 

between the electrode and thin NT below 100 nm in diameter. 

By adding TBOT ethanol solution to precipitate the template fibers, the aspect ratios of the 

NTs have been greatly improved from the original 10 to the present 100, although at the same 

time the amount of by-products, i.e. nanoparticles, has also increased. The produce of 

nanoparticles should result from the acute hydrolysis and condensation of TBOT when it was 

exposed to the great amount of moisture in the aqueous solution of [Pt(NH3)4](HCO3)2.  
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Figure 4.23 SEM images of the TiO2 NTs prepared in the controlled route. 
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4.4 Summary 

Based on the results, the following conclusions can be made about the synthesis of oxide NTs 

with the Pt templates. 

z [Pt(NH3)4](HCO3)2 grows into rectangular prisms due to its anisotropic configuration. 

Surprising is that hollow crystals have also been formed as well as solid ones.  

z In a general synthesis route of SiO2 and TiO2 NTs, the precipitates of rectangular prisms were 

employed as templates, which were coated with metal alkoxides in a sol-gel process. The 

interactions between the templates and tube walls, supposed to be hydrogen bonding and/or 

electrostatic forces, have been confirmed by the shift of the characteristic IR absorption 

peaks of amorphous SiO2. After the calcination, the Pt templates, which have been deformed 

to clusters, stayed to constitute the metal-containing oxide NTs. 

z The SiO2 NTs prepared in the general route possess a broad distribution from 50 nm to 2 µm 

in diameter, which has been inherited from that of the Pt templates. Most of tubes are 

close-ended. The filling state of SiO2 NTs with the Pt metal clusters are not uniform due to 

the unequal states of different template fibers. Continuous Pt nanowires are also observed 

inside SiO2 NTs with diameters below 50 nm. 

z In comparison with SiO2 NTs, the synthesis of TiO2 NTs is much more difficult due to the 

rapid reaction of TBOT when exposed to moisture. The successful synthesis is dependent on 

the pH value, efficient cooling and addition of DEG as a stabilizer. 

z The TiO2 NTs prepared in the general route have a narrow size distribution, with 

300 – 400 nm in diameter and 3 - 4 µm in length. Pt clusters are highly dispersed inside the 

TiO2 walls and inhibited from crystallization due probably to the TiO2 surface encapsulation 

layer and/or local charge transfer phenomena. The presence of Pt clusters in the tubes has in 

turn promoted the formation of rutile below 500 °C.  

z The broadly distributed template fibers of the Pt salt are formed due to the aggregation of 

intermediate NFs, which cannot be prohibited effectively by varying the preparation 

parameters of the templates. By employing the pre-hydrolyzed TEOS, i.e. silanol species, as 
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capping agents, the aggregation of NFs has been effectively prohibited.  

z Through a rapid nucleation and then a slow anisotropic growth, monodispersed 

(100 – 200 nm) SiO2 NTs with high aspect ratios (100 - 400) have been prepared in a 

well-controlled manner. Another remarkable character of the new product is the open tube 

end.  

z From the N2 adsorption isotherm, there are micropores, mesopores and macropores inside the 

SiO2 NTs after the calcination at 350 °C. The BET specific surface area of the mesopores is 

relatively large, being 116.4 m2/g. The pore size distribution range is 5 - 25 nm, centered at 

12.2 nm. 

z During the controlled synthesis, pre-hydrolyzed TEOS was employed both as a capping 

agent to stabilize the intermediate NFs from aggregation, and as a coating agent to form the 

tube walls. The capping mechanism of hydrolysed TEOS was supposed as the selective 

adsorption of silanol layers on specific surfaces of the nuclei. The observation of bundles of 

SiO2 NTs with distinct borders has well visualized the capping effect. 

z During the controlled growth of SiO2 NTs, both the rapid nucleation and the providing rate of 

building blocks influence the morphology of the product. 

z The controlled growth has also succeeded in preparing TiO2 NTs with diameters of 

40 – 100 nm and lengths of up to 6 µm. Because of the rapid rates of hydrolysis and 

condensation of TBOT, some amount of TiO2 nanoparticles was produced inevitably. 
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5 Oxide nanotubes with templates of Co(NH3)6](HCO3)(CO3) 

Hexamincobalt hydrocarbonate acts as a template for the synthesis of SiO2 NTs as well. The 

nanotubes obtained appear to be uniform in diameter (100 - 200 nm) and possess a high aspect 

ratio (100 – 200) with optimised preparation parameters.  

