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Zusammenfassung

Die votliegende Arbeit hat drei Ziele: Distanzfunktionen als wichtiges Werkzeug der
allgemeinen Topologie wiedereinzufiihren; den Gebrauch von Distanzfunktionen auf
den verschiedensten mathematischen Objekten und eine Denkweise in Begriffen der
Abstandstheorie anzuregen; und schliesslich spezifischere Beitrige zu leisten durch die
Charakterisierung wichtiger Klassen von Abbildungen und die Verallgemeinerung einiger
topologischer Sitze.

Zunichst werden die Konzepte des ,Formelerhalts und der ,Ubersetzung von
Abstinden® benutzt, um interessante ,nicht-topologische® Klassen von Abbildungen zu
finden, was zur Charakterisierung vieler bekannter Arten von Abbildungen mithilfe von
Abstandsfunktionen fihrt. Nachdem dann eine ,kanonische’ Methode zur Konstruktion
von Distanzfunktionen angegeben wird, entwickele ich einen geeigneten Begriff von
,Distanzridumen’, der allgemein genug ist, um die meisten topologischen Strukturen
induzieren zu koénnen. Sodann werden gewisse Zusammenhinge zwischen einigen
Arten von Abbildungen bewiesen, wie z. B. dem neuen Konzept ,streng gleichmissiger
Stetigkeit’. Es folgt eine neuartige Charakterisierung der Ahnlichkeitsabbildungen zwis-
chen Euklidischen Rdumen. Die Dissertation schliesst mit einigen Verallgemeinerungen
bekannter Vervollstindigungskonstruktionen und wichtiger Fixpunktsitze, und einer
kurzen Studie Giber Techniken der Visualisierung von Abstinden.

Abstract

The aim of this thesis is threefold: to reinstate distance functions as a principal tool
of general topology; to promote the use of distance functions on various mathematical
objects and a thinking in terms of distances also in non-topological contexts; and to
make more specific contributions by characterizing important classes of mappings and
generalizing some important topological results.

I start by using the key concepts of ‘preservation of formulae’ and ‘translation of
distances’ to extract interesting ‘non-topological’ classes of mappings, which leads to the
characterization of many well-known types of mappings in terms of distance functions.
After giving a ‘canonical’ method for constructing distance functions, a suitable notion of
‘distance spaces’ will be developed, general enough to induce most topological structures.
Then certain relationships between many kinds of mappings are proved, including the
new concept of ‘strong uniform continuity’, followed by a new characterization of the
similarity maps between Euclidean spaces. The thesis closes with some generalizations
of completions and fixed point theorems, and a short, self-contained study of distance
visualization techniques.

Schlagworte: Distanzfunktion, Abbildung, Topologie
Key words: distance function, mapping, topology
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INTRODUCTION

Railroad, telephone, bicycle, automobile, air plane,

and cinema revolutionized the sense of distance. |. .. ]

Distances depended on the effect of memory, the force of
emotions, and the passage of time.

Stephen Kern,

The Culture Of Tine And Space 18801918

In everyday language, ‘distance’ has always been something more general than
the length of a segment in some geometrical space. Instead, the concept of ‘near’
and ‘far’ is one of the more important categories in human thinking. Extracting
the abstract idea from the physical phenomenon, we speak of the growing
distance to an old friend, of how near we are to reach a certain goal, or how
far from being jealous. It is important that quite often the interesting question is
not “how much is in between x and y” but rather “how much is needed to get
from z to y”. This somewhat dynamical interpretation of distance differs from
the geomsetrical one in that it does not imply any symmetry, positivity, or strictness
a priori.

It is only natural when mathematicians, too, think of their objects as being
related by the one or other kind of distance—and how surprising s it that we still
require mathematical distances to be real-valued, mostly symmetric, and non-
negative? Before 1900, mathematical distances had beed used mainly in geometry
and as a measure of difference between real numbers or functions. They had
also played an important role for the clarification of the notion of ‘real number’
itself, which in turn was a strong impetus for the development of topology.
In the beginning of the last century, when Fréchet [Fré05, Fré006, Fré28] and
Hausdorff [Haul4, Hau27, Hau49] initiated the axiomatic study of distances in
the general setting of metric instead of geometric spaces, the real numbers were
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therefore the natural candidates for the values of a distance function. Complex
numbers or real vectors, being imaginable alternatives, would most certainly
not have been considered suitable because of the difficulties in ordering such
entities—given that partial orders had not received much attention at that time.
On the other hand, rational numbers had already long been known to be too
special because of their lacking completeness. Just as in case of measure theory,
it is therefore not surprising that the theoretical treatment of distances was
dominated by a paradigm of using real numbers.

Although, from the beginning, general topology was far more than the study
of metric spaces, the question of which topological spaces can be endowed
with a suitable metric, known as the ‘metrization problem’, remained important.
This was not only because metric spaces had very nice topological properties,
mostly inherited from even nicer properties of the real numbers themselves,
but also since the idea of distance remained a principal intuition in building
new topological concepts, and because topological spaces alone had not enough
structure to formulate certain interesting notions. For example, Lipschitz- and
uniform continuity, or completeness, being of great importance in real analysis,
cannot be expressed in terms of open sets alone.

This motivated the search for suitable structural additives to general topo-
logical spaces, which could well have led to an early study of substantially
more general distance functions than real metrics. But despite only a few
attempts in the latter direction, the researchers in this field soon focused on
systems of subsets instead, ending up with the notion of ‘uniform space’ (cf.
[BHH98]). However, there were situations when distances had a great chance
of being reconsidered— passing virtually unnoticed. Van Dantzig [vD32], for
instance, defined fundamental sequences in a topological group, using Menger’s
‘Gruppenmetrik’ [Men31] without recognizing it as a distance function. Even
more surprisingly, Kelley essentially proved that every uniformity (even every
quasi-uniformity) comes from a family of real-valued distance functions [Kel55],
but despite the popularity of his classical textbook, the theory of uniform spaces
did not yet enter a possibly fruitful engagement with a theory of vector-valued
metrics.

The aim of this thesis is threefold: to reinstate distance functions as a principal
tool of general topology; to promote the use of distance functions on various
mathematical objects and a thinking in terms of distances also in non-topological
contexts; and to make more specific contributions by characterizing important
classes of mappings and generalizing some important topological results.

In order to present ‘distance’ as an interesting concept in its own right,
independent from geometry and topology, 1 will start with the notion of
‘distance sets’, leaving aside all topological considerations until Part B. In
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Chapter 1, examples from throughout mathematics are used to illustrate the
frequent occurrence of natural non-real, non-symmetric, or non-positive distance
functions, where the distance from x to y will often be expressing a ‘least thing
necessary to get y from a’ instead of a measure of the ‘space between x and y’.
In Chapter 2, the key concepts of ‘preservation of formulae’ and ‘translation of
distances’ are used to extract interesting classes of mappings between sets with
the same or different type of distance function, leading to the characterization
of many well-known types of mappings in terms of distance functions, such as
affine maps, or homomorphisms between graphs, lattices, fields etc. Concluding
Part A, I then give a ‘canonical’ method for constructing distance functions,
illustrated with an application in logics.

Entering the realm of topology, Part B begins with the development of a
suitable notion of ‘distance spaces’ which will be general enough to cover all at
least moderately well-behaved topological structures. In particular, it is shown
in Chapter 3 that all Ty pre-topological spaces and all uniform frames can be
induced from distance spaces. At the end of Chapter 4, these results will be
joined by the proof that even most finite systems of quasi-uniformities on a
set come from a single distance structute, this construction building the most
technical section of the thesis. The remainder of Chapter 4 deals with all kinds
of mappings between distance spaces, giving counter-examples and proving
certain relationships, most notably between traditional forms of continuity and
the new concept of ‘strong uniform continuity’. Touching classical geometry, I
also charactetize the similarity maps between Euclidean spaces as those maps
preserving the equality of distances. Chapters 5 and 6, finally, are dedicated
to two traditionally central fields of topology: they contain generalizations of
known completions and fixed point theorems.

As a supplement of a more applied nature, a self-contained chapter about
the visualization of distances by means of different algorithms can be found in
the appendix.

Terminology and notation are mostly standard and have been changed only
in a few cases. For the reader’s convenience, newly introduced notation and
terminology is always indicated in the margin. To address a wider audience,
I have abstained from using category theory as a language; it’s usage would
have shortened only a few arguments." On the other hand, a certain amount of
order-theory is used throughout (see [Ern82] for an introduction). Some proofs
are structured by putting details into double square brackets [ ... ], and these ate
also used for inline proofs. Moreover, the application of choice principles such
as the Axiom of Choice has been made explicit by ending the affected proofs
with a sign like [xd.

"For categorical aspects of distance sets, see [Hei02].
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1.
DISTANCE SETS

Entfernung, du, die iiber Herzen treuer

Als Blick und Schwur belehren kann,

Du bist der Liebe, was der Wind dem Feuer:
Ein kleines loscht er ans, ein grofes facht er an.

Haung, Epigramme

Definitions

A (general) distance function d assigns to each pair (z,y) of elements of a set
X of “points” a distance d(x,y) “from z to y” such that the triangle inequality
holds, and such that the distance is zero in case that x = y. The distances need
not be real numbers, but the co-domain of d must of course provide enough
structure to state the #iangle inequality d(xz,y) + d(y, z) = d(x,z). In this formula,
+ is meant to be an “addition” and < is meant to be some sort of “order”, and
these should clearly satisfy a certain amount of compatibility.

A quasi-ordered monoid (ot g. 0. m. for short) is a quadruple M = (M, 4,0, <)
such that 4 is an associative binary operation on M, 0 is a neutral element for
+ (thatis,a +0 =0+ a = a forall & € M), < is a quasi-order on M (that is,
a reflexive and transitive binary relation), and + is isotone in both components
(thatis, « + 8 < o’ + 3’ whenever a < o and 8 < ). Note that + need not
be commutative. The additive notation with the symbols + and 0 instead of o
and 1 is used only because it resembles standard metric space notation. Also, <
need not be a partial order (that is, antisymmetric), and the symbol ~ will denote
its symmetric part, that is, z ~ y <= = < y < «. If < is antisymmetric, M
will be called a partially ordered monoid, ot p. o. m. for short.
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Now, given a set X and a q.o.m. M, an M-distance function on X is a
map d : X* — M with d(z,z) = 0 and d(=,y) + d(y,z) > d(z,z). The triple
X = (X,d, M) will then be called a distance set.

Note that d need not be symmetric (which would mean d(z,y) = d(y,x) for
all z,y € X). Therefore, we shall not speak about the distance ‘between z and y’
but rather about that ‘from z to y’. Also, distance functions need not be positive
(which would mean d(z,y) > 0 for all 2,y € X).* There are many other special
properties a distance set might have, some of which will be introduced in the
examples below or even later in the text. At the beginning I only mention the
following four separation axioms. The distance set X is said to be . . .

Ty <= d(z,y) € 0ord(y,z) £0 for all
two-way separated <—=> d(x,y) » 0and d(y,x) % 0 z,y € X,
T <= d(z,y) € 0and d(y,z) £ 0 T Zy.

LEMMA 1.1. ([Hei98))  Fora distance function d = X* — M:
1. d is symmetric => 2d = 0.

2. d is Ty = d is two-way separated —> d is Ty <= d(z,y) # 0 ord(y,x) % 0
Jor all x # y. No other implications hold between these properties in general.

3. For symmetric distance functions, all three separation properties are equivalent and will be
summarized under the name separatedness.

The remainder of this first chapter mainly contains a large number of examples
of distance functions for various kinds of mathematical objects, beginning with
the classical case of real-valued distances. Most of these examples will again be
discussed in Chapter 2 under the aspect of mappings between distance sets.
If nothing else is stated explicitly, Greek letters o, 3, .. . will always refer to
elements of M, while Roman letters x, y, . . . will always refer to elements of X.

Real distances

EUCLIDEAN DISTANCE

The oldest and most frequently used distance function is certainly Euclidean
distance between points in the plane, which is nothing else than the length of
segments. Using cartesian coordinates and generalizing to n dimensions, one
has

"The word ‘space’ is avoided here because it usually refers to topological structures which will
not be considered in this first part. In Part B, however, I will define distance spaces as distance sets

with an additional structural ingredient.
*Perhaps a more precise term would be the lengthy ‘positively semidefinite’.

X

distance set

Symmetric

positive

To
T

two-way
separated

separatedness
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e(z,y) = ,| Y (zi—y:)*> forz,y€R™

1=1

The range of e is the interval R* := [0,00) of non-negative real numbers, and
the triangle inequality’ holds with respect to the ordinary addition + and order
< on R™. In addition to being commutative and totally ordered, this p. o. m.

R* := ([0,00),+,0,<)

has of course many other nice properties beyond the minimal requirements
described above, and we will come across them frequently. The resulting
distance set (R™,e,R™) will be designated by the symbol E,,.

Of course, e can also be interpreted as a distance function with co-domain

R :: (R7 +)O, g),
the p. 0. m. of real numbers, or even with co-domain
R' = (RU{o0},+,0,<),

the p. o. m. of extended real numbers. In the latter, the element co behaves as usual:
it is the Jargest (or fop) element (that is, oo > « for all «) and it is absorbing
(av+ 00 = 0o = 00 + « for all &). The term ‘rea/ distance function’ will be used
for all R " -distance functions in the following.

As usual, distance functions with co-domain

R"" = ([0,00],+,0,<)

are called guasi-pseudometrics (qp-metrics), the prefixes ‘quasi’ and ‘pseudo’ desig-
nating the potentially missing symmetry and separatedness. As a symmetric
gp-metric, Euclidean distance is a pseudometric, and because it is also separated,
it is even a setric. Following standard terminology, the corresponding distance
sets are here also called qp-metric spaces.” For a “quasi-metric” one could either
require Ty or T1, and because of the latter ambiguity, this term will not be used
here. In concordance with most authors, the value oo will always be allowed
for (qp-)metrics, while in the literature also the (potentially confusing) term
‘extended metric’ is used for such distance functions. As we will see in Chapter
2, it makes no essential difference to enlarge the domain of a distance function

Contrary to our modern “metric” approach, Eukleides of Alexandria did not seem to consider
the triangle inequality so fundamentally evident as to postulate it @ priori. In the first book of the
traditional version of his Elements [Euk62], it is proved as Proposition 20, indirectly using four (of
five) “postulates”, six (of nine) “axioms”, and fourteen of the preceding propositions. Looking at
that proof, the triangle inequality appears as a corollary to Propositions 18 and 19 (which state that
the largest angle of a triangle opposes the largest side). It is then used at least indirectly in ten of the
remaining 28 propositions of Book 1.

%1t will become clear in Part B that certain distance sets like these may indeed be interpreted as
distance spaces since they admit a canonical zero-filter.
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by some additional elements, so we may also count all gp-metrics as real distance
functions.

There is a large collection of literature on metric spaces (recent textbooks
include [KKO01, Cam00, Vra90, Koh88, Gil87, Rei82, Lim77, Kap72, Pit72,
Cop68]), and so the following examples of real distance sets focus on non-
symmetric ones.

REFLEXIVE RELATIONS OR DIRECTED GRAPHS

If R is a reflexive relation on X, we may define a T1 qp-metric by
dr(z,y) = \{n € w|zR"y},

where w is the set of natural numbers including zero, and R :=Ax:=idx =
{(z,z) |z € X} is the diagonal ot identity relation on X. Since Ry if and only if
dr(z,y) < 1, this is perhaps the simplest example of a mathematical structutre
which is completely determined by its distance function. Actually, dr has only
natural numbers and oo as its values, so it might also be interpreted as having as
co-domain the submonoid

w' = (wU{o0},+,0,<)

of R*T. The following lemma is an easy exercise and should give a feeling for
the relationship between R and dg.

LEMMA 1.2. For a reflexive relation R on X :
1. R s symmetric <=> d R is symmetric.
2. R is antisymmetric <= dr(x,y) + dr(y,x) = 3 whenever x # y.
3. R is ayelic <= dr(z,y) + dr(y,z) = co whenever x # y.

4. R is transitive <=> dr(z,y) € {0,1,00} forall z,y
< dgr(z,y) Vdr(Y,2) 2 dr(x,z) foral z,y, 2.

5. Ristotal <= dr(z,y) Ndr(y,x) < 1 forall z,y.

In 2. and 3., a typical modification of an M-distance function d is used: its
additive symmetrization

d®(z,y) := d(z,y) + d(y,z),

which is a symmetric M-distance function at least when + is commutative.

dr

w
Ax
diagonal
identity

relation

ET

additive sym-
metrization

dS



upper syn-
metrization

ds

lower sym-
metrization

Sd,A

d()

ultra-M -
distance
Junction

directed graph
V(&)
vertices
E(G)
edges

arrows

walk

length

shortest walk
da

(undirected)
graph

Segment

zy?
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In the non-commutative case, one might instead use the #pper symmetrization
d*(x,y) := d(z,y) V d(y, ),

which of course requires the existence of all these suprema. The dual concept
of a lower symmetrization

Sd)/\(l‘,y) = d(ZB,y) A d(y,:l?),

which is used in 5. above, fulfils the triangle inequality only when sg(x,2) <
d(z,y) + d(z,y) forall z,y, z (at least for sufficiently nice monoids, cf. [Hei98]).
More generally, the supremum \/,.;d; of a family (d;)ser of M-distance
functions on X is again a distance function (if it exists), in particular, d’ := d v 0
is a positive distance function.

The last condition in 4. is nothing else than the triangle inequality with the
operation + replaced by the binary supremum operation in M. Such an M-
distance function will be called an w/tra-M -distance function. Hence, R is transitive
if and only if dr is an ultra-gp-metric.

In discrete mathematics, a set X with a reflexive relation R is often interpreted
as a directed graph (ot digraph for short) G = (V, E), consisting of aset V = V (G)
of vertices ot nodes and a set E = E(G) C V2 of edges or arrows. All digraphs here
are understood to be sizple (have at most one edge from x to y) and Jogp-less
(have no arrow from x to x). The obvious translation of a relation R on X into
a digraph is to put V := X and E := R\ Ax, that is, the arrows are exactly
the related pairs of distinct elements of X.

Although reflexive (or, alternatively, irreflexive) relations and digraphs are
essentially the same thing, graph theory usually focuses on different properties
than relation or order theory, many of which are connected to the notion of a
walk (always assumed finite here), which is just a tuple (xo,...,z,) of vertices
of which each successive pair x;,x;41 is joined by an edge (z;,x:41) € E.
The /Jength of the walk (xo,...,x5) is then just n, the number of edges in it. A
shortest walk from x to y is one whose length equals the distance dg(x,y) from
x to y, which is defined as the infimum over all lengths of walks from z to y.
Although this is obviously only a reformulation of the definition of dg in terms
of walks, the graph interpretation is much more natural as it corresponds to the
most intuitive meaning of distance. For (undirected) graphs G = (V,E) (that is,
with E C {e C V||e| = 2} instead of E C V?), all these notions are defined
analogously. In this case dg is symmetric. The following characterization of
certain classes of undirected graphs makes use of the concept of a segment
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77 = {2 € X |d(w,y) = d(z,2) + d(z,y)}

in a distance set, which in case of graphs is also called an interval."

PROPOSITION 1.3. For an undirected graph G':
1. G is connected <= dg(x,y) < oo forall x,y.

2. 1f G is connected:
G is bipartite <= dg (z,y) + da (y,2) + da(z,2) is abvays even.

3. If G contains an edge but no circles of length 4:
G is a tree <= TG NGz NZTY £ O forall x,y, 2.

While 1. is trivial, the proofs of 2. and 3. can be found in the appendix.

QUASI-ORDERS

For a transitive reflexive relation (that is, a quasi-order) < on X .2 one can define
an even more natural distance function by

0ifz>y

=1 — =
d<(@,y) X< () { 1 otherwise,

whete X« is the characteristic ot indicator function of <, that is, x<(z,y) is 1 or 0
depending on whether z < yor z £ y.

The idea is that when = dominates y, there should be no distance from z
to y, while otherwise there should. This distance can not only be interpreted as
an ultra-gqp-metric that takes only two values, but also as one with values in the
monoid

2:= ({0,1},v,0,<).

Perhaps the most adequate distance function on a quasi-ordered set (X, <) is
in fact the characteristic function x itself, interpreted as having the monoid
2" := ({0,1}, A, 1,>) of binary truth values as its co-domain. The reader’s probable
suspicion that the 2-distance function d< and the 2'-distance function x< are
essentially the same thing is of course correct, and Chapter 2 will provide us
with the suitable notions to make this statement precise. It will then also become
clear that the choice between R and 2 as a co-domain does make a difference.

"More definitions: a shortest walk is always a path (a walk whose vertices are all distinct). A cirde
is a closed walk (i. e., with £g = x5,) of length > 3 with |{zo,...,2n }| = n. An odd or even circle is
one of odd or even length, respectively. A graph is connected if it contains a walk from x to y for all
x,y € V. Itis bipartite or a #ree if it contains no odd circles or no circles at all, respectively.

2If no confusion is likely, I will often use the same symbol for different entities, hence the
quasi-order < on X is of course different from the quasi-order < on the reals in this example.

XA

indicator
Junction

2!

binary truth
values
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Table I. Equivalences between properties of a
relation R and the function 1 — x R.

R 1-— XR
reflexive  zero-distance condition
transitive  triangle inequality
quasi-order  gp-metric
symmetric  symmettic
equivalence relation  pseudometric

antisymmetric T
identity  metric

Having only two values, d is quite a “coarse” kind of distance for a quasi-
ordered set, and we will learn later on that it can be generalized to a much “finer”
and “internal” distance when < has additional properties. Also, we will see in
the next chapter how this idea of fineness can be made precise.

Despite this coarseness, the quasi-order < is completely determined by d¢
as it was already the case with digraphs and reflexive relations, but here the
relationship is in some respects stronger than that between R and dr. While
most w ' -distance functions (for example those that do not take the value 1)
are not the dr of some relation R, every 2-distance function d belongs to a
quasi-order. More precisely, < = <4, and d = dg,, where

T =24 Y i< d(z,y) <0.

This quasi-order <4 can of course be defined for all distance functions and will
be called the specialization of d.' Secondly, there is a very strong correspondence
between interesting properties of < and those of dg. Table 1 shows these
equivalences in terms of an arbitrary relation R and the function 1 — xr.
Thitdly, this bijection between the oljects (X, <) and (X,d<) is accompanied
by one between some natural classes of zappings. Such relationships will also be
described in the next chapter.

Multi-real distances

The first step of emancipation from the real number paradigm is quite easy.
The idea is simply to replace the one real value of the distance function by a
family or vector of real values, expressing disparate components of the distance.
Although this kind of multi-valuedness could be expressed by sets or families

'As an exception to the general rule of not changing common terminology, I deviate here
from the usual definition. The reason for this negligible difference will become clear when we are
concerned with topological structures in Part B.
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of metrics instead of just one metric, doing so would give the treatment a new
quality, suggesting that things become more complex and that new formalisms
and methods would be required —which is not the case. It is much more simple:
the co-domain R is replaced by a power monoid of the form

R®")" = (RU{oo})’,+,0,<),

where I is some arbitrary index set, and 4 and < are the usual component-wise
addition and order. Distance functions with such a co-domain will be called
multi-real, and likewise the terms multi-gp-metric and [multi-psendometric | will be used

for the positive [and symmetric] ones among them.'

EXAMPLE 1.4. In multivariate analysis of opinion polls, the set X of queried
persons is often partitioned by means of a clustering algorithm that requires the
definition of a distance function on X. At first, each of the different variables
v1,...,Vk (such as age, gender, educational level, etc.) leads to a different
pseudometric d; (for example, difference in age, or number of steps between
educational levels, or 0 resp. 1 for same or different gender, respectively). In
order to obtain a real metric, these components are usually combined to a
weighted sum. However, in order to avoid the problem of finding suitable
weights, one can also define clustering algorithms that directly work with the
multi-real distance (dy,...,dx).

DISTANCES IN FUNCTION SPACES

The second example of a multi-qp-metric comes from functional analysis. In a
function space such as C'([0,1]), the real vector space of continuous real-valued
functions on the unit interval, one traditionally uses a whole continuum of
metrics defined via the so-called L? -norms

1/p

1
1fllp = /0 (@) dz forp > 1.

It is a natural idea to collect them together into the multi-pseudometric
c((0,1])* — RN

iy (rg - dL<f,g>:{

[1,00) — RT
p = | f —gllp-
Another idea is that the distance between two entities, in this case functions,

could be an entity of the same kind:

"The term ‘multi-metric’ should be avoided because of its ambiguity: it could either be used for
an arbitrary separated multi-pseudometric or it could mean that all components are metrics.
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c(o1])® — ®H"
. : { [0,1] — RT
, — doww. (f,9):
When interpreted as having C'([0,1]) itself as a co-domain, dpyy. becomes an
example of an snternal distance function.

In the transition from R ' to (KT )T, almost all nice propetties of the reals are
preserved, so that much of what can be proved about pseudometrics can also be
proved about multi-pseudometrics. There are mainly two relevant differences.
The first one is that the component-wise order of (R")? is not total but
partial, and there are certain applications of metrics where comparability of all
distances is essential (as for example the generalized version of Brouwer’s fixed
point theorem in Chapter 6). The second difference only shows up when I is
uncountably infinite as in case of dpy. (see Chapter 3).

SET FUNCTIONS

The following construction can be used to deal with both closure systems and
probability spaces, for example. Assume that on a set X, a non-negative sez
Sunction p : P(X) — [0,00) is given, where Z2(X) is the power set of X. For
cach subset A of X, define a quasi-order A7 := ((X \ 4) x X) U (X x A),
and put

X2 - ®H7
2(X) — R'
d. - A — A)da= x, =
H (z,y) — du(z,y): & )OA i(fyyéAorIEA
{,u(A) ify e Aandx ¢ A.

In other words, d,(x,y)(A) is either 0 or u(A), depending on whether the
proposition “if y is in A then « is in A” is true or false, respectively. In still
other words, the A-component (d,,)a of d,, says that it “costs” p(A) to get
from outside of A into A. In this example, the original information p is almost
completely coded into d,, since pu(A) = d, (x,y)(A) for all z € X \ A and
y € A, but such a pair z,y only exists if A ¢ {0, X }. The same information can
also be extracted from d,, without knowing which component of d,, belongs
to A, that is, from the set D := {(d,)a | A C X} of components alone [For
alle € D, put a. := max, 4 e(z,y) and Ac := {y € X |e(x,y) > 0 for some
x € X}. Then, for all A ¢ {0,X}, n(A) = a. for the unique e € D with
A, = Aif such an e exists, or u(A) = 0 if no such component e exists].!

'n this thesis, a pair of double squate brackets [ . . . ] is used to parenthesize proof details for
the claim preceding these brackets.
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There is also a possibility to code p into a multi-pseudometric:

X2 RTZX)
@(X) — RT

/

d : 0 ifx=
$ @) = du@y): § y

— pw(A) ifx #yanda,y € A
oo otherwise.

Here p(A) can be recovered from d/u if and only if |A| > 2, and again
this is possible from D’ := {(d/u)A |A C X} alone [For all e € D', put
Qe = Mingxy e(x,y) and Ae = {y € X|e(z,y) < oo for some z € X,
z # y}. Then, if |A] > 2, u(A) = a. for the unique e € D’ with A, = A].

The latter construction also shows that when p is Zotone (that is, A C
B = p(A) < p(B)) and fulfils p({z}) = 0 for all z, it is the infimum of a
set of diameter functions, namely those corresponding to the components of d;i.
Diameters will be discussed in Chapter 3.

Given a probability space (X, </, P) (that is, with &/ a o-algebra on X and
P: o/ — [0,1] a normalized o-additive measute), we can define u(A) := P(A)
for A€ o and u(A) :==0for A € Z(X)\ &, and then use d,, as a distance
on X. In many cases, P({z}) = 0 holds for all z € X, so that then also d;
can be used. Since & is closed under complements, A € &/ holds if and only
if p(A)V p(X\ A) >0, hence the whole probability space structure can be
recovered from d,, resp. d,.

