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Zusammenfassung

hp-Finite-Elemente-Methoden (FEM) haben sich bei der Lösung von partiellen Differenti-
algleichungen (PDG) bewährt. Häufig liefern sie im Vergleich zur h-FEM höhere Konver-
genzraten (s. Babuška und Guo, 1988). Ziel dieser Arbeit ist die Konstruktion, Analyse und
Implementation einer hp-FEM zur numerischen Lösung von variationellen Ungleichun-
gen, die zu quasi-linearen elliptischen partiellen Differentialungleichungen (PDU) zweiter
Ordnung korrespondieren. Nichtlineare PDU spielen eine bedeutende Rolle in der Mo-
dellierung praktischer Probleme wie z.B. der Mechanik elastischer und elasto-plastischer
Körper (s. Hlaváček, Haslinger, Nečas und Lov́ı̌sek, 1988) sowie der Geometrie von Mini-
malflächen über ein Hindernis (s. Kinderlehrer and Stampacchia, 1980).

Mit Hilfe der Variationsrechnung lassen sich PDU mathematisch als ein Minimierungspro-
blem auf der konvexen Teilmenge K eines Banachraumes V begreifen. Üblicherweise ist V
ein Sobolewraum und K durch Gleichungs- und Ungleichungsnebenbedingungen (G&UB)
definiert, die die Funktionen aus V erfüllen müssen.

In der Arbeit approximieren wir die Lösung eines Minimierungsproblems, indem wir das
Minimum auf der diskreten Teilmenge Kp suchen. Hierbei stellt Kp die Teilmenge eines
konformen p-Version-Finite-Elemente-Raumes Vp dar, die die Kontrolle der G&UB in ge-
eigneten Punkten erlaubt. Die genannten Punkte sind auf dem Referenzquadrat [−1, 1]2

durch das Tensorprodukt der Gauß-Lobatto-Punkte gegeben. Die Bilder dieses Tensor-
produkts auf die Rechtecke des Gitters im Sinne der FEM definieren die Kontrollpunkte.
Für die Lösungen up ∈ Kp des diskreten Minimierungsproblems wird die Existenz , die
Eindeutigkeit und die Konvergenz gegen die Lösung u der PDU für p → ∞ bzgl. der
‖·‖H1(Ω)-Norm nachgewiesen sowie eine A-priori-Abschätzung für den Fehler ‖u−up‖H1(Ω)

angegeben.

Ferner wird für Dreieckgitter im Rekurs auf gewichtete Sobolew-Räume eine p-Diskreti-
sierung vorgeschlagen, die eine Kontrolle der G&UB auf Dreiecken ermöglicht. Sie un-
terscheidet sich wesentlich von bekannten p-Diskretisierungen auf Dreiecken zur Behand-
lung partieller Differentialgleichungen mit der FEM. Numerische Experimente zeigen hohe
Konvergenzraten sowohl auf Rechtecken als auch auf Dreiecken.

Die p-Diskretisierung auf quasi-uniformen Gittern wird so verallgemeinert, dass die G&UB
auch auf Gittern mit hängenden Knoten und unterschiedlichen Polynomgraden auf den
Rechtecken des Gitters kontrolliert werden können. Für die damit mögliche adaptive hp-
Verfeinerung wird ein dual gewichteter A-posteriori-Fehlerschätzer angegeben.

Die computergestützte Berechnung der diskreten Minimalstelle up ∈ Kp verlangt die
Lösung eines großskalierten nichtlinearen Minimierungsproblems mit G&UB. Hierfür wird
ein Löser angegeben, der das Minimum durch eine Kombination projizierter Gradienten-
schritte mit der Newtonmethode findet. Der Aufwand für die effiziente Lösung der dabei
auftretenden linearen Probleme mit der konjugierten Gradientenmethode wird theoretisch
und numerisch für verschiedene Präkonditionierer untersucht.

Bei der numerischen Berechnung von Minimalflächen über ein Hindernis erweist sich die
p-Version gegenüber der h-Version als überlegen.

Schlagworte: Variationelle Ungleichungen, hp-Finite Elemente Methoden, a posteriori
Fehlerschätzer, gros̈skalierte Minimierung
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Abstract

hp-finite element methods (FEM) have become a powerful tool in the treatment of second
order quasi-linear elliptic partial differential equations (PDE). Frequently, their conver-
gence rates are superior to h-FEM (Babuška and Guo, 1988). The objective of this
dissertation is the design, analysis, and implementation of an hp-FEM for the treatment
of variational inequalities which correspond to second order quasi-linear elliptic partial
differential inequalities (PDI). Nonlinear PDI play an important role in the modeling of
practical problems, for example in mechanics of elastic and elasto-plastic bodies (Hlaváček,
Haslinger, Nečas, and Lov́ı̌sek, 1988) and in geometry of minimal surfaces (Kinderlehrer
and Stampacchia, 1980).

Using the calculus of variations, PDI can be written mathematically as a minimization
problem on a closed convex subset K of a Banach space V. Usually, V is a Sobolev space
and K is defined by equality and inequality constraints (E&IC) which must be satisfied
by the functions from V .

In this thesis, we approximate the solution of the minimum problem by searching the
minimum on the discrete set Kp. Here, Kp is a subset of the conform p-FE space Vp
which allows to control the E&IC at appropriate points of the domain. Namely, the
points are given on the reference square [−1, 1]2 by the tensor product of Gauss-Lobatto
points. The images of these points onto the quadrilaterals of the mesh define the control
points. Existence and uniqueness of a minimum up ∈ Kp can be proved. The convergence
of up towards the minimum u on K with respect to ‖ · ‖H1(Ω) is shown and an a priori
bound for the error ‖u− up‖H1(Ω) is given.

Further, a p-discretization is suggested which allows to control the E&IC on triangle
meshes. This discretization differs mutually from known p-discretizations for the treat-
ment of PDE with FE on triangles. Numerical experiments yield high convergence rates
on the square and on the triangle.

The p-discretization on quasi-uniform meshes is extended to quadrilateral meshes with
hanging nodes and a non-uniform distribution of polygonal degrees such that the E&IC
can be controlled again. This allows adaptive h- and p-refinements. A dual-weighted
residual error estimator is introduced to drive these refinements.

The computation of the discrete minimum up ∈ Kp demands to solve a large-scale nonlin-
ear convex minimum problem with E&IC. This problem can be solved by a combination
of the projected gradient method with Newton’s method. Preconditioners for the efficient
solution of the linear systems raised by Newton’s method and their costs are discussed
theoretically and numerically.

The p-version showed better results than the h-version when the minimal surface over an
obstacle was computed numerically.

Key words. variational inequalities, hp-finite element methods, a posteriori error esti-
mators, large-scale minimization.
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Glossary of Notations

Conventions

i, j, k, l,m, n, p,N ∈ N nonnegative integers

α, β, . . . , small Greek letters scalars

x, y, . . . , small roman letters column vectors (except for integers)

A,B, . . . , capital roman letters matrices or operators

Common Notations

∼= see p. 47

N set of natural numbers 1, 2, . . .

R,C,Q,Z, set of real, complex, rational, integer numbers

R>0,R≥0 positive and nonnegative real numbers, respectively

Rd Euclidean d-dimensional space

Rd
≥z {x ∈ Rd |xi ≥ zi}

x = (x1, . . . , xd)T , y = (y1, . . . , yd)T , etc. column vector in Rd

xT transpose of x

xT y = x1y1 + · · ·+ xdyd = x · y = (x, y) scalar product in Rd

|x| = (
∑d

1 x
2
i )

1/2 = (xTx)1/2] length of x ∈ Rd

ei = (0, . . . , 0, 1, 0, . . . , 0)T unit vector with 1 in the coordinate i

I = Id,d ∈ Rd,d identity matrix

Br(x) the open ball of radius r and center x ∈ Rd

Ω an open, generally bounded and connected, subset of Rd

∂Ω the boundary of Ω

Ω = Ω ∪ ∂Ω the closure of Ω

intU =
◦
U the interior of U
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suppu the support of the function u, which is the smallest compact set outside of
which u = 0

〈·, ·〉 = 〈·, ·〉V a duality pairing between a real Banach space V and its dual V ′; 〈·, ·〉 :
V ′ × V → R

‖ · ‖ = ‖ · ‖V norm on a real Banach space V

vn → v convergence in norm

vn ⇀ v weak convergence

Function Spaces

C(Ω), C(Ω) the functions continuous in Ω and Ω, respectively

Ck(Ω), Ck,λ(Ω) the functions which are k times continuously differentiable in some
neighborhood of Ω and whose kth derivatives satisfy additionally a
Hölder condition with exponent λ, respectively

Ls(Ω) the Lebesgue measurable functions u of Ω for which
‖u‖Ls(Ω) = (

∫
Ω |u|

s dx)1/s, 1 ≤ s <∞

L∞(Ω) the Lebesgue measurable functions u of Ω which are essentially bounded,
‖u‖∞ = inf{‖M : |u| ≤M a.e. in Ω}

Hm(Ω), H1
gD

(Ω), H1
gD,≥ψ(Ω), H1/2(Γ), H−1/2(Γ) Sobolev spaces and subsets, see Sec-

tion 1.2

Derivatives

DiA(u; v1, . . . , vi) Fréchet derivatives of A in u

∇A(u) = ((DA(u; ei))T1,...,d gradient of A in u

∇2A(u) = ((D2A(u; ei, ej))i=1,...,d
j=1,...,d

Hessian matrix of A in u



Introduction

The main purpose of this thesis is to present some hp-discretization techniques for the nu-
merical treatment of variational inequalities corresponding to second order quasi-linear el-
liptic partial differential inequalities (PDI). We introduce subsets of conforming p−version
finite element spaces on quasi-uniform meshes, construct an adaptive hp-version based
on a posteriori error estimation, and provide a solver for large-scale nonlinear minimum
problems with equality and inequality constraints originated by the discretizations of vari-
ational inequalities.

Nonlinear PDI play an important role in the modeling of practical problems, for example:

(i) in mechanics of elastic and elasto-plastic bodies (cf. Hlaváček, Haslinger, Nečas, and
Lov́ı̌sek [HHNL88]),

(ii) in geometry of minimal surfaces over obstacles (cf. Kinderlehrer and Stampacchia
[KS80]).

The mathematical modeling exploits the fact that many processes in nature proceed
according to extremal principles such as the principle of minimal potential energy in
stable mechanical equilibrium states or the principle of stationary action in mechanics.
The classical calculus of variations originated about 300 years ago in connection with
extremal problems from mechanical problems by Euler.

(i) The link between an extremal problem without inequality side conditions, a varia-
tional equation, and a partial differential equation (PDE),

(ii) and the link between an extremal problem with equality and inequality side condi-
tions, a variational inequality, and a partial differential inequality (PDI),

both are introduced in the context of convex functional analysis in Section 1.2, Theo-
rem 1.22 and Theorem 1.23, respectively. The solutions of these extremal problems will
be searched in a reflexive Banach space, typically a Sobolev and Hilbert space, when we
have no side conditions. In case of side conditions, we look for the solution in a closed
convex subset of a reflexive Banach space which guarantees that the side conditions are
fulfilled. We give some model elliptic boundary problems and discuss the variational
formulation for them in Section 1.2.

Variational equations can be solved approximately by searching the solution on h-, p-,
and hp-discrete subspaces of Sobolev spaces called finite element (FE) spaces. Here, the
h-version FEM achieves the convergence of the approximate solution in the Sobolev space

14
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by mesh refinement, whereas the p-version FEM achieves the convergence by increasing
the polynomial degree of the discrete subspace. The hp-version FEM names combinations
of both methods which are tailored according to a priori knowledge of the solution, such as
the distribution of singularities, or controlled adaptively by a posteriori error estimation.

The analysis of the relative advantages of the p-version approach over the classical
h-version requires a careful look at the regularity of solutions of elliptic boundary value
problems. The h-version gives asymptotically optimal approximations in terms of the
number of degrees of freedom, if the regularity of the solution is measured in terms of
Hk(Ω) spaces (see Babuška and Aziz [BA72]). For elliptic problems with singularities,
however p- and hp-FEM with properly designed meshes are superior to standard h-version
FEM with quasi-uniform meshes. The explanation is that the solutions to elliptic PDE
are substantially smoother than Hk(Ω). For example, such solutions are analytic in the
whole domain except in corners and edges on the boundary. The analysis of regular-
ity demands the control of derivatives of any order of the solution in countably normed
Sobolev spaces which take into account edge and corner singularities (see Babuška and
Guo [BG88, BG89]). For the numerical treatment of elliptic PDE a proper combination
of mesh refinement and increasing polynomial degree can achieve exponential convergence
for elliptic problems with piecewise analytic solution, whereas h- or p-FEM converge at
best algebraically.

For PDI we do not know such a sophisticated regularity analysis for the solution func-
tion. Kinderlehrer and Stampacchia give the example of an elliptic obstacle problem on
a polyhedral domain which has a solution in H2(Ω) in [KS80], when the obstacle is in
H2(Ω) (cf. Theorem 1.25, p. 30). We do not consider the regularity of PDI solutions
in this thesis. Nevertheless, the situation seems intuitively to be comparable to that of
PDE, when we decompose the domain into the contact zone where the solution u is equal
to the obstacle ψ almost everywhere and into the free zone where u is greater than ψ.
Then, u is governed by the material laws of a PDE on the free zone. On the contact zone,
we have the regularity of the obstacle. Unfortunately, the problem with this intuitive
approach is that we do not know the contact zone in advance, i.e., we can not tailor the
mesh according to the boundary of the contact zone. To give an example: When we use
p-version FE on quadrilaterals, we have to deal with the case that the boundary of the
contact zone runs through quadrilaterals.

Due to Hlaváček, Haslinger, Nečas, and Lov́ı̌sek [HHNL88, Preface], the theory of vari-
ational inequalities is a relatively young mathematical discipline which main bases were
developed by a paper from Fichera on the solution of the Signorini problem in the theory
of elasticity in 1964 [Fic64]. The monograph Numerical analysis of variational inequali-
ties from Glowinski, Lions, and Tremolieres [GLT81] presents an overview on inequality
formulations and their approximate solution. In the book An introduction to variational
inequalities and their applications [KS80] Kinderlehrer and Stampacchia present sophis-
ticated theorems on the regularity of the solution for PDI and on the geometry of the
contact zone. In the book Solution of variational inequalities in mechanics [HHNL88]
Hlaváček et al. develop the solution of the Signorini generalized problem and discuss
models of the theory of plastic flow theoretically and from the point of numerical analysis.
They present h-version primal and dual discretizations and propose an a posteriori error
estimator based on duality techniques. Gwinner and Stephan analyze the convergence
of the h-version boundary element method for the treatment of a boundary integral in-
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equality originated from the Signorini problem in [GS93]. The mentioned publications
employ subsets of h-version FE with a polynomial degree ≤ 3 and achieve convergence by
quasi-uniform or adaptive mesh refinement. A p-version boundary element approach for
Signorini-type problems is presented by Maischak in [Mai01].

It is the intention of this thesis to extend the p-version on quasi-uniform meshes and the
adaptive hp-version known for the treatment of PDE to the treatment of PDI. In the
following, we want to outline the contents of the chapters.

In Chapter 1, we introduce the notations and the principles of convex functional analysis
needed to answer the question of existence and uniqueness of solutions to a class of quasi-
linear PDE and PDI. We define Sobolev spaces and closed convex subsets K of Sobolev
spaces by equality and inequality constraint conditions on the contained functions. We
give a mixed boundary value problem, an obstacle problem, and an obstacle problem with
Signorini contact as model problems in Section 1.2.

In Chapter 2, we define subsets of p-version FE spaces which achieve the convergence of
the discrete solutions against the Sobolev solution by increasing the polynomial degree. It
is the basic idea of this p-version subsets to control the equality and inequality constraints
of the variational solution only at certain points. Namely, the points are given on the
reference square [−1, 1]2 by the tensor product of Gauss-Lobatto points. The images of
these points onto the quadrilaterals of the mesh in the usual sense of FE define the control
points. The p-version subsets are defined in Section 2.1. The convergence of the discrete
solution up towards the solution u of the elliptic PDI with respect to the ‖ · ‖H1(Ω)-norm
follows by Theorem 2.8. For the case that the solution of the PDI is in H2(Ω), we give
an a priori error estimate by Theorem 2.11. Two approaches to the discretization on
triangle meshes are sketched out in Section 2.2. Section 2.3 presents two simple numerical
examples on a square and on a triangle which confirm the approximation properties of
the p-version for PDI. Section 2.4 introduces a hp-version on non-uniform quadrilaterals
including hanging nodes and a non-uniform distribution of polynomial degrees which can
be used for adaptive refinement.

Chapter 3 addresses a posteriori error estimation and adaptive refinement of the hp-FE
space. In Section 3.1 and Section 3.2, we take a look on the literature concerning a poste-
riori error estimation for the hp-FEM for PDE and for the h-FEM for PDI, respectively.
Section 3.3 describes the hp-adaptive scheme based on dual-weighted a posteriori error
estimation presented by Heuveline and Rannacher in [HR03]. In Section 3.4, we extend
this approach to the treatment of variational inequalities using the work from Blum and
Suttmeier on error estimation for h-FE solutions of variational inequalities.

Chapter 4 is devoted to implementation issues and the efficient solution of the large-
scale nonlinear minimization problem with equality and inequality constraints originated
by the discretization. We start with the definition of an appropriate basis in Section 4.1
which allows to write the minimization problems of Chapter 2 as nonlinear minimization
problems with equality and inequality constraints on the vector components in RN . For
the unconstrained nonlinear minimization, we present the inexact Newton backtracking
method (see Algorithm 4.2) in Section 4.2. In Section 4.3, we specify the large-scale
nonlinear minimizer given by Felkel in [Fel99] to our situation of a strictly convex mini-
mization problem with equality and inequality constraints (see Algorithm 4.3). Here, the
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minimum is searched by a combination of projected gradient steps with the mentioned
inexact Newton backtracking method . The treatment of the unbounded and the bounded
constrained discrete nonlinear problems demands preconditioned conjugated gradient it-
erations to solve linear systems. Section 4.4 and Section 4.5 analyze the influence of the
polynomial degree p on the costs of the iterative solving of the linear systems. Here, we
take a look on the literature on condition number estimates for the p-version (cf. Maitre,
Pourquier [MP96], Melenk [Mel02]) and compare different strategies as diagonally precon-
ditioning, static condensation, and hierarchical basis. The condition number estimates are
confirmed numerically in Section 4.4.4. In Section 4.5 , we show how the preconditioners
based on hierarchical bases (cf. Babuška et. al. [BCMP91], Ainsworth [Ain96]) can be
used for preconditioning of linear systems originated by constrained minimization. In
Section 4.6, we show how the continuity across inter-element boundaries between quadri-
lateral meshes with hanging nodes and with different polynomial degrees can be ensured
by means of linear algebra. Thus, there is no need to introduce particular non-uniform
basis functions for the non-uniform hp-version used by the adaptive scheme Algorithm 3.1.
In Section 4.7, we apply the h-version and the p-version on uniform quadrilateral meshes
to model obstacle problems given by the minimal surface operator with homogeneous and
inhomogeneous Dirichlet boundary data. Here, the p-version turns out to be superior to
the h-version concerning the convergence rate and the number of unknowns needed to
reach a certain exactness of the approximation.

In Chapter 5, we present techniques which try to speed up the solving of the large-scale
discrete nonlinear minimization problems by reducing them to nonlinear problems of lower
dimension. In Section 5.1, we give a posteriori estimates for the first Newton iteration
on a fine space, when the initial for the Newton method is determined on a subspace
with lower polynomials degree and prolonged to the fine space (see Algorithm 5.1 and
Proposition 5.1 for variational equalities, Algorithm 5.2 and Proposition 5.3 for variational
inequalities). Section 5.2 describes a nonlinear solver for unconstrained minimization
problems which decomposes the minimization space into a direct sum of subspaces and
solves the corresponding low dimensional nonlinear minimization problems in parallel or
sequentially (see Algorithm 5.3 and Algorithm 5.4, respectively). In Section 5.3, we extend
the prolongation approach to a prolongation cascade heuristically and use this cascade to
solve a nonlinear elliptic PDE with homogeneous boundary data. Further, we test the
multiplicative nonlinear space decomposition method of Algorithm 5.4. The prolongation
and the space decomposition approach, both are inferior to the straightforwardly applied
global Newton method with respect to the totals of conjugate gradient iterations and
computing time. We put this down to the fact that the number of Newton iterations
needed for the minimization does not depend on the dimension of the problem in the
numerical experiments.

The Appendices A, B, C, and D contain algorithms, tables, and technical proofs which
are needed for notational and documentary reasons. During the implementation of the
minimization algorithms, the computation of the Hessian of the minimization functional
turned out as the bootle neck which slowed down the performance significantly. Here,
the most efficient way, concerning cpu-time and memory management, to deal with this
problem, is to avoid the computation of the Hessian at all. Since we employ an iterative
solver, it suffices to implement the corresponding matrix-vector product. Appendix B
presents algorithms for the computation of this matrix-vector product. Algorithm B.3
exploits the tensor product structure of the local basis function for an efficient numerical
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evaluation of the occuring integrals by basis transformations which can be executed by
highly optimized BLAS routines (cf. [ABB+95]). Proposition B.9 states that the number
of floating point operations for the matrix-vector product grows with O(p4).



Chapter 1

Variational inequalities in Hilbert
space

In this chapter, we will present principles of convex functional analysis which, in particu-
lar, answer the question of existence and uniqueness of solutions to a class of nonlinear
partial differential equations (PDE) and inequalities (PDI). For convenience and to
introduce notations, we briefly recall a few basic concepts in Section 1.1. For a more
detailed study, see [Alt91], [Yos94], [KS80] and [Zei85] among others. In Section 1.2, we
take a second order quasi-linear differential operator as an example

(i) for the connection between an extremal problem without inequality side conditions,
a variational equation, and a PDE,

(ii) and for the connection between an extremal problem with equality and inequality
side conditions, a variational inequality, and a PDI.

1.1 Convexity and extremal principles

In this section, we introduce the concept of convexity of a functional on a reflexive Banach
space. Further, we explain the link between Fréchet derivatives and extremal problems
with side conditions.

Lemma 1.1. Let V be a normed linear space, V ′ its dual, and V ′′ = (V ′)′ its second
dual. We note the duality pairings on V by

〈v, u〉V := v(u) for all u ∈ V , v ∈ V ′

and on V ′ by
〈w, v〉V ′ := w(v) for all v ∈ V ′, w ∈ V ′′.

Then, the mapping JV : V → V ′′ given by

〈JV u, v〉V ′ := 〈v, u〉V

is well defined and an isometry.

19
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Proof. see [Alt91, § 5.6].

Definition 1.2. With the notation of the above lemma V is said to be reflexive if the
isometry JV is surjective.

Remark 1.3. Every Hilbert space H is reflexive.

Definition 1.4. Let (V, ‖ · ‖) be a Banach space, i.e., a normed space which is complete.
A sequence (un)n∈N in V is called weakly convergent to an element u ∈ V if

lim
n→∞

〈v, un〉 = 〈v, u〉 for all v ∈ V ′ .

For a weakly convergent sequence we will write un ⇀ u as n→∞.

Definition 1.5. Let V be a linear space and let A : M ⊂ V → R be a functional. The
set M is said to be convex if

u, v ∈M, t ∈ [0, 1] implies (1− t)u+ tv ∈M .

If M is convex, then A is said to be convex if

A((1− t)u+ tv) ≤ (1− t)A(u) + tA(v) for all u, v ∈M, t ∈ (0, 1). (1.1)

A is called strictly convex if the last inequality holds with “<” instead of “≤”.

Definition 1.6. Let (V, ‖·‖) be a Banach space. A functional A : V → R is called coercive
if

A(u)
‖u‖

→ ∞ as ‖u‖ → ∞ .

Lemma 1.7. The following assertions hold in a Banach space (V, ‖ · ‖):

(i) un ⇀ u as n → ∞ implies u ∈ M when all un belong to M and M is a closed
convex set in V .

(ii) If V is reflexive, then every bounded sequence in V has a weakly convergent sub-
sequence.

Proof. see [Alt91, Satz 5.7 and Satz 5.10, respectively].

Definition 1.8. Let (V, ‖ · ‖) be a Banach space and let A : M ⊂ V → [−∞,∞]. The
functional A is said to be sequentially lower semicontinuous at the point u ∈M if

A(u) ≤ lim inf
n→∞

A(un) (1.2)

holds for each sequence (un)n∈N in M such that un → u as n→∞.
Similarly, A is said to be weak sequentially lower semicontinuous at v ∈ M if (1.2) holds
for each weak convergent sequence (un)n∈N in M such that un ⇀ u as n→∞.

Lemma 1.9. For the functional A : M ⊂ V → R with M 6= ∅, the minimum problem

min
v∈M

A(v) (MP)

has a solution in case the following hold:

(i) (V, ‖ · ‖) is a reflexive Banach space.
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(ii) M is bounded and weak sequentially closed, i.e., by definition, for each sequence
(un)n∈N in M such that un ⇀ u as n→∞, we always have u ∈M .

(iii) A is weak sequentially lower semicontinuous on M .

In particular, (ii) is fulfilled when M is bounded, closed, and convex.

Proof. Let γ := inf{A(v) | v ∈ M}. We choose a sequence (vn)n∈N in M such that
A(vn) → γ. Since M is bounded and V is reflexive, by Lemma 1.7 (ii), there exists a weak
convergent subsequence (vnk

)k∈N such that vnk
⇀ v. From (ii) it follows that v ∈ M ;

therefore, A(v) ≤ lim infk→∞A(vnk
) = γ according to (iii). Since γ ≤ A(v), we have

A(v) = γ, i.e., v is a solution of (MP).

In particular, M is weak sequentially closed when it is closed and convex due to
Lemma 1.7 (i).

Lemma 1.10. The functional A : M ⊂ V → R has at most one minimum on M in case
the following hold:

(i) M is a convex subset of the linear space V .

(ii) A is strictly convex.

Proof. By (1.1) with “<” due to the strict convexity, we arrive at a contradiction for
A(u) = A(v) = min{A(w) |w ∈M} and u 6= v when t = 1

2 .

Definition 1.11. Let V be a reflexive Banach space with dual V ′. Let 〈·, ·〉 := 〈·, ·〉V
denote a pairing between V ′ and V . LetM be a closed convex set. A mapping F : M → V ′

is said to be monotone if

〈F (v)− F (u), v − u〉 ≥ 0 for all u, v ∈M.

The monotone mapping F is called strictly monotone if

〈F (v)− F (u), v − u〉 = 0 implies u = v.

The monotone mapping F is called uniformly monotone if there exist fixed real numbers
p > 1, c > 0, such that

〈F (v)− F (u), v − u〉 ≥ c‖v − u‖p for all u, v ∈M.

Lemma 1.12. Let A : V → R be a functional on the real Banach space (V, ‖·‖). Suppose
the Fréchet derivative DA : V → V ′ exists on V . Then the following three assertions are
equivalent:

(i) A is strictly convex on V .

(ii) DA is strictly monotone on V .

(iii) A(v)−A(u) > DA(u; v − u) for all u, v ∈ V such that u 6= v.
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Assuming only convexity of A and monotonicity of DA instead of strict convexity and
strict monotonicity, respectively, and ≥ instead of > in (iii) the equivalence of the three
assertions holds again.

If, in addition, the second Fréchet derivative exists for all u, h ∈ V , then one has the
following criteria for convexity and coercivity, respectively:

(iv) If D2A(u;h, h) > 0 for all u, h ∈ V, h 6= 0, then A is strictly convex on V .

(v) If D2A(u;h, h) ≥ c‖h‖p for all u, h ∈ V and fixed p > 1, c > 0, and
t 7→ D2A(u+ th;h, h) is continuous on [0, 1] for all u, h ∈ V , then DA is uniformly
monotone and A is coercive on V .

Proof. For fixed u, v ∈ V we define

ϕ(t) := A(u+ t(v − u)) for all t ∈ [0, 1], (1.3)

and write the derivatives

ϕ′(t) := DA(u+ t(v − u); v − u) ,

ϕ′′(t) := D2A(u+ t(v − u); v − u, v − u) .

By definitions of convexity of A and monotonicity we have the following equivalences due
to one dimensional analysis:

A is strictly convex on V ⇐⇒ ϕ is strictly convex on [0, 1] for all u, v ∈ V
⇐⇒ ϕ′ is strictly monotonely increasing on [0, 1]

for all u, v ∈ V
⇐⇒ ϕ′(1)− ϕ′(0) > 0 for all u, v ∈ V, u 6= v

⇐⇒ DA is strictly monotone on V .

We obtain the equivalence of (ii) and (iii) by noting the equivalence of both with

ϕ(1)− ϕ(0) = ϕ′(τ) > ϕ′(0) for all u, v ∈ V , u 6= v, for a τ ∈ (0, 1).

Taking v = u+ h in ϕ(t) leads to

ϕ′′(t) > 0 for all t ∈ [0, 1], u, v ∈ V , u 6= v

which implies strict convexity of ϕ on [0, 1] and, hence, the strict convexity of A on V
stated in (iv). We yield the uniform monotonicity of (v) from

DA(v; v−u)−DA(u; v−u) = ϕ′(1)−ϕ′(0) =
∫ 1

0
ϕ′′(t) dt ≥

∫ 1

0
c‖v−u‖p dt = c‖v−u‖p .

Further, we write

ϕ(1)− ϕ(0) =
∫ 1

0
ϕ′(t) dt = ϕ′(0) +

∫ 1

0
(ϕ′(t)− ϕ′(0)) dt

≥ ϕ′(0) +
∫ 1

0
ct‖v − u‖p dt = DA(u; v − u) + c

2‖v − u‖p .
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As the Fréchet derivative DA(u; ·) ∈ V ′ is a continuous linear functional, there exists a
constant c̃ independent of v such that 1

‖v‖ |DA(u; v)| ≤ c̃ for all v ∈ V . So, we obtain the
coercivity of A from

A(v)
‖v‖

≥ A(u)
‖v‖

+
DA(u; v)
‖v‖

+ c
2‖v‖

p−1 −→∞ as ‖v‖ → ∞ .

Theorem 1.13. Let A : M ⊂ V → R be a functional on the convex nonempty set M of
the real reflexive Banach space (V, ‖ · ‖). Then:

(i) Necessary condition: If u is a solution of (MP), then

DA(u; v − u) ≥ 0 for all v ∈M. (VI)

(ii) Equivalence. If A is convex and DA exists as a Fréchet derivative on M , then the
minimum problem (MP) and the variational inequality (VI) are mutually equiva-
lent.

(iii) Uniqueness. If A is strictly convex on M , then (MP) and (VI) have at most one
solution.

(iv) Existence. If A is weak sequentially lower semicontinuous and if M is closed,
convex, bounded, and nonempty, then (MP) has a solution. For convex A, the
solution set of (MP) is closed, convex, and bounded.

Proof. (i) Assuming u as a solution of (MP) and v ∈ M arbitrarily, but fixed, we define
ϕ as in the proof of Lemma 1.12 (1.3). For all t ∈ [0, 1], ϕ(t) ≥ ϕ(0), therefore ϕ′(0) ≥ 0,
but this is (VI).

(ii) Assuming u as a solution of (VI) we have A(v) ≥ A(u) for all v ∈M by the convexity
of A due to Lemma 1.12 (iii) and therefore (MP).

(iii) and (iv) are special cases of Lemma 1.10 and Lemma 1.9, respectively. Alternatively,
the uniqueness follows by Lemma 1.12.

Corollary 1.14. The boundedness of M in Theorem 1.13 (iv) can be replaced by

A(u) →∞ as ‖u‖ → ∞ .

Proof. By the assumption there exists an R > 0 such that A(v) > A(u) holds for all v with
‖v−u‖ > R. Thus, we may replace M by the bounded set MR := {v ∈M | ‖v − u‖ ≤ R}
which is also closed and convex.

1.2 Some convex minimum formulations

In this section, we consider a second order quasi-linear elliptic PDE with mixed boundary
conditions on a bounded Lipschitz domain Ω known as a scalar valued simplification of
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the Hencky-Von Mises stress-strain relation. In Subsection 1.2.1, we give a weak mini-
mum formulation and a variational formulation, both equivalent with the boundary value
problem. Introducing an obstacle in the interior of Ω from below the material previ-
ously obeying the nonlinear PDE is forced upwards. In Subsection 1.2.2, this is described
mathematically by searching the minimum of the mentioned weak minimum formulation
on an appropriate subset of functions which take into consideration the obstacle. In the
variational context this yields an equivalent variational inequality.

To start with, we recall the definitions of function spaces which will be essential to the
analysis of PDE and PDI. A deep analysis of the Hölder continuous function spaces and
the Sobolev spaces is given in the textbooks [Ada75] and [Mor66]. The relation “≤”on a
Sobolev space and the maximum of two Sobolev functions are introduce and analyzed in
the book [KS80].

Definition 1.15. [KS80, Definition II.4.1] Let Ω ⊂ Rd, d ∈ N, be a bounded open set
with closure Ω and boundary ∂Ω. By Ck(Ω) we denote the space of real valued functions
which are k times continuously differentiable on some neighborhood of Ω. By Ck,λ(Ω),
0 < λ < 1, we indicate the functions k times differentiable in Ω whose derivatives of
order k are Hölder continuous with exponent λ, 0 < λ < 1. Recall that u ∈ C0,λ(Ω), if

[u]λ := sup
x1,x2∈Ω

|u(x1)− u(x2)|
|x1 − x2|λ

≤ +∞.

If we allow λ = 1, then u is called a Lipschitz function. The d−tuple of nonnegative
integers α = (α1, . . . , αd) is called a multi-index of length |α| = α+ · · ·+ αd ≥ 0. We set
Dα =

(
∂
∂x1

)α1 . . .
(
∂
∂x1

)αd , a differential operator of order |α|. Here
(
∂
∂xi

)0
u = u, 1 ≤ i ≤ d.

Definition 1.16. [KS80, Definition II.4.2] In the linear space Cm(Ω) we introduce the
semi-norm

|v|Hm,s(Ω) =
∑
|α|=m

‖Dαv‖Ls(Ω) , 1 ≤ s <∞,

and the norm
‖v‖Hm,s(Ω) =

∑
0≤k≤m

|v|Hm,s(Ω) , 1 ≤ s <∞, (1.4)

and we denote by Hm,s(Ω) the completion of Cm(Ω) in this norm. Usually, we write
Hm(Ω) = Hm,2(Ω).

Definition 1.17. [KS80, Definition II.4.3] Let C∞0 (Ω) denote the infinitely often differ-
entiable functions having compact support in Ω. Then Hm,s

0 (Ω) is defined as the closure
of C∞0 (Ω) in the norm 1.4.

Definition 1.18. [KS80, Definition II.4.5] We denote the dual of Hm,s
0 (Ω) by H−m,s′(Ω),

1
s + 1

s′ = 1, or simply H−m(Ω) when s = 2.

Furthermore, we need the following boundary-function spaces H1/2(Γ) and H−1/2(Γ) to
write the boundary conditions of PDE and PDI. A more sophisticated introduction of
Hs(Γ) spaces, s ∈ R, and their connection to H1(Ω) can be found in [LM72].



1.2. SOME CONVEX MINIMUM FORMULATIONS 25

Definition 1.19. Let Γ be a nonempty, simply connected, and relatively open subset of
the Lipschitz boundary ∂Ω and let γv be the trace of the function v ∈ H1(Ω) on Γ, i.e.,
γv := v|Γ. Then, we denote the image of the space H1(Ω) by

H1/2(Γ) := γ
(
H1(Ω)

)
.

The norm in H1/2(Γ) is defined by

‖v‖H1/2(Γ) = inf
w∈H1(Ω)
γw=v

‖w‖H1(Ω) .

Further, we write H−1/2(Γ) :=
(
H1/2(Γ)

)′ for the dual space.

1.2.1 A mixed boundary value problem

Let Ω ⊂ R2 be a bounded Lipschitz domain with boundary Γ. To describe mixed boundary
conditions, let Γ = ΓD ∪ ΓN where ΓD 6= ∅ and ΓN are simply connected, disjoint, and
open in Γ. Let n denote the outward unit normal on Γ defined almost everywhere.

We consider the nonlinear PDE

−div(ρ(|∇u|)∇u) + σu− f = 0 in Ω, (1.5)

where σ ≥ 0 is real constant and ρ : R≥0 → R≥0 is a continuously differentiable function
satisfying

ρ0 ≤ ρ(t) ≤ ρ1 , ρ2 ≤ ρ(t) + tρ′(t) ≤ ρ3 (1.6)

with positive real constants ρi, 0 ≤ i ≤ 3, for all t = |∇u|. We demand Dirichlet and
Neumann boundary conditions

u|ΓD
= gD and ρ(|∇u|) ∂

∂nu|ΓN
= gN (1.7)

where ∂
∂nu denotes the derivative of u in direction of the outward normal on Γ.

Given data f ∈ H−1(Ω), gD ∈ H1/2(ΓD), and gN ∈ H−1/2(ΓN ) we look for u ∈ H1(Ω)
satisfying (1.5)–(1.7) in a weak form.

We need functions of the affine subspace of H1(Ω) which match with the Dirichlet data
on ΓD ⊂ Γ:

H1
gD

(Ω) := {v | v ∈ H1(Ω), v|ΓD
= gD a.e. on ΓD} .

Let the function p : R≥0 → R≥0 be given by ρ (see (1.6)) through the integral

p(t) :=
∫ t

0
τρ(τ) dτ .

Now, we define the functional A : H1(Ω) → R by

A(u) :=
∫

Ω
p(|∇u|) dx+ 1

2σ

∫
Ω
u2 dx−

∫
Ω
fu dx−

∫
ΓN

gNu|Γ ds . (1.8)
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Lemma 1.20. For 0 < ρ0 ≤ ρ(|∇u|) for all u ∈ H1(Ω), there holds

A(u) → +∞ as |u|H1(Ω) → +∞ .

Proof. With t := |∇u| we have p(t) ≥
∫ t
0 τρ0 dτ = 1

2ρ0t
2 and∫

Ω
p(|∇u|) dx ≥ 1

2ρ0|u|2H1(Ω) .

Lemma 1.21.

(i) The Fréchet derivatives DiA, i = 1, 2, 3, at u ∈ H1(Ω) read as

DA(u; v) =
∫

Ω

(
ρ(t)(∇u)T∇v + σ uv − fv

)
dx−

∫
ΓN

gNv|Γ ds , (1.9)

D2A(u; v1, v2) =
∫

Ω

(
ρ(t)(∇v1)T∇v2 + tρ′(t)s1s2 + σ v1v2

)
dx , (1.10)

D3A(u; v1, v2, v3) =
∫

Ω

(
ρ′(t)(ŝ123 + ŝ213 + ŝ312 − s1s2s3) + tρ′′(t) s1s2s3

)
dx

(1.11)

with t := |∇u|, si := (∇u)T

t ∇vi, and ŝijk := si(∇vj)T∇vk, i, j, k ∈ {1, 2, 3} ,
for all v1, v2, v3 ∈ H1(Ω).

In case of t = 0, we lose no generality, if we take si := 0 and ŝijk := 0. Here,
D3A needs ρ two times continuously differentiable which is an additional demand
concerning (1.5).

(ii) Assuming σ = 0 and positive constants ρ1, ρ2, ρ3 with ρ(t) ≤ ρ1 and
0 < ρ2 ≤ ρ(t) + tρ′(t) ≤ ρ3 for t ∈ R≥0, A is coercive and D2A is continuous with
respect to the semi-norm |·|H1(Ω). There exist real constants κl, κu with 0 < κl ≤ κu
such that

κl|u− v|2H1(Ω) ≤ DA(u;u− v)−DA(v;u− v) ≤κu|u− v|2H1(Ω)

for all u, v ∈ H1(Ω) , (1.12)

κl|v|2H1(Ω) ≤ D2A(u; v, v) ≤ κu|v|2H1(Ω) for all u, v ∈ H1(Ω) . (1.13)

Assuming σ > 0, the last two inequalities hold, when we replace the semi-
norm |·|H1(Ω) by the norm ‖ · ‖H1(Ω).

(iii) Assuming constants ρ4, ρ5 with |ρ′(t)| ≤ ρ4 and |ρ′(t) + tρ′′(t)| ≤ ρ5 for t ∈ R≥0,
the third derivative D3A is continuous.

Proof. (i) The Fréchet derivatives follow by standard calculus.
(ii) We note that si ≤ |∇vi|, i = 1, 2, almost everywhere. With the assumption
0 < ρ2 ≤ ρ(t) + tρ′(t) and taking v1 = v2 = v in (1.10) we can write

D2A(u; v, v) =
∫

Ω
ρ2|∇v|2 dx+

∫
Ω

(
(ρ(t)− ρ2)|∇v|2 + tρ′(t)s21 + σ v2

)
dx .
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We estimate

0 ≤
∫

Ω

(
ρ(t)− ρ2 + tρ′(t)

)
s21 dx ≤

∫
Ω

(
(ρ(t)− ρ2)|∇v|2 + tρ′(t)s21)

)
dx

and obtain (1.13) with κl := ρ2. In case of σ = 0, (1.13) implies the uniform monotonicity
ofDA stated in the left inequality of (1.12) and the coercivity of A due to Lemma 1.12 (v).
In case of σ > 0, (1.13), (1.12), and the coercivity of A follow by taking κl := min{σ, ρ2}.

Using |tρ′(t)| ≤ |ρ(t)|+ |ρ(t)+ tρ′(t)| ≤ ρ1 +ρ3 (see (1.6)), the Cauchy Schwarz inequality,
and again si ≤ |∇vi| (i, j = 1, 2), we obtain the continuity of D2A in case of σ = 0 with

D2A(u; v1, v2) ≤ (2ρ1 + ρ3) |v1|H1(Ω)|v2|H1(Ω) for all u, v1, v2 ∈ H1(Ω) . (1.14)

In case of σ > 0, there follows

D2A(u; v, v) ≤ 2 max{2ρ1 + ρ3, σ} ‖v‖2
H1(Ω) for all u, v ∈ H1(Ω). (1.15)

The right inequalities of (1.12),(1.13) follow from (1.15) with κu := 2 max{2ρ1 + ρ3, σ}.
(iii) The continuity of D3A follows completely analogously with

|D3A(u; v1, v2, v3)| ≤ (2ρ4 + ρ5) |v1|H1(Ω)|v2|H1(Ω)|v3|H1(Ω) , u, v1, v2, v3 ∈ H1(Ω). (1.16)

The following theorem connects a minimum of A, a variational equation given by the
Fréchet derivative of A, and a PDE with mixed boundary conditions equivalently.

Theorem 1.22. (i) There exists a unique u ∈ H1
gD

(Ω) which minimizes the functional A
on H1

gD
(Ω), i.e.,

A(u) ≤ A(v) for all v ∈ H1
gD

(Ω) .

(ii) Furthermore, u ∈ H1
gD

(Ω) solves the minimization problem of (i) if and only if u solves
the variational equation

DA(u; v − u) = 0 for all v ∈ H1
gD

(Ω) . (VE)

(iii) Additionally, the solution of (VE) is the weak solution of the mixed boundary value
problem given by (1.5)–(1.7) and vice versa.

Proof. With Lemma 1.21 A is a convex and differentiable functional on H1
gD

(Ω) which is a
affine subspace of H1(Ω). Hence, H1

gD
(Ω) is a convex, closed, and nonempty subset of the

real reflexive Banach spaceH1(Ω). Furthermore, we have A(u) → +∞ as |u|H1(Ω) → +∞
with Lemma 1.20. Thus, the existence of a minimum of A, its uniqueness, and the
equivalence (ii) follow with Theorem 1.13 and Corollary 1.14.

To show that (VE) implies (1.5)–(1.7) in the weak sense in (iii) we proceed as follows.
We take w ∈ C∞0 (R2) as test functions, i.e., w infinitely often differentiable with compact
support, such that v = u+ w ∈ H1

gD
(Ω). Inserting v in DA(u; v − u) yields

0 =
∫

Ω
(−div(ρ(|∇u|)∇u) + σ u− f)w dx+

∫
ΓN

(ρ(|∇u|) ∂
∂nu|Γ − gN )w|Γ ds (1.17)
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by integration by parts. Since w is arbitrary, we obtain (1.5) in the weak sense by choosing
w ∈ C∞0 (Ω) ⊂ C∞0 (R2). With w ∈ C∞0 (R2) there follows ρ(|∇u|)u|Γ ∂

∂n = gN . Thus, the
Neumann condition in (1.7) is satisfied almost everywhere.

Conversely, we get (VE) from the problem given by (1.5)–(1.7) by multiplying (1.5) and
ρ(|∇u|) ∂

∂nu|ΓN
− gN = 0 with (v − u) and integrating by parts.

1.2.2 An obstacle problem

For brevity of notation, we define the relation ≤ on the set M ⊂ Ω in H1(Ω) by
0 ≤ u almost everywhere on M . Nevertheless, neglecting the “almost everywhere”
we divide Ω sloppily into the set {x ∈ Ω |u(x) > 0} which is open, and its complement
{x ∈ Ω |u(x) ≤ 0}. A more detailed analysis of different definitions of ≤ on M in H1(Ω)
given in [KS80, Chapter II] shows that this simplification yields mutually the same results.

We consider the following obstacle problem (P) and derive an equivalent variational in-
equality (VI). Again, let Ω ⊂ R2 be a bounded Lipschitz domain and Γ := ∂Ω = ΓD ∪ ΓN
where ΓD 6= ∅ and ΓN are simply connected and disjoint with outward directed unit nor-
mal n on Γ.

Problem (P).
For given data f ∈ H−1(Ω), gD ∈ H1/2(ΓD), gN ∈ H−1/2(ΓN ), and ψ ∈ H1(Ω) with
ψ ≤ gD a.e. in a neighborhood of ΓD, σ ≥ 0, we look for u ∈ H1(Ω) satisfying

P(u) := −div(ρ(|∇u|)∇u) + σu− f ≥ 0 in Ω , (1.18)

u = gD on ΓD , PΓN
(u) := ρ(|∇u|) ∂

∂nu− gN ≥ 0 on ΓN , (1.19)

(u− ψ) · P(u) = 0 on Ω, (u− ψ) · PΓN
(u) = 0 on ΓN , (1.20)

and u ≥ ψ on Ω (1.21)

where ρ ∈ C1(R≥0) satisfies (1.6) for all t ∈ R≥0 with constants ρi > 0, 0 ≤ i ≤ 3.