It is necessary to mention here that anisotropic growth is not a specific phenomenon for 

hydrocarbonate salts. Instead nanofibers have also been grown by employing Pt(NH3)4Cl2 as the 

template salt (unshown results). 

In this chapter, the formation of this type of Co-containing SiO2 NTs is demonstrated. At 

first [Co(NH3)6](HCO3)(CO3)·2H2O has been prepared into template nanofibers. Then these NFs 

have been coated with silica walls. Various parameters influencing the preparation and thus the 

morphology of the template-filled NTs were discussed.  

5.1 Preparation of [Co(NH3)6](HCO3)(CO3)·2H2O via ion-exchange 

The commercial [Co(NH3)6]Cl3 was converted into [Co(NH3)6](HCO3)(CO3)·2H2O via ion 

exchange. The solution of [Co(NH3)6](HCO3)(CO3)·2H2O has an orange color. The powdered 

product was obtained by adding a large amount of ethanol to precipitate the salt from its aqueous 

solution.  

For the characterization of this powder sample, single crystal XRD and powder XRD were 

carried out. 

5.1.1 Single crystal X-ray Diffraction 

Since the preparation process is supposed to be a simple ion exchange without detectable redox 

reactions, a composition of the powder of roughly [Co(NH3)6](HCO3)3 plus an uncertain amount 

of crystal water was expected. For that compound no entry has been found in the Powder 

Diffraction File database and the single-crystal database.  

Thus, a big crystal, which is suitable for the single-crystal XRD analysis, was selected from 
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the powdered product. Results show that the compound has a molecular formula is 

[Co(NH3)6](HCO3)(CO3)·2H2O with the molecule mass as 318.17. Its structure can be described 

by a unit cell showing the monoclinic symmetry (space group C1 2/c 1, No. 15). The unit cell 

parameters are: a = 1.4847 nm, b = 0.8751 nm, c = 1.0063 nm and α = γ = 90°, β = 112.04°. The 

cell volume is 1.2119 nm3. The (100), (010) and (001) projected structures of the unit cell of this 

crystal are shown in Figure 5.1. For clarity, H atoms are not shown. By comparing the three 

projections, we can learn that this Co salt is highly anisotropic. 

 

             

(010) 

 

(100) (001)

Figure 5.1 The (010), (100) and (001) projected structures of the unit cell of 
[Co(NH3)6](HCO3)(CO3)·2H2O. 
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5.1.2 Powder X-ray Diffraction 

In order to verify the purity of the powdered product, the experimental X-ray diffraction pattern 

(Figure 5.2B) was compared with a powder pattern (Figure 5.2A) calculated from the 

single-crystal data. The peak positions of the two patterns agree very well with each other, except 

that the weak peaks centred at 14.56°, 15.18°, 16.16°, 17.84° and 18.18° in pattern B are devoid 

in pattern A.  
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Figure 5.2 Powder diffraction patterns: (A) the calculated pattern from the single-crystal data and 
(B) the measured pattern of the powder product of [Co(NH3)6](HCO3)(CO3)·2H2O (the same as 
the Co templates). 

 

Therefore, it could be concluded that the cobalt salt is composed of nearly only one phase, 

whose composition is [Co(NH3)6](HCO3)(CO3)·2H2O. Concerning the slight discrepancy, a 

possible reason could be the presence of a trace amount of impurities in the powder product.  

The impurities could be the presence of [Co(NH3)6](CO3)3/2 or [Co(NH3)6](HCO3)3 due to 

the instable state of HCO3
-. However, as shown in the following sections, the presence of 

impurities would not disturb the formation of uniform nanofibers of the Co templates and in turn 
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the Co-filled SiO2 NTs. 

5.2 Co templates 

5.2.1 Results 

Adding ethanol into the aqueous solution of the [Co(NH3)6](HCO3)(CO3)·2H2O resulted in 

precipitation. At a critical volume of ethanol, a fluffy orange precipitate formed. The suspension 

of the precipitate, i.e. Co templates, was deposited on the silicon substrate for SEM observation. 

The behaviour of the Co templates (the same crystallinity as the 

[Co(NH3)6](HCO3)(CO3)·2H2O) was rather different from that of the Pt templates. With the slow 

evaporation of the ethanol solvent, the originally formed orange precipitate disappeared as soon 

as it was exposed in air. That means it could not be distinguished with naked eyes from the 

silicon substrate anymore. Under SEM, there is consistently no observation of regular 

morphology of crystals.  