Distances in classical algebraic structures

GROUPS

Abelian lattice-ordered groups. ~ As we have already seen, the function dpw. (f,9) =
|f — g] on C([0,1]) can be interpreted as an internal distance function. This is
because C([0,1]) is not only a vector space but also a p. 0. m. under the pointwise
order. But even more so, its addition is (i) a commutative group operation and
its order provides (ii) binary suprema, since the supremum of finitely (in contrast
to infinitely) many continuous functions is again continuous. Such a p.o.m.
(having (i) and (ii)) also provides binary infima and is called an abelian lattice-ordered
group ot abelian L-group for short (cf. [Goo86]). All lattice-ordered groups allow
for the definition of a sub-additive absolute valune

] == V (),

d’

o

diameter
Junctions

probability
Space
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so that one has a symmetric operation |x — y| with |z — | = 0 on every £-group.
In the commutative case, also the triangle inequality holds:

le—yl+ly—z = (@—y)Vy—a2)+((y—2)V(z—v))
z (z—yt+ty—2)Vy—z+2—y)

=(zx—2)V(z—2) =|z—2|

On the other hand, it is easy to show that the triangle inequality in turn implies
commutativity [For z,y 2 0,z +y = |(—2) = 0|+ [0 —y| = |(—z) —y| =
|y + x| = y + «, hence © +y = y + . Since in an £-group every element is
a difference of positive ones, this suffices]. Holland [Hol85] shows that also
n|z — y| is a distance function if and only if the group is abelian.

Abelian partially ordered groups. In the theory of abelian partially ordered groups
(G,+,0,<), as presented by Goodeatl [Goo86] for example, one also studies
real distance functions on G whose definitions do not require the existence of
suprema in G. Given any “unit” u € G, one can define

k
el i= A2 1 fn €\ (0}, —hu <o <kl € [0.00)

which always fulfils ||z||s + ||y||w 2 ||z + yl|w and ||mx||. = |m|||z||. for
allm € Z\ {0}. In order that ||-||, is 2 pseudonorm, one only needs that also
[|10]|.. = 0, which is equivalent to ku > 0 for some k > 0. When u is even an
order-unit, that is, when each * € G is dominated by some ku with k > 0, this
order-unit norm is finite.! The induced pseudometric is dy, (#,y) = || — y|| ., and
we may combine all d,, with u > 0 to a multi-pseudometric dy : G* — (BT)G+
by putting di7 (z,y) (u) == dy(z,y) forallu € GT := {u € G|u > 0}.

PROBLEM 1.5. For which groups can the group operation be recovered from
this multi-pseudometric?

Abrbitrary groups. A seemingly more trivial definition of an internal distance in
an arbitrary group (G, 0) is

dg(z,y) ==z 'y,

which is a two-way separated distance function in every group. Moreover, it is
skew-symmetric, that is, the triangle inequality is in fact an equation (cf. [Hei98]
for different characterizations of skew-symmetric distances). This distance was
already introduced by Karl Menger in 1931 [Men31] and is probably the first
example of a non-real distance function in the literature. But what is its value

'Only these pseudonorms are actually considered by Goodeatl.
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monoid, or rather, what is its order relation? For a skew-symmetric distance
function, the triangle equation holds irrespective of the order, so we might take
any quasi-order on G that is compatible with o, for instance the identity relation.
This gives the p.o.m.

(G,O,G,Ag),

where e is the group’s unit. Although this might seem quite ridiculous at the
moment, we will however see in Example 3.11 that it leads to a “metrization” of
all T1 semigroup topologies of a group. For the moment, the following exercise
might suffice as a motivation for choosing z~y as a distance function.

EXERCISE 1.6. Express the conditions for upper and lower semi-continuity
of a function f : R — R in terms of the two distance functions e(z,y) = |z — y|
and d(z,y) := y — x.

Note that when the group is abelian, and a lattice-order is used instead of the
identity, the upper symmetrization of d¢ is just the distance function |z — y|
defined above.

What about semigroups instead of groups? A commutative semigroup (.5, +)
which is cancellative, that is, satisfies the cancellation law

rTt+z=yYy+z=—=x =1y,

can always be embedded into a group G so that dg can be used. Another
generalization of dg to certain ordered semi-groups follows.

LOWER DISTRIBUTIVITY

Let me now introduce to you the perhaps most fruitful type of value monoid M
for the general theory of distance functions: the co-quantale. It not only features
completeness, that is, all subsets have both an infimum and a supremum, but at
least the infima are also quite well behaved in that they fulfil'

a+/\B:/\(a+B) and /\A-i-ﬂ:/\(A"‘ﬁ)

for all a,8 € M and A,B C M, where a+ B is short for {a+ 3|8 € B}
of course. This property, which 1 will also call /ower distributivity in the sequel, is
of paramount importance for the success of many proofs. On the contrary, its
dual (with suprema instead of infima), here called upper distributivity, only plays a
minor role.” Most of us use the corresponding properties of the real numbers
(which hold there only for nonempty and bounded subsets) like a duck takes

'In general, only the left hand side of both equations is less than or equal to the right hand side.
2Completely ordered monoids that are upper distributive are usually called guantales. However,
some authors use that term for what is here called co-quantales instead.
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the water. The first application of lower distributivity in this thesis is the proof
of the triangle inequality for the functions

d—.(e,8) == N\{6 € M|a+5>p5}
and d_(a,8) = N\{6 € M|a<5+p}

on M, which is easy enough [d_(c,8) +d—(8,7) = N{6+d|a+d > 3,
B+8 =242 N6+ |a+d6+8 >~} =d_(a,7), and likewise for d._].
However, for d_, to become a distance function it is also necessary that the
implication &« 4+ > a = d > 0 holds, and likewise for d._. Otherwise, one
would rather use the distance functions d”, and d”_ which always fulfil the
zero distance condition because of d_ (o, «),d— (o, ) < 0. The function d_,
is characterized by the equivalence

d_(a,B) <<= B < a+d.

For fixed o, this just says that the functions f : 8 — d_. (e, ) and g : § — a+ 6
build an adjunction, f being the lower or lft adjoint, g being the upper or right
adjoint (cf. [Exn82]). In such a situation, the upper adjoint necessarily preserves
infima—which is half of the property of lower distributivity—while the lower
must preserve suprema, that is, d_, (o, B) = VV{d_(,8) | 8 € B}. One can
summarize this and the fact that o < o implies d_. (o, 8) > d_.(o/,3) by
saying that d_, is (antitone, \/ -preserving). Similatly, d_ is (\/-preserving, antitone). The
upper symmetrizations d.. ;= d_, Vd._ and d’, = d_, V0V d._ do not have
such monotonicity properties.

Note that d—. and d_ can also be defined for a non-complete p.o.m.
provided that the relevant infima exist and that lower distributivity holds for all
existing infima. In case of a group (G,0,e,Aq), for example, d_, is then just
dg [since x 0 § = y is equivalent to § = =~ 'y].

MODULES AND RINGS

If R = (R,+,-) is a ring and (M,+,0,-) an R-module (which will here always
mean a left module, that is, with ring elements multiplied from the left), then
again M = (M,+,0,An) is a p.o.m., and d,(z,y) := r(—z + y) is a skew-
symmetric M-distance function for each r € R. Like before, we can combine
all the d,- with 7 € R to a distance function d on M whose values are vectors
of M-elements. This is done by using the p.o.m. M’ with component-wise
addition and order as co-domain, just as in case of multi-real distances, and
defining

M — ME

DN () o da () {R "

r = dy(z,y)(r) =r(—z+y).
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It is actually always possible to combine any family (d;);cr of distance functions
on a set X, even with different monoids M, to a single distance function by
using the direct product [ [, ; M; of these monoids as the new co-domain.
The above definition of d works as well for a ring (R, 4,0, -), being a module
over itself, but there are also quite useful rea/ distance functions on rings. For

any p € R, the valuation of x € R at p is
wp(x) = \/{n € w|p"a =z for some a € R} € [0,00],

which already leads to a symmetric distance function wy,(x —y) whose co-
domain is the co-quantale ([0, 0], A, 00, >). More commonly, one defines the
p-adic “norm”

||x||p = wp(x)_l (Wlth OO_1 = O and 0_1 = OO)

which fulfils ||0]|, = 0 and ||z 4+ y||, < ||z||p V ||yl p, so that the induced real
distance function d,, (z,y) := ||— + y|| is an ultra-pseudometric.! In case of
R=7Zand p > 2, d, is separated® and a powerful tool in algebraic topology
and geometry, especially when it is extended suitably to the field QQ of rational
numbers (see below).

For p =0, dp(z,y) is cither 0 or oo depending on whether x =y or
not. Combining all the other p-adic distances to a multi-pseudometric, we get
dagic(z,y) : R\ {0} — RT, p — dp(x,y). In contrast to a single dp, dygic is
almost always separated:

PROPOSITION 1.7. Fora ring R with 1 and without zero-divisors:
dodic 75 not separated <= d,qic s constantly ero <> R is a sken-field.

Proof. In a skew-field, all non-zero elements are units, hence d,qc is constantly
zero. On the other hand, assume that ||z||, = 0 for some « # 0 and all p # 0.
In particular, ||z||,> < 1, hence #?a = z for some a # 0, which implies that
xa = 1 since z is not a zero-divisor. Then x is a unit, and so is every p # 0
[because ||z||, < 1 implies that p divides x]. U

This also shows that it does not make much sense to define d,g. on a
(skew-)field. See below for a modification that works for quotient fields.

! At least in the commutative case, one can also use an ideal I of R instead of an element p, and
define an ultra-pseudometric dy via the valuation wr(z) := V{n € w|z € I""} and the “norm”
el = wr(z)”".

2More generally, dy, is separated for all non-units p in an integral domain (that is, a commutative
ring with 1 and without zero-divisors) R that fulfils the ascending chain condition for principal
ideals (accp) [||z||p = O implies that, for all n € w, we can choose Ay, # 0 with © = X, p™. Then,
in particular, A, = A,,1p since R has no zero-divisors, and the ascending chain (A, R)new of
principal ideals must become stationary because of accp, that is, Aj, 41 = Apa for some a # 0. But
then p = Ap /A1 is a unit].

In general, dj, might not be separated even when p is prime, for example, ||z]2 = 0 in
R := Z + xQ[z], the ring of polynomials in = with rational coefficients and integer constant term.
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A look at the definition of w, shows that it can also be applied to a
module M over R, only that  and a are now elements of M instead of R. As
above, wp (0) = 0 and wy (z +y) = wp(x) A wyp(y), hence dygie also exists for
modules.

Factorial domains.  Before we extend d,qic to quotient fields, I want to show how
in a factorial domain, that is, in a commutative ring R with 1 in which each non-zero
element has an (essentially) unique prime decomposition, the valuation w,, can
also be used to define an internal distance rather than a multi-real one. In Z, for
instance, two elements x,y > 0 have a unique least common multiple lem(x,y)
and a unique greatest common divisor ged(x,y) which are equal if and only
if x = y. The idea is now to interpret their quotient lem(z,y)/gcd(x,y) as a
distance. In a general factorial domain, there might be no natural order, or there
may be units other than &1, so that lcm and ged might not be uniquely defined.
Let us therefore assume that some prime base P of R* has been fixed, that is, a
maximal set of pairwise not divisible ptimes in R* such as P = {2,3,5,...} in
case of Z. Then we have
Z ~ H pur®

peP

forall z € R*, where ~ means mutual divisibility. Hence

ddiv.(w,y) = H p\wp(w)—wp(y”
peEP

is a good candidate for a distance in R*. Indeed, dgiy. (z,2) = 1, and dgyy. (z, 2)
divides dgiy. (2,Y) « daiv. (y,2). This is still true when we extend dgy. to R by
setting dgiy. (0,2) := dgiy. (2,0) := 0 and dgiy. (0,0) := 1 for all z € R*. Since
(R,-,1) with divisibility as quasi-order builds a q.0.m. M, we have defined a
symmetric internal distance function on R that might be interpreted as a kind of
symmetric “division”. Note that dg;,. is separated if and only if R has at most
one unit since for a unit w, dgy, (x,uz) always equals 1. In particular, it must
then have characteristic < 2 (that is, 1 +1 = 0). On the other hand, all its Tj
classes (that is, maximal subsets of zero diameter) have at most two elements if
and only if R has no units other than 1.

FIELDS AND VECTOR SPACES

Qunotient fields and vector spaces. Despite Proposition 1.7, d,, indirectly leads to
interesting (multi-)real distances on a field when it is extended to the quotient
field @ of a suitable ring. For @ to exist, R must be commutative with 1
and without zero-divisors, and for the extension to work, p must be prime
and d, must be separated. Then one first extends the valuation w, to @ by
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putting wy, (z/y) := wyp () — wp(y). This is well-defined because wy, (y) < oo
since y # 0 and d, is separated, and because p is prime [For prime p,
wp is additive on R, that is, wy,(ab) = wy(a) + wp(b). If z/y = 2’ /y’ then
zy’ = 2'y,hence wp () + wp (y') = wp(2y') = wp(2'y) = wp(2') +wp(y) .
Now ||-||, and d,, are easily extended to Q by setting ||z/y||, := wp(x/y) "
and dp(2,9) i= |~ +yllp = llz — yll, again.

It is interesting that almost the same construction is also possible in case
of torsion-free modules. I did not find this fact in the literature, so the
straightforward proofs are included in the appendix.

LEMMA 1.8. Let M be a torsion-free module over a commmutative ring R with 1, and
p € R*. Then p is M -ptime, that is,

re €pM,r€R,x € M = r €EpRorx € pM,

if and only if M /pM is a torsion-free module over R/pR, in which case either pM = M
or p is prime in R. 1, on the other hand, p is prime and R is a principal ideal domain then p
is also M ~prime. Finally, an M -prime p leads to an additive valnation wy, - M — [0,00],
that is,

wp (rz) = wp(r) +wp(z)

forallr € Rand x € M.

THEOREM 1.9. (p-adic distance in quotient vector spaces). With R and M as
above, assume that p € R* is M-prime, dp, on R is separated, and pM # M. Then
(z,7) ~ (y,8) <= sx = ry defines a congruence relation on the semigronp (S,~+) with
S:= M x (R\{0}) and (x,7) + (y,s) := (sx + ry,rs). Moreover, V := S/~
becomes a vector space over the guotient field Q of R with the scalar multiplication 5 - 5 = 3,
where & := ~(x,r). Finally, the valuation

xT

wp (%) = wpla) = w0y (1)

is additive, and dy,(a,b) 1= wy,(a — b) ™" is a translation-invariant ultra-metric on V.

Fields.  On an atbitrary field (F,+,-,0,1), one can also define a two-component
distance whose components are mainly the skew-symmetric distances in its
additive and multiplicative groups. Put M, := (F,+,0,Ar) and di(z,y) :=
y — 2. For the second component, we need to deal with the special element 0. This
is done by adjoining it to the p. 0. m. (F'*,-,1, A g+ ) as an absorbing top element,
resultingin M, := (F,-,1,<),whetez Ly <= (z —y)y =0 <=y € {0,z }.
Then da(x,y) := = 'y on F* is extended to F by setting d2(0,0) := 1 and
d2(0,z) := da(x,0) := 0 for z # 0. Now

wp(z/y)

M ~prime

Wp

dr
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dr (z,y) == (di(z,y),d2(z,y))

defines a distance function whose co-domain is the product M := M, X M,.

BOOLEAN AND BROUWERIAN LATTICES

In logics, for instance, some algebraic objects are used which are quite different
from groups in that they involve idempotent operations. The perhaps most
important class is that of Boolean lattices, that is, lattices (L, A, V) with smallest
and largest elements L and T, in which the distributive laws

xAN(yVz) = (xAy)V(zAz)
and zV(yAz) = (zVy A(zVz)
hold, and in which a unary complement operation — is definable that fulfils
cA-z=1 and zVvV-oz=T.

The latter operation is then actually unique, and only one of the distributive laws
is needed to prove the other. In such a structure, which can also be formalized as
an algebra (L, A,V, L, T =), all of the “classical” laws of propositional calculus
hold, for example DeMotgan’s laws —(x Ay) = -V -y and = (zVy) =
—x A —y. An “implication” operation — is defined by z — y:= ~z VvV y.
Following the terminology of formal logics, I will call this operation material
implication here to distinguish it from other kinds of implication. The most
important law for — is the s rule

(x—=yN(y—2)<z— 2

which is sometimes also called the law of transitivity’ because of its resemblance
to the transitive law (x Ry) A (y Rz) = x R z for relations. It should however
rather be called the ‘triangle inequality’ because it is just that: dr, (z,y) ==z — y
is a positive, Ty internal distance function in L with co-domain (L, A, T, >). Its
additive or upper (!) symmetrization is the material equivalence operation

reoy:=(@—oy Ay —z)=(Ay)V(ozAy).

There are many more examples of distances that arise in the context of
implication, entailment, or conditional sentences, some of which will be explored
in Example 2.27. Another instance is the “intuitionistic version” of a Boolean
lattice: a lattice (L, A, V) is called Bromwerian if and only if it has a least element L,
and for all z,y € L the set {z € L|x A z < y} has a greatest element z — y.
Again, x — y is a distance function: for all x,y,z we have £ — x > y, hence
x — x is the largest element of L, and z A (z = y) A (y — 2) S yA (y —
z) < zimplies that (x — y) A (y — 2z) < & — z. Complete Brouwerian lattices
(also called frames ot locales) are special cases of quantales: when L is complete,
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the p.o.m. (L,A, T,<) is upper distributive [a Ab < V(a A B) forallb € B
implies that b < a — \/(a A B) forall b € B, hence \/ B < a — \(a A B),
which in turn is equivalent to a A\/ B < \/(a A B) as required by upper
distributivity ]. The dual p.o.m. (L,A, T,>) (which is the cotrect co-domain
for the distance function —) is then lower distributive, hence a co-quantale, and
— is then just the same as d_..

Some other concepts of ‘generalized metric’

This list is not meant to be comprehensive since there have been many
different approaches to generalize metric spaces. In particular, I only mention
generalizations that use a type of distance function instead of a set system etc.

Valne distributive lattices.  In [Fla97], Flagg studies distance functions whose co-
domains are what he calls value distributive lattices. Such a monoid is a commutative
co-quantale that is also completely distributive (see Chapter 3 for the definition)
and in which 0 is the smallest element. In particular, his distance functions are
always positive.

Ganges and approach spaces.  Every approach space (see Lowen [Low97], and Lowen
and Windels [LW98]) may be interpreted as a multi-real distance set: one of the
natural descriptions of approach spaces uses so-called ganges. These are certain
ideals in the function lattice of all quasi-pseudometrics on a set X. Of course,
such a gauge ¢ may be identified with the multi-real distance function

dy : X> — [0,00]7, dy(z,y)(g) := g(z,y) forg € ¥.

For the context of (quasi-)uniformities (see Part B), Windels [Win97] weakened
the approach space axioms and defined the notion of wniform approach system. This
kind of “gauge” may also contain maps v : X* — [0,00] that do not fulfil the
triangle inequality.

Distribution functions as distance values. ~ Schweizer and Sklar [SS60, SS83] introduced
a generalized concept of metric especially suitable for stochastics. The distance
tunctions of their probabilistic (psendo-)metric spaces have a value monoid whose
elements are (lower semi-continuous) distribution functions on [0,00). This
monoid is equipped with the reverse pointwise partial order. As for the choice
of the addition operation, they allowed every operation 7 (called a #riangle function)
which is compatible to that order. Distances had to be symmetric and Tj.

Stronger links between order and addition. Kopperman’s [Kop81, Kop88, EK90]
(lattice) continuity spaces require abelian monoids in which the partial order arises
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from the addition by o« < B :<= 8 = a+ v for some v € M, together with
some additional conditions. He did not require symmetry.

Totally ordered value monoids. Reichel [Rei78] considered positive distance func-
tions into totally ordered (semi-)groups.

The most general approach so far can be found in Pouzet et. al. [JMP86, LSP87].
These authors consider distance functions into arbitrary partially ordered
monoids in which 0 is the least element. They anticipate the notion of multi-
pseudometric by interpreting a system of metrics as a vector-valued distance
function. However, they require that d(z,y) = d(y,x)* holds for a suitable
involution * of M, which is only slightly weaker than full symmetry.



2.
MAPPINGS

Why, look where he comes; and my good man too: he’s
as far from jealousy as 1 am from giving him canse;
and that I hope is an unmeasurable distance.
Shakespeare,
The Merry Wives Of Windsor

After all the examples of mathematical objects that allow for a meaningful
definition of distance, we will now consider the question of how relationships
between such objects might be connected with these distances. The most common
method to compate two objects is to consider maps between the underlying sets
and study their behaviour with respect to the structure of the objects. Important
examples of such maps are the continuous functions between topological spaces
and the homomorphisms between groups. As in case of the normed vector
spaces R™, it is often the case that maps of a more topological nature, those
that are more algebraic, and such with both flavours go hand in hand, and this
will also be true in case of distance spaces. Having placed back all topological
considerations until Part B, I will focus on the algebraic and order theoretic
properties of maps between distance sets in this chapter.

Distance sets with the same value monoid
Let us again start with metric spaces. Already in a first coutse on analysis,
different properties of maps (mostly from R to R) are introduced, and many of

them can be defined for maps between arbitrary metric spaces. Continuity for
example is conveniently defined by the well-known e-d-criterion, but it does not
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need the whole structure of a distance set but only the information about which
subsets are open—that is, it is a topological property.

A much more powerful property of amap f : X — Y is Lipschitz-continuity,
for whose definition one needs distance functions d on X and e on Y. The
condition then says that e(f(z), f(y)) < L - d(=,y) must holds for some L > 0
and all x,y. It seems that this cannot be defined for general distance sets since
it involves a multiplication. It can however be done when multiplication with
L is replaced by the application of a suitable map between the value monoids,
a technique that will lead to a generalization of one important application of
Lipschitz-continuity: in Chapter 6, Banach’s fixed point theorem will be shown
to hold for very general distance spaces.

For L = 1, however, the condition reads e(f(a:),f(y)) < d(z,y), and
this condition can be formulated without problems whenever domain and
co-domain of f are equipped with the same value monoid. But first some
simplifying notation for a distance function d on X and a map f into X:

fz = f(z),
df (z,y) = d(fz,fy),
d(z1y1 - TnYn) = d(@1,y1) + -+ d(Tn,Yn),
df (z1y1 -+ Tnyn) = df(x1,y1) + -+ +df (Tn,Yn)-

Nowamap f: (X,d,M) — (Y,e, M) between two M-distance sets is contractive’
ot expansive if and only if ef < d or ef > d, respectively. A contractive and
expansive map, that is, one with ef ~ d, is an exact homometry (or M -homomsetry),
and a bijective exact homometry is an exact isometry (or M-isometry). This must
not be confused with the notion of ‘isometric embedding’ which is traditionally
used for the exact homometries between metric spaces.

EXAMPLES

PROPOSITION 2.1.
For reflexcive relations R on X and S onY , amap f : (X,dr) — (Y,dsg) is contractive
if and only if it is relation-preserving, that is, if x Ry = fx S fy.
In that case: (i) if S is antisymmetric or acyclic, respectively, then so is R, and
(iz) if R is total, s0 is S.

The proof is simple because x Ry <= dr(z,y) < 1. O
An example of interesting maps between graphs are colourings (cf. [KNSO1])
or, more generally, edge-preserving maps:
T avoid the term ‘contraction’ because it will be used for Lipschitz-continuous maps with L < 1.

Also, the term ‘non-expansive’ is not a good replacement for ‘contractive’ because a contractive map
might easily be expansive as well.
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PROPOSITION 2.2. Let f: V(G) — V(H) be a map between the vertex: sets of
two digraphs G and H. If f is a graph homomotphism, #hat is, if (x,y) € E(G)
implies (fx, fy) € E(H), then f : (V(GQ),da) — (V(H),dg) is contractive. If f
is injective and contractive, it is a graph homomorphism and hence an isomorphism of G with
some sub-digraph of H. The exact isometries are exactly the isomorphisms between G and H.

Proof. f is contractive if and only if (z,y) € E(G) implies either f(x) = f(y) ot
(fx, fy) € E(H). A sub-digraph of H is some digraph H' with V/(H") C V(H)
and BE(H') C BE(H). O

PROPOSITION 2.3.  For guasi-ordered sets (X,<) and (Y,<"), the contractive
maps (X,d<) — (Y, d’g) are exactly the isotone maps. If < is antisymmetric, the exact
homometries among them are exactly the order-isomorphic embeddings.

The proof for this is trivial. U

PROPOSITION 2.4. For set functions p and v on X, amap f : (X,d,,) — (X,d,)
is contractive Jexpansive] if and only if, for all A C X,

v(A) =0 o (WA) <A ad f 1 (A)=A) o f(A)€{0,X}
[ n(A) =0 o (WA) <v(A)andA=f""(A) o Ac{0,X} ]
Proof (for contractive maps—the expansive case is strictly analogous). We have

d, > d, fifandonlyifforall A C X and z,y € X, (i) dp.(z,y) (A) = 0implies
dy f(z,y)(A) = 0, and (i) d, (z,y) (A) < n(A) holds. This is equivalent to

Q) fygAorfre A or v(A)=0 or yeAFzx
and (i) fy¢ Aorfre A or v(A) < u(A),
that is, to
(i) fy¢ Aorfze Aorv(A)=0o0r(y€ AFzandv(A) < u(A)).

This is implied by the proposed condition since f~'(A) = A means that fz €
A <= z € A for all z. On the other hand, assume that (iii) holds, v(A) > 0,
and f~1(A) ¢ {0,X}. Then we can choose z,y € X with fy € A & fz, so
that v(A) < u(A) by (iii). If also £ 7' (A) # A, these z,y could even be chosen
so that either x € A ory ¢ A, in contradiction to (iii). ]

COROLLARY 2.5. Forf : (X,d,.) — (X,d,):
1. If f is surjective and contractive then v(A) < p(A) forall A ¢ {0,X}.

2. If for all points x,y € X, thereis A C X witha € A F y andv(A) > 0, then f
is contractive if and only if it is either constant, or if it is the identity and v(A) < p(A)
holds for all A ¢ {0, X }.

graph homo-
morphism
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Note that if v is the indicator function of some topology without open
singletons, the condition in 2. is just the Ty property for that topology.

PROPOSITION 2.6. For |X| = 3 and set functions pu and v on X, a map
f(X,d,) — (X,d,) is contractive if and only if it is either constant, or if it is
the identity on X and v(A) < p(A) holds whenever |A| 2= 2. It is excpansive if and only if
it is the identity and v(A) = p(A) holds whenever |A| > 2.

Progf (for contractive maps). d,, (fz, fy)(A) < d),(x,y)(A) is equivalent to the
implication @,y € A = fx = fy or (fz,fy € A and v(A) < p(A)). For
fixed A, this holds for all z,y if and only if (x) |f[A]| < 1 or (f[A] C A and
v(A) < u(A)). Suppose that () is true for all A, but f is neither constant
not the identity. Choose z,y,z with f(x) = z # z and f(y) # 2. Forv € X
with f(v) # 2z, put A := {x,v}, so that |f[A]| = 2, hence f[A] C A, that
is, z = v. In patticular, z = y. Because |X| > 3, there is v € X \ {2, f(¥)},
so that f(v) = 2. With A" := {v,y}, again | f[A"]| = 2, hence f[A] C A" in
contradiction to f(y) ¢ A’. Therefore f is either constant or the identity, and
in the latter case v(A) < pu(A) holds whenever |A| > 2 because of (%). U

In case of algebraic objects, internal distances are often more easily handled
than classical metrics on these objects. It is easy to show that each isotone or
antitone group homomorphism f : G — H between partially ordered abelian
groups is contractive w.r. t. the pseudometrics do, and d(y,), for all u € G*.
However, 1 know of no characterization of the contractive maps in this case. On
the other hand, a characterization is very easy when internal distance functions
are considered instead:

PROPOSITION 2.7. With respect to the distance ="y, the contractive or expansive maps
or exact homometries h : G — G on a group G are exactly the left translations x — az.

Proof. All three classes of maps are identical because the relevant order relation
is the identity. Also 2~ 'e = h(z) " 'h(e) implies h(z) = h(e)z for all . l

In this example, all these maps are even bijective, that is, exact isometries. The
exact isometries of a distance set X with itself will also be called the motions of X .!
They constitute the groump of motions Aut(X), and the above proposition already
shows that each group G is isomorphic to some group of motions. Extending
a method by Caragiu [Car92], it was shown in [Hei98] that actually each group
G is even isomorphic to the group of motions of some multi-pseudometric
space, and also to that of some symmetric and positive distance set with a totally

A more “categorical” name would be ‘autometries’.
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ordered abelian group as its value monoid. A possible construction for the proof
of the first claim is this: put X := G x 2, M :=R'% i: G — M, i(a)(a) := 6,
and i(a)(b) := 5 for b # a. Then define d(z,y) to be 0, 3, 4, i(a”'b), or
i(b"'a), depending on whether # =y, = # y and z,y € G x {0}, = # y
and z,y € G x {1}, z = (a,0) and y = (b,1), or x = (a,1) and y = (b,0),
respectively (cf. [Hei98]).