Next, we introduce the cone

u ∈ K := {v ∈ H1
gD

(Ω) | v ≥ ψ a.e. on Ω}

where
H1
gD

(Ω) := {v | v ∈ H1(Ω), v|ΓD
= gD a.e. on ΓD} ,

and the coincidence set
Ψ := {x ∈ Ω |u(x) = ψ(x)}. (1.22)

The following equivalence result follows almost analogously to the proof of Theorem 1.22
with Theorem 1.13 and Corollary 1.14.

Theorem 1.23. Let the functional A be defined by (1.8).
(i) There exists a unique u ∈ K which minimizes the functional A on K, i.e.,

A(u) ≤ A(v) for all v ∈ K . (MP)
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(ii) Furthermore, u ∈ K solves (MP) if and only if u solves the variational inequality

DA(u; v − u) ≥ 0 for all v ∈ K . (VI)

(iii) Additionally, the variational inequality (VI) and problem (P) are equivalent, i.e., the
solution of (VI) is the weak solution of (P) and vice versa.

Proof. The existence of a minimum of A, its uniqueness, and the equivalence (ii) follow
due to Theorem 1.13 and Corollary 1.14, if we prove that

(α) K is a convex, closed, and nonempty subset of the real reflexive Banach space H1(Ω),

(β) A is strictly convex on K, i.e., A((1− t)u+ tv) < (1− t)A(u)+ tA(v) for all u, v ∈ K,
t ∈ (0, 1),

(γ) A(u) →∞ as ‖u‖H1(Ω) →∞.

(β) and (γ) follow from Lemma 1.21 and Lemma 1.20. (α) is verified as follows: Let w
solve problem (P) with P(w) = 0, PΓN

(w) = 0, and without the obstacle condition (1.21),
and set

ψ+ := max(ψ,w) :=

{
ψ on {x ∈ Ω |ψ(x) > w(x) a.e.}
w else.

Due to [KS80, Theorem II.A.1] ψ+ ∈ H1
gD

(Ω) and ψ+ ≥ ψ. Therefore, K is nonempty.
Let wn → w strongly in H1(Ω), where wn ∈ K and w ∈ H1(Ω). Therefore, we have strong
convergence in L2(Ω) and the existence of a subsequence {wnk

} with wnk
→ w pointwise

a.e. on Ω. Now, wnk
≥ ψ a.e. on Ω implies w ≥ ψ a.e. on Ω, i.e., w ∈ K. Hence, K is

closed in H1(Ω). Furthermore, K is obviously convex.

To show that (VI) implies (P) in (iii) we proceed as follows. We take w ∈ C∞0 (Ω) with
w ≥ 0. Inserting v = u+ w ∈ K in DA(u; v − u) yields

0 ≤
∫

Ω

(
−div(ρ(|∇u|)∇u) + σu− f

)
w dx

by integration by parts. This proves (1.18). To show the right inequality of (1.19), we
take non-negative test functions w ∈ C∞0 (Bδ(x)) for x ∈ ΓN with sufficiently small δ > 0.
Thus, v := u+ w ∈ K and integration by parts give by standard arguments

0 ≤
∫

ΓN

(ρ(|∇u|) ∂
∂nu|Γ − gN )w|Γ ds.

The equality P(u) = 0 on Ω \ Ψ follows, if we assume w ∈ C∞0 (Ω) non-negative only on
Ψ. The equality PΓN

(u) = 0 on ΓN ∩ ∂(Ω\Ψ) is obtained, if we take w ∈ C∞0 (Bδ(x)))
non-negative only for x ∈ ΓN \ ∂(Ω\Ψ). This proves the complementary condition (1.20).

Conversely, we get (VI) from (P) by multiplying (1.18) and the inequality of (1.19) by
(v − u) and integrating by parts.

Remark 1.24. Theorem 1.23 can be motivated as follows. Let the obstacle ψ be defined
as in Problem (P). Let ũ be a minimizer of A on H1

gD
(Ω). It is known from nonlinear
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functional analysis and it is a particular implication of Theorem 1.23 that ũ solves the
PDE P(ũ) = 0 with Dirichlet and Neumann conditions

ũ|ΓD
= gD and ρ(|∇ũ|) ∂

∂n ũ|ΓN
= gN .

Now, we assume that ũ is pushed upwards by the obstacle ψ. This pushed function is
said to be the solution u of the obstacle problem. Of course, u violates the PDE P(u) = 0
when ũ < ψ. But it seems natural that the geometric or physical properties of u still
minimize the functional A when the solution u ∈ H1

gD
(Ω) satisfies u ≥ ψ.

The smoothness of the solution u is studied by Kinderlehrer and Stampacchia by a method
called penalization. The method of penalization consists in substituting the variational
inequality by a family of nonlinear boundary value problems and demonstrating that
their solutions converge to the solution of the variational inequality. A general guideline
for Lipschitz domains in Rd, d ∈ N, is that the solution of the variational inequality
is in H2,s(Ω) whenever the solution of the associated obstacle-free boundary value has
this property. We can cite the following result for the obstacle problem considered in
Theorem 1.23 when we assume homogeneous Neumann conditions.

Theorem 1.25. Let f ∈ Ls(Ω) and ψ, g ∈ H2,s(Ω) (see Definition 1.16), ψ ≤ g, for some
s, d < s <∞. Further, let u be the unique solution of Theorem 1.23 with gD = g on ΓD
and gN ≡ 0. In addition, assume that for a positive constant C independent of f there
holds

‖w‖H2,s(Ω) ≤ C
(
‖f‖Ls(Ω) + ‖g‖H2,s(Ω)

)
where w is the solution of the obstacle-free mixed boundary value problem. Then, the
solution u of Theorem 1.23 satisfies u ∈ H2,s(Ω) ∩ C1,λ(Ω), λ = 1− d

s .

Proof. See [KS80, Theorem IV.2.5].

1.2.3 An obstacle problem with Signorini contact

Now, we extend the obstacle problem (P) from the previous section to an obstacle prob-
lem (SP) with inequality boundary conditions also known as Signorini conditions. In-
equality boundary conditions describe steady-state phenomena which arise for example in
thermics, fluid mechanics, and elasto-statics.

Problem (SP).
Let Ω ⊂ R2 be a bounded Lipschitz domain. To describe mixed boundary conditions, let
Γ := ∂Ω = ΓD ∪ ΓN ∪ ΓS where ΓD 6= ∅, ΓN , ΓS are simply connected, disjoint and open
in Γ. For given data f ∈ H−1(Ω), g ∈ H1/2(Γ), ĝ ∈ H−1/2(Γ), and ψ ∈ H1(Ω) with ψ ≤ g
in a neighborhood of ΓD ∪ ΓS , σ ≥ 0, we look for u ∈ H1(Ω) satisfying

PS(u) := −div(ρ(|∇u|)∇u) + σu− f ≥ 0 in Ω , (1.23)

the Dirichlet and Neumann conditions

u|ΓD
= g on ΓD, ρ(|∇u|) ∂

∂nu|ΓN
= ĝ on ΓN , (1.24)
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the Signorini conditions

u|ΓS
≥ g on ΓS , PΓS

(u) := ρ(|∇u|) ∂
∂nu|ΓS

− ĝ ≥ 0 on ΓS , (1.25)

and the complementary conditions(
u− ψ) · PS(u) = 0 in Ω,

(
u|ΓS

− g
)
· PΓS

(u) = 0 on ΓS (1.26)

where ρ ∈ C1(R≥0) satisfies (1.6).

We define the functional AS : H1(Ω) → R by

AS(u) := A(u)−
∫

ΓS

ĝ u|Γ ds (1.27)

where A is given by (1.8) with ĝ replacing gN . Next, we introduce the cone

KS := {v ∈ H1(Ω) | v ≥ ψ a.e. on Ω, v = g a.e. on ΓD, and v ≥ g a.e. on ΓS}.

Theorem 1.26. Let the functional AS be defined by (1.27).
(i) There exists a unique u ∈ KS which minimizes the functional AS on KS , i.e.,

AS(u) ≤ AS(v) for all v ∈ KS . (MSP)

(ii) Furthermore, u ∈ KS solves (MSP) if and only if u solves the variational inequality

DAS(u; v − u) ≥ 0 for all v ∈ KS . (VSI)

(iii) Additionally, the variational inequality (VSI) and problem (SP) are equivalent, i.e.,
the solution of (VSI) is the weak solution of (SP) and vice versa.

Proof. The existence of a minimum of AS , its uniqueness, and the equivalence (ii) follow
due to Theorem 1.13 and Corollary 1.14, if we prove that

(α) KS is a convex, closed, and nonempty subset of the real reflexive Banach space
H1(Ω),

(β) AS is strictly convex on KS ,

(γ) AS(u) →∞ as ‖u‖H1(Ω) →∞.

SinceD2AS = D2A due to the linearity of
∫
ΓS
ĝ uΓ ds, (β) and (γ) follow from Lemma 1.21

and Lemma 1.20. (α) is verified as follows: We have ψ ∈ H1(Ω) with ψ ≤ g a.e. on ΓD∪ΓS .
Let w be a solution in the sense of Theorem 1.22 with gD := g|ΓD∪ΓS

and ΓD replaced by
ΓD ∪ ΓS . Let ψ+ be defined by ψ+ := max(ψ,w) almost everywhere on Ω. This implies
ψ+ ∈ H1

gD
(Ω) and ψ+ ≥ ψ. Therefore, KS is nonempty. Let wn → w converge strongly in

H1(Ω), where wn ∈ KS and w ∈ H1(Ω). Therefore, we have strong convergence in L2(Ω)
and the existence of a subsequence (wnk

) with wnk
→ w pointwise almost everywhere in

Ω. Now, wnk
≥ ψ a.e. in Ω implies w ≥ ψ a.e. in Ω. Additionally, wnk

≥ g a.e. on ΓS
implies w ≥ g on ΓS , and wnk

= g a.e. on ΓD implies w = g on ΓD. As w ∈ KS , KS is
closed in H1(Ω). Furthermore, KS is obviously convex.
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To show that (VSI) implies (SP) in (iii) we proceed as follows. As in the proof of The-
orem 1.23 we take nonnegative w ∈ C∞0 (Ω) and get the PDI (1.23) in the weak sense.
The Dirichlet condition is satisfied due to construction of KS . Again, as in the proof of
Theorem 1.23, we take nonnegative w ∈ C∞0 (Bδ(x)) for x ∈ ΓN and sufficiently small
δ > 0, and obtain the Neumann condition in (1.24). We have u|ΓS

≥ g almost everywhere
on ΓS by construction of KS . Now, we take nonnegative w ∈ C∞0 (Bδ(x)) for x ∈ ΓS .
Thus, v := u + w ∈ KS and integration by parts of D2AS(u; v − u) give by standard
arguments

0 ≤
∫

ΓS

w|Γ · PΓS
(u) ds

and the right inequality of (1.25).

The left equation of the complementary condition (1.26) is obtained analogously to the
proof of the left complementary condition in (1.20) in the proof of Theorem 1.23. To
show the right equation of (1.26) we note that there exists an extension ḡ ∈ H1(Ω) of
g|ΓD∪ΓS

∈ H1/2(ΓD ∪ ΓS) with ḡ ≥ ψ in Ω due to Theorem 1.23. We insert v = ḡ and
v = 2u− ḡ in D2AS(u; v − u), and get

0 ≤ ±
∫

ΓS

(u− ḡ)|Γ · PΓS
(u) ds.

Conversely, we obtain (VSI) from (SP) by multiplying (1.23), ρ(|∇u|) ∂
∂nu|ΓN

− ĝ, and the
inequality of (1.25) by (v − u) and integrating by parts.



Chapter 2

Discretization

The hp-FEM for scalar elliptic problems in two-dimensional domains with a Lipschitz
boundary is analyzed by many authors for quasi-uniform and geometric refined meshes
(cf. Ainsworth, Babuška, Bernardi, Maday, Schwab). In the present chapter we extend
the hp-approach to nonlinear scalar elliptic PDI mentioned in Chapter 1. For that we
demand that the inequality constraint condition is fulfilled on a discrete set of points,
namely the images of the tensorized Gauss-Lobatto points. We proof the existence and
uniqueness of a discrete solution and its convergence towards the continuous solution with
respect to the ‖ · ‖H1(Ω)-norm.

It is known from Theorem 1.25 that the obstacle problem owns a solution u ∈ H2(Ω) when
the partial differential inequality and the obstacle ψ fulfill particular regularity properties.
For this case the convergence result can be improved by an analysis of the convergence
rate. In Section 2.1 the discrete subsets on quadrilateral meshes are introduced, and
their approximation properties are discussed. Two approaches to the discretization on
triangle meshes are sketched out in Section 2.2. Section 2.3 presents two simple numerical
examples on a square and on a triangle. The experiments confirm a convergence rate of
O(p−1).

A judicious combination of mesh refinement towards the corners of a polygon and increase
of the polynomial degree p used in the approximation of partial differential equations with
corner singularities were proved to achieve exponential convergence (cf. [BG88, BG89]).
Also adaptive hp-refinement based on a posteriori error estimation (see Chapter 3) de-
mands flexible ways of matching quadrilaterals and triangles with different polynomial
degree. Section 2.4 is devoted to non-uniform hp-quadrilateral meshes including hanging
nodes and a non-uniform distribution of polynomial degrees.

2.1 p-discretization of K ⊂ H1(Ω) on quadrilaterals

Let Q̃ = (−1, 1)2 be the reference square. v̂i and γ̂i denote the vertices and sides, respec-
tively, of Q̃.

33
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The image of Q̃ under the mapping FQ, FQ : Q̃→ Q = FQ(Q̃) is denoted byQ. We assume
that FQ is a bounded diffeomorphism, i.e., there exist positive constants Ci, i = 1, 2, 3, 4,
with

|FQ|1,∞,Q̃ ≤ C1hQ, |F−1
Q |1,∞,Q ≤ C2h

−1
Q ,

|JFQ
|0,∞,Q̃ ≤ C3h

2
Q, |JF−1

Q
|0,∞,Q ≤ C4h

−2
Q ,

(2.1)

where JFQ
= detDFQ and JF−1

Q
= detDF−1

Q are the Jacobians of FQ and F−1
Q , respec-

tively, and
|FQ|k,∞,Q̃ := sup

x̃∈Q̃
|l|=k

|DlFQ(x̃)| .

The parameters hQ are numbers proportional to the diameter of Q.

Let Ω ⊂ R2 be a domain bounded by a finite number of polynomials arcs with the end
points at the vertices of Ω. Let T be a decomposition of Ω into a finite number of curvilinear
quadrilaterals Q = FQ(Q̃) with the same constants Ci, i = 1, 2, 3, 4, of (2.1) for all FQ
such that the following assumptions are fulfilled.

(i) For every vertex x of Ω there exists a Q ∈ T with a vertex xQ ∈ Q that coincides
with x.

(ii) Ω =
⋃
Q∈T Q and the intersection Qi ∩ Qj , i 6= j, Qi, Qj ∈ T is either a common

vertex or common edge or empty.

(iii) For every inner edge γij with γij = Qi ∩Qj , i 6= j, the mappings F−1
Qi |γij

and
F̂ ◦ F−1

Qj |γij
coincide in the usual sense of finite elements, i.e., for an appropriately

chosen isometric mapping F̂ : γ̂j → γ̂i between the edges of the reference square.

Now, we define the p-version finite element spaces on the reference square. By P2
p(Q̃),

p ≥ 1, we denote the space of tensor product polynomials which are of degree at most p
separately in the components x1 and x2 of x.

For the partition T we define the FE spaces

Vp := Vp(T) := {u ∈ H1(Ω) : u|Q ◦ FQ ∈ P2
p(Q̃), Q ∈ T} . (2.2)

To approximate the solutions u in the sense of Theorem 1.22 and Theorem 1.23, respec-
tively, we introduce the affine subspace Vp,gD and the subset Kp,gD of Vp, respectively. We
demand that the functions of Vp,gD coincide with the boundary function gD on a finite
set ΓD,p ⊂ Γ of points. Concerning the obstacle problem, we demand further that the
functions of Kp,gD are greater equal the obstacle ψ on the set Gp. Before we can give the
sets ΓD,p and Gp in Definition 2.2 we need some basics about Gauss-Lobatto quadrature.

Definition 2.1. The family of Legendre polynomials is the family (Lp)p≥0 of polynomials
with one variable, which are orthogonal to each other with respect to the scalar product
〈·, ·〉L2([−1,1]) and such that, for any integer p ≥ 0, the polynomial Lp has degree p and
satisfies: Lp(1) = 1.
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Let us recall four basic properties that characterize these polynomials.

(i) For any positive integer p, the zeros of Lp are distinct real numbers ζpi , 1 ≤ i ≤ p
in (−1, 1), called Gauss points of degree p.

(ii) Gauss quadrature. There exist positive weight factors ωpi , 1 ≤ i ≤ p, such that∫ 1

−1
φ(ζ) dζ =

p∑
i=1

φ(ζpi )ω
p
i

for all polynomials φ ∈ P2p−1([−1, 1]).

(iii) For any positive integer p, the zeros of (1−ξ2)L′p(ξ) are distinct real numbers ξp+1
i ,

0 ≤ i ≤ p, in [−1, 1] called Gauss-Lobatto points of degree p.

(iv) Gauss-Lobatto quadrature. There exist positive weight factors ρp+1
i , 0 ≤ i ≤ p,

such that ∫ 1

−1
φ(ζ) dζ =

p∑
i=0

φ(ξp+1
i )ρp+1

i (2.3)

for all polynomials φ ∈ P2p−1([−1, 1]).

Now, we use the Gauss-Lobatto points to define the sets of points GQ̃,p, GQ,p, Gp, and
ΓD,p.

Definition 2.2. Let ξp+1
i , 0 ≤ i ≤ p, be the Gauss-Lobatto points of degree p. On the

closed reference square Q̃ = [−1, 1]2 we define the set

GQ̃,p := {(ξp+1
i , ξp+1

j ) | 0 ≤ i, j ≤ p} .

We assume that the mappings FQ can be extended to the closed sets Q̃, Q such that
FQ : Q̃→ Q. Now, using these transformations FQ, we define

GQ,p := {FQ(ξ) | ξ ∈ GQ̃,p} and Gp :=
⋃
Q∈T

GQ,p

on the curvilinear quadrilaterals Q = FQ(Q̃), Q ∈ T, and on Ω, respectively.
We denote the subset of Gp on the closed Dirichlet boundary by

ΓD,p := ΓD ∩Gp .

The following approximation result concerning the polynomial interpolate iQd,p on the
reference hypercube Qd of dimension d ∈ N with respect to the tensorized Gauss-Lobatto
points was proved by Bernardi and Maday. It will be used below to prove the convergence
of the p-FE solution up towards u when p→∞.

Theorem 2.3. Let d the dimension of the reference element Qd := [−1, 1]d. For any real
numbers r and s satisfying s > (d+ r)/2 and 0 ≤ r ≤ 1, there exists a positive constant c
depending only on s such that, for any function v ∈ Hs(Qd), the following estimate holds

‖v − iQd,pv‖Hr(Qd) ≤ cpr−s‖v‖Hs(Qd).

The estimate also holds in the case s = d+1
2 and r = 1.
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Proof. [BM97, Theorem 14.2].

We denote the polynomial interpolate of degree p of a continuous function v with respect
to a set of points M by iMv. Since we assumed T to be a quasi-uniform mesh it follows
straightforwardly that Theorem 2.3 also holds for the interpolates iGQ,p

v on Q and iGp v
on Ω. For ease of notation we will write only ipv in the following and demand the
appropriate sets of points GQ̃,p, GQ,p, and Gp to be given implicitly due to Definition 2.2
by the domains Q̃, Q, and Ω, respectively.

With Gp and ΓD,p we have now sets of points which allow us to define appropriate subsets
of Vp for the approximation of the solution u of the boundary value problems given in
Theorem 1.22 and Theorem 1.23.

Definition 2.4. Let Vp = Vp(T) be a FE space on the quasi-uniform decomposition T of
the domain Ω with degree p ≥ 1 as defined by equation (2.2). We define

Vp,gD := {w ∈ Vp |w(x) = gD(x), x ∈ ΓD,p} ,

and

Kp,gD := {w ∈ Vp,gD |w(x) ≥ ψ(x), x ∈ Gp}.

Lemma 2.5. Vp,gD and Kp,gD are nonempty closed convex subsets of Vp.

Proof. From interpolation theory it is known that there exists an interpolating polynomial
v ∈ Vp with v(x) ≥ ψ(x) for all x ∈ Gp and v(x) = gD(x) for all x ∈ ΓD,p. Thus Kp,gD is
nonempty. The convexity of Kp,gD is trivial.

Let vn → v strongly in H1(Ω), where vn ∈ Kp,gD and v ∈ H1(Ω). With vn(x) ≥ ψ(x) for
all x ∈ Gp and vn(x) = g(x) for all x ∈ ΓD,p, there follows v(x) ≥ ψ(x) for all x ∈ Gp and
v(x) = g(x) for all x ∈ ΓD,p. Therefore v ∈ Kp,gD . Dropping the above claims ≥ ψ(x),
the statement concerning Vp,gD follows.

The unique p-version finite element approximations for the exact solution u ∈ H1
gD

(Ω)
from Theorem 1.22 and u ∈ K from Theorem 1.23 are obtained as follows.

Theorem 2.6. Let the functional A be defined by (1.8).
(i) There exists a unique up ∈ Vp,gD which minimizes the functional A on Vp,gD , i.e.,

A(up) ≤ A(v) for all v ∈ Vp,gD . (2.4)

(ii) Furthermore, up ∈ Vp,gD solves (2.4) if and only if up solves the variational equation

DA(up; v − up) = 0 for all v ∈ Vp,gD . (2.5)

Theorem 2.7. Let the functional A be defined by (1.8).
(i) There exists a unique up ∈ Kp,gD which minimizes the functional A on Kp,gD , i.e.,

A(up) ≤ A(v) for all v ∈ Kp,gD . (2.6)

(ii) Furthermore, up ∈ Kp,gD solves (2.6) if and only if up solves the variational inequality

DA(up; v − up) ≥ 0 for all v ∈ Kp,gD . (2.7)
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Proof of Theorem 2.6 and Theorem 2.7. Analogously to the proof of Theorem 1.23 we
obtain the existence of a minimum and its uniqueness since Vp,gD and Kp,gD are convex,
closed, and nonempty subsets of the real reflexive Banach space Vp. The equivalence (ii)
in Theorem 2.7 follows again with Theorem 1.13 and Corollary 1.14. The equivalence (ii)
in Theorem 2.6 is yielded by noting that v ∈ Vp,gD implies 2up − v ∈ Vp,gD . Therefore,
DA(up; v − up) ≥ 0 implies DA(up; v − up) ≤ 0.

The convergence of the minimizer up of Theorem 2.7 towards the minimizer u of Theo-
rem 1.23 is stated in the following theorem:

Theorem 2.8. Let ψ ∈ C0(Ω) ∩H1(Ω) and ψ ≤ gD in a neighborhood of ΓD. With the
above assumptions on K and Kp,gD , there holds

lim
p→∞

‖up − u‖H1(Ω) = 0

with u and up the minimizers of Theorem 1.23 and Theorem 2.7, respectively.

Proof. The form D2A(û; ·, ·) is positive definite on H1
gD

(Ω) and Vp for all û ∈ H1(Ω) due
to Lemma 1.21 (1.13) and the Poincaré inequality. Thus, it suffices with Theorem [Glo84,
Theorem I.5.2] to prove the following two hypotheses:

H1 If (vp)p is such that vp ∈ Kp,gD for all p and converges weakly to v as p → ∞, then
v ∈ K.

H2 There exists a dense subset χ of K and a family of mappings rp : χ → Kp such that
limp→∞ rpv = v strongly in H1(Ω) for all v ∈ χ.

H1 is shown in Lemma 2.9, H2 in Lemma 2.10.

Lemma 2.9. If the sequence (vp)p with vp ∈ Kp converges weakly to v for p→∞, then
v ∈ K.

Proof. Firstly, we introduce a two-dimensional Bernstein operator on the closed reference
square Q̃. For a function f ∈ C([−1, 1]), the formula

Bpf(x) :=
p∑

k=0

(
p
k

)
(x−1

2 )k (1−x
2 )p−k f(2k

p − 1) (2.8)

produces a linear map f → Bpf of C([−1, 1]) into Pp([−1, 1]). This is the Bernstein
polynomial of f and it is known that we have the uniform convergence

lim
p→∞

‖Bpf − f‖∞,[−1,1] = 0

(cf. [DL93, Chapter 1, Theorem 2.3]). For functions f ∈ C(Q̃) on the reference square
we write B(i)

p , i = 1, 2, when the operator Bp is applied to the xi variable and define the
two-dimensional Bernstein operator by

B2
pf(x1, x2) := (B(1)

p ◦B(2)
p f)(x1, x2)
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which maps f into P2
p(Q̃) linearly. Here we note that the operators B(1)

p and B
(2)
p com-

mute. The uniform convergence

lim
p→∞

‖B2
pf − f‖∞,Q̃

= 0

follows due to ‖f − B2
pf‖∞,Q̃

≤ ‖f − B
(1)
p f‖∞,Q̃

+ ‖B(1)
p (f − B

(2)
p f)‖∞,Q̃

.

Now, we consider φ ∈ C0(Ω) and define its approximation φp by a combination of Bern-
stein polynomials on Q, Q ∈ T, i.e.,

B2
Q,pφ(x) := B2

p

(
φ ◦ FQ

)
(F−1

Q (x)) for x ∈ Q

and φp is given by φp |Q := B2
Q,pφ for all Q ∈ T.

It follows that
φp ∈ Vp and lim

p→∞
‖φp − φ‖Ω = 0. (2.9)

Further, if φ ≥ 0, we have φp ≥ 0 because the Bernstein operators B2
Q,p are monotone (cf.

(2.8)).

Secondly, we define the interpolate ψp := ipψ. By Theorem 2.3 we know

lim
p→∞

‖ψ − ψp‖L2(Ω) = 0 .

Now, let the sequence (vp)p∈N , vp ∈ Kp, converge weakly to v in H1(Ω) and let φ ≥ 0.
Using the Gauss-Lobatto quadrature formula (2.3) and φ ∈ L∞(Q) = (L1(Q))′, we obtain
that

lim
p→∞

∫
Q
(vp − ψp)φp−1 dx =

∫
Q
(v − ψ)φdx

due to the Lebesgue dominated convergence theorem. With Rellich’s embedding theorem
(cf. [Alt91, A 5.1]) there follows

lim
p→∞

vp = v strongly in L2(Ω) .

Thus, it is suffices to show that v ≥ ψ almost everywhere. With (2.3) and the definition
of ψp we get for all Q ∈ T∫

Q
(vp − ψp)φp−1 dx

=
p∑
i=0

p∑
j=0

ρp+1
i ρp+1

j

(
(vp − ψp)φp−1

)(
FQ(ξp+1

i , ξp+1
j )

)
|detDFQ(ξp+1

i , ξp+1
j )|

≥ 0. (2.10)

The inequality follows since φp−1(x) ≥ 0 for all x ∈ Q and (vp−ψp)(x) ≥ 0 for all x ∈ GQ,p
due to the definition of Kp,gD . Furthermore, it is known that the weights ρp+1

i , 0 ≤ i ≤ p,
of the Gauss-Lobatto quadrature formula are positive.
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Combining (2.9) and (2.10) we obtain that for all φ ∈ C0(Q) with φ ≥ 0∫
Q
(v − ψ)φdx ≥ 0 for all Q ∈ T,

hence v ≥ ψ almost everywhere on Ω, i.e., v ∈ K.

Lemma 2.10. For ψ as in Theorem 2.8 there exists a dense subset χ of K and a sequence
of mappings rp : χ→ Kp,gD such that limp→∞ rpv = v strongly in H1(Ω) for all v ∈ χ.

Proof. Consider χ := C∞(Ω) ∩K and rp : H1(Ω) ∩ C0(Ω) → Vp defined by

rpv := ipv (2.11)

With Theorem 2.3 there exists a constant C independent of v and p such that

‖rpv − v‖H1(Ω) ≤ Cp−1‖v‖H2(Ω) for all v ∈ H2(Ω)

and thus for all v ∈ χ. With (2.11) it is obvious that rpv ∈ Kp,gD for all v ∈ χ. Thus the
assertion of the lemma is fulfilled if χ = K. This follows with [Glo84, Lemma II.2.4] if
ψ ≤ gD in a neighborhood of ΓD.

With Theorem 2.8 the convergence of the p-version is proved. If we assume higher regu-
larity of the solution u and of the obstacle ψ, i.e., u, ψ ∈ H2(Q), we obtain the following
a priori error estimate which yields a convergence rate. This assumption of higher regu-
larity of u and ψ is quite natural due to Theorem 1.25.

Note, in general, Vp,gD 6⊂ H1
gD

(Ω) and Kp 6⊂ K. This nonconformity of the approximation
subset requests an extension of the analysis for the h-version given in [HHNL88] and
[Fal74] for a Laplacian inequality. Particularly, we use the non-negativity of P(u) on the
coincidence set Ψ and PΓN

(u) on ΓN (cf. (1.18), (1.19)), the partition of Ψ into Ψ ∩ Υp

and Ψ \Υp where
Υp := {x ∈ Ω|up(x) ≤ ipψ(x)}, (2.12)

and the set of functions

U rp := {w ∈ Hr(Ω) |w = up a.e. in Υp and w(x) = ψ(x) for all x ∈ Gp} (2.13)

for r ≥ 1.

Theorem 2.11. Let u and up be the solutions of Theorem 1.23 and Theorem 2.7, respec-
tively. Furthermore, suppose u, ψ ∈ H2(Ω), f ∈ L2(Ω), and gN ∈ H1/2(ΓN ). Let Υp and
U rp be defined by (2.12) and (2.13). Furthermore, let P(u) and PΓN

(u) be given by (1.18)
and (1.19).

Then there exist constants C1, C2(r) > 0, independent of u, ψ, ūp, and p, C2(r) only
depending on r ≥ 1 such that

‖u− up‖H1(Ω) ≤ C1

(
‖u‖H2(Ω) + ‖P(u)‖L2(Ψ) + ‖PΓN

(u)‖H1/2(ΓN\∂(Ω\Ψ))

)1/2
·
(
‖u‖H2(Ω) + ‖ψ‖H2(Ω)

)1/2
p−3/4

+C2(r)
(
‖P(u)‖L2(Ψ) + ‖PΓN

(u)‖H1/2(ΓN\∂(Ω\Ψ))

)1/2‖ūp‖1/2
Hr(Ω)p

−r/2+1/4.

(2.14)
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For u > ψ on ΓN , there holds the improved result

‖u− up‖H1(Ω) ≤ C1

(
‖u‖H2(Ω) + ‖P(u)‖L2(Ψ)

)1/2 (‖u‖H2(Ω) + ‖ψ‖H2(Ω)

)1/2
p−1

+ C2(r)‖P(u)‖1/2
L2(Ψ)

‖ūp‖1/2
Hr(Ω) p

−r/2.
(2.15)

Remark 2.12. With [KS80, Theorem II.A.1] we know that ūp := min{up, ipψ} ∈ H1(Ω)
with ‖ūp‖H1(Ω) ≤ ‖up‖H1(Ω) + ‖ipψ‖H1(Ω), i.e., ūp ∈ U rp for r = 1. Further, ūp is bounded
in H1(Ω) for p → ∞ due to the convergence of up towards u and the convergence of ipψ
towards ψ, i.e., there exists a real constant c > 0, such that ‖ūp‖H1(Ω) ≤ c(‖u‖H1(Ω) +
‖ψ‖H1(Ω)) for all p ∈ N.

ūp can be constructed for r > 1 and finite p by continuous extension of up|Υp
and its

derivatives using Hermite interpolation polynomials in x ∈ Gp.

Our numerical experiments with nonempty coincidence sets and a Dirichlet boundary
condition suggest convergence rates better than O(p−1), i.e., ‖ūp‖Hr(Ω) is small for p ≤ 20
(see Experiment 2.25, Experiment 4.50, Experiment 4.51).

Proof of Theorem 2.11. Due to Theorem 1.23(ii) and Theorem 2.7(ii) we have

DA(u;u) ≤ DA(u; v) for all v ∈ K; DA(up;up) ≤ DA(up; vp) for all vp ∈ Kp,gD .
(2.16)

Setting ϕw(t) := DA(u+ tw; v), t ∈ R, with Taylor’s theorem we write

ϕw(1) = ϕw(0) + ϕ′w(θ) for a θ ∈ [0, 1]

= DA(u; v) +D2A(u+ θw; v, w)

and get

DA(up; v) = DA(u; v) +D2A(u+ θ(up − u); v, up − u) for a θ ∈ [0, 1]

by setting w := up − u. Using Lemma 1.21 (1.12) we deduce

κl|u− up|2H1(Ω) ≤ DA(u;u− up)−DA(up;u− up)

= DA(u;u) +DA(up;up)−DA(u;up)−DA(up;u)
≤ DA(u; v − up) +DA(up; vp − u)
≤ DA(u; v − up) +DA(u; vp − u)

+ max
θ∈[0,1]

{D2A(u+ θ(up − u); vp − u, up − u)}

(2.17)

for all v ∈ K and vp ∈ Kp,gD . We estimate the last three terms of (2.17) as follows:

DA(u; v − up): Using the notations P(u) defined by (1.18), PΓN
(u) defined by (1.19) we

observe P(u) ∈ L2(Ω), PΓN
(u) ∈ H1/2(ΓN ). From Theorem 1.23 we know

P(u) ≥ 0 on Ω and P(u)|Ω\Ψ = 0,

PΓN
(u) ≥ 0 on ΓN and PΓN

(u)|ΓN∩∂(Ω\Ψ) = 0.

We recall the notation of the coincidence set Ψ := {x ∈ Ω |u(x) = ψ(x)} (see (1.22)) and
define the consistency error set

Ω−
p := {x ∈ Ω |up(x) ≤ ψ(x)} .
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Now, let v := max{up, ψ}. From [KS80, Chapter II, Theorem II.A.1] we know that
v ∈ H1(Ω). Therefore, v ∈ K. By partial integration of DA (cf. 1.17) we obtain

DA(u; v − up) = 〈P(u), v − up〉L2(Ω) + 〈PΓN
(u), v − up〉H−1/2(ΓN )

= 〈P(u), ψ − up〉L2(Ω−
p ∩Ψ) + 〈PΓN

(u), ψ − up〉H−1/2(Γ−N,p) (2.19)

with Γ−N,p := ΓN \ ∂(Ω \Ψ) ∩ ∂Ω−
p . Here, we use

0 ≤ v − up =

{
ψ − up a.e. on Ω−

p ,

0 a.e. on Ω \ Ω−
p ,

and the non-negativity of P(u) on Ψ, the non-negativity of PΓN
(u) on ΓN \ ∂(Ω \Ψ) to get

(2.19). To estimate the right hand side of (2.19), we must cope with the consistency error
Kp 6⊂ K, i.e., there exist x ∈ Ψ such that up(x) < ψ(x). We know up ≥ ipψ in Ω \Υp by
the definition of Υp (see (2.12)). This yields

〈P(u), ψ − up〉L2(Ω−
p ∩Ψ) ≤ 〈P(u), ψ − ipψ〉L2((Ω−

p ∩Ψ)\Υp)

+ 〈P(u), ψ − ūp〉L2(Ω−
p ∩Ψ∩Υp) + 〈P(u), ūp − up〉L2(Ω−

p ∩Ψ∩Υp)

with ūp ∈ U rp . Due to the definition of U rp in (2.13) there holds ūp − up = 0 a.e. in Υp.
Additionally, we have ipψ = ipūp because of ūp(x) = ψ(x) for all x ∈ Gp from the definition
of U rp . Extending ψ − ūp = ψ − ipψ + ipūp − ūp yields

〈P(u), ψ − up〉L2(Ω−
p ∩Ψ) ≤ 〈P(u), ψ − ipψ〉L2(Ω−

p ∩Ψ) + 〈P(u), ipūp − ūp〉L2(Ω−
p ∩Ψ∩Υp) .

Using the corresponding estimate for 〈PΓN
(u), ψ − up〉H−1/2(Γ−N,p), we can write

DA(u; v − up) ≤ ‖P(u)‖L2(Ω−
p ∩Ψ)

(
‖ψ − ipψ‖L2(Ω) + ‖ūp − ipūp‖L2(Ω)

)
+ ‖PΓN

(u)‖H1/2(Γ−N,p)

(
‖ψ − ipψ‖H−1/2(ΓN ) + ‖ūp − ipūp‖H−1/2(ΓN )

)
≤ ‖P(u)‖L2(Ω−

p ∩Ψ)

(
C3p

−2‖ψ‖H2(Ω) + C5(r) p−r‖ūp‖Hr(Ω)

)
+ ‖PΓN

(u)‖H1/2(Γ−N,p)

(
C4p

−3/2‖ψ‖H3/2(ΓN ) + C6(r) p−r+1/2‖ūp‖Hr−1/2(ΓN )

)
.

(2.20)

Here, C3, C4, C5(r) and C6(r) are the positive constants from Theorem 2.3 depending on
the quasi-uniform mesh T and on r, 1 ≤ r <∞. Note, when estimating on ΓN we only
get p−3/2, p−1/2 (and not p−2, p−2) due to the restriction r ≥ 0 in Theorem 2.3.

DA(u; vp − u): Let vp := ip u ∈ Kp,gD be the interpolate of u. Again, partial integration
of DA, duality, and using the above constants C3, C4 from Theorem 2.3 yield

DA(u; vp − u) = 〈P(u), vp − u〉L2(Ψ) + 〈PΓN
(u), vp − u〉H−1/2(ΓN\∂(Ω\Ψ))

≤ ‖P(u)‖L2(Ψ)‖u− ipu‖L2(Ω) + ‖PΓN
(u)‖H1/2(ΓN\∂(Ω\Ψ)) ‖u− ipu‖H−1/2(ΓN )

≤ ‖P(u)‖L2(Ψ) C3p
−2‖u‖H2(Ω) + ‖PΓN

(u)‖H1/2(ΓN\∂(Ω\Ψ)) C4p
−3/2‖u‖H3/2(ΓN ) .

(2.21)
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D2A(u+ θ(up − u); vp − u, up − u): From the proof of Lemma 1.21 (1.14) we have

D2A(û; v1, v2) ≤ κu 〈∇v1,∇v2〉L2(Ω) for all û, v1, v2 ∈ H1(Ω).

Using
〈∇v1,∇v2〉L2(Ω) ≤ 1

2µ |v1|
2
H1(Ω) + µ

2 |v2|
2
H1(Ω) for all µ > 0

and setting û := u+ θ(up − u), µ := κlκ
−1
u , and again, vp := ip u ∈ Kp,gD we estimate

D2A(û; vp − u, up − u) ≤ κu
κu
2κl
|vp − u|2H1(Ω) + κu

κl
2κu

|up − u|2H1(Ω)

≤ κ2
u

2κl

(
C3p

−1
)2‖u‖2

H2(Ω) + κl
2 |up − u|2H1(Ω)

(2.22)

for all 0 ≤ θ ≤ 1 with Theorem 2.3.

Plugging in (2.20), (2.21), (2.22) into (2.17) we get

κl
2 |u− up|2H1(Ω) ≤ C2

3
κ2

u
2κl
p−2‖u‖2

H2(Ω)

+ ‖P(u)‖L2(Ψ)

(
C3p

−2
(
‖u‖H2(Ω) + ‖ψ‖H2(Ω)

)
+ C5(r) p−r‖ūp‖Hr(Ω)

)
+ ‖PΓN

(u)‖H1/2(ΓN\∂(Ω\Ψ))

(
C4p

−3/2
(
‖u‖H3/2(ΓN ) + ‖ψ‖H3/2(ΓN )

)
(2.23)

+ C6(r) p−r+1/2‖ūp‖Hr−1/2(ΓN )

)
.

Since the trace operator onto ΓN is continuous, there exists positive constants C7, C8 such
that

‖v‖H3/2(ΓN ) ≤ C7‖v‖H2(Ω) for all v ∈ H2(Ω),

‖v‖Hr−1/2(ΓN ) ≤ C8‖v‖Hr(Ω) for all v ∈ Hr(Ω), 1 ≤ r <∞ .

Let CP > 0 be the constant of the Poincaré-Friedrich’s inequality ‖v‖H1(Ω) ≤ CP|v|H1(Ω)

which holds for all v ∈ H1
gD

(Ω), gD ≡ 0. As ipu = up on ΓD, we can use the Poincaré-
Friedrich’s inequality and Theorem 2.3 to estimate

‖u− up‖2
L2(Ω) ≤ 2‖u− ipu‖2

L2(Ω) + 2‖ipu− up‖2
L2(Ω)

≤ 2C2
3p
−2‖u‖2

H2(Ω) + 2C2
P|ipu− up|2H1(Ω)

≤ 2(1 + C2
P)C2

3p
−2‖u‖2

H2(Ω) + 2C2
P|u− up|2H1(Ω).

Setting CQ := (1 + C2
P) 4

κl
, C2

2 (r) := CQ max{C5(r), C6(r)C8}, and

C2
1 := CQ max{C2

3 (κl
2 + κ2

u
2κl

), C3, C4C7}

we obtain (2.14).

If u > ψ on ΓN , the Neumann condition (1.19) of Problem (P) holds with PΓN
(u) = 0 on

ΓN (cf. (1.20)). Thus ‖PΓN
(u)‖H1/2(ΓN\∂(Ω\Ψ)) = 0 in (2.23) yields (2.15).

Remark 2.13. Falk [Fal74] and Hlaváček et al. [HHNL88] both deduce a convergence rate
of ‖u− uh‖H1(Ω) = O(h) for the h-version for an obstacle problem with Dirichlet boundary
conditions and the regularity assumptions of Theorem 2.11. Due to the piecewise affine
linearity of h-version FEM functions, they can use the property uh ≥ ihψ. Here uh denotes
the h-version solution and ihψ the linear interpolant of the obstacle. Unfortunately, the
corresponding p-version analog up ≥ ipψ does not hold.
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2.2 p discretization of K ⊂ H1(Ω) on triangles

The use of high-order methods is traditionally in conflict with the need for significant geo-
metric flexibility by being restricted to fairly simple geometries. The standard approach
is to map the reference quadrilateral Q̃ onto curvilinear quadrilaterals in the sense of FE.
Such techniques are powerful, but they do suffer from the need to tile the computational
domain using only quadrilaterals. Unfortunately, automated grid generation using only
such elements for general two-dimensional computational problems of a realistic complex-
ity remains a nontrivial task and it becomes even worse in three dimensions. In contrast
to this, automated grid generation employing a fully unstructured grid based on triangle
elements, or tetrahedral elements in three dimension is significantly more mature, due
mainly to extensive developments within the FE community.

2.2.1 An electrostatic approach

Typically, the high-order methods on triangles use the 1
2(p+ 1)(p+ 2) dimensional space

Vp(T̃ ) := {ξi1ξ
j
2 | 0 ≤ i+ j ≤ p} on the reference triangle T̃ given by the vertices (0, 0),

(1, 0), (0, 1). From [BCMP91] and [Dub91] we know hierarchical bases for Vp(T̃ ) deduced
mainly from Legendre polynomials which lead to a mildly increasing condition number of
the global stiffness matrix for growing p.

For higher-order collocation methods the question of how to choose 1
2(p+ 1)(p+ 2) good

collocation points on T̂ given by the vertices (−1/2, 0), (1/2, 0), and (0,
√

3/2) was ana-
lyzed numerically by Hesthaven in [Hes98] for p ≤ 16 using different nodal schemes. The
way of estimating the quality of alternative approximations corresponding to the nodal
sets appears as a result of the following generalization of Lebesgue’s lemma to T̂ (cf.
[DL93]).

Lemma 2.14 (Lebesgue). Let ‖g‖∞ := sup{|g(x)| |x ∈ T̂} be the usual supremum-norm
on C(T̂ ). Assume that f ∈ C(T̂ ) and that we consider the nodal set Gp,T̂ and the
interpolant iGp,T̂

f of f with respect to Gp,T̂ . Then,

‖f − iGp,T̂
f‖∞ ≤

(
1 + Λ(Gp,T̂ )

)
min

p∈Vp(T̂ )
‖f − p‖∞

where

Λ(Gp,T̂ ) := sup
f∈C(T̂ )

0 6=f

‖iGp,T̂
f‖∞

‖f‖∞
= max

x∈T̂

cardGp,T̂∑
i=1

|λi(x)| (2.24)

is called the Lebesgue constant and λi(x) denote the Lagrangian interpolation polynomials
on T̂ , i.e., for the counted nodes xj ∈ Gp,T̂ we have λi(xj) = 1 for i = j, and λi(xj) = 0
for i 6= j.

Proof. As iGp,T̂
p = p for all p ∈ Vp(T̂ ), we obtain

‖f − iGp,T̂
f‖∞ ≤ ‖f − p‖∞ + ‖iGp,T̂

(p− f)‖∞ ≤ (1 + Λ(Gp,T̂ ))‖f − p‖∞ .
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Figure 2.1: Chebyshev-Gauss-Lobatto points on T̂ for p = 2, 6, 12

To proof the right equality in (2.24) we note firstly

|iGp,T̂
f(x)| ≤

cardGp,T̂∑
i=1

|f(xi)λi(x)| ≤ ‖f‖∞
cardGp,T̂∑

i=1

|λi(x)|

for all x ∈ T̂ , f ∈ C(T̂ ). This yields “≤” of the right “=” in (2.24). Secondly, let

x̂ ∈ T̂ such that
∑cardGp,T̂

i=1 |λi(x̂)| is maximal. There exist si ∈ {−1, 1} such that∑cardGp,T̂

i=1 |λi(x̂)| =
∑cardGp,T̂

i=1 si λi(x̂). Further, let S be a triangulation on T̂ with the
interpolation points as vertices. Thereby, there exists a continuous and piecewise linear
g on T̂ with si = g(xi) for i = 1, . . . , cardGp,T̂ . Noting that ‖g‖∞ = 1 yields “≥” of the
right “=” in (2.24).

Consequently, by computing the Lebesgue constant we obtain a measure of how close the
approximation is to the best polynomial approximation.