Rapid evaporation of the ethanol from the precipitate suspension with a blow of dry air was 

effective to keep the original morphology of template. The template morphology of an optimised 

sample is shown in Figure 5.3.  
 

  

A B

 
Figure 5.3 SEM images of the Co templates with optimised preparation parameters (0.0044 g  
[Co(NH3)6](HCO3)(CO3)·2H2O in 2 ml ammonia (pH 10.64) is precipitated by 10 ml ethanol in 
3 min).  
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As shown in Figure 5.3A, only one kind of a uniform fiberlike morphology is observed in 

the optimised sample. In a close-up (Figure 5.3B), firstly it is seen that the fibers consist of 

prismatic surfaces, a characteristic for ionic crystals. The lateral distribution can hardly be 

described because of the severe boundary deformation of individual fibers. Without clear 

separation between them, it looks like the fibers have fused with the others lying in their 

neighbourhood.  

The appearance of the Co templates prepared by solvent modification is greatly dependent 

on the preparation parameters. The sample shown in Figure 5.4 was prepared with the same 

procedure except that distilled water was used instead of ammonia. 
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Figure 5.4 SEM images of the Co templates with the same preparation parameters as that in the 
optimised case except the change of pH value (0.0044 g [Co(NH3)6](HCO3)(CO3)·2H2O in 2 ml 
distilled water is precipitated by 10 ml ethanol in 3 min). 
 

In Figure 5.4A it can be learned that this sample is devoid of uniformity in its morphology. 

There is an appearance of a 5-µm-thick and 50-µm-long crystal tube with a seemingly hexagonal 

symmetry. Besides, the particles in the nanometer regime seem to have no specific morphology, 

different from the fiberlike morphology in Figure 5.3A. At a high magnification in Figure 5.4B, 

the nanoparticles are composed of both 100-nanometer-thick fibers and equant rhombohedra with 

the shorter dimension in 500 - 800 nm approximately. Concerning the so-called equant 

rhombohedra particles, they have no specific size and morphology. Their formation could be 

attributed to either a spontaneous growth or possibly also the breaking of thick fibers upon the 
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exposure to air.  

5.2.2 Discussion 

Based on the experimental facts, it is learned that, firstly, [Co(NH3)6](HCO3)(CO3)·2H2O is only 

stable in solutions and would suffer a great deformation if exposed to air. One reason behind this 

phenomenon could be the stabilization function of ammonia and/or water molecules in the 

solvent to the high surface free energy of the template NFs. As soon as the compound is dried in 

air, the amine group in the Co salt was replaced by other ligands like OH- or CO3
-, thus leading to 

the deformation. 

Secondly, the NFs in the optimised sample are uniform in diameter, the reason of that could 

be the geometric barriers among individual rhombic prisms, which prohibit them from 

aggregation and in turn avoid the broad size distribution as observed for the templates of 

[Pt(NH3)4](HCO3)2.  

Thirdly, provided that the original morphology of the templates is kept until the observation 

under SEM, their appearance, including the size distribution and morphology, is highly dependent 

on the presence of ammonia in the mother solution. In fact, there are other influencing factors as 

will be discussed in section 5.4.  

In general, in order to achieve uniformity in the final NTs, the preparation of the templates 

must be carefully controlled at the specific optimised conditions.  

5.3 SiO2 nanotubes with Co templates 

An optimised sample of SiO2 NTs with [Co(NH3)6](HCO3)(CO3)·2H2O nanofibers as templates is 

presented. The analytical tools involved are XRD, SEM, TEM, STEM and EDXS. 

The preparation of this sample followed the general route of the template method as already 

described in Scheme 1.1 of Chapter 1. With the coating of TEOS, the original morphology of the 

templates is copied and transferred to the final SiO2 NTs. 

 



   - 99 - 

5.3.1 X-ray Diffraction 

The crystallinity of the sample before and after the calcination was examined by XRD 

measurements.  

Before the calcination, the sample is amorphous as shown in Figure 5.5B. The function of 

SiO2 coating to the crystallinity of Co templates is more obvious when compare the pattern of 

pure Co templates (pattern A) with that of the sample (pattern B).  

The disappearance of the diffraction peaks of Co templates after coated with SiO2 walls is 

supposed to be due to the strong interactions between them. Inferred from the high surface free 

energy of the Co templates as discussed in section 5.2, the presence of SiO2 walls must have 

stabilized the NFs by strong interaction forces between them. That may lead to the collapse of the 

crystalline Co templates inside the tubes, since the template NFs are rather thin, being 

100 – 200 nm as will be observed under TEM for the inner diameters of tubes (section 5.3.2). 