MORE GENERAL CONTRACTIVITY

A slightly more general definition of contractive map would be this: a map
[ (X, d,M) — (Y,e,M') is contractive or expansive if and only if M is a
sub-q.o.m. of M’ and ef < d or ef > d, respectively, where < is now the
quasi-order of M.

The corresponding concept of exact homometry is characterized for the case of
abelian £-groups by a result of Holland. A [dual] £-homomorphism is an additive
map f with f(aVb) = faV fb [tesp. f(aVb) = faA fb] for all a,b. An
L-group H is called a cardinal product of sub-£-groups A,B < H if there is an
L-isomorphism (= bijective £-homomorphism) ¢ : A X B — H with ¢(a,0) = a
and ¢(0,b) = b for all (a,b) € A x B. In that case, every element z € H is a
unique sum of elements 4 € Aandzp € B.

THEOREM 2.8. (Holland [Hol85]). With respect to the distance function n|x — y|
m = 1), the exact homometries h from a sub-£-group G of an abelian C-group H into H are
excactly the maps h that arise as follows: let G be the cardinal product of A < G and B < G,
a € G, andputh(z+vy):=a+x—yforallx € Aandy € B.

Actually, Holland stated this only for the case where G = H and h is sutjective.
His proof however works literally also in this more general case. For n = 1, the
theorem also follows from Theorem 2.15 below. U

Translating distances of different type

The examples of the first chapter show that, in contrast to metric spaces,
two mathematical objects that are to be related in some way will often be
equipped with natural distance functions that take their values in two different
monoids. This is especially the case for internal distance functions. Moreover,
one might want to study the relationship between distance functions with
different co-domains on a single object, which will be the focus of the next
section.

In both cases, we obviously need a nice class of mappings f between distance
sets X = (X,d,M) and Y = (Y,e,N) with different monoids M and N.
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Thinking categorically, there is a suggesting way to overcome the problem that
the distances d(z,y) and ef(z,y) cannot be compared ditectly as in the case
where M = N. The “original” distance d(x,y) only needs to be “translated” into
an element of N ptior to the compatison with the “image” distance ef (z,y).
Assume that, most simply, this translation is done by an arbitrary mapping
t: M — N between the monoids, and that the map f preserves the distance up
to this translation, that is, ef(z,y) = t(d(m,y)), or ef = td for short. When
no additional requirements are imposed on ¢, this results in the very broad
class of distance equality preserving maps. For some purposes, it is however more
appropriate to require that the translation map ¢ has some nice properties, and
it will soon turn out which they are.

Preservation of formulae.  Another approach to the problem of different monoids
is of a more model-theoretic nature. It starts with the selection of a certain set of
“interesting” formulae in the language under consideration, such as the formula
‘v < 12’ in case of posets, or ‘v - vy = v3’ in case of groups (where the v;
are variables). Then one considers those maps f : X — Y for which every true
interpretation of such a formula in object X translates into a true interpretation
when every occurrence of some € X in the original interpretation is replaced
by its image f(x). I will say that f preserves the formula in this case. Without
stating this formally, the point will become clear from the following examples.
(i) An isotone map f: (X,<x) — (Y,<y) between posets translates a true
interpretation & < x y of the formula ‘v; < v2” in X (that is, with z,y € X)
into a true interpretation f(z) <y f(y) of the same formula in Y, because
this is just a different way of saying that f(z) <y f(y) for all z,y € X with
z <x y. (i) A ring homomorphism f: (R,+r,-r) — (S,+s, s) translates
a true interpretation £ +ry = 2z of ‘vi + v, = v3’ into a true interpretation
f@)+s fly) = f(z), and it translates a true intetpretation z-gry = z of
‘v - vy = v3” into a true interpretation f(z) -s f(y) = f(z). This is equivalent
to saying that £(z +ry) = f(x) +5 f(y) and f(z-ry) = f(z) s f(y) for
all x,y € R. Itis clear that the larger the set of formulae that are preserved by a
mapping, the more structure is “transported” by it.

In case of distance sets, the possible formulae ate made up of the structural
ingredients d, +, 0, =, and <, together with variables for elements of X and Y,
variables for elements of M and N, and logical symbols. However, variables for
elements of M and N must be avoided since f is between X and Y, so that is
cannot be used to replace elements of M by elements of N in the way described
above.

Here come the definitions:
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Amap f: X — Yis... | ifitpreserves (forall n,m > 0). ..
specialization preserving | d(x,y) < 0
distance equivalence preserving | d(z,y) ~ d(z,w)
distance inequality preserving | d(x,y) < d(z,w)
an order representation | d(x,y) < d(z,w)
a local order representation | d(z,y) < d(xz,z), and also d(y,z) < d(z,)
) < d(z1w1 - Zm W)
d(z,w)

d(z1w1 -+ Zm W)

a weak homometry | d(z,y
a dually weak homometry | d(x1y1 - TnYn)

NN

a (set) homometry | d(z1y1 - Tnyn)

Some of the above classes of maps can be derived also in the “categorical”
way, at least with a slight modification: the translating maps need not be
definable on all of M, but only on some subset like the znduced submonoid
Sy = (d[X)m = {d(z1,22) + -+ d(Tn,yn) | Ti,y;s € X} of d.Byagq. 0. m.-
morphism 1 mean an isotone and additive map ¢ between quasi-ordered monoids
with ¢(0) = 0.

PROPOSITION 2.9. Foramap f : X — Y:
1. f is distance equivalence preserving <= there is some map t : M — N withef ~ td.

2. f is distance inequality preserving <= there is an isotone map t : d[X?] — N with
ef ~ td which is unigue when N is partially ordered.

3. f is a weak homometry <= there is an isotone and sub-additive t : M — N with
ef ~ td. If N is completely lattice-ordered and lower distributive, the converse holds, too.

4. f is a dually weak bomometry <= there is an isotone and super-additive map t - M — N
withef ~ td. If N is completely lattice-ordered and npper distributive, the converse holds,
0.

5. f is a homometry <= there is a q. 0. m.-morphism c : S g — N with ef ~ cd which
is unique when N is partially ordered.

The progf is almost straightforward (but needs the Axiom of Choice when IV is
not partially ordered). In the second part of 3., lower distributivity comes into play
in avery typical way, so let us have alook at that proof. Given a weak homometry,
we first see that t(a) : {ef (z1Y1 - Tnyn) |a < d(z1yp - - - mnyn)} defines

induced
submonoid

Sq

q.0.m.-
monphism
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an isotone map t : M — N with ef = td. Then, for sub-additivity, we have
tla)+t(8) = N{ef(myi--zayn) la <d@iy - zoyn)}
+ N\{ef(mwi - zmwm) | B < d(ziw: - - Zmwn) }

=% /\{ef(,:myl "'xnyn21w1-'-zmwm)|
a<d@iyr - Tpyn) and 8 < d(zjwy - - .men)}
> tla+pP),

which relies on lower distributivity at the position marked by *. =

As the reader might guess already, the most fruitful class is that of
homometries, and these maps will usually be designated by the letter h. Their
distance translation functions ¢ will be called calibrations, and eh ~ cd could be
called the homometry equation. The fact that homometries can either be thought
of as preserving inequalities between sums of distances or as preserving the
distances themselves up to a calibration will be quite convenient in the sequel.
The above proposition also shows that weak homometries are a generalization
of so-called “metric transforms™ (cf. [DM90]).

The first example is about real distances again. Here the homometries are
most easily characterized by determining the possible calibrations:

LEMMA 2.10. If Sisa mbwonoz’dofKT, S =8\ {cc}, andc:S — R' isa
q. 0. m.-morphism, then either c(00) = 0o and c|sr = 0, or ¢ is a multiplication with a
non-negative constant~y € [0, 00].

Proof. Note that R is archimedean, that is, for each e > 0 and 8 € R, thereisn € w
such that 3 < ne. If 0 > a € S’ then co & ¢[S’], because ¢(B) = oo would
imply that 0 = ¢(0) = c(na+ 8) = ne(a) + 0o = oo for sufficiently large
n € w. Hence, by contraposition, c(3) = oo for at least one 3 € S’ implies that
S’ C [0,00) and thus c¢(a) = oo forall « € S\ {0} because R is archimedean
and c is isotone. Now assume that co ¢ c[S’] and o, 3 € S’ with ¢(3) # 0.
Then, for all integers z,z’ and positive integers n,n’,
/

7<% <% mplies 2 < A ¢ 2

n B ~n n cpB) " n
hence a/8 = c(a)/c(B), so thaty := ¢(B) /8 € [0,00) is constant for 0 # 3 €
S’. That is, c| s is just multiplication with ~y, and ¢(o0) = 0 is only possible if
v =0. (]

!’

"The letters AC are placed inside the box to indicate that this proof utilizes the Axiom of Choice.
All proofs which—to my awareness—use a variant of this axiom will be marked in this way.
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Homometries between graphs.  To illustrate this, consider two (undirected) graphs
G and H and a homometry h : (G,dg) — (H,dp) with calibration c. Let us
assume that G is not connected but has at least one edge, so that Sg, = w'.
Then cis from w ! into w " < KT, and we can distinguish four cases.

@) If ¢ = 0 then h is constant.

(i) If ¢|o, = 0 and ¢(o0) = o0, h is constant on every component of G, but
the images of two different components are always in two different components
of H.

(i) If e(a) = oo for all v # 0, all vertices of G are mapped into different
components of H.

(iv) c(a) = ya for some positive integer v. Then, for all z,y € V(G) with
e = {z,y} € E(G), there is a shortest path p. in H between h(z) and h(y)
that has length ~, and between every pair hax,hy of image vertices there is a
shortest path in H which is a union of such paths pe.

EXAMPLE 2.11. Let G = (V,E) be a complete graph, and H be the
star-shaped graph (VU{V},E') with E' = {{z,V}|z € V}. Then idy :
(V,dg) — (VU {V},dm) is a homometry with calibration r — 2r.

An interesting situation arises when, to the contrary, G is friangle-fiee, that is,
contains no circles of length three. Then case (iv) implies that the graph G’ that
results from G when all its edges are subdivided into « parts (that is, replaced by
paths of length ) is isomorphic to an induced subgraph of H. This is because
then the paths p. must be disjoint up to common end-points [assume that
e = {z,y} and €’ = {z,w} are distinct edges in G, say with z ¢ {x,y}, and pe
and p.r share avertex v & {h(z),h(y)}. Then there is a path from h(x) to h(z)
of length less than 2, so that dg (x, ) must be 1. Similarly, dg (y,2) = 1, hence
{x,y,z} is a triangle in G]. Also, there can be no additional edges between theit
intetior vettices [ proved similatly . This implies:

PROPOSITION 2.12. Tet h: (V(G),dg) — (V(H),dm) be a non-constant
homometry between connected, triangle-free graphs. Then H contains a subdivision of G as an
induced subgraph.

HOMOMETRIES BETWEEN (¢-)GROUPS

PROPOSITION 2.13.  With respect to the distance x~'y, the distance equivalence
preserving maps between two groups G and H are exactly the group homomorphisms composed
with left translations.

Progf. For ahomomotphismc: G — H andsomea € H, themap f(x) := ac(x)
is a2 homometry with calibration ¢ [f(z) "' f(y) = c(z) 'e(y) = c(z'y)],

triangle-free
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hence distance equivalence preserving [since the value monoids are partially
ordered]. On the other hand, c(z) := f(e)~'f(z) is a group homomor-
phism when f is distance equivalence preserving [c(z ™ 'y) = di f(e,x ™ 'y) =
di f(z,y) = f(e)" ' fa™'y) = f(2) ' f(y) = e(x)'e(y) ], and (=) equals
f(e)e(). O

Consequently, these maps are also exactly the distance inequality preserving
maps, (dually) weak homometries, and homometries. Surprisingly, the homome-
tries between abelian £-groups can be characterized quite similarly. We start with
the case where the second group is totally ordered.

LEMMA 2.14.  For a homometry b : G — H from an abelian C-gronp G into an
abelian totally ordered group H, both equipped with the distance |x — y|, the map f(x) :=
h(x) — h(0) s either an L-homomorphism or a dual £-homomorphism.

Proof. If ¢: Gt — H™ is the calibration of h then f is again a homometry
with calibration c¢. Moreover, c¢(z) = |fz| and thus f(z) € {cz,—cz} for
all z € G*. Now either (i) f|g+ = c or (ii) f|lg+ = —c [Assume that, to
the contrary, f(x) > 0 > f(y) for some x,y € G¥, so that f(z) = ¢(z) and
fly) = —c(y), and put z := x Vy > 0. Then cither f(z) > 0, thatis, f(z) =
e(2) and oz) +oly) = |2 — fyl = clz — y| = () — e(y), or $(2) <0,
thatis, f(z) = —c(z) and ¢(z) + c(x) = | fz — fz| = c|z — z| = c(2) — c(x).
Both would be a contradiction to ¢(y) # 0 # ¢(z)].

In both (i) and (ii), clz — y| = |fz — fy| = ||f| — |fyl| = |cz — cy] for
all z,y € GT. Hence, the unique extension of ¢ to a group homomorphism & on
G = GT — G7,defined by &(xz — y) = &(x) — &(y), preserves the absolute value.
Consequently, it is an /~-homomorphism [ First, ¢isisotone:z —y < o’ —y' —>
r+y <2’ +y=cr+cy <cx'+cy= &(x—y) <&z’ — ). Note that
abelian £-groups fulfil 2(x Vy) =2z V2yand z + |y| = (z+y) V (z — y) (cf.
[AF88]). Now let z,y € G and put z := z — y. Then &(x V y) = éx V ¢y, and

2e(xVy) =¢(ReV2y) =eRy+ 2+ |z|) =28y + ez + |ez]| = 2(¢éx V &y).
Since this excludes &(x V y) > éx V ¢y, ¢ preserves binary suptrema].

Finally, f is additive. Indeed, for z =z —y € G with z,y € G™, we
have |fz — fz| = c|z — x| = ¢(y) = £ f(y), hence f(z) = f(x) £ f(y) since
H is totally ordered. In both cases, f(z) = f(x) — f(y) [since f(z) =
f(@) + f(y) implies [2fy| = ¢(2y) = c|(z +y) — 2| = |f(z+y) — f(2)[ =0,
hence 2f(y) = 0, that is, f(2) = f(z) + f(y) — 2f(y) = f(z) — f(y) also].

Therefore, either f = ¢ or f = —¢ because the extension of ¢ to G is unique. []

Although the above proof strongly depends on the total orderedness of H, it
leads to a complete characterization of homometries between arbitrary £-groups.



35

This is because the totally ordered groups “generate” the abelian ¢-groups in
the following sense. The direct product of totally ordered groups, that is, the
cartesian product with pointwise addition and order, is always an £-group, and at
least every abelian £-group is isomorphic to a sub-£-group of such a product (this
property is called representability) in which all factors are also abelian (ct. [AF88]).

THEOREM 2.15. For a map h : G — H between abelian L-groups, and a map
c: G — HT, the following are equivalent:

(a) h is a homometry with respect to |x — y| on both sides, and with calibration c.

(b) c extends uniguely to an L-homomorphism ¢ : G — H, and H is the cardinal product of
sub-L-groups A, B < H such that h(x) = h(0) +&(z)a — &(z) B forallx € G.

Proof. (b)==>(a) is quite straightforward:

|hz —hy| = [(ex)a — (¢y)a — (¢z)B + (¢y) B]
= [e(z —y)al+[e(z —y)B| = ¢z —y|

since |a — b| = |a| + |b| = |a + b| forall (a,b) € A X B.

Now for (a)==(b). Lete : H — H' = [],.; H; be an £-embedding into a
product of abelian totally ordered groups H;, and put h; := m; o€ o h for all
i € I, where m; is the i-th projection map. Since € and 7; are homometries, so
is h; : G — H;. Hence, the above lemma shows that for each ¢ there is a unique
£-homomotphism ¢; : G — H; with h; = h;(0) + ¢; and ¢;(z) = |h;x — h;0|
for all z € GT. These ¢; combine to a unique £-homomorphism ¢’ : G — H'
with m; 0 = ¢; foralli € I.

The restriction ¢'|g+ must equal eoc [for x € GT and i € I, m;c/(z) =
ci(x) = |hyx — hi0| = |mehe — m;eh0| = me|he — h0| = m;ec(x) |. Because
¢’ is additive, the unique extension of ¢ to an additive map ¢: G — H must
fulfil ¢ = € o ¢ and is thus also an £-homomorphism [since € is an embedding].

Now let I+ C I consist of all 4 with h; = h;(0) + ¢;. For ¢ € I, put
A;:=H;and B; := {0} < H,. Likewise, fori € I'\ I, put A; := {0} < H;
and B; := H;. Then each H; is the cardinal product of A; and B;, hence H is
the cardinal product of A := e~ ' [[[;o; A:] and B := e~ " [[[,; B:] [since e
is an embedding].

Finally, h(xz) = h(0) + (éx)a — (éx)p [for i € I}, we have h;(x)
hi(0) 4 (ciz) a, £ (c;x) B, since (c;x) g, € B; = {0}, and otherwise h; (x)
hZ(O) + (Cix)Ai — (Cim)Bi since (Ciw)Ai €A = {O}]]

Ol

As a consequence of Theorem 2.8, this result has also an analogue for non-
abelian ¢-groups. In that case, however, ¢ must be known to preserve absolute
values a priori. Hence the above theorem is not just a special case of Holland’s
results.

representability

I+,A;,B;
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HOMOMETRIES BETWEEN FIELDS

The following characterization is perhaps even more interesting than the
previous. Unfortunately, the proof is quite technical.

THEOREM 2.16. Let F be a field of characteristic p # 2 and F' a field of characteristic
q# 2. Thenamaph: (F,dp) — (F',dp/) is a homometry if and only if it is constant
or if there is some a € F'™ and a field homomorphism f : F — F' with h = af.

Proof. Put d := dp, d' := dp/, and designate the operation of the monoids
M = (F,+,0,AFr) x (F,-,1,<) and M' = (F',+,0,Ap/) x (F',-,1,<) by
the symbol @. Note that constant maps are always homometries.

Fora € F'" and a field homomorphism f, the map c: M — M’ ¢(a, 3) :=
(afa, fB) becomes additive [¢((a, 8) @ (', 3")) = c(a+/,3-8') = (afa+
afd,f8-fB) = (afa, fB) ® (afd’,f3')] and isotone [(a,B8) < (/,5")
implies « = &’ and 3’ = 0, hence afa = afa’ and f3' = 0, that is, (o, ) <
c(a’,8")]. Moreover, c is a calibration for h := af [For z,y € F*, we have
hz,hy # 0, so that

dh(z,y) = (hy—ha,(hz)”" - hy) = (af(y—2),f(z"'y))
= c(y— x,xily) = cd(z,y).

Also, d'h(0,z) = (hz,0) = (afz, f0) = c¢(x,0) = cd(0,z), and similarly for
d'h(z,0)].

On the other hand, assume that h is a non-constant homometry with
calibration ¢: S; — M/, put b:= h(0), and define g : F — F' by g(z) :=
h(z) — b. Because g(z) is the first component of d'h(0,z) = ¢d(0,z) = c(z,0),
and since c is additive, so is g.

Since h is not constant, we can choose some y € F* with h(y) # b. In
case that ¢ # 3, we can also assume that h(y) # 3b [if h(y) = 3b then b # 0
and we have ¢(—y,0) = cd(y,0) = d'h(y,0) = (—2b,3}), hence d'h(2y,0) =
cd(2y,0) = c¢(—2y,0) = (—4b,$) by additivity of c. But then h(2y) ¢ {b,3b}
since d'h(2y,0) ¢ {(0,1),(—2b,1)} = {d'(b,h0),d’ (3b,h0)}. This means that
we can take 2y instead of y].

Put a := g(y) # 0. I will now show that (1) b = 0, that is, g = h, (2) the
map x — h(zy)/a is multiplicative, and (3) we can assume that y = 1 without
loss of generality. It will then be clear by (1) and (2) that f := h/h(1) is both
additive and multiplicative, that is, a field homomorphism.

Proof of (1). Assume that b 7# 0. There must be some n € w which is not a
multiple of p so that (*) in F’, n - 1 does not equal one of the at most six values
—b/a, b/2a, b/8a, 9b/16a, or 2b/(9 £ v/21)a (some of which might not exist
at all). Indeed, let A C F’ be the set of these at most six different “forbidden”
values.
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() If g = 0 or ¢ > 11, the set {0,...,10} C F’ has eleven elements so that
condition (%) holds for at least five different values of n in {0,...,10}. Since
p # 2, at most four of them are multiples of p.

(i) If ¢ = 3 then A = {2b/a,0} so that eithet n = 1 ot n = 2 works.

(i) If ¢ = 7 then A = {6b/a,4b/a,b/a}, which cannot contain all of the
three distinct elements 1,2,4 € F’, so that at least one of these values works for
n (since p # 2).

(iv) Finally, assume that ¢ = 5. Then A = {4b/a,3b/a,2b/a}, which cannot
contain all of the four distinct elements 1,2,3,4 € F’, so that one of these values
for n fulfils (x). If p # 3, none of 1,...,4 is a multiple of p. Therefore, assume
that p = 3 and 1,2,4 € A. In that case 2b/a must be the element of A that
equals 1, hence h(y) = g(y) +b = a + b = 3b, in contradiction to the choice
of y.

Now we possess a suitable n. In F', we have n - 1 # 0 # 2. Hence none of
ny, —ny, —2ny, —4ny, and —8ny is zero, and

(0,1) = 2(d(ny, —ny) & d(—2ny, —4ny) & d(—8ny, —4ny)).
Since h is a homometry, it follows that also
(0,1) = 2(d'h(ny, —ny) ® d'h(—2ny, —4ny) & d'h(—8ny, —4ny))
=2(d'(b+g(ny),b — g(ny)) & d (b — g(2ny),b — g(4ny)) &
@d'(b— g(8ny),b— g(4ny))).
By choice of n, the second component of the last line is

b—na b—4na b—4na\?
e = . .
b+na b—2na b-—8na

since none of the three denominators b + na, b — 2na, and b — 8na vanishes.
Given n and a, the possible solutions of the equation e =1 are b = 0,
b = 16na/9, and b = (9 + v/21)na/2, of which all but the first have been
excluded by the choice of n. Hence b = 0 and thus g = h.

Proof of (2). For all x € F, I will show that h(xy)/a = m 0 ¢(0,z), where
7y is the second projection map. Because of ¢(0,1) = (0,1) = (0,h(y)/a),
we may assume that & # 1. For each positive integer k with k-1 # x and
h(zy) # ka, we have (with z := (z — k)y)

c(0,z/k) = d'h(ky,zy) ®d h(z,22) ® d h(4z,22)
0 h(zy) 2h(zy) —2ka 2h(zy) — 2ka 0 h(zy)
- < ka h(zy) — ka .4h(ﬂcy)—4kza> - ( > ka )
If h(zy) # a, this implies that ¢(0,z) = (0,h(zy)/a). Otherwise choose
ke {2,3} with k-1 # x and h(zy) # ka [this is possible since ¢ # 2], and
putz’:=k-1€ F\{1}and k' := 1. Then k' - 1 # 2’ and h(z'y) = ka # K'a,
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so that ¢(0,z) = ¢(0,z/k) ® c(0,2'/k") = (0,h(zy)/ka) ® (0,h(z'y)/k'a) =
(0,h(zy)/ka - ka/a) = (0,h(zy)/a). Since m, o c is multiplicative, this proves
-
Proof of (3). By (2),
h(Dh(yy)/a” = h(y”'y)/a-h(yy)/a
= h((y"'y)y)/a=h(y)/a=17#0,

hence h(1) # 0 = b. This means that we may have chosen y := 1 in the first
place. U

CO-QUANTALES, BROUWERIAN LATTICES, AND BOOLEAN LATTICES

Between two co-quantales with either d_, or d— on both sides, a map is
specialization preserving if and only if it is isotone (that is, order preserving).
When one of the co-quantales is equipped with d_, and the other with d_,
the specialization preserving maps are exactly the ansifone ones (that is, order
reversing).

LEMMA 2.17. With respect to A", on both sides, a weak homometry f between co-guantales
is isotone and satisfies the following form of weak sub-additivity:

flart - +an) <O+ OV far) +---+ 0V fan).

Proof: One has 3, d” (0,a;) = >, (0V ;) >0V (3, ai) =d°. (0,5, o),
hence 3, d”. f(0,a;) = d’, £(0,3, «;) since f is a weak homometry. Thus

FOi0u) < fO+d% (0,5, 00) < fO+ 3,0V fay). O

Note that for Brouwerian lattices with distance —, the specialization
preserving maps are again just the isotone ones.

LEMMA 2.18. With respect to the distance — on botl sides, a weak homometry f between
Brouwerian lattices preserves binary infima.

Progf. As above, (T — 2)A (T —y)=a2Ay=T — (x Ay), hence (fT —
FR)N(fT — fy) < fT — f(zxAy) since f is a weak homometty (note
that orders are dual here). Thus f(z Ay) = fTA(fT — fzAy)) = FTA
(T = f) AT = fy) = fo A fy, 0

In the special case of Boolean lattices, a similar argument applies to suprema
instead of infima, which leads to the following characterization. Note that a
lattice homomorphism need not preserve T or L.

PROPOSITION 2.19. With respect to the distance x — y = —x NV y on both sides, as
well the homometries and the weak homometries coincide with the lattice homomorphisms.
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Progf. For a weak homometry f, it remains to show that f(z Vy) < fz V fy.
Because of (z — L)A(y — L) = (xVy) — L, we know that also (fz —
FOA(fy— fL) < f(zVy) — fL. Therefore,

~fL—==f(zVvy) =flzvy) — fL

Z (fr— fLAN(fy — fL) =~fL — =(fzV fy), thus
~flxVy) Z ~fLA(fL— ~f(zVy))

> fLA(=fL = =(fzV fy) =~fLA=(fzV fy)

and finally f(x Vy) < fLV fxV fy = fx Vv fyu.

On the other hand, every lattice homomorphism f is already a homometry
with calibration ¢(z) := fz vV —fT.Indeed,cT = fTV—=fT = T,and c(z A
y)=fleAy)VfT =((fzVvfT)A(fyV-fT) =cxAcy,thatis, cisa
g. 0. m.-motphism. Moteover, = fx V f L < = f TV f(—x) [since fL < f(—x)
and fzV (=fTV f(—z))=fTV-fT=TJandalso~fz VvV fL > -fTV
f(—z) [since ~f T < —~frand - f(—z)V (~fzV fL)=—-fLVfL=T].
Finally, fe — fy=—-feV fLV fy=-fTV f(-z)V fy=—-fTV f(z —
y) = ez — y). 0

When we consider the additive symmetrization < of — instead, there is
a characterization which is similar to the case of ¢-groups. Note that when
f:(X,d,M) — (Y,e,N) is a homometry, it is also a homometry between
(X,d®, M) and (Y,e®,N) since calibrations are additive.

PROPOSITION 2.20. Formaps f,c: L — L' between Boolean lattices with c(T) =
T, the following are equivalent.

a) f is a homometry w. r. 1. the distance < on both sides, and with calibration c.

b) c is a lattice homomorphism, and f(x) = a < c(z) for somea € L' and all x € L.

Proof. Let f(z) = a <> cx with a homomorphism ¢, and a € L'. Proposition
2.19 implies that ¢ is a homometty w. t. t. — which is its own calibration [since
¢(T) = T],in patticular, it is a homometty w. t. t. +». Now fx < fy = cz <
cy = c¢(x < y) shows that also f is a homometry with calibration c.

On the other hand, let f be a homometry with calibration ¢ and put
g(z) := fx « fT.Then g(T) = T and, as above, gz < gy = fz < fy =
¢(x < y) shows that also g is a homometry with calibration c¢. Because of
g(x) =gxr — gT =c(x «— T) = c(x), we have f(z) = fT < cz. Since, as
a calibration, c preserves binary infima, it remains to show that it also preserves
binary suprema. Because ¢(L) = ¢(z < —x) = cx <> c¢(—x) and cx > cL
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imply that ¢(—z) = cx <> ¢l = cz — cL, we have
c(xVy) = e(~(—~zA-y)) =c(-zA-y) —cl
= (c(—-z) = cL) V (c(-y) = cl) =cxVey.

Comparing distance functions on the same set

The first chapter already contained some examples of mathematical objects
which are endowed with more than one natural distance function, such as the
2- or R-distance d< and the 2'-distance x< on a quoset, which have already
been discussed briefly. Somewhat more interesting are the pair d< and d”, on a
co-quantale, the three types of distance functions dy,, dr, and dpy. on a function
space, ot dg, |* — y|, du, and dyy on an abelian £-group. On a factorial domain,
there are even five different types of distances: dg, dar, dp, dadic, and dgiy. .
While some of the latter are defined by so different means that there seems to
be virtually no connection between them that would not involve the structure of
the factorial domain, we are in other cases able to compare the different distance
functions on an object independently of the structure of the object.