In 1885, Stieltjes [Sti85a, Sti85b] revealed a very interesting connection between the
Gauss-Lobatto points and the following electrostatic problem.

Problem: Let two unit electrostatic mass charges ql, qr > 0 be concentrated
at the positions x = ±1. Assume also that NI unit charges, positioned at
x1, . . . , xNI

, are allowed to move freely along the line connecting the end point
charges. What is the position of the charges that minimizes the electrostatic
energy

W (x1, . . . , xNI
) := −

NI∑
i=1

(
ql log |xi + 1|+ qr log |xi − 1|+ 1

2

NI∑
j=1
j 6=i

log |xi + xj |
)
.

Stieltjes showed that the energy is minimized when x1, . . . , xNI
are given as the zeros of

the Jacobi polynomials Jα,βNI
with α = 2ql−1 and β = 2qr−1 (Jα,βNI

is given below, p. 46).
In [Sze75, Theorem 6.7.1] it is shown that this minimum is the unique global minimum.
Taking α = β = 1 and p = NI + 1 the zeros of the Jacobi polynomials Jα,βNI

coincide with
the interior Gauss-Lobatto points ξp+1

i , 1 ≤ i ≤ p− 1 .

Hesthaven [Hes98] generalizes this problem to 1
2(p + 1)(p + 2) unit mass charges on T̂

and calculates their distribution Gp,CGJ, termed Chebyshev-Gauss-Lobatto nodes, numer-
ically (see Figure 2.1) for p = 1, 2, . . . , 16. The respective interpolation operator owns
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the Lebesgue constant Λ(Gp,CGJ) = 41.726 for p = 16 which is a great improvement in
comparison to the approximation properties of interpolation with respect to the equinodal
set Gp,EQ characterized by the Lebesgue constant Λ(Gp,EQ) = 2418.5 for p = 16. Further-
more, the Gp,CGJ nodes have the nice property that they coincide with the Gauss-Lobatto
points on the edges of T̂ .

Recalling the definitions of Vp,gD and Kp,gD on quadrilateral meshes, it seems a nearby
idea to take the Lagrangian interpolation polynomials λi with respect to the Gp,CGJ points
as a basis and to control the obstacle condition in these points. The Lagrangian basis can
be easily calculated by evaluating a known basis (bk)k=1,...,NT

, NT := dimVp(T̂ ), of Vp(T̂ )
at all xi ∈ Gp,CGJ: λ1(x)

...
λNT

(x)

 =

 b1(x1) . . . b1(xNT
)

...
...

bNT
(x1) . . . bNT

(xNT
)


−1 b1(x)

...
bNT

(x)

 .

The main drawback of the Gp,CGJ approach is that almost nothing is known from the
theoretical point of view. This concerns particularly the numerical quadrature on T̂ . The
proof of our Theorem 2.8 hangs mainly on the exactness of the Gauss-Lobatto quadrature
rule for polynomials of degree ≤ 2p− 1 and the positivity of its weights ρp+1

i , 0 ≤ i ≤ p.
Although a quadrature rule with the Gp,CGJ points as quadrature points can be developed
by integration of the respective Lagrangian interpolation polynomials, its exactness for
polynomials of degree > p and the positivity of its weights remain open questions. In the
following we pursue another approach.

2.2.2 An approach by weighted Sobolev spaces

Instead of the usual 1
2(p + 1)(p + 2) dimensional local space Vp(T̃ ), we use a nonlinear

mapping to transform the tensor product basis from Q̃ onto T̃ and yield a (p + 1)2 − p
dimensional basis. Let T̃ be the interior of the reference triangle defined by the vertices
(0, 0), (0, 1), and (0, 1). The transformation FB defined by

FB(ξ) = 1+ξ1
4 (1− ξ2, 1 + ξ2) (2.25)

maps the interior of Q̃ upon the interior of T̃ diffeomorphly. We calculate the Jacobian
matrix

DFB(ξ) = 1
4

(
1− ξ2 −(1 + ξ1)
1 + ξ2 1 + ξ1

)
and its determinant |detDFB(ξ)| = 1+ξ1

8 .

Thus, we have ∫
T̃
v2(x) dx =

∫
Q̃

1+ξ1
8 v2(F (ξ)) dξ (2.26)

for smooth v and the respective analogies for ∂
∂x1

v, ∂
∂x2

v, ∂2

∂x2
1
v, ∂2

∂x1x2
v, ∂2

∂x2
2
v.

Example 2.15. Let u be given by u(x) = (1 − x1)−3/2 on T̃ and û = u ◦ FB on Q̃.
Elementary integration shows that u ∈ L2(T̃ ) and due to (2.26) (1+ξ1

8 )1/2 û ∈ L2(Q̃).
But û 6∈ L2(Q̃) because of ‖û‖2

L2(Q̃)
=
∫
Q̃(1− 1

4(1 + ξ1)(1− ξ2))−3 dξ = ∞. So, the con-
vergence result given in Theorem 2.3 can not be used.
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As a work around for this problem we switch to weighted Sobolev spaces. We begin with
the one-dimensional case. The weight on the interval [−1, 1] is defined by

wα,β(ζ) := (1− ζ)α (1 + ζ)β where α, β > −1

are real parameters. This last condition is necessary for the weight to be integrable. We
define the basic space

L2
α,β((−1, 1)) :=

{
v ∈ D′(−1, 1)

∣∣ ∫ 1

−1
w(ζ) v2(ζ) dζ < +∞

}
which is provided with the norm

‖v‖L2
α,β((−1,1)) :=

(∫ 1

−1
wα,β(ζ) v2(ζ) dζ

)1/2

.

Definition 2.16. Let m be a positive integer. The Sobolev space Hm
α,β((−1, 1)) is defined

by
Hm
α,β((−1, 1)) =

{
v ∈ L2

α,β((−1, 1))
∣∣ dk v

dζk ∈ L2
α,β((−1, 1)), 1 ≤ k ≤ m

}
.

It is provided with the norm

‖v‖Hm
α,β((−1,1)) =

(∫ 1

−1

m∑
k=0

(
dk v
dζk

)2(ζ) wα,β(ζ) dζ
)1/2

.

In [BM92, BM97] Bernardi and Maday give a deep analysis of weighted Sobolev spaces
with respect to weight functions given by wα,α(x) := (1− x2)α, −1

2 ≤ α ≤ 1
2 , defining the

ultraspherical Jacobi polynomials Jα,αp . There, also definitions of weighted Sobolev spaces
Hs
α,α((−1, 1)) for real numbers s yielded as interpolation spaces and extensions to higher

dimensions can be found. We only give a sketch of the spaces and of the approximation
properties of the Gauss-Lobatto-Jacobi interpolation operator ip needed for our problem
in the following.

By the theory of orthogonal polynomials (cf. [Sze75]) there exists polynomials Jα,βp ,
called Jacobi polynomials, of degree p for real α, β with Jα,βp (1) =

(
p+α
p

)
, which

are orthogonal to each other with respect to the scalar product 〈·, ·〉α,β given by
〈f, g〉α,β :=

∫ 1
−1wα,β(ζ) f(ζ)g(ζ) dζ. Analogously to the Legendre polynomials on p. 35

we recall four basic properties that characterize these polynomials.

(i) For any positive integer p, the zeros of Jα,βp are distinct real numbers ζα,β,pi ,
1 ≤ i ≤ p in (−1, 1), called Gauss-Jacobi points of degree p.

(ii) Gauss-Jacobi quadrature. There exist positive weight factors ωα,β,pi , 1 ≤ i ≤ p, such
that ∫ 1

−1
wα,β(ζ)φ(ζ) dζ =

p∑
i=1

φ(ζα,β,pi )ωα,β,pi

for all polynomials φ ∈ P2p−1([−1, 1]).
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(iii) For any positive integer p, the zeros of (1− ζ2) d
dζJ

α,β
p (ζ) are distinct real numbers

ξα,β,p+1
i , 0 ≤ i ≤ p, in [−1, 1] called Gauss-Lobatto-Jacobi points of degree p.

(iv) Gauss-Lobatto-Jacobi quadrature. There exist positive weight factors ρα,β,p+1
i ,

0 ≤ i ≤ p, such that∫ 1

−1
wα,β(ζ)φ(ζ) dζ =

p∑
i=0

φ(ξα,β,p+1
i )ρα,β,p+1

i (2.27)

for all polynomials φ ∈ P2p−1([−1, 1]).

As a consequence of the differential equation satisfied by the Jacobi polynomials (see
[Sze75, (4.2.2)])

d
dζ

(
(1− ζ)α+1(1 + ζ)β+1 d

dζJ
α,β
p (ζ)

)
+ p(p+ α+ β + 1)(1− ζ)α(1 + ζ)βJα,βp (ζ) = 0,

we remark that the derivatives d
dζJ

α,β
p (ζ) of the Jacobi polynomials are orthogonal with

respect to the weight (1− ζ)α+1(1 + ζ)β+1. This leads to note that the interior nodes of a
Gauss-Lobatto-Jacobi formula with p+2 nodes coincide with the nodes of a Gauss-Jacobi
formula with p nodes, i.e.,

ξα,β,p+2
i = ζα+1,β+1,p

i , 1 ≤ i ≤ p ; (2.28)

besides the weights are linked by the following equality:

ρα,β,p+2
i =

(
1− (ζα+1,β+1,p

i )2
)−1

ωα+1,β+1,p
i , 1 ≤ i ≤ p . (2.29)

In discussing the zeros of Jacobi polynomials, we define θα,β,pi by ζα,β,pi = cos θα,β,pi and
enumerate the zeros in decreasing order:

+1 > ζα,β,p1 > · · · > ζα,β,pp > −1; 0 < θα,β,p1 < · · · < θα,β,pp < π .

Assuming α, β > 1
2 , an inspection of the proof of [Sze75, Theorem 6.3.1]) shows that

i

p+ (α+ β + 1)/2
π < θi <

i+ (α+ β − 1)/2
p+ (α+ β + 1)/2

π , i = 1, . . . , p .

In particular, we obtain

i

p+ 2
π < arccos ξ0,1,p+2

i <
i+ 1
p+ 2

π, i = 1, . . . , p , (2.30)

for the interior Gauss-Lobatto-Jacobi points by (2.28).

If two sequences an and bn of real or complex numbers have the property that bn 6= 0 and
an/bn → 1 as n→∞, we write ∼=.

Using the ∼=-notation we can characterize the quadrature weights ωα,β,pi of the Gauss-
Jacobi quadrature by

ωα,β,pi
∼=

2α+β+1π

p

(
sin

θα,β,pi

2

)2α+1(
cos

θα,β,pi

2

)2β+1
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due to [Sze75, (15.3.10)] for α, β > −1. Using (2.29) and taking α = 0, β = 1, we get

ρ0,1,p+2
i

∼=
8π
p

(
sin

θ1,2,p
i

2

)2(
cos

θ1,2,p
i

2

)4

.

Thus, we can replace (sin θ)α+1/2 in the proof of [BM92, Theorem 3.1,(3.3)] by
(sin θ

2)1(cos θ2)2. Due to the partition (2.30) of the Gauss-Lobatto-Jacobi-points, collecting
the above arguments should yield the following analogy of [BM92, Theorem 4.2].

Proposition 2.17. Let ip be the interpolation operator with respect to the Gauss-
Lobatto-Jacobi points ξ0,1,p+1

i , i = 0, 1, . . . , p. There exists a positive constant c depending
on s > 1/2 such that the following approximation property holds for any function v on
Hs

0,1((−1, 1)):
‖v − ipv‖L2

0,1((−1,1)) ≤ cp−s‖v‖Hs
0,1((−1,1)) .

For our problem we define a two-dimensional generalization using the weight function with
respect to the variable ξ1 as follows:

L2
B(Q̃) :=

{
v ∈ D′(Ω)

∣∣ ∫
Q̃
w0,1(ξ1) v2(ξ) dξ < +∞

}
with the norm

‖v‖L2
B(Q̃) :=

(∫
Q̃
w0,1(ξ1) v2(ξ) dξ

)1/2

. (2.31)

Remark 2.18. Let u and û be defined as in Example 2.15. With (2.26) it follows that
u ∈ L2(T̃ ) implies û ∈ L2

B(Q̃).

Using L2
B(Q̃) as basic norm we can define appropriate Sobolev spaces.

Definition 2.19. Let m be a positive integer. The Sobolev space Hm
B (Q̃) is defined by

Hm
B (Q̃) =

{
v ∈ L2

B(Q̃)
∣∣ ∂ k+lv
∂ζk

1 ∂ζ
l
2
∈ L2

B(Q̃); 1 ≤ k + l ≤ m; 0 ≤ k, l
}
.

It is provided with the norm

‖v‖Hm
B (Q̃) =

(∫
Q̃

∑
0≤k,l

0≤k+l≤m

(
∂ k+lv
∂ζk

1 ∂ζ
l
2

)2(ζ) w0,1(ζ1) dζ
)1/2

.

Analogously to Definition 2.2 of GQ̃,p, we use the Gauss-Lobatto-Jacobi points for the
definition of points sets, and following, this for the definition of a p basis on the reference
triangle T̃ .

Definition 2.20. Let ξ0,1,p+1
i and ξp+1

j , 0 ≤ i, j ≤ p, be the Gauss-Lobatto-Jacobi and
Gauss-Lobatto points of degree p, respectively. On the reference elements Q̃ = [−1, 1]2

and T̃ we define the sets

G0,1,Q̃,p := {(ξ0,1,p+1
i , ξp+1

j ) | 0 ≤ i, j ≤ p} and GB,p := FB(Gw,Q̃,p).
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Figure 2.2 shows examples of GB,p. Further, we note the Lagrangian functions with
respect to the Gauss-Lobatto points

λpi (ξ) :=
p∏

k=0
k 6=i

ξ − ξp+1
k

ξp+1
i − ξp+1

k

, 0 ≤ i ≤ p,

and replacing ξp+1
i by ξ0,1,p+1

i with respect to the Gauss-Lobatto-Jacobi points

λw,pi (ξ) :=
p∏

k=0
k 6=i

ξ − ξ0,1,p+1
k

ξ0,1,p+1
i − ξ0,1,p+1

k

, 0 ≤ i ≤ p .

We define the basis

BB
p (Q̃) :=

(
λw,p0 ; (λw,pi · λpj , 1 ≤ i ≤ p, 0 ≤ j ≤ p)

)
and the p(p+ 1) + 1 dimensional FE space

PB,2
p (Q̃) := span(BB

p (Q̃)).

Using the extension F̃−1
B : T̃ → Q̃ of the inverse of FB given by

F̃−1
B :=

{
F−1(x1, x2) if (x1, x2) 6= (0, 0) ,
(0, 0) if (x1, x2) = (0, 0) ,

we define the FE space on T̃

PB
p (T̃ ) :=

{
v ◦ F̃−1

B

∣∣ v ∈ PB,2
p (Q̃)

}
.

For sake of simplicity and to avoid further canonical definitions we consider only the
Dirichlet problem on Ω = T̃ , i.e., we assume ΓN = ∅. We take the single element mesh
T = {T̃} and state the triangle analogies to the above Theorems 2.6, 2.7, 2.8, and 2.11.
Firstly, we define the appropriate subsets V B

p,gD
and KB

p,gD
of PB

p (T̃ ) which are necessary

Figure 2.2: The point set GB,p ⊂ T̃ for p = 2, 3, 6

to control the Dirichlet and the obstacle condition:

V B
p,gD

:= {w ∈ PB
p (T̃ ) |w(x) = gD(x), x ∈ ΓB

D,p} , (2.32)

KB
p,gD

:= {w ∈ PB
p (T̃ ) |w(x) ≥ gD(x), x ∈ GB,p, and w(x) = gD(x), x ∈ ΓB

D,p} (2.33)
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with ΓB
D,p := ΓD ∩GB,p.

Analogously to [BM92, Section 5] (see [BM97, Sections 7, 14, 20] for a detailed analysis)
Proposition 2.17 can be extended to two dimensions since weighted Sobolev spaces on
tensorized domains satisfy the same tensorization properties as the standard ones. This
should yield the following analogy of Theorem 2.3.

Proposition 2.21. Let ip be the interpolation operator on Q̃ with respect to G0,1,Q̃,p
from Definition 2.20. For any real numbers r and s satisfying s > (d+ r)/2 , d = 2, and
0 ≤ r ≤ 1, there exists a positive constant c depending only on s > 1 such that, for any
function v ∈ Hs

B(Q̃), the following estimate holds

‖v − ipv‖Hr
B(Q̃) ≤ cpr−s‖v‖Hs

B(Q̃) .

The following three propositions are analogies to Theorem 2.6, Theorem 2.7, and Theo-
rem 2.8 and state existence, uniqueness, and the convergence of the p-version approach
by weighted Sobolev spaces. We do not give an a priori error estimate for the discrete
solution up here. Nevertheless, Experiment 2.26 shows convergence rates better than
‖u− up‖H1(Ω) ≤ O(p−1) for the obstacle and the obstacle free problem.

Proposition 2.22. Let Ω := T̃ and let V B
p,gD

be given by (2.32). Further, let there exist
positive constants ρi, i = 0, 1, 2, 3, as in (1.6). Then, there exists a unique up satisfying
the following equivalences:

(i) up minimizes the functional A on V B
p,gD

, i.e. A(up) ≤ A(v) for all v ∈ V B
p,gD

.

(ii) There exists a up ∈ V B
p,gD

satisfying DA(up; v − up) = 0 for all v ∈ V B
p,gD

.

Proposition 2.23. Let Ω := T̃ and let KB
p,gD

be given by (2.33). Let the obsta-
cle ψ ∈ H1(Ω) be defined with ψ ≤ gD almost everywhere in a neighborhood of ΓD,
let up ∈ KB

p,gD
be defined by Definition 2.4 and let there exist positive constants ρi,

i = 0, 1, 2, 3, as in (1.6). Then, there exists a unique up satisfying the following equiva-
lences:

(i) up minimizes the functional A on KB
p,gD

, i.e. A(up) ≤ A(v) for all v ∈ KB
p,gD

.

(ii) There exists a up ∈ KB
p,gD

satisfying DA(up; v − up) ≥ 0 for all v ∈ KB
p,gD

.

Proof of Proposition 2.22 and Proposition 2.23. Both theorems are analogies to Theo-
rem 2.6 and Theorem 2.7. Thus, it suffices to note that V B

p,gD
and KB

p,gD
are convex,

closed, and nonempty subsets of PB
p (T̃ ).

Proposition 2.24. Let ψ ∈ C0(T̃ ) ∩H1(T̃ ), ψ ≤ gD in a neighborhood of ΓD = Γ, and
ΓN = ∅. With the above assumptions on K and KB

p,gD
, there holds

lim
p→∞

‖up − u‖H1(T̃ ) = 0

with u and up the minimizers of Theorem 1.23 and Proposition 2.23, respectively.
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Sketch of the proof of Proposition 2.24. Since u ∈ Hµ(T̃ ) implies u ◦ FB ∈ Hµ
B(Q̃) for

µ ≥ 0, it suffices to prove the convergence of up towards u and its rate on Q̃ with re-
spect to the norm H1

B(Q̃).

The proof of Theorem 2.8 depends basically on the approximation properties of the Bern-
stein operator B2

p and the interpolation operator ip given by Theorem 2.3. The approxi-
mation properties of the interpolation operator ip with respect to G0,1,Q̃,p were given in
Proposition 2.21. This yields the approximation of the interpolant in GB,p on T̃ . An
appropriate Bernstein operator on T̃ can be defined using the transformation FB.

Furthermore, the exactness of the Gauss-Lobatto quadrature formula (2.3) for the inte-
gration of polynomials of degree ≤ 2p − 1 and the positivity of the quadrature weights
ρp+1
i play an essential role. By the Gauss-Lobatto-Jacobi quadrature (2.27) we have an

analogy of the Gauss-Lobatto quadrature.



52 DISCRETIZATION

2.3 Numerical experiments on the square and on the trian-
gle

Experiment 2.25 (p-version on a square). We consider the Poisson equation

−4u = f (2.34)

with homogenous Dirichlet data on the square Q := Q̃ = [−1, 1]2 and with f = −4w,

w = (x+ 1)(y + 1)(e(x−1)(y−1) − 1). (2.35)

The solution of (2.34) minimizes

A(v) :=
∫
T
(1
2∇

T v ∇v − fv) dx on H1
0 (Q).

As obstacle functions ψ we introduce ψ ≡ −1.5 and ψ ≡ −1 on Q. The obstacle problem

−4u ≥ f, (u− ψ) · 4u = 0, u ≥ ψ in Q (2.36)

is solved if we take the minimizer of A not on H1
0 (Q), but on the admissible functions

K := {v ∈ H1
0 (Q)|v ≥ ψ}. As approximation space we choose Vp and its discrete subsets

Vp,gD and Kp,gD given in Definition 2.4. The minimizer of the discrete minimization
problem is called up.

The integrals of the discrete problem are calculated by a Gauss-Lobatto quadrature (cf.
(2.3)) with p+4 points. The discrete problem leads to a quadratic programming problem
which can be solved by relaxation methods (cf. [Glo84, Chapter V]) or a generalized con-
jugate gradient algorithm (cf. [O’L80]), known as Polyak algorithm. Here, the quadratic
programming problem is solved using the matlab routine quadprog in large-scale mode
which implements a subspace trust-region method based on the interior-reflective Newton
method described by Coleman and Li in [CL96]. Each iteration involves the approximate
solution of a large linear system using the method of diagonal preconditioned conjugate
gradients (PCG). The interior PCG iteration is terminated when the relative residual is
less than 10−14. The algorithm stops when either the relative change of the solution vec-
tor representing up in the Euclidian norm is ≤ 10−13 or the relative change of A(up) is
≤ 10−14.

The obstacle problem on the square is visualized in Figure 2.3 for the obstacle ψ ≡ −1
by 3d and contour plots. These plots give an insight on how the obstacle condition is
violated by the p-FE solution for p = 10.

The numerical results on the square are listed in Table 2.1. While u = w from (2.35)
solves (2.34) and A(u) = −14.95831706718053, the exact solution u of the obstacle prob-
lem (2.36) is not known. Here, we apply Lemma 4.48 to estimate the error by

‖u− up‖2
H1(Q) ≤ 2C |A(up)−A(u)| with a constant C > 0,

despite up 6⊂ K. For ψ ≡ −1.5 the value A(u) = −14.189 and for ϕ ≡ −1 the value
A(u) = −12.109 is obtained by extrapolation assuming |A(up) − A(u)| ≈ Cp−β with
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constants C, β > 0. Thus p, p + 2, p + 4 give three equations which allow to determine
A(u), C, and β by solving a nonlinear system.

The experimental convergence rates αp with respect to the polynomial degrees are com-
puted from |A(up)−A(u)| ≈ Cpα where C and α are constants independent of p. Note
that in case of inhomogeneous boundary conditions and obstacle conditions the sequence
A(up) is not monotonously decreasing since Vp,gD 6⊂ Vq,gD and Kp 6⊂ Kq for p < q. There-
fore, the experimental convergence rates are computed from

αp+2 = log
∣∣∣∣ A(up)−A(u)
A(up+2)−A(u)

∣∣∣∣/ log
(

p

p+ 2

)
in case of ψ ≡ −∞ whereas for ψ ≡ −1.5, ψ ≡ −1 we take p+ 4 instead of p+ 2.

Experiment 2.26 (p-version on a triangle). The second numerical experiment plays
on the triangle T given by the vertices (0, 0), (1, 0), (0, 1). Again, we take the Poisson
equation with homogenous Dirichlet data, now with a right hand side f such that

u = xy (e(x+y) − e)

is the exact solution of the unconstrained problem. As obstacle functions we introduce
ψ ≡ −0.06 and ψ ≡ −0.025. For the approximation we use the subsets V B

p,gD
and KB

p,gD

defined on the reference triangle T̃ in (2.32) and (2.33).

The integrals
∫
T̃ ∇vp∇wp and

∫
T̃ fvp of the discrete problem are calculated on the reference

square Q̃ using the transformation FB from (2.25). On Q̃ the quadrature is done by the
weighted Gauss-Lobatto-Jacobi quadrature given in (2.27) wrt. to the first component
and by the Gauss-Lobatto-Jacobi quadrature given in (2.3) wrt. to the second component
with p+ 4 quadrature points in both directions.

The quadratic programming problem is calculated as described in Experiment 2.25. Fig-
ure 2.4 shows the situation with the obstacle ψ ≡ −0.06 for up ∈ KB

p,0.

The analytical solution u yields the value A(u) = −3.1712266254455625 · 10−2 for the ob-
stacle free problem. The extrapolations for the obstacle problems give A(u) = −0.030443
in case of ϕ ≡ −0.06 and A(u) = −0.020738 in case of ϕ ≡ −0.02, but it is only reli-
able in the first four significant digits due to oscillations. The results on the triangle are
documented in Table 2.2.

The main problem with error analysis of the above mentioned numerical experiments
is that we do not have a monotone decreasing sequence A(up) in case of a real obstacle
problem. As a work around the experimental convergence rate was calculated with respect
to the numerical results for p, p+ 4 instead of p, p+ 2.

On the square the theoretical result |A(up)−A(u)| ≤ O(p−2) for the p-version is confirmed.
In case of the unconstrained problem the extrapolation of A(u) equals the analytical
calculated value in the first 15 digits (!) and the convergence rates are very high until
p = 13. The values for p > 13 still give the correct solution, but since the working
precision is already reached, the approximation error can not decrease any more. Also
in case of the constrained problems convergence rates are high and the method performs
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stable for p ≤ 20 in the first four significant digits which are determined correctly already
for p = 14.

On the triangle the extrapolation of the A(u) for the unconstrained problem equals the
analytical calculated value in the first 14 digits and the convergence rates are very high
until p = 9. The values for p > 9 still give the correct solution but since working precision
is already reached, the approximation error can not decrease any more. In case of the
the constrained problems convergence rates are high and the method performs stable for
p ≤ 20. The first three significant digits of A(u) are determined correctly for a small
number of degree of freedoms. The triangle experiments confirm a convergence rate for
the constrained and the unconstrained case better than |A(up)−A(u)| ≤ O(p−2).
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Figure 2.3: The obstacle problem on the square [−1, 1]2 with ψ ≡ −1. The plots visualize
the FE solution up ∈ K10,0.
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Figure 2.4: The obstacle problem on the triangle T̃ with ψ ≡ −0.06. The plots visualize
the FE solution up ∈ KB

10,0.
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Table 2.1: Convergence on the square [−1, 1]2 for different
obstacles, A := A(u)

ϕ ≡ p Np A(up) |A(up)−A| αp
−∞ 2 1 -6.56805e+00 8.39e+00 –

3 4 -1.37450e+01 1.21e+00 –
4 9 -1.49633e+01 5.00e-03 -10.71
5 16 -1.49643e+01 5.99e-03 -10.40
6 25 -1.49587e+01 3.64e-04 -6.47
7 36 -1.49583e+01 1.20e-05 -18.46
8 49 -1.49583e+01 2.68e-07 -25.08
9 64 -1.49583e+01 4.39e-09 -31.49

10 81 -1.49583e+01 5.55e-11 -38.01
11 100 -1.49583e+01 6.52e-13 -43.93
12 121 -1.49583e+01 2.31e-14 -42.70
13 144 -1.49583e+01 2.84e-14 -18.75
14 169 -1.49583e+01 1.42e-13 –
15 196 -1.49583e+01 4.44e-14 –
16 225 -1.49583e+01 2.49e-14 –
17 256 -1.49583e+01 1.21e-13 –
18 289 -1.49583e+01 2.49e-14 –
19 324 -1.49583e+01 1.78e-15 –
20 361 -1.49583e+01 1.56e-13 –

−1.5 2 1 -6.56805e+00 7.62e+00 –
3 4 -1.28368e+01 1.35e+00 –
4 9 -1.47686e+01 5.80e-01 –
5 16 -1.41591e+01 2.99e-02 –
6 25 -1.41477e+01 4.13e-02 -4.75
7 36 -1.42738e+01 8.48e-02 -3.27
8 49 -1.42186e+01 2.96e-02 -4.29
9 64 -1.41769e+01 1.21e-02 -1.53

10 81 -1.41946e+01 5.63e-03 -3.90
11 100 -1.42096e+01 2.06e-02 -3.13
12 121 -1.41797e+01 9.29e-03 -2.86
13 144 -1.41823e+01 6.72e-03 -1.61
14 169 -1.41885e+01 4.59e-04 -7.45
15 196 -1.41877e+01 1.32e-03 -8.86
16 225 -1.41789e+01 1.01e-02 0.30
17 256 -1.41856e+01 3.39e-03 -2.56
18 289 -1.41855e+01 3.49e-03 8.07
19 324 -1.41833e+01 5.65e-03 6.15
20 361 -1.41825e+01 6.52e-03 -1.97

−1 2 1 -6.10945e+00 6.00e+00 –
3 4 -1.04487e+01 1.66e+00 –
4 9 -1.27217e+01 6.13e-01 –
5 16 -1.24264e+01 3.17e-01 –
6 25 -1.20966e+01 1.24e-02 -5.63

continued on next page
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Table 2.1: continued from previous page
ϕ ≡ p Np A(up) |A(up)−A| αp

7 36 -1.20735e+01 3.55e-02 -4.54
8 49 -1.21574e+01 4.84e-02 -3.66
9 64 -1.21550e+01 4.60e-02 -3.28

10 81 -1.21047e+01 4.28e-03 -2.08
11 100 -1.21054e+01 3.56e-03 -5.09
12 121 -1.21217e+01 1.27e-02 -3.30
13 144 -1.21230e+01 1.40e-02 -3.25
14 169 -1.21057e+01 3.27e-03 -0.80
15 196 -1.21051e+01 3.92e-03 0.32
16 225 -1.21108e+01 1.84e-03 -6.72
17 256 -1.21143e+01 5.34e-03 -3.58
18 289 -1.21078e+01 1.25e-03 -3.83
19 324 -1.21068e+01 2.22e-03 -2.41
20 361 -1.21087e+01 3.05e-04 -8.05

Table 2.2: Convergence on the triangle T̃ for different obsta-
cles, A := A(u)

ϕ ≡ p Np A(up) |A(up)−A| αp
−∞ 2 1 -2.11640e-02 1.05e-02 –

3 4 -3.15392e-02 1.73e-04 –
4 9 -3.17109e-02 1.33e-06 -12.96
5 16 -3.17123e-02 6.07e-09 -20.08
6 25 -3.17123e-02 1.78e-11 -27.67
7 36 -3.17123e-02 4.01e-14 -35.45
8 49 -3.17123e-02 5.55e-17 -44.07
9 64 -3.17123e-02 2.46e-15 -11.11

10 81 -3.17123e-02 9.71e-17 2.51
11 100 -3.17123e-02 1.03e-15 -4.31
12 121 -3.17123e-02 1.32e-16 1.67
14 169 -3.17123e-02 2.01e-16 -6.79
15 196 -3.17123e-02 1.18e-16 –
16 225 -3.17123e-02 4.72e-16 –
17 256 -3.17123e-02 6.75e-14 –
18 289 -3.17123e-02 6.52e-16 –
19 324 -3.17123e-02 3.20e-13 –
20 361 -3.17123e-02 5.34e-16 –

−0.06 2 1 -2.08958e-02 9.55e-03 –
3 4 -3.13083e-02 8.65e-04 –
4 9 -3.10520e-02 6.09e-04 –
5 16 -3.04364e-02 6.56e-06 –
6 25 -3.05239e-02 8.09e-05 -4.34
7 36 -3.06197e-02 1.77e-04 -1.87
8 49 -3.04235e-02 1.95e-05 -4.97
9 64 -3.04702e-02 2.72e-05 2.42

continued on next page
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Table 2.2: continued from previous page
ϕ ≡ p Np A(up) |A(up)−A| αp

10 81 -3.04981e-02 5.51e-05 -0.75
11 100 -3.04484e-02 5.42e-06 -7.71
12 121 -3.04416e-02 1.43e-06 -6.44
13 144 -3.04690e-02 2.60e-05 -0.12
14 169 -3.04429e-02 6.51e-08 -20.03
15 196 -3.04379e-02 5.10e-06 -0.19
16 225 -3.04575e-02 1.45e-05 8.05
17 256 -3.04395e-02 3.51e-06 -7.47
18 289 -3.04408e-02 2.18e-06 13.96
19 324 -3.04487e-02 5.73e-06 0.50
20 361 -3.04413e-02 1.75e-06 -9.49

−0.02 2 1 -1.27575e-02 7.98e-03 –
3 4 -1.97011e-02 1.04e-03 –
4 9 -2.18630e-02 1.13e-03 –
5 16 -3.17123e-02 1.10e-02 –
5 16 -2.12502e-02 5.12e-04 -3.00
6 25 -2.05964e-02 1.42e-04 -2.87
7 36 -2.06977e-02 4.03e-05 -5.95
8 49 -2.08782e-02 1.40e-04 -9.28
9 64 -2.08686e-02 1.31e-04 -2.33

10 81 -2.07312e-02 6.83e-06 -5.93
11 100 -2.07248e-02 1.32e-05 -2.46
12 121 -2.07696e-02 3.16e-05 -3.68
13 144 -2.07816e-02 4.36e-05 -2.98
14 169 -2.07428e-02 4.82e-06 -1.04
15 196 -2.07327e-02 5.29e-06 -2.96
16 225 -2.07490e-02 1.10e-05 -3.65
17 256 -2.07595e-02 2.15e-05 -2.63
18 289 -2.07467e-02 8.68e-06 2.34
19 324 -2.07375e-02 5.17e-07 -9.84
20 361 -2.07432e-02 5.21e-06 -3.36

2.4 Non-uniform hp-refinements

The hp-version of the FEM is capable of producing approximations that converge expo-
nentially fast in the energy norm to the solutions of elliptic boundary value problems
which typically have singularities in the neighborhood of re-entrant corners and where
the boundary conditions change type. Although the use of adaptive h-version methods
improves convergence rates to solutions with singularities to some extent, it is still difficult
to produce accurate solutions of elliptic PDE known from engineering applications like
re-entrant corners in linear elasticity. Here, the hp-version is an attractive alternative.
One can differentiate between two refinement schemes, both using h and p refinements of
the approximation space.
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Figure 2.5: hp-refined mesh on an L-shape domain. The numbers on the quadrilaterals
denote the polynomial degrees associated to the quadrilateral Q.

Algorithm 2.1 A hp-adaptive algorithm
Let T0 be an initial mesh on the domain Ω and V0 := V~p an initial finite element subspace
of H1(Ω). Here, ~p := (pQ)Q∈T0 denotes the distribution of the polynomials degrees wrt.
the elements of the initial grid. Further, let θ ∈ (0, 1) be the refinement parameter, τ > 0
be the stopping parameter.

1. Set i = 0.

2. Compute the Galerkin approximation ui ∈ Vi.

3. Compute a local a posteriori error estimator ηQ on each element Q ∈ Ti. If η < τ
then stop.

4. If ηQ ≥ θmax{ηQ |Q ∈ Ti} then refine Q (h refinement) or increase the polynomial
degree pQ (p refinement).

5. Construct new subspace Vi+1. Increment i. Goto 2.

Firstly, we have a strict refinement scheme used to treat known singularities caused by
re-entrant corners. Here, we use a geometrically refined mesh with the smallest triangles
and quadrilaterals next to the re-entrant corner and assign increasing polynomial degrees
to the elements when we go away from the the corner (see Figure 2.5). This concept is
analyzed using countably normed Sobolev spaces for FEM, BEM, and the coupling of
both methods (cf. [Sch98, HS96, HS98]).

Secondly, the hp-refinement is used in a more flexible way based on an a posteriori error
estimator which should provide some indication of the distribution of the error on the
elements. Assume that ηQ is an a posteriori estimator for the error on the element Q with
the estimator for the global error obtained by local contributions η2 =

∑
Q∈T η

2
Q. Then, a

hp-adaptive algorithm can be characterized by Algorithm 2.1. The idea of the algorithm
is to equilibrate the errors in the elements. However, the hp-refinement requires a decision
whether to perform h-refinement or p-refinement in Step 4. Here, Algorithm 3.1 presents a
method where the decision between the two refinements is based on the refinement history.
As we give a short overview on various hp-refinement strategies for the treatment of PDE
in Section 3.1, we do not discuss this subject here.
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Figure 2.6: Connecting quadrilaterals with local p-FE spaces of different polynomial degree

The next section is devoted to the definition of hp-FE spaces which allow to control the
inequality constraints raised by partial differential inequalities.

2.4.1 Conforming hp-finite elements

A typical situation obtained using adaptive h- and p-refinements is shown in Fig. 2.7. It
contains differing polynomial orders and elements of differing sizes adjacent to one another.
In the following we describe the basic ideas behind the realization of a conforming finite
element space for such meshes.

Suppose that the single element spaces on the quadrilaterals Q1, Q2, and Q3 are of
polynomial degree 5, 3, and 4, respectively, as shown in Fig. 2.6. For ease of presentation
only the degrees of freedom associated with the Gauss-Lobatto points on the boundary
are marked by a dot. To maintain continuity across the inter-element boundary there are
two alternatives:

(i) increase the polynomial degree of the approximation along the interface in elements
Q2, Q3 to match the degree in element Q1;

(ii) decrease the polynomial degree of approximation in elements Q1, Q2 along the
interfaces to match the degree in element Q3.
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Figure 2.7: The continuity is obtained by edge associated degrees of freedom

An advantage of the second choice is that the information stored in element Q3 is un-
changed even though the neighbor has been enriched. In particular, the local Galerkin
matrix and load vector associated with Q3 from the previous mesh need not to be recon-
structed, when the size of the element and the polynomial degree are left unchanged.

Let us denote the segments of the inter-element boundaries by

e12 := Q1 ∩Q2 , e13 := Q1 ∩Q3 , e23 := Q2 ∩Q3 ,

and let v be a continuous function with v|Qi
∈ Vpi(Qi), i = 1, 2, 3. Assuming continuity

on e12 we obtain that v|e12 is a polynomial of degree 3 due to v|Q2
∈ V3({Q2}). v|e13 has

to be of polynomial degree 4 due to v|Q3
∈ V4({Q3}) and v|e23 of polynomial degree 3 due

to v|Q2
∈ V3({Q2}).

Since v|e12∪e13 must be a polynomial on the entire edge e12 ∪ e13, it follows further that we
have to lower the polynomial degree on v|e13 to 3. Thus, we may associate 4 global degrees
of freedom with the scaled Gauss-Lobatto points on the edge e12 ∪ e13 (see. Fig. 2.7).
Analogously, we may associate the global degrees of freedom 5, 6, 7, 8 with the scaled
Gauss-Lobatto points on the edge e23. But the node labeled by number 8 is ficticious in
the sense that it depends on the global nodes 1, 2, 3, 4. As a conclusion, we have that the
local degrees of freedom denoted by (·, ·) in Fig, 2.6 depend on the edge associated global
degrees of freedom 1, 2, . . . , 7.

In the treatment of variational inequalities we demanded that the discrete solution fulfills
the obstacle condition in the Gauss-Lobatto points Gp. Up to now, this was no problem,
since on p-uniform meshes without hanging nodes a global degree of freedom could be
associated with each element of Gp (see Definition 2.2). But now we may have more local
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degrees of freedom than global degrees of freedom which will lead to serious problems in
the algebraic reformulation needed for the implementation. We omit the algebraic details
here, since they will be discussed in Chapter 4.

In the analysis of the p-discretization on quadrilaterals and on triangles (see Sections 2.1,
2.2) we assumed Vp ⊂ H1(Ω), but not Kp,gD ⊂ K, i.e., we assumed conformity of the
approximation subset wrt. the continuity of H1(Ω) but not wrt. the obstacle condition.
Accordingly, the violation of the obstacle condition was considered in the proofs of The-
orem 2.8 and Theorem 2.11. Both proofs hold further, if we do not control the obstacle
condition in the local degrees of freedom tagged by

(5, i), i = 0, . . . , 5, on Q1;
(0, i) and (i, 0), i = 0, . . . , 3, on Q2;
(0, i) and (i, 4), i = 0, . . . , 4, on Q3;

but at the Gauss-Lobatto points 1, 2, . . . , 7 on the edges in Figure 2.7. To make it general,
we relieve the obstacle condition by associating it with the global degrees of freedom as
follows.

Let Q1, . . . Qn ∈ T be the ordered quadrilateral elements defining a mesh in usual finite
element sense, possibly with hanging nodes, and let E be the set of all inter-element and
boundary edges e. Here, we demand that e is an entire edge of all adjacent quadrilaterals,
e.g. e12, e13 6∈ E, but e12 ∪ e13, e23 ∈ E.

Let pQ be the polynomial degree of the discrete space on the element Q and ~p := (pQ)Q∈T

the respective vector notation. For every Q there exists a diffeomorphism FQ mapping
the reference square Q̃ on Q. Noting the four edges of the reference square Q̃ by

e(1) := (η1,−1), e(2) := (1, η2), e(3) := (η1, 1), e(4) := (−1, η2) (2.37)

where η1, η2 ∈ [−1, 1], we may write

e = FQ(e(j)) for at least one Q ∈ T and one j ∈ {1, 2, 3, 4}. (2.38)

If two Q fulfill (2.38) we take that with the lower ordering number to reach uniqueness.
With every edge e ∈ E we associate the polynomial degree

pe := min{pQ |Q ∈ T, e ∩Q 6= ∅} ,

i.e., the minimum of polynomial degrees of the adjacent quadrilaterals. Further, we asso-
ciate the edge transformed Gauss-Lobatto points

xpe+1,e
i := FQ((ξpe+1

i ,−1)) (2.39)

in case of j = 1 in (2.38). In case of j = 2, 3, 4, we get xpe+1,e
i analogously by introducing

ξpe+1
i into η1 and η2 of (2.37).

Now, we must consider the hanging nodes xh. For all xh there exist a pair (e, i) ∈ E×{0, pe}
such that xh = xpe+1,e

i because they are end points of an edge e. Since xh is a hanging
node, there exists a second edge ê 6= e with xh ∈ ê and xh is not an end point of ê. Thus,
we can differentiate between hanging nodes which own a representation

xh = ξpê+1,ê
ı̂ for a pair (ê, ı̂) ∈ E× {1, . . . , pê − 1} , (2.40)
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and those which do not. The hanging nodes which do not fulfill (2.40) are called ficticious
nodes, since only ficticious degrees of freedom are associated to them in the following.

We note the set of all non ficticious edge transformed Gauss-Lobatto points by

GE,~p := {xpe+1,e
i | 0 ≤ i ≤ pe, e ∈ E and xpe+1,e

i is not a ficticious hanging node} . (2.41)

Merging GE,~p with the tensor product of the Gauss-Lobatto points on the interior of the
quadrilaterals, we get the generalization G~p of Gp from the p uniform mesh,

G~p := GE,~p ∪
{
FQ
(
(ξpQ+1
j1

, ξ
pQ+1
j2

)
)
|Q ∈ T, 1 ≤ j1, j2 ≤ pQ − 1

}
. (2.42)

Analogously to ΓD,p, we denote the subset of G~p on the closed Dirichlet boundary by

ΓD,~p := ΓD ∩G~p .

We conclude this section by defining the hp-FE spaces and its subsets for the minimization
problem given in Theorem 2.7.

Definition 2.27. Let T be a triangulation of Ω into quadrilaterals Q, possibly with
hanging nodes. Let the polynomial degree pQ ≥ 1 on Q be given by the vector ~p. We
define the hp-FE space

V~p := V~p(T) := {u ∈ H1(Ω) : u|Q ◦ FQ ∈ P2
pQ
, Q ∈ T} .

Further, we define the hp-FE subsets

V~p,gD
:= {w ∈ V~p |w(x) = gD(x), x ∈ ΓD,~p} ⊂ V~p ,

and

K~p,gD
:= {w ∈ V~p,gD

|w(x) ≥ ψ(x), x ∈ G~p}.



Chapter 3

Error estimates and adaptivity

A posteriori error estimates are widely used in the solution of PDE. Such estimates provide
useful indications of the accuracy of a calculation and also provide the basis of adaptive
local mesh refinement or local increase of polynomial degree. To this end, they should
have at least the two following properties: reliability and efficiency. Here, reliability
means that the error estimator provides an upper bound for the error. An error estimator
is called efficient, if it provides a lower bound for the error apart from data resolution.
Local efficiency is of great interest for adaptive algorithms that involve local mesh refine-
ments. In this chapter, we develop an adaptive hp-strategy for variational inequalities.
In Section 3.1, we take a look on the literature concerning a posteriori error estimation
for the hp-version. Section 3.2 is primarily devoted to a posteriori error estimators for
h-discretizations of variational inequalities. The dual-weighted residual method of er-
ror estimation is described in Section 3.3 and applied to the hp-FEM. In Section 3.4 we
generalize the dual-weighted residual method to the hp-version for variational inequalities.

3.1 A posteriori error estimation in the hp-FEM

Ainsworth and Oden give a survey of different approaches, namely of explicit residual
and implicit residual error estimators, error estimators based on gradient recovery and on
hierarchical bases in [AO00]. Comparable literature for high order methods like the hp-
version FEM is rather scarce. Compared with adaptivity in h-FEM, the main difficulty in
hp-adaptivity arises from the fact that accuracy can be improved by subdividing elements
or by increasing the approximation order. Roughly speaking, increasing the polynomial
degree is more efficient in regions where the solution is smooth and h-refinement is prefer-
able in regions where the solution is non smooth. Accordingly, one looks not only for an
error estimator, but also for a local regularity estimator.

In [AS97],[AS98] the a posteriori error estimation of the local error and the local regularity
is based on the approximate solution of suitably defined local problems with Neumann
type boundary conditions.

Another approach to error estimation is to bound local weighted residuals. An analysis
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for meshes consisting of axi-parallel rectangles in two dimensions is given by Bernardi
in [Ber96] and extended to meshes containing quadrilaterals and triangles by Melenk
and Wohlmuth in [MW01]. Here, the decision whether to subdivide an element Q or to
increase its polynomial degree depends on the refinement history of the element which
is condensed into a number called predicted error ηpred

Q of the element Q. ηpred
Q can be

viewed as an extrapolation of the element error of the preceding refinement step to the
current one under the assumption that the solution is locally smooth. If the accuracy in
the element Q has to be increased due to the error indicator and the indicator error is
larger than the prediction ηpred

Q , then an h-refinement is performed since the assumption
of local smoothness, which underlies the prediction is wrong. Conversely, if the indicated
error is smaller than the predicted one, then the polynomial degree is increased. This
hp-adaptive strategy thereby accommodates an implicit estimator of regularity based on
the comparison between the error indicator and the predicted error.