Moreover, the shielding of SiO2 walls might have stopped the aggregation of template NFs from 

each other, which would otherwise yield crystalline Co salt.  
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Figure 5.5 XRD patterns of (A) the Co templates exposed in air an
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After the calcination, the sample shows different crystallinities at different heating 

atmospheres. If the sample is treated in air at 300 °C and 500 °C for 5 h respectively, its XRD 

patterns in Figure 5.6B and C show weak and broad peaks of Co2SiO4 (pattern A in Figure 5.6).  

If the sample is treated in H2 at 400 °C for 5 h, instead of those Co2SiO4, its XRD pattern 

shown in Figure 5.7B appears the peaks of the hexagonal cobalt metal (Figure 5.7A). The weak 

and broad peaks in pattern B indicate that the sizes of the Co metal particles are in the low range 

of nanometers. According to Scherrer equation, the size distribution of Co particles is 7 – 15 nm. 

For potential applications based on magnetic properties, the calcination of the sample should be 

carried out in the reductive H2 atmosphere. 
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Figure 5.6 XRD patterns of (A) standard Co2SiO4, (B) the template-filled SiO
air at 300 °C for 5 h, and (C) calcined in air at 500 °C for 5 h. 
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Figure 5.7 XRD patterns of (A) standard hexagonal Co and (B) the template-filled SiO2 NTs 
calcined in H2 at 400 °C for 5 h. 
 

If one compares the XRD results in Figure 5.6 and 5.7, it is seen that for all samples 

calcined either in air or H2, their XRD patterns all have a remarkably broad peak in the range of 

20 - 30°, which is attributed to the amorphous SiO2 [1]. Meanwhile the Co2SiO4 or metallic Co 

peaks are weak, especially when compared with the strong Pt peaks in the Pt-containing SiO2 

NTs (Figure 4.7C in section 4.1.2.2). The latter lacks the broad peak of amorphous SiO2. Based 

on the previous analyses, it is concluded that the broad peak of amorphous SiO2 could be covered 

by highly crystalline Pt particles. Instead, with the weak crystallinity of Co2SiO4 and metallic Co 

particles, the peak of amorphous SiO2 would be detected unambiguously.  

The weak crystallinity of Co2SiO4 and metallic Co particles should probably have nothing to 

do with the SiO2 coating, but be closely related to their native properties, e.g. high lattice energies. 

In order to prove this assumption, pure Co salt was calcined at 500 °C for 5 h in air and the X-ray 

diffraction pattern of the resultant black powder is shown in Figure 5.8. The product is assigned 

to Co3O4. From the weak peaks in this pattern, it can be inferred that the phase transformation of 

the cobalt oxide from amorphous to crystalline during thermal treatment is also difficult to occur 

even in the absence of SiO2.  
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Figure 5.8 XRD patterns of (A) standard Co3O4 and (B) the product after 
[Co(NH3)6]HCO3CO3·2H2O was calcined at 500 °C for 5 h.  
 

5.3.2 Electron Microscopy 

5.3.2.1 Scanning Electron Microscopy 

The topographical morphology of the sample is well observed by SEM (Figure 5.9). The sample 

was prepared for the SEM observation by dropping the suspension of the sample on the SEM 

sample holder directly after the sol-gel process. 

As shown in Figure 5.9A, the sample contains 1D nanostructures with a narrow size 

distribution and lengths up to 20 µm. The yield of the 1D nanostructures in this sample is very 

high, without detectable by-products. At a higher magnification (Figure 5.9B), it is seen that the 

fibers have smooth surfaces and closed ends, with diameters around 100 - 200 nm. 

Being dried, the sample was collected and calcined at 400 °C with a flow of H2 for 5 h (flow 

rate: 6 L/h). The appearance of the obtained Co-containing SiO2 NTs, as shown in Figure 5.9C 

and D, is in well accordance with the one before calcination. Due to the unavoidable mechanical 

abrasion during the sample handling, the tubular interior of some fibers can be observed through 

their broken cross-sections. Noteworthily, the morphology of their cross-sections is uniformly 

rhombohedral, different from the rectangular cross-sections of Pt-containing SiO2 NTs in 

Chapter 4. Further details will be shown in the TEM image in Figure 5.10D.  
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Figure 5.9 SEM images of an optimised sample. (A)(B) SiO2 nanotubes filled with Co templates; 
(C)(D) the same sample calcined at 400 °C for 5 h in a blow of H2. 
 