Such comparisons can most easily be made by extracting the algebraic and
order-theoretic “information” which is contained in the distance functions. Let
X = (X,d,M) be fixed for the moment. When s = z1y; - - £, Yn is a2 word
consisting of an even number of lsers in X, we have already introduced the
notation d(s) as a shorthand for the sum d(x1,y1) + - - - + d(zn,yrn ). Now this
shorthand notation can easily be turned into a formal definition by considering
the fiee monoid X** of words of even length over X, that is, the set

2%
X7 i =A{zy1- - Tnyn|n Ew, x;,y; € X}
together with the operation o of concatenation,
T1Y1 " " TnYn OZ1W] """ ZmWm ‘= T1Y1 " TpYn2Z W1 " ZmWm.-

To be precise, one should also define what the sequence of symbols 1y1 - - - TpYn
stands for, for example by putting z1y1 - - TnYn = (Z1, Y1, - ,Ln,Yn ). The
neutral element of X** is of course the empty word which will be identified
with the empty set and accordingly designated by the symbol (). What was so far
a shorthand notation now defines a map d : X** — M. Although this d differs
from the original distance function, it can be interpreted as an extension of it by
identifying X? with the subset of two-letter words in X**. Hence we can use
the same symbol d for this extension without causing confusion.
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Now since < is a quasi-order on M, also
sRat <= d(s) < d(¢)

defines a quasi-order on X 2* and since addition in M is compatible with <,
also concatenation in X>* is compatible with R4. In other words,

X = (X**,0,0,Ry)

is a quasi-ordered monoid.
Likewise, each mapping f : X — Y can be extended to a mapping 12
X?* — Y?* by simply putting

P @y zayn) = F@)F ) f@n)f(yn).

Note that f2* is additive, that is, f**(sot) = f**(s) o f2*(t). But is it also
isotone w.r.t. Rg and Re when e : Y2 — N is a distance function on Y? By
definition of homometries, the answer is of course this:

LEMMA 2.21. A mapping f : X — Y is a homometry if and only if f** : X** — Y**
is isotone (and hence a q. o. ne.-morphism).

This should suffice as a motivation for the following definition. A second
distance function e : X* — N is finer than d (and d is eoarser than e) if and only
if Re C Rg, that is, if and only if the identity map idx is a homometry from
(X,e,N) to (X,d,M). When e is both finer and coarser than d, it is equivalent
to d.

EXAMPLE 2.22. For a quasi-order < on X, the distance functions dg :
X? — 2 and X<t X% — 2 are equivalent since ¢: 2 — 2. a—1—aisan
isomorphism so that idx is an Zsometry, that is, a homometry whose inverse is
also a homometry. Also, idx : (X,d<,R) — (X,d,2) is a homometry with
calibration o — min{,1}, but its inverse cannot be a homometry since the
additive maps 2 — R are constant.

More generally, the identity idx is a weak homometry (X,d,M) —
(X,d<d,2) for any distance set X. Indeed, dg,(z,y) is zero if d(x,y) < 0
and one otherwise. Therefore, the isotone map t(a) := 0 for a < 0 and
t(a) :==1 for o € 0 is a translation map for idx, and the latter is distance
inequality preserving. Since t(a) V t(5) = 0 implies a + 8 < 0, ¢ is also sub-
additive, hence idx is a weak homometry. In case that d is positive, also
t(a+ B) = 0 implies o, 8 < 0, so that in this case ¢ is even additive, and id x a
homometry.

In particular, idps : (M,d",,M) — (M,d,2) is a homometry for every
co-quantale M = (M,+,0,<), and idx : (X,d<,R) — (X,dg,2) is a weak
homometry.

Jfiner

coarser

equivalent

isometry
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EXAMPLE 2.23. Let G be alattice ordered group and e(z,y) := |z — y|. Then
ida : (G,dg) — (G,e) is a weak homometry with translation map t(a) = |a].
Since t is extensive but not additive, ¢dg is expansive but not a homometry.
Hence its inverse is contractive but not even distance equivalence preserving
since t is not injective. This means that dg and e are incomparable w.r.t.
fineness.

Alsoidg : (G,e) — (G,d.,) is a weak homometry for all u € G, with sub-
additive translation map t(a) = ||a||.. Again ¢ is neither additive nor injective,
hence all of dg, €, and d,, are incomparable. On the other hand, d,, and dy,
are equivalent for all m € w \ {0}. Indeed, ||z||. = m||z||mwu, and o — ma
is a q.0.m.-isomorphism on RT. Finally, dyy is finer than each d,, since the

projection map my, : (RT)G+ — R", a + a(u) is a . o. m.-morphism.

The latter observation is of course always true for multi-M-distance functions:
they are always finer than each of their components.

Weak homometries occur most naturally in connection with norms like the
u-norm in partially ordered groups or the p-norm in factorial domains. Another
example is id : (C'([0,1]),dpew.) — (C([0,1]),dp) forall 1 < p < oo.

CANONICAL DISTANCE FUNCTIONS
AND GENERATING QUASI-ORDERS

Can we perhaps use the q.o0.m. X** to define a new distance function d on
X that is somehow related to d? Of course we can: simply put d(z,y) := zy
with the only exception that d(z,x) must be () because of the zero distance
condition. Note that still za Rg d(z,z) Rq xx because of d(x,z) = 0, and that
the triangle inequality is trivially true here. By definition, Rz = Rg, hence d and
d are equivalent. Therefore, d will be called the canonical modification of d.

For the following, let

Gx = {(0,zz),(zx,0),(zz,2yyz) |z,z € X, y € X \ {z,2}},
G = Gx U{(Bzy)|zy € X},
G% = Gx U{(zy,yz)|z,y € X},

and G% = G% UG%.

LEMMA 2.24. For a relation R on X**, the function dg : X? = (X**,0,0,R) is
an arbitrary, positive, symmetric, or positive and symmetric distance function if and only if R
is a guasi-order on X 2% that is compatible with o and includes G x, Gg(, G%, or GO)?,

respectively.

The proof is trivial. These distance functions dg will be called canonical, and the
corresponding R = Ry, is the generating quasi-order of dr. Note that since two
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canonical distance functions on X are equivalent only if they are equal, the
system of all canonical distance functions on X is a set (!) of representatives for
the proper class of all distance functions on X w. r. t. equivalence.

The following lemma has a straightforward proof as well:

LEMMA 2.25. For every A C (X**)?, the smallest generating quasi-order R including
A is the transitive hull of the relation

B := {(sut,svt)|s,t € X**, (u,v) € AUGx UAxz2}.

This means that in order to get from a word s € X** to a “larger” word t € X**
with s Rt, one must perform a finite number of “replacement steps” u — v,
that is, a subword u that occurs after an even number of letters is replaced by
a word v with (u,v) € AU Gx. Accordingly, I will speak of ‘steps in A’ or
‘in Gx’. In this context, it is also convenient to call a subword of length two
that occurs after an even number of letters in s a gyllable of s. A null-syllable is  giiavie
one of the form zx with € X. The steps in G x, for example, are then the  nugiable
insertion or deletion of a null-syllable, or the replacement of one syllable zz by
two non-null syllables, that is, by some word zyyz.
The smallest generating quasi-order for X, that is, the transitive hull of R%

{(s,s),(st,sx:z:t),(sth,st),(swzt,sxyyzt) |s,t € XZ*, T,1y,2 € X},

will be designated by Ry because it leads to “the” (up to equivalence) finest
distance function dJ)‘( on X. In Chapter 4 we will see that this distance function — dx
suffices to induce all Ty quasi-uniformities on X.

Here comes a first example of reasoning with syllables.

PROPOSITION 2.26.  For every family Q = (Ka)zex of quasi-orders on a set X,
there is a finest distance function dg on X withy <z z <= dg (y,z) < dg(z,x) for
all x,y,z € X.

In that case, dg is positive resp. 11 resp. T if and only if, for all y # z, we havey <y 2
resp.y <y zresp. (y <y zorz <, y)

Moreover, there is also a finest symmetric such distance function if and only if the implications

y <$0 xly x() gml xz: M) xn—1 <wn «TO, mn ga:u z :> y <J}o Z,
y gwn a:1s xO <QE1 xz, MR xn—l gwn mn :> y gw() ‘TO’

and T gaﬂ T2, ooy Tn—1 gmn Lo, Tn gmo zZ = xo gm() <

hold for alln > 1 and all y, z,xo,. . . ,xn € X.

Proof. Let R be the smallest generating quasi-order on X including A :=
{(yz,zz) |y <z 2}, and put dg := dr. Assuming that yz Rzz, we have to
prove that also yx A zz. Consider the steps in A U G x that lead from yz to zx.
Since all <, are transitive, so is A. Note that no step in AU Gx diminishes
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the number of non-null syllables, hence in no step from yz to zx the number
of non-null syllables can be larger than one. In particular, all steps that affect
non-null syllables are steps in A, so that each non-null syllable has a well-defined
“trace”. Now the trace of yx has the form yx Ay'z Ay x--- and either ends
with zz, in which case we are done, or ends with zx and the subsequent removal
of zx. Likewise, the trace of zx has the form ---2"2x A2’z Azx and either
begins with yz (and we are done) or some freshly inserted xx. In the latter case,
one has yr Azxzx A zx, hence also yx A zx.

The proposed equivalences ate now clear from d(y,y) < d(z,y) <=y <y 2
etc.

For the last claim, assume that y <, z <= d(y,z) < d(z,z) holds with a
symmetric d, and thaty <z, 21,20 <, T2, - -, Tn—2 Kz, Tn>Ln-1 Sa, L0,
and z,, <z, 2. Then d(y,z0) < d(zo,z1) < -+ < d(xn,z0) < d(2,20), that
is, y <z, 2. Likewise, the premises of the second and third implications
are equivalent to d(y,z0) < d(zo,z1) < -+ < d(Tn-1,2n) < d(Tn,Tn) =
d(xo,x0) and d(xo,x0) = d(z1,21) < d(z1,22) < -+ < d(@n,20) < d(z,20).

On the other hand, assume that the required implication holds, let R be the
smallest generating quasi-order on X including A and S := {(vw,wv) |v,w €
X}, and suppose that yxo R zzo. As above, all steps from yx to zxg that affect
non-null syllables are steps in AU S. In the traces of yx and zz, subsequent
steps in A can be replaced by single steps in A (since A is transitive), and
each pair of subsequent steps in S can be left out (since they have the form
vw Swv Svw). After doing so, there is either a common trace of the form

yxo AxixoSxoxr) AT ST1T2 -+ Ty 1T, ATy, S T X A 20,
in which case the premise implies yzo A zzo. Or there are traces

yxo Axixo S ko) AX21 ST1T2 -+ Ty 1Ty AT Ty
and vivi Avav1 Sv1v2 - - Vg —1Vn AxgUp S v T A ZTg.

in which case the premise implies yzo A xoxg A zx0. O

Families of quasi-orders are used in logics, for instance:

EXAMPLE 2.27.  Possible worlds and counterfactual sentences.

Let X be a set of “possible worlds” or “information states”, and call the
subsets A C X propositions or sentences. The intended interpretation of x € A is
that the sentence A is “true” in world z. When X \ A, AN B, AU B, and
(X \ A) U B are interpreted as negation, conjunction, disjunction, and material
implication, respectively, the usual laws of Boolean propositional calculus
obviously hold.

However, in addition to these classical connectives, the possible worlds
approach also allows us to define modal operators 1 and { of “necessity” and
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“possibility”. This is usually done by assuming a reflexive accessibility relation
S C X? and putting

OA:={z e X|zSCA} and QA =SA={ze€ X|zSNA#O0}.

In other words, the sentence that ‘A is necessary [or possible]’ is true in world
x if A is true in every [or at least one| world accessible from z. One can try
to formalize also counterfactual sentences of the form ‘if A would be true, also
B would be true’ in a similar manner, using some more structure on X than
just the relation S. Now, the so far most intuitive of these approaches is that
of Lewis [Lew73] and Veltman [Vel85]. It requites a certain family (<q)wex
of quasi-orders on X, where y <, z has the intended meaning that world y is
“more similar” to x than z is. Lewis’ favourite type of counterfactual operator O—
can then be defined by means of this family:

At—B:={z e X|Vwe ATz€ Az <, wVy € A\ B:y &, z}.

This operation fulfils A0— B C (X \ A)U B, which is equivalent to the
rule of modus ponens AN (AO— B) C B, presetrves binary intersections in its
second argument, that is, AD—(BNC) = (A0— B) N (A0—C), but is not
in general antitone in the first argument. Also, O— does not fulfil the cut
tule (A0— B) N (Bo—C) C Ao— C, but its symmetrization A «0— B :=
(Ao— B) N (Bo— A) does and is thus an internal (£(X),N, X, D)-distance
function.

The above proposition shows that in fact all such possible worlds semantics
for counterfactuals come from a suitable distance function on the set of possible
worlds, to be interpreted as a dissimilarity measure, by way of the definition
(x) y <z 2z <= d(y,x) < d(z,2). The usual heuristics for counterfactual
semantics is that the sentence ‘if it were the case that A, it would be the case that
B’ should be true in a world x if and only if, whenever « is changed in some way
only so much that A becomes true, also B becomes true. Given a positive, T}
distance function d on X, this heuristics is also (and perhaps better) met when
< is defined in terms of betweenness instead of (x). Indeed,

Y Kz 2= zyyz Rqzz

also defines a quasi-order on X for every z [since y = z = d(zyyz) = d(zz),
and zyyz Rq xz and zzzw R4 zw imply zyyw Rq xyyzzw Rgxw]. It is a nice
exercise to determine the set AC— B defined by means of these quasi-orders in
case of, say, two closed subsets A, B of the Euclidean plane E, that share some
of their boundary.

We will come back to this idea in Chapter 6.
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MONOID COMPLETIONS

Before we enter the realm of topology in Part B, let me recall that like quasi-
ordered sets, also every quasi-ordered monoid M possesses at least two natural
completions. The Alexandroff completion M | is the system M) of all Jower sets
lA={8€ M|B < « for some o € A}, with the partial order C of set
inclusion and the addition operation

IATIB:=|(lA+|B) = |(A+B),

where A + B is of course shott for {a+ 8| a € A, B € B}. Its neutral element
is the principal ideal | {0}, and the original monoid M is embedded into
M| via A:a— |a:= |[{a}. The term ‘completion’ means in this case that
M, = (M 1,+,10,C) is in fact a complete lattice-ordered monoid, A is an
injective ¢. 0. m.-morphism that preserves arbitrary infima, and A[M] is \/-dense
in M, that is, every element in M is a supremum of embedded elements
A(a). Indeed, the supremum of a set in M | is just its union, hence M | is upper
distributive, that is, a quantale.

Although in case of quasi-ordered sets, the above completion is more usual
than its dual, in our case lower distributivity is more desirable than upper. The
dnal Alescandroff completion M" consists of all upper sets TA := {3 € M |8 > a for
some o € A}, with reverse set inclusion D as its partial order, and with the
addition operation

1A+ 1B:= 1(1A+1B) = 1(A+ B).

In complete analogy to the first completion, the map v : o — Ta:= T{a} isan
injective g. 0. m.-morphism from M into the co-quantale M= (M',%+,10,D)
that preserves arbitrary suprema, and v[M] is \-dense in M. Note that infima
in M" are again unions, not intersections.

Now let d be an M-distance function. Since X and v are order-isomorphic
g.o.m.-morphisms, both Aod and vod are distance functions equivalent
to d. In other words, every distance function is equivalent to one with an
upper and one with a lower distributive monoid. The distance functions
d:= Aodand d:= v od, having as co-domains the partially ordered monoids
M, = (X**,0,0,Rg), and M, := (X**,0,0,Rq4)", respectively, will be called
the upper and lower canonical modjfication of d, corresponding to upper and lower
distributivity of their monoids, respectively.
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CONVERGENCE AND CLOSURE

Motion does not excist becanse the moving body miust go
balf the distance before it goes the whole distance.

Zenon of Elea

Converging to the right class of structures

OVERTURE: SEQUENTIAL CONVERGENCE STRUCTURES

In 1905, Maurice Fréchet [Fré05] was the first to introduce the concept of what
we now call a metric space under the name ‘écart’.! The remarkable thing about
this is not only that he chose exactly the nowadays usual conditions of zero
distance, triangle inequality, positivity, symmetry, and separatedness, but that
he introduced his concept in full abstractness, not imposing any considerable
restriction on the objects being related by his distance functions. It was a first
journey into the realm of abstract gpaces of things, that is, arbitrary sets equipped
with some sort of topological structure.

One year later in his thesis [Fré06], Fréchet introduced another class of
abstract spaces whose topological structure consists of the information about
which sequences converge to which points. Following this historical line, let
us consider a set X with a sequential convergence structure £, that is, a subset of
X x X, and call a sequence S € X convergent to x, in symbols S — ¢ x, if and

YThis word was used by Jordan for distances. Only in 1914, Hausdorff introduced the term
‘metrischer Raum’ for this concept, a choice that was criticized by Fréchet because of its then
different meaning in geometry: “Il peut en résulter une confusion regrettable que nous préférons
éviter. [. . .] on pourrait, suivant une suggestion de M. Bouligand, employer un néologisme et les
appeler ‘espaces distanciés’ ” [Fré28].

48
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onlyif (S,z) € Z. When we designate the set of all isotone injections 0 : w — w
by X, the subsequences of S are exactly the sequences S o o for o € . General
sequences are also written as (x;);, wheteas constant sequences are written as ().
The specialization relation of £ is the relation © > ¢ y <= (x); — ¢ Yy, which,
however, is 7ot a quasi-order in general. Among the many possible conditions
on sequential convergence structures, the following are of special importance:
by their means, it is possible to characterize those types of convergence that
can be induced by other kinds of topological concepts such as “closure” or
“neighbourhood”.

(Cs1) Constant sequences converge to their constant value, that is,
(z); =2

(Cs2) Subsequences inherit all limits, that is, S — ¢ x and o € X imply
Sooc —g .

(Cs3) Urysobn’s axiom:1f, forall o € 3, thereisT € X withSocoT — # x,
then S — o x.

Csp) Ifz; 2o yforalli € w, then (x;); —2 y.
(Csz) Hfz; 29 y; foralli € w,and (y;); —¢ y 2¢ 2,then (x;); — ¢ 2.

Note that (C,1) and (C,z) together are stronger than (Csp) and imply that > ¢ is
a quasi-order.

In a distance set, of course, one would try to define convergence in a way
similar to classical analysis by saying that (x;),; converges to « if and only if the
distances d(z;,x) from the elements of the sequence to the prospective limit
become arbitrarily small as i grows.! But what does ‘small’ mean in a q. 0. m.
M? Our way to make this notion precise will be to specify a set D C M and say
that (x;), converges to x if and only if, for all § € D, there is n € w such that
d(z;,x) < 6 for all ¢ > n. The resulting sequential convergence structure will
be designated by £ (d, D), with — 44 py and > 4 (g p) abbreviated by —4 p
and 24 p. In case of a real distance function, the natural choice for D is of
course the set of all elements > 0, in which case it makes no difference whether
we requite d(z;,x) < 6 or <4 instead.? For general distance sets, however,

"Most authors who consider non-symmetric distance functions require that d(x,x;) becomes
small instead, since then the correspondence to quasi-uniform spaces is a bit more direct than it
will be in this thesis. However, I do not consider this enough motivation to change the intuitive
understanding that a sequence converges Zowards its limit, and that therefore the distances from the
sequence 7 the limit should be the relevant ones. This is also underlined by the fact that one usually
writes (z4); — x and not & «— (x4);.

>The latter remark is always true when D has no minimal elements. Otherwise, it makes
a difference, but I will always use the <-version here since that is both more natural from an
order-theoretic point of view and more convenient when working with generating quasi-orders.

b
subsequences

constant
sequences

specialization
relation

Zy

£(d, D)
—d,D

2d,D
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there are some reasons (which will become clear soon) not to restrict our choice
of D to that set. Instead, let us study the relationship between properties of
D and those of Z(d, D). By definition, the latter always fulfils (Cs2), (Cs3) [if
(z:)i 4D , thete is § € D, and for all n € w, there is a smallest i(n) > n
with d(;(n),x) £ 0. Then (2;(r))n» has no subsequence converging to x |, and
(Csp) [since z; =qp y <= d(x;,y) < 6 forall § € D]. Axiom (C,1) holds if
and only if D C 10. Obviously, .Z(d,D) = £(d,D") whenever 1D = 1D’.

Since (w, <) is an up-directed set, it also makes no difference to close
D under finite infima that might exist in M. Indeed, it will turn out that any
convergence .Z(d, D) that comes from a pair (d, D) with D C 70 alteady comes
from one with a positive filter, that is, a down-directed set D = TD C 70 C M.
This is because a positive filter can still be quite tailor-made for a specific
purpose, for example to produce or disable certain convergences:

LEMMA 3.1. Let Z be a sequential convergence structure with (Cs1), (Cs2), (Cs3), and
(Cop), and (S,z) € (X x X))\ L. Then there is a distance function ds . : X* — M
and a positive filter Dg  in M with (S,z) ¢ £ (dsz,Ds ) 2 Z.

Proof. Define a partial order on My := {0} U X?\ Ax by putting 0 < (z,y)
for all (z,y) € My, thatis, < := ({0} x My) U Apy,.

On M := My, define an addition + by putting o+ 3 := M, for all
o, € M\ {]0},and |0+ a:= o+ |0:= «, thusmaking M := (M,+, 0,C)
a partially ordered monoid with absorbing largest element Mj.

Choose some o € ¥ such that z is not an .Z-limit of any subsequence
of Soo, which is possible by (C3), then choose some o' € ¥ such that
Socod'(i) 2¢ z for all i € w, which is possible by (Csp) [if for all o’ € 3,
Socoo'(i) >4 z for some i € w, then there would be a o' € ¥ with
Socod'(i) >¢ z for all i € w. But then z would be a limit of S oo oo’ by
(Csp)]- Put 8" := Socoo’and A := {(5(i),2)|i € w}.

Because of (Cs1), (2,2) ¢ A.Since Aisanuppersetof My \ {0},0:= Mo\ A
is a lower set of M containing 0, that is, |0 C § € M. Hence the upper set
D := Dg_, := 1{6} of M which is generated by {d} is a positive filter.
Furthermore, putting d(z,z) := |0 and d(z,y) := | (z,y) for z # y defines an
M-distance function dg , := d on X [the triangle inequality holds by definition
of < and +]. Note that d(x,y) € § <= (x,y) € A. Since d(5'(3),2) € § for
all i € w, we have (5,2) ¢ .Z(d,D).

Finally, assume that ((y;)4,y) € (X* x X)\ £(d,D). Then, foralln € w,
there is a smallest ¢ > n with d(y;,y) € 0. Hence, there is 7 € ¥ and f € w®
with (Y7 (n),y) = (S/(f(n)),z) for all n € w. In particular, y = z. Also, there
is some 7’ € X so that either f o7’ € T (if f is unbounded) or f o 7’ is constant

@(f f is bounded).
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In the ‘bounded’ case, S'(fo7'(i)) = v for all i € w and some v € X,
hence Y,o,/(5) = v 2 2z = y forall i € w. Therefore, (y;): /.2 y by (Cs2).

In the ‘unbounded’ case, the sequence (Yror/(3))i = S 0o (fo7’) is a
common subsequence of (y;); and S o o, and z = y is not an .Z-limit of some
subsequence of S o 0. Hence (y;): /.« y by (C2). U

Note that since w is well-ordered, no choice principle is needed in the
proof. By taking categorical suptema of several pairs (d;,D;), the above
construction can be used to characterize those sequential convergence structures
that come from distances. The categorical supremum of a (set-indexed) family
(d; : X% - M ,)ier of distance functions is the distance function

X? = [Le M

sup, ., d;: = .
p’LEI { («'E,y) — Supiejdi(msy) 1 dl(x’y)s
which is “the” (up to equivalence) coarsest distance function finer than all d; [ the
projection map 7; : [[;.; M; — Mj is a calibration for id : (X,d) — (X,d;),
and for every family of calibrations (¢; : S, — M, )icr for a common homom-
etry id : (X,e) — (X,d;), themapc: S, — [[,e; M,;, a— (c;(a))icr is a
calibration for id : (X,e) — (X,sup,.;di)].

In order to be able to define the supremum of pairs (d;, D;), we must first

icl

adjoin a new largest absorbing element T to all the filtered monoids that do not
already possess such an element. That is, put (M, ,D,) := (M,,D;) if M,
has an absorbing largest element, otherwise let M be the monoid M; with a
new T adjoined, and put D, := D; U {T }. The categorical supremum of a family
(di : X* — M;,D;); is then the pair sup, . ; (di, D;) == (sup,.; di, ] 1,1 D} ),
where supiTe ; d; is defined exactly as sup, cr dis only with the larger co-domain
[Lics M, and with

[0 = {6 €I DJ|6G) =T forall but finitely many i € I}.

i€l iel
Note that if all D; are positive, idempotent, or filters, respectively, then so is
Mier Di

LEMMA 3.2. A sequence converges to a point x with respect to sup, . ;(di, Dy) if and
only if it does so w. . 1. each (ds, Dy): £ (sup; . (di, Ds)) = ;e ;£ (di, Dy).

Progf. Given i € I and 6; € Dy, put (d,D) := sup,;(d;,D;) and define
5 € D=]1,;c; D] byputting§(i) := 6; and §(j) := T forallj € I\ {i}. Then
d(z,y) < 6 <= di(z,y) < ;. Hence (d,D)-convergence implies (d;, D;)-
convergence. On the other hand, let § € D, thatis, §(¢) = T foralli € I\ F
with some finite set F' C I.If (z;); —a,.p, « forall i € F, there are numbers
n; € wsuchthatd;(z;,2) < §(¢) foralli € Fand j > n;. Taking the maximum

categorical
supremun

sup; ey di

Mt
DT
categorical
suprenum

Supiej(di,Di)
SuP;reI d;

T
HieIDi
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n of the finitely many n;, we finally get d(z;,x) < d for all j > n as required
for (z;); —a.p . U

THEOREM 3.3. For a sequential convergence structure £, there is a distance function d
and a positive filter D with £ = £(d, D) if and only if L fulfils (Cs1), (Cs2), (Cs3),
and (Csp).

Progf. The categorical supremum (d, D) := sup g _jc(xoxx)\ 2 (45,2, Ds,2)
(defined as in Lemma 3.1) fulfils £ = Z(d, D) by Lemma 3.2. !

Although most common types of convergence fulfil the above requirements,
there is a prominent example that violates Urysohn’s axiom:

EXAMPLE 3.4.  _Almost sure convergence. In probability theory, one studies
probability spaces (€2,47,P) (where o/ C &(Q2) is a o-algebra on €, that
is, nonempty and closed under complements and countable unions, and P is a
probability measure on &7, that is, a measure with P(€2) = 1) and (teal) random
variables (= measurable functions = : 2 — R) on them. It is then quite often
the case that one cannot assure the pointwise convergence of a sequence (z;);
of random variables for every a € €2 but only for all @ € A, where A is a subset
of measure 1. In other words, if

P((zi)i — z) = P(a € Q| (zs(a)); — z(a)) =1,

one says that (z;); converges almost surely to x, written as (x;); —a.s. . An
important case of this kind of convergence is the strong law of large numbers.
Almost sure convergence fulfils (Cs1), (Cs2) [P(Soo — z) > P(S — )],
and (Csz) [ ()i —as. y<== Pz =y) =l,and P(z; = y) = 1 foralli € w
implies P(xz; =y for all 4 € w) = 1]. However, it highly violates (C3). Let
&/ be any o-algebra on Q = [0,1] (for example the Borel-sets) that contains
all singletons and includes the countable system 2 of all intervals of the form
[k/2",(k+ 1)/2"] with non-negative integers k,n and 0 < k < 2™. Let P be
any probability measure on &7 with P({a}) = 0 for all singletons (for example
Lebesgue-measure). Choose a bijection f :w — Handletg(a) :={i €wla €
f(@)}.Then (g(a))a € wis an almost disjoint family, thatis, (i) each g(a) is infinite,
while (i) g(a) N g(b) is finite for a # b [only finitely many of the intervals
have length > |a — b| ]. Each of the characteristic functions z; with z;(a) :=1
for a € f(i) and z;(a) := 0 for a ¢ f(i) is measurable, hence a random
variable. Also, z := 0 defines a random variable. Now, each subsequence of
(z;); has a subsequence which converges almost sutely to z. Let A C w be

! Although the proof relies on it, the Axiom of Choice is not needed for this and the following
results: the class-indexed supremum of a/ (d, D) which fulfil £ C £ (d, D) can be constructed
without choice principles and is even a finest pair that induces .&.
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infinite. If AN g(a) is finite for all @ € Q then (z;);c 4 — x even pointwise.
Otherwise, choose a such that B := AN g(a) is infinite. Then (ii) implies that
(z:(b))iecp — Oforallb # a,in patticulat (z;)ic B —a.s. « since P({a}) = 0.
But (i) implies that (z;(a)); /> 0 for @/l a, in patrticular P((z;); — =) =0
instead of 1 as required by (C,3).