A similar adaptive strategy based on the refinement history is employed by Heuveline
and Rannacher in [HR03]. But here, the error is estimated by the dual-weighted residual
method. Traditionally, a posteriori error estimation in FEM is done with respect to an
energy norm ‖·‖A induced by the underlying differential operator. Energy error estimation
seems rather generic as it is directly based on the variational formulation of the problem
and allows to exploit its natural coercivity properties. Using duality arguments as is
common from the a priori error analysis (the so-called Aubin-Nitsche trick) the dual-
weighted residual method allows to control the error with respect to other quantities of
physical interest, e.g. the error at a point x0 ∈ Ω or the ‖ · ‖L2(Ω)-norm error. The
dual-weighted residual method is described in Section 3.3 and generalized to variational
inequalities in Section 3.4. The adaptive scheme is reproduced in Algorithm 3.1.

A quite sophisticated hp-adaptive scheme is presented in [DRD02]. There, Demkowicz,
Rachowicz, and Devloo observe that optimal refinements of neighboring elements are often
in conflict with each other. The minimum rule requests that the order for an edge is set
the minimum of the orders for the adjacent elements (cf. Section 2.4.1). If from two
neighboring elements one wants to be h- and the other p-refined, the common edge is not
refined at all. This implies that the mesh optimization problem may be more complicated
than just the choice between the h- or p-refinements. In [DRD02] the error is estimated
based on hierarchical bases. Each element is broken into four sons and the polynomial
order on these sons is that of its mother increased by one. Having solved the problem
on the fine mesh, a new, optimal mesh is constructed by minimizing the coarse grid hp-
interpolant of the fine mesh solution. This minimization is done by comparing different
coarse meshes generated by h- and p-refinements of the mother cells. The adaptive strategy
starts by determining edge h- or p-refinements. Even anisotrop refinements are allowed,
i.e., the element Q may be h- or p-refined across only one coordinate axis. With the edge
refinement the topology of the mesh is determined and the interior degrees of freedom
are adapted to the edges (cf. Section 2.4.1). This approach goes around the problem of
estimating the local regularity by comparing h- and p-refinement using the hp-interpolant
of the fine mesh solution.
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3.2 A posteriori error estimation for variational inequalities

In the book [HHNL88] from Hlaváček et al., the primal formulation of the PDE
−4u+ u = f on a polygonal domain Ω ⊂ R2 with boundary conditions of Signorini type
u ≥ 0, ∂

∂nu ≥ 0, u · ∂∂nu = 0 on ∂Ω, is approximated by the h-version. Its mutually equiv-
alent dual formulation is approximated on an appropriate subset of the Raviart-Thomas
lowest order FE space. The authors show that it is possible to evaluate an error bound for
both the primal and the dual approximation using both approximations simultaneously.
The disadvantage of this scheme is that an extra global problem must be solved. Further,
they do not give local error estimates.

Ainsworth, Oden, and Lee [AOL93] also use the dual variational approach, but try to
localize the estimators. However, their upper error bound depends on a sign condition for
the element residuals which may fail in practice. Vester considers elliptic obstacle problems
and develops an a posteriori error estimate for the h-version on simplex triangulations on
domains Ω ⊂ Rd, d ≥ 1. The error estimate is reliable, efficient, and identifies local error
contributions. We refer to [CN00] for a short review. The mentioned error estimates
are all asymptotically sharp in the sense that the convergence of the discrete solution
‖u− uh‖ → 0 implies the convergence of the estimate towards 0.

In [Mai01, Lemma 2.5, Theorem 3.7], Maischak generalizes hierarchical bases estimators
for the h- and the hp-version to the BEM with Signorini contact using additive Schwarz
operators known from preconditioning. Here, the numerical experiments show reasonable
refinements towards singularities. But the hp-estimator is not asymptotically sharp.

As already mentioned in Section 3.1, the dual-weighted residual method allows to control
the error for more general measures. In [BS00], Blum and Suttmeier carry over this tech-
nique to the case of variational inequalities by adapting the duality argument to a h-version
for an obstacle problem. We extend this approach to the hp-version in Section 3.4.

3.3 Duality-based adaptivity in the hp-FEM for variational
equalities

Now, we describe the approach presented by Heuveline and Rannacher in [HR03]. As we
already defined hp-FE subsets for variational inequalities in Section 2.4.1, the adaptive
scheme introduced in Algorithm 3.1 can be also used for the treatment of variational
inequalities when the error indicator ηQ is adapted. This will be done in Section 3.4.

For sake of simplicity we consider the Poisson equation with mixed Dirichlet-Neumann
conditions,

−4u = f, u = 0 on ΓD, ∂
∂nu = gN on ΓN ,

on a polygonal, not necessarily convex domain Ω ⊂ R2 with boundary ∂Ω = ΓD ∪ ΓN .
Setting ρ ≡ 1 in (1.5) we know from Theorem 1.22 that there exists a unique
u ∈ V := H1

0,D(Ω) with

〈∇u,∇v〉L2(Ω) = 〈f, v〉L2(Ω) + 〈gN ,∇v〉L2(ΓN ) for all v ∈ V . (3.1)
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We define the hp-finite element space

Vhp := V~p(Th) := {v ∈ H1
0 (Ω) | v|Q ◦ FQ ∈ P2

pQ
, Q ∈ Th}

on the mesh Th. Here, the vector ~p gives the distribution of the polynomial degrees pQ
on the elements Q. In particular, the meshes are not required to be conform, i.e., the
elements Q may possess hanging nodes to facilitate local mesh refinement. The continuity
of the discrete functions is yielded as discussed in Section 2.4 and Section 4.6. For practical
purposes, we demand that for neighbor elements Q1, Q2, the element width h, and the
polynomial degree p can only vary within certain limits. Then, the discrete solution
uhp ∈ Vhp is determined by

〈∇uhp,∇v〉L2(Ω) = 〈f, v〉L2(Ω) + 〈gN , v〉L2(ΓN ) for all v ∈ Vhp. (3.2)

We will now derive a posteriori error estimates for the discrete solution of (3.2). Let
the goal be to compute the quantity J(u) from the solution u of (3.1) with a prescribed
accuracy εTol where J(·) ∈ V ′ denotes a linear functional. Due to the linearity of J the
error e = u−uhp can be estimated by J(e) = J(u)−J(uhp). To give examples we mention
the following functionals of

global average with weight function φ ∈ L2(Ω) J(v) := 〈φ, v〉L2(Ω) , (3.3a)

point evaluation Jx0(v) := v(x0) , (3.3b)

square of L2 error J0(v) := 〈u− uhp, v〉L2(Ω) , (3.3c)

square of H1 error J1(v) := 〈u− uhp, v〉H1(Ω) . (3.3d)

The task of computing J(u) from the solution of (3.1) can be rewritten as a trivial con-
strained optimization problem for u ∈ V :

J(u) ≤ J(v) for all v ∈ V and (3.1) holds. (3.4)

All minima J(u) correspond to stationary points (u, z) ∈ V × V of the Lagrangian

L(u; z) := J(u) + 〈f, z〉L2(Ω) + 〈gN ,∇z〉L2(ΓN ) − 〈∇u,∇z〉L2(Ω)

with the adjoint variable z ∈ V . Hence, we seek the solutions (u, z) ∈ V × V to the
Euler-Lagrange system

〈∇u,∇v〉L2(Ω) = 〈f, v〉L2(Ω) + 〈gN ,∇v〉L2(ΓN ) for all v ∈ V ,

〈∇v,∇z〉L2(Ω) = DJ(u; v) for all v ∈ V .

We note that the first equation of this system is the variational equation (3.1). As we
assumed J to be a linear functional, we can rewrite the second equation

〈∇v,∇z〉L2(Ω) = J(v) for all v ∈ V . (3.5)

Here, we call z ∈ V the dual solution of the variational equation (3.1). Taking
v = e = u− uhp as test function and using Galerkin orthogonality, we obtain the error
representation

J(e) = 〈∇e,∇z〉L2(Ω) = 〈∇e,∇(z − vhp)〉L2(Ω) for all vhp ∈ Vhp.
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Integrating element-wise by parts, we can rewrite

J(e) =
∑
Q∈Th

(
〈Rhp, z − vhp〉L2(Q) + 〈rhp, z − vhp〉L2(∂Q)

)
(3.6)

with the following notation of cell and edge residuals:

Rhp|Q := f +4uhp, rhp|Λ :=


1
2

[
∂
∂nuhp

]
, if Λ ⊂ ∂Q\∂Ω,

gN , if Λ ⊂ ΓN ,
0, if Λ ⊂ ΓD.

(3.7)

where
[
∂
∂nuhp

]
denotes the jump of the normal derivative across an element boundary.

We use the error representation (3.6) as the basis for error control. Its evaluation requires
us to generate approximations to the dual solution z with accuracy better than that of
zhp ∈ Vhp obtained from

〈∇v,∇zhp〉L2(Q) = J(v) for all v ∈ Vhp.

Usually we yield the approximation z̃ to z by post-processing zhp ∈ Vhp using locally
higher-order interpolation or defect correction. Let the post-processed approximation to
z denoted by z̃. Then the error is controlled by the error estimator

ηω(uhp) :=
∣∣ ∑
Q∈Th

η̄Q
∣∣ (3.8)

with the local contributions

η̄Q := 〈Rhp, z̃ − ipz̃〉L2(K) + 〈rhp, z̃ − ipz̃〉L2(∂K) .

The adaptation process defined by Algorithm 3.1 is driven by the absolute values of
the local contributions ηQ := |η̄Q|. The philosophy of the algorithm is that it is more
economical to raise the polynomial degree pQ rather than to reduce the element size hQ.
Here, the decision whether to increase pQ or to subdivide Q into four elements by bisection
of the edges depends on the success of the last refinement (see Step 3). The mesh and the
distribution of the polynomial degrees are constructed by a series of adaption cycles such
that at the final stage the local error will be equilibrated, i.e., ηQ ≈ εTOL

card T
.
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Algorithm 3.1 Adaption process for the hp-FEM
Let a tolerance εTOL > 0, a refinement threshold σ, 0 < σ < 1, an initial mesh T0 with
mesh-size distribution hQ, and polynomial degrees pQ ∈ N for all Q ∈ T0 be given.
Furthermore, let V~p (T0) the respective conforming FE space.
Starting with i = 0, the sequence of meshes Ti, i = 1, 2, . . . with corresponding distribu-
tions hQ and pQ for Q ∈ Ti is constructed by the following process:

1. Compute the FEM solutions ui := uhp ∈ Vhp := V~p (Ti), zi := zhp ∈ Vhp.

2. Evaluate the local error contributions η̄Q for all Q ∈ Ti and ηω(uhp) (see (3.8)). If
ηω(uhp) < εTOL, then exit with uhp.

3. Order the elements Q according to the size of ηQ := |η̄Q|. If

ηQ < σ
εTOL

cardTi
,

then skip to the next element Q, else increase dimVhp according to the following
scheme:

(a) The element Q and its polynomial degree pQ were left unchanged in the pre-
ceding cycle. Then, leave Q unchanged and increase pQ to pQ + 1.

(b) The element Q was left unchanged in the preceding cycle, but pQ was increased.
If

ηQ < hQη
old
Q ,

increase pQ to pQ + 1, else refine Q into 4 elements by bisection of the edges.

(c) The element Q was obtained by refinement of a mother element Q̄ ∈ Ti−1. If

ηQ < 2−pQηold
Q̄ ,

increase pQ to pQ + 1, else refine Q into 4 elements by bisection of the edges.

4. Create the conforming FE space V~p (Ti+1) according to the new elements and their
polynomial distribution (cf. Section 2.4.1). Increase i to i+1. Continue with Step 1 .

3.4 Duality-based adaptivity in the hp-FEM for variational
inequalities

We will now derive an a posteriori error estimate for variational inequalities. Again, we
have to cope with the difficulty that Kp 6⊆ K is not satisfied in general. This inconsistency
is treated analogously to the approach presented in [BS00]. Corollary 3.2 represents a
statement which estimates the error by summing up local contributions. Thus, it allows
local refinements.

For ease of presentation we consider the obstacle problem with the Laplacian on a poly-
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gonal, not necessarily convex domain Ω ⊂ R2,

−4u− f ≥ 0, u ≥ ψ, (u− ψ)(−4u− f) = 0 on Ω,

with mixed Dirichlet-Neumann conditions,

u = 0 on ΓD, ∂
∂nu ≥ gN on ΓN , (u− ψ)( ∂

∂nu− gN ) = 0 on ΓN .

Using the abstract notation

B(·, ·) := 〈∇·,∇·〉L2(Ω) and F (·) := 〈f, v〉L2(Ω) + 〈gN ,∇v〉L2(ΓN ) (3.9)

we may write the obstacle problem equivalently to Theorem 1.23:

Find u ∈ K such that B(u, v − u) ≥ F (v − u) for all v in K (3.10)

where K := {v ∈ V | v ≥ ψ on Ω} and V := H1
0 (Ω).

We introduce the hp-FE subset Khp := {v ∈ Vhp | v(x) ≥ ψ(x) for all G~p} with G~p as
defined in Section 2.4.1 and approximate u ∈ K by the solution of the discrete problem:

Find uhp ∈ Khp such that B(uhp, v − uhp) ≥ F (v − uhp) for all v ∈ Khp . (3.11)

Motivated by the duality-based a posteriori error estimator for the variational equal-
ity (3.1) we look for the dual-like solution z of the variational problem:

Find z ∈ Z such that J(v − z) ≤ B(v − z, z) for all v ∈ Z. (3.12)

The idea is to give an upper bound of the error J(e), e := u − uhp, by defining an
appropriate closed convex subset Z ⊂ V below. If we assume v̄ := z + e ∈ Z, we get the
estimate J(e) ≤ B(e, z).

To avoid misunderstandings, we note that the dual-like solution z from (3.12) should not
be understood analogously to (3.4), (3.5) as the solution of a dual problem in the sense of
generalized Kuhn-Tucker theory for optimization problems under inequality constraints.
Nevertheless, we call the error estimator dual-based since it generalizes the concept of the
dual weighted residual estimator to variational inequalities.

To handle the nonconformity Khp 6⊂ K of the approximation subset, we modify the
variational problem (3.12) and redefine z as the solution of the problem:

Find z ∈ Z such that J(v + δ − z) ≤ B(v − z, z) for all v ∈ Z. (3.13)

Here, we allow δ := ψ − ipψ to be non zero. Redefining the test function v̄ := z + e − δ
we obtain the estimate

J(e) ≤ B(u− uhp − δ, z)
= B(u− uhp, z − zhp) +B(u− uhp, zhp)−B(δ, z) for all zhp ∈ Vhp. (3.14)

In case of a variational equality the second term would be zero due to Galerkin orthogo-
nality. We utilize this by introducing the auxiliary problem:

Find ū ∈ V such that B(ū, v) = F (v) for all v ∈ V . (3.15)

This means that ū is the solution of the obstacle free problem.

Now, using the modified variational inequality (3.13) and ū from the auxiliary prob-
lem (3.15), we can state the following error estimate.
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Theorem 3.1. We define the set of discrete contact by Ψhp := {x ∈ Ω |uhp(x) ≤ ipψ(x)}
and the set of admissible functions by

Z := {v ∈ V | v ≥ 0 on Ψhp and B(ū− u, v + uhp − u+ δ) ≥ 0} .

Let z ∈ Z be the solution of the variational inequality (3.13) and ū ∈ V be the solution
of the variational equality (3.15). Then, there exists a zhp ∈ Vhp such that

J(e) ≤ B(ū− uhp, z − zhp)−B(ψ − ipψ, z) .

Proof. We can use (3.14) when we assume that the test-function v̄ = z + u − uhp − δ
belongs to Z for all z ∈ Z. We insert the solution ū of the auxiliary problem (3.15) into
(3.14) to obtain

J(e) ≤ B(u− ū, z − zhp) +B(ū− uhp, z − zhp) +B(u− uhp, zhp)−B(δ, z). (3.16)

Thus, noting δ = ψ − ipψ, it remains to show that the first and the third term of (3.16)
are non-positive for an appropriate zhp ∈ Vhp, i.e.,

0 ≥ B(u− ū, z − zhp) +B(u− uhp, zhp)
= B(ū− uhp, zhp) +B(u− ū, z − u+ uhp + δ) +B(u− ū, u− (uhp + δ)). (3.17)

Replacing F (·) in the continuous and discrete variational inequalities (3.10), (3.11) by
B(ū, ·) from the auxiliary problem (3.15) yields

B(ū− u, v − u) ≤ 0 for all v ∈ K, (3.18)
B(ū− uhp, v − uhp) ≤ 0 for all v ∈ Khp. (3.19)

Now, let Wψ
hp := {v ∈ V | v(x) ≥ ipψ(x) on Ψhp ∩G~p} ∩ Vhp, and W 0

hp like Wψ
hp using

ψ ≡ 0. We consider the variational problem

Find ũhp ∈Wψ
hp such that B(ū− ũhp, v − ũhp) ≤ 0 for all v ∈Wψ

hp. (3.20)

and see that ũhp = uhp , since the active constraints of (3.19) coincide with the constraints
given by Wψ

hp.

Choosing zhp ∈W 0
hp yields v = uhp+ zhp ∈Wψ

hp . It follows with (3.20) that the first term
of (3.17) is non positive. The second term of (3.17) is non negative due to the definition
of Z. Observing that v = uhp + δ ∈ K, it follows from (3.18) that the last term of(3.17)
is non positive.

It remains to justify the assumption v̄ ∈ Z. We have u ≥ ψ and uhp + δ ≤ ipψ+ δ = ψ on
Ψhp , henceforth, v̄ ≥ 0 on Ψhp.

Choosing v = uhp + δ ∈ K in (3.18) we obtain 0 ≤ B(ū − u, u − (uhp + δ)). From z ∈ Z
we know 0 ≤ B(ū − u, z + uhp − u + δ). Adding both inequalities with the substitution
z = v̄ − u+ uhp + δ yields

0 ≤ B(ū− u, v̄ + uhp − u+ δ) ,

i.e., v̄ ∈ Z.
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Analogously to (3.6) element-wise integration by parts yields

B(ū− uhp, z − zhp) =
∑
Q∈Th

(
〈Rhp, z − zhp〉L2(Q) + 〈rhp, z − zhp〉L2(∂Q)

)
with the cell and edge residuals with respect to ūhp ,

Rhp|Q := f +4ūhp, rhp|Λ :=


1
2

[
∂
∂n ūhp

]
, if Λ ⊂ ∂Q\∂Ω,

gN , if Λ ⊂ ΓN ,
0, if Λ ⊂ ΓD.

(3.21)

Here,
[
∂
∂n ūhp

]
denotes the jump of the normal derivative across an element boundary.

Using this notation we can rewrite the estimate of Theorem 3.1 as

Corollary 3.2. With the assumptions of Theorem 3.1 there holds

|J(e)| ≤
∑
Q∈Th

(
〈Rhp, z − zhp〉L2(Q) + 〈rhp, z − zhp〉L2(∂Q) + ChQp

−k
Q ‖ψ‖H2(Q)‖z‖Hk(Q)

)
for all zhp ∈W 0

hp with k = 1 . Here, C denotes a positive constant independent of hQ, pQ,
ψ, and z. Further, the estimate holds with k = 2 when z ∈ H2(Q).

Proof. It remains to consider

−B(ψ − ipψ, z) = −〈∇(ψ − ipψ),∇z〉L2(∂Q)

from the estimate of Theorem 3.1. For k = 1 the estimate follows using the Cauchy-
Schwarz inequality and Theorem 2.3 for all z ∈ Z.

Noting that ψ − ipψ = 0 on ∂Q due to the definition of the interpolation operator ip,
again, element-wise partial integration yields −B(ψ− ipψ, z) = 〈ψ− ipψ,4z〉L2(Q) . Thus,
the estimate for k = 2 follows using the Cauchy-Schwarz inequality and Theorem 2.3
again.

Corollary 3.2 provides a posteriori estimates for arbitrary functionals. Its evaluation
requires us to generate approximations to z ∈ Z given by the dual-based problem (3.13).
In particular, this means that we have to approximate Z. A heuristic idea is to calculate
approximations to u, ū, and z in a locally refined superspace Ṽhp of Vhp. Denoting these
approximations by ũhp, ūhp, and z̃hp, respectively, Z may be replaced by

Z̃ := {v ∈ Ṽhp | v(x) ≥ 0 on Ψ̃hp ∩ G̃~p and B(ūhp − ũhp, v + uhp − ũhp + ı̃pψ − ipψ) ≥ 0} .

Here, Ψ̃hp, G̃~p, and ı̃p are defined analogously to Ψhp, G~p, and ip with respect to the refined
locally superspace Ṽhp. Taking zhp = max{ipz̃hp, 0} allows to calculate the a posteriori
error according to Corollary 3.2.

If we assume that the contact zone Ψ = {x ∈ Ω |u(x) = ψ(x)} is simply connected,
another heuristic approach can be employed to approximate z. Taking Υhp as the convex
hull of the contact nodes {x ∈ G~p |uhp(x) = ψ(x)} we may approximate z by the solution
z̃ of the variational equation

B(z̃, v) = 〈f, v〉L2(Ω\Υhp) . (3.22)
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To justify this heuristic, we assume that the contact zone is sufficiently well resolved by
Υhp, i.e., Υhp ≈ Ψ. Using the complementary condition −4u−f > 0 on Ψ , −4u−f = 0
on Ω\Ψ (cf. Theorem 1.23), the second condition in the definition of Z (see Theorem 3.1)
may be approximated as follows

0 ≤ B(ū− u, v + uhp − u+ δ)

≈
∫

Υhp

(f +4u) (v + uhp − u+ δ) dx ≈
∫

Υhp

(f +4u) v dx .

Using the assumption −4u−f > 0 on Υhp this implies v ≤ 0 on Υhp. Hence, together with
the first condition in Z we can approximate Z by Z̃ = {v ∈ Vhp | v(x) = 0 on Υhp ∩G~p}.

This means that we only have to solve a Dirichlet problem on Ω\Υhp with homogenous
boundary data to get an approximation to z ∈ Z. Equivalently, we can solve the varia-
tional equation (3.22).



Chapter 4

Solving discrete nonlinear
problems

In Chapter 2, we defined FE-subsets which allow to solve variational inequalities by com-
puting the minimum of a functional subject to equality and inequality constraints. This
Chapter addresses the implementation of the discrete minimum problems given by The-
orem 2.6 and Theorem 2.7. In Section 4.1, we introduce a basis B of Vp for the imple-
mentation which allows to control easily the constraint conditions of Vp,gD and Kp,gD .
Furthermore, the discrete minimization problems of Theorem 2.6 and Theorem 2.7 can be
transfered into the problem of minimizing a nonlinear function A : RN → R under constant
equality and inequality constraints. In the beginning, we consider only the quasi-uniform
quadrilateral mesh without hanging nodes introduced in Section 2.1.

For the unconstrained minimization of the nonlinear function A : RN → R we present
the inexact Newton backtracking method in Section 4.2. In Section 4.3, we specify the
large-scale nonlinear minimizer given by Felkel in [Fel99] to our strictly convex minimiza-
tion problem with constant equality and inequality constraints. The treatment of the
unbounded and the bounded constrained discrete nonlinear problems demands precondi-
tioned conjugated gradient iterations to solve linear systems. Section 4.4 and Section 4.5
analyze the influence of the polynomial degree p on the costs of the iterative solving of
the linear systems.

In Section 4.6, we show how the continuity across inter-element boundaries between
quadrilateral meshes with hanging nodes and with different polynomial degrees can be
ensured by means of linear algebra. In Section 4.7, we apply the h-version and the p-
version on uniform quadrilateral meshes to model obstacle problems given by the minimal
surface operator with homogeneous and inhomogeneous Dirichlet boundary data.
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4.1 Basis functions

Let ξp+1
i , 0 ≤ i ≤ p, be the Gauss-Lobatto points of degree p (see Definition 2.1) and

λpi (ξ) :=


∏p
k=0
k 6=i

ξ−ξp+1
k

ξp+1
i −ξp+1

k

for ξ ∈ [−1, 1],

0 for ξ ∈ R\[−1, 1],
0 ≤ i ≤ p,

the respective Lagrangian interpolation polynomials. We define the basis
B̃p := (bij | 0 ≤ i, j ≤ p) on the closed reference square Q̃ by the tensor product poly-
nomials bij((ξ1, ξ2)) := λpi (ξ1)λ

p
j (ξ2). Using the transformations FQ we get the local

bases

BQ := (bQ,i,j | 0 ≤ i, j ≤ p) with bQ,i,j :=

{
bij(F−1

Q (x)) for x ∈ Q,
0 for x ∈ Ω\Q,

(4.1)

on the quadrilaterals Q. Introducing a global counting k = 1, . . . N , N := cardGp, for the
xk ∈ Gp (see Definition2.2) we define the global basis functions

bk :=
∑

(Q,i,j)∈Xk

bQ,i,j with Xk := {(Q, i, j) |Q ∈ T, 0 ≤ i, j ≤ p, bQ,i,j(xk) = 1}. (4.2)

Using the vector notation w := (wk)k=1...N , b := (bk)k=1...N , and the product notation

wT b =
N∑
k=1

wkbk

we can rewrite Vp, Vp,gD , and Kp,gD as

Vp := {wT b |w ∈ RN},
Vp,gD := {wT b |w ∈ RN

=g
D
},

Kp,gD := {wT b |w ∈ RN
=g

D
∩ RN

≥ψ}

where

RN
=g

D
:= {w ∈ RN |wk = gD(xk) for all xk ∈ ΓD,p},

RN
≥ψ := {w ∈ RN |wk ≥ ψ(xk) for all xk ∈ Gp}.

Now, we define A : RN
=gD

∩ RN
≥ψ → R by

A(w) := A(wT b). (4.3)

We can use the definitions of A on RN and of A on Vp both simultaneously when we
use the arguments w ∈ RN and w ∈ Vp to separate between them. We reformulate the
discrete obstacle problem from Theorem 2.7(i) equivalently as the minimization problem

u minimizes A on RN
=g

D
∩ RN

≥ψ, i.e., A(u) ≤ A(v) for all v ∈ RN
=g

D
∩ RN

≥ψ . (4.4)
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Here, it is worth to note that the function A on RN inherits the convexity from A on Vp.

The problem of minimizing a convex form subject to lower or upper bounds is an active
field of research (cf. [NW99], [CGT96]). When A is of quadratic type

A(v) = 1
2v

TB v − vT f

where B ∈ RN×N and f ∈ RN , the problem is known as quadratic programming problem.
It can be solved by relaxation methods (cf. [Glo84, Chapter V]) or a generalized conjugate
gradient algorithm (cf. [O’L80]), known as Polyak algorithm. Here, it is worth to note that
the classical active-set iterative schemes based on the dual reformulation of the quadratic
programming problem change the active set, i.e., the index set of components with ui = ψ

i
,

slowly, usually by a single index at each iteration. As a result, the number of iterations
blows up on large-scale problems.

In the next two subsections we introduce a scheme tailored on the solution of the above
problem. It can be viewed as a generalization of [O’L80] for nonlinear, but symmetric
positive definite functions or as a specification of the algorithm given in [Fel99]. Felkel
solves non convex nonlinear large-scale box-constrained problems by estimating the eigen-
vectors of the Hessian of A. In case of the above mentioned obstacle problem it suffices
to consider functions with symmetric positive definite Hessians. This allows us to use
preconditioned conjugate gradient iterations to solve the linear subproblems.

4.2 Unconstrained nonlinear problems

Looking back on Lemma 1.21 and Theorem 2.6 we know that the Hessian ∇2A(v) is
symmetric positive definite on R=gD and it suffices to find u ∈ R=gD with

∇A(u) = 0

due to the uniqueness of u. Thus, we formulate an inexact Newton method which uses pre-
conditioned conjugate gradient iterations to solve the linear subproblems approximately.
Since the initial u0 is not always near the solution u the usual local Newton method is
globalized by backtracking.

To simplify notation, we write g(v) := ∇A(v) for the gradient and H(v) := ∇2A(v) for the
Hessian in the following. The inexact backtracking method is defined by Algorithm 4.2.
Its backtracking line-search goes back on Goldstein and Armijo (cf. [NW99]), and makes
use of the minimization context using zero order information of the problem. We introduce
the Armijo-Goldstein line-search by the following algorithm.
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Algorithm 4.1 σ = linesearch(f, σ0, δ1, β1); Line-search
Given a differentiable function f : R≥ 0 → R, an initial step width σ0

and parameters 0 < δ1 < 1, 0 < β1 < 1.

1. Set j = 0, σ = σ0.

2. Do While f ′(0) 6= 0 and f(0)− f(σ0β
j
1) ≤ δ1 σ0β

j
1|f ′(0)|,

i.e., non-sufficient decrease

Set σ = σ0 β
j
1 and j = j + 1.

3. Exit with σ.

Algorithm 4.2 can be viewed as a usual Newton iteration scheme

uk+1 = uk −
(
H(u)

)−1
g(uk), k ∈ N,

used to determine the zero of g(v), if we do not perform Steps 4,5, set σ = 1 in Step 6
and omit the line search.

The algorithm is motivated by the goal of avoiding unnecessary conjugate gradient it-
erations and line-search steps in the beginning of the minimization process when high
accuracy is not needed. Step 2 performs conjugate gradient iterations until the linear
problem H(uk)y = −g(uk) is solved numerically with a relative error with respect to
‖g(uk)‖ less than ηk.

The solution y
i

is taken as search direction sk in Step 3 . Step 4 defines the one dimen-
sional minimum problem and its derivatives in the starting point of the line-search. The
derivatives are used to calculate an appropriate initial step-width σ0 for the line-search
with Algorithm 4.1. Further, q′sk

(0) is needed for the stopping criterion of the line-search.
Step 7 determines how accurate the linear problem H(uk)y = −g(uk) must be solved by
the conjugate gradient method in the next execution of Step 2 .

In contrast to the inexact Newton method, the backtracking method checks if the New-
ton steps y

i
have a good length and scales them according to line-search. This seems

reasonable, since the line-search can be applied cheaply in comparison to the compu-
tation of y

i
. The choice of the line-search initial σ0 results from the assumption that

qsk
(t) = A(uk + tsk) can be approximated by the quadratic model q̃(t) = αt2 + βt + γ

defined by q̃(0) = qsk
(0), q̃′(0) = q′sk

(0), and q̃′′(0) = q′′sk
(0). If q̃′′(0) > 0, the model q̃(t) is

minimal in t = σ0 = −q′sk
(0)/q′′sk

(0). To analyze the convergence properties of the above
algorithm we introduce the following concepts of convergence.

Definition 4.1. Let (uk)k∈N ⊂ RN be a sequence converging to u ∈ RN . Then (uk)
converges to u

(i) with q-order p, p ≥ 1, if there exists a positive constant C such that

‖uk+1 − u‖ ≤ C‖uk − u‖p ,

(ii) with r-order α if there exists a sequence (ξk)k∈N ⊂ R converging with q-order α to
zero such that

‖uk − u‖ ≤ ξk .
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Algorithm 4.2 uk = inbm(u0, ‖ · ‖, ε, η0, γ, α,M); Inexact Newton backtracking method
Given the starting point u0 ∈ RN and a norm ‖ · ‖ on RN . Furthermore, we have a
termination parameter ε > 0, an initial threshold parameter 0 ≤ η0 < 1, and parameters
0 ≤ γ ≤ 1, 1 < α ≤ 2 for the calculation of the threshold parameters ηk. M denotes the
preconditioner for the preconditioned conjugate gradient iterations.
To simplify notation, we write g(v) := ∇A(v) for the gradient and H(v) := ∇2A(v) for
the Hessian.

1. Set k = 0.

2. Set i=0.
Set initial vector y

0
(e.g. = 0) for preconditioned conjugate gradient method.

Do While ‖g(uk) +H(uk) yi‖ > ηk‖g(uk)‖
Compute the next M -preconditioned conjugate gradient iteration y

i+1

(see Algorithm A.1).
Set i = i+ 1.

End while

3. Set search direction sk = y
i
.

4. Set qsk
(t) := A(uk + tsk).

Compute q′sk
(0) = sTk g(uk) and q′′sk

(0) = sTkH(uk)sk .

5. Set σ0 =

min
{

1,−
q′sk

(0)

q′′sk
(0)

}
if q′′sk

(0) > 0

1 if q′′sk
(0) = 0.

6. Determine step length σk = σ = linesearch(qsk
, σ0, δ1, β1) with Algorithm 4.1.

If qsk
(1) ≤ qsk

(σ), Set σ = 1.
Set uk+1 = uk + σsk.

7. If ‖g(uk+1)‖ > ε
Set

ηk+1 = γmin
{

1,
( ‖g(uk)‖
‖g(uk−1)‖

)α}
· ηk . (4.5)

Set k = k + 1. Continue with Step 2.

8. Exit with uk .

Choosing the forcing parameter ηk+1 as in (4.5) Eisenstat and Walker proved the following
theorem for the sequence (uk)k∈N produced by Algorithm 4.2 with the substitution σ = 1
in Step 6.

Theorem 4.2. Let ‖·‖ be the norm of Algorithm 4.2 on RN and the induced norm on
RN×N . Let M := max{‖H(u)‖, ‖(H(u))−1‖}. For δ > 0, define

Bδ(v) := {w ∈ RN | ‖w − v‖ < δ}

and let δu > 0 sufficiently small that

(i) g is continuously differentiable and H is nonsingular on Bδu(u),
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(ii) ‖(H(v))−1‖ ≤ 2M for all v ∈ Bδu(u),

(iii) ‖H(v)−H(u‖ ≤ κ‖v − u‖ for all v ∈ Bδu(u) holds for a constant κ ≥ 0,

(iv) δu ≤ 2
κM .

If u0 ∈ Bδu(u) , then the sequence {uk}k produced by the inexact Newton method, i.e.,
by Algorithm 4.2 with σ = 1 in Step 6, remains in Bδu(u) and converges to u.

Let γ and α be the parameters used in Algorithm 4.2. If γ < 1, then the convergence is
of q-order α. If γ = 1, then the convergence is of r-order α and of q-order p for every
p ∈ [1, α).

Proof. See [EW96, Theorem 2.3].

Corollary 4.3. Theorem 4.2 holds for {uk}k produced by Algorithm 4.2.

Proof. The line search in Step 6 enhances the convergence of the Newton method because
it guarantees a sufficient decrease of A.

Remark 4.4. Controlling the assumptions of Theorem 4.2 in Step 4 of the algorithm,
the line searches of Step 6 can be omitted, if u0 ∈ Bδu(u), especially, if computation
of the Hessian is cheap. If the gradient evaluations are much cheaper than the Hessian
evaluations, line search is preferable.

Remark 4.5. Taking ‖v‖ := |v|1,Ω with v =
∑N

1 viλi in Algorithm 4.2, we have
M = max{κu, κ−1

l } with Lemma 1.21. Due to (1.13) |v|1,Ω can be estimated by the form
D2A(u; v, v) = vT H(u) v.

In case that the assumptions of Theorem 4.2 are not fulfilled, r-linear convergence can
still be proved using the convergence analysis on line search algorithms by [OR70]. With
[OR70] we have the following definition and lemmas.

Lemma 4.6. Let A : D ⊂ RN → R be continuously differentiable on the open convex set
D, and assume that L := L(A(u0)) := {v ∈ D |A(v) ≤ A(u0)} is compact. Consider the
iterations of Algorithm 4.2 producing the sequence uk, where

q′sk
(0) = gT (uk)sk ≤ 0 , sk 6= 0 (cf. Step 4).

Then (uk)k ⊂ L and

lim
k→∞

gT (uk)sk
‖sk‖

= 0 .

Proof. See [OR70, 14.2.15].

Definition 4.7. A mapping σ is a forcing function (F -function) if for any sequence
(tk)k ⊂ [0,∞)

lim
k→∞

σ(tk) = 0 implies lim
k→∞

tk = 0 .
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Definition 4.8. Let g : D ⊂ RN → R be Fréchet differentiable on D and let (uk)k∈N ⊂ D
be a given sequence. Then a sequence (sk)k∈N ⊂ RNof nonzero vectors is gradient-related
to (uk)k if there is a F -Function ϕ such that

|gT (uk)sk|
‖sk‖

≥ ϕ(‖g(uk)‖) for all k ∈ N .

Lemma 4.9. Let A, D, L, and (uk)k be defined as in Lemma 4.6. Assume that A has
a unique critical point u in L. Assume, finally, that the sequence (sk) ∈ RN of nonzero
vectors is gradient-related to uk, then

lim
k→∞

uk = u .

Proof. See [OR70, Theorem 14.3.2].

The next lemma states a F -function ϕ such that the sequence (sk)k is gradient related to
(uk)k, both sequences produced by Algorithm 4.2.

Lemma 4.10. Let A, D, L, and (uk)k, (sk)k be defined as in Lemma 4.6. Again, for
ease of notation, let g(v) := ∇A(v) and H(v) := ∇2A(v) and assume that the Hessians
H(v) are bounded by ‖H(v)‖ ≤ µ2 and are positive definite with µ1‖v‖2 ≤ vTH(v) v for
all v ∈ D, where 0 < µ1, µ2 are constants. Finally, assume ηk ≤ 1

2µ
2
1 µ

−2
2 . Then we have

−
gT (uk)sk
‖sk‖

≥ ϕ(‖g(uk)‖) with ϕ(t) :=
µ2

1

2µ2
2(1 + ηk)

t, t ∈ [0,∞) .

Here, ϕ is a F -function and (g(vk))k is gradient related to (s)k.

Proof. Since k ∈ N can be considered fixed, we abbreviate g = g(uk), s = sk, and
H = H(uk). Due to the strictly positive definiteness of H there exists a d ∈ RN such that

−s = H−1(g + d) = ĝ + d̂ . (4.6)

Using the While condition of Algorithm 4.2 Step 2 we estimate

‖g +Hs‖ = ‖d‖ ≤ ηk‖g‖ . (4.7)

The Cauchy Schwarz inequality and, again, the strictly positive definiteness of H yield

‖w‖ ‖Hw‖ ≥ µ1‖w‖2 , ‖Hw‖ ≥ µ1‖w‖ ,

and
‖w‖ ≥ ‖HH−1w‖ ≥ µ1‖H−1w‖ . (4.8)

The boundedness of H provides

‖w‖ ≤ ‖HH−1w‖ ≤ ‖H‖‖H−1w‖ ≤ µ2‖H−1w‖ .

Using (4.6) and the above inequalities we estimate

‖ĝ‖ ≥ µ−1
2 ‖g‖ and ‖d̂‖ ≤ µ−1

1 ‖d‖ . (4.9)
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Combining the inequalities (4.6), (4.8), and (4.7) we obtain

‖s‖ = ‖ −H−1 (g + d)‖ ≤ µ−1
1 ‖g + d‖ ≤ µ−1

1 (1 + ηk)‖g‖ . (4.10)

Combining (4.9), (4.8) and (4.7) yields the following chain of inequalities

−gT s = gTH−1(g + d) = ĝTHT (ĝ + d̂)

≥ ‖ĝTHT ĝ‖ − ‖ĝTHT d̂‖

≥ µ1‖ĝ‖2 − ‖g d̂‖

≥ µ1µ
−2
2 ‖g‖2 − ηkµ

−1
1 ‖g‖2 .

Using (4.10) and the assumption ηk ≤ 1
2µ

2
1µ

−2
2 we conclude the proof with

−gT s ≥ (µ2
1µ

−2
2 − ηk)(1 + ηk)−1‖g‖‖s‖ ≥ ϕ(‖g‖) ‖s‖ .

For the inexact backtracking method we summarize the convergence properties in the next
theorem.

Theorem 4.11. Let A be given by (4.3) and let u ∈ RN be the unique solution of the
minimization problem A(u) ≤ A(v) for all v ∈ RN . Furthermore, let u0 ∈ RN and the
sequences (uk)k→∞, (sk)k→∞, and (σk)k→∞ be generated by Algorithm 4.2. Then

lim
k→∞

gT (uk)sk
‖sk‖

= 0 , (4.11)

lim
k→∞

σk‖sk‖ = 0 , (4.12)

and we have the r-linear convergence of uk against u.

Proof. We know that there is a unique u with ∇u = 0 and that it satisfies
A(u) ≤ A(v) for all v ∈ RN . We may take D := Bδ(u) as the open convex set of
Lemmata 4.6, 4.9, and 4.10 with δ such that u0 ∈ D. Therefore, Lemma 4.6 yields (4.11).

By construction of Algorithm 4.2 there is σk ≤ σ0. Using Lemma 4.10 and (4.10) we
obtain

|gT (uk)sk| ≥ ρ‖sk‖2 with ρ :=
µ3

1

2µ2
2(1 + ηk)2

.

We estimate for σ0 = 1

σk‖sk‖ ≤ σ0‖sk‖ ≤ ρ−1
|gT (uk)sk|
‖sk‖

which implies (4.12) due to (4.11).
For σ0 < 1 we substitute σ0 = −q′sk

(0)/q′′sk
(0) (see Algorithm 4.2 Steps 4, 5) and get

σk‖sk‖ ≤ σ0‖sk‖ =
−gT (uk) sk
sTkH(uk) sk

‖sk‖ =
−gT (uk) sk

‖sk‖
‖sk‖2

sTkH(uk) sk
≤ µ−1

1

|gT (uk) sk|
‖sk‖

.
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Here, the last inequality follows with µ1 from the assumption on the positive definiteness
of H(v) for all v ∈ D in Lemma 4.10. The convergence of uk towards u follows from
Lemma (4.9), the r-linear convergence is obtained by [OR70, 14.3.6].

We conclude the convergence properties of Algorithm 4.2 stated in Theorem 4.11 and
Theorem 4.2, respectively:

(i) We have r-linear convergence of uk towards u.

(ii) Setting α = 2 in the algorithm, we have q-quadratic convergence of uk towards u,
when u0 is near to u.

4.3 Bounded constrained nonlinear problems

It is the intention of this section to introduce a solver for the large-scale minimization
problem with equality and inequality constraints (4.4), i.e.,

min A(u)
subject to ui(u) = gD(xi), xi ∈ ΓD,p,
subject to ui(u) ≥ ψ(xi), xi ∈ Gp.

For an overview on the subject of nonlinear minimization with side conditions we refer
to [NW99, Chapter 16] here. The generalized conjugated gradient algorithm proposed by
[O’L80] represents an efficient method for quadratic programming functionals. Considering
our large-scale nonlinear convex programming problem the optimization literature shows
that the projected gradient method should be chosen because it is designed to make rapid
changes to the active set.

The following algorithm combines the unconstrained minimizer of the previous section
and the projected gradient method. Thereby, the gradient projection steps suggest a
set of active components i which fulfill the constraint condition with vi = ψi. Then the
unconstrained minimizer of Algorithm 4.2 is applied to the non active or free components
to explore the affine subspace

{w = ψ + v | v ∈ RN with vi = 0 for all active components i}

where ψ is given by ψi = ψ(xi), xi ∈ Gp. The affine subspace can be viewed as a face of
the half hyper-plane R≥ψ.

Firstly, we describe the gradient projection method which realizes steepest descent steps
for the constrained problem. Therefore, we introduce the projection Pψ and the pro-
jected gradient ∇ψ. We recall necessary conditions of a bounded constrained minimum
(Lemma 4.12) and sufficient conditions (Remark 4.13).

Let Pψ : RN → RN
≥ψ denote the projection onto the feasible region RN

≥ψ defined component
wise by

(Pψ(v))i :=

{
ψi, if vi ≤ ψi,

vi, if vi > ψi .
(4.13)
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Let s ∈ RN and let v be a feasible point, i.e., v ∈ RN
≥ψ, with at least one non active

component. Then Pψ(v + ts), t ≥ 0, defines a polygon. Now, it is the idea of the gradi-
ent projection method to set s = −∇A and to seek for the minimum of the constrained
problem by an approximate minimum search on this polygon. This means that we start
our search in the direction of steepest descent.

Considering
A(Pψ(v + ts))−A(Pψ(v))

t

leads us to the definition of the projected gradient on R≥ψ

(∇ψA(v))i :=

{
min{0, (∇A(v))i} , if vi ≤ ψi,

(∇A(v))i , if vi > ψi,
(4.14)

if we insert the coordinate vectors for s. With the notations of the projection and the
projected gradient we can write the following equivalence which gives a necessary condition
for a minimum.

Lemma 4.12. Let u ∈ RN
≥ψ and A be continuously differentiable on RN

≥ψ. Then, the
following statements are equivalent.

∇TA(u) (v − u) ≥ 0 for all v ∈ RN
≥ψ , (4.15a)

∇ψA(u) = 0 , (4.15b)

u− Pψ(u−∇A(u)) = 0 . (4.15c)

Proof. We consider the three equations for active and non active components. Let i be
an active component, i.e., ui = ψi. Let v in (4.15a) be given by vj = uj for j 6= i
and vj = uj + 1 for j = i. Then ∇TA(u) (v − u) = (∇A(u))i ≥ 0 which implies
(∇ψA(u))i = min{0,∇A(u))i} = 0 and (Pψ(u − ∇A(u)))i = ψi = ui. Thus, we obtain
(4.15b) and (4.15c). Reversely, (4.15c) implies (∇A(u))i ≥ 0 and with that (4.15b).

Now, let i be a non active component, i.e., ui > ψi. Taking v as above we get again
(∇A(u))i ≥ 0. If we take v with vi = ui for j 6= i and vj = ψi for j = i, we get
(∇A(u))i ≤ 0, which implies (∇A(u))i = 0 and henceforth, (4.15b), (4.15c). Reversely,
(4.15c) implies (∇A(u))i = 0 and with that (4.15b).

For v ∈ RN
≥ψ we have vi−ui ≥ 0 for active components i. Combining the above implications

of (4.15c) for active and non active components yields (∇A(u))i (vi− ui) ≥ 0. Adding up
these component products, we obtain (4.15a) .