5.3.2.2 Transmission Electron Microscopy 

The tubular structures of the Co-containing SiO2 NTs were observed with TEM. Co particles 

appear as black contrasts under the selected imaging conditions due to the high electron 

scattering potential of Co, whereas the regions containing SiO2 are grey.  

From the TEM images in Figure 5.10, both SiO2 NTs filled with Co nanoparticles (image A 

and B) and empty SiO2 NTs (image C) can be observed, while the latter has a much less chance 

to occur. The appearance of empty tubes could have two reasons: one is the escape of Co 

particles from the open ends of tubes, the other is based on the possible existence of the hollow 

template nanofibers of [Co(NH3)6](HCO3)(CO3)·2H2O, which disperse highly into the porous 

SiO2 walls, as inferred from the big hollow fiber in Figure 5.4A. 
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Interestingly, a single chain of Co nanoparticles is formed in the tube (inner diameter: 

ca. 50 nm) indicated with an arrow in Figure 5.10A. The componential particles in the single 

chain are nearly uniform in size distribution. The formation of the single chain only occurs in 

tube whose inner diameter is below a certain value, i.e. roughly 100 nm, the reason is probably 

related to a relatively less amount of [Co(NH3)6](HCO3)(CO3)·2H2O in these thin tubes. In 

addition, the wall thickness of the tubes in the current sample is about 50 - 60 nm. 
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In Figure 5.10B, it is seen clearly that the size distribution of cobalt metal nanoparticles is 

very broad, ranging from several nm to ca. 60 nm. The calculated size from the powder XRD 

pattern (Figure 5.7B) is in the range of 7 - 15 nm. Apparently, the larger particles are beyond the 

application of the Scherrer equation. As to the larger particles, their densities could be very 

different. Some particles are rather dense as inferred from the equal black contrast throughout the 

whole area of the particles. In comparison, some particles are rather loose, having unequal 

contrasts throughout their whole area. Examples for both cases are indicated in the image. This 

phenomenon is reasonable since the big particles are grown by aggregation of small particles 

during the heat treatment. In addition, it could be envisaged that the separate and tiny particles 

would fuse into the big particles as time evolves or as temperature climbs.  

In Figure 5.10C, besides the empty tube mentioned above, there is a certain amount of Co 

particles beyond the confinement of tubes, which could be attributed to the escape of Co from the 

open ends of tubes since there are a lot of tubes being left open as shown in Figure 5.10A. 

Another possibility is that very small Co nanoparticles diffuse through the porous SiO2 walls and 

agglomerate into big particles outside the tubes.  

From the cross-sectional image of the tubes in Figure 5.10D, the rhombohedral morphology 

is observed clearly, which confirms the SEM observations in Figure 5.9C and D. In addition, the 

black points, representing Co particles, appear both inside and outside the tubes.  

5.3.2.3 Scanning Transmission Electron Microscopy and Electron Dispersive X-ray 

Spectroscopy 

More information about the structure of Co-containing SiO2 NTs is achieved with Scanning 

Transmission Electron Microscopy (STEM).  

The STEM images are shown in Figure 5.11. In all images the area with white contrast 

indicates Co, while the grey area corresponds to amorphous Si.  

In image A most of tubes are filled with a single chain of Co particles. In other words, the 

Co nanoparticles are aligned into 1D arrays inside SiO2 NTs.  

In image B several empty SiO2 NTs are shown together with the filled NTs. There is a 
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distinct difference in contrast between the inner and outer wall of the empty tube indicated with 

arrows. The discrepancy in contrast could be attributed to the presence of very thin layer of small 

Co particles or even amorphous Co inside the inner wall of tube.  

Image C and D were made at a higher magnfication. From them, it is seen that the Co 

nanoparticles in the NTs are different in their sizes and shapes (image C). The crystalline particles 

are not totally arranged in a line (image D). 
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Figure 5.11 STEM dark-field images of the Co-containing SiO2 NTs. 
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As shown in Figure 5.12, three points have been chosen on the STEM image for EDXS 

analyses. The point number one is a single big white particle outside the confinement of NTs. 

The number two and three are sitting on the inner part of a filled tube and an empty tube, 

respectively.  