However, the following uniform version of almost sure convergence does
come from a distance.

EXAMPLE 3.5. Write (2;); —u.a.s. @ if and only if there is some A € &/

with P(A) = 1 so that the sequence (z;] ), of random variables restricted to

A converges uniformly to x| 4. Then this type of convergence is induced by the

usual internal distance function d(z,y) := |z — y| (as is the case for pointwise

convergence), together with the quasi-order @ <,5. 8 <= P(a < 8) = 1 and

the zero-filter D generated by the countable base {2 X {27"} |n € w}. Indeed,
(l‘z)z —d,D T

Vn3kVi>k: P(lz; —x| <27") =1

Vndk: P(Vizk: |z, —a| <27") =1

JA € /Vn3kVw € AVi >k |z; — x| <2 " and P(A) = 1

JA € o : (xzi]la)i — x| uniformly, and P(A) =1

(xz)z —u.a.s. L.

rerone

DISTANCE SPACES: SPECIALIZATION TO ZERO-FILTERS

In Fréchets thesis, the limit of a sequence was required to be unique, this property
being of particular importance in classical analysis. In a metric space, uniqueness
is assured by symmetry and separatedness: if S — x, S — y, and § > 0, there
is © € w such that d(S(3),2),d(S(4),y) < 9, hence d(z,y) < 20. Therefore,
d(z,y),d(y,z) < 0and thus x = y. This argument, of course, telies on the fact
that A{6|d > 0} = 0. In the general setting, the same proof obviously works
if M is lower distributive and D is a gero-filter, that is, a (positive) filter in M for
which 0 is an infimum [since then As. 526 = 2 A\ D = 0]. Also, in case of a
zero-filter, the specializations of d and .Z(d, D) coincide, and the latter fulfils
(Csz) [since then d(x;,2) < d(yi,y) ]. Let us therefore consider this a minimal
requirement for a sensible choice of D and introduce the name distance space for a
quadruple (X,d, M, D) with (X,d, M) a distance set and D a zero-filter in M.
The triple (d, M, D) (often abbreviated by (d, D)) will then be called a distance
structure on X, and (M, D) a filtered monoid.

Only a minor modification of Lemma 3.1 shows that sequential convergence
in a distance space is characterized by condition (Csz):

zero-filter

distance space

(X.d,
M, D)

(d, M, D)

distance
Structure

(M, D)

filtered

monoid
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LEMMA 3.6. Let L be a sequential convergence structure with (Cs1), (Cs2), (Cs3), and
(Csz), and (S,z) € (X« X X))\ L. Then there is a distance structure (d, D) on X with
(5,2) ¢ £(d,D) D 2.

Proof. Define a quasi-order < on My := {0} U {(z,y) € X*|z %2 y} by
putting 0 < « for all @ € M, and

(0,w) < (2,y) = v 2z zand w <z v,

where transitivity follows from (C,z). Using this pattially ordered set (M, <),
define M, S’, and A as in Lemma 3.1.

For each finite set F' C M\ {0}, let dp := My \ T(F U A). Obviously,
E := {6 |F C M\ {0} finite} is a filter-base in M. Moreover, (V1 E = |0
since (x,y) & 0{(x,y)} for all (z,y) € M. Let D := TE be the zero-filter in
M generated by E. Now, d(z,y) := |0 for z > ¢ y and d(z,y) := | (=,y) for
x 2¢ vy defines an M-distance function on X [the triangle inequality holds
since o + 8 = M for all o, 8 # |0, and since d(z,y) = d(y,z) = |0 implies
d(z,z) = |0 because of (Csz)]. Since d(S’(i),z) € 6 for all i € w and all
finite F', we have (S,2) ¢ Z(d, D).

Assume that ((y;):,y) € (X“ x X)\ Z(d,D), and choose some F such
that, for all n € w, there is ¢ > n with d(y;,y) € 0F, that is, y; 2« y and
(yi,y) € T(FUA). The latter implies that either (i) there is (v,w) € F and
T € Y such that (y,(;),y) = (v,w) foralli € w,or (ii) thereis 7 € Y and f € w*
with (y,(:),y) = (S'(f(4)),2) foralli € w.Incase (), yr(i) Sz v Erw <2y,
hence (y:): 7.2 y by (Csz) and (C,2). In case (i), we have z < ¢ y, and there
is 7' € ¥ with either f o7’ € 2 (if f is unbounded) or f o 7’ is constant (if f
is bounded). In the latter case, S’(f o 7/(i)) = v forall i € w and some v € X
with (v,2) € A, hence Y or1(s) Kz v 22 2 <z yand thus (y;); /2 yasin
(i). And in the former case, the sequences (Yror/(4))s and (z;); := S" o (fo7’)
fulfil z; =2 Yror/(s) and (z4)s /.2 2, hence (yi)i /.2 y by (Csz). O

THEOREM 3.7. A sequential convergence structure can be induced by a distance structure
if and only if it fulfils (Cs1), (C2), (Cs3), and (Csz).

Because the categorical supremum of distance structures is again a distance
structure, this can be proved exactly like Theorem 3.3. U
Open and closed; filters and nets
While sequential convergence is mostly about poinfs of a space, set-theoretic

topology is often more interested in properties of subsets of a space. In a distance
space, such properties can be most easily defined either by means of balls, or
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using the notion of convergence. For all « € M and y € X, the a-ball about y is
the set Bgoy := {x € X |d(z,y) < a}, which contains y if and only if o > 0.
A D-ball is one with o« € D, and the ball-systemr %4 py about y is the system of
all D-balls about y.

Now, a ball-gpen set includes some D-ball about each of its points, that is, it
is a subset O C X such that forally € O, thereis § € D with z € O whenever
d(z,y) < 9. It is obvious by this definition that for a given distance d and an
arbitrary set D C M, the resulting ball-open sets build a &erwel system, that is, are
closed under arbitrary unions. Modifying a construction by Pervin [Per62], we
obtain

PROPOSITION 3.8.  For every kernel system O, there is a multi-real distance function
d: X? — (RN on X := \J O such that O is the system of ball-gpen sets of (X ,d, D),
where D == {§ € (0,00]" |8(i) < oo for at most onei € I}.

Progf: Similar to the construction for set functions in Chapter 1, put I := 0,
d(z,y)(0) :=1 for (z,y) € O, and d(z,y) := 0 otherwise, so that do is
the characteristic function of O~ = (X \ O) x O. Then By sy = O for each
6§ ={(0,6)} U ((0\{0}) x {oc}) € D withe < 1 and y € O. The rest is
routine. O

The above D consists of all elements that are Jong-way-above 0, a concept that
will be used in the next section. Note that it fulfils A D = 0 but is not a filter.
In a distance space, that is, when D is down-directed, the ball-open sets build a
topology 7 (d, D), that is, a kernel system which is also closed under binaty (and
hence finite) intersections. If a topology & is given, one can modify the above
construction and put D := [],.;(0,00], which is the smallest zero-filter for
(R")! and consists of all elements way-above 0 (sce also the next section). Since
then still all ball-open sets are members of €, this is the easiest way to show that
every topology comes from a distance structure.'

Closed sets.  Given a sequential convergence structure £ on X, call a subset
C C X sequentially closed if it contains all limits of sequences in C. Without any
conditions on .Z, these sets always build a hull system, that is, are closed under
arbitrary intersections. In case of (Cs2), it is a fopological hull system, that is, also
closed under finite unions [because a sequence in A U B has a subsequence in
cither A or B].

In a metric space, the two notions of (ball-)openness and (sequential)
closedness are nicely related by the fact that the open sets are just the

'Kopperman’s article [Kop88] is essentially based on that fact, which however was known long
before. Flagg [Fla97] requires the long-way-above set of 0 to be a filter in his value distributive
lattices, hence his theory is not applicable to multi-real distances. Another disadvantage of this
requirement is that it is not preserved when taking products.

D-ball
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complements of the closed ones. In the general case of an arbitrary positive
filter D, only half of this is true: complements of ball-open sets are sequentially
closed. Indeed, when A is ball-open and S a sequence in X \ A, no limit
of S can belong to A. Otherwise, there would be a ball Bgsx C A in which
the sequence stays eventually' (that is, S(i) € Bgsz for all i larger than some
n € w).

EXAMPLE 3.9. Multi-real distance spaces. 1f nothing else is specified, a multi-
metric distance set (X,d : X* — (R")’) will always be interpreted as a distance
space having the smallest possible zero-filter [ [, . ; (0, 00].

Now consider the function space X := R¥ together with the pointwise
Euclidean multi-pseudometric, that is, d(f,g) := dpw.(f,9) = |f — g|. The
induced sequential convergence structure is that of pointwise convergence. The
set C of all functions f € X with countable support (that is, those with f(r) =0
for all but countably many r) is sequentially closed [a limit f of such functions f;
has f(r) = 0 wherever f;(r) = 0 for all ] but its complement is not ball-open.
More precisely, every ball Bg s f with § € D and f € X contains an element
of A [put f'(r) = f(r) if §(r) < oo (which is only finitely often the case) and
f'(r) = 0 otherwise. Then f'(r) € AN Basf], thatis, A is ball-dense in X.

That metric spaces are better behaved in this respect is because their zero-filter
D has a base (that is, a subset E C D with TE = D) which is countable [for
example D N Q or, which is more frequently used, the base {27™ |n € w}].
In contrast to this, [[,<;(0,00] does not have a countable base when I is
uncountable as in the example above.

LEMMA 3.10. If D is a positive filter with countable base, the complements of sequentially
closed subsets of (X ,d, D) are exactly the ball-open sets.

Progf. Let E = {6; |t € w} be a countable base of D with §; < d; whenever
i < j [such a base can be chosen since D is a filter |. Assuming that every D-ball
about some x € X \ A intersects A, choose some (x;); with z; € Bgs,x N A.
But this is a sequence in A with limit x ¢ A. e

FILTER CONVERGENCE

The above proof shows that the discrepancy between ball-openness and
sequential closedness for general positive filters just lies in the fact that the
minimal cardinality of a base of D and that of w (the domain of all sequences)
may differ. One solution to this problem would be to consider “sequences” with

ISee below for the general meaning of ‘eventually’ and “frequently’.
2<cC’ means the Axiom of Countable Choice is needed here, requiring the existence of choice
functions only for countable families.
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other domains than w, that is, nets. However, there are some problems finding
a suitable notion of “subnet” (cf. [Suh80]), so I will first use filters here.

For a sequence S, call every set of the form S[w\ n] = {S(:)|i = n} an
end of S. Suppose that D is a positive filter. Then the definition of sequential
convergence can be simplified to this: S —4 p « if and only if every D-ball
about z includes an end of S. The ends of S build a filter base on X, that is, a
nonempty down-directed set in the partially ordered set (Z(X) \ {0},C), and
also the ball system % g px is a filter base since D is a filter. Convergence now
just means that the ends of S build a finer base than the D-balls about x. The
generated filters &S := T{S[w\ {n}]|n € w} and Gy px := 1HBapzr on X
are called the end filter of S and the neighbourhood filter of z, respectively.! By their
means, the statement that S converges to = reduces to &S 2 €4, px.

If we designate the system of all filters on X by Fil(X), a filter convergence structure
on X isarelation ¥ C Fil(X) x X, and again .# —« x means (%,x) € €. The
induced sequential convergence structure is 2 (%) := {(S,x) | (£S,x) € €}. A
cluster point of a filter is a limit of a finer filter, and since subsequences have finer
end filters, every limit of a subsequence of a sequence S is a cluster point of £S. A
constantsequence S = w X {z} hastheend filter & := {F C X |z € F'}, called
the principal ultra-filter of x, and again the specialization relation x 24y <= T —¢ y
need not be a quasi-order in general. However, T4A will be short for {z |z 24y
for some y € A}. As in case of sequential convergence, there are several natural
conditions € might satisfy:

(C¢1) Principal ultra-filters converge to their “base” point: & —¢ x.

(C¢2) Finer filters inherit all limits, that is, . —¢ « and ¢4 O F imply
9 —¢ X.

(Ce3) A common cluster point of all finer filters is already a limit, that is, if
foral 4 O ¥ there exists S D ¥4 with J# —¢ x, then ¥ —¢ x.

(C¢f) Binary intersections of filters convergent to x converge to x, that
is, F »grand ¥ —¢ xzimply F NY —¢ .

(C¢p) Foreach z € X, there is a smallest filter G that converges to .
(Ciz) F —yx 2¢yimplies {1 F|F € F} —¢v.
(Cst) Foreach F' € €y, thereis G € €y with F' € €z forallz € G.

Note that (C¢l) is equivalent to (C1) for Z(%), and (Cs2) entails (Cs2) for
Z(€). Moreovert, (Cs2) and (Cep) together mean that F —¢ x <— F D Cx,

"Here the symbol T refers to the partial order C of course.
%] reserve the mote common symbol & for constant nets instead.

end

filter base on
X

&S

Capx

end filter
neighbonrhood
Salter

Fil(X)
Silter

convergence
Sstructure

F —gx
(L)
cluster point
T

principal
ultra-filter

specialization
relation

2%



T

limit space
psendo-
topological
pre-
topological

topological

%(d, D)

right
convergence
Structure

lef
convergence
Sstructure

58

which already implies (C¢f) and (C¢3) [If .F /4 x, choose F' € €z \ F and let
9 be the filter generated by % U { X \ F'}. Then J /¢ x forall 2 D ¢ since
otherwise F' € Gz C S would imply § = FN (X \ F) € S]. Furthermore,
(C¢1) and (Csz) together imply that <¢ is a quasi-order. On the other hand, if
L« equals the diagonal A x, the space is called T1, and (C¢z) is fulfilled.

If ¢ fulfils (C¢l), (C¢2), and (C¢f), the pair (X,%) is called a Jmit space
[Fis59]. If also (C¢3) or (Cep) is fulfilled, € is called pseudo-topological [Cho48]
or pre-topological [Cho48, Pre88], respectively. A pre-topological limit space that
satisfies (Cst) is a fopological one and fulfils also (Csz) [For F' € 6y, choose G as
in (Cgt). Then T4,G C F'since z 2¢ x € G implies F' € €x C %, thatis, z € F.
Hence every @y has a base of upper sets of <. Now, F —¢ x 2« y implies

Cr=1{1cF|F € tx} C{1,F|F €7}

and ¥y C &. For F € %, choose G as in (Cst). Then = € G and thus
F € ¢x C .7, so that finally €y C %x implies T{14,F | F € F} —¢y].

EXAMPLE 3.11. Let (G,o,e) be a group, M = (Z(G),0,{e},C), and
d(z,y) = {da(z,y)} = {z"'y}. Then the zero-filters D in M are exactly the
filters €e of T translation-invariant filter convergence structures € on G.

Surprisingly, the construction from Lemma 3.1 has an analogue for filters
which is even more simple. The filter convergence structure induced by a distance
function d and a positive filter D is €(d, D) := {(Z,x) |.# 2 €a.px}. More
precisely, let us call €(d,D) the right convergence structure of (d,D) since limits
occur as the right argument of d, while ¥(d°F, D) will be called the %f# convergence
strueture of (d, D). Note that €q px is indeed the smallest filter converging to «,
in othet words, €4, px = 6(d, D).

LEMMA 3.12. ¢(sup,.;(di, Di)) = ey €(di, Ds).

Proof. Let (d, D) := sup, . ;(di, D;). Then each ball By sz is a finite intersection
of balls By, 5(;)® with 6(i) < T.Hence ¢4,px is the smallest filter including all
Ca, p,xwithi € I, so that & — 4 p x if and only if & includes all €4, p,z. [

THEOREM 3.13. For a filter convergence structure €, there is a distance function e and a
set E C 10 with€ = 6 (e, E) if and only if (X, €) is a pre-topological limit space, that is,
Sulfils (Ce1), (Cs2), and (Cep). Again, E can always be chosen as a positive filter.

Proof. In €(e, E), all conditions hold. On the other hand, assume that % fulfils
them, let z € X and Z € %%, and put A:= (X \ Z) x {z}. Using this A,
construct M, D, z := D, and d, z := d as in Lemma 3.1. Then Bgsz = Z
and Bg sz = X for z # z. By definition, € C ¥(d, D).
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Now, take (e, E) := sup, . x SUp ; ¢, (dz,z, Dz z). Then still €’ C 6(e, E)
by Lemma 3.12. For (.#,2) € €, thereis Z € €z \ .7 by (Csp),hence By_ , 5, &
F for all F, that is, (#,2) & 6(d; z,D.z) 2 (e, E). Therefore, € =
€(e,E). O

For a positive filter D, the filter convergence structure 6(d, D) leads to a
notion of closedness which perfectly fits that of ball-openness. A set A C X is
Jfilter-closed if and only if it contains the limits of every filter # with FNA # 0
for all FF € Z. In case of a pre-topological space like (X,%(d,D)), this is
equivalent to the condition that, forallx € X, X \ A € ¥z orxz € A.

LEMMA 3.14.  For positive filters D, the filter-closed sets of €(d, D) are exactly the
complements of the ball-open sets of (d, D).

Progf. X \ A is ball-open if and only if, for all z € X \ A, some D-ball about z
is included in X \ A, in other words, if X \ A € €4 px. O

In particular, for positive filters D, the filter-closed sets of (d, D) always build
a topological hull-system, that is, they are closed under arbitrary intersections
and binary unions.! Similarly to the sequential case, those filter convergence
structure that come from distance spaces are characterized by condition (Cez).

THEOREM 3.15. A filter convergence structure can be induced by a distance structure if
and only if it fulfils (Cs1), (Cs2), (Csp), and (Csz).

Proof. As always, necessity is checked easily.

On the other hand, let z € X and assume that Z € €z is an upper set of L,
thatis, Z = 14Z :={z € X |z Z2¢yforsomey € Z}.Put A:= (X \ Z) x {z}
and define M, D, z := D,and d z := d as in Lemma 3.6, but using < instead
of <. Note that A C My \ {0} since Z = 14Z. Moteovet, By s,z C Z for
all finite I C M \ {0}.

Suppose F —4y and Bgs,y ¢ F for some #. Then each G € &
intersects X \ Ba,s5,y. By definition of §p = My \ T(F U A), we know that
x € X\ Bys,y < (z,y) € T(FUA).Hence each G x {y} intersects either
TA, in which case y 2« z must hold, or it intersects one of the finitely many
sets T(v,w) with (v,w) € F. As .Z# is a filter, either () y 2¢ z,and all G € F
intersect | 4(X \ Z) = X \ Z, or (i) there is (v,w) € F with y > w so that
all G € Z intersect | 4.

In case (i), F —¢ 2z by (C¢z), in particular Z € .F by (C¢p), in contradiction to
@). In case (i), in particular each G € €y C .Z intersects |4v, hence v € T,G.
Since by (Cfz), €y has a base of upper sets of <, we have ¥ D €y, that

"Hence, the ball-open sets build a topology and their complements, the filter-closed sets, a
topological hull system, without €(d, D) being topological in general!
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is, v 2¢y 2¢ w. Again by (Cfz), this implies v 24 w in contradiction to
(v,w) € M. Consequently, ¢ C 6(d..z,D..p).

Having defined (d. z,D. z) for all choices of z and Z, the proof is now
completed exactly as in Theorem 3.13. ]

CLOSED AND “CLOSURE”

An equivalent way to determine a pre-topological filter convergence structure
€ on X is to specify a Cech-cosure gperator u : 2(X) — P(X) with ud = 0,
uA D A, and u(AU B) = uAUuB for all A,B C X, that is, an extensive
operator that preserves finite (including empty) unions (cf. [Cec66]). € and u
are related by

T €E€uA<—= X\A¢%Cx and yc€u{z} <=z >¢v.
As the first equivalence is equivalent to
zE€ud<= (FNA#Dforall F € ¢x),

the set uA is the set of all limits of filters whose elements all intersect A, and
is called the Cech-closure of A. However, it usually is nof closed, that is, neither
is uA filter-closed w.r.t. €, nor does the dempotency law vuA = uwA hold in
general. In particular, w is not a closure gperator in the order-theoretic sense, that
is, extensive, isotone, and idempotent. Putting ugA := J, . 4 u{z} = |44, we
can easily characterize those Cech closure operators that come from distance
spaces.

LEMMA 3.16. € fulfils (C¢z) if and only if uo o u o uy = u.

Progf. Let € fulfil (C¢z) and assume that y € upuupA \ uA, that is, y <¢ x for
some x € uupA, and G := X \ A € %y. By (C¢z), thete is F' € €x with F =
ToF C G . Then A C X\ Fand thus upA Cug(X\F) =X \T,F=X\F.
Hence © € uupA C u(X \ F) in contradiction to F' € x.

On the other hand, let upuug = u, and assume that (x,y) violates (C¢z).
That is, ¢ 24y and T,F € G for some G € ¥y and all F € ¥z. Then
A= X \ G intersects all T,F with F' € @z, that is, upA = | A intersects all
F € €x. Now x € uupA, and thus y € upuugA = uA. In contradiction to that,
G = X \ A € ¢y implies that y ¢ uA. U

COROLLARY 3.17. A Cech closure gperator . comes from a distance structure (d, D) if
and only if wp o wo uy = w.
NET CONVERGENCE

Definitions. A netx = (x3)ser, onaset X isamap x : I, — X, i — x;, defined
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on a nonempty, up-directed quasi-ordered’ ndex set (I, <). The images of upper
sets of I are the ends of the net, and &x := T{x[Tn]|n € L} is the end filter of
x. The constant net & := ()¢5} is called the principal net of x.

A proposition about points x; of x is said to hold eventually if and only if it
holds for all ¢ > n, for some choice of n € L. It is said to hold frequently if and
only if, for all n € I, it holds for some ¢ 2> n.

In a distance space (X,d,D), a net X converges to a point x, in symbols
X —q.p Z, if and only if, for all § € D, eventually d(z;,xz) < 4. As in case
of the more special sequences, this is equivalent to &x O 4, pz, that is, to
Ex —q,p x. A point x is a custer point of x, in symbols x >4 p , if and only
if, for all 6 € D, frequently d(z;,z) < 6, which is equivalent to being a cluster
point of &x. A detailed comparison of nets and filters can be found in [Suh80].

Convergence in filtered monoids. For sequences in metric spaces, the equivalence
(:); — <= (d(acz,ac))z — 0 is frequently used. This is also possible for
nets in a distance set (X,d) with positive filter D—we only need the cottect
notion of convergence in M.

For a positive filter D of a q.o.m. M and a net a = (&;)ser in M, let
a —p o if and only if, for all § € D, eventually a; < § 4 . This definition

corresponds to the pre-topological filter convergence structure € p with
¢pa:=T1{l{0+a}|é € D}.
Now it is a triviality to see that

(Ti)ier —a,p T <= (d(a:i,:c))iel —p0

= (d(wi,y))id —p d(z,y) forally € X.

In other words, in their first argument, distance functions are continuous.

We know that €p must come from a distance function on M. Also, from
Chapter 1, we know that there are at least two infernal distance functions on M
if the latter is a co-quantale. And indeed, d’ (o, 8) = A{v = 0|a < v+ 6}
obviously fulfils €q_ p = ¢¥p. Using the above equivalence, this can be
rewritten as

(ai)iEI —p <= (di(ai,a)) p 0.

iel
WHAT MAKES TOPOLOGICAL LIFE SUFFICIENTLY EASY

In a number of respects, general distance spaces cannot be considered to provide
enough good properties for convenient topological reasoning. For example: (i)
A dnal D-ball xBgs == {y € X |d(z,y) < §} need not be closed [on [0,1],

!t is not necessary to require a partially ordered index set. In fact, when one seeks to associate
a natural net to a filter, the construction is far easier when quasi-ordered index sets are allowed.
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let d(z,y) := |z — y| except that d(0,1) := oo, put a + 8 := oo for a, 3 > 0,
and D := (0,00]. Then 1Bg41 = (0,1] but 1/n — 0]. (ii) A D-ball need not
include any nonempty ball-open set [on R?, let d(z,y) := |z — y| when z and y
coincide in one cootdinate, and d(x,y) := oo othetwise. Again, o + 3 := oo for
o, 8> 0,and D := (0,00]. But no ball By sx with § < oo includes a nonempty
ball-open set]."

All this cannot happen when D is idempotent as an element of M, that is,
D+D = D or, equivalently, foralle € D, thereis 6 € D with 2§ < €. Then the
induced filter convergence structure is topological as in case of metric spaces
[Fot F € €qpy,thereise € Dwith Bg.y C Fandd € D with 2§ < €. Then,
forallz € G:= Basy € €a,.py, we have Bgsx C F sothat F € €4 px]. On
the other hand, every topological convergence structure € is already determined
by its induced topology of open sets (hence the name ‘topological’) since €z is
then just the system of all F C X with x € O C F for some open O. We have
already seen that every topology comes from a distance space with idempotent
zero-filter, hence:

PROPOSITION 3.18. Those filter convergence structures that come from a distance structure
with idempotent gero-filter are exactly the topological ones.

Cech’s monograph [CecG6] is a good starting point for a comparison of
pre-topological spaces (there called closure spaces) and topological spaces.

Distances in point-free situations, and hyperspaces

In point-free topology, the topological structure of an object is coded without
reference to points of a space. Rather, the basic elements of a point-free
topological object can be considered as extended things or “spots”. The natural
point-free object associated with a topological space (X,Z) is most often
considered to be the topology 7 itself. In other words, the “spots” of the space
are just the open sets, which build a frame or locale, that is, a complete Brouwerian
lattice. Here the infinite distributive law

an\/B=\/{anb|be B},

also called the frame law, holds because binary infima and arbitrary suprema in that
lattice are just intersections and unions, respectively. For some reasons, it may
sometimes be more appropriate to consider the system Cp(X) = {X \ A|A €
T} of closed sets instead. For example, general topologists have defined many
different topological structures on the so-called hyperspace C (X)) := Co(X) \ {0}.

! A word on notation: as usual in order theory, 2 R and Ry stand for {y | z Ry} and {z |z Ry},

respectively, hence the notation B4 5 and Bg sy. The alternative form R(xz) for R will not be
used here.
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The system Cj(X) of course is a co-quantale, that is, fulfils the dual law

aVv /\B= /\{avb|be B}
and is thus called a co-frame ot co-locale.

The theory of metric spaces has as well been developed into a point-free
direction to some extent by Pultr and Banaschewski (cf. [Pul84] and [BP89]).
Their approach was to consider diameter functions on frames which generalize the
usual definition of diameter in a metric space. The aim of this section is to show
that one does not need to change the basic notion in this way but can still use
distance functions between “spots” even in a very general point-free context. Like
the one-sided Hausdorff distance dpr4 (A, B) ==V, c g Apca d(z,y) between
closed sets of a metric space, these distances will be non-symmetric in a natural
way that reflects the fact that, contrary to points, “spots” are extended things.

The following lattice-theoretic concepts will prove useful. Let /' € C mean
that F' is a finite subset of C. For elements o, 3 of a complete lattice M, the
[long-Jway-below relations <K [resp. <] and the [long-/way-above relations > [resp.
>>] are defined like this:

a<p = vecM(\/C2p=3FeC:\/F>a),
0> f = VCCM(\C<B=3IFeC: \F<a),
0 <K B o= vch(\/c>ﬁ:>3~yeC N> )

as> B e vch(/\cgﬂzayeczy\a).

Note that a < B is not equivalent to 8 > «, nor is a << B equivalent to
B >> «. For the corresponding upper and lower sets, the notation

1B={aeMlakp}, 18:={acMla>p},
1B={aeMlakp}, 18:={acM|a>>p}

is used. In particular, T0 is a positive filter in M. Now M is called completely
distributive if and only if

veeM:B=\/|5,
which is equivalentto VG € M : 3 = /\ fﬁ,
the equivalence being shown in [Ran53] for instance.
Pre-diameter spaces. In direct generalization of Pultr’s [Pul84] notion of pre-

diameter, let us call a quadruple (L,d, M, D) a pre-diameter space if and only if
= (L, V,0) is a (supremum-)semilattice with least element 0, M is a complete
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lattice-ordered commutative monoid with zero-filter D, and d fulfils
d(0) =0 and d(a) <d(aVb) <d(a)+d(b)
for all a,b € L which #ntersect, that is, for which there is ¢ € L with 0 < ¢ < a,b.
If, additionally,
d(c) = \/{d(aVb)|a,b< ¢, d(a),d(b) <}

forallc € L and alle € D, the space is called metric.