Remark 4.13. In case of the elliptic obstacle problem as defined above, we know that
the solution u of (4.15a) is the unique minimizer of the bounded constrained problem.
Thus, we know that the solution u of (4.15c) solves the bounded constrained problem. To
verify the condition ‖u− Pψ(u−∇A(u))‖ ≤ ε instead of ‖∇ψA(u)‖ ≤ ε in Algorithm 4.3
has numerical advantages, because (u − Pψ(u −∇A(u)))i is continuous in ψi. In a more
general context of constrained minimization the statements of Lemma 4.12 are necessary,
but not sufficient for a minimizer.
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In [CM87, Theorem 3.4], it is proved that the successive application of the minimization
rule

uk+1 = Pψ(uk − σk∇A(uk))

where σk satisfies the Goldstein-Armijo line-search of Algorithm 4.1 generates a sequence
(uk)k with limk→∞‖∇ψA(uk)‖ = 0 when uk is bounded. This minimization rule is realized
by Step 3 of Algorithm 4.3. As in Algorithm 4.2, the choice of the Goldstein-Armijo line-
search initial σP,0 results from the assumption that q(t) := h(t, sk) = A(Pψ(uk + tsk))
can be approximated by the quadratic model q̃(t) = αt2 + βt + γ defined by q̃(0) =
q(0), q̃′(0) = q′(0), and q̃′′(0) = q′′(0). If htt(0, sk) > 0, the model q̃(t) is minimal in
t = σP,0 = −ht(0, sk)/htt(0, sk).

Secondly, we try to enhance the performance of the projected gradient method by min-
imizing A on the free variables under the assumption that these remain free. Using this
assumption we can perform unconstrained minimization steps in the sense of the inexact
Newton backtracking method (see Algorithm 4.2). We use the following notation in the
algorithm.

Let v ∈ RN and I ⊂ {1, . . . , N} an index set. We define the (v, I)-reduced function
Av,I : Rcard I → R by

Av,I(w) := A(vI(w)) with vI(w) :=

{
wi if i ∈ I,
vi otherwise.

(4.16)

Noting the reduced identity matrix

II :=
(
ej)j∈I ∈ RN×card I with the column unit vectors ej ∈ RN ,

we obtain the gradient and Hessian of the (v, I)-reduced function,

∇Av,I(w) = ITI ∇A(vI(w)) and ∇2AI(w) = ITI ∇2A(vI(w)) II , (4.17)

respectively. We name
F(v) := {i ∈ {1, . . . , N} | vi > ψi} .

the set of free variables (non-active set) and its complement

A(v) := {1, . . . , N}\F(v) = {i ∈ {1, . . . , N} | vi ≤ ψi} .

the active set. Using the notation vI(w) of (4.16), the projection Pψ from (4.13) can be
rewritten as

Pψ = ψ
F(v)

(v) .

It is the idea of Algorithm 4.3 to start the Newton iteration for the actually free variables
F(uk) and to go on with this iterations until the iteration uk+i = ψ

F(uk)
(wi), i ∈ N, either

violates a constraint condition or satisfies the stopping criterion ‖∇Auk,F(uk)(wi)‖ ≤ ε.
The Newton iterations are performed by Steps 6–9 of Algorithm 4.3.

If the set of free variables F(u) of the minimum u is already identified correctly at
iteration k, i.e., F(u) = F(uk), then the Newton steps yield the minimum u due to The-
orem 4.2, Theorem 4.11, and the iteration loop stops due to the stopping criterion (see
Step 8, Lemma 4.12).
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If the iteration uk+i violates a constraint condition, i.e., uk+i 6∈ R≥ψ and F(uk+i) 6⊆ F(uk),
then we switch to the projected gradient search.

But how can we be sure that the set of free variables F(uk) is big enough and is not
reduces to an empty set due to violations of constraints too early? Here, we demand a
sufficient decrease of A with respect to the free variables when the Newton iterations are
applied. If the Newton iteration does not yield a sufficient decrease in comparison to its
predecessors or already yielded the minimum min{Auk,F(uk)(v) | v ∈ RN} with respect to
the free variables, we switch to the projected gradient method.

In Algorithm 4.3 the switching to the projected gradient method due to constraint vio-
lation, insufficient decrease, or a reached minimum with respect to the free variables is
controlled by Steps 9, 10. To take advantages of the excellent convergence properties of
Newton’s method as much as possible, it is useful to choose the initial u0 such that all
variables are free, i.e., F(u0) = {1, . . . , N}.

It remains to give a criterion for switching from projected gradient iterations to Newton
iterations. Here, we assume that projected gradient iterations have found the correct
set of free variables F(u) when F(uk) has not been changed for the last l iterations, i.e.,
F(uk+1) = F(uk) = · · · = F(uk+1−l). If the assumption F(u) = F(uk) is true, Newton’s
method will find the minimum quickly. If the assumption is not fulfilled, this will be
detected by the criterion realized in Step 9 and projected gradient iterations will be used
further. The criterion F(uk+1) = F(uk) = · · · = F(uk+1−l) is controlled by Step 5. As a
second criterion we use a sufficient decrease of A in comparison to the preceding decreases
(see Step 5).

Algorithm 4.3 can be viewed more generally as a scheme of the kind given in [CM87,
Algorithm 5.3]. Mutually, starting with an initial u0 ∈ RN

≥ψ, uk+1 follows from uk
recursively by the application of one of the two minimization rules:

1. Let uk+1 = Pψ(uk − σk∇A(uk)) where σk satisfies the Goldstein-Armijo line-search
of Algorithm 4.1.

2. Determine uk+1 ∈ RN
≥ψ such that A(uk+1) < A(uk) and A(uk+1) ⊂ A(uk).

The first minimization rule is realized in Step 3 of Algorithm 4.3, the second in Steps 6–9 .
In [CM87, Theorem 3.4] it is proved that the exclusive application of the first minimization
rule generates a sequence (uk)k with limk→∞‖∇ψA(uk)‖ = 0 when uk is bounded. It is the
goal of the second rule to accelerate this convergence by solving unconstrained subproblems
over the free variables.

[CM87, Theorem 5.4] shows that a bounded sequence generated by a combination of
the above minimization rules identifies the active set of the minimum A(u) after a finite
number of iterations whenever the strict complementary condition holds in each stationary
point u, i.e.,

(∇A(u))i > 0 if ui = ψi . (SCC)

When the correct active set A is detected, i.e., A(uk+1) = A(uk) for all following k
(condition of Step 9 ), the minimization remains as an unconstrained minimization problem
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Algorithm 4.3 uk = pginbm(u0, ψ, ‖·‖, ε, µ1, µ2, η0, γ, α,M, l);
Projected gradient inexact Newton backtracking method
Let an initial u0 ∈ RN

≥ψ and a norm ‖·‖ be given. We have a termination parameter ε > 0,
decrease thresholds 0 < µ1, µ2 < 1, and a number 2 ≤ l ∈ N of active sets to com-
pare. Furthermore, we hand over a preconditioner M , and the parameters 0 ≤ γ < 1,
1 < α ≤ 2, for the calculation of the threshold ηi needed by the inner inbm-iterations with
Algorithm 4.2.
To ease notation, we write g(v) := ∇A(v), H(v) := ∇2A(v) for the Hessian, and
g
ψ

:= ∇ψA for the projected gradient.

1. Set k = 0.

2. If ‖g
ψ
(uk)‖ < ε

Exit with uk .
Else

Continue with Step 6.

3. Set kP = k.
Set the search direction sk = −g(uk).
Set h(t, sk) := A(Pψ(uk + t sk)) , i.e., restrict A onto a polygonal

search path given by sk and Pψ.

Compute derivative ht(0, sk) = sTk gψ(uk) = −‖g
ψ
(uk)‖2

2.

Compute derivative htt(0, sk) = g
ψ
(uk)TH(uk) gψ(uk) .

Set

σP,0 =

min
{

1,− ht(0,sk)
htt(0,sk)

}
if htt(0, sk) > 0

1 if htt(0, sk) = 0.

Determine step length σP,k = σP = linesearch(h(·, sk), σP,0, δ, β)
with Algorithm 4.1.

Set uk+1 = Pψ(uk + σP sk) .

4. If ‖g
ψ
(uk+1)‖ < ε

Set k = k + 1.
Exit with uk .

5. If A(uk+1) = A(uk) = · · · = A(uk+1−l)

or A(uk)−A(uk+1) ≤ µ1 max{A(uj)−A(uj+1) | kP ≤ j < k}

Set k = k + 1. Continue with Step 6.

Else
Set k = k + 1. Continue with Step 3.

6. Set F = F(uk). Set i = 0. Define the F-reduced function Aψ,F .
Set w0 = ITF uk.

7. Compute one iteration wi+1 = inbm(wi, ‖ · ‖, ε, ηi, γ, α,M) with Algorithm 4.2
using Aψ,F instead of A, k = i instead of k = 0 .

Set uk+1 = Pψ(ψ
F
(IF wi+1)).

continued on next page
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continued from previous page

1. If ‖g
ψ
(uk+1)‖ < ε

Set k = k + 1.
Exit with uk .

2. If A(uk+1) = A(uk)

and Auk,F
(wi)−Auk,F

(wi+1) > µ2 max{Auk,F
(wj)−Auk,F

(wj+1) | 0 ≤ j < i}

and ‖∇Auk,F
(wi+1)‖ ≥ ε

Set k = k + 1, i = i+ 1.
Continue with Step 7.

3. Set k = k + 1.
Continue with Step 3.

over the free variables. As this is solved with Algorithm 4.2 by construction, then we have
the convergence of Theorem 4.2 and Theorem 4.11.

Thus, taking into account that A is strongly elliptic and the discrete minimization problem
of Theorem 2.7(i) has a unique critical point u, we obtain the following theorem.

Theorem 4.14. Let the sequence (uk)k→∞ be generated by Algorithm 4.3. If the
(SCC) holds in the unique critical point u of the minimization problem (4.4), we have
limk→∞ uk = u. Further, there exists a k0 ∈ N such that A(uk) = A(u) for all k ≥ k0,
i.e., the active set of u is detected in a finite number of iterations. uk converges to u for
k ≥ k0 as stated in Theorem 4.11.

Unfortunately, Example 4.15 shows that we can not assume the (SCC) to be always
fulfilled. However, Remark 4.16 offers a work around to this problem.

Example 4.15. Let u be the minimizer of A(v) := v2
1 + v2

2, v ∈ Rψ with ψ := (−1
0 ).

Then, A is strongly elliptic, but the unique minimizer u = ( 0
0 ) does not fulfill the (SCC).

Remark 4.16. If a strongly elliptic A does not fulfill the (SCC) in the active component i,
we know that (∇A(u))i = 0. If we replace the active set A(v) by the binding set

Ã(v) :=
{
i ∈ {1, . . . , N}

∣∣ vi = ψi and (∇A(v))i > 0
}

and the set of free variables F(v) by the augmented set of free variables

F̃(v) :=
{
i ∈ {1, . . . , N}

∣∣ vi > ψi or
(
vi ≤ ψi and (∇A(v))i ≤ 0

) }
,

then the projected gradient steps consider only active variables which fulfill the (SCC).
Thus, the binding set Ã(v) is identified in a finite number of steps (cf. [CM87, Theo-
rem 4.2]).

Remark 4.17. A standard in mathematical programming software is the optimization
package LANCELOT A from Conn, Gould and Toint [CGT92] and its successor GALAHAD
[CGT02]. In the early 90th LANCELOT A was the first and only method to solve large-scale
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problems. The LANCELOT A routines treat the convex bounded constrained nonlinear
programming mutually equivalently to Algorithm 4.3. The main differences between the
algorithm and the LANCELOT A implementation is that LANCELOT A handles non-convex
problems additionally. The software checks the convexity of the problem by a trust region
method and allows only small steepest descent steps when non-convexity is detected.
Switching off the trust region control by tuning the respective parameters to a large trust
region which will not be reduced in the outer iterations, gives an algorithm that behaves
similar to Algorithm 4.3.

In [CGT02, §1], the authors conjecture that another approach, called sequential quadratic
programming (SQP), will be more successful in the long term, when high-quality quadratic
programming codes for large-scale problems exist. This is the case for small- and medium-
scaled problems (N ≤ 2000). The results of comparative tests of other software packages
(SNOPT, see Gill, Murray, and Saunders [GMS02], LOCO, see Vanderbei and Shanno [SV00],
KNITRO, see Byrd, Hribar, and Nocedal [BHN99], and FilterSQP, see Fletcher and Leyffer
[FL02]) against LANCELOT A showed LANCELOT A often (but not always) being significantly
out performed, mainly in case of small- and medium-scaled problems.

Algorithm 5.2.1 presented in [Fel99] is similar to Algorithm 4.3, but allows the treatment of
non-convex nonlinear programming problems. It uses a truncated Lanczos decomposition
instead of the conjugate gradient method to compute search directions for the line-search
of the minimum and a second line-search algorithm for the lines where the objective
function owns a negative curvature.

4.4 Solving the linear systems of the unconstrained problem

The treatment of the unbounded and the bounded discrete nonlinear problems demands
preconditioned gradient iterations to solve linear systems H(uk) y = −g(uk) approxi-
mately until the relative residual of the i-th iteration satisfies

‖g(uk) +H(uk)yi‖/‖g(uk)‖ ≤ η := ηk. (4.18)

(see Step 2 of Algorithm 4.2 and Step 9 of Algorithm 4.3). To estimate the total cost for
solving a linear system H(uk)y = −g(uk), we must estimate the number of preconditioned
conjugate gradient iterations and the number of floating point operations needed for the
computation of one iteration.

The order of costs for one iteration is determined by the matrix-vector product H(uk)y
and by the application of the preconditioner M (cf. Algorithm A.1). In the following,
we assume that the preconditioning is cheaper than the matrix-vector product. In Ap-
pendix B, we suggest an algorithm which needs O(p4) floating point operations for one
matrix-vector multiplication H(uk)y.

In this section, we recall that the number of conjugate gradient iterations depends mutu-
ally on the condition number of H(uk). Further, we cite the sharp bounds on the condition
number given by Melenk in [Mel02]. Since the cg-iterations do not depend on uk during
the iteration process, we can neglect the dependency on uk in the following.
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Definition 4.18. Let X and Y be normed spaces and let A : X → Y be a bounded linear
operator with a bounded inverse A−1 : Y → X. Then

cond(A) := ‖A‖ ‖A−1‖

is called the condition number of A.
The condition of a matrix H ∈ RN×N is defined as cond(H) = ‖A‖2 ‖A−1‖2 where
A : R → RN is given by A(x) := Hx and ‖ · ‖2 denotes the operator norm with respect to
the Euclidian norm on RN .

Frequently, to develop the estimates for cond(H), we will use

Lemma 4.19. The condition number of a Hermitian matrix H is given by

cond(H) =
λN
λ1

where λN and λ1 denote the largest and the smallest eigenvalues of H, respectively.

Proof. We observe that ‖H‖2 = λN and ‖H−1‖2 = µN (cf. [Kre98, Theorem 3.31]) where
µN is the largest eigenvalue of H−1. But µN = λ−1

1 .

We cite the following result which allows us to estimate the relative error of the cg-scheme
depending on the numbers of iterations.

Theorem 4.20. Let ri := g + Hy
i

the residual of the i-th iteration. Taking the Eu-
clidian norm ‖v‖ := ‖v‖2 := (vT v)1/2 as the norm of Algorithm 4.2 and the H-norm
‖v‖H := (vTHv)1/2, the analysis of the conjugate gradient method shows that

‖ri‖
‖g‖

≤
√

cond(H)
‖y

i
− y‖H

‖y
0
− y‖H

≤ 2
√

cond(H)
(√

cond(H)− 1√
cond(H) + 1

)i

Proof. The conjugate gradient method is analyzed in [Kel95, §2.3] and [CGO76].

Using the previous theorem, we obtain that due to the stopping criterion (4.18) the cg-
method will terminate at the latest in the iteration

imax =
⌈
log
(

η

2
√

cond(H)

)/
log
(√

cond(H)− 1√
cond(H) + 1

)⌉
. (4.19)

The following corollary allows us to replace the last equation by an estimate which is less
complicated.

Corollary 4.21. Let δ > 0. Then, there exists a constant C > 0 such that

imax ≤ C(cond(H)
)1/2+δ

. (4.20)

For condition numbers of numerical interest, e.g. cond(H) ≤ 1025, (4.20) holds also with
δ = 0.
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Figure 4.1: Semi-logarithmic plot of the quotient given in (4.23) with δ = 0 and η = 2,
i.e., f(x) := log

(
x−1/2

)(√
x
(
log(

√
x− 1)− log(

√
x+ 1)

))−1.

Proof. It suffices to proof that the right hand side of (4.19) divided by (cond(H))1/2+δ

converges towards a finite real number for cond(H) → ∞. For brevity of notation, we
substitute cond(H) by x. From limy→∞

(
1 + 1

y

)y = exp(1), we obtain

lim
x→∞

(√
x− 1√
x+ 1

)√x
= exp(−2) and lim

x→∞

√
x log

(√
x− 1√
x+ 1

)
= −2 (4.21)

by the substitution y = 1
2(
√
x− 1). Using l’ Hospital rule in case of δ 6= 0, we get

lim
x→∞

log η
2
√
x

xδ
=

{
0 for δ > 0 ,

−∞ for δ ≤ 0 .
(4.22)

Combining (4.21) and (4.22), yields

lim
x→∞

log η
2
√
x

x
1
2
+δ log

(√
x−1√
x+1

) =

{
0 for δ > 0 ,
∞ for δ ≤ 0 ,

(4.23)

which proves (4.20) for δ > 0. The semi-logarithmic plot of Figure 4.1 shows that the
quotient given in (4.23) grows very slowly for δ = 0 and η = 2. For δ = 0 and η < 2
we get a similar slow increase of the quotient because of log η

2
√
x

= log 2
2
√
x

+ log η
2 . Thus,

(4.20) holds for δ = 0 and cond(H) ≤ 1025.

As one cg-iteration costs O(p4) floating point operations (cf. Algorithm B.3 and Proposi-
tion B.9), we obtain

Corollary 4.22. The linear system Hy = −g is solved approximately by the conjugate
gradient method at a cost of O

(
p4
√

cond(H)
)

floating point operations, if we assume
cond(H) ≤ 1025.
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4.4.1 Condition number estimates

The condition numbers in two-dimensional hp-FEM with locally refined meshes are an-
alyzed by Melenk in [Mel02]. The standard technique to estimate the condition number
splits the bilinear form

〈v1, v2〉ρ,u := D2A(u; v1, v2) for all v1, v2 ∈ V

into element contributions. Here, the parameters ρ and u refer to the function ρ in (1.10)
and to u in D2A(u; ·, ·)). Then, the element contributions are analyzed using polynomial
inverse estimates on the reference element and estimates on the geometric transformations.

In [BS89] Bank and Scott show that the combination of the element contributions results
in the condition number bound

cond(H) ≤ Cρ,uCTCp

where Cρ,u is a function of the specific bilinear form 〈v1, v2〉ρ,u and CT reflects the depen-
dence on the mesh. Cp depends only on the basis on the reference element Q̃ and on the
polynomial degree. Thus, the influence of the mesh and of the polynomial degree can be
studied separately.

From the bounds for the bilinear form 〈v1, v2〉ρ,u given in (1.13), it follows that the Cρ,u
can be replaced by a positive constant. In context of geometrically refined meshes T (cf.
Section 2.4), we know from [BS89] that there exists a positive constant C such that

CT ≤ C · (cardT)2 , (4.24)

when we assume Dirichlet boundary conditions. Since adaptive refinement leads to a
geometric refinement towards corners and edges with singularities, this estimate also holds
for adaptively refined meshes. Thus, it remains to estimate Cp, i.e., to estimate cond(H)
for a problem on the reference element Q̃ with a bilinear form equivalent to D2A(u; ·, ·)
for all ρ, u.

Melenk addresses this problem in [Mel02] for the basis BQ̃ introduced in Section 4.1 and
proves

Theorem 4.23. Using the coordinate representation with respect to the Lagrangian basis
BQ̃ on the reference square Q̃ = [−1, 1]2 (see Section 4.1), there exists a constant c > 0
independent of p such that for all polynomials v =

∑p
i,j=0 vijbQ̃,ij ∈ V (Q̃) there holds

c−1p−2
p∑

i,j=0

v2
ij ≤ ‖v‖2

H1(Q̃)
≤ cp

p∑
i,j=0

v2
ij . (4.25)

Proof. [Mel02, Proposition 2.8].

The optimality of (4.25) is not proved theoretically. Nevertheless, the convergence rates of
Experiment 4.34 emphasize that (4.25) is optimal. As suggested by Melenk this stability
result can be used to estimate the condition of the Hessian corresponding to the p-version
on geometrically refined meshes.
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Theorem 4.24. Let r(x) := dist(x, ∂Ω) and let cgeo, h0 be positive constants such that
the elements Q of the mesh T satisfy hQ ≥ cgeoh0 r(FQ((0, 0))) where hQ are parameters
proportional to the diameter of Q (see (2.1)). Assume Dirichlet boundary conditions,
i.e., ΓD = ∂Ω and ΓN = ∅. Let Vp,gD := Vp,gD(T), gD ≡ 0, be given by Definition 2.4
for p ≥ N. Further, let H := H(uk) be the Hessian in the k-th iteration of the inexact
Newton backtracking method (see Algorithm 4.2) in the minimization process of A on
Vp,gD . Then, there exists a positive constant C depending only on the constants of (2.1),
cgeo, and κl, κu of (1.13) such that the condensed matrix Hc satisfies

‖H‖2 ≤ Cp and ‖
(
H
)−1‖2 ≤ Ch−2

0 p2 . (4.26)

There holds cond(H) = O(h−2
0 p3).

Proof. Let v = (vk)k=1,...,N , N := dimVp(T), be the coordinate representation of v ∈ Vp(T)
given by v =

∑N
k=0 vkbk with bk as in (4.2). With Theorem 4.23 we know that

c−1p−2
N∑
k=1

v2
k ≤

∑
Q∈T

(
‖∇v‖2

L2(Q) + h−2
Q ‖v‖2

L2(Q)

)
.

By the two-dimensional specification of the embedding result in weighted Sobolev spaces
[Gri85, Theorem 1.4.4.3], there exists a positive constant c̄ with

‖r−1v‖L2(Ω) ≤ c̄‖∇v‖L2(Ω) for all v ∈ H1
0 (Ω) . (4.27)

Thus, we get

c−1p−2
N∑
k=1

v2
k ≤

(
1 + c−2

geoh
−2
0 c̄−2

)
‖∇v‖2

L2(Ω) ≤ κ−1
l (1 + c−2

geoh
−2
0 c̄−2

)
D2A(u; v, v)

with (1.13). The correspondence D2A(u; v, v) = vT H(u) v for all u, v ∈ Vp(T) yields

c1h
2
0p
−2 ≤ inf

{
vT H(u) v
vT v

∣∣∣∣v ∈ RN \ {0}
}

= λ1 = ‖H−1‖−1
2

where λ1 is the smallest eigenvalues of the positive definite matrix H and c1 is a positive
constant depending only on cgeo, h0, c̄, κl.

From the right inequality given in Theorem 4.23 and (1.13), we obtain

D2A(u; v, v) ≤ κu‖v‖2
H1(Ω) ≤ κucp

N∑
k=1

v2
k

which yields

‖H‖2 = λN = sup
{
vT H(u) v
vT v

∣∣∣∣v ∈ RN \ {0}
}
≤ c2p

with positive constant c2 = κuc. Thus, we get (4.26) with C := max{c2, c−1
1 }. The

statement on the condition number follows by Definition 4.18.

From Corollary 4.22 we obtain
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Corollary 4.25. With the assumption of Theorem 4.24 the linear system Hy = −g is
solved approximately by the conjugate gradient method at a cost of O(p11/2) floating point
operations.

Remark 4.26.
1. The assumption hQ ≥ cgeo h0 r(FQ((0, 0))) allows meshes that are geometrically

refined towards vertices and edges. Thus, adaptive refinements are also covered by
Theorem 4.24.

2. The proof of Theorem 4.24 shows that the assumption of Dirichlet boundary condi-
tions can be replaced by the assumption

‖r−1v‖2
L2(Ω) ≤ D2A(u; v, v) for all u, v ∈ H1

gD
(Ω)

(cf. (4.27)). In particular, this is fulfilled, when we minimize the functional A with
σ > 0 on a quasi-uniform mesh.

4.4.2 Solving the linear system by static condensation

Frequently, static condensation is suggested in FE literature for an efficient solution of the
linear systems. Thus, we estimate the computational costs of this method for the basis
defined in Section 4.1. Static condensation can be introduced as follows.

Let O ∪ I be a partition of the index set {1, . . . , N}, N := cardGp, of the global basis
such that O contains the indices of the node- and edge-associated degrees of freedom,
and I contains the indices of the interior degrees of freedom, i.e., those with a local triple
(Q, i, j), 1 ≤ i, j ≤ p− 1 (cf. (4.2)). Reordering the linear system Hv = −g according to
this partition, we may write(

HOO HOI

HIO HII

)(
vO
vI

)
= −

(
g
O
g
I

)
. (4.28)

As supp bQ,i,j = Q for all Q ∈ T, 1 ≤ i, j ≤ p− 1, HII has the block diagonal structure

HII =

HQ1

. . .
HQnT

 , nT := card T,

with the local stiffness matrices HQi ∈ R(p−1)2×(p−1)2 , Qi ∈ T, associated to the (p − 1)2

local basis functions bQ,i,j , 1 ≤ i, j ≤ p − 1. Thus, we obtain the inverse of H simply by
the inversion of the local blocks, i.e.,

H−1
II =

H
−1
Q1

. . .
H−1
QnT

 .

This allows the reformulation

HcvO = −gc with Hc := HOO −HOIH
−1
II HIO and gc := g

O
−HOIH

−1
II gI (4.29)

of (4.28) by applying the Schur complement, called static condensation in the context of
finite elements. The condition number of the matrix Hc is estimated by
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Theorem 4.27. With the assumption of Theorem 4.24, there holds

‖Hc‖2 ≤ C , ‖
(
Hc
)−1‖2 ≤ Ch−2

0 p, and cond(Hc) = O(h−2
0 p) .

Proof. The statements follow by applying [Mel02, Theorem 2.2] on the bilinear form given
by D2A(u; ·, ·) .

Corollary 4.28. Let the assumptions of Theorem 4.24 be fulfilled. Then, using static
condensation the linear system Hy = −g is solved approximately by the conjugate
gradient method at a cost of O(p6) floating point operations, when the local systems
HQivQi

= −g
Qi

, Qi ∈ T, are solved by the cg-method.

Proof. With Corollary 4.25 all local systems HQi , Qi ∈ T, are solved at a cost of O(p11/2)
by the cg-method. Thus, the computation of the matrix-vector product HcvO, and con-
sequently one cg-iteration for the condensed system, costs O(p11/2) flops. The corollary
follows with Corollary 4.21 due to cond(Hc) = O(p).

Remark 4.29. With the numerical experiments we can conjecture that
cond(H̃Qi) = O(p2) for all Qi ∈ T where H̃Qi denotes the matrix corresponding to a
diagonally preconditioned cg-scheme for HQi (see Conjecture 4.35). This improves Corol-
lary 4.28 to O(p11/2), when the local systems are solved with diagonal preconditioning.

Remark 4.30. Remark 4.26 holds also for Theorem 4.27 because we have the same
assumptions.

4.4.3 Using a hierarchical basis

It is a standard in p-version FEM to employ a hierarchical basis. The analysis of the
diagonally preconditioned system corresponding to this basis shows that the condition
numbers grow mildly with a rate of O(p2) (see Theorem 4.32, (4.33a)). In Section 4.5 we
will show that we can use this advantage of the hierarchical basis over the Lagrangian
basis for efficient preconditioning of the reduced linear systems raised by the nonlinear
programming problem.

Let a basis (L0, . . . ,Lp) of Pp be given by

L0(ξ) := 1
2(1− ξ), L1(ξ) := 1

2(1 + ξ),

and by the normed anti-derivatives of Legendre polynomials

Li(ξ) :=
1

‖Li−1‖L2(−1,1)

∫ ξ

−1
Li−1(t) dt for all ξ ∈ [−1, 1], i = 2, . . . , p.

Elementary integration of the Legendre polynomials yields ‖Li−1‖L2(−1,1) =
√

2
2i+1 . We

call (L0, . . . ,Lp) a hierarchical basis, since it can be expanded to a basis of Pp+1 simply
be adding Lp+1.

We define the local basis
BL
Q̃,p

:= (bLij | 0 ≤ i, j ≤ p) (4.30)
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on the reference square Q̃ by the tensor product polynomials bLij((ξ1, ξ2)) := Li(ξ1)Lj(ξ2).
Again, as usual in finite elements, we get the local bases on the quadrilaterals with the
transformations FQ and the global basis BL

p := (bL1 , . . . , b
L
Np

) by assembling the local basis
functions (cf. (4.1), (4.2)) and the introduction of a global counting.

Now, let Bp := (b1, . . . , bNp) be the Lagrangian basis with respect to the Gauss-Lobatto
nodes (cf. (4.2)) and let N be the matrix mapping the basis functions

(
b1, . . . , bNp

)
onto(

bL1 , . . . , b
L
Np

)
, i.e., (

bL1 , . . . , b
L
Np

)T = N
(
b1, . . . , bNp

)T
. (4.31)

Lemma 4.31. Let v ∈ spanBp, and let vL, v be its vector representations with respect
to BL

p and Bp, respectively. Then, we have the coordinate transformation

v = NT vL .

Proof. We write

v =

v
L
1
...
vL
N


T b

L
1
...
bLN

 =

 v1
...
vN


T  b1

...
bN

 .

Using (4.31) to replace
(
bL1 , . . . , b

L
Np

)T yields the statement.

We use the coordinate transformation of Lemma 4.31 to reformulate the linear system
Hv = −g as

HLvL = −gL with HL := NHNT and gL := Ng . (4.32)

Theorem 4.32. Let HL be the Hessian of the discrete functional A : RNp → R given
by the redefinition A(wL) := A

(∑Np

i=1w
L
i b

L
i

)
with respect to the basis BL

p in the k-th
iteration of the inexact Newton backtracking method.
Let HL

II be the sub-matrix of HL corresponding to the bubble basis functions bLi , i.e.,
there exists a Q ∈ T such that supp bLi ⊂ Q.
With the assumptions of Theorem 4.24, there holds

ch−2
0 p4 ≤ cond(HL) ≤ Ch−2

0 p4(1 + log2 p) , (4.33a)

ch−2
0 p4 ≤ cond(HL

II) ≤ Ch−2
0 p4 , (4.33b)

each with positive constants c, C independent of h0 and p.

Further, let H̃L := Λ−1/2HLΛ−1/2 where Λ denotes the diagonal matrix yielded from HL

by setting all non-diagonal entries to zero. H̃L corresponds to a diagonally preconditioned
cg-scheme, i.e., the preconditioning step Mzi = ri in Algorithm A.1 is realized by the
divisions (zi)k = (ri)k/Hkk, k = 1, . . . , Np, where k denotes the component of the vectors
and Hkk denotes the corresponding diagonal element of H.
Let H̃L

II be defined analogously.
With the assumptions of Theorem 4.24, there holds

ch−2
0 p2 ≤ cond(H̃L) ≤ Ch−2

0 p2(1 + log2 p) , (4.34a)

ch−2
0 p2 ≤ cond(H̃L

II) ≤ Ch−2
0 p2 , (4.34b)

each with positive constants c, C independent of h0 and p.
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Proof. Analogously to the proof of Theorem 4.24, the estimates (4.33) and (4.34) follow
from stability estimates on the reference element Q̃. The local estimates for (4.33a) and
(4.33b) are stated in [MP96, Corollary 1 and Theorem 1, respectively], the local estimates
for (4.34a) and (4.34b) are stated in [MP96, Corollary 2 and Theorem 3, respectively].

Remark 4.33.

1. The system HLvL = −gL can be solved efficiently since the condition number of a
diagonally preconditioned HL is of O(p2) due to Theorem 4.32. We also consider
the static condensation of this system in Experiment 4.37 and conjecture that the
condition of the condensed matrix grows at O(p2) (Conjecture 4.38). Since the
condensation process needs additionally the inversion of theHL

II -block corresponding
to the interior basis functions, diagonal preconditioning should be preferred to static
condensation, when the hierarchical basis is used.

2. HL and gL can be computed directly as the stiffness matrix and the righthand side
analogously toH and g, when we replace the basis function bk by bLk . If we substitute
(B.3) by the equationL0(ξ)

...
Lp(ξ)

 = C

λ
q
0(ξ)
...

λqq(ξ)

 with C :=

L0(ξ
q+1
0 ) · · · L0(ξ

q+1
q )

...
...

Lp(ξ
q+1
0 ) · · · Lp(ξ

q+1
q )

 ,

then Algorithm B.3 performs the matrix-vector multiplication HL(u) v locally.
Thus, the product costs O(p4) floating point operations due to Proposition B.9.

3. The diagonal entries of HL are not explicitly known, when only the matrix-vector
product HLvL is implemented. Using C from 2. of this remark, Algorithm B.7
computes the diagonal entries at a cost of O(p4) floating point operations.

4. We recall that the Dirichlet boundary condition yielded the definition of the affine
subspace Vp,gD and the equality constraints given by the boundary data gD in the
Gauss-Lobatto points on the boundary, when we used the coordinate representation
with respect to the Lagrangian basis Bp. Using the hierarchical basis, we proceed
as follows to get the same affine subspace Vp,gD .

Let Bp,Γ and BL
p,Γ be the subsets of Bp,Γ and BL

p,Γ, respectively, which are nonzero on
the Dirichlet boundary. Further, let vΓ be the coordinates of the discrete boundary
function with respect to Bp,Γ, i.e.,

vp|Γ = vΓBp,Γ .

The components vΓ,k = gD(xk), k = 1, . . . , cardBp,Γ, of vΓ are given by the Dirichlet
data in the Gauss-Lobatto points on Γ. As spanBp,Γ = spanBL

p,Γ, there exists a
sub-matrix NΓ of the matrix N (see (4.31)), such that Bp,Γ = NΓB

L
p,Γ. Thus, we

can fulfill the Dirichlet condition in the Gauss-Lobatto points by computing the
coordinate representation vL

Γ with respect to BL
p,Γ, i.e.,

vL
Γ = N−T

Γ vΓ .

So, we can switch totally to hierarchical basis in case of variational equalities at a cost
of the inversion of NT

Γ . The linear systems corresponding to variational inequalities
are considered in Section 4.5.
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Figure 4.2: cond(H), cond(HII), cond(Hc) (left) and cond(H̃), cond(H̃II), cond(H̃c)
(right).

4.4.4 Numerical experiments concerning the condition numbers

As the dependence of the condition numbers of H on the mesh geometry was explored
already in [AMT99, BS89, Mel02], it is the intention of the following experiments to
compare the influence of different p-version FE bases on the condition of the linear system.
Further, we are interested in the condition numbers of the respective condensed matrix
Hc and in cond(HII) because HII must be inverted to obtain Hc.

Experiment 4.34. We compute the stiffness matrix of the Laplacian on the reference
element Q̃

H :=
(∫

Q̃
(∇bi∇bj dx

)
1≤i≤Np

1≤j≤Np

, Np := dimVp(Q̃) ,

where bi ∈ BQ̃ are the Lagrangian basis functions with respect to the Gauss-Lobatto
points of order p. Then HII is regular, but H and Hc are not invertible since their null
spaces are spanned by the coefficient vector corresponding to the function u ≡ 1. It would
be a work around to fix one degree of freedom to 0, i.e., to reduce H, Hc by one column
and one row.

Instead of this strategy we prefer to redefine the condition number for the semidefinite
matrices as the quotient λN/λ2. Here, λN and λ2 denote the largest eigenvalue and the
smallest eigenvalue greater than 0 of the positive semidefinite matrices H, Hc. Using this
redefinition of cond(H), cond(Hc), we ensure that the influence of all basis functions on
the condition is balanced in a way similar to that of FE-mesh with several quadrilaterals.

The left panel of Figure 4.2 presents a double logarithmic plot of cond(H), cond(HII),
cond(Hc) versus p. A comparison with the additionally plotted lines 0.6p3 and 4p confirms
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the growth rates cond(H) = O(p3), and cond(Hc) = O(p) stated in Theorem 4.24 and
Theorem 4.27, respectively. As HII is a sub-matrix of H, it follows that cond(HII) =
O(p3). This is also confirmed by the plot.

The right panel of Figure 4.2 presents the condition numbers of H̃ := Λ−1/2HΛ−1/2 where
Λ denotes the diagonal matrix yielded from H by setting all non-diagonal entries to zero.
H̃ corresponds to a diagonally preconditioned cg-scheme, i.e., the preconditioning step
Mzi = ri in Algorithm A.1 is realized by the divisions (zi)k = (ri)k/Hkk, k = 1, . . . , Np,
where k denotes the component of the vectors and Hkk is the corresponding diagonal entry
of H. Further, cond(H̃II) and cond(H̃c) are plotted in the right panel. Again, we get
the ∼-expressions by diagonal preconditioning. In case of H̃ and H̃c we obtain the same
growth rates as in the non-preconditioned schemes which means that these matrices are
scaled well already. For H̃II we obtain the amazing result that the conditions numbers
are natural numbers for p ≥ 8.

Conjecture 4.35. There holds

cond(H̃II) = 1
2(p− 2)(p− 1) for p ≥ 8 .

Justification. The numerical experiment with double precision arithmetic yields

|12(p− 2)(p− 1)− cond(H̃II)| ≤


10−12 for 8 ≤ p ≤ 17 ,
10−11 for 8 ≤ p ≤ 28 ,
10−10 for 8 ≤ p ≤ 34 .

In addition to the graphical presentation, we list the condition numbers and the experi-
mental convergence rates

αp =
log
(
cond(Hp)/ cond(Hp−2)

)
log
(
p/(p− 2)

) for 3 ≤ p ≤ pmax (4.35)

in Table C.1 and Table C.2. Again, the experimental convergence rates confirm the
theoretical results.

Experiment 4.36. We repeat Experiment 4.34 but replace the Lagrangian basis BQ̃ by
the Lagrangian basis Beq with respect to the equidistant nodes

(
−1 + 2i/p,−1 + 2j/p

)
,

0 ≤ i, j ≤ p.

Analogously to Figure 4.2, Figure 4.3 shows semilogarithmic plots of the condition of Heq,
Heq
II , and Hc,eq (left panel), and of the respective diagonally preconditioned matrices (right

panel), and compares these with the line C exp(bp), C ≈ 0.056, b ≈ 2.73. The growth
rates cond(Heq) = O(exp(bx)) and cond(Heq) = O(exp(bx)) are asymptotically sharp
and correspond to the theoretical result given in [OD95]. The exponential rates make it
clear that the distribution of the nodes is essential for numerical stability, not only for
variational inequalities but also for variational equalities. In addition to the graphical
presentation, we list the condition numbers and the experimental exponents

beqp =
(
cond(Hp)/ cond(Hp−1)

)
for 2 ≤ p ≤ pmax .

in Table C.3.
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Figure 4.3: cond(Heq), cond(Heq

II ), cond(Hc,eq) (left) and cond(H̃eq), cond(H̃eq
II ),

cond(H̃c,eq) (right). The parameters of the line are C ≈ 0.056, b ≈ 2.73.

Experiment 4.37. We repeat Experiment 4.34 but replace the Lagrangian basis BQ̃ by
the hierarchical basis BL

Q̃,p
defined by (4.30).

The left panel of Figure 4.4 presents cond(HL), cond(HL
II), cond(Hc,L). A comparison

with the additionally plotted line 0.3p4 confirms the growth rates cond(H) = O(p4) and
cond(HII) = O(p4) stated in Theorem 4.32.

The right panel of Figure 4.4 presents the condition numbers of the correspond-
ing diagonally preconditioned systems. A comparison with the line 4.8p2 confirms
cond(H̃L) = O(p2) and cond(H̃L

II) = O(p2) stated in Theorem 4.32. Additionally, we list
the condition numbers and the experimental convergence rates (cf. (4.35)) in Table C.4
and Table C.5. The experimental convergence rates agree with the abovely named con-
vergence rates.

Conjecture 4.38. Let there hold the assumptions of Theorem 4.24. Further, let HL be
the Hessian of the discrete functional A : RNp → R given by the redefinition A(wL) :=
A
(∑Np

i=1w
L
i b

L
i

)
with respect to the basis BL

p in the k-th iteration of the inexact Newton
backtracking method. Let Hc,L be the condensed matrix of HL analogously to (4.29) and
H̃c,L the corresponding diagonally preconditioned matrix. Then, there holds

ch−2
0 p2 ≤ cond(Hc,L) ≤ Ch−2

0 p2 (1 + log2 p) , (4.36a)

ch−2
0 p ≤ cond(H̃c,L) ≤ Ch−2

0 p (1 + log2 p) . (4.36b)

Justification. Due to Figure 4.4, Table C.4 and Table C.5 the stabilities (4.36) are proved
for on the reference square Q̃ for 2 ≤ p ≤ 30. We conjecture the stability for p ∈ N. The
dependency on h0 is an analogy to Theorem 4.27 and its proof.
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II), cond(Hc,L) (left) and cond(H̃L), cond(H̃L
II),

cond(H̃c,L) (right).

4.5 The linear system of the constrained problem

In Section 4.1, we use the Lagrangian basis with respect to Gauss-Lobatto points to
define appropriate subsets which fulfill the Dirichlet boundary condition and the obstacle
condition approximately (see Vp,gD and Kp,gD). Step 7 of Algorithm 4.3 requires the
unconstrained minimization of the (ψ,F(uk))-reduced function Auk,F(uk) on Rcard F(uk) by
the inexact Newton backtracking method of Algorithm 4.2. Thus, we must solve the linear
system HF yF

= −g
F

in Step 2 of Algorithm 4.2 by a preconditioned conjugate gradient
scheme approximately. Here,

HF = ITF ∇2A(ψ
F
(uk)) IF and g

F
= ITF∇A(ψ

F
(uk))

denote the reduced Hessian and the reduced gradient, respectively, with F := F(uk), see
(4.17).

In this section, we want to demonstrate that the linear problems from the unbounded and
the linear subsystems from the bounded discrete nonlinear problems both can be precon-
ditioned with a cost of O(p3) floating point operations such that the condition number
of the respective system grows as the condition cond(H̃L) = O(p2) of the diagonally pre-
conditioned system with respect to the p-hierarchical basis. For ease of notation, we only
consider the p-version on the reference element Q̃. The treatment on more general meshes
follows straightforwardly and any preconditioner given for the p-hierarchical basis can be
used additionally.

However, it is in order here to recall that the projected gradient inexact Newton backtrack-
ing method of Algorithm 4.3 demands the solution of linear systems only in those steps
which realize the adapted Newton method. Thus, good preconditioning of the reduced
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system HF yF
= −g

F
enhances only the performance of the loop given by Steps 7, 1, 2 of

the algorithm.

4.5.1 Preconditioning the unconstrained problem

The convergence of the conjugate method can be improved significantly by solving
M−1Hy = M−1g instead of the original problem. Of course, this makes only sense
when M−1 can be applied cheaply. Using the preconditioned gradient scheme, it is not
necessary to compute M−1H and M−1g. It suffices to calculate z = M−1r once an iter-
ation (see Algorithm A.1). In the following we deduce a preconditioner M which yields
cond(M−1H) = cond(H̃L).

Again, letN be the matrix mapping the Lagrangian basisBp onto the hierarchical basisBL
p

(see (4.31)). By linear algebra of coordinate transformation, we have

HL = NHNT , gL = Ng, and NT yL = y . (4.37)

Now, let D be the diagonal matrix which contains the reciprocals H−1
kk of the diagonal

entries of H. We may write the following equivalences to the diagonally preconditioned
system:

DHLyL = DgL

⇐⇒ DNHy = DNg

⇐⇒ (NTDN)Hy = (NTDN)g.

Since NTDNH = NTDHLN−T , the matrices NTDNH and DHL are spectrally equiv-
alent. Further, DHL is spectrally equivalent to H̃L from Theorem 4.32.

Remark 4.39.

1. Let M := (NTDN)−1 be the preconditioner for the system Hy = −g. The spectral
equivalence of M−1H and H̃L implies cond(M−1H) = O(p2(1 + log2 p)) by Theo-
rem 4.32.

2. In Lemma B.5 the matrix-vector products Nvq and NT v (see (B.4)) can be com-
puted efficiently due to the tensor product structure of the bases. Analogously,
Lemma B.5 holds for N given in (4.31), if we replace v by vL, vq by v, and the one
dimensional coordinate transformation (B.3) byL0(ξ)

...
Lp(ξ)

 = C

λ
p
0(ξ)
...

λpp(ξ)

 with C :=

L0(ξ
p+1
0 ) · · · L0(ξ

p+1
p )

...
...

Lp(ξ
p+1
0 ) · · · Lp(ξ

p+1
p )

 .

3. Analogously to Remark B.6, the matrix-vector products Nv and NT vL cost O(p3)
floating point operations.

4. In actual computation matrices and vectors need not physically rearranged. With
Lemma B.5 the preconditioning step z = M−1r = NTDNr can be computed by
the following three steps:
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(i) Compute v = Cr CT .

(ii) Set v = Dv .

(iii) Compute z = CT v C .

Thus, a preconditioning step costs O(p3) floating point operations. When the matrix-
vector products are performed by Algorithm B.3, D is not known and has to be
calculated by Algorithm B.7 at a cost of O(p4) once before the cg-iterations start.

5. One preconditioned cg-iteration costs O(p4) floating points operations, when we use
Algorithm B.3 and an implementation of the preconditioner according to 4. Thus,
the approximate solution of the linear system costs O(p5(1 + log p)) floating point
operations due to 1 and Corollary 4.19.

4.5.2 Preconditioning the constrained problem

Step 7 of Algorithm 4.3 requires the solution of the linear problem HF yF = −g
F

. Gener-
alizing an idea of O’Leary (cf. [O’L80]), we show that the preconditioners known for the
full linear problem can be used for the restricted linear problem. The condition number
of the preconditioned restricted linear system will be less than or equal that of the full
system.

Suppose that P is the permutation matrix corresponding to the current partitioning A ∪ F

into active and free variables given by

PHP T =
(
HII HIJ

HT
IJ HJJ

)
where I := A, J := F.

Again, let M denote the positive definite preconditioner for H. As an effective precondi-
tioning step zJ = M

−1
rJ for the remaining system HJJ yJ = −g

J
we give the following

algorithm.

Algorithm 4.4 zJ = M
−1
rJ ; Preconditioning step for HJJ yJ = −g

J

1. Set r = P T
(

0
rJ

)
.