From the three EDX spectra, it is learned that the Co content decreases in the sequence of 

point number one, two and three, while the Si content increases. The point number one is actually 

a big Co particle attached on a SiO2 tube. The point number two in the filled tube has reasonably 

Co inside. At the point number three, almost no cobalt has been detected, indicating that the tube 

is nearly empty.  
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Figure 5.12 EDXS measurements of Co-containing SiO2 NTs. 
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5.3.3 Thermogravimetric Analysis  

Figure 5.13 (black line) shows TG, DTG and DTA curves of the sample of template-filled SiO2 

NTs. The pure [Co(NH3)6](HCO3)(CO3)·2H2O is used as a reference (grey line).  
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Figure 5.13 (A) TG curve, (B) DTG curve and (C) DTA curve of the template-filled SiO2 NTs 
(black line) and the pure [Co(NH3)6](HCO3)(CO3)·2H2O (grey line). 
 
 

In Figure 5.13A, the weight loss of the sample is about 25%, corresponding to the 

decomposition of [Co(NH3)6](HCO3)(CO3)·2H2O, the releasing of residual water or solvent 

molecules in the mesoporous SiO2 wall, and also the dehydration of Si-OH groups. The latter two 

sources of weight loss become predominant above 300 °C. It is believed that there are still 

residual water or ethanol molecules in the mesoporous SiO2 wall. From the DTG curve of the 

sample in Figure 5.13B, its weight loss is centered at 155 °C, 20 °C lower than the pure Co salt. 

This shift could be attributed to the size effect, similar to that of Pt templates discussed in section 
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4.1.2.3. The DTA curve of the sample in Figure 5.13C shows a broad endothermic peak ranging 

from 55 °C to 200 °C, which could be assigned to the decomposition of the Co salt. Thermal 

effects above 200 °C are not obvious. In comparison with the pure Co salt, the endothermic peak 

of the NT sample is weaker and also has a detectable shift to low temperature. 

5.3.4 Infrared Spectroscopy 

The IR spectra of the sample before and after the TG analysis are depicted as black line and grey 

line respectively in Figure 5.14. The three positions annotated with wavenumbers are 

characteristic absorption peaks for amorphous SiO2. As also mentioned in section 4.1.2.3 of 

Chapter 4, the peaks near 1100, 800 and 450 cm-1 are assigned to the asymmetric stretching of 

SiO4 tetrahedron, the symmetric stretching of SiO4 tetrahedron and the Si-O-Si bending 

respectively [2]. Similar to the case of the Pt templates (up to 44 cm-1) discussed in section 

4.1.2.3, the SiO2 absorption peaks of the SiO2 NTs filled with Co templates have a significant 

shift (up to 57 cm-1) to lower energies in comparison with that of the Co2SiO4-containing SiO2 

NTs. The interaction between the Co template and the SiO2 tube wall, as deduced from the bigger 

red shift, is stronger than the case of Pt. 
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Figure 5.14 IR spectra of the sample before (grey line) and after (black line) the TG analysis.  
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5.4 Influences of various parameters on the morphology 

The optimized sample of Co-containing SiO2 NTs exhibited in section 5.3 appears uniform in 

diameter and high in aspect ratio. It is proven by experiments that parameters, such as the 

concentration of [Co(NH3)6](HCO3)(CO3)·2H2O in the mother solution (including the 

aminocobalt compound and ammonia solution), the pH value of ammonia solution and the rate of 

ethanol addition, have significant effects on the morphology of the final product. Details are 

discussed below.  

5.4.1 Results 

According to the preparation methods described in section 3.1.2.3, samples A1 - A6, were 

synthesized to study the influences of various parameters on the product morphology. Table 5.1 

gives details of preparation parameters and descriptions of morphologies for samples A1 – A6. 

The SEM images of the six samples are shown in Figure 5.15. TEOS was used for all the 

samples.  

Table 5.1 Parameters of preparation and product descriptions 

Results 
Sample 
name 

Concentration 
of Co salt in 

mother solution 
g/mL 

pH of 
ammonia 
solution 

20 °C 

Rate of 
ethanol 
addition 
mL/min 

Needle 
diameter, nm 

Particle 
Amorphous 

materials 

A1 0.0011 10.64 1.67 200 - 700 Many No 

A2 0.0022 10.64 1.67 150 - 200 No No 

A3 0.0088 10.64 1.67 100 – 900 No Many 

A4 0.0022 10.00 1.67 < 100 No Some  

A5 0.0022 11.06 1.67 100 - 300 Some No 

A6 0.0022 10.64 0.67 100 - 500 Many No 
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Figure 5.15 SEM images of a series of samples with different parameters of preparatio
parameters of sample A1 – A6 are listed in Table 5.1. 
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Sample A2 is the best sample, which was prepared with optimized parameters. In the SEM 

image of this sample, only 1D nanostructures with uniform diameter (150 – 200 nm) are observed 

in a parallel alignment into several-µm-thick bundles.  