THEOREM 3.19. ILet (L,d,M,D) be a metric pre-diameter space such that M is a
completely distributive co-quantale, D is idempotent, and L fulfils

(I) Vab,c€ L:c<aVb, ¢cg b= c,a intersect.
Then

e(a,b) i=ea(ab):= \ \/ A d V)

€e€D 0#£b'<b, 0#£a’<a
d(b’)<e

defines a distance function on L which is antitone in the first and isotone in the second component
and induces d via

d(c) =0V \/ e(a,c).

0#a<c

This will be proved using two lemmata.

LEMMA 3.20. For o <K ¢ in a completely distributive co-quantale M with idempotent
zero-filter D,

3o/ K (ISEDVIEM: (0+6>a = 9> a).

Proof. Assume that, for all o <« ¢ and § € D, thereis ¥ € M with 9+ > o/
and ¥ 2 q, so that

/\ \/19—|—5 >a.

5eD \9pa

ThenV 54, ¥ = ¢ bylowerand complete distributivity. This contradicts o < ¢.
U

"Note that for lattices L, condition (I) follows from distributivity but not from modularity [ the
five-element lattice M3 with three atoms] or pseudo-complementedness [ the other non-distributive
five-element lattice, call it D5 ]. On the other hand, for finite L, it implies pseudo-complementedness
[straightforward] but not upper or lower semi-modularity [ Ds with an adjoined new bottom
element].
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LEMMA 3.21. Ifc € L and (1) holds,

Va & d(c),d € DIa<cdla) <6
V<K a,e e DIb<Lc,db)<e : =20 ordlaVvd) 2 (3

Proof. Let a and § be given. If a < 0, a := b := 0 works, so assume o £ 0, choose
some ¢ € D with a € 3¢ < 4, and, according to metricity, some a,by < ¢ with
d(a),d(by) < ¢ and d(aV by) = a. Now, for all 8 K « and € € D, there
is 9 € D with ¢,e > 9, and there are ¢, < aV by with d(c'),d(c") <9
and d(c' V") > B. Neither ¢’ nor ¢ intersects both a and by [otherwise
a < d(aVby) < 3¢]. By (I), each of ¢/,c’ must therefore be below a or
by. If either a or by is above both ¢’ and ¢”, we have § > d(c' v ") > 3;
otherwise we may assume that ¢’ < a and ¢’ < by and put b := ¢”, so that
d(aVvb) =d(dvc) =B U

Proof of Theorem 3.19. Because of metricity, the function

eq(a,b) := /\ \/ /\ d(a’ v )
e€D 0#£b'<b, 0#a’<a
d(b')<e
fulfils eq4(a,b) = 0 whenever a > b [given e and b, puta’ := b']. It is a distance
function:

eq(a,b) +eq(b,c)

AV ( Vo A d@ v+ A d(b”\/c’))
€€D 0#£c'<e, 0#£b’'<b, 0#a’<a 0#£b”<b
d(c)<e  d(b)<e

/\ \/ /\ d(a' v ),
eeD (#£c'<c, 0#a’<a
d(c')<e

where the first inequality holds because of lower distributivity of M and
directedness of D, and the second one can be proved like this: let € € D,
0#c <e d(d) <e and B3> N\gpie, A" V &), Because of metricity,
we can choose 0 # b5 < b with d(bj3) < e and d(bjg V') < 8. Let a >
Nozar<a d(a’ v bg) and choose 0 # a'a < a with d(a'a Vb3) < o Then

/\ d(a'v ) <d(a,v<c) <d(a, \/bg)—l-d(bch) a+ B,
0#a’<a

e, c’.B

12

bﬂ,a



thus
N d@'ve) < AN+ = ANa+ A
< B o B o B
= /\ /\ d(a’vb’ﬁ’)+/\g
B

B 0#a’<a

< VA dve)y+ A d@"ve)
0#£b'<b, 0£a’'<a 0#£b"' <b
d(b')<e

because of lower and complete distributivity (note that the latter implies that
there is at least one 3).
Finally, we can prove that

ov \/ AV A d@vb) =d(o)

0#a<c €€D 0#b<c, 0#a’<a
d(b)<e
and thus d(c) = V,<.€a(a,c). For ¢ = 0, we have 0 > d(c), hence assume
that ¢ > 0. Let a < d(c), then choose o’ <K d(c) and § € D according
to Lemma 3.20. For this o/, choose 0 # a < ¢ with d(a) < § according to
Lemma 3.21. Now let 8 <& o/, € € D, and choose b according to Lemma 3.21.
Then, for all 0 # a’ < a, y:=d(a’Vb)+6 >3 and v > d(a Vb), hence
v = d(aVb) V3 > [ because of Lemma 3.21. Therefore,

AV A ddvb)+s5>3,

e€D 0#b<c, 0#a’<a
d(b)<e

so that complete distributivity gives A -+ -+ & > o, hence A\ - -+ > a because of
Lemma 3.20. Again by complete distributivity, the latter implies the proposition
of the theorem.

COROLLARY 3.22. A pair (d4+,M,D), (d—,M,D) of diameter structures on L
comees from the distance function

e(a,b) :==eq (a,b) Veq_(ba)
in the sense that

dy(b) =0V \/ e(ab) ad d_(b)=0v \/ e(ba).

0#a<b 0#a<b

Proof. For a < b, both e4_(a,b) and eq_ (b,a) are zero.

Note that no distributivity of L is needed for all this. However, condition
(D) is implied by distributivity and may thus be considered a very weak form of
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distributivity. On the other hand, the proof of the theorem relies heavily on the
fact that M has the strongest possible form of distributivity.

PROBLEM 3.23.  Is there a similar result that does not require complete
distributivity of M?

Pultr [Pul84] considers the relationship between frame uniformities and diameters
and shows that every frame uniformity on a frame L can be induced by a family
2 of metric pre-diameters 6 € 2 on L. Just like a family of pseudometrics
defines a multi-pseudometric, this family defines a multi-real pre-diameter d : L —
M:=(R")?,d— d(a),withd(a) : 2 — R", 6 — 8(a). It is casy to see that
this function d fulfils the requirements of the theorem, hence

COROLLARY 3.24. Every pair of frame uniformities comes from a single distance function
on the frame.

Concluding this chapter, the following example shows that on hyperspaces
there are also useful symmetric distances.

EXAMPLE 3.25. On the hyperspace of a bounded metric space (X,d), the
Wijsman topology (cf. [IDMM98]) can be characterized as the coarsest topology
on C(X) under which the maps f, : C(X) — Ej, A— \,cad(a,x) are
continuous forall z € X.

This can be used to generalize the concept to distance spaces (X,d, M, D)
for which M is a complete p.o. m. with some topology 7 on it. The generalized
Wijsman topology W7 (X) on C(X) is then the coarsest under which all maps
A=\, cad(a,z) for x € X become continuous w.r.t. 7.

If . comes from a distance structure (e, N, E) on M, as in the original
case of Eq, then #% (X)) is induced by the following multi-N-distance structure
(d#,D) on C(X):

CX)* — (NH)*
X — N'
(A,B) — d7(A,B): { v e e(Vaen (@), Vyep d(2)).

and D =[], . x ET C (N")*. Since (d7,D) is a categorical supremum, this
is easily seen from Lemma 3.12. It also follows from the more general result on
initial structures, Lemma 4.21.

When M is a co-quantale with A T0 = 0, (e, E) would most naturally be the
internal distance structure (d,,10) on M, so that C'(X) would then become
a symmetric multi-M-distance space. In particular, for M = R, d”, is just

da:

Euclidean distance, hence the Wijsman topology of a gp-metric space comes
from a multi-pseudometric.

multi-real
pre-diameter

Wijsman
topology

generalized
Wijsman
topology

W7 (X)
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4.
MORE ON MAPPINGS

Nothing awakens in the traveller a livelier remembrance
of the immense distance by which be is separated from
his country, than the aspect of an unknown firmament.

Longfellow (1867)

Topological properties of maps

FORMS OF CONTINUITY

In Part A, several “preservation” properties of maps between distance sets have
been studied that were of a mere algebraic and order-theoretic nature. Now, the
additional structure of a distance space allows us to define as well “topological”
propetties of maps f between distance spaces (X,d,M,D) and (Y,e,N,E).
The most familiar of them is of course continuity with a whole number of
equivalent characterizations (cf. [Cec66]): images of convergent filters [or nets]
converge to the images of the limits, or: for all x € X and F € G g(fx) we
have f~! [F] € €apx,or:foralle € Eandy € X, theteis § € D such that, for
alz € X, d(x,y) < d implies ef(z,y) < e. Note that since E is a zero-filter,
this implies that continuous maps are specialization preserving.

Also, continuity implies that pre-images of open sets are open, which is
equivalent to all pre-images of closed sets being closed, but these conditions are
propetly weaker than continuity in general. They imply continuity only when F
is idempotent. Indeed, the nterior

A’ :={a€ A|A € Cepa}

68
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of any set A C Y is then an open set [if Beca C A, there is § € E with
20 < e, so that B sb C A for all b € B sa, that is, B. sa C A°]. Under the
premise, f~![F] is then an open set containing z for all F € €. g (fz), that is,
an element of ¥4 px. To put it very clearly: continuity between distance spaces
is propetly stronger than continuity w. r. t. the two induced topologies.

As in case of metric spaces, one gets the definition of wuiform continuity of a
map f: X — Y by interchanging two quantifications: for all e € E, there must
be 6 € D such that

d(z,y) <6 = ef(z,y) <e foralz,ye X.

Note that this condition shows a similarity to the definitions on page 30 in that it
states a kind of “preservation of smallness” of distances instead of a preservation
of inequalities. Like the step from distance inequality preserving maps to set
homometries, this can be very naturally strengthened by requiring the same for
sums of distances: f is strongly uniformly continnons if for all e € E, there is 6 € D
such that

d(s) <6 = ef(s) <e foralls € X° .

Although this seems to be a property not yet studied in the literature, it
might prove very useful since it can be considered as a substitute for the
still stronger Lipschitz-continuity. In fact, we will see below that in many
cases a strongly uniformly continuous map between metric spaces is already
Lipschitz-continuous.

Moreover, the new property fits nicely between two other properties known
from real analysis. On the one hand, it is weaker than Holder-continuity
for exponents at least one [Assume that ef(z,y) < L(d(x,y))a holds for
all z,y € X, with L > 0 and a > 1. Then also ef(s) < L(d(s))OK for all
s € X**, hence we might put & := (¢/L)!/“ for any given & > 0]. On the
other hand, it is stronger than absolute continuity. A real-valued function
f on a real interval [a,b] is absolutely continuous if and only if it is the
indefinite integral of some Lebesgue-integrable function, which is equivalent to
the following: for all € > 0, there is 6 > 0 such that d(s) < § = ef(s) < ¢
forall s = x1y1 - Tnyn € [a,b]z* withz) <y <<y < - <xpn < Yn
(cf. [GZZ79)).

This leads to the definition of absolute continuity for mappings f between
arbitrary distance spaces: for all ¢ € E, there is § € D such that, for all
S =Ty Tnyn € X,

d(s) <6 = (ef(s) <e, or Ty ﬂxjyjd # 0 for some i < j < n).

uniform
continnity

strongly
uniformly
continuons

absolute
continuity
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THREE STEPS UP THE LADDER

Fron continuity to uniform continuity. It is a well-known fact that a continuous map
from a compact metric space into another metric space is already uniformly
continuous. Although the following generalization might in part follow from
known facts about semi-uniform spaces (cf. [Hu§64, Cec60)), I give a simple
proof here that does not require the Axiom of Choice. Recall that a topological
space is called compact if each of its open covers contains a finite subcover.
A distance space X will be called lbcally dwindling if each neighbourhood filter
contains balls of arbitratily small diameter,' that is, if

Ve € XVe € D36 € DVy,z € X : d(y,z),d(z,x) <0 = d(y,2) < &.
This is not to be confused with local symmetry, meaning
Vye XVee D30 € DVz,z € X: d(y,z),d(z,z) < = d(y,2) < €.
However, a locally dwindling distance space is also point-symmetric, that is,
Vee XVee DI € DVze X: d(z,x) <6 = d(z,z) < e.

If D is idempotent, the converse is also true [Take &' € D with 2&" < ¢,
and § € D with 6 < & and Bgsz C xBge. Then y,z € Bgsx implies
d(y)z) < d(y)x) +d($,z) < 5+€/ < 8]]'

PROPOSITION 4.1. A continnous map from a compact distance space with idempotent
ero-filter into a locally dwindling distance space is uniformly continnous.

Proof Let f : X — Y be the map, and € € E. Forall z € X, the set
E. :={ € E|Vx,y € X : ef(x,2),ef(y,2) <& = ef(zx,y) < e}
in nonempty since Y is locally dwindling, the set
D, :={§€e€D|3 €E, Vzr e X: d(zx,2) <& = ef(x,2) <e'}
in nonempty by continuity of f, and the set
D,:={5€D|35 € D,:25<}

is nonempty because D is idempotent. Therefore, {Bgsz[2z € X,6 € D}
is an open cover of X having a finite subcover {Bg s 2i|i = 1,...,n} by
compactness of X. Since D is directed, we can choose § € D with § < J; for all
i. Assuming that d(z,y) < J, there is some i with d(y,z;) < §;, some &’ € D;i
with 26; < &', and some corresponding €’ € E; Now d(z,2;),d(y,2z;) < &
implies that ef(x,2;),ef(y,2z;) < €' and therefore ef(z,y) < € by choice of
e O

"This could also have been called ‘locally small’, but that term has already a different meaning.
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Note that this proof neither requires a stronger form of symmetry of one of
the spaces, nor an idempotent zero-filter for the co-domain, nor the Axiom of
Choice.

From uniform to strong uniform continuity.  (See also the next section)

LEMMA 4.2. A uniformly continnous map from a positive distance space into a distance
space whose zero-filter has a base of idempotents is already strongly uniformly continnous.

Proof: Let f: X — Y be the map. For an idempotent € € E, choose 6 € D
so that d(z,y) < ¢ implies ef(z,y) < €. Because d > 0, each inequality
d(z1y1 - - Tnyn) < 6 implies d(z;,y;) < 0 for all 4, hence ef (z;,y:) < €, and
finally ef (z1y1 -+ Tnyn) < nEe = €. O

For example, the premise of this lemma is fulfilled whenever N is a
semilattice. Another special case is when N is the p.o.m. (TAy,0,Ay,Q)
of reflexive relations on Y under composition and set inclusion. The positive
filters [zero-filters] of IV are then exactly the [T4] sewzi-uniformities (in the sense of
[Hus64]) on Y, those that are idempotent are exactly the [T1] guasi-uniformities on
Y, and those that have a base of idempotent elements are just the fransitive ones
among them (cf. [FL82]).

From strong uniform to Lipschitz-continuity.  For quasi-metric spaces, strong uniform
continuity is much closer to Lipschitz-continuity than to uniform continuity.

PROPOSITION 4.3. _Any bounded strongly unifornily continnons map from a positive T
qp-metric space into a real distance space is already Lipschitz-continuons.

Progf. Assume f : (X,d) — (Y,e) is not Lipschitz-continuous but bounded, say
ef(x,y) < 2e < oo forsomee > 0and all z,y € X. Then, for each § > 0, one
can choose a,b € X with ef(a,b) > 2fd(a,b) 2 0. In particular, a # b and
0 < d(a,b) <.

Choose a positive integer n with §/2n < d(a,b) < §/n, and let s :=
abo---o0ab € X** be the word made of n syllables ab. Then d(s) < & and
ef(s) =n-ef(a,b) >n-2-5/2n = ¢, hence f is not strongly uniformly
continuous. U

While boundedness is a condition on the range of f, also certain conditions
on the domain assure Lipschitz-continuity of strongly uniformly continuous
maps, for instance:

semi-
uniformities

quasi-
uniformities

transitive
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THEOREM 4.4. Let A > 0 and X be a positive Ty qp-metric space such that,
Jor all x,y € X and all > 0, there are finitely many “intermediate” points x =
X0, L1y s Tn—1,Ln, =Y € X with (i) d(zs,xi41) < C for all ¢ € n and (il)
Yien A(@i,xir1) < Nd(x,y) 4 Q). Then strong uniform continuity and 1ipschitz-
continuity coincide for all maps from X into real distance spaces.

Progf. Assume that f: X — (Y,e) is not Lipschitz-continuous, choose € > 0
arbitrarily, let § > 0, and put v := 2¢/6. Choose z,y € X such thatef (x,y) >
YAd(z,y), and ¢ > 0 such that ¢ < 0 and ef(z,y) > yA(d(z,y) + ¢). Fi-
nally, choose pairwise distinct points & = g, Z1,...,Tn—1,Ln =y € X with
Yien d(@i,zir1) < Md(z,y) +¢) and d(zs,2441) < ¢ for all 4 € n. Then
ef(xj,zjr1) > vd(z;,xj41) for some j € n, since otherwise ef(z,y) <
Yienef(TiTiv1) KV ien d(Ti, i) < yA(d(x,y) + ¢), a contradiction.

Now put (a,b) := (x;,z;+1) and proceed as in the second paragraph of the
preceding proof. U

The above condition might be interpreted as a strong kind of “chainedness”
and a weak kind of convexity.

COROLLARY 4.5. If X is a subset of a Banach space whose closure is convex;, strong
uniform continuity and Lipschitz-continuity coincide for all maps from X into real distance
spaces.

Maps with both topological and non-topological properties

Being the strongest form of continuity expressible between general distance
spaces, strong uniform continuity is the natural topological supplement for a
set homometry, turning it into a space homomsetry. Likewise, let us call a uniformly
continuous [dually] weak homometry a [dually] weak space homometry.

EXAMPLES 4.6.  The following counter-examples, some of which are well
known, show that the diagram in Figure 4 is correct, that is, no further implications
hold for mappings between general distance spaces. It also remains correct when
both occurrences of ‘weak’ are replaced by ‘dually weak’.

a) A contraction which is not distance equivalence preserving: x — | 5| on E;.

b) Distance equivalence preserving but not specialization preserving: the identity map from
(R,z — y) to E,.

c) Continnous but not uniformly: x — e* on E,.



contraction

(L <1
classical isometric entbedding
contractive map
r<y
space homometry
\¢ .
Lipschitz-continuity
«
"+ Theorem 4.20
Holder
witha > 1
Prop. 43, .. -
Theorem 4.4 - :
strong uniform SN
o set homometry
continuity
« .
. Theorem 4.12
absolute
. continuity
Lemma 4.2 weak space homometry
uniform continuity weak (set) homometry
<
Prop. 4.1 ©
L distance inequali
continuity quality
preserving

L . distance equivalence
specialization preserving .
preserving

Figure 1. A correct diagram of mapping properties. Italics mark notions that are only available for
real distance spaces. Dotted arrows refer to results about special cases.
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d) Uniformly but not absolutely continnons. On the Euclidean unit interval [0, 1], define

fz) =32,9(2'2) /2" € [0,1], where g(x) := min{z — |z, [z] —z}is
the smallest distance from x to an integer. Then f is a uniform limit of
continuous functions, hence continuous, hence uniformly continuous since
[0,1] is compact. Moteovet, f is known to be nowhere differentiable hence
not absolutely continuous.

€) Absolutely continnons but not strongly uniformb." Again on [0,1], the square root

map f(z) := /x is Holder-continuous with L = 1 and o« = 1/2 < 1. It has
a continuous derivative almost everywhere and is thus absolutely continuous.
But not strongly uniformly continuous: for any § > 0 and all j > 1, put
x; =0 and y; := 6min{d,1}/(75)* Now E(;-O:lj_z = %2 implies that
Soicy lyi — x| < dforalln,but 37, |\ /g5 — \/Z;| diverges for n — oo.

£) Strongly uniformly but not Hlder-continnons. On the two rays X := {—1,1} x

[0,00), put f(z,y) := y sgn(x). Then f is not Hélder-continuous since the
images of two points with unit distance can have arbitrarily large distance,
but it fulfils the strong uniformity condition. For & > 0, put § := min{e, 3 }.
Then ), d(a;,b;) < 0 implies d(a;,b;) < 1 for all 4, hence each pair a;,b;
is in one of the two rays and thus >, dh(a;,b;) =), d(a;,b;) < 6 < e.

@) There is also such an example on a comnected set (that is, one that is not

the disjoint union of two nonempty open subsets) which is even star-shaped
(that is, a union of segments with a common endpoint). For all n € w,
let X,, be the “slice” of all a € E, with p(a) € [272" 7,27 7], where
(r(a),(a)) are the standard polar coordinates of a. Then X := J,,c., Xn
is a star-shaped set. Moreover, let

1 1
5,2 —2cos(2 2" 2x)  10sin(2-2n=37)’

so that d(a,b) > 27, sin(27"37) > 1/5 whenever a € X,,, b € X,n,
n <m,andr(a),r(b) > r,.On X, define f(a) := O wheneverr(a) < rn,
otherwise f(a) :=r(a) —ry, if nisevenand f(a) := r, — r(a) if nis odd.

Tn

As above, f: X — E, fulfils the strong uniformity condition. For € > 0,
put 6 := min{e,1/5}. Then >, d(a;,b;) < 0 implies d(a;,b;) < 1/5 for
all 4. If a;,b; € X,, for some n then df(a;,b;) = |r(a;) —r(b;)| <
d(a;,bi). If a3 € Xy, bi € X, and n # m, say n < m, then cither
r(a;) < rp and thus f(a;) =0, or 7(b;) < 7y < Ty, and thus f(b;) =
0. In any case, dh(a;,b;) < |r(a;) —r(b;)| < d(ai,b;) [either f(a;) =
f(bi) =050t f(a;) =0, 7(b;) > rm >r(a;), and df (ai,b;) = |r(b;) —

"This example is due to Marcel Erné (personal communication).
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rml; of f(by) =0, r(a;) > ry = r(bs), and df (as;,b;) = |r(a;) —ral]-
Consequently » . df (a;,b;) < >, d(as,b;) < < e

And again, f is not Hélder-continuous. Obsetrve that (i) limy,—oo(7r —
rn—1) = oo and (i) limy oo 7n/Tn—1 = 4. Hence, for all & > 0 and
arbitrarily large L > 0, we can chooseanoddn € wso that (i) ry, —rn—1 = L
and (i) r, < 57n—1. Then the border points a € X, 1 and b € X, with
r(a) = r(b) = rn, ©(a) = 272" D=1x and p(b) = 272" 7 have distance
d(a,b) < 1. On the other hand,

df (a,b) = |(r(a) —rn_1) — (rn —7(b))| =7n —Tn_1 = L > Ld(a,b)”.

h) Holder with exponent o > 1, but not Lipschitz. Let o > 1 and L < oo. On w,
d(z,y) := max{z,y} forx # yand e(x,y) := Ld(x,y)” define two metrics.
By definition, id : (w,d) — (w,e) is Holder-continuous with constant L
and exponent a, but not Lipschitz-continuous since e(z,y)/d(z,y) is not
bounded.

1) A space homometry which is not contractive: x — 2z on E,.

i) A set homometry which is not continnous: the identity map from E; to the discrete
space (R, e, [0,00)).

k) A [dually] weak space homometry which is not a set homometry. On the unit
citcle X := {x € C||z| = 1}, let e be Euclidean distance, and d be the
geodesic distance (that is, the shortest path length in X) inherited from e.  gwdesic
Then h:=id : (X,d) — (X,e) is contractive but not a contraction. Since ditance
d< 7 e, also h~lis Lipschitz-continuous. In particular, both h and h~!are
strongly uniformly continuous. Moreover, h is a weak homometry but not a
set homometry, since its translation map t(a) = 2sin § is only sub-additive
but not additive. For the same reason, h™" is a dually weak space homometry
but not a set homometry.

1) Distance inequality preserving but not a [dually] weak set homometry: see the previous
example.

m) A uniformly continnous set homometry which is not absolutely continnous. On the set
X := w x R, define a multi-pseudometric d : X* — (R*")* by putting
d(z,y) = {G,|r—s])}U{(,0)]j # i} forx = (i,r) and y = (4,s), and
d(z,y) := w X {oo} in all other cases. Then e(z,y) := Y ;o d(z,y) (i) is
a mettic on X, and h:=1id: (X,d) — (X,e) is a set homometry with
calibration ¢(a) = "o a(2). Moreovet, h is uniformly continuous w. r. t.
the idempotent zero-filters D := T{w X {r}|r > 0} and E := (0,00]
(which both have a countable base) [for given ¢ € E, putd := w X {e}].
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But h is not absolutely continuous. For an arbitrary € < co and every
0 € D, thereis some r > 0 withw X {r} < 4, and some n > €/r. Now put
(@i,y:) == ((4,0),(i,7)) foralli € n,and s := zoyo - - - TpnYn. Then d(s) <
8 but eh(s) = (n+ 1)r > . Finally, all the segments T;57% = {3} x [0, 7]
are pairwise disjoint.

Since all of these examples involve only idempotent zero-filters, there are
also no further implications for the case of idempotent zero-filters. Also, all but
the last example use only real distance functions.

UNIFORM CONTINUITY IMPLIED BY NON-TOPOLOGICAL PROPERTIES

LEMMA 4.7. Let X = (X,d, D) be a distance space such that, for all y,z,w € X
and § € D with d(z,w) < 6, there is some x € X with d(z,w) < d(x,y) < 6. Then
each continnons distance inequality preserving map f : X — Y is uniformly continnons.
Iffor ally, z,w € X there is even some x € X with d(z,w) = d(z,y) then also each
continuous distance equivalence preserving map f : X — Y is uniformly continuous.

The proof is straightforward. O

LEMMA 4.8. Assume that X = (X,d,D) and Y = (Y,e,E) are distance spaces,
and for all e € E, there is some A C X such that (i) for all distinct points x,y € A, there is
0 € D withd < d(z,y), and (i) for all B C'Y with |B| = | A| there are distinct points
x,y € Bwithe(zx,y) < e.

Then each order representation of X is uniformly continunous.

Proof. Let f: X — Y be an order representation, and assume that there is
€ € E such that for all § € D thete are points z,w € X with d(z,w) < 6
and ef(z,w) ¥ e. For this ¢, choose some A C X as in the premise of the
lemma, and put B := f[A]. By choice of A, all distinct pairs z,y € A fulfil
d(z,x) < d(z,y), hence 0 < ef(x,y), thatis, | B| = |A|. Now we can choose
distinct points z,y € A with ef(z,y) < ¢, and some § € D with 6 < d(z,y).
By choice of ¢, there ate z,w with d(z,w) < § < d(z,y) and ef(z,w) £ €, in
contradiction to ef(z,y) < e. ]

For any infinite cardinal A, let us call a distance space X = (X, d, D) \-Lindelof
if each open cover of X has a sub-cover of cardinality < A, and X-bounded if for
each § € D there is a cover & of X with |&/| < A\ whose members all have
diameter < d. In particular, the w-Lindel6f property is just compactness, and
the w™-Lindel6f property is just the (ordinary) Lindel6f property. Moreover,
w-boundedness equals total boundedness.

Note that a point-symmetric, A-Lindel6f distance space X with idempotent
zero-filter D is also A-bounded since then the system {A°|z € X, A €
€a,px, Ahas diameter < d} is an open cover of X forall 6 € D.
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COROLLARY 4.9. _Any order representation of a T real distance space (X ,d) into an
| X |-bounded distance space is uniformly continnous.

Proof. Let Y be the second space. Foralle € E, the set A := X fulfils the premise
of the previous lemma. Condition (i) follows from separatedness. As for (ii), let
B C Y with |B| = |X]|, and let & be a cover of Y with || < | X| = |B]
whose members have diameter < €. Then some A € &7 contains two distinct
points z,y of B, in patticular, e(z,y) < €. O

A SMALL STEP:
DUALLY WEAK HOMOMETRIES WITH STRONG UNIFORM CONTINUITY

A surprising implication is true in case of non-positive real distances:

PROPOSITION 4.10. A dually weak set homometry h : (X,d,R) — (Y,e,R) with

d(a,b) < 0 for some a,b € X is already Lipschitz-continnons with L = ef((;if;)-

Progf. Put vy := d(a,b) < 0. The translation map t: R — [—00,00), a +—
\/{eh(s)|s € X**, d(s) < a} is super-additive. Since it is also isotone, we
know that t(y0) < 0, and it suffices to show that t(a) < W") forall @ > 0

with a/v0 € Q. For such an «, assume that t(a) > a=2> (7" Inductlvely define
n; := [—a/v;| = min{n € w|o¢+n’yi < 0}

and y;+1 := o+ n;y; foralli > 0 for which ; # 0. Since ;41 > v; and v; /70
has the same denominator as o /7o, this sequence must stop, that is, yg4+1 = 0
for some k. In other words, nx = —a/vk.