2. Compute v = Cr CT . Set v = Dv. Compute z = CT v C.
(The · notation is introduced in Lemma B.5, p. 146.)

3. Set
(
zI
zJ

)
= Pz.

Partitioning and rearranging the matrix M−1 in a manner corresponding to the current
rearrangement of H we get

PM−1P T =
(

(M−1)II (M−1)IJ
(M−1)JI (M−1)JJ

)
.
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The effect of Algorithm 4.4 reads as zJ = (M−1)JJ rJ . To estimate the condition number
of M−1

HJJ , we consider the simple situation when there is only one active variable, i.e.,
card I = 1. Then, the general situation with 1 ≤ card I ≤ card(I ∪ J) can be deduced by
induction.

Lemma 4.40. Let M−1 be obtained using Algorithm 4.4. Then it is symmetric positive
definite. Suppose the dimension of M−1 is N − 1 where N is the dimension of M , and let

λ1 ≥ λ2 ≥ · · · ≥ λN > 0 be the eigenvalues of M−1H,

λ1 ≥ λ2 ≥ · · · ≥ λN−1 > 0 be the eigenvalues of M−1
HJJ .

Then λ1 ≥ λ1 ≥ λ2 ≥ λ2 ≥ · · · ≥ λN−1 ≥ λN−1 ≥ λN .

Proof. M−1 is symmetric positive definite, since it is a principal sub-matrix of a symmetric
positive definite matrix. For ease of notation we introduce the notations G := (D1/2N)
and GJJ := ((D1/2)JJ NJJ). Note that

det(M−1H − λI) = det(GTGH − λI) = det(GHGT − λI)

and det(M−1
HJJ − λI) = det(GTJJGJJH − λI) = det(GJJHGTJJ − λI) .

By the Courant-Fischer characterization of eigenvalues (cf. [GVL96, Theorem 8.1.2]),

λk = max
dim(S)=k

min
0 6=v∈S

vTGHGT v

vT v

= max
dim(S)=k

min
0 6=w∈S

{
wTHw | ‖G−Tw‖ = 1

}
for all k = 1, . . . , N ,

where S is any subspace of R with the indicated dimension. Without loss of generality,
we suppose that HJJ is obtained from H by deleting the first row and column. Then

λk = max
dim(SJ )=k

min
0 6=vJ∈SJ

vTJGJJHJJG
T
JJvJ

vTJ vJ

= max
dim(SJ )=k

min
0 6=w∈SJ

{
wTJHJJwJ | ‖G−TJJ wJ‖ = 1

}
= max

dim(S)=k+1
min

0 6=w∈S

{
wTHw |w1 = 0, (G−Tw)1 = 0, ‖G−Tw‖ = 1

}
.

Here, SJ denotes any subspace of RN−1. Therefore, λk ≥ λk+1 for k = 1, . . . , N − 1.
The corresponding min-max characterization of eigenvalues can be used in an analogous
arrangement to prove that λk ≤ λk for k = 1, . . . , N − 1.

Now, we can state the estimate for the condition number of the preconditioned reduced
system M

−1
HJJ . We stress that we only assumed M to be a positive definite precondi-

tioner of the full system. This means that we can use other preconditioners M̌ known for
p-hierarchical bases for the preconditioning of reduced systems.

Theorem 4.41. The following relation holds for the conditions of the preconditioned
sub-matrix HJJ and the preconditioned matrix H.

cond(M−1
HJJ) ≤ cond(M−1H) .
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Proof. Let λ1 and λN the largest and the smallest eigenvalues of M−1H, let λ1 and λNJ

the largest and the smallest eigenvalues of M−1
HJJ . Here, NJ denotes the dimension of

HJJ . It follows by Lemma 4.40 and induction that λ1 ≥ λ1 ≥ λNJ
≥ λN . Noting

cond(M−1
HJJ) =

λ1

λNJ

≤ λ1

λN
= cond(M−1H)

finishes the proof.

Corollary 4.42. Rewriting the reduced matrix-vector product

HJJ yJ =
(
H

(
0
y
J

))
J

where
(
·
)
J

means that we take the J components of the vector, we can use Algorithm B.3
to compute HJJ yJ . It follows analogously to Remark 4.39.5 that one M -preconditioned
cg-iteration costs O(p4) floating points operations. Further, the approximate solution
of the reduced linear system HJJyJ = −g

J
by the M -preconditioned cg-scheme needs

O(p5(1 + log p)) floating point operations.

4.5.3 Space decomposition methods for the constrained problem

In [BCMP91] a preconditioning technique based on space decomposition is developed for
the p-version FEM by Babuška et al. There, the condition number of the preconditioned
system grows at most as O(1 + log2 p).

Ainsworth uses a similar approach with an additional domain decomposition for the hp-
FEM in [Ain96] and gets a growth of O((1+log2 p)(1+log2(Hp/h)) for the preconditioned
system, where p is the polynomial degree, h is the size of the elements, and H is the size
of the sub-domains. However, both methods demand a p-hierarchical basis given by the
anti-derivatives of Legendre polynomials.

Nevertheless, we can use both preconditioners as preconditioners for the Lagrangian basis
by a combination with the basis transformation N . Let M̌ denote one of the mentioned
space decomposition preconditioners. Remark 4.39.4 presents a preconditioner for the
Lagrangian basis which reduces the condition number to that of a diagonally precondi-
tioned hierarchical basis. Replacing the diagonal matrix D by M̌−1 reduces the condition
number to that of the M̌ preconditioned system. This becomes clear when we write

z = NT M̌−1Nr .

Analogously to Section 4.5.1, we obtain

cond(NT M̌−1NH) = cond(M̌−1HL)

=

{
O((1 + log2 p)) for M̌ from [BCMP91],
O((1 + log2 p)(1 + log2(Hp/h)) for M̌ from [Ain96].

An inspection of the proof of Lemma 4.40 shows that we only use the symmetry and
the positive definiteness of preconditioner M when going over to the preconditioner M
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of the reduced system. Thus, we can define the preconditioner M̌ by replacing Step 2 of
Algorithm 4.4 by Step

2’. Compute v = Cr CT . Set v = M̌−1v. Compute z = CT v C.

Analogously to Lemma 4.40, we obtain cond(M̌) ≤ cond(M̌).

Nevertheless, it is in order here to recall that the costs for the approximate solution of the
linear systems are dominated by the O(p4) floating point operations needed for the matrix-
vector products. The implementation of a space decomposition preconditioner will reduce
only the number of these products. Due to Corollary 4.21 and Theorem 4.32 (4.34a) the
diagonal preconditioned cg-scheme introduced in Section 4.5.2 leads to O(p(1 + log p))
cg-iterations. The M̌ preconditioned cg-scheme leads to O(1 + log p) cg-iterations in case
of M̌ from [BCMP91], to O((1 + log p)(1 + logHp/h)) cg-iterations in case of M̌ from
[Ain96].

4.6 Non uniform hp-meshes

In Section 2.4.1, we developed non uniform hp-FE spaces and hp-FE subsets. To achieve
the continuity across inter-element boundaries between quadrilaterals with hanging nodes
and with different polynomial degrees, we demanded that the restrictions of the discrete
functions onto the edges are polynomials of degree pe = min{pQ |Q ∈ T, e∩Qi 6= ∅}, i.e.,
the minimum of polynomial degrees of the adjacent quadrilaterals. The obstacle condition
was controlled on the set G~p given by (2.42) which contained the interior Gauss-Lobatto
points of the quadrilaterals and the edge associated Gauss-Lobatto points GE,~p.

In Section 4.1 (4.4), we reformulated the discrete minimization problem in coordinate
notation for the quasi-uniform p-version. There, the continuity of the FE functions was
guaranteed by the choice of continuous global basis functions. Now, it would be possible
to define appropriate nodal global basis functions for the non-uniform p-version. But it
would be a disadvantage that both, the assembly of the global stiffness matrix H and the
quadrature would become complicated. One would need an extra quadrature routine to
integrate the edge associated nodal basis functions. As an alternative we maintain the
continuity by means of linear algebra.

Let

B := {bQ,i,j |Q ∈ T, 0 ≤ i, j ≤ pQ}

where bQ,i,j are the tensor product basis functions given by (4.1) and pQ denotes the
polynomial degree on Q given by the degree vector ~p. Of course, B contains discontinuous
basis functions. We split up B into the basis functions associated to the interior nodes
on the quadrilaterals Q and to those associated to the nodes on the boundaries of the
quadrilaterals,

bI := {bQ,i,j |Q ∈ T, 1 ≤ i, j ≤ pQ − 1} and bO := {bQ,i,j |Q ∈ T, i, j ∈ {0, pQ}} .

Introducing a global numbering, we can represent all linear combinations v ∈ spanB using
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coordinate notation as

v =
(
vI
vO

)T (
bI
bO

)
for a unique

(
vI
vO

)
∈ RcardB.

In the following, we take up the notation of Section 2.4.1, pp. 63, 64. It is the goal
to express V~p, V~p,gD

, and K~p,gD
from Definition 2.27 by appropriate vectors (vTI , v

T
O).

Therefore, we define an auxiliary basis associated to the Gauss-Lobatto points on the
edges

ĜE,~p := GE,~p ∪ {xh |xh is a ficticious hanging node}

(see (2.41)). Let k = 1, . . . , Ne, Ne := card ĜE,~p a global counting for the xk ∈ ĜE,~p. By
construction of ĜE,~p, there exists an edge e ∈ E and a local edge number i ∈ {0, . . . , pe}
such that

xk = xp+1,e
i . (4.38)

Here, the pair (e, i) is not determined uniquely by k, since vertices and non ficticious
hanging nodes are elements of multiple edges. Thus, we define the set

Yk := {(e, i) ∈ E× {0, . . . , pe} | (4.38) holds for (e, i)} for all k = 1, . . . , Ne .

Let Q ∈ T be the quadrilateral with the lowest ordering number and j ∈ {1, . . . , 4} the
local edge number which fulfill e = FQ(e(j)) (see (2.38)). Q and j are determined uniquely
by e. For every x ∈ e there exists a unique ξ̃ = (ξ̃1, ξ̃2) ∈ e(j) such that x = FQ(ξ̃). Now,
we can define the local edge basis by

ce,i(x) :=


λpe

i (ξ̃1) for x ∈ e and j ∈ {1, 3, }
λpe

i (ξ̃2) for x ∈ e and j ∈ {2, 4}
0 for x 6∈ e

, (4.39)

and assemble the global nodal edge basis function ck associated to ξk,

ck :=
∑

(e,i)∈Yk

ce,i for all k = 1, . . . , Ne . (4.40)

Taking off the basis functions ck corresponding to ficticious hanging nodes, we obtain a
partition of the basis functions which we note by the column vector

( cE
cF

)
. Now, any

w ∈ span{ck | k = 1, . . . , Ne} can be represented using the coordinate representation

w =
(
wE
wF

)T (
cE
cF

)
for a unique

(
wE
wF

)
∈ RNe .

Here, wF is already determined, when we require the continuity in the ficticious nodes.
Let w ∈ span{ck | k = 1, . . . , Ne} be continuous, let wf be the coefficient scaling the basis
function cf associated to the ficticious node xf , and let ê be the edge with xf ∈ ê, but xf
is not an end point of ê. Then,

wf = w(xf ) =
pê∑
i=0

wê,icê,i(xf ) , (4.41)

i.e., all ficticious degrees of freedom can be resolved locally. Switching back to global
numbering, there exists a matrix CE,F with

CE,FwE = wF . (4.42)
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Similarly, we get the continuity of v ∈ spanB by local operations. Let e be the edge of Q
with the local edge number j = 1. The restriction v|e can be represented for all x ∈ e by
the linear combinations

v(x) =

 ve,0
...

ve,pe


T  ce,0(x)

...
ce,pe(x)

 using the local basis on the edge e,

and v(x) =

 vQ,0,0
...

vQ,pQ,0


T  bQ,0,0(x)

...
bQ,pQ,0(x)

 using the local basis on the quadrilateral Q.

Inserting xi = FQ(ξpQ+1
i ,−1), i = 0, . . . , pQ, into both representations yields

vQ,i,0 =

 ve,0
...

ve,pe


T λ

pe
0 (ξpQ+1

i )
...

λpe
pe(ξ

pQ+1
i )

 for 0 ≤ i ≤ pQ ,

and further vQ,0,0
...

vQ,pQ,0

 = Ce,Q

 ve,0
...

ve,pe

 with Ce,Q :=

λ
pe
0 (ξpQ+1

0 ) · · · λpe
pe(ξ

pQ+1
0 )

...
...

λpe
0 (ξpQ+1

pQ ) · · · λpe
pe(ξ

pQ+1
pQ )

 . (4.43)

In case of a local edge number j ∈ {2, 3, 4}, we get analog expressions for vQ,pQ,0
...

vQ,pQ,pQ

 ,

 vQ,0,pQ

...
vQ,pQ,pQ

 , and

 vQ,0,0
...

vQ,0,pQ

 , respectively.

Combining the local linear mappings Ce,Q for all Q ∈ T and turning back to global
numbering yields a matrix CEF,O which determines the coefficient vector vO by

vO = CEF,O

(
vE
vF

)
.

Replacing vF by the right hand side of (4.42), we get a matrix CE,O such that

vO = CE,O vE .

Collecting the above arguments, we can conclude with the following proposition which
gives the coordinate expressions of V~p, V~p,gD

, and K~p,gD
.

Proposition 4.43. Let {1, . . . , N}, N := cardG~p be the index set of G~p , let
I ∪ E = {1, . . . , N} be the partition of the index set obtained by taking off the Gauss-
Lobatto points GE,~p , and let NI := card I, NE := cardE. Using the above coordinate
notation (vI , vO, vE , vF )T , V~p, V~p,gD

, and K~p,gD
from Definition (2.27) can be rewritten
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as

V~p = V~p(T) =
{(

vI
vO

)T (
bI
bO

) ∣∣∣∣ vI ∈ RNI and vO = CE,OvE , vE ∈ RNE

}
,

V~p,gD
=
{(

vI
vO

)T (
bI
bO

) ∣∣∣∣ vI ∈ RNI and vO = CE,OvE , vE ∈ RNE
=gD

}
,

K~p,gD
=
{(

vI
vO

)T (
bI
bO

) ∣∣∣∣ vI ∈ RNI
≥ψ

I
and vO = CE,OvE , vE ∈ RNE

=gD
∩ RNE

≥ψ
E

}
.

Here, ψ = (ψ(xk))xk∈G~p
is the obstacle vector corresponding to G~p and ψT = (ψT

I
, ψT

E
)

denotes its partition with respect to the index sets I, E. Further,

RNE
=g

D
:= {w ∈ RNE |wk = gD(xk) for all xk ∈ ΓD,~p}

and RNI
≥ψ

I
, RNE

≥ψ
E

are given by introducing ψ
I
, NI , and ψ

E
, NE for ψ, N into

RN
≥ψ := {w ∈ RN |w ≥ ψ} .

Here, the relation ≥ has to be understood component-wise.

Corollary 4.44. Analogously to Section 4.1 (4.3), we define

A

((
wI
wE

))
:= A

((
wI

CE,O wE

)T (
bI
bO

))
(4.44)

for (wI , wE)T ∈ RNI
≥ψ

I
× (RNE

=gD
∩ RNE

≥ψ
E
). Again, we use the arguments w ∈ RN and w ∈ V~p

to differentiate between the coordinate and the vector notation of A. We rewrite the
discrete obstacle problem from Theorem 2.7(i) equivalently as

u minimizes A on RNI
≥ψ

I
× (RNE

=gD
∩ RNE

≥ψ
E
) .

Remark 4.45. In practical computations, there is no obligation to perform global oper-
ations on matrices, or to assemble the global matrix H. Particularly, there is no need to
store the global matrix CE,O. Using an iterative solver such as Algorithm 4.3, it suffices
to store the local matrices HQ and the local right hand sides gQ yielded by quadrature
routines, and the vectors (vI , vE)T , (ψ

I
, ψ

E
)T . Taking a local counting of the components

of vF and vO on the quadrilaterals Q, the auxiliary vectors vF,Q and vO,Q are generated
by exclusively local calculations of (4.41) and (4.43). These can be done simultaneously
on the quadrilaterals.

Remark 4.46. The preconditioners given in Remark 4.39 for the linear system of the
unconstrained problem and in Algorithm 4.4 for the linear system of the constrained
problem can be generalized straightforwardly to the non uniform hp-version, because they
are given as local operations and (vI , vO)T offers a local representation of v.

Remark 4.47. In Section 2.2 we defined p-FE on the reference triangle T̃ . Global nodal
edge basis functions ck (see ((4.40)) can be introduced, when Ω is divided into triangles.
Of course, the local edge number j has to be in {1, 2, 3}, and the definition of the local
edge basis functions ce,i (see (4.39)) has to be accommodated. The continuity on the
inter-element boundaries and the obstacle condition are obtained completely analogously
as in Proposition 4.43 by means of linear algebra. Even hanging nodes are allowed.
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4.7 Numerical experiments

A practical way to design structures that combine minimum weight with maximum
strength is to experiment with soap bubbles. To construct surface structures, for ex-
ample, architects would bend a wire frame, to the outline of a vaulted alcove and dip
the wire frame into a soap sud. The shape formed by the soap film on the outline gives
the most economical form in the real structure. The book Natürliche Konstruktionen
from Otto presents examples of roofs, vaults, and tents which shapes were designed by
soap film models (cf. p. 72 in [Ott85]). The link between mathematics and architectural
construction is discussed by Emmer in [Emm96].

Because of the tension within the liquid, a soap film will form the smallest surface area
between edges. The effect of gravity is negligible for small areas of soap films because
their weight is minimal. Thus, a film stretched out across a hoop, for example, will form
a flat disc, and a film around a volume of air will form a sphere. We refer to the books
Soap bubbles and forces which mould them from C. V. Boys [Boy90] and Demonstrating
science with soap films from D. Lovett [Lov94] for the physical backgrounds of soap films
and bubbles. The shape of a soap film on a wire frame can be modeled mathematically
according to the following minimal surface problem.

The minimal surface model problem with inhomogeneous boundary data.
Let Ω ⊂ R2 be a bounded Lipschitz domain. Let the wire frame (x, gD(x)) be given by
the Dirichlet data gD ∈ H1/2(∂Ω) on the Lipschitz boundary ∂Ω. We ask for the element
u ∈ H1

gD
(Ω) of least area, namely,

A(u) ≤ A(v) for all v ∈ H1
gD

(Ω) with A(v) :=
∫

Ω

√
1 + |∇v|2 dx . (4.45)

Further, we introduce an obstacle given by the ψ ∈ C0(Ω) ∩H1(Ω) with ψ ≤ gD almost
everywhere in a neighborhood of ∂Ω into the minimal surface problem and demand that
the surface u fulfills the condition u(x) ≥ ψ(x) almost everywhere on Ω. Physically
speaking, the soap films must lie above the obstacle. Now, we ask for the element

u ∈ K := {v ∈ H1
gD

(Ω) | v ≥ ψ a.e. on Ω}

of least area, namely
A(u) ≤ A(v) for all v ∈ K .

The functional defined by A(v) is a particular case of the functional defined by (1.8) in
Chapter 1. This becomes clear, when we take σ = 0, f ≡ 0, ΓN = ∅, and

p(t) :=
√

1 + t2 in (1.8).

Unfortunately, the corresponding ρ(t) does not fulfill the condition (1.6), here,

ρ0 ≤ ρ(t) = (1+ t2)−1/2 ≤ ρ1 , ρ2 ≤ ρ(t)+ tρ′(t) = (1+ t2)−3/2 ≤ ρ3 for all t ∈ R≥0 ,

demanded for existence and uniqueness of a minimum by Theorem 1.22 and Theorem 1.23.
We can take ρ1 = ρ3 = 1 as upper bounds, but the lower bounds ρ0 > 0 and ρ2 > 0 do not
exist because t can become arbitrarily large. To achieve the existence and the regularity
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of the minimal surface, we need an a priori estimate for the gradient of the solution. With
the boundedness of t = |∇u| it suffices to show that there exist positive constants ρ0 and
ρ2, when t is bounded arbitrarily.

An extensive analysis of the contact minimal surface problem is given by Kinderlehrer
and Stampacchia in terms of continuously differentiable locally coercive vector fields
a(x) := ρ(|x|)x, x ∈ Rd, d ≥ 1. Due to [KS80, Theorem IV.4.3], there exists a unique
minimal surface u ∈ H2(Ω), when we assume homogeneous boundary data, a convex
domain Ω with smooth boundary ∂Ω, and an obstacle ψ ∈ C2(Ω).

Solving the unconstrained discrete minimum problems. The discretization of the mini-
mum surface problem yields discrete nonlinear unconstrained and constrained minimum
problems. The unconstrained minimum problems are solved using the inexact Newton
backtracking method of Algorithm 4.2 with the initial u0 ∈ RN with the components
given by u0,i = 0 for the interior degrees of freedom and u0,i = gD(xi) for the boundary
degrees of freedom where xi is a Gauss-Lobatto points on the boundary ∂Ω. The Newton
iterations are performed until the Euclidian norm of the gradient ‖g(uk+1)‖2 is smaller
or equal ε = 10−12 (see Step 7). The linear systems are solved using diagonally precon-
ditioned conjugate gradient iterations until the stopping criterion of Step 2 is fulfilled for
the forcing term ηk computed by Step 7 (4.5) with the parameters γ = 0.9 and α = 2. As
initial forcing term, we take η0 = 1.0. The line-search with Algorithm 4.1 is done with
the “Armijo”-parameter δ = 10−4 and the backtracking parameter β = 0.5.

Solving the constrained discrete minimum problems. The constrained discrete minimum
problems are solved using Algorithm 4.3 with the initial u0 given by the vector components

u0,i =

{
max{ψ(xi), 0}, if xi ∈ Ω ,
gD(xi), if xi ∈ ∂Ω .

where xi ∈ Gp denote the Gauss-Lobatto points corresponding to the respective degrees
of freedom. The projected gradient and the Newton iterations of Algorithm 4.3 are per-
formed until the Euclidian norm condition ‖u− Pψ(u−∇A(u))‖2 ≤ ε = 10−10 holds. This
ensures ‖gψ(uk)‖2 ≤ ε due to Remark 4.13. We use l = 3 as the maximum number of pro-
jected gradient steps without changing the active set in Step 5 and set η1 = 0.1 as the
decrease threshold for the projected gradient steps in Step 5, η2 = 0.1 as the decrease
threshold for the Newton steps in Step 2. The remaining parameters α, β, γ, δ, η0,
are taken as above in Algorithm 4.2. The linear problems are solved by a diagonally
preconditioned cg-scheme.

Estimating the error of the discrete solution. The exact solutions u of the following
numerical experiments are not known. Thus, the following lemma proves to be useful
estimating the error of an approximate solution.

Lemma 4.48. Let the functional A : H1(Ω) → R be given by (1.8) and let there ex-
ist positive constants ρi, i = 0, 1, . . . , 5, such that the assumptions of Lemma 1.21 and
Theorem 1.23 are satisfied. Further, let u be the unique minimizer of A according to
Theorem 1.23 and let ξ0 := ρ2

2ρ4+ρ5
. Then, for v ∈ K with |v − u|H1(Ω) ≤ ξ0, there holds

|v − u|2H1(Ω) ≤
3
ρ2
|A(v)−A(u)| . (4.46)
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Defining the sequence (ξk)k∈N recursively by ξ0 as above and

ξk+1 := min
{
ξ0 ,

√
6|A(u)−A(v)|

3ρ2 − (2ρ4 + ρ5)ξk

}
,

we may estimate more precisely

|v − u|H1(Ω) ≤ inf{ξk | k ∈ N} . (4.47)

Proof. By setting
ϕw(t) := A(u+ tw) , t ∈ R≥0 (4.48)

where w ∈ H1(Ω), we know from the classical Taylor theorem that there exists a θ ∈ [0, 1]
such that

ϕw(1) = ϕw(0) + ϕ′w(0) + ϕ′′w(0) + ϕ′′′w (θ)

= A(u) +DA(u;w) + 1
2D

2A(u;w,w) + 1
6θD

3A(u;w,w,w) .

Inserting w = v − u, v ∈ K, we estimate

DA(u;w) ≥ 0 and D2A(u;w,w) ≥ ρ2|v − u|2H1(Ω)

with Theorem 1.23(ii) and Lemma 1.21 (1.13), respectively, and

|D3A(u;w,w,w)| ≤ (2ρ4 + ρ5)|v − u|3H1(Ω)

with (1.16) from the proof of Lemma 1.21. Combining the last three inequalities and
taking t = 1 in (4.48), we get

2A(v)− 2A(u) ≥ (ρ2 − 1
3(2ρ4 + ρ5)|v − u|H1(Ω))|v − u|2H1(Ω) . (4.49)

Assuming v ∈ K with |v − u|H1(Ω) ≤ ξ0 yields (4.46) because of

2|A(v)−A(u)| ≥ 2
3ρ2|v − u|2H1(Ω) .

Moreover, assuming v as above, we obtain

2|A(v)−A(u)| ≥ (ρ2 − 1
3(2ρ4 + ρ5)ξ0)|v − u|2H1(Ω)

and consequently by the recursive definition of ξk+1

ξ21 ≥ |v − u|2H1(Ω) .

Inserting ξk+1 for ξ1 and ξk for ξ0 yields (4.47) by induction. The infimum exists since

ξk ≥

√
2|A(v)−A(u)|

ρ2
.

For the error estimation, we assume that the assumptions of Lemma 4.48 hold and neglect
the consistency error, i.e., we ignore the fact that the discrete solutions up ∈ Kp,gD are
not in K.
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For the extrapolation of the minimum Ā := A(u) on the subset K we use a generaliza-
tion of the Richardson extrapolation. For ease of notation we write Ak := A(uk) where
uk := upk

∈ Kpk,gD is the solution of the p-version FE computation with respect to The-
orem 2.7. Let us assume that (Ak)k∈N fulfills

Ak = Ā+ Cp−rk

with a real constants Ā, C, r independent of k. Inserting k + 1, k + 2 instead of k into
this equation gives us a system of three nonlinear equations and leads to∣∣∣∣Ak −Ak+1

Ak −Ak+2

∣∣∣∣ = 1−
( pk
pk+1

)r
1−

( pk
pk+2

)r .
Thus, finding a real r > 0 which fulfills the last equation allows the computation of Ā and
C. In case of the h-version we extrapolate Ā analogously using Ak = Ā+Chrk. In [CP89]
Christiansen and Petersen propose a more general extrapolation method starting from

Ak = Ā+ C1h
r1
k + C2h

r2
k + . . .

with positive real constants Ci, ri, i = 1, 2, . . . . Nevertheless, the simple approach pre-
sented above is sufficient to extrapolate significant digits of Ā for the following experiment
from the highest dimensional h- and p-version problems.

Then, the extrapolation Ā can be used to compute the experimental convergence rates
with respect to the number of unknowns Nk assuming |A(uk)− Ā| ≈ CNα

k where C, α
are constants independent of k. This leads to the experimental convergence rates

αk+1 = log
∣∣∣∣ Ak − Ā

Ak+1 − Ā

∣∣∣∣/ log
(

Nk

Nk+1

)
.

Beneath the disregarding of the inconsistency error, the main problem with the extrapo-
lation of Ā and the experimental convergence rates is that we do not have a monotone
decreasing sequence Ak in case of inhomogeneous boundary conditions or a real obstacle
problem. In contrast to the FEM where we have Vp ⊂ Vq for p < q, we do not have
Vp,gD ⊂ Vq,gD or Kp,gD ⊂ Kq,gD for p < q. As a work around the extrapolation and the
convergence rates are computed with respect to pk+1 = pk+2 instead of pk+1 = pk+1. It
is a further advantage of taking pk+1 = pk + 2 that oscillations of the error with respect
to p caused by the symmetry of the solution do not influence the extrapolation and the
convergence rates.

Experiment 4.49 (Minimal surface with inhomogeneous boundary data). We take the
unit square Ω := [−1, 1]2 and the minimal surface functional A as defined by (4.45).
The inhomogeneous boundary data is given by gD := (1− x8

1)− (1− x8
2) for x ∈ ∂Ω. We

compare the h- and the p-version as follows:
For the h-version we start with a uniform square grid T0 on which we take the FE space
V1(T0). The squares of the grid have the length h0. Then, the elements Q ∈ T0 are refined
into 4 elements by bisection of the edges. This yields the grid T1 and the grids Tk, k ≥ 2
by recursive continuation. The discrete minima A(uk) on V1,gD(Tk) for different initial
mesh widths are listed in Table 4.1.

For the p-version, again, we start with a uniform square grid T0 with the initial mesh
parameter h0 on which we take the FE space Vp(T0), p = 1. Then, we increment the
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polynomial degree p by 1 recursively and ask for the discrete minima on Vp,gD(T0). The
minima are listed in Table 4.2.

The minimal surface is visualized in Figure 4.5. The p-version with different mesh pa-
rameters h0 and the h-version with different initial values h0 give the same values for the
extrapolation Ā in the first 6 digits. For the computation of the convergence rate, we
used Ā = 9.014014. In case of the h-version the experimental convergence rates confirm
|Ak − Ā| = O(N−1

k ) (see Table 4.1). Assuming (4.46) of Lemma 4.48 to hold, this gives
|uh − u|H1(Ω) = O(h) because of N = O(h−2).

The p-version experiment confirms |Ak − Ā| = O(N−2
k ) (see Table 4.2). Thus, again

assuming (4.46), yields |uh− u|H1(Ω) = O(p−2) because of N = O(p2). The best h-version
result yielded by solving a nonlinear system with 123201 unknowns can be calculated
much more efficiently by the p-version by solving a nonlinear system with less than 2000
unknowns for all tested mesh width h0.

Experiment 4.50 (Minimal surface with inhomogeneous boundary data over an obsta-
cle). We repeat the h-version and the p-version computations of Experiment 4.49, but
demand that the minimal surface fulfills the condition u(xi) ≥ ψ(xi) for all Gauss-Lobatto
points xi ∈ Gp. Here, the obstacle ψ is defined by

ψ(x) :=

{√
1
16 − x2

1 − 0.3 for |x1| < 1
4 ,

−∞ for |x1| ≥ 1
4 .

(4.50)

This can be illustrated by moving a cylinder parallel to the x2-axis from underneath
against the minimal surface of Experiment 4.49 (see Figure 4.6). Using a wire frame
for the cylinder allows us to visualize the coincidence set Ψ. The lower plot of Fig-
ure 4.6 shows that for those x ∈ Ω where the obstacle condition is violated, we have
|ψ(x)− up(x)| ≤ 2 · 10−3 for h = 1

8 and p = 4.

The numerical results are listed in Table 4.3 for the h-version and in Table 4.4 for the
p-version. The p-version with the tested mesh widths h0 and the h-version with the
tested mesh widths h0 lead to the extrapolation Ā = 9.5545. The h-version experi-
ment confirms |Ak − Ā| = O(N−1

k ). Thus, assuming analogously to the interpretation of
Experiment 4.49, we obtain |uh − u|H1(Ω) = O(h). The p-version experiment confirms

a rate of |Ak − Ā| = O(N−3/2
k ). Under the assumption that (4.46) holds, this leads to

|uh − u|H1(Ω) = O(p−3/2). The best h-version solution calculated from 123201 unknowns
is achieved nearly by the p-version with less than 8000 unknowns.

Experiment 4.51 (Minimal surface with homogeneous boundary data over an obstacle).
We take Ω, the h-discretization, and the p-discretization as in Experiment 4.49. Now, we
demand homogeneous Dirichlet conditions, i.e., gD ≡ 0 and define an obstacle ψ by

ψ(x) :=

{√
1
16 − (x− xm)2 + 1

4 for |x− xM | < 1
4 ,

−∞ for |x− xM | ≥ 1
4 ,

(4.51)

where xM =
(
0.3
0.1

)
. Thus, we ask for the minimal surface on the square [−1, 1]2 over a ball

with radius 1
4 which touches the square at xM (see Figure 4.7).

The surface plots of Figure 4.8 visualize for h = 1
8 and p = 4 where the obstacle condition

is violated, i.e., ψ > up. There, we have |ψ(x)− up(x)| ≤ 5 · 10−3. The numerical results
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Figure 4.5: Surface plot of u from Experiment 4.49: The approximation is computed due
to the mesh parameters h = 1

8 and p = 4. This yields 3969 degrees of freedom.

are listed in Table 4.5 for the h-version and in Table 4.6 for the p-version. The p-version
with the tested mesh widths h0 and the h-version with the tested mesh widths h0 yield
the extrapolation Ā = 4.3118. The h-version experiment confirms |Ak − Ā| = O(N−3/4

k )
which corresponds to |uh − u|H1(Ω) = O(h3/4) (cf. interpretation of Experiment 4.49).
The p-version experiment confirms convergence and numerical stability of the method for
different mesh widths h0. For the width h0 = 2

5 the experimental convergence rates for
p ≥ 6 do not indicate further convergence. We explain this by the exactness of the solution
for p = 5, p = 6. As the approximation can hardly be improved, a further convergence can
not be shown. In addition, we note that the experimental convergence rates depend highly
on the extrapolated value Ā. Nevertheless, the p-version performs stable and achieves the
most exact approximation of the h-version calculated from 123201 unknowns already with
less than 5000 unknowns for the mesh widths h0 = 2

7 ,
2
9 ,

2
11 .
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Figure 4.6: Surface plots of u from Experiment 4.50: The approximation is computed
according to the mesh parameters h = 1

8 and p = 4. 435 of the 3969 degrees of freedom
are active. The wire frame model of the cylinder in the upper plot shows the coincidence
set Ψ. The lower plot visualizes the area where the obstacle condition is violated, i.e.,
ψ(x) > up(x).
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Figure 4.7: Side view and top view of the solution u from Experiment 4.51: The approx-
imation is computed according to the mesh parameters h = 1

8 and p = 4. 168 of the 3969
degrees of freedom are active. The wire frame model of the ball shows the coincidence
set Ψ.
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Figure 4.8: Side and top view of the consistency error from Experiment 4.51: The plots
visualize the area where the obstacle condition is violated, i.e., ψ(x) > up(x).
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h0 k Nk A(uk) |A(uk)− Ā| α
2
5 1 16 8.53396 4.80e-01 —

2 81 8.90022 1.14e-01 -0.89
3 361 8.98726 2.68e-02 -0.97
4 1521 9.00761 6.40e-03 -0.99
5 6241 9.01245 1.56e-03 -1.00
6 25281 9.01363 3.87e-04 -1.00

2
7 1 36 8.77347 2.41e-01 —

2 169 8.95776 5.63e-02 -0.94
3 729 9.00069 1.33e-02 -0.99
4 3025 9.01079 3.22e-03 -1.00
5 12321 9.01322 7.93e-04 -1.00
6 49729 9.01382 1.97e-04 -1.00

2
9 1 64 8.87204 1.42e-01 —

2 289 8.98070 3.33e-02 -0.96
3 1225 9.00607 7.94e-03 -0.99
4 5041 9.01208 1.93e-03 -1.00
5 20449 9.01354 4.78e-04 -1.00
6 82369 9.01389 1.19e-04 -1.00

2
11 1 100 8.92084 9.32e-02 —

2 441 8.99206 2.20e-02 -0.97
3 1849 9.00875 5.27e-03 -1.00
4 7569 9.01273 1.29e-03 -1.00
5 30625 9.01369 3.20e-04 -1.00
6 123201 9.01393 7.98e-05 -1.00

Table 4.1: h-version for Experiment 4.49
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h0 p Np A(up) |A(up)− Ā| α
2
5 1 16 8.53853 4.75e-01 —

2 81 9.02307 9.06e-03 —
3 196 9.01802 4.01e-03 -1.9
4 361 9.01492 9.08e-04 -1.5
5 576 9.01428 2.62e-04 -2.5
6 841 9.01409 7.98e-05 -2.9
7 1156 9.01404 2.48e-05 -3.4
8 1521 9.01402 7.86e-06 -3.9
9 1936 9.01402 2.54e-06 -4.4

10 2401 9.01401 8.44e-07 -4.9
11 2916 9.01401 2.79e-07 -5.4
12 3481 9.01401 8.00e-08 -6.3

2
7 1 36 8.77347 2.41e-01 —

2 169 9.02096 6.95e-03 —
3 400 9.01560 1.58e-03 -2.1
4 729 9.01435 3.37e-04 -2.1
5 1156 9.01410 8.25e-05 -2.8
6 1681 9.01403 2.09e-05 -3.3
7 2304 9.01402 5.43e-06 -3.9
8 3025 9.01402 1.45e-06 -4.5
9 3844 9.01401 3.93e-07 -5.1

2
9 1 64 8.87204 1.42e-01 —

2 289 9.01837 4.35e-03 —
3 676 9.01479 7.79e-04 -2.2
4 1225 9.01416 1.49e-04 -2.3
5 1936 9.01405 3.13e-05 -3.1
6 2809 9.01402 6.81e-06 -3.7
7 3844 9.01402 1.52e-06 -4.4
8 5041 9.01401 3.44e-07 -5.1

2
11 1 100 8.92084 9.32e-02 —

2 441 9.01683 2.82e-03 —
3 1024 9.01445 4.31e-04 -2.3
4 1849 9.01409 7.34e-05 -2.5
5 2916 9.01403 1.35e-05 -3.3
6 4225 9.01402 2.56e-06 -4.1
7 5776 9.01401 4.96e-07 -4.8

Table 4.2: p-version for Experiment 4.49
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h0 k Nk A(uk) |A(uk)− Ā| αk
2
5 1 16 9.04436 5.10e-01 —

2 81 9.44237 1.12e-01 -0.93
3 361 9.53080 2.37e-02 -1.04
4 1521 9.54963 4.87e-03 -1.10
5 6241 9.55350 1.00e-03 -1.12
6 25281 9.55431 1.91e-04 -1.19

2
7 1 36 9.31889 2.36e-01 —

2 169 9.50355 5.09e-02 -0.99
3 729 9.54362 1.09e-02 -1.06
4 3025 9.55222 2.28e-03 -1.10
5 12321 9.55405 4.55e-04 -1.15
6 49729 9.55442 7.77e-05 -1.27

2
9 1 64 9.42125 1.33e-01 —

2 289 9.52499 2.95e-02 -1.00
3 1225 9.54828 6.22e-03 -1.08
4 5041 9.55323 1.27e-03 -1.12
5 20449 9.55425 2.47e-04 -1.17
6 82369 9.55446 3.51e-05 -1.40

2
11 1 100 9.46819 8.63e-02 —

2 441 9.53542 1.91e-02 -1.02
3 1849 9.55053 3.97e-03 -1.10
4 7569 9.55370 8.01e-04 -1.14
5 30625 9.55435 1.49e-04 -1.20
6 123201 9.55449 1.49e-05 -1.66

Table 4.3: h-version for Experiment 4.50
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h0 p Np A(up) |A(up)− Ā| αp
2
5 1 16 9.04436 5.10e-01 —

2 81 9.58605 3.16e-02 —
3 196 9.56674 1.22e-02 -1.49
4 361 9.55889 4.39e-03 -1.32
5 576 9.55635 1.85e-03 -1.75
6 841 9.55540 9.01e-04 -1.87
7 1156 9.55497 4.70e-04 -1.97
8 1521 9.55476 2.58e-04 -2.11
9 1936 9.55466 1.64e-04 -2.04

10 2401 9.55460 1.01e-04 -2.06
11 2916 9.55457 6.89e-05 -2.12
12 3481 9.55455 4.66e-05 -2.08

2
7 1 36 9.31889 2.36e-01 —

2 169 9.57405 1.95e-02 —
3 400 9.56025 5.75e-03 -1.54
4 729 9.55655 2.05e-03 -1.54
5 1156 9.55539 8.89e-04 -1.76
6 1681 9.55494 4.38e-04 -1.85
7 2304 9.55473 2.30e-04 -1.96
8 3025 9.55463 1.27e-04 -2.10
9 3844 9.55457 7.28e-05 -2.25

2
9 1 64 9.42125 1.33e-01 —

2 289 9.56568 1.12e-02 —
3 676 9.55767 3.17e-03 -1.59
4 1225 9.55580 1.30e-03 -1.49
5 1936 9.55498 4.77e-04 -1.80
6 2809 9.55471 2.12e-04 -2.19
7 3844 9.55463 1.33e-04 -1.86
8 5041 9.55456 6.08e-05 -2.13
9 6400 9.55454 3.57e-05 -2.58

2
11 1 100 9.42125 1.33e-01 —

2 441 9.56568 1.12e-02 —
3 1024 9.55767 3.17e-03 -1.61
4 1849 9.55580 1.30e-03 -1.50
5 2916 9.55498 4.77e-04 -1.81
6 4225 9.55471 2.12e-04 -2.20
7 5776 9.55458 7.89e-05 -2.63
8 7569 9.55456 6.08e-05 -2.14
9 9604 9.55454 3.57e-05 -1.56

Table 4.4: p-version for Experiment 4.50



4.7. NUMERICAL EXPERIMENTS 123

h0 k Nk A(uk) |A(uk)− Ā| αk
2
5 1 16 4.18788 1.24e-01 —

2 81 4.28220 2.96e-02 -0.88
3 361 4.30337 8.40e-03 -0.84
4 1521 4.30949 2.28e-03 -0.91
5 6241 4.31111 6.61e-04 -0.88
6 25281 4.31160 1.71e-04 -0.97

2
7 1 36 4.24838 6.34e-02 —

2 169 4.29280 1.90e-02 -0.78
3 729 4.30692 4.85e-03 -0.93
4 3025 4.31046 1.31e-03 -0.92
5 12321 4.31143 3.39e-04 -0.96
6 49729 4.31168 9.09e-05 -0.94

2
9 1 64 4.26195 4.98e-02 —

2 289 4.29912 1.27e-02 -0.91
3 1225 4.30876 3.01e-03 -0.99
4 5041 4.31096 8.08e-04 -0.93
5 20449 4.31156 2.08e-04 -0.97
6 82369 4.31171 5.81e-05 -0.92

2
11 1 100 4.28571 2.61e-02 —

2 441 4.30348 8.29e-03 -0.77
3 1849 4.30969 2.08e-03 -0.97
4 7569 4.31124 5.31e-04 -0.97
5 30625 4.31163 1.44e-04 -0.93
6 123201 4.31173 4.13e-05 -0.90

Table 4.5: h-version for Experiment 4.51
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h0 p Np A(up) |A(up)− Ā| αp
2
5 1 16 4.18788 1.24e-01 —

2 81 4.30886 2.91e-03 —
3 196 4.30934 2.43e-03 -1.57
4 361 4.31169 8.08e-05 -2.40
5 576 4.31183 6.11e-05 -3.41
6 841 4.31184 6.61e-05 -0.24
7 1156 4.31196 1.93e-04 1.65
8 1521 4.31167 9.75e-05 0.66
9 1936 4.31202 2.54e-04 0.53

10 2401 4.31191 1.38e-04 0.75
11 2916 4.31170 6.95e-05 -3.17
12 3481 4.31190 1.29e-04 -0.17

2
7 1 36 4.24838 6.34e-02 —

2 169 4.30706 4.71e-03 —
3 400 4.31097 7.99e-04 -1.82
4 729 4.31243 6.56e-04 -1.35
5 1156 4.31151 2.59e-04 -1.06
6 1681 4.31202 2.55e-04 -1.13
7 2304 4.31174 2.90e-05 -3.17
8 3025 4.31187 9.76e-05 -1.63
9 3844 4.31187 1.05e-04 2.51

10 4761 4.31175 2.49e-05 -3.01
2
9 1 64 4.26195 4.98e-02 —

2 289 4.31294 1.17e-03 —
3 676 4.31202 2.47e-04 -2.25
4 1225 4.31166 1.08e-04 -1.65
5 1936 4.31169 8.34e-05 -1.03
6 2809 4.31179 2.08e-05 -1.99
7 3844 4.31180 2.59e-05 -1.71
8 5041 4.31178 5.39e-06 -2.31
9 6400 4.31177 3.78e-06 -3.78

2
11 1 100 4.28571 2.61e-02 —

2 441 4.30938 2.39e-03 —
3 1024 4.31170 7.18e-05 -2.53
4 1849 4.31182 5.28e-05 -2.66
5 2916 4.31179 2.34e-05 -1.07
6 4225 4.31180 2.96e-05 -0.70
7 5776 4.31177 4.96e-07 -5.64
8 7569 4.31178 1.06e-05 -1.76
9 9604 4.31175 1.57e-05 6.80

Table 4.6: p-version for Experiment 4.51



Chapter 5

Prolongation and space
decomposition methods for
nonlinear PDE and PDI

It is the purpose of this chapter to discuss some techniques which try to speed up the
solving of nonlinear minimization problems with and without constraints by reducing it
to nonlinear problems of lower dimension. In Section 4.4 and Section 4.5, we considered
efficient solvers for the linear subproblems of the nonlinear minimization algorithms and
showed that hp-preconditioners known for linear problems can be adapted to the treatment
of the linear subproblems originated by minimization problems with box constraints (see
Subsections 4.5.2 and 4.5.3). The nonlinear problem treated by the Newton like outer
iterations of Algorithm 4.2 and Algorithm 4.3 remained as a global problem. In contrast
to efficient linear solvers, we propose two nonlinear methods in this chapter, one based on
the prolongation of a coarse space solution, the other based on a space decomposition.

Section 5.1 introduces two algorithms which prolongate a p-FE solution up to a higher
dimensional p-FE space with polynomial degree q > p by one Newton iteration. Algo-
rithm 5.1 is suited to problems without inequality constraints. Algorithm 5.2 extends
Algorithm 5.1 to the treatment of lower bounds on the vector components. Both algo-
rithms should be understood as a first attempt of a numerical analysis for two or multi
space discretization techniques tailored to solve the p-version discretization of a PDI effi-
ciently. We give a posteriori estimates for the results of Algorithm 5.1 and Algorithm 5.2
in Proposition 5.1 and Proposition 5.3, respectively.