In comparison, the other five samples contain one or two kinds of impurities beside the 1D 

nanostructures. The 1D nanostructures in these samples are broadly distributed in diameter, from 

which the influences of preparation parameters on the morphology of the template NFs are 

reflected. The impurities, including nanoparticles and amorphous materials, should be related to 

the unsuccessful coating of TEOS on the template NFs. Hence the influences of the three 

parameters on the form of product can be deduced from their influences on the size distribution 

of needles and the coating of TEOS.  

5.4.2 Discussion 

For sample A1, A2 and A3, the concentration of [Co(NH3)6]HCO3CO3·2H2O in the mother 

solution increases in sequence by reducing the volume of ammonia solution. According to 

Figure 5.15 and Table 5.1, the needles exhibit broader size distributions in A1 and A3 than A2. As 

to the coating of TEOS, nanoparticles are resulted in A1 while amorphous materials are found in 

A3. Since the limited amount of ammonia solution in A3 would lead to a decrease in pH value of 

the TEOS/ethanol/water system, the hydrolysis and condensation of TEOS at the low pH value 

might cause the formation of the amorphous material. The case of A1 is exactly opposite to that 

of A3, leading to the formation of particles. 

From sample A4, A2 and A5, the pH values of the mother solution increased in sequence by 

employing different ammonia solutions while other parameters were constant. It is observed in 

SEM that the needles grow both in larger diameters and lengths with the increasing pH, while the 

size distribution has not significantly broadened. Simultaneously, the amorphous materials in the 

sample A4 and the particles in the sample A5 indicate the importance of controlling the pH value 

control for a successful coating of TEOS on the template NFs.  

From sample A2 to A6, the rate of ethanol addition decreased. It was equivalent to a 

decrease of the growth rate of template NFs. All other parameters were same for these two 
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samples. Comparing their SEM images in Figure 5.15, a great amount of particles appear in 

sample A6, which could not be attributed to the increase of pH value like the cases of the sample 

A1 and A5. A reason could be some subtle changes especially on the surface of the template NFs 

during the slow precipitation for preparation of the sample A6, which lead to a weakening of the 

interactions between the templates and TEOS. Thus SiO2 particles are formed instead of SiO2 

coating on the template NFs. In addition, the rate of ethanol addition could be changed between 

1.25 to 3.33 mL/min without producing observable impurities while all other parameters were 

kept same as sample A2. 

Based on the results and discussions, it is concluded that the synthesis of SiO2 NTs with the 

Co templates is more sensitive to the parameters of preparation than the case of Pt templates. In 

order to prepare pure SiO2 NTs with a uniform size distribution, optimised conditions must be 

precisely controlled as that of sample A2, i.e. concentration of the Co salt in the mother solution 

being 0.0022 g/mL, ammonia solution with pH 10.64 and rate of ethanol addition being 

1.67 mL/min. In addition, careful adjustments must be taken for a scale-up of this optimised 

synthesis. 

5.5 Summary 

Based on the results, the following conclusions can be made about the synthesis of SiO2 NTs with 

the Co templates. 

z The homemade Co salt, i.e. [Co(NH3)6](HCO3)(CO3)·2H2O as confirmed by single crystal 

XRD analysis, is highly anisotropic and has a habit to grow into nanoprisms by the solvent 

modification under appropriate conditions.  

z Through at first the formation of template NFs of Co salt by solvent modification and then 

coating of TEOS, template-filled SiO2 NTs were obtained. Under optimised conditions, 

shapely SiO2 NTs with uniform diameters (100 – 200 nm) and high aspect ratios (100 – 200) 

are formed.  

z The sample of template-filled SiO2 NTs was calcined at different atmospheres. When it is 

treated in air, the Co salt reacted with SiO2, leading to Co2SiO4. When it is treated in H2, the 
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Co salt was reduced to metallic cobalt. 

z The cross-sections of the Co-containing NTs are rhombohedral, instead of being rectangular 

like the Pt-containing SiO2 and TiO2 NTs.  

z The wall thickness of the NTs is about 50 – 60 nm. Both hollow and filled SiO2 NTs are 

present in one sample. Co nanoparticles are arranged into single chains in NTs with inner 

diameters less than 100 nm.  

z The interactions between the Co templates and the SiO2 walls in the template-filled SiO2 NTs 

are testified by the red shift of IR absorption peaks of amorphous SiO2 compared with the 