For ¢ = 1...k, it now follows inductively that t(~;)/v: < t(0)/~v and
therefore t(a) > a% [0=1¢(0) > t(vit1) = t(a@) +nit(y:) > a% +
nit(v:) = Mt(%)]] On the other hand, t(a) < t(Ye41) — net(ve) =

t(vk)
Yk

a—2E2 2 contradiction. O

Still, such a map need not be a homometry [put X :=Y := {0,1},
d(0,1) :== e(0,1) := —1, d(1,0) := 2, e(1,0) := 1, and h:=1idx ]. On the
other hand, positivity of one of the distance functions leads to stronger forms
of continuity as well:

PROPOSITION 4.11. Teth: (X,d,M,D) — (Y,e,E) be a dually weak space
homometry which is not strongly uniformly continnous, with a totally ordered monoid M and
D={6eM|é>0}.

Then d is not positive, and there is § € D with d[X?] N (0,8] = 0.

If, additionally, M is an archimedean group, e is not positive, too.
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Progf. Choose some € € E for which strong uniform continuity is violated,
then some § € D so that eh(z,y) < € for all z,y with d(z,y) < J, and some
s € X** with d(s) < & and eh(s) € e. Assume that d(z,y) € (0,8] C D for
some z,y. Then d(t) < d(z,y) would imply eh(t) < eh(x,y) < € for all words
t, in contradiction to the choice of . Hence d[X?] N (0,d] = 0.

Because of eh(s) € 0, some syllable zy of s must fulfil d(x,y) ¥ 0, that is,
d(z,y) > 4. Since d(s) < J, some other syllable zw of s must fulfil d(z,w) < 0,
thus d is not positive.

Finally, assume that M is an archimedean group and e is positive. Choose
n € w with nd(z,w) +d(s) < 0. Then eh(s) < neh(z,w) +eh(s) <0< ¢
in contradiction to the choice of s. U

Together, the last two propositions yield

THEOREM 4.12.  Every dually weak space homometry between distance spaces (X ,d,R)
and (Y ,e,R) is strongly uniformly continnons.

Proof. 1f not, d would not be positive and the proposition would imply that h is
even Lipschitz-continuous. O

QUESTION 4.13. For which monoids other than R is this also true?

A LARGER STEP:
DISTANCE EQUIVALENCE PRESERVING MAPS THAT ARE HOMOMETRIES

In this section, the homometries between Euclidean spaces E,, (that is, the
similarity maps) are characterized by properties which are far weaker in general.
The group of motions Aut(E, ) is always supposed to be endowed with the
topology of pointwise convergence.

LEMMA 4.14. Let (X,-,1) be a monoid, n > O, and d a left translation-invariant
distance function on X, that is, with d(zx,zy) = d(x,y). If h: (X,d) - E,, isa
[continuons] distance equivalence preserving map, there is a [continunons| monoid homomorphism
[ (X,,1) = Aut(E,,) such that h(z) = f(z)(h(1)) forall x € X.

If, moreover, h| X is not contained in any affine hyperplane of R™, this f is unique.

Progf. Let us first consider the “non-degenerate” case where h[X] is not
contained in a hyperplane. Then there are n 4 1 points zo, ...,z € X such that
{h(z;)|i € n+ 1} is not contained in any hyperplane. For each € X, there
is a unique motion f, of E,, with fyh(z;) = h(xx;) for all ¢ [Since d is left
translation invariant and h is distance equivalence preserving, eh(zx;,zx;) =
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eh(xi,z;), hence also {h(zx;)|i € n+ 1} is not contained in a hyperplane.
Thus, for all a € R™, thete is a unique b € R™ such that e(b,h(a:;ci)) =
e(a,h(z;)) for all i. Put fy(a):=b. In particular, fyh(z;) = h(zz;) for
all 4. Since for all a,a’ € R™, the distance e(a,a’) is a function of the two
(n+ 1)-tuples of distances (e(a, hz;)) , and (e(a’,ha:i))i, fz isamotion]. If h
is continuous, also = — f, must be continuous [since d is translation-invariant,
x — h(zx;) is then continuous for all 4, hence x — f,(a) is continuous for all
a € Y].Now h(zy) = foh(y) foralla € X [ foh(y) is the unique b € Y with
e(b,h(zx;)) = e(h(y),h(x;)) for all 4, and h(zy) is such a b], in particular
h(xz) = fzh(1), and the map f: & — f5 is a monoid homomorphism [ f fy
is a motion with fg fyh(z;:) = foh(yz;) = h(zyz,) for all ¢, hence it equals
foul

On the other hand, let g :  — g, be another homomorphism with h(z) =
gzh(1) for all z. Then g.h(x;) = goga,h(1) = gz, h(1) = h(zz;) for all
and 4, hence g, = f, for all z, thatis, g = f.

For the degenerate case, leth' := i~ ! o h, where i is an exact isometry between
some E, (with k& < n) and the affine hull of h[X]. Then h': (X,d) — E,
is distance equivalence preserving [and continuous] and non-degenerate, hence
there is a corresponding [continuous| monoid homomorphism f': (X,-,1) —
Aut(E; ). Moreover, there is a continuous embedding g : Aut(E,) — Aut(E,,)
such that g(m)oi = iom for all motions m of E,. Then f:=go f' isa
[continuous] homomorphism such that

F@)(h(1) = (9(fz) o) (h'(1)) = (i £) (W' (1)) = ih'(2) = h(x).
(]

LEMMA 4.15. With the notation as in the previous lemma, assunse that

either (i) d(x,y) ~ d(v,w) impliesy = xz and w = vz for some z € X,

or (i0) d is symmetric and d(xz,y) ~ d(v,w) implies (y = xz or x = yz) and
(w = vz orv = wz) for some z € X.

Iff +(X,-,1) — Aut(E,,) # a [continnons] monoid homomorphisn and a € R™ a
point, the orbit function h(x) = f(x)(a) is distance equivalence preserving [and continnous].

Progf. By definition, h(1) = a and h(xy) = foyh(1) = fafyh(1) = fzh(y).
Let d(x,y) ~ d(v,w). Without loss of generality, we can assume that there is
z € X with y = xz and w = vz (in case (i), we probably have to exchange x
with y and/or v with w first). Then

eh(y,x) = eh(z,y) = efh(1,z) = efy,h(1,2) = eh(v,w) = eh(w,v).
Morteovet, if z — f(z) is continuous, then so is  — f(x)(a) for all a. O

It is well known that each continuous representation of the group R by
motions of E,, is of the following form.
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EXAMPLE 4.16. Generalized helices. Let k be a motion of E,, (then k(zx) is the
coordinate vector of z with respect to some orthonormal coordinate system),
and s a non-negative integer with 2s < n. Foreach i € {1,...,s}, let E; be the
plane spanned by the standard unit vectors ez; —1 and ez;, and oy > 0. Moreover,
let b € R™ be orthogonal to all E;. Then the map f : ¢ +— f, defined by

A (cos(wai) —sin(xai)> o

sin(zxa;)  cos(za;)

k(fe(a) = b+ 1 k(a)

1

is a continuous group homomorphism from R into Aut(E, ). Each f, is a
composition of rotations in the planes k™' [F;] with centre k™' (0) and angles
xoy;, and of a translation perpendicular to all those planes.

COROLLARY 4.17. The continnous distance equivalence preserving maps fromE, to E
are exactly the generalized belices.

We will now see that between Euclidean spaces of higher dimension than
one, the continuous distance equivalence preserving maps are already similarities.

LEMMA 4.18. Fora function C : R — R of the form
2, % 2
C(r) = (rA)"+ Z ()\k\/Z — 2cos(rnk)>
k=1

with) < K1 < -+ < kg and Ay, > 0, all coefficients K, Ny, are uniquely determined.

Progf. For n > 0, the (4n + 1)-st derivative of C fulfils

C(4n+l) (’I’)

2 . i, 2 (REk dntl .
S A sin(res) + Z AL (R—S) sin(rkg) —  Agsin(rks)
s k=1

for n — oo. Therefore, ks is the smallest > 0 with CU4*+D () = O(p*+1)
for almost all 7, and A2 = \/,.lim C(4"+l)(r)/2ni"+1. Subtracting the s-term,
one can now inductively determine all kg and Ag. O

LEMMA 4.19. Amaph :E,, — B, (m > 1) is a similarity if and only if h| g is one
Jor all affine planes E C R™.
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Proof. h is a similarity if and only if it preserves angles. Every angle lies in an
affine plane. U

THEOREM 4.20. The continnous distance equivalence preserving maps from E,,, o E
withm > 1 are exactly the similarity maps.

n

Proof. By virtue of the previous lemma, we might assume that m = 2. Let
h:E, — E,, be continuous and distance equivalence preserving with h(0,0) = z.
From Lemma 4.14 we know that h is of the form

h(z,y) = f(a:,y)(z) = Pzy (2) = Yypu (2),

where ¢ : ¢ — @, and Y : y — 1, are continuous group homomorphisms
from R? into Aut(E,,). The motions ¢, and 1), are of the form

Yo (v) =ag +Azv and ¢y (v) =by, + By,

where A, and B, are orthogonal matrices with A, B, = B, A, [since a, +
Agby + Az Byv = a1y (V) = Yyps(v) = by + Bya, + ByAgzv forallv €
R™ implies ag + Agby = by + Byag, hence Ay Byv = By Agv for all v, that
is, Az By = By A;].

Therefore, there is a unitary complex matrix P such that A/, ;== P~'A, P
and By := P~'B, P are (complex) diagonal matrices for all x,y [Choose
&,m € R so that A¢ and B,, have a minimal number of real eigenvalues among
all A, resp. By. The commuting orthogonal matrices A¢ and B, have a
common diagonalization P~ A¢ P, P~! B, P with some unitary P. Since for all
z,y € R, the planes of rotation of A, and B, are among those of A¢ and B,,,
respectively, every complex eigenvector of Ag or B, is an eigenvector of A,
or By, respectively. Hence also A, and By, are diagonal]. Now = +— A’ and
Y — B’y are continuous homomorphisms into the group of unitary diagonal
matrices, hence there are coefficients a5, 3; € R such that

Al, = diag(e"™',...,e""*") and B}, = diag(e™¥P,... "),
Since h is distance equivalence preserving, its translation map c fulfils

C(T) = Bh((0,0),(TCOS’Y,TSin’Y)) = 6(2,@rcosw¢rsin7(z))

for all r > 0 and v € R. Note that ¢, cosyPrsiny 15 2 motion whose matrix
Ay cosyBrsiny has the complex eigenvalues e”’((COSV)O‘J’JF(““V)ﬁJ’), j=1...n
Using elementary geometry, we see that c is of the form

s(7)

2
e(r)* = (r)\(,y))z 4 Z ()\k('y) \/2 — 2cos (rmk(fy))> forall vy € R,
k=1

with A (y) > 0 and k() > 0 for all k. Indeed, 7 A(7y) is the length of the
translational part of ¥y cosy¥rsin~; €ach Ag () is a radius of rotation for some

Pz, Py

a;,B;
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rotational part of @rcosy¥rsiny, that is, the distance from z to the affine
(n — 2)-dimensional subspace of R™ which is fixed under that rotation; and
rkk (7y) is the corresponding angle of that rotation.

Note that, by definition of the a5, 35, each kg (7y) is of the form |(cosy)a; +
(siny)B;| for some j. But because of Lemma 4.18, the set K := {kr(v) |k =
1...5(%)} can be determined from ¢ and is thus the same for all v € R.
Assume that k € K. Then for each v € R, there is j € {1,...,n} with
[(cosy)a; + (siny)B;| = k. This is only possible if K = a; = 8; = 0 for some
J, in contradiction to k > 0. Hence K is empty and c is linear, which means that
h is 2 homometry. O

The special case of equal dimensions n = m also follows from the
Beckman—Quatrles Theorem [BQ53] which says that a map f:E, — E,
(n 2 2) with e(z,y) =1 = ef(z,y) =1 is already a similarity. Its proof
however does not generalize to the case of different dimensions.

Finest distance structures

SET-INDEXED INITTAL LIFTS

Let us define the following classes of morphisms. The classes S,A,U, and T consist
of all strongly uniformly, absolutely, uniformly, and ordinarily continuous maps,
respectively. The classes W, D, H; I, E, O contain all weak, dually weak, or ordinary
set homometries; distance inequality, equivalence, or specialization preserving
maps, respectively. Finally, SH := SN H contains all space homometries, and
DU := DN U and WU := WnN U all [dually] weak space homometries.

With all distance spaces as objects, these classes lead to constructs DIST,
that is, concrete categories over the category of sets, where M is one of the
above classes [it is easily seen that all the classes contain all identity maps and
are closed under composition]. By identifying a distance set (X,d, M) with
the discrete space (X,d, M, T0), we see that each category DISTy includes a full
subcategory DIST}, of distance sets.

Now the construction of categorical suprema on page 51 is a special case of
the following general construction.

LEMMA 4.21. For set-indexced sources (hy : Y — Y ;) icr of maps into distance spaces
Y, = (Yi,ei,N,, E;), an initial distance structure (e, N, E) on'Y s given by

ERAVS)
N = HMZT, e(z,y) (i) == e;hi(x,y), and E:= ]_[EZT
iel i€l
This structure is M-initial for M = S.. WU, that s, for each distance space X, a map
f: X — (Y,e,E) belongs to M if and only if so does each composite hi f : X — Y .
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Progf. The distance properties are inherited by e from the functions e;. A map
f X — Y is strongly uniformly continuous if and only if for all F' € I and all
g, € E; (i € F), thereis some d € D such thatd(s) < d implies eh; f(s) < &;
for all 4, which, by down-directedness of D, is equivalent to strong uniform
continuity of all h; f. The other continuity properties only differ in that they
restrict the choice of s. Furthermore, an inequality ef(s) < ef(t) is equivalent
to eh; f(s) < eh; f(t) for all 4, which settles the case of M = W... 0. Now also
the cases M = SH, DU, WU are clear. |

Note thatbecause e f (x,y) < ef(x,z) does notin generalimply eh, f(x,y) <
eh; f(x,z), the above construction does not work for (local) order representa-
tions as morphisms.’

EXAMPLE 4.22. Cech-Stone compactification. For a topological space (X,.7), the
multi-pseudometric d : X% — [0,1]® with d(z,y) : f — |f(x) — f(y)] is initial
for the family ® of all continuous real-valued maps f from (X,7) to the
Euclidean unit interval [0,1]. If .7 is completely regular, the topology induced
by the Ty bi-completion X’ of X := (X,d) (to be defined in Chapter 5) is the
Cech-Stone compactification BX of (X,.7). This is Samuel’s [Sam48] construction
of BX, but with distances instead of uniformities.

On the other hand, consider the product space Y := [0, 1]%, thatis, the set [0,1]®
with the multi-real initial distance structure for the source (75 ) e of projections
7r :[0,1]® — [0,1]. The distance in Y is just the pointwise e(a,b) := |a — b|.
Now, the structure of X is initial also for the one-element source that consists of
the evaluationmap h: X — Y,z +— hg with hy @ f +— f(z). In the completely
regular case, h is injective, hence an isometric embedding, and extends to an
isometry between X’ and the closure of h[X], the latter being Cech’s [Cec37]
original construction of 8.X.

FINENESS, CANONICAL AND GENERATING STRUCTURES,
AND CLASS-INDEXED INITIAL LIFTS

The finer relation in the category DISTsy is this: a distance structure (d, D) on
X is fimer than another one, (e, E), if idx : (X,d,D) — (X,e,E) is a space
homometry. The terms ‘coarser’ and ‘equivalent’ are defined in the obvious way.

! Another badly behaved class of morphisms is that of proximally continuons maps, defined by the
condition that f[A] must be near f[B] whenever A C X is near B C X, meaning that for each
6 € D there are € A and y € B such that d(x,y) < 6. This is related to the problem that the
supremum of quasi-uniformities does not induce the supremum of the induced quasi-proximities
and that the supremum of quasi-proximities is not their intersection in general (cf. [FL82]).

Cech-Stone
compactifica-
tion

product space

Sfiner
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Given a space X, the sets
gg:={s€ X |d(s) <e} (e€D)
are lower sets of R4 and build a base for the zero-filter
Dg:=1{&4|e € D}

of M 4, and D4 is idempotent if so is D. Now the upper canonical modification
d of d leads to an upper canonical distance structure (d,Dg) which is obviously
equivalent to (d, D).

In terms of the generating structures (Ra,Dg), the finer relation is now simply
a pair of inclusions: (d,D) is finer than (e, E) if and only if Rg C R, and
D4 D E. [We know already that the first inclusion means that d is finer than
e. Now, given that Rg C R, all € € E, are upper sets of Re, hence of Ry,
and the strong uniform continuity condition for idx : (X,d, Dg) — (X,&,E.)
is equivalent to Ve € E. 35 € Dy :6 C e, and thus to E. C Dy since the
latter is an upper set of M, ]. In particular, equivalent upper canonical distance
structures coincide, and on a singleton X there is only one upper canonical
structure. Because, moreover, the class of all upper canonical structures on X
(called the fibre of X) is a set, the category canDISTsy of wpper canonical distance
Spaces is small-fibred.

Using generating structures, one can now construct initial structures, even
for class-indexed sources, which are wnigue with respect to space homometries:

THEOREM 4.23.  Every dass-indexed source (h; 1Y — (Yi’ei’Ei))ieI has a
unigue upper canonical SH-initial lift (e, E). This distance structure is also M-initial for
M =S...WU. Ifall E; are idempotent, so is E.

Proof- Foreachi € I, sR;t <= e;h;(s) < e;h;(t) defines a generating quasi-
order on Y?*. Thus, the intersection R of the set () {R;|i € I} is again
a generating quasi-order, and e := dgr a distance function on Y. For each
i€Iand e € E;, the set £* := {s e y2* le;hi(s) < €} is a lower set of R;,
hence of R. Thus, the set B of all finite intersections of some e is a filter
base in N := (Y?*,0,0, R) . Furthermore, () B = R{(} since s € () B implies
eih;(s) <eforali el and e € E;, hence e;h;(s) <0 and sR; 0 for all
i € I, thatis, s R). In all, B is a base for a zero-filter E in N.

Now (e, N, F) is an initial structure: by its definition, evety h; is a homometry
from Y to (Yi,e;, E;). Moteover, let h: (X,d,D) — Y be a map such that
each h;h is either (i) among S... T, or (ii) among W...O. We have to show that
so 1s h.

In case of (i) there is, for each /' N --- Nelr € B, a corresponding § € D
such that, for all words s of the correct “type”, d(s) < & implies e;, hi h(s) < g
for1 < j < n (one d suffices because D is a filter). Hence eh(s) < af‘ N---N es;
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as required. Moreover, eh(s) < eh(t) is equivalent to e; (h;h(s)) < e;(h;h(t))
for all 4, which settles (ii).

In case of the class SH, uniqueness follows from the fact that all SH-initial
structures for the given source are equivalent.

Finally, assume that all E; are idempotent. Then, for each sfl N---N 6;”’ € B,
thereare 61 € E;,,...,0, € E;, such that 26; < ¢;, hence 25;’ - sjﬁ forall j,
and therefore 2(6{' N --- N i) C 267 N ---N28 Celln---Neln, U

Categorically speaking, this theorem implies that canDISTsy is well-fibred,
hence a topological construct (in the strong sense of [Pre88], compare [AHS90]).

SEMI- AND QUASI-UNIFORMITIES

The induced system of semi-uniformities.  Let X be a distance space. In generalization
of the usual definition of entourages in a metric space, let
Br.as = {(z,y) € X X X |nd(z,y) < nd}

for every 0 € D and every positive integer n. As D is a positive filter, the set
Bn(d,D) = {Bn.as|0 € D} is a base for a semi-uniformity, that is, for a filter
Uy (d,D) of reflexive relations on X . For n = 1, the index n might be left outin
the sequel. %(d, D) will be called the /ef? semi-uniformity of X since its induced filter
convergence structure is the left convergence structure ¢(d°P, D). Likewise, the
right semi-uniformity #* (d,D) = {U~"|U € %(d,D)} = %(d°®, D) induces the
right convergence structure ¢/(d, D).

If D is idempotent then %(d,D) is a quasi-uniformity, and in case of a
commutative M this is also true of %, (d, D):

nd(z,y),nd(y,z) < nd then implies nd(z,z) < n(d(ac,y) + d(y,z)) < 2né.

In particular, the quasi-uniformity %, (d, D) is then equal to %(nd, D).
Of coutse, there are certain relationships between the %, (d, D) for different
n, and in many cases most of them coincide. Obviously,

n =nq+ -+ ng implies Bn, a5 N N Bn,ds C Bnds.
Also, nd(z,y) < nmd(z,y) + (m — 1)nd(y,x), so that
(2m — 1)né < ne implies Bim.as N By 'y s C Br.d,e-
For a positive d,
n<mand mé < neimply Biyas C Bnae (%).

On the other hand, a symmetric d fulfils 2d(z,y) = d(z,y) + d(y,x) >
d(z,x) = 0, so that here the implication (%) holds at least when m —n is
even. This proves the following

Bnas

PBn(d,D)

senti-
uniformity

U (d,D)

left semi-
uniformity

right semi-
uniformity
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LEMMA 4.24.

a)n =mni+ -+ ng implies Un(d,D) C Un,(d, D)V ---N Up,(d,D), in
particular, the map n — Uy (d, D) is antitone with respect to divisibility.

b) If D is idempotent then Uy, (d, D) C U (d,D) N U (d,D) for all n,m.
¢) If D is idempotent and d is positive, all Uy, (d, D) coincide.

d) If D is idempotent and d is symmetric then Ui, (d, D) = % (d, D) C %(d,D) =
%Zk—l (d,D) ﬂﬂd%k (d,D) = %p(d,D)fora//k 2 1.

Note that there are indeed natural distance functions that are neither positive
not symmetric, the most important being perhaps the distance ™'y on groups:

EXAMPLE 4.25. Let G := [0,27) be the additive group of real num-
bers modulo 27, M := (Z(G),+,{0},C) with element-wise addition, D :=
{(=6,6)|6 € (0,2n]}, and d(=z,y) := {y — z}. Then %(d,D) is the usual
“Buclidean” uniformity on G, while %,,(d, D) is this uniformity “modulo 2=”
since

v Buasy &=y =1 € Upe,(—0+ 252,285 1 5)

Likewise, for X := C\ {0}, N := M x R, E:= D x (0,00),and e(z,y) :=
(d(argz,argy),||ly| — |z||), the semi-uniformity %, (e, E) induces the Eu-
clidean topology “modulo multiplication with nth roots of unity”.

Before we construct finest distance structures for a whole class of quasi-
uniformities at once, let us start with a single quasi-uniformity.

THEOREM 4.26. Ewvery guasi-uniformity ¥ admits a finest distance structure (dy, Dy')
Jfor which Dy s idempotent and V' = % (dy, Dy ).

Progf. Let ¥ be some quasi-uniformity on X and Vp := (¥ its specialization
quasi-order. We will see that the essential information about ¥ is contained in
the idempotent zero-filter Dy which we must construct, while the generating
quasi-order Rg, is fully determined by the very weak condition that zz' Rg, 0
must hold for any pair z,z’ € X that fulfils z Vyz' [otherwise dy (z,z") £ &
for some & € Dy, in contradiction to Vi C Bg, s ]. Therefore, let R be the
smallest quasi-order on X?* that is compatible with o and fulfils

zx' RO Rxx and zz Raxyyz forall z,a’,y,z € X with z Vo',  (xx)

If we find a suitable idempotent zero-filter D such that (dg, D) = ¥ then R
must obviously be the smallest relation (and thus dg a finest distance function)
with this property. Let M := (M, +,0,C) := (X**,0,0,R),.
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Now observe that each of the resulting entourages Bgs, has to include
some entourage Vi € ¥, hence every §; € D must include some set {zy €
X |z Viy} with Vi € ¥. Since 0 = R{xx} is a neutral element, §; must even
include the set

{zy € X |2VoViVoy'} C R{za'z'yyy' |z Voa' ViyVoy'}

-
C 04 {z'y e X**|2'Viy} +0 C 046, +0.

The same must be true for any §, € D that fulfils 26, C 41, so that §; must also
include a set {zyz'y’ € X** |z VoVaVoy, 2’ VoVaVoy'} C 26, for some Vs € ¥
This process of replacing some §,, by some 2,41 can be continued, and in
order to describe it formally, let us define W to be the smallest set of tuples of
positive integets that contains the 1-tuple (1) and fulfils

(ni,...,ni—1,ng + L,ng +1,niqq,...,ng) €W

whenever (nq,...,n,) € W and 1 < ¢ < k. One can think of the elements
of W as coding exactly those terms of the form ‘0, + - -+ + 65, which can
be obtained when we start with the term ‘61" and then successively replace an
arbitrary summand ‘9, by the term ‘65,41 + dpn+1”. Accordingly, one shows by
induction that for each element §; of an idempotent zero-filter D there is a
sequence 92,63, ... in D such that

(n1,...,n,) € W implies 6y, + - -+ + I, < 1.

In our situation, this observation implies that for each §; € D there must be a
sequence . = (V4,V4,...) in ¥ with the propetty that 61 includes the set A.» of
all words vjwy - - - vpwr € X>* for which there is some (n1,...,nE) € W such
that v; WV, Vow; for s = 1,...,k. In particular, 0+ := RAy C Ré = 61. It
turns out that this is the only restraint on the idempotent zero-filter Dy. More
precisely, we will see that the system

B:= {0y

S eV}

of lower sets of (X 2* R) is a base for an idempotent zero-filter D in M, and
that the distance structure (dgr, D) induces the quasi-uniformity 7. It is then
clear that D is the largest idempotent zero-filter with this property, so that
(dy,Dy) := (dg,D) is a finest distance structure inducing ¥

Since ¥ is a filter and the map ./ — §» is isotone in every component of
7, B is a filter-base. In order to show that D is an idempotent zero-filter, we
first obsetve that (n1,...,n), (mi,...,m;) € W implies

(m+1,...ng+1m+1,...om+1)eWw

[after increasing each index by one, the replacements that produce (n1,...,nx)
and (my1,...,m;) from the tuple (1) can be combined to a sequence of

Ay

%%
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replacements that produce (nq +1,...,n +1,mi+1,...,m; 4+ 1) from the
tuple (2,2)]. Hence also vjw; - - - vpw, vjwy - - - vjw; € 8y, v4,vs,...) implies

! ! ! / 6
VIWY * Vg WEV Wy VW € 0V, V5, V5, )

for each sequence (V1,V5,...) in ¥.

Secondly, we must prove that [\B = 0, which is the harder part. Let
S=1@121 " Tm2Zm € [)Band Vi € ¥ .Iwillshow thatz; VoV1 V| z; holds forall
j=1,...,m.Chooseasequence.” = (V},V,,...) in ¥ such that V; ;1 V) V; 41 C
V; forall ¢ > 1 [such a sequence always exists in a quasi-uniformity]. Note that
(n1,...,nk) € W then implies VoV, VoV, Vo - - - VoVi . Vo C Vo Vi V. Now s €
RA ., thatis, there exists aword t = viw; - - - vpywyg, and a k-tuple (n1,...,nE) €
W such that v; VoV, Vow; for i = 1,... k, and s Rt. The latter means that,
starting with viwy - - - VW, One gets T121 « - Tm Zm in finitely many steps in
each of which some pair of letters is inserted or removed corresponding to the
conditon (xx). Now take the k-tuple

P i= (v Vo, Vows,. .., Vo Vi, Vows)

of formulae (which express true propositions about the word viw; - - - v wg)
and modify it, analogously to those finitely many steps, in the following way:
@) if (because of zz Rxyyz) a pair yy is being removed after an odd number
of letters, replace the two consecutive formulae ... Vyy,y Vo -+ in ¢ by one
formula ... Vj -« (thatis, erase the symbols ‘y,y Vi)"); (ii) if (because of @) Rzx)
a syllable zz is being removed, remove the corresponding formula z ...z from
®; (iif) if (because of zz’ R ) a syllable zz’ is inserted, insert the formula z V) '
at the respective position in 1. Then, by definition of R, all these modifications
preserve the truth of all formulae in the tuple, and each formula in the resulting
tuple (¢1,...,%m) expresses a true proposition of the form

Vi =i VoVu VoV, Voo - VoV, Voz;  with 1 < a,b < k.
Since all V;,, are reflexive, 1; thus implies
i VoV, VoV, Vo ... VoV, Vo 25, hence z; WViVg 2;.