Section 5.2 describes a nonlinear solver which decomposes the minimization space into a
direct sum of subspaces. Then, the original minimization problem is solved in parallel or
sequentially over each of the low dimensional subspaces. Algorithm 5.3 and Algorithm 5.4,
both generalize the known additive and multiplicative methods from linear problems to
the class of unconstrained minimization problems given by the functional A defined by
(1.8). This techniques is motivated by the publications Rate of convergence of some
space decomposition methods for linear and nonlinear problems and Applications of a
space decomposition method to linear and nonlinear elliptic problems [TE98a, TE98b].
The authors use standard h-version multi-grid and domain decompositions from efficient
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solvers of linear problems to develop fast solvers for nonlinear problems and present a
uniform linear rate of convergence for the additive and multiplicative nonlinear Schwarz
method.

We transfer this approach to a space decomposition proposed by Babuška et al. in
[BCMP91]. There, a p-version FE space on a quasi-uniform triangle or quadrilateral
mesh is decomposed into the sum of non-overlapping subspaces given by nodal, edge, and
interior associated global basis functions. A uniform rate of convergence is proven for
the additive Algorithm 5.3 and for the multiplicative Algorithm 5.4. Unfortunately, the
contraction factors of both methods converge to 1, when p becomes big (see (5.12), (5.15)).

In comparison to the global Newton approach to an unconstrained nonlinear problem the
algorithms proposed in Section 5.1 and Section 5.2 show a disappointing performance in
the numerical experiments documented in Section 5.3. We put this down to the excellent
convergence properties of the global Newton’s method (quadratic convergence, when the
initial is near by the solution) and to the fact that the number of Newton iterations does
not depend on the dimension of the problem as much as the costs of iterative linear solvers
do, see Remark 5.10.

Nevertheless, the algorithms of this chapter might represent good starting points for fur-
ther developments in numerical analysis and numerical experiments. The prolongation
idea of Section 5.1 may help to find good initials for constrained minimization problems
originated from high polynomial degrees. The space decomposition method of Section 5.2
may perform better, when overlapping subspaces are used.

5.1 Prolongation of a discrete solution into a higher dimen-
sional space

The nonlinear minimizers presented in Section 4.2 and Section 4.3 for the unconstrained
and the constrained problem, respectively, both demand an initial vector (see Algo-
rithm 4.2, Algorithm 4.3). It is the idea of the following algorithms to take the solu-
tion up ∈ Vp from a low dimensional problem as the initial for the search of the solution
uq ∈ Vq, q > p, of a high dimensional problem. We call this process prolongation of up
into Vq.

For the numerical analysis we consider the quality of this prolongation after an application
of a Newton iteration. Firstly, we consider the case of an unconstrained problem corre-
sponding to a variational equality. Secondly, we generalize the algorithm and its analysis
to a variational inequality.

Now, we describe Algorithm 5.1. Step 1 takes care of the Dirichlet boundary conditions.
up|Γ can be used as an initial for the solver of the nonlinear variational problem of Step 2.
Step 3 realizes one Newton iteration. The terms −up|Γ + uq|Γ of the last assignment of
the algorithm ensure that ũq fulfills the Dirichlet boundary condition in the discrete sense.

The following proposition gives an a posteriori estimate for the difference between the fine
space solution uq and the result ũq of Algorithm 5.1.
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Algorithm 5.1 Prolongation of the PDE solution up into Vq,gD , q > p

Let Vp and Vq be two p-version FE spaces with 1 ≤ p < q as defined in (2.2). Let
Vp,gD ⊂ Vp, Vq,gD ⊂ Vq be the FE subsets given in Definition 2.4 which discretize the
Dirichlet boundary condition. Further, let Vq,0D ⊂ Vq be the FE subset which discretizes
the homogeneous Dirichlet boundary condition, i.e., we set gD ≡ 0 in Definition 2.4.
Let Gp be the set of Gauss-Lobatto points on the mesh T (see Definition 2.2), let ΓD,p ⊂ Gp
be the subset of Gauss-Lobatto points on the Dirichlet boundary, and let bp,x be the global
p-Lagrangian basis functions associated to each x ∈ Gp (cf. (4.2)). Let ΓD,q and bq,x be
defined analogously by taking q instead of p.

1. Set
up,Γ =

∑
x∈ΓD,p

gD(x) bp,x and uq,Γ =
∑

x∈ΓD,q

gD(x) bq,x .

2. Find up ∈ Vp,gD such that DA(up; v − up) = 0 for all v ∈ Vp,gD .

3. Find dq ∈ Vq,0D such that D2A(up; dq, v) = −DA(up; v) for all v ∈ Vq,0D .
Set ũq = up + dq − up,Γ + uq,Γ.

Proposition 5.1. Let the functional A be given by (1.8) and let ρi, i = 1, . . . , 5, be the
constants of the assumptions on ρ(t) in Lemma 1.21.
Let uq ∈ Vq,gD be the solution of the variational equation DA(uq; v − uq) = 0 for all
v ∈ Vq,gD and let ũq be computed by Algorithm 5.1. Then, we have the a posteriori error
estimate

|uq − ũq|H1(Ω) ≤ κ−1
l

(
κu|uq|Γ − up|Γ|H1(Ω) +

√
2(5ρ4 + ρ5)‖∇(up − ũq)‖2

L4(Ω)

)
in case of σ = 0 (see (1.8)). In case of σ > 0 the semi-norm | · |H1(Ω) has to be replaced by
the norm ‖ · ‖H1(Ω). Here, κl and κu are the ellipticity constants defined in Lemma 1.21.

To prove the proposition, we need the following lemma.

Lemma 5.2. For any w, u, v ∈ H1(Ω), Ω ⊂ R2 a bounded Lipschitz domain, there holds

DA(w; v) = DA(u; v) +D2A(u;w − u, v) +R(u;w − u, v) (5.1)

with the estimate for the remainder R

|R(u;w − u, v)| ≤
√

2(5ρ4 + ρ5) ‖∇(w − u)‖2
L4(Ω) |v|H1(Ω) .

Proof. The lemma is an application of Taylor’s formula and standard calculus. The proof
is given in Appendix D.

Proof of Proposition 5.1. By Lemma 5.2 we have the identity

DA(ũq; v) = DA(up; v) +D2A(up; ũq − up, v) +R(up; ũq − up, v) for all v ∈ Vq,0D

with the estimate

|R(up; ũq − up, v)| ≤
√

2(5ρ4 + ρ5) ‖∇(ũq − up)‖2
L4(Ω) |v|H1(Ω)
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for the remainder R. Due to Step 3 of Algorithm 5.1, we can substitute

DA(up; v) +D2A(up; ũq − up, v) = D2A(up;uq,Γ − up,Γ, v).

Inspecting the proof of Lemma 1.21 (see (1.14)), we get

D2A(up;uq,Γ − up,Γ, v) ≤ κu|uq,Γ − up,Γ|H1(Ω)|v|H1(Ω) ,

if σ = 0. For σ > 0 we obtain the same estimate with the norm ‖ · ‖H1(Ω) instead of the
semi-norm | · |H1(Ω).

Using the uniform monotonicity (1.12) of DA stated in Lemma 1.21 and noting that
DA(uq; v) = 0 for all v ∈ Vq,0 , i.e., in particular DA(uq; ũq − uq) = 0, we combine

κl|ũq − uq|2H1(Ω) ≤ |DA(ũq; ũq − uq)−DA(uq; ũq − uq)|

≤ D2A(up;uq,Γ − up,Γ, ũq − uq) +R(up; ũq − up, ũq − up)

≤ |ũq − uq|H1(Ω)

(
κu|uq,Γ − up,Γ|H1(Ω) +

√
2(5ρ4 + ρ5)‖∇(ũq − up)‖2

L4(Ω)

)
,

if σ = 0. For σ > 0 the proposition follows by taking the norm ‖ · ‖H1(Ω) instead of the
semi-norm | · |H1(Ω) (cf. Lemma 1.21).

Now, we extend Algorithm 5.1 to the treatment of variational inequalities as follows. In
Step 2 of Algorithm 5.2, we look for the coarse space solution of the variational inequality
in Kp,gD . Step 3 changes Step 3 of Algorithm 5.1. Here, (5.2) ensures ũq ∈ Kq,gD .

Algorithm 5.2 Prolongation of the PDI solution up into Kq,gD , q > p

Let Vp and Vq be two p-version FE spaces with 1 ≤ p < q as defined in (2.2) and
Kp,gD ⊂ Vp, Kq,gD ⊂ Vq be the FE subsets given in Definition 2.4 which discretize the
Dirichlet boundary condition and the obstacle condition. Further, let Vq,0D ⊂ Vq the
FE subset which discretizes the homogeneous Dirichlet boundary condition, i.e., we set
gD ≡ 0 in Definition 2.4.
LetGp be the set of Gauss-Lobatto points on the mesh T (see Definition 2.2) and ΓD,p ⊂ Gp
the subset of points on the Dirichlet boundary. We denote the global p-Lagrangian basis
functions associated to each x ∈ Gp (cf. (4.2)) by bp,x.
Additionally, Gq, ΓD,q, and bq,x are defined analogously by taking q instead of p.

1. Set
up,Γ =

∑
x∈ΓD,p

gD(x) bp,x and uq,Γ =
∑

x∈ΓD,q

gD(x) bq,x .

2. Find up ∈ Kp,gD such that DA(up; v − up) ≥ 0 for all v ∈ Kp,gD .

3. Find dq ∈ Vq,0D such that D2A(up; dq, v) = −DA(up; v) for all v ∈ Vq,0D .
Set ûq = up + dq − up,Γ + uq,Γ.
Set

ũq =
∑
x∈Gp

max{ûq(x), ψ(x)}bq,x . (5.2)

We can estimate the error |uq − ũq|H1(Ω) between the fine space solution uq and the re-
sult ũq of Algorithm 5.2 a posteriori from ‖up−ũq‖H1(Ω). To increase the readability of the
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following proposition and its proof, we demand that the problem has no Neumann bound-
ary conditions. The proposition can be extended to Neumann conditions by introducing
the respective boundary terms used in the proof of Theorem 2.11 into the proposition’s
proof.

Proposition 5.3. Let the functional A be given by (1.8) without the Neumann boundary
condition, i.e., ΓN = ∅. Let ρi, i = 1, . . . , 5, be the constants of the assumptions on ρ(t)
in Lemma 1.21.
Further, let uq ∈ Kq,gD be the solution of the variational inequality DA(uq; v − uq) ≥ 0 for
all v ∈ Kq,gD and let ũq be computed by Algorithm 5.2. Then, there exist constants Ci,
i = 1, 2, 3, 4, independent of p and q, such that the a posteriori error estimate

|ũq − uq|2H1(Ω) ≤ C2‖ũq − up‖L2(Ψ) + C3|uq − u|2H1(Ω) + C4p
−1

+C1

(
|ũq − ûq|H1(Ω) + |uq,Γ − up,Γ|H1(Ω) +

√
2(5ρ4 + ρ5)‖∇(ũq − up)‖2

L4(Ω)

)2
holds in case of σ = 0. In case of σ > 0 the estimate holds, when the semi-norm | · |H1(Ω)

is replaced by the norm ‖ · ‖H1(Ω).

Proof. In the following κl and κu are the ellipticity constants given in Lemma 1.21. We
start from the uniform monotonicity estimate

κl|ũq − uq|2H1(Ω) ≤ |DA(ũq; ũq − uq)−DA(uq; ũq − uq)|

≤ |DA(ũq; ũq − uq)| + |DA(uq; ũq − uq)| . (5.3)

Firstly, we consider |DA(ũq; ũq − uq)|. As in the proof of Proposition 5.1, we have the
identity

DA(ũq; v) = DA(up; v) +D2A(up; ũq − up, v) +R(up; ũq − up, v)

for all v ∈ Vq,0 with

|R(up, ũq − up, v)| ≤
√

2(5ρ4 + ρ5) ‖∇(ũq − up‖2
L4(Ω) |v|H1(Ω)

by Lemma 5.2. Due to Step 3 of Algorithm 5.2, we can replace

DA(up; v) +D2A(up; ũq − up, v) = D2A(up; ũq − ûq, v) +D2A(up;uq,Γ − up,Γ, v) .

Inspecting the proof of Lemma 1.21 (see (1.14)), yields

|D2A(up; ũq − ûq, v) +D2A(up;uq,Γ−up,Γ, v)|
≤ κu

(
|ũq − ûq|H1(Ω) + |uq,Γ − up,Γ|H1(Ω)

)
|v|H1(Ω) .

Combining these estimates we get

DA(ũq; ũq − uq) ≤ κu
(
|ũq − ûq|H1(Ω) + |uq,Γ − up,Γ|H1(Ω)

+
√

2(5ρ4 + ρ5)‖∇(ũq − up)‖2
L4(Ω)

)
|ũq − uq|H1(Ω)

≤ κ2
u
κl

(
|ũq − ûq|H1(Ω) + |uq,Γ − up,Γ|H1(Ω) +

√
2(5ρ4 + ρ5)‖∇(ũq − up)‖2

L4(Ω)

)2
+ κl

4 |ũq − uq|2H1(Ω) .

Here, the last inequality follows from ab ≤ µ
2a

2 + 1
2µb

2, a, b ∈ R, with µ = 2
κl

.
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Secondly, we consider |DA(uq, ũq − uq)|. By Taylor’s formula there holds,

DA(uq; ũq − uq) = DA(u; ũq − uq) +D2A(u+ θ(uq − u);uq − u, ũq − uq) (5.4)

for a θ ∈ [0, 1]. Analogously to (2.22), we have

D2A(u+ θ(uq − u);uq − u, ũq − uq) ≤ κ2
u

2κl
|uq − u|2H1(Ω) + κl

2 |ũq − uq|2H1(Ω) . (5.5)

Using the notations P(u) from (1.18) and Ψ from (1.22) for the coincidence set, p. 28,
partial integration of DA(u; ũq − uq) yields

DA(u; ũq − uq) ≤ ‖P(u)‖L2(Ψ) ‖ũq − uq‖L2(Ψ)

≤ ‖P(u)‖L2(Ψ)

(
‖ũq − up‖L2(Ψ) + ‖up − ψ‖L2(Ψ) + ‖ψ − uq‖L2(Ψ)

)
. (5.6)

Now, let

ψ̄p :=

{
up on Ω \Ψ,
ψ on Ψ.

Due to [KS80, Theorem II.A.1], we know that ‖ψ̄p‖H1(Ω) ≤ ‖ψ‖H1(Ω) + ‖up‖H1(Ω). Fur-
ther, ψ̄p is interpolated by up in the Gauss-Lobatto points, i.e., ip ψ̄p = up. Thus, there
exists a constant c independent of p such that

‖up − ψ‖L2(Ψ) ≤ ‖up − ψ̄p‖L2(Ω) ≤ cp−1‖ψ̄p‖H1(Ω)

due to the the interpolation result Theorem 2.3. Analogously, we define the extension ψ̄q
of ψ and estimate

‖uq − ψ‖L2(Ψ) ≤ cq−1‖ψ̄q‖H1(Ω) .

It follows by the convergence of up and uq towards u with respect to the ‖·‖H1(Ω)-norm that
‖ψ̄p‖H1(Ω) and ‖ψ̄q‖H1(Ω) are bounded independently of p and q by 2‖u‖H1(Ω) + ‖ψ‖H1(Ω).
Combining the estimates (5.4), (5.5) and (5.6) , we obtain that there holds

|DA(uq; ũq−uq)| ≤ ‖P(u)‖L2(Ψ) ‖ũq−up‖L2(Ψ)+C̃3|uq−u|2H1(Ω)+
κl
2 |ũq−uq|

2
H1(Ω)+C̃4p

−1

with C̃3 := κ2
u

2κl
and C̃4 := 4c‖u‖H1(Ω) + 2c‖ψ‖H1(Ω).

Setting C̃1 := κ−1
l κ2

u, C̃2 := ‖P(u)‖L2(Ψ) and using (5.3), we summarize

κl|ũq − uq|2H1(Ω) ≤ κl
4 |ũq − uq|2H1(Ω)

+ C̃1

(
|ũq − ûq|H1(Ω) + |uq,Γ − up,Γ|H1(Ω) +

√
2(5ρ4 + ρ5)‖∇(ũq − up)|2L4(Ω)

)2
+ C̃2‖ũq − up‖L2(Ψ) + C̃3|uq − u|2H1(Ω) + κl

2 |ũq − uq|2H1(Ω) + C̃4p
−1 .

For σ = 0 arithmetic transformations yield the proposition with the constants Ci = 4
κl
C̃i,

i = 1, 2, 3, 4. As the semi-norm |·|H1(Ω) in the proof can be replaced by the norm ‖ · ‖H1(Ω)

in case of σ > 0, the statement for σ > 0 follows analogously.

In comparison to the a posteriori estimate for Algorithm 5.1 the treatment of variational
inequalities causes four additional terms,

C1|ũq − ûq|H1(Ω) , C2‖ũq − up‖L2(Ψ) , C3|uq − u|2H1(Ω) , and + C4p
−1 .

Here, the first and the last term can be calculated easily. The second term can not be
computed exactly because the coincidence set Ψ is not known. A simple work around is
to calculate the norm ‖ · ‖L2(Ω) instead of ‖ · ‖L2(Ψ). The third term may be estimated
based on a priori knowledge (cf. Theorem 2.8 and Theorem 2.11).
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5.2 Space decomposition methods for nonlinear problems

Two algorithms are described in this section. Both are devoted to unconstrained nonlin-
ear minimization problems originated by the p-version FEM on quasi-uniform meshes in
two dimensions and generalize an approach of Babuška, Craig, Mandel, and Pitkäranta
in [BCMP91] to nonlinear solvers. There, the authors suggest a space decomposition of
p-version FE spaces on curvilinear triangles and quadrilaterals for the efficient precondi-
tioning of linear systems.

In the following, we present their space decomposition for a p-version space on quadrilat-
erals and the stability estimate given in [BCMP91] (see Theorem 5.4). Then, the stability
estimate will be used to prove linear convergence rates of the nonlinear decomposition
solvers defined by Algorithm 5.3 and Algorithm 5.4. Both algorithms were described by
Tai and Espedal in Rate of convergence of some space decomposition methods for lin-
ear and nonlinear problems [TE98a]. There, the authors applied the algorithms to an
overlapping two-grid decomposition of a h-version FE space.

To start with, we recall the hierarchical p-version FE basis given in [BCMP91] which allows
the direct sum decomposition of Vp into nodal, edge, and interior associated spaces.

(i) As usual, we take the bilinear nodal functions with the property Ni(ξj) = 0 for
i 6= j and Ni(ξj) = 1 for i = j. Here, ξj = (ξj,1, ξj,2) denotes the node j of the
reference square Q̃, j = 1, 2, 3, 4. These read as

N1(ξ) = 1
4(1− ξ·,1)(1− ξ·,2), N2(ξ) = 1

4(1 + ξ·,1)(1− ξ·,2),
N3(ξ) = 1

4(1 + ξ·,1)(1 + ξ·,2), N4(ξ) = 1
4(1− ξ·,1)(1− ξ·,2),

(5.7)

and give the one dimensional spaces Nj , j = 1, 2, 3, 4.

(ii) The edges Γ̂j , j = 1, 2, 3, 4, of Q̃ are associated with

N
[1]
i (ξ) = 1

2(1− ξ·,2)Φi(ξ·,1), i = 1, 2, . . . , p− 1,

N
[2]
i (ξ) = 1

2(1 + ξ·,1)Φi(ξ·,2), i = 1, 2, . . . , p− 1,

N
[3]
i (ξ) = (−1)i

2 (1 + ξ·,2)Φi(ξ·,1), i = 1, 2, . . . , p− 1,

N
[4]
i (ξ) = (−1)i

2 (1− ξ·,1)Φi(ξ·,2), i = 1, 2, . . . , p− 1,

where Φi denotes the scaled anti-derivative of the Legendre polynomial Pi of de-
gree i

Φi(t) :=

√
2i− 1

2

∫ t

−1
Pi(τ) dτ .

(iii) The set Î of the internal shape functions. For p ≥ 4 there are (p − 1)2 internal
shape functions defined as

N0
i,j(ξ) = (1− ξ2·,1)(1− ξ2·,2)Pi(ξ·,1)Pj(ξ·,2), 0 ≤ i, j ≤ p− 2 ,

where Pi, Pj denote Legendre polynomials of degree i, j, respectively.
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As usual, we obtain the nodal, edge and interior associated global basis functions bN , bie,
and bijQ, respectively, by the mappings FQ from the above defined basis functions on Q̃.
We denote their sets N := {bN : N ∈ Nodes}, Ee := {bie : i as in (ii)}, e ∈ Edges,
and IQ := {bijQ : i, j as in (iii)}, Q ∈ T, and write the direct sum decomposition

Vp = spanN ⊕
⊕

e∈Edges

spanEe ⊕
⊕
Q∈T

span IQ . (5.8)

Here, Nodes and Edges are the sets of nodes and edges of the partition T. Babuška et. al
proved the following stability estimate for this decomposition.

Theorem 5.4. Let T be a quasi-uniform mesh of curvilinear quadrilaterals and let
v ∈ Vp = Vp(T) be decomposed as above, i.e.,

v = vN +
∑

e∈Edges

ve +
∑
Q∈T

vQ

with vN ∈ spanN, ve ∈ spanEe, vQ ∈ span IQ. Then, there exists a constant Cd > 0 such
that

|vN |21,Ω +
∑

e∈Edges

|ve|21,Ω +
∑
Q∈T

|vQ|21,Ω ≤ C2
d(1 + log2 p) |v|21,Ω . (5.9)

Proof. We have (5.9) according to [BCMP91, Theorem 3.5].

Now, we use the space decomposition of Vp to calculate the minimizer up ∈ Vp,gD of the
functional A. To generalize and to simplify the notation, we introduce a global numbering
V (i), i = 1, 2, . . . ,m, of the m subspaces, i.e., we write the decomposition of v ∈ Vp given
by Theorem 5.4 as

v =
n∑
i=1

vi where vi ∈ V (i)

and formulate the following two algorithms. In both the constant ε0 controls how accu-
rately the subproblems in Step 2 will be solved. Algorithm 5.3 employs parallel subspace
corrections to yield the minimum of the global problem, whereas Algorithm 5.4 uses suc-
cessive subspace corrections.
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Algorithm 5.3 Additive space decomposition method
Let initial values u0

i ∈ V (i) and relaxation parameters αi > 0 be given such that∑m
i=1 αi ≤ 1. Let ‖ · ‖ be a norm on RN . Further, we have the termination parame-

ters ε0 > 0 for the local nonlinear minimizations and εglob > 0 for the outer iterations.

1. For n ≥ 0, let û
n+ 1

2
i ∈ V (i), i = 1, . . . ,m, satisfy

A

( m∑
k=1,k 6=i

unk + û
n+ 1

2
i

)
≤ A

( m∑
k=1,k 6=i

unk + vi

)
for all vi ∈ V (i) .

Use an approximate solver to find u
n+ 1

2
i in parallel for i = 1, . . . ,m, such that

‖un+ 1
2

i − û
n+ 1

2
i ‖H1(Ω) ≤ ε0‖uni − û

n+ 1
2

i ‖H1(Ω) . (5.10)

2. For i = 1, . . . ,m, set

un+1
i = uni + αi(u

n+ 1
2

i − uni ) .

If ‖∇A
(∑m

k=1 u
n+1
k

)
‖ > εglob, set n = n+ 1 and continue with Step 1, else exit.

Algorithm 5.4 Multiplicative space decomposition method
Let initial values u0

i ∈ V (i) and relaxation parameters αi > 0 be given such that∑m
i=1 αi ≤ 1. Let ‖ · ‖ be a norm on RN . Further, we have the termination parame-

ters ε0 > 0 for the local nonlinear minimizations and εglob > 0 for the outer iterations.

1. For n ≥ 0, let ûn+1
i ∈ V (i), i = 1, . . . ,m, satisfy

A

( ∑
1≤k<i

un+1
k +ûn+1

i +
∑

i<k≤m
unk

)
≤ A

( ∑
1≤k<i

un+1
k +vi+

∑
i<k≤m

unk

)
for all vi ∈ V (i) .

Use an approximate solver to find un+1
i sequentially for i = 1, . . . ,m, such that

‖un+1
i − ûn+1

i ‖H1(Ω) ≤ ε0‖uni − ûn+1
i ‖H1(Ω) .

2. If ‖∇A
(∑m

k=1 u
n+1
k

)
‖ > εglob, set n = n+ 1 and continue with Step 1, else exit.

Due to the nonlinearity of A we can not state an energy norm to analyze the convergence
of un of Algorithms 5.3 and 5.4, respectively, against the minimizer up ∈ Vp,gD . Instead
we introduce the A-energy form dA(·, ·) defined by

dA(u, v) := |DA(u;u− v)−DA(v;u− v)| for all u, v ∈ H1(Ω) . (5.11)

The following two theorems state linear convergence rates for both algorithms.

Theorem 5.5. Let the functional A be defined by (1.8) with ρ satisfying (1.6). Then
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Algorithm 5.3 converges against the minimizer up ∈ Vp,gD with

dA(un+1, up) ≤

√
1− 1

C log2 p
dA(un, up) (5.12)

with a constant C independent of p.

Proof. Algorithm 5.3 is a special case of [TE98a, Algorithm 2.1]. With [TE98a, Theo-
rem 3.1] and an inspection of equation (3.7) of its proof it suffices to prove the following
hypotheses.
H1 There are constants κl > 0, κu <∞ such that

κl|u− v|21,Ω ≤ DA(u;u− v)−DA(v;u− v) ≤ κu|u− v|21,Ω for all u, v ∈ H1(Ω) .

H2 There exists a CH2 > 0, independently of v, such that for any v ∈ Vp decomposed as
in Theorem 5.4 we have

m∑
i=1

|vi|2 ≤ C2
H2|v|2 .

H3 There exists a CH3 > 0 such that

m∑
i=1

D2A(wi;ui,
∑m

j=1
vj) ≤ CH3

(∑m

i=1
|ui|2H1(Ω)

)1/2 (∑m

i=1
|vi|2H1(Ω)

)1/2

for all wi ∈ Vp, ui ∈ V (i), vj ∈ V (j) .

H4 The subproblems of Step 1 are solved accurately enough, i.e., there holds

(1 + ε0)ε0 ≤
κl

4κu
≤ 1

4

where κl, κu are the constants from H1.

Verification of H1. Since A satisfies the assumptions of Lemma 1.21, we can take κl
and κu as in the proof of the lemma and obtain the hypothesis with (1.12).
Verification of H2. This hypothesis is satisfied due to Theorem 5.4, if we take CH2 =
Cd(1 + log2 p)1/2.
Verification of H3. For all wi ∈ V and for all ui ∈ V (i), vj ∈ V (j) we get with ti := |∇wi|
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and the constants ρ1, ρ3 from Lemma 1.21
m∑
i=1

D2A(wi;ui,
∑m

j=1
vj) =

m∑
i=1

∫
Ω
ρ(ti)(∇ui)T

(∑m

j=1
∇vj

)
dx

+
m∑
i=1

∫
Ω
tiρ

′(ti)
(

(∇wi)
T

ti
∇ui

)(
(∇wi)

T

ti

(∑m

j=1
∇vj)

))
dx

≤
∫

Ω

(∑m

i=1
|ρ(ti)∇ui|

) ∣∣∑m

j=1
∇vj

∣∣ dx+
∫

Ω

( m∑
i=1

|tiρ′(ti)| |∇ui|
) ∣∣∑m

j=1
∇vj

∣∣ dx

≤ ρ1

∫
Ω

(∑m

i=1
|∇ui|

) ∣∣∑m

j=1
∇vj

∣∣ dx+ (ρ1 + ρ3)
∫

Ω

( m∑
i=1

|∇ui|
) ∣∣∑m

j=1
∇vj

∣∣ dx

≤ (2ρ1 + ρ3)
∥∥∑m

i=1
|∇ui|

∥∥
L2(Ω)

∥∥ |∑m

i=1
∇vi|

∥∥
L2(Ω)

≤ (2ρ1 + ρ3)
(∑m

i=1
‖|∇ui|‖2

L2(Ω)

)1/2 (∑m

i=1
‖|∇vi|‖2

L2(Ω)

)1/2

= (2ρ1 + ρ3)
(∑m

i=1
|ui|2H1(Ω)

)1/2 (∑m

i=1
|vi|2H1(Ω)

)1/2

.

(5.13)

Thus, H3 holds with CH3 = 2ρ1 + ρ3.
Verification of H4. H4 holds if the subproblems are solved accurately enough. If a
subproblem is solved by an iteration procedure the relative change against the preceding
iteration gives an estimate how accurate the subproblem is solved already. The norm
on the right of (5.10) can be estimated by comparing uni with its predecessor uni−1. The
iteration process continues as long as H4 is not satisfied.

Introducing the notation

en := dA(un, up) = |DA(un;un − up)−DA(up;un − up)| (5.14)

we know again by [TE98a, Theorem 3.1(b)]

en+1 ≤ β1/2
n en for all n ≥ 0

with

lim
n→∞

βn =
Cβ

1 + Cβ
and Cβ :=

2
κ2
l

C2
H3C

2
H2

(
(1 + ε0)α

−1/2
min + α1/2

max

)2
.

Here, αmin and αmax denote the minimum and maximum of the relaxation parameters
αi. Substituting κl, CH2, CH3, αmin, αmax, and ε0 according to the verification of H1–H4
yields

en+1 ≤
(

1− 1
C log2 p

)1/2

en

with a constant C independent of p for n sufficiently high. (5.12) follows by definition of
en in (5.14).

Theorem 5.6. Let the functional A be defined by (1.8) with ρ satisfying (1.6). Then
Algorithm 5.4 converges against the minimizer up ∈ Vp,gD with

dA(un+1, up) ≤
√

1− 1
C log p

dA(un, up) (5.15)
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with a constant C independent of p.

Proof. Algorithm 5.4 is a special case of [TE98a, Algorithm 2.2]. With [TE98a, Theo-
rem 4.1] and an inspection of equation (4.4) of its proof it suffices to prove the same four
hypotheses as in the proof of Theorem 5.5 to get the convergence rate

en+1 ≤ β1/2
n en

with

lim
n→∞

βn =
Cβ

1 + Cβ
and Cβ :=

2
κ2
l

CH2CH3 .

Substituting κl, CH2, CH3 according to the verification of H1–H4 in the proof of Theo-
rem 5.5 gives

en+1 ≤
(

1− 1
C log p

)1/2

en

with a constant C independent of p for n sufficiently high. (5.15) follows by the definition
of en in (5.14).

Theorem 5.5 and Theorem 5.6 also imply the convergence of the additive and the mul-
tiplicative space decomposition method against up in the ‖·‖H1(Ω)-norm due to inequal-
ity (1.12) and the Poincaré-Friedrichs inequality. Using Banach’s fixed point theorem
gives the following a priori error estimates.

Corollary 5.7. The iterative un of Algorithms 5.3 converges against up ∈ Vp,gD in the
norm ‖·‖H1(Ω) with

‖un − up‖H1(Ω) ≤ Casm1

(
1− 1

Casm2 log2 p

)n
2

‖u1 − u0‖H1(Ω) .

The iterative un of Algorithms 5.4 converges against up ∈ Vp,gD in the norm ‖·‖H1(Ω) with

‖un − up‖H1(Ω) ≤ Cmsm1

(
1− 1

Cmsm2 log p

)n
2

‖u1 − u0‖H1(Ω) .

Here, Casm1, Casm2, Cmsm1, and Cmsm2 denote positive constants independent of p.

Unfortunately, the convergence rate of both algorithms depends on p. Both algorithm con-
verged slowly in the numerical experiments. We document and comment the performance
of Algorithm 5.4 in the next section (see Experiment 5.9).

5.3 Numerical experiments

The model problem. We consider the model potential problem

−div(ρ(|∇u|)∇u) + f = 0 with ρ(t) = 1
6

(
1 + 5

1+5t

)
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and the homogeneous Dirichlet condition u|∂Ω = 0 on the unit square Ω := [−1, 1]2. The
function f is determined such that the boundary value problem is solved by

u(x) = sin(3
2π(x1 − 1)) · sin(πx2) .

Discretization. We discretize the model problem by the p-version on a uniform grid T of
16 squares, each with a side length of 0.5 units. Using the notation of Section 2.1, we
look for the unconstrained minimum of the functional A as defined in (1.8) on Vp,0. The
integrals of A(v), the gradient ∇A(v), and the Hessian ∇2A(v), v ∈ Vp, are calculated
with 4 + p quadrature points.

Solving the discrete nonlinear problems. The nonlinear global systems of Experiment 5.8
and the nonlinear local systems of the multiplicative Schwarz method used in Experi-
ment 5.9 are solved by a modified Newton backtracking method. In the modified version
of Algorithm 4.2, the Hessian H(uk) used in Step 2 and Step 4 are updated only for the
Newton iterations k = 0, 5, 10, . . . . The computations of the other Newton iterations were
done using the Hessian of the previous iterations. This modification is named Shamanskii
method in [Kel95]. It converges q-superlinearly due to [Kel95, Theorem 5.4.5]. It is a
drawback of this nonlinear solver that it increases the number of Newton like iterations.
Nevertheless, the Shamanskii method performs faster as the strict Newton approach be-
cause it reduces the computation time needed for the calculations of the Hessian H(uk).
In Corollary B.10, it is stated that the calculation of one Hessian costs O(p6) floating
point operations. Thus, the Hessians are the bottle-neck of the nonlinear solvers for the
p-version. In the experiments, a re-computation of the Hessian in every fifth iteration
showed a quite good performance for different p. The Newton iterations are repeated
until the gradient ∇A(uk) fulfills the exactness criterion ‖∇A(uk)‖2 ≤ 10−9 (see Step 7 of
Algorithm 4.2). As initial u0 we choose the zero vector.

Implementation. The following two experiments are implemented in FORTRAN 90. All
real variables are defined as double precision. The program is compiled with the SUN
compiler f90 using the -fast option for the cpu-timings . The computations are performed
on a SUN Ultra-5.

Experiment 5.8 (Prolongation cascade). To get an impression of the practical perfor-
mance of the prolongation idea presented in Algorithm 5.1, we test a heuristic extension,
a cascade of prolongations, here. To give an example, we consider the field 50

10 13 16
7 7 5

of Column j = 3 and Row p = 16 in Table 5.1. The row and the column give us the
information that we search the minimum of A on Vp,0, p = 16, with the prolongation
increment j = 3. Firstly, we minimize A on V1,0. The solution is prolongated into V4,0

and A is minimized on V4,0. Prolongating and solving is repeated for p = 7, 10, 13, 16.
Speaking generally, the prolongation cascade searches the minimizer of A on Vp by solv-
ing the minimization problems successively on Vpi with p0 := p mod j, pi := pi−1 + j,
i = 1, . . . , dpj e − 1.

From the first line of the field, we know that the sum of Newton iterations needed on the
levels p = 1, 4, . . . , 13, 16 is 50. The second line of the field lists the polynomial degrees of
the subspaces used in the last three prolongation steps, here, p = 10, 13, 16. The last line
lists the number of Newton iterations needed on each of the last three levels p = 10, 13, 16,
here, 7, 7, 5.
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p j=1 j=3 j=5 j=7 j=9 j=11 j=13 j=p
20 12

2 1 2
12 8

38 24 12
4 2 3 4 1 4

8 10 8 12 12
49 21 24 12

6 4 5 6 3 6 1 6
8 7 4 12 9 12 12

63 31 20 27 12
8 6 7 8 2 5 8 3 8 1 8

4 7 7 12 12 7 12 8 12 15
76 38 19 20 31 12

10 8 9 10 4 7 10 5 10 3 10 1 10
7 6 7 12 7 7 12 7 12 8 12 19

90 32 30 19 20 34 12
12 10 11 12 6 9 12 2 7 12 5 12 3 12 1 12

7 7 7 9 5 6 12 12 6 12 7 12 8 12 22
103 42 24 19 18 20 36 12

14 10 11 12 8 11 14 4 9 14 7 14 5 14 3 14 1 14
7 7 7 7 5 6 12 7 5 12 7 12 6 12 8 12 24

117 50 35 34 19 19 22 12
16 7 8 9 10 13 16 6 11 16 2 9 16 7 16 5 16 3 16

7 7 6 7 7 5 12 5 6 12 15 7 12 7 12 7 12 10

Legend:
Number of iterations
Last 3 prolongation levels
Number of iterations of the last 3 levels

Table 5.1: Number of iterations of the prolongation scheme (see Experiment 5.8)

When the prolongation increment j is big or p is small, there exist less than three prolon-
gation levels. In case of j = p, no prolongation is employed to solve the problem.

As the most important information, we obtain from the last column of Table 5.1 that the
number of Newton iterations does not depend on p.

Furthermore, we note that the number of iterations needed for the full problem can be
reduced by the prolongation method, when the increments j = 1, 3, 5 are used. But
prolongation increments j ≥ 7 can even increase the number of iterations on the last
level, e.g. p = 8, j = 7.

The total number of iterations and the number of iterations on different levels are not
very interessting from the practical point of view, since the costs of one iteration depend
on p. The cpu-timings documented in Table 5.2 are more important because they give
an estimate on the proportions of the sum of floating point operations needed for the
different tasks, namely, the computation of the Hessians and the gradients, the solving
of the linear systems by the diagonally preconditioned cg-method. Only in a few cases
the prolongation is superior to the global solving with respect to the total timing. The
prolongation increments j = 3, 5 yielded total timings which are still comparable to the
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p j=1 j=3 j=5 j=7 j=9 j=11 j=13 j=p
20 12
0.045 0.043

2 0.117 0.112
0.007 0.039
0.169 0.195

38 24 12
0.262 0.227 0.211

4 0.379 0.264 0.208
0.105 0.103 0.056
0.748 0.595 0.475

49 21 24 12
0.747 0.571 0.713 0.693

6 0.663 0.423 0.425 0.368
0.475 0.473 0.593 0.273
1.892 1.470 1.735 1.335

63 31 20 27 12
3.397 2.139 1.798 2.596 2.545

8 1.475 0.855 0.692 1.082 0.811
2.958 2.085 2.051 3.684 1.236
7.854 5.091 4.552 7.372 4.593

76 38 19 20 31 12
7.424 7.757 6.081 5.392 10.461 3.894

10 3.064 2.743 2.814 2.604 5.616 1.627
10.071 12.635 9.820 10.888 25.327 3.155
20.618 23.163 18.738 19.065 41.466 8.678

90 32 30 19 20 34 12
38.563 17.771 17.901 15.966 15.275 37.440 11.209

12 12.872 4.758 4.708 3.817 4.044 10.751 2.943
74.703 36.082 32.202 36.072 42.419 112.493 11.444
126.590 58.670 54.858 55.898 61.819 160.805 25.599

103 42 24 19 18 20 36 12
41.212 17.758 8.315 14.609 13.756 13.408 33.122 39.889

14 10.813 4.298 2.984 3.494 2.785 3.485 10.213 9.920
93.994 40.672 30.269 40.404 32.780 43.696 133.853 45.831
146.268 62.838 41.653 58.583 49.394 60.660 177.258 95.644

117 50 35 34 19 19 22 12
92.980 27.572 33.719 32.844 31.985 31.019 30.725 46.091

16 19.534 7.187 5.338 6.191 5.205 4.910 6.757 7.796
224.260 82.899 69.911 78.746 71.520 75.098 108.092 43.313
337.229 117.854 109.115 117.910 108.832 111.144 145.688 97.204

Legend:

Number of iterations
Hessian time
Gradient time
Conjugate gradient time
Total time

Table 5.2: Number of iterations and cpu-timings in seconds on a SUN Ultra-5 (see Ex-
periment 5.8)
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non-prolongated scheme. Estimating roughly the calculation of the Hessians and the
solution of the linear systems cause the same costs for 10 ≤ p ≤ 16, when prolongation is
omitted.

Experiment 5.9 (Nonlinear multiplicative Schwarz method). We decompose the global
space Vp,0 according to (5.8) into the 9 dimensional subspace V (1) associated to the interior
nodes, the (p− 1) dimensional subspaces V (i), i = 2, . . . , 25, associated to the 24 interior
edges, and the (p − 1)2 dimensional subspaces V (i), i = 26, 41, associated to the interior
degrees of freedom on the 16 squares.

The minimum ûn+1
i of the local problem A(i) on V (i) defined by Step 2 of Algortihm 5.4 is

determined as pointed out in the paragraph Solving the discrete nonlinear problems above
such that the gradient fulfills ‖∇A(i)(ûn+1

i )‖2 ≤ 10−11. This means that the stopping
criterion

‖un+1
i − ûn+1

i ‖H1(Ω) ≤ ε0‖uni − ûn+1
i ‖H1(Ω)

of Algorithm 5.4 which demands only a relative improvement un+1
i in the local mini-

mization process, is fulfilled because of un+1
i = ûn+1

i . Of course, this exactness leads to a
higher number of inner iterations i needed for the local minimizations. But it ensures that
the number ouf outer iterations n needed to solve the global problem by the multiplica-
tive Schwarz method until ‖∇A(ûn+1)‖2 ≤ εglob = 10−9 will be minimal. Nevertheless,
Table 5.3 shows big numbers for the outer iterations.

Corresponding to Theorem 5.6, the multiplicative method converges and needs an increas-
ing number of outer iterations to reach the asked exactness εglob = 10−9, when p increases.
The cpu-timings make it clear that the multiplicative Schwarz method of Algorithm 5.4
can not be used practically.

We also used the decomposition of the experiment for the additive Schwarz method defined
by Algorithm 5.3. As the results were worse than those of multiplicative Schwarz method,
we have not documented them.

We give an interpretation of the disappointing performance of the prolongation and the
multiplicative Schwarz method for nonlinear PDE in the following remark.

Remark 5.10. The main reason to employ multi-level and space decomposition methods
in FEM for the solution of linear systems is the reduction of the condition number to
ensure numerical stability and the efficiency of iterative solvers. The numerical analysis
of the h- and the p-version shows that the condition number of global linear systems can
grow drastically, if we choose a wrong basis (cf. Experiment 4.36) or do not apply a
preconditioning technique. An appropriate preconditioning is necessary to guarantee the
solvability of large-scale linear systems.

Due to the last column of Table 5.1 the number of Newton iterations needed to solve
the problem is independent of p, i.e., of the dimension of the system. This observation
corresponds to the numerical analysis of Newton’s method which shows that the neigh-
borhood of the minimizer u, where we have quadratic convergence, depends mainly on
‖(∇2A(u))−1‖ and ‖∇A(u)‖. Here, ‖ · ‖ is a norm on Rn (see [Kel95, Theorem 5.1.1 and
Theorem 5.1.2]). Therefore, the main reason for a successful application of multi-level
and space decomposition methods to linear problems, the reduction of the iteration num-
ber needed by the iterative linear solver, has been dropped. The number of Newton or
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p=2 p=4 p=6 p=8 p=10 p=12
25 75 130 210 310 429
0.369 6.096 39.904 233.220 1040.191 1568.639
0.735 9.433 50.454 165.965 505.209 867.635
0.178 0.673 3.535 21.505 126.418 275.273
1.285 16.216 93.934 420.925 1672.142 2712.144

Legend:

Number of outer iterations
Stiffness time
Residual time
Conjugate gradient time
Total time

Table 5.3: Iterations counts and cpu-timings of the multiplicative Schwarz method (see
Experiment 5.9)

Shamanskii iterations remains already low, even for large scale problems, and the methods
converge quadratically or q-superlinearly, respectively.

In comparison to this convergences, the linear and p-dependent convergence rates stated
for the additive and the multiplicative Schwarz method in Theorem 5.5 and Theorem 5.6,
respectively, look bad.



Appendix A

Preconditioned conjugate gradient
method

Algorithm A.1 u = pcg(H, g,M, u0, ε, imax); Preconditioned conjugate gradient method

Given a symmetric positive definite H ∈ RN×N , g ∈ RN , a symmetric positive precon-
ditioner M , an initial guess u0, a termination parameter ε, and a maximum number of
iterations imax , the following algorithm solves the linear system Hu = g approximately
until the residual ‖g −Hu‖ < ε.

1. Set i = 0.
Compute r0 = g −Hu0.

2. Do while ‖ri‖ ≥ ε and i < imax

Solve Mzi = ri.
Set i = i+ 1.
If i = 1

Set p
1

= z0.
Else

Set βi = rTi−1zi−1 / r
T
i−2zi−2.

Set p
i
= zi−1 + βi, pi−1

.
End if

Set αi = rTi−1zi−1 / p
T
i
Hp

i
.

Set ui = ui−1 + αipi.
Set ri = ri−1 − αiHpi.

End while

3. Set u = ui.

142



Appendix B

Efficient implementation of the
matrix-vector multiplication H(u) v

The minimization processes of Algorithm 4.2 and Algorithm 4.3, both demand the ap-
proximate solutions of linear system H(uk)y = −g(uk). In Section 4.4, it was shown that
the number of iterations grows as O(p3/2), when the preconditioned conjugate gradient
method is applied straightforwardly, and as O(p1/2), when static condensation is used to
eliminate the interior degrees of freedom locally. The first implementations of the numer-
ical examples from Section 2.3 made it clear soon, that most of the costs for computing y
were not caused by the total of matrix-vector multiplications in the preconditioned con-
jugate gradient scheme, but by the computation of the matrix H(u). The evaluation of
the integrands for the numerical quadrature became the most expensive part of the whole
computation. It is the purpose of this section to discuss the expense of a full matrix com-
putation and to give an efficient alternative. Remark B.4 and Corollary B.10 state that
the number of floating point operations (flops) grows with O(p6), when the full matrix is
computed.

Fortunately, there is no need to calculate all entries of the matrix H(u). Due to the use of
an iterative solver, it suffices to calculate the matrix-vector product H(u) v for particular
v. It will be shown in the following that this product can be calculated efficiently with
O(p4) flops. Noting, that we need O(p3/2) diagonally preconditioned conjugate gradient
iterations, this yields a total cost of O(p11/2) flops for the solution of a linear system.
Additionally, we save a lot of memory because we do not need to store H(u). This should
improve the performance further since the information needed for the local computations
can remain in the CPU’s cache.

For a start, we recall the costs for the basic linear operations matrix-vector multiplication,
matrix-matrix multiplication, and solution of a linear system Mv = w by Gaussian elim-
ination. As usual the Gaussian elimination is computed in two steps. Firstly, the matrix
is factorized into a unit lower triangular matrix L and an upper triangular matrix U . Sec-
ondly, the factorized system LUv = w is solved. We give operation counts for the double
precision LAPACK routines (cf. [ABB+95]) needed for these operations in Table B.1.