Co-containing SiO2 NTs. 

z The synthesis of SiO2 NTs with Co templates is very sensitive to the parameters of 

preparation, including the concentration of mother solution, pH value of the ammonia 

solution and the rate of adding ethanol. The optimised conditions must be exactly followed in 

order to obtain pure Co-containing SiO2 NTs without by-products. 
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6 Conclusions and outlook 

In this work, the formation of oxide NTs with inorganic salt nanofibers as templates has been 

extensively explored in following aspects: 

Both [Pt(NH3)4](HCO3)2 and [Co(NH3)6](HCO3)(CO3)·2H2O grow into 1D nanofibers 

during the process of solvent modification, which can be successfully coated with metal 

alkoxides in a sol-gel process. The interactions between the templates and tube walls, supposed to 

be hydrogen bonding and/or electrostatic forces, have been confirmed by shifts of SiO2 IR 

absorption peaks for both cases of Co and Pt. 

The Pt-containing SiO2 NTs have been prepared in the general route of this template method, 

i.e. at first the formation of [Pt(NH3)4](HCO3)2 nanofibers and the subsequent coating and 

calcination processes. The Pt particles formed during the calcination at 500 °C are dispersed 

within the tube and inside the tube wall. Continuous Pt nanowires are observed inside SiO2 NTs 

with diameters below 50 nm. The formation of the template fibers of [Pt(NH3)4](HCO3)2 follows 

steps as the nucleation, anisotropic growth, aggregation of intermediate NFs and aging. By 

employing TEOS as a capping agent, the aggregation of NFs have been effectively prohibited. 

Uniform (100 - 200 nm) and ultralong (up to 40 µm) SiO2 NTs were achieved in a kinetically 

controlled growth route.  

The synthesis of TiO2 NTs (300 – 400 nm in diameter) in a high yield has been realized with 

the general route of this template method. The high dispersion of Pt clusters inside the TiO2 walls, 

when calcined at 500 °C, is possibly due to a TiO2 surface encapsulation layer and/or local charge 

transfer phenomena. With the presence of Pt clusters inside the TiO2 wall, the amorphous TiO2 

crystallized into rutile at a much lower temperature without the formation of anatase. By 

adjusting the synthesis route, TiO2 NTs with diameter below 100 nm and length above 6 µm have 

been obtained, which might be better contacted with electrodes for electronic conductivity 

measurement. 

Uniform SiO2 NTs filled with Co nanoparticles were obtained in a high yield with 

 



   - 116 - 

nanofibers of [Co(NH3)6](HCO3)(CO3)·2H2O as templates. The cross-sections of the 

Co-containing NTs are rhombohedral, instead of being rectangular as the Pt-containing oxide NTs. 

Co nanoparticles are arranged into single chains in NTs with inner diameters less than 100 nm.  

In general, the oxide NTs prepared with this template method are in the range of 

50 – 200 nm in the width dimension and up to 40 µm in length. Another remarkable point is the 

high metal filling content inside the tube, which is achieved together with the tube formation. The 

metal filling renders this kind of oxide NTs potential applications in catalysis and 

nanoelectronics.  

 

It is apparent that two steps are determinative for the feasibility of this template method: the 

formation of the NFs and the successful coating of the wall material. To further investigate the 

mechanism of this template method, efforts should be given to: (i) looking for other inorganic 

species which grow into NFs by solvent modification. This behaviour is closely related to the 

anisotropy of crystalline materials. Two compounds with the same metal complex species but 

different types of anions would have different habits of morphology. Hence, knowledge about 

crystal structures and morphologies gathered in this study could make up the vacancy left in the 

field of Crystal Chemistry. (ii) Exploring the coating mechanism of oxide on a solid surface by 

sol-gel chemistry. As established in this thesis, the hydrogen bonding and/or electrostatic forces 

between the template NFs and the silanol monomers are supposed to be crucial for the effective 

coating. Both the exterior influencing factors on the coating, such as pH value, solvent, 

temperature, and interior factors, including the chemical constitutions of the template and coating 

agent, should be studied extensively. This would contribute to practical applications closely 

related to the solution-phase coating process. 

Furthermore, efforts should be made to the alignment of NTs. Since either Pt or Co 

nanoparticles are containing in the oxide NTs, it is possible to employ electric or magnetic field 

to realize the alignment.  

A special property of this kind of metal-filled oxide nanotubes is the extra high content of 

dispersed metal particles. This may find potential applications in catalysis. 
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