Remark B.1. We know that y has O(p2) components due to the definition of Vp and

143
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Let k,m, n ∈ N, let w ∈ Rm, v ∈ Rn, let M ∈ Rm×n, M1,M2 ∈ Rm×k,
M3 ∈ Rk×n. Let L be a unit lower triangular matrix, U an upper triangular matrix
with L,U ∈ Rm×m, let M4 ∈ Rm×m. Then, the number of flops needed to perform
the named linear operations is counted as follows:

linear operation routine multiplications additions total flops

w = Mv dgemv mn mn 2mn

M = M2M3 dgemm mkn mkn 2mkn

LU = M4 dgertf 1
3m

3 + 2
3m

1
3m

3 − 1
2m

2 + 1
6m

2
3m

3 − 1
2m

2 + 5
6m

M1 = U−1L−1M2 dgerts km2 k(m2 −m) k(2m2 −m)

Table B.1: Operations counts for BLAS and LAPACK routines

that each local Galerkin matrices has (p + 1)4 entries. Assuming that H(u) was already
calculated, it follows with Table B.1 that the matrix-vector multiplication H(u) v costs
O(p4) flops.

Now, we develop an algorithm which computes the matrix-vector product H(u) v with
O(p4) flops and does not require the explicit computation of the matrix H(u). Switching
back from coordinate to vector notation v =

∑N
l=1 vlbl, and using the definition of H(u),

H(u) := ∇2A(u) =
(
D2A(u; bk, bl)

)
0≤k,l≤N ,

the components of the product (H(u) v)k, k = 1, . . . , N := cardGp, can be rewritten as

(H(u)v)k = D2A(u; bk, v) =
∑
Q∈T

∫
Q
fu;bk,v(x) dx

where

fu;bk,v(x) :=
(
ρ(t)∇T bk∇v + tρ′(t)s1s2 + σbkv

)
(x) with t := |∇u| , (B.1)

and

s1 :=

{
1
t∇

Tu∇bk, if t > 0,
0, if t = 0,

s2 :=

{
1
t∇

Tu∇v, if t > 0,
0 if t = 0.

Assuming that the integrands are polynomials of degree ≤ 2q − 1, q ∈ N, we have∫
Q
fu;bk,v(x) dx =

∫
Q̃

(
fu;bk,v ◦ FQ

)
(η)|detDFQ| dη =

∑
ξ∈GQ̃,q

(
fu;bk,v ◦ FQ

)
(ξ)w(ξ)

where the set of the Gauss-Lobatto points GQ̃,q is defined as in Definition 2.2 and the
weights w(ξ) are given by

w(ξ) := |detDFQ(ξ)| ρq+1
r1 ρq+1

r2 for ξ = (ξq+1
r1 , ξq+1

r2 ) ∈ GQ̃,q .

Here, ρq+1
r , r = 0, . . . , q, denote the weights of the Gauss-Lobatto quadrature (see (2.3)).
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Remark B.2. The integrand fu;bk,v ◦ FQ is not a polynomial in general because ρ(t)
can be non-polynomial. Assuming that ρ(t) is a polynomial, the polynomial degree of the
integrand fu;bk,v ◦FQ depends on the transformation FQ, the function ρ(t), the constant σ,
and the polynomial degree p of the basis functions. If FQ is an affine linear transformation,
ρ(t) = 1, and σ = 0, then fu;bk,v ◦ FQ has degree 2p− 2. When an iso-parametric mesh is
used, i.e., Q = FQ(Q̃) with an iso-parametric transformation given by

FQ(η) =
∑

0≤i1,i2≤p
λpi1(η1)λ

p
i2

(η2)xi1,i2 for all η ∈ Q̃

for the distinct points xi1,i2 ∈ Q, then the polynomial degree of the integrand caused by
the term σbkv increases to 4p.

In our numerical experiments we used affine linear transformations FQ and a nonlin-
ear function ρ(t). The numerical experiments yielded quite similar results for different
q ≥ p+ 2.

Assumption B.3. In the remaining part of this section, we assume that the quadrature
parameter q is given by q = p+ q̃ where q̃ is a constant surplus which guarantees a suffi-
cient approximation of the integrals

∫
Q · dx independently of p. Further, we assume that

the costs for the evaluation of FQ do not depend on p.

It is a drawback of Assumption B.3 that FQ can not be an iso-parametric mapping. The
assumption on FQ is not essential for the following algorithms and their cost analysis.
It serves an ease of notation, and the algorithms can be modified appropriately without
increasing the order of costs.

Remark B.4. The numerical computation of the Hessian H(u) using Gaussian quadra-
ture or Gauss-Lobatto quadrature costs O(p6) floating point operations.

Proof. We obtain the (p+1)4 entries of the local Galerkin matrix
(
H(v)

)
k1,k2

=
(
H(v)bk2

)
k1

,
1 ≤ k1, k2 ≤ (p+ 1)2, by evaluating

(
fu;bk,v ◦FQ

)
(ξ)w(ξ) for all ξ ∈ GQ̃,q. Since the num-

ber of flops needed for this evaluations does not depend on p, the remark follows because
of cardGQ̃,q = (q + 1)2 = O(p2).

Using the local counting (Q, j1, j2) from (4.1), (4.2), we may write the basis functions as

bk = bQ,j1,j2 = bj1,j2 ◦ F−1
Q with bj1,j2 defined by bj1,j2(η) := λpj1(η1)λ

p
j2

(η2).

To characterize v on Q it suffices to consider the local coordinates vj1,j2 = vQ,j1,j2 = vk.
In the following, we note these coordinates as column vector

v :=
(
v0,0, . . . , vp,0 | . . . | vp,p, . . . , vp,p

)T and as matrix v :=

v0,0 . . . v0,p
...

...
vp,0 . . . vp,p

 .

The algorithms of this section are motivated by the following idea: Let f be a polyno-
mial given by the Lagrangian polynomials with respect to the quadrature points, i.e.,
f(t) =

∑q
i=0 fiλ

q
i (t). Then, we have

∫ 1
−1 f dt =

∑q
i=0 fiρ

q+1
i . This means that the inte-

grand f does not need to be evaluated when coordinates with respect to the Lagrangian
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basis
(
λqi
)
0≤i≤q are already known. Since the coordinate transformation of v into the co-

ordinates vq with respect to the basis B̃q can be performed efficiently with O(p3) flops (see
Lemma B.5), a consequent generalization of this concept saves evaluations of the basis
functions at the quadrature points.

Let N be the matrix mapping the basis functions B̃q = (bqi1,i2)0≤i1,i2≤q onto
B̃p = (bi1,i2)0≤i1,i2≤p, i.e.,(

b0,0 · · · bp,0 · · · b0,p · · · bp,p
)T = N

(
bq0,0 · · · b

q
q,0 · · · bq0,q · · · b

q
q,q
)T

. (B.2)

It is shown in the following lemma that N and NT can be applied efficiently due to the
tensor product structure of the bases B̃p and B̃q.

Lemma B.5. Suppose that C is the matrix mapping the Lagrangian polynomials of
degree q to the Lagrangian polynomials of degree p, both with respect to the Gauss-
Lobatto points of the respective degrees (see Section4.1) so thatλ

p
0(ξ)
...

λpp(ξ)

 = C

λ
q
0(ξ)
...

λqq(ξ)

 with C :=

λ
p
0(ξ

q+1
0 ) . . . λp0(ξ

q+1
q )

...
...

λpp(ξ
q+1
0 ) . . . λpp(ξ

q+1
q )

 . (B.3)

Let vq =
(
vq0,0 · · · v

q
q,0 · · · vq0,q · · · v

q
q,q
)T ∈ R(q+1)2 be a column vector and

vq =

v
q
0,0 · · · vq0,q
...

...
vqq,0 · · · vqq,q

 ∈ R(q+1)×(q+1)

the corresponding matrix obtained by taking vq to q+1 columns of length q+1 one after
another. Further, let v ∈ R(p+1)2 and v ∈ R(p+1)×(p+1) be defined correspondingly. We
have the following correspondence of linear mappings on v and v.

v = Nvq

vq = NT v
corresponds to

v = C vq CT ,

vq = CT v C .
(B.4)

Proof. We note the tensor product basis B̃p in matrix form,

B̃p((η1, η2)) =

λ
p
0(η1)
...

λpp(η1)


λ

p
0(η2)
...

λpp(η2)


T

= C

λ
q
0(η1)
...

λqq(η1)


λ

q
0(η2)
...

λqq(η2)


T

CT = C B̃q((η1, η2)) CT

for all (η1, η2) ∈ Q̃. Inserting the Gauss-Lobatto points (ξq+1
i1

, ξq+1
i2

) ∈ GQ̃,q, 0 ≤ i1, i2 ≤ q,

yields the mapping of all unit coordinate vectors of R(q+1)2 and R(q+1)×(q+1). Thus, the
first line of (B.4) is obtained due to linearity of N and C.
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The second line of (B.4) is proved by comparing vector and matrix notation of a coordinate
transformation. Let v ∈ span B̃p, and let v be its coordinate representations with respect
to B̃p. There exists a coordinate representation vq of v with respect to the basis B̃q
because of span B̃p ⊂ span B̃q . Thus, we can write

v =
∑

0≤i1,i2≤p
vi1,i2bi1,i2 =



v0,0
...
vp,0
...
v0,p
...
vp,p



T 

b0,0
...
bp,0
...
b0,p
...
bp,p


=

∑
0≤i1,i2≤q

vqi1,i2b
q
i1,i2

=



vq0,0
...
vqq,0
...
vq0,q
...
vqq,q



T 

bq0,0
...
bqq,0
...
bq0,q
...
bqq,q


.

Using (B.2) to substitute (b00, . . . , bpp)T leads to NT v = vq. Now, let v, vq be the matrix
representations with respect to B̃p and B̃q, i.e.,

v((η1, η2)) =
∑

0≤i1,i2≤p
vij λ

p
i1

(η1)λ
p
i2

(η2) =

λ
p
0(η1)
...

λpp(η1)


T

v

λ
p
0(η2)
...

λpp(η2)



=
∑

0≤i1,i2≤q
vqi1,i2 λ

q
i1

(η1)λ
q
i2

(η2) =

λ
q
0(η1)
...

λqq(η1)


T

vq

λ
q
0(η2)
...

λqq(η2)


for all (η1, η2) ∈ Q̃. Using (B.3) to replace (λp0, . . . , λ

p
p) and inserting the Gauss-Lobatto

points (ξp+1
i1

, ξp+1
i2

) ∈ GQ̃,q , 0 ≤ i1, i2 ≤ q, yields CT v C = vq . This proves the second
statement of (B.4).

Remark B.6. In actual computation matrices and vectors do not need to be rearranged
physically. With Lemma B.5 the coordinate representation of v with respect to the basis
B̃q can be computed from v by vq = Cv CT . This costs O(p3) floating point operations
(cf. Table B.1).

Using Remark B.6, we can represent v on Q by

v =
q∑

i1,i2=0

vqi1,i2b
q
i1,i2

◦ F−1
Q with bqi1,i2(η) = λqi1(η1)λ

q
i2

(η2) .

This yields the gradient ∇T v =
∑q

i1,i2=0 v
q
i1,i2

(
∇T bqi1,i2 ◦ F

−1
Q

)
·DF−1

Q with

∇T bqi1,i2(η) =

((
λqi1
)′(η1)λ

q
i2

(η2)

λqi1(η1)
(
λqi2
)′(η2)

)T
.

Inserting ξr1,r2 := (ξq+1
r1 , ξq+1

r2 ) ∈ GQ̃,q, 0 ≤ r1, r2 ≤ q, we obtain

bqi1,i2(ξr1,r2) = δi1,r1δi2,r2 and ∇bqi1,i2(ξr1,r2) =

((
λqi1
)′(ξq+1

r1 ) δi2,r2(
λqi2
)′(ξq+1

r2 ) δi1,r1

)T
. (B.5a)
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With these expressions, it follows that

v(FQ(ξr1,r2)) = vqr1,r2 (B.5b)

and ∇T v(FQ(ξr1,r2)) =

(∑q
i1=0 vi1,r2

(
λqi1
)′(ξq+1

r1 )∑q
i2=0 vr1,i2

(
λqi2
)′(ξq+1

r2 )

)T (
DFQ(ξr1,r2)

)−1
. (B.5c)

We use the equations (B.5) to formulate three algorithms. Algorithm B.1 computes
the values

(
λqi
)′(ξq+1

r ) for all 0 ≤ i, r ≤ q. Algorithm B.2 computes the products(
∇T v∇bQ,j1,j2

)
◦ FQ for all 0 ≤ j1, j2 ≤ q at the quadrature point ξr1,r2 . Using these

auxiliary algorithms, Algorithm B.3 realizes the numerical quadrature of the integrands
fu;bk,v ◦ FQ for all k corresponding to the local index triples (Q, j1, j2), 0 ≤ j1, j2 ≤ p.

Algorithm B.1 Computation of µ :=
(
µi,r
)
0≤i,r≤q, µi,r :=

(
λqi
)′(ξq+1

r )

1. For r = 0, . . . , q

(a) Set f ′0,r = 0, f ′1,r = L0(ξ
q+1
r ) = 1, f ′2,r = L1(ξ

q+1
r ) = ξq+1

r .
For i = 2, . . . q − 1

Compute f ′i+1,r = Li(ξ
q+1
r ) = 1

i

(
(2i−1)ξq+1

r Li−1(ξ
q+1
r )−(i−1)Li−2(ξ

q+1
r )

)
.

End for i

(b) Set f0,r = L0(ξ
q+1
r ) = 1, f1,r = L1(ξ

q+1
r ) = ξq+1

r .
For i = 2, . . . , q

fi,r = Li(ξ
q+1
r ) = 1

2i−1

(
Li(ξ

q+1
r )− Li−2(ξ

q+1
r )

)
End for i

End for r

2. Set µ = f−1f ′ where f =
(
fi,r
)
0≤i,r≤q , f ′ =

(
f ′i,r
)
0≤i,r≤q.

Exit.

Lemma B.7. Algorithm B.1 computes the matrix µ :=
(
µi,r
)
0≤i,r≤q, µi,r :=

(
λqi
)′(ξq+1

r ),
at a cost of O(q3) flops.

Proof. From the theory of orthogonal polynomials (cf. [Sze75]) we know that the recursive
scheme L0(t) := 1, L1(t) := t,

Li(t) := 1
i

(
(2i− 1)tLi−1(t)− (i− 1)Li−2(t)

)
for all i ≥ 2,

yields polynomials with the orthogonal property∫ 1

−1
Li(t)Lj(t) dt = 2

2i+1δi,j for all i, j ≥ 0 .

Further, it can be shown by induction and elementary integration that the anti-derivatives
Li(t) :=

∫ t
−1 Li−1(τ) dτ , i ≥ 1, satisfy the equation

Li(t) = 1
2i−1

(
Li(t)− Li−2(t)

)
for all i ≥ 2 .
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For ease of notation we set L0(t) = 1 and L−1(t) := 0. The algorithm computes the
square matrices

f =
(
Li(ξq+1

r )
)
0≤i,r≤q in Step 1b) and f ′ =

(
Li−1(ξq+1

r )
)
0≤i,r≤q in Step 1a).

Now, let λqi =
∑q

j=0 ci,jLj , 0 ≤ i ≤ q, be the coordinate representation of the Lagrangian
polynomials with respect to Lj , 0 ≤ j ≤ q . Then, it follows that

(
λqi
)′ =

∑q
j=0 ci,jLj−1.

Noting that the coefficients cij are given by f−1, it follows that the algorithm computes
µ. Step 1 of the algorithm needs O(q2) flops. Step 2 can be implemented as the solution
of the linear system f µ = f ′. Using LU factorization of f causes an expense of O(q3)
flops (see Table B.1, dgetrf, dgetrs).

Algorithm B.2 Compute βj1,j2 = (z1, z2)
(
DFQ

)−T∇bqj1,j2(ξr1,r2) for all 0 ≤ j1, j2 ≤ q.

1. Set (z1, z2) = (z1, z2)
(
DFQ

)−T .

Set β =
(
βj1,j2

)
0≤j1,j2≤q = 0.

2. For j1 = 0, . . . , q
Set βj1,r2 = βj1,r2 + z1 µj1,r1 .

End for j1

3. For j2 = 0, . . . , q
Set βr1,j2 = βr1,j2 + z2 µj2,r2 .

End for j2
Exit.

Lemma B.8. Algorithm B.2 computes βj1,j2 = (z1, z2)
(
DFQ

)−T∇bqj1,j2(ξr1,r2) for all
0 ≤ j1, j2 ≤ q, at a cost of O(q) flops.

Proof. The statement follows by the right equation of (B.5a) and by noting that the
executions of Step 2 and Step 3 totals up to 2(q+1) multiplications and 2(q+1) additions.

Proposition B.9 (Costs of a matrix-vector product). Algorithm B.3 needs
6(p+ q̃ + 1)4 + O(p3) floating point operations to compute H(u) v.

Proof. Firstly, we check that the algorithm computes the matrix-vector product. After the
evaluation of

(
λqi
)′ at the quadrature points ξr in Step 1 and the coordinate transformation

of u and v in Step 2 (see Remark B.6), sq is initialized to 0 for the numerical quadrature
in Step 3. In Step 4 the integrands fu;bqQ,j1,j2

,v ◦ FQ are computed for all points ξr1,r2 .
Here, t = |∇u| is calculated according to (B.5c) in Step 4d). Steps 4c), 4e),4f) add the
contributions corresponding to σbkv, tρ′(t)s1s2 and ρ(t)∇T bk∇v of (B.1), respectively.

With the termination of Step 4f) we know the values

γj1,j2(r1, r2) :=
(
fu;bqQ,j1,j2

,v ◦ FQ
)
(ξr1,r2) for all 0 ≤, j1, j2 ≤ q .
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Using column vector notation, we may write bj1,j2 ∈ B̃p as the linear combination

bj1,j2 = ~nj1,j2
(
bq00, . . . , b

q
q,q

)T where ~nj1,j2 denotes the row (j1, j2) of N from (B.2).

Accordingly, writing γj1,j2(r1, r2) as the column vector

γ(r1, r2) :=
(
γ0,0(r1, r2) , . . . , γq,q(r1, r2)

)T
,

we obtain (
fu;bQ,j1,j2

,v ◦ FQ
)
(ξr1,r2) = ~nj1,j2γ(r1, r2)

and the integral

sj1,j2 =
∫
Q̃

(
fu;bj1,j2

,v ◦ FQ
)
(η) dη =

q∑
r1,r2=0

~nj1,j2w(ξr1,r2)γ(r1, r2) = ~nj1,j2s
q

where sq =
(
sq0,0 , . . . , s

q
q,q

)T is taken after the execution of the double loop Step 4 . This

yields H(u) v = s =
(
s0,0 , . . . , sp,p

)T = Nsq or equivalently s = Csq CT due to the
Lemma B.5, when matrix notation is used.

Secondly, we count the flops. By Remark B.6 and Lemma B.7 we know that Step 1 and
Step 2, both cause an expense of O(q3) flops. The cost of Step 4a) is independent of p
due to Assumption B.3 on FQ, Step 4c) costs one flop. The calculations of (z1, z2) and
βj1,j2 for all j1, j2 in Step 4d), Step 4e), and Step 4f) cause an expense of O(q) flops.
The summation processes for γj1,j2 and sqj1,j2 in Step 4e), Step 4f), and Step 4g) cost
3(q + 1)2 multiplications and 3(q + 1)2 additions. Summing up the operations of Step 4,
the complete execution of the double loop costs 6(q + 1)4 + O(q3) flops. The matrix-
matrix multiplications of Step 5 need O(q3) flops. As we assumed q = p + q̃ with a
surplus q̃ which is independent of p, it follows that the total expense of the algorithm is
6(p+ q̃ + 1)4 + O(p3) flops.

Corollary B.10. Inserting the (p + 1)2 local unit vectors for v in Algorithm B.3 yields
the (p+ 1)2 columns of the local Galerkin matrix H(u) at a cost of O(p6) flops.

Remark B.11. Algorithm B.3 uses basis transformations for the efficient evaluation of
the integrand fu;bk,v(x) defined in (B.1) at the quadrature points. Of course, there is
no need for this basis transformation and the integrand fu;bk,v(x) can be evaluated di-
rectly. But this means that Algorithm B.2 must be replaced by a routine which computes
(z1, z2)

(
DFQ

)−T∇bj1,j2(ξr1,r2) for all 0 ≤ j1, j2 ≤ q at a cost of O(q2) flops. This increases
the O(p4) costs of Algorithm B.3 drastically. It is a second advantage of the basis trans-
formation approach that the basis transformations can be performed by highly optimized
BLAS routines.

Remark B.12. We can generalize the idea of numerical quadrature by basis transforma-
tion to the computation of the whole Galerkin matrix H(u). This idea is formulated in
Algorithm B.4 and Algorithm B.5. As both algorithms are straightforward extensions of
Algorithm B.2 and Algorithm B.3, respectively, we omit the details here. Counting the
flops needed by Algorithm B.5, we obtain that the calculation with this algorithm needs
O(p6) flops, i.e., the order of costs is not improved in comparison to the simple approach
of Corollary B.10. However, Algorithm B.5 saves basis transformations of the unit vec-
tors to the representation with respect to the basis B̃q in Step 2 and the calculation of
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(z1, z2) in Step 4f) of Algorithm B.3 which both cost O(p3) flops. It is a disadvantage of
Algorithm B.5 that it needs more main memory for the multidimensional arrays βi1,i2,j1,j2 ,
γi1,i2,j1,j2 , s

q,q
i1,i2,j1,j2

, and the linear transformations of Step 5.

To finish this appendix, we consider diagonal preconditioning of the linear problem. When
all entries of the Galerkin matrix H(u) are computed diagonal preconditioning of the cg-
scheme can be applied cheaply, because the diagonal entries are known in particular.
Using only the matrix-vector multiplications in the cg-scheme, a diagonal preconditioning
demands the explicit calculation of the diagonal entries(

H(u) bk
)
k

= D2A(u; bk, bk) =
∑
Q∈T

∫
Q
fu;bk,bk(x) dx

where

fu;bk,bk(x) =
(
ρ(t)‖∇bk‖2

2 + tρ′(t)s2 + σb2k

)
(x) with t := |∇u| ,

and s :=

{
1
t∇

Tu∇bk, if t > 0,
0, if t = 0.

As the integrand fu;bk,bk is a specification of fu;bk,v from (B.1) a straightforward modifi-
cation of Algorithm B.2 and Algorithm B.3 yields

Proposition B.13 (Diagonal preconditioning). Algorithm B.7 needs O(p4) floating point
operations to compute the diagonal entries of H(u).

Proof. As Algorithm B.3 and Algorithm B.7 differ only in Step 7f) the proposition follows
completely analogously to Proposition B.9.

Since Algorithm B.3 and Algorithm B.7 are quite similar, they can be merged into a
routine which computes the product Λ−1H(u) v where Λ is the yielded from H(u) by
setting all non-diagonal entries to zero. Thus, a diagonally preconditioned cg-iteration
costs O(p4) floating point operations.
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Algorithm B.3 Compute the matrix-vector product H(u) v

1. Compute µ :=
(
µi,r
)
0≤i,r≤q, µi,r :=

(
λqi
)′(ξq+1

r ) with Algorithm B.1.

2. Compute uq = CTuC , vq = CT v C .

3. Set sq =
(
sqj1,j2

)
0≤j1,j2≤q = 0.

4. For r1 = 0, . . . , q
For r2 = 0, . . . , q

(a) Compute
(
DFQ

)−1 =
(
DFQ(ξqr1 , ξ

q
r2)
)−1.

(b) Set γj1,j2 = 0 for all 0 ≤ j1, j2 ≤ q.

(c) Set γr1,r2 = σvqr1,r2 .

(d) Compute (z1, z2) = ∇Tu(ξr1,r2)
=
(∑q

i1=0 ui1,r2µi1,r1 ,
∑q

i2=0 ur1,i2µi2,r2
) (
DFQ

)−1.

Compute t = (z2
1 + z2

2)
1/2, ρ(t), and ρ′(t) .

(e) If t 6= 0
Compute βj1,j2 = (z1, z2)

(
DFQ

)−T∇bqj1,j2(ξr1,r2) for all 0 ≤ j1, j2 ≤ q with
Algorithm B.2.

Compute α =
∑q

i1,i2=0 v
q
i1,i2

βi1,i2 .

Set γj1,j2 = γj1,j2 + 1
t ρ
′(t)αβj1,j2 for all 0 ≤ j1, j2 ≤ q.

End if

(f) Compute (z1, z2) = ∇T v(ξr1,r2)
=
(∑q

i1=0 vi1,r2µi1,r1 ,
∑q

i2=0 vr1,i2µi2,r2
) (
DFQ

)−1.

Compute βj1,j2 = (z1, z2)
(
DFQ

)−T∇bqj1,j2(ξr1,r2) for all 0 ≤ j1, j2 ≤ q with
Algorithm B.2.

Set γj1,j2 = γj1,j2 + ρ(t)βj1,j2 for all 0 ≤ j1, j2 ≤ q.

(g) Compute w(ξr1,r2) = |detDFQ(ξr1,r2)| ρ
q+1
r1 ρq+1

r2 .

Set sqj1,j2 = sqj1,j2 + γj1,j2 · w(ξr1,r2) for all 0 ≤ j1, j2 ≤ q.

End for r2
End for r1

5. Compute s = CsqCT . Set H(u) v = s.
Exit.
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Algorithm B.4 Compute βi1,i2,j1,j2 =
(
∇T bqi1,i2(ξr1,r2)

(
DFQ

)−1(
DFQ

)−T∇bqj1,j2)(ξr1,r2)

for all 0 ≤ i1, i2, j1, j2 ≤ q.

1. Compute F̃ =
(
DFQ

)−1(
DFQ

)−T .

Set
(
βi1,i2,j1,j2

)
0≤i1,i2,j1,j2≤q = 0.

2. For i1 = 0, . . . , q
For i2 = 0, . . . , q

(a) Compute (z1, z2) = (µi1,r1 , µi2,r2)F̃ .

(b) For j1 = 0, . . . , q
Set βi1,i2,j1,r2 = βi1,i2,j1,r2 + z1 µj1,r1 .

End for j1
(c) For j2 = 0, . . . , q

Set βi1,i2,r1,j2 = βi1,i2,r1,j2 + z2 µj2,r2 .
End for j2

End for i2
End for i1
Exit.
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Algorithm B.5 Compute the matrix H(u)

1. Compute µ :=
(
µi,r
)
0≤i,r≤q, µi,r :=

(
λqi
)′(ξq+1

r ) with Algorithm B.1.

2. Compute uq = CTuC .

3. Set
(
sq,qi1,i2,j1,j2

)
0≤i1,i2,j1,j2≤q = 0.

4. For r1 = 0, . . . , q
For r2 = 0, . . . , q

(a) Compute DFQ = DFQ(ξqr1 , ξ
q
r2).

(b) Set γi1,i2,j1,j2 = 0 for all 0 ≤ i1, i2, j1, j2 ≤ q.

(c) Set γr1,r2,r1,r2 = σ .

(d) Compute (z1, z2) = ∇Tu(ξr1,r2)

=
(∑q

i1=0 ui1,r2µi1,r1 ,
∑q

i2=0 ur1,i2µi2,r2
) (
DFQ

)−1.

Compute t = (z2
1 + z2

2)
1/2, ρ(t), and ρ′(t) .

(e) If t 6= 0
Compute αj1,j2 = (z1, z2)

(
DFQ

)−T∇bqj1,j2(ξr1,r2) for all 0 ≤ j1, j2 ≤ q with
Algorithm B.2.

Set γi1,i2,j1,j2 = γi1,i2,j1,j2 + 1
t ρ
′(t)αi1,i2αj1,j2 for all 0 ≤ i1, i2, j1, j2 ≤ q.

End if

(f) Compute βi1,i2,j1,j2 = ∇T bqi1,i2(ξr1,r2)
(
DFQ

)−1(
DFQ

)−T∇bqj1,j2(ξr1,r2) for all
0 ≤ i1, i2, j1, j2 ≤ q with Algorithm B.4.

Set γi1,i2,j1,j2 = γi1,i2,j1,j2 + ρ(t)βi1,i2,j1,j2 for all 0 ≤ i1, i2, j1, j2 ≤ q.

(g) Compute w(ξr1,r2) = |detDFQ(ξr1,r2)| ρ
q+1
r1 ρq+1

r2 .

Set sq,qi1,i2,j1,j2 = sq,qi1,i2,j1,j2 + γi1,i2,j1,j2 · w(ξr1,r2) for all 0 ≤ i1, i2, j1, j2 ≤ q.

End for r2
End for r1

5. (a) For i1 = 0, . . . , q
For i2 = 0, . . . , q

Set sq,q
i1,i2

=
(
sq,qi1,i2,j1,j2

)
0≤j1,j2≤q.

Compute sq
i1,i2

= Csq,q
i1,i2

CT .

End for i2
End for i1

(b) For j1 = 0, . . . , p
For j2 = 0, . . . , p

Set sq
j1,j2

=
(
sqi1,i2,j1,j2

)
0≤i1,i2≤q.

Compute s
j1,j2

= Csq
j1,j2

CT .

End for j2
End for j1

(c) Set H(u) =
(
si1,i2,j1,j2

)
0≤i1,i2≤p
0≤j1,j2≤p

.

Exit.
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Algorithm B.6 Compute β̃j1,j2 = ‖
(
DFQ

)−T∇bqj1,j2(ξr1,r2)‖2
2 for all 0 ≤ j1, j2 ≤ q.

1. Set
(
fxx fxy

fyx fyy

)
=
(
DFQ

)−T .

Set α
x

=
(
αx,j1,j2

)
0≤j1,j2≤q = 0, α

y
=
(
αy,j1,j2

)
0≤j1,j2≤q = 0

2. For j1 = 0, . . . , q
Set αx,j1,r2 = αx,j1,r2 + fxx µj1,r1 .
Set αy,j1,r2 = αy,j1,r2 + fyx µj1,r1 .

End for j1

3. For j2 = 0, . . . , q
Set αx,r1,j2 = αx,r1,j2 + fxy µj2,r2 .
Set αy,r1,j2 = αy,r1,j2 + fyy µj2,r2 .

End for j2

4. For j1 = 0, . . . , q
For j2 = 0, . . . , q

Set β̃j1,j2 = α2
x,j1,j2

+ α2
y,j1,j2

.
End for j2
End for j1
Exit.
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Algorithm B.7 Compute the diagonal entries Hi1,i2;i1,i2 of H(u)

1. Compute µ :=
(
µi,r
)
0≤i,r≤q, µi,r :=

(
λqi
)′(ξq+1

r ) with Algorithm B.1.

2. Compute uq = CTuC .

3. Set dq =
(
dqj1,j2

)
0≤j1,j2≤q = 0.

4. For r1 = 0, . . . , q
For r2 = 0, . . . , q

(a) Compute
(
DFQ

)−1 =
(
DFQ(ξqr1 , ξ

q
r2)
)−1.

(b) Set γ̃j1,j2 = 0 for all 0 ≤ j1, j2 ≤ q.

(c) Set γ̃r1,r2 = σ .

(d) Compute (z1, z2) = ∇Tu(ξr1,r2)
=
(∑q

i1=0 ui1,r2µi1,r1 ,
∑q

i2=0 ur1,i2µi2,r2
) (
DFQ

)−1.

Compute t = (z2
1 + z2

2)
1/2, ρ(t), and ρ′(t) .

(e) If t 6= 0
Compute β̃j1,j2 = (z1, z2)

(
DFQ

)−T∇bqj1,j2(ξr1,r2) for all 0 ≤ j1, j2 ≤ q with
Algorithm B.2.

Set γ̃j1,j2 = γ̃j1,j2 + 1
t ρ
′(t)β̃2

j1,j2
for all 0 ≤ j1, j2 ≤ q.

End if

(f) Compute β̃j1,j2 = ‖
(
DFQ

)−T∇bqj1,j2(ξr1,r2)‖2
2 for all 0 ≤ j1, j2 ≤ q with

Algorithm B.6.
Set γ̃j1,j2 = γ̃j1,j2 + ρ(t) β̃j1,j2 for all 0 ≤ j1, j2 ≤ q.

(g) Compute w(ξr1,r2) = |detDFQ(ξr1,r2)| ρ
q+1
r1 ρq+1

r2 .

Set dqj1,j2 = dqj1,j2 + γ̃j1,j2 · w(ξr1,r2) for all 0 ≤ j1, j2 ≤ q.

End for r2
End for r1

5. Compute d = CdqCT . Set Hi1,i2;i1,i2 = di1,i2 for all 0 ≤ i1, i2 ≤ p.
Exit.
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Conditions numbers from
Experiments 4.34, 4.36, 4.37

p cond(H) α cond(HII) αII cond(Hc) αc

2 12.94 — 1.00 — 5.22 —
3 23.39 — 2.14 — 7.60 —
4 40.68 1.65 4.28 2.10 9.87 0.92
5 61.49 1.89 7.09 2.34 12.36 0.95
6 91.60 2.00 10.79 2.28 15.41 1.10
7 131.73 2.26 15.94 2.41 18.44 1.19
8 179.90 2.35 22.59 2.57 21.48 1.15
9 238.09 2.36 30.50 2.58 24.51 1.13

10 307.03 2.40 39.74 2.53 27.55 1.12
11 390.36 2.46 50.46 2.51 30.59 1.10
12 487.95 2.54 62.84 2.51 33.64 1.10
13 603.66 2.61 77.14 2.54 36.70 1.09
14 737.08 2.68 93.64 2.59 39.76 1.08
15 888.59 2.70 112.62 2.64 42.83 1.08
16 1061.55 2.73 134.24 2.70 45.91 1.08
17 1254.26 2.75 158.77 2.74 48.99 1l.07
18 1471.30 2.77 186.32 2.78 52.08 1.07
19 1710.32 2.79 216.91 2.81 55.18 1.07
20 1976.28 2.80 250.84 2.82 58.29 1.07
21 2266.65 2.81 288.12 2.84 61.40 1.07
22 2586.50 2.82 329.08 2.85 64.52 1.07
23 2933.22 2.83 373.72 2.86 67.65 1.07
24 3311.93 2.84 422.38 2.87 70.78 1.06
25 3720.01 2.85 475.04 2.88 73.92 1.06
26 4162.59 2.86 532.07 2.88 77.07 1.06
27 4637.03 2.86 593.41 2.89 80.23 1.06
28 5148.47 2.87 659.48 2.90 83.39 1.06
29 5694.28 2.87 730.18 2.90 86.55 1.06
30 6279.59 2.88 805.94 2.91 89.73 1.06

Table C.1: Condition numbers of H, HII , Hc.
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p cond(H̃) α̃ cond(H̃II) α̃II cond(H̃c) α̃c

2 2.51 — 1.00 — 2.29 —
3 8.53 — 2.14 — 4.54 —
4 20.48 3.03 4.29 2.10 6.80 1.57
5 38.47 2.95 7.14 2.35 9.08 1.36
6 63.06 2.77 10.79 2.27 11.76 1.35
7 94.77 2.68 15.21 2.25 14.55 1.40
8 134.09 2.62 21.00 2.32 17.47 1.38
9 181.51 2.59 28.00 2.43 20.43 1.35

10 237.43 2.56 36.00 2.42 23.44 1.32
11 302.28 2.54 45.00 2.36 26.49 1.29
12 376.44 2.53 55.00 2.32 29.57 1.27
13 460.26 2.52 66.00 2.29 32.68 1.26
14 554.07 2.51 78.00 2.27 35.81 1.24
15 658.19 2.50 91.00 2.24 38.96 1.23
16 772.87 2.49 105.00 2.23 42.12 1.22
17 898.39 2.49 120.00 2.21 45.31 1.21
18 1034.97 2.48 136.00 2.20 48.50 1.20
19 1182.82 2.47 153.00 2.18 51.70 1.19
20 1342.13 2.47 171.00 2.17 54.91 1.18
21 1513.09 2.46 190.00 2.16 58.12 1.17
22 1695.86 2.45 210.00 2.16 61.34 1.16
23 1890.59 2.45 231.00 2.15 64.57 1.16
24 2097.43 2.44 253.00 2.14 67.80 1.15
25 2316.50 2.44 276.00 2.13 71.04 1.14
26 2547.95 2.43 300.00 2.13 74.27 1.14
27 2791.89 2.43 325.00 2.12 77.51 1.13
28 3048.44 2.42 351.00 2.12 80.75 1.13
29 3317.71 2.41 378.00 2.11 84.00 1.12
30 3599.80 2.41 406.00 2.11 87.24 1.12

Table C.2: Condition numbers of the diagonally preconditioned matrices H̃, H̃II , H̃c.
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p Heq beq H̃eq b̃eq

2 13 — 2.5 —
3 43 — 9.6 —
4 1.4e+02 1.21 39 1.37
5 5.5e+02 1.27 1.7e+02 1.44
6 2.5e+03 1.41 7.8e+02 1.49
7 1.3e+04 1.60 4e+03 1.58
8 8.7e+04 1.79 2.4e+04 1.71
9 6.7e+05 1.96 1.7e+05 1.87

10 5.8e+06 2.10 1.4e+06 2.03
11 5.6e+07 2.21 1.3e+07 2.18
12 5.7e+08 2.29 1.3e+08 2.29
13 6.2e+09 2.35 1.5e+09 2.36
14 6.9e+10 2.40 1.7e+10 2.41
15 8e+11 2.43 1.9e+11 2.45
16 9.5e+12 2.46 2.3e+12 2.47
17 1.2e+14 2.49 2.9e+13 2.50
18 1.5e+15 2.52 3.6e+14 2.52
19 2.5e+16 2.68 4.8e+15 2.56
20 3.8e+17 2.78 7.1e+16 2.64

Table C.3: Condition numbers of Heq, H̃eq
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p cond(HL) αL cond(HL
II) αL

II cond(Hc,L) αc,L

2 22.26 — 1.00 — 8.76 —
3 36.63 — 4.20 — 12.66 —
4 103.73 2.22 10.35 3.37 21.79 1.32
5 159.29 2.88 20.31 3.09 28.54 1.59
6 321.16 2.79 35.56 3.04 40.68 1.54
7 462.53 3.17 57.81 3.11 50.27 1.68
8 783.61 3.10 89.05 3.19 65.38 1.65
9 1072.30 3.35 131.52 3.27 77.84 1.74

10 1633.70 3.29 187.71 3.34 95.90 1.72
11 2148.02 3.46 260.31 3.40 111.23 1.78
12 3047.60 3.42 352.31 3.45 132.22 1.76
13 3882.61 3.54 466.90 3.50 150.44 1.81
14 5235.00 3.51 607.52 3.53 174.35 1.79
15 6502.55 3.60 777.89 3.57 195.47 1.83
16 8439.16 3.58 981.94 3.60 222.30 1.82
17 10267.85 3.65 1223.87 3.62 246.32 1.85
18 12936.86 3.63 1508.10 3.64 276.06 1.84
19 15472.08 3.69 1839.31 3.66 302.98 1.86
20 19038.45 3.67 2222.45 3.68 335.63 1.85
21 22442.38 3.72 2662.67 3.70 365.45 1.87
22 27087.84 3.70 3165.41 3.71 401.02 1.87
23 31539.39 3.74 3736.32 3.72 433.73 1.88
24 37462.45 3.73 4381.32 3.74 472.21 1.88
25 43157.36 3.76 5106.58 3.75 507.83 1.89
26 50573.30 3.75 5918.49 3.76 549.22 1.89
27 57724.04 3.78 6823.71 3.77 587.74 1.90
28 66864.93 3.77 7829.13 3.78 632.04 1.90
29 75700.77 3.79 8941.91 3.78 673.46 1.91
30 86815.43 3.78 10169.44 3.79 720.67 1.90

Table C.4: Condition numbers of HL, HL
II , H

c,L.
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p cond(H̃L) α̃L cond(H̃L
II) α̃L

II cond(H̃c,L) α̃c,L

2 22.08 — 1.00 — 8.69 —
3 23.86 — 1.00 — 8.78 —
4 69.56 1.66 1.97 0.98 15.57 0.84
5 70.34 2.12 2.50 1.79 15.54 1.12
6 141.81 1.76 3.59 1.47 21.95 0.85
7 142.41 2.10 4.53 1.77 21.94 1.03
8 241.22 1.85 5.83 1.69 28.07 0.85
9 241.74 2.11 7.11 1.79 28.06 0.98

10 369.14 1.91 8.66 1.77 34.02 0.86
11 369.58 2.12 10.24 1.82 34.02 0.96
12 526.55 1.95 12.05 1.81 39.85 0.87
13 526.93 2.12 13.92 1.84 39.85 0.95
14 714.23 1.98 15.98 1.83 45.60 0.87
15 714.56 2.13 18.14 1.85 45.60 0.94
16 932.88 2.00 20.47 1.85 51.28 0.88
17 933.16 2.13 22.90 1.86 51.28 0.94
18 1183.08 2.02 25.51 1.87 56.91 0.88
19 1183.33 2.14 28.21 1.88 56.91 0.94
20 1465.38 2.03 31.09 1.88 62.51 0.89
21 1465.60 2.14 34.07 1.88 62.51 0.94
22 1780.25 2.04 37.21 1.89 68.07 0.89
23 1780.45 2.14 40.47 1.89 68.07 0.94
24 2128.12 2.05 43.88 1.90 73.61 0.90
25 2128.30 2.14 47.42 1.90 73.61 0.94
26 2509.39 2.06 51.10 1.90 79.13 0.90
27 2509.56 2.14 54.91 1.91 79.13 0.94
28 2924.43 2.07 58.87 1.91 84.62 0.91
29 2924.59 2.14 62.95 1.91 84.62 0.94
30 3373.59 2.07 67.17 1.91 90.11 0.91

Table C.5: Condition numbers of the diagonally preconditioned matrices H̃L, H̃L
II , H̃

c,L.
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Proof of Lemma 5.2

Lemma 5.2 For any w, u, v ∈ H1(Ω), Ω ⊂ R2 a bounded Lipschitz domain, there holds

DA(w; v) = DA(u; v) +D2A(u;w − u, v) +R(u;w − u, v) (D.1)

with the estimate for the remainder R

|R(u;w − u, v)| ≤
√

2(5ρ4 + ρ5) ‖∇(w − u)‖2
L4(Ω) |v|H1(Ω) .

Proof. Let e := w − u and u(t) = u+ te. We consider

η(t) = DA(u(t); v)

=
∫

Ω

(
ρ(|∇u(t)|)(∇u(t))T∇v + σ u(t) v − fv

)
dx−

∫
ΓN

gNv|Γ ds . (D.2)

By Taylor’s formula we have that

η(1) = η(0) + η′(0) +
∫ 1

0
η′′(t)(1− t) dt . (D.3)

If the first and second derivative of the integrands of (D.2) are continuous and bounded
for all x ∈ Ω, we can write

η′(t) =
∫

Ω

d
dt

(
ρ(|∇u(t)|)(∇u(t))T

)
∇v dx +

∫
Ω

d
dt

(
σu(t)

)
v dx (D.4a)

η′′(t) =
∫

Ω

d2

dt2

(
ρ(|∇u(t)|)(∇u(t))T

)
∇v dx+

∫
Ω

d2

dt2

(
σu(t)

)
v dx (D.4b)

due to Leibniz rule. Differentiating straightforwardly
d
dt

(
σ u(t)

)
= σe , d2

dt2

(
σ u(t)

)
= 0 ,

d
dt(∇u(t)) = ∇e , d

dt(|∇u(t)|) =

(
∇u(t)

)T∇e
|∇u(t)|

,

d
dt

(
∇u(t)
|∇u(t)|

)
=

1
|∇u(t)|

∇e−
(
∇u(t)

)T∇e
|∇u(t)|3

∇u(t) ,

d2

dt2
(|∇u(t)|) = d

dt

((∇u(t))T∇e
|∇u(t)|

)
=

1
|∇u(t)|3

(
|∇u(t)|2|∇e|2 −

((
∇u(t)

)T∇e)2) ,
162
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we obtain the derivatives

d
dt

(
ρ(|∇u(t)|)

(
∇u(t)

)T ) = ρ(|∇u(t)|)
(
∇e
)T + ρ′(|∇u(t)|)

(
∇u(t)

)T∇e
|∇u(t)|

(
∇u(t)

)T
and

d2

dt2

(
ρ(|∇u(t)|)

((
∇u(t)

)T ) = 2ρ′(|∇u(t)|)
(
∇u(t)

)T∇e
|∇u(t)|

(
∇e
)T +

(
ρ′(|∇u(t)|)
|∇u(t)|3

(
|∇u(t)|2|∇e|2

−
((
∇u(t)

)T∇e)2) + ρ′′(|∇u(t)|)
((
∇u(t)

)T∇e)2
|∇u(t)|2

)(
∇u(t)

)T
.

Using the Cauchy-Schwarz inequality |
(
∇u(t)

)T∇e| ≤ |∇u(t)| |∇e| yields∣∣ d2
dt2

(
ρ(|∇u(t)|)∇u(t)

)∣∣ ≤ (
4 |ρ′(|∇u(t)|)| + |ρ′′(|∇u(t)|)| |∇u(t)|

)
|∇e|2

≤ (5ρ4 + ρ5) |∇e|2

where ρ4, ρ5 are the positive constants from Lemma 1.21. Applying Cauchy-Schwarz to
(D.4b), we estimate

max
{
|η′′(t)|

∣∣ t ∈ [0, 1]
}
≤
√

2(5ρ4 + ρ5) ‖∇e‖2
L4(Ω) ‖∇v‖L2(Ω) . (D.5)

Defining the remainder R by

R(u; e, v) :=
∫ 1

0
η′′(t)(1− t) dt ,

we obtain (D.1) by rewriting (D.3) and the estimate for |R| from (D.5).
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[BA72] Ivo Babuška and A. K. Aziz. Survey lectures on the mathematical foundations
of the finite element method. In The mathematical foundations of the finite

164



BIBLIOGRAPHY 165

element method with applications to partial differential equations (Proc. Sym-
pos., Univ. Maryland, Baltimore, Md., 1972), pages 1–359. Academic Press,
New York, 1972. With the collaboration of G. Fix and R. B. Kellogg.
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[BG88] I. Babuška and B. Q. Guo. Regularity of the solution of elliptic problems with
piecewise analytic data. I. Boundary value problems for linear elliptic equation
of second order. SIAM J. Math. Anal., 19(1):172–203, 1988.
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