Because Vi was chosen arbitrarily, we conclude that (z5,2;) € Ny, ¢y VoVIV) =
Vp for all §, and therefore s = x121 -+ - Ty 2 RO, thatis, s € 0.

Finally, we have to show that (dg, D) induces the quasi-uniformity #. For
V € ¥, choose Vi € ¥ such that VjViVy C V, then choose a sequence . as
in the preceding paragraph. There we have shown that, in particular,

dr(z,2) C RAy implies (z,z) € VoViVp C V.
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On the other hand, for each § € D, there is some .¥ = (V4,...) € ¥* such
that §» C 6, and

(z,2) € Vi CWVuViVy  implies dr(z,z) C 8y C 6.

A somewhat astonishing consequence of this construction is that oze distance
function is compatible to a// T1 quasi-uniformities on X:

COROLLARY 4.27. The distance function d= is a finest distance function d on X such
that for each 11 guasi-uniformity V" on X there is an idempotent Zero-filter D such that
(d%, D) induces V.

Also, almost exactly the same construction can be used to get a finest
distance structure inducing a semi-uniformity ¥": in that case, W is taken to be
the singleton set that contains only the 1-tuple (1), and instead of sequences .7,
one takes just 1-tuples . = (V7). The only ctucial point is that each V € ¥
must include some VoViV) with Vi € ¥, a condition easily seen to be true in
every semi-uniformity induced by a distance structure.

THEOREM 4.28. If ¥ is a seni-uniformity on X with specialization Vo = (V' such
that, for all V€ V', there is W € V with VoW Vo C V, then there is a finest distance
structure (d, D) with ¥ = %(d,D).!

Without giving more details, I notice that this also leads to finest distance
structures for the filter convergence structures resp. Cech-closure operators
characterized in Theorem 3.15 and Corollary 3.17. Moreover, the following
result can be used to prove that the assignment (X, %) — (X,dy,Dy) extends
to a co-reflective, full and concrete embedding of the category QUNIF of quasi-
uniform spaces with uniformly continuous maps into the category iDISTsy of
distance spaces with idempotent zero-filters and space homometries:

THEOREM 4.29. 1etY = (Y,e,N,E) be a distance space with idempotent E, ¥
a quasi-uniformity on X, and h : (X, V) — (Y, %(e,E)) a uniformly continnons map.
Then h is a space homometry from (X,dy,Dy) into Y.

Progf. Recall the construction of d := dy, and assume that d(s) < d(¢). Then
we get ¢ from s by a finite number of modifications of one of the following
two types: (i) inserting some pair zz, (ii) removing some syllable zz’ with
(z,2") € Vo := (V. Since one gets eh(t) from eh(s) by corresponding steps,
it suffices to show that these are steps “down in R.”: (i) the pair h(z)h(x)

"Here the Axiom of Countable Choice is no longer needed since it was only necessary for the
choice of suitable sequences ..

QUNIF
iDISTsy
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may be inserted because h(z)h(z) Re 0, and (i) the syllable h(z)h(z") may be
removed because z Vj ' implies eh(z,z") < 0.

Now comes the more difficult part. For €1 € E, choose some sequence
(en)n in E such that €,, + -+ ¢&p, < &1 for all tuples (n1,...,n5) € W.
By uniform continuity of h, each V;, := (h X h)'[Be.,] is in ¥. Now, put
S = (V1,Va,...) € ¥* and assume d(s) < d.», which implies d(s) < d(t) for

some t = vjwi + - - vwy, € Ay. Then there is some (ng,...,ng) € W such that
(vi,w;) € VoVi, Vo and hence (hv;, hw;) € Be,, fori =1, .. k. Finally, the
latter implies eh(s) < eh(t) < €.

Again, a similar result holds for semi-uniformities.

HOW TO INDUCE SYSTEMS OF QUASI-UNIFORMITIES

I will now extend the result of Theorem 4.26 to certain systems of quasi-
uniformities and show that, in particular, every finite system and every
descending sequence of T uniformities is part of some system (%, (d, D)) nEw"
Unfortunately, the proof requires four quite technical lemmata about the
structure of the relation R%.

Some additional notation: Intervals of integers will here be designated by
[a,b]. For a word s € X?*, let 5 € X** be the word s after deletion of all null
syllables, that is, without those of the form xx. The length of 5 in letters is
designated by £(s), and s, is the ath letter of § for any position a € [1,4(s)].
The subword of § from position a to bis s4 . Moreovet, let A(x, s) and o (zy, s)
denote the number of occurrences of the letter = resp. the syllable zy in 8.
Finally, (xy)" = zyzy - - - xy is a word consisting of 7 equal syllables.

For the moment, let us fix some words s,t € X?* with s RJ)‘( t, where

t= (vywy)™ - (vowyp)™, w; #w;, andallr; are even.

Then 3 can be derived from £ by a finite number of successive deletions of pairs of
identical letters which are neighbours at the time of deletion. A guiding example:
for s = yyxyzzryuzuz RJ)‘( TYxY 2z ZUuUZUZxT Uz = t, the deletion steps
could be this: in t = xyzy zuuzuzuz, first delete uu, giving Ty xy 2z uzuz,
then delete zz, giving xy xyuzuz = 3.

We now also fix such a sequence of deletions and let D C [1,£(t)] be the set
of positions in # whose corresponding letters are deleted in one of these steps
(in the example: D = [5,8]). For a € D, let w(a) € [1,£(t)] be that position in
t such that t, and t,(,) build a deleted pait, called the parzner position of a (in the
example: 7(5) = 8 and 7(6) = 7). Finally, write a ~ b if and only if @ and b are
even numbers in D such that a < w(a) = b — 1 (in the example: 6 ~ 8).
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Note that because t. and t,(.) must first become neighbours before they
can be deleted, a ™~ - - - ~ b implies that (i) [a,b — 1] C D, (i) 7(c) € [a,b — 1]
for all ¢ € [a,b — 1], and thus (ili) A(x,tq,p—1) is even forall z € X.

LEMMA 4.30. Assumear~---bry---mc ty = ty_1, and ty = te_1. Then
a) ta1 =ty orty_1 = te.
b) Ifta—1 # ty then )\(ta,tc’g(t)) is odd.

C) Iftb_1 * te then )\(tb,t1,a_1) is odd.

Proof Lete, f,e/, f',e", " € [1,(t)]withe<a< f<e <b< f<e’ <e<
f" such thatt. ¢, ter f, and ter g ate three of the defining subwords (v;w;)"™
of t. Moreover, let & :=tq_1, Yy :=tq = tp_1, 2 := tp = te_1, and w = t,
and assume x # z. The situation and the parity arguments that will follow are
sketched below.

™ T
/ N ... [/ N L
L= (BY - TY - TY) v (yz-- y} <;§>Cﬂ::s:ﬁ$
1 T L
e a f e b—1
even } )\(.73)
odd | even | odd } \ (y)
™ ™
| / N -
(c;):ct:)lz.yz) ............... (zw...zw...zw)...
‘T T/ T// 1
b f e c f
odd even odd odd even

Because of ¢ # z, we have A(z,te/ p—1) = 0. Moreovet, A(x,tf41,e/—1) is even
[since all r; are even], and A(x,tqp—1) is even because of (iii), so that also
Aa,tq,5) is even and A(y,tq,r) is odd [since |[a, f]| is odd]. As before,
Ay, tri,er—1) and A(y,tqp—1) are even, thus A(y,terp—1) is odd. Because all
r; are even, A(y,tp ¢) is also odd. Again, A(y,t¢41,.e7—1) and A(y,tpc—1) are
even, hence A(y,ter c—1) is odd. In particulat, y € {z,w}, thatis,y = w [as yz
is a syllable of £, and A(y,tc ) is also odd. Finally, A(Y,tepo(t)) is odd because

e//, f//

T,Y,z,w
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A(Y,t ¢ g(+)) is even. This proves a) and b), whereas c) is strictly analogous to

b). O
LEMMA 4.31.
a) Assume that ag ~ by~ a1 ~Nbi--ap by ~c withte, =+ =1tq, =Y
andty, = -+ =ty, = 2. Thentg,—1 = z ory = te.

b) Assume thata ~ - - - ~b, with tq = ty_1 andte—1 7 to. Then both A(ta,t1,6-1)
and XN(ta,ty o(t)) are odd.

Proof. a) Define €”, f” as above. Similarly, for each i € [0,k], find positions
ei, fireh, fi € [LE(t)] with e; < a; < fi < e, < b; < fi such that t., s, and
ter g are two of the defining subwords of f. Assuming tq, 1 = & # z, one
proves that )\(y,tbo’fé) is odd exactly as before. Since, for ¢ € [1,k], all of
A(y9tbi—1,ai*1)9 )‘(y,tai,bi%), A(y>tfi’71+1,ef;—1)> A(y>t61‘,,f1‘,)9 A(y’tfi+1,€,:-—1)>
and A(y,ter /) are even, and since also A(y,tp,,c—1) and A(y,tf 4 1,ev1) are
even, we conclude that A(y,ter c—1) is odd, hence y = t.

b) Again as in the previous lemma, one proves that, for y := t,, the number
A(y,ty, /) is odd, so that the first claim follows because A(y,t /41 (x)) is even.
The second claim is just the dual. O

LEMMA 4.32. Assume that Se—18e = xz is the syllable of 5 that remains after all the
deletions in a subword to_1 c of L, withta_1 = x, te = 2z, and a < c. Then there is some
y € X such that N(y,5) > 0, 0wy ta_10) > 0, and o (y2ta 1) > 0.

Progf. Although t, and t._1 may be different, we find k > 2, b1,...,bx € [1,£(2)],
and yo,¥y1,...,Yx € X such that

a:b1m~-~mb2m-~-mb3 bk_1f\«---f\«bk gc,

ty, =ty ,—1 =y fori € [LLk—1], yo =, yr = 2, and y; # y; for i # j
[Start with @ =: b ~ by ~ -~ by == c and y; := ty. As long as there are
indices j >4 > 1 with y; = y;, remove all the indices i + 1,. .., 7, so that finally
all the remaining y; are different. Since y; = t, # z = vy, at least k > 2 of the
original indices are not removed, including the index 1, and the corresponding
b’, build the required positions by,. .., by |-

Then k = 2 since otherwise Lemma 4.30 a) would imply that either yo = y» or
y1 = y3. With y := y1 and b := by, Lemma 4.31 b) implies that A(y,t1,4—1) is odd.
Now, also A(y, s1,e—1) is odd because b € [1,a — 1] N D implies 7 (b) € [1,a — 1]
[ since the letter x at position a — 1 is not deleted ]. In particulat, A(y, s1.e—1) > 0.

d
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LEMMA 4.33. Assume thatk > 2, cor~ci - Cr—1 N C, Ck € D, andmw(ck) =

co — 1, representing a number of deletions of the form

™

teg te tck—l t

Ck
Let t' :=te,—1tegte,—1te, -+ te,—1te, be the word consisting only of the “boundary
letters”, and i € [0,k]. Then 0(te,—1te;,t') = o(te,te,—1,t").

Progf. Put c_1 := cg. Obviously, t., | = te,—1 foralli € [1,k], and ¢c, = tc,—1.
If also t.,_,—1 = t¢, foralli € [0,k] then k must be odd [since t., # tc, ], and
o(te,—1te,,t') = o(te,te,—1,t') = (K +1)/2.

Otherwise, there are r > 1 positions (1) < --- < i¢(r) in [0,k] with
teyyy_i—1 7 tey,,- Then i(j+1) —i(j) is even for all j [otherwise, put
ao := ¢i(j)-1, bo := ¢i(j), - - -, €= Ci(j+1)—1 and apply Lemma 4.31 a)]. In
case that all 4(j) are even, we have

ley # te, = teg—1 = te, = te;
for all odd 4, so that k must be odd. On the other hand, if all i(j) are odd, we
have
tck = tc(, —1 # tCo = tCi

for all even i, so that again k must be odd. This shows that ¢’ is of one of the
following two forms:

!

t = (yzwy)™ (yz1219)™" -+ (Yzr—12r-1y) " (yooy) ™
or t' = wy(yzzy)™ (yz1219)™ - - (yzr 120 19) " (yzzy) "y,
from which the claim follows immediately. U

Now we are ready for the construction. Let p; be the ith odd prime number,
and S(A) :={a1+---+ar|k =1, a; € A} for any set A of integers. In
the theorem, we need the following sets of even numbers: for any positive
integer u, let qu; = Z%H;L:lpi for all j € [L,ul], Qu := {qui,--->qQuu}, and
Quj = Qu \ {qu;}. It is easy to see that then, for each j € [1,u] and
ke S(Quj)k—qu; & S(Quj) [since p; divides k but not gy, ]

THEOREM 4.34.

a) Let V1, ...,V beafinite systens of 11 quasi-uniformities such that, forall 3,5 € [1,
Vi C 7/;1 NV V. Then there is an idempotent Zero-filter D such that 'V
Uy, (cvlJ)‘(,D)fora//j € [1,u].

ul,

Pi
S(A)

Quj
QUaQuj
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b) Let V1 2O Vo D ... bea descending sequence of 11 quasi-uniformities such that, for all
jandall U € ¥ j, there are Vi € V1,Va € V... with V"' MU, ; Vi C U.
Then there is an idempotent zero-filter D such that ¥ ; = Ui (dx, D) forall j € w.

Proof. For part a), let I := [1,u], while for partb), let I := w \ {0}. In both cases,
D is defined quite analogously to the proof of Theorem 4.26: its filter-base is
now the system

B := {ey| ¥ isasequence in ¥}

of lower sets .o := R§Ay of R%, where ¥ = 11
of A changes to this: for

P = ((‘/1(1):‘/1(2)"")a(‘/é(l)"é(Z),"'),"') Ve,

ier Vi, and the definition

A is now the set of all words (viwy)™ (vaws)™ - - - (v,w,)"® € X** for which
thete is some o-tuple (n1,...,m,) € W and some tuple of indices (i1,...,%,)
such that, for all @ € [1, 9], v, Vr(f:) wq and either r4 = gy, (for the proof of
part a) or 7, = 2" (for the proof of part b).

As before, D turns out to be an idempotent zero-filter, where the only
essential change is the proof of [\ B = 0: Let s € (| B, xz a non-null syllable
of s, that is, o(zz,s) > 0,and let V = (V;(l),Vl(Z),. ..) € ¥.Choose .7 € ¥
so that V,§21V,§21 - Vk(i) for all i € I and k € w, and some t € Ay with
s Ry t. Assume that = (viw;)™ (vaws)™ - - - (vowy) . If o(x2,t) > 0, put
yv = z, otherwise choose some yy € X with A(yv,s) > 0, o(zyy,t) > 0,
and o(yv z,t) > 0, according to Lemma 4.32. Since £(s) is finite and ¥ is
filtered, there is some ¥y such that, forall V € ¥ thereis V' € ¥ with V' < V
and yv/ = y, where < denotes component-wise set inclusion. Consequently,
xUy yUy zforall V € ¥, where Uy = |, Vl(i). This implies that x,y € (¥
andz,y € (¥ forsomei,i’ € I, hence x = y = z. Since this is a contradiction
to  # z, we have shown that § is the empty word, that is, s € 0.

Finally, let us show that ¥; = %,,.(d%,D) resp. ¥; = % (dx,D) for
each j € I. Fix some j € I and let VO@ € 7. Because of the premises, the
following choices can now be made. For patt a), choose for all ¢ € I'\ {j}
some Vo(i) € ¥ ; and Vl(i) € ¥, such that (Vo(i))f1 N Vl(i) C Vo(j). Then choose
Vl(j) € 7 ; such that Vl(j) - Vo(i) for all of the finitely many ¢ € I\ {j}. For
part b), choose instead some (Vl(l),Vl(Z),. ..) € ¥ with Vl(h) = V1(j) - Vo(j) for
allh < jand (V) 'nU,, V® € V2.

After that, choose the remaining components of

S = (P, 0,000, ) e v

uj
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so that Vi, Vi, C V¥ foralli € I and k € w, and assume that rd (z,y) <
8.7, thatis, s := (z2)" RJ)‘( t € Ay with a) r = g, resp. b) 7 = 27. We have to
show that VO@ z.

By definition of A, we have £ = (viw;)"™ (vaw2)"™ - - - (vow,) e, and there
is some cotresponding tuple (i1,...,%,). Since the only letters in 5 ate x and
2, there are exactly r occurrences of the syllable xz in # which are not deleted
[ because otherwise Lemma 4.32 would imply the existence of a third letter y in
3]. All other occurrences of xz in t are deleted as part of some set of deletions of
the form represented in Lemma 4.33, that is, there are cy,. . . ,c; with properties
as in Lemma 4.33 and with ¢,_1t., = xz for some ¢ € [0,k]. Then the lemma
implies that o (zz,t) = r + o(zx,t) =: k.

For a): If (vowq)"™ = (x2)?% for some a € [1, 9], then i, = j and

(z,2) € Véi:,) C Vl(j) C Vo(j)‘
Otherwise, we know that k € S(Quj), thatis, o(zx,t) =k — qu; € S(Qu) \
S(Quj), so that (vowe)"™ = (z2)?% and i, = j for some a € [1,p]. Also,
(vpwp)™ = (x2)? and ip = i for some b € [1,0] and some i € T\ {j}, so
that (z,z) € (Vl(j))_1 N Vl(i) - Vo(j). ‘

For b) instead: If (vawq)"™ = (22)? for some a € [1,0] and i < j, then
iq = tand (z,2) € Vr(fa“) - Vl(i) C Vo(j). Otherwise, k is a multiple of 29+ 50
that o (zx,t) = k — 27 is not such a multiple. Therefore, (vqwq )™ = (z2)>"
and i, < j for some a € [1,0]. Also, (vywp)™ = (z2)*" and iy # j for some

b € [1, 0], so that again (z,z) € (Vl(i“))_l N V1(i”) - VOO).

Note that this proof highly depends on the fact that the resulting value
monoid has not been made commutative.

PROBLEM 4.35.  Which systems of quasi-uniformities come from distance
structures with a commutative monoid?



5.
FUNDAMENTAL NETS AND
COMPLETENESS

Je Rleiner das Sandkdrnchen ist, desto sicherer halt es
sich fiir den Mittelpunkt der Wel.

Marie von Ebner-Eschenbach

Fundamental nets and Cauchy-filters

This section is about some generalizations of the notion of a fundamental
sequence.! There are a lot of possibilities to concretise the intuitive idea that
the distances between the points of a net “become small” at the end. The same
is true for generalized versions of Cauchy-filters in quasi-uniform spaces, and
a lot of work was done in this area by Deak, Kinzi, Romaguera, and others.
When translating their definitions into the language of nets and distances instead
of filters and entourages, many logical interrelations become very clear. Most
of these properties can be formulated using alternating quantifications of the
kind ‘Vn 3¢ > n’ and ‘In Vi > n’. They are strongly related to some functions

"The nowadays more usual term ‘Cauchy-sequence’ is misleading in that it ignores the fact
that instead of Cauchy, Bernard Bolzano seems to have been the first who defined the notion of
fundamental sequence in 1817. He used it for his “proof” [Bol17] of the (topological) completeness
of the real numbers, then transformed this into order-theoretic completeness, and finally proved the
intermediate value theorem for continuous functions on a real interval in the still usual elegant way:
given f(a) < 0 < f(b),apoint z € [a,b] for which f(z) = 0is constructed as the infimum of all
y with 0 < f(y).

For filters, however, the ‘Cauchy’-terminology is so common that I, too, will use it here.
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which involve limites superiores and inferiores and are interpreted as measures
of various kinds of “distances” between nets. As it turns out, these functions
can be used to construct a number of different types of completions for distance
spaces.

It is tried here to simplify the somewhat unstructured terminology which
exists in the literature on quasi-uniform spaces, and to underline the connection
between Cauchy-properties and distances between nets. For this reason, I begin
with a definition of ten “nearness-relations” for nets on a distance space:

Nearness-relations and fundamentality of nets. For nets x, y on a distance space
(X,d,M,D), define

x(IIVW)y <= V§ 3In Im Vizn Vjzm : d(z;y;) <6,
x(0AVAV)y <= V4 3In Vizn Im Vjizm : d(x;,y;) <6,
x(VIATV)y <= V6 Vn Jizn Im Viz>m : d(z;y;) <0,
x(0AVVI)y <= V6 In Vizn VYm JFjz>m : d(z;,y;) <6,
X(VIVI)y <= V6 Vn Jizn VYm JFjz>m : d(z;y;) <6,
x(ravVav)y <= V6 Im Vjzm In Vizn : d(z;,y;) <6,
x(rv33V)y <= V6 Vm Jj>m In Vizn : d(z;y;) <6,
x(ravva)y <= V6 Im Vjiz>m Vn Fi>n : d(z;,y;) <0,
x(rVavVI)y <= V§ Vm Jj>m VYn Fizn : d(z;,y;) <0,
x(VW3F)y <= V6 Vn Vm 3Fizn Jj>m : d(z;vy;) <9,

where 8, n, i, m, and j are variables of the sort D, I, Iy, I, and I, respectively
(that is, they run only over the respective sets). If Q is one of the quantifications
33AVYV, £3v3aV, ..., YV33, and if x(Q)y holds, we say that x is Q-zear y or
that (x,y) is a Qpair. If x(Q)x then x is said to be Q-fundamental. In case of the
quantification 33VV, I will also use the terms bi-near and bi-fundamental net.

The notation is so that for a quantification whose label begins with an ‘¢,
the first two quantifiers affect the indices of the /ff net, while if the label begins
with an ‘r’, the first two quantifiers affect the indices of the right net.

Moreover, call x an £3V-V resp. r3V-V-fundamental net* if and only if

V6 In Vizn Vjizi: d(z,z;) <0
resp. V6 In Vjizn Vizj: d(zi,z;) <6,
where of course now j is also of sort I,.

"These properties have also been called ‘left” and “right K-Cauchy’ (cf. [Kiin01]) but are not
equivalent to the left or right K -Cauchy property of the end filter [a trivial example is the sequence
(1,0,3,2,5,4,...) in (Z,d) with d(z,y) := 0 for x < y and d(z,y) := oo for z > y]. Instead, the
latter are equivalent to the weaker properties of £3V3V- and r3V3IV-fundamentality.

Q-near

Q-pair

Sfundamental

bi-near

bi-
Jundamental

net

£3V-V-
Sfundamental

net

r3v.v-
Jundamental

net
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LEMMA 5.1. If D is idempotent and U is the gunasi-nniformity induced by (d, D), then:

a) (x,y) is an AN -pair if and only if (Ex,Ey) is a Canchy-pair in the sense of Dedtk
[Ded96], that is, if and only if each entourage includes some F' X G, where F' € &X and
G € &y. (In this case &Y is called D-Cauchy [Rom96].)

b) x is bi-fundamental if and only if & is a bi-Cauchy-filter [FL82],
that is, if and only if each entonrage includes some F* with F € &x.

¢) x is ON' AV -fundamental if and only if &Ex is weakly hereditarily Cauchy /Romn96),
that is, iff for all U € U and F € EX there isy € F such that yU € &x.

d) x is L3V 3V -fundamental if and only if Ex isleft K-Cauchy [Rom96],
that is, if and only if for all U € U there is F' € & such that yU € EX forally € F.

¢) Likewise, x is 73V 3V -fundamental if and only if &x is right K-Cauchy [Rom96).

/) x is v I I-fundamental if and only if Ex is stable [Ded96),
that is, if and only if {FU |F € &x} € Ex foreach U € U.

g) Every net is NN 33-fundamental.

LEMMA 5.2. Forall X,

(33vV) C (£3vaV) C (ev3TY) C (evav3) C (vvaT),
(03v3V) C (£3vv3) C (v3av3),

every bi-fundamental net is 3N -N -fundamental, and every €3N -N -fundamental net is 3V 3V -
Sfundamental. The same is true with ‘r’ instead of ‘0.

Both proofs are immediate from the definitions. U
LEMMA 5.3.
For (X,d, D) with idempotent D: Progf. (notation explained below)

1. (£3vV3) (ravav) C (33VV) [Ve 30 3n 3k Yi v 3m [VIm 37 [v]5 o]

2. (03vaV)(ravv3a) C (33VV) [Ve 36 3n 3k Yiy; Im [v]m 35 VT ]
3. (ev33V) (ev33V) C (ev3TY) [Ve 36 Yn 3i Im [v]m 35 [V]J 3k v ]
4. (ev33V) (ravv3) C (ev3AV) [Ve 36 Y 3i gk v Im [vm 35 [V @]
5. (ravv3)(ev3AV) C (ev3AY) [Ve 35 Im [v)m 35 (V17 Yn Fi 3k vi o]
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The progfs above are given in a short notation: the quantified variables run over
alld,e € D,i,n € I, j,m € I,,and I,k € I, which fulfil

20KLe, i2n, j=>m, and I > k,
and ¢ is shott for
d(zi,z1) < d(zs,y;) +d(y;,21) <20 < e.

Whenever an V-quantified part of a definition is applied to some variable which
is already evaluated in an earlier quantification, then the V is surrounded by
square brackets. Whether a quantifier “originates” from the first or the second
relation is visualized by a slightly raised or lowered position, and those that
appear in the conclusion are underlined. For example, the proof of the first line
reads as follows:

Let x(¢3VV3)y(r3V3aV)z. Then for each € € D there is § € D such that
20 < g,and there ate n € I, and k € I, such that forall 7 > n and [l > k there
is some m € I, and, for all and particularly for this choice of m, there is some
J = m such that, for all and particulatly for this choice of j > m, d(z;,y;) < 9
and d(y;,z1) < ¢ and thus d(x;,2;) < 20 < e. O

Notions of completeness

Given a distance structure (d, D), let us write x — =, X = &, T +— X, T < X, Of
x «— x — x as shorthands forx — g p ,X >a4,D T,X —>gop,D T, X >dor, D T, OL
(X —a,p Tandx — g, p ), respectively. In case of ¢ +— x,x < x,0r T +— x — x,
x will be called a dual linit, dual cluster point, ot bi-limit of x, respectively, and x will
be said to be dually convergent, dnally clustering, ot bi-convergent.

Net selections.  1n the following, it will be convenient to call a property of nets
(such as bi-fundamentality) a et selection. Formally, a net selection C'is just a class
of nets, and a C-net is an element of C. Special net selections are the class of all
bi-fundamental nets, called ‘b’ for short, that of all /AV3V-fundamental nets,
designated by 43V3IV’, etc.

Completeness properties.  For a net selection C, let us call X (C,<)-, (C,+)-,
(C,«)-, (C,—)-, ot (C,>)-complete if and only if each C-net on X has a dual
cluster point, dual limit, bi-limit, limit, or cluster point, respectively. For sequential
(C,...)-completeness, this is only required for C-sequences instead of all C-nets.

Sequential (43V-V, —)-, (r3V-V, —)-, ot (bi, —)-completeness, for instance,
are suitable forms of completeness for the generalized version of Banach’s fixed
point theorem in the next chapter. The following facts generalize a result by
Romaguera [Rom92].
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dnally
convergent
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net selection
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LEMMA 5.4. Let (C,...) be one of the pairs (£3V-V, ), (rIV-V,—), (bi,«),
(bi, ), or (bi,—).

Then (C,...)-completeness is equivalent to sequential (C, . . . ) -completeness for all distance
spaces X_whose zero-filter D is idempotent and has a conntable base {6, | n € w}.

Progf. Let us start with the pair (r3V-V, —). Let X be sequentially (r3V-V,—)-
complete, and x an r3V-V-net on X. For all n € w, choose some k,, € I
such that d(z;,x;) < 6y, for all ¢ > j > k,,. Since I is directed, we can
also choose an increasing sequence (k. )necw with kI, > k,, for all n. Now
Yn = x: defines an r3V-V-sequence y on X [For ¢ € D, choose n with
8n < e Then d(ym,y,,) < 6, < € for all m > m’ > n]. Let z be some
limit of y. Then also x — z [For ¢ € D, choose § € D with 26 < &, and
n € w such that 6,, < § and d(Ym,2) < 6 for all m > n. Then, forall ¢ > k],
d(xi,2) < d(®i,Yn) +d(Yn,2) = d(xi, T ) + d(Yn,2) < 0n +0 < €]

The proof for the pair (bi,—) differs only in that the requirements i >
j = kn and m > m' > n are replaced by 4,5 > k,, and m,m’ > n. Those for
(£3V-V, ) and (bi, <) are just dual, and in the proof for (bi, < )-completeness,
z is a bi-limit of y and hence of x.

I will not try to compare here all of the many interesting completeness
properties which arise from the different notions of fundamental net defined
in the previous section. In the case of quasi-uniform spaces, many of these
properties have already been investigated thoroughly (cf. [KinO1]), and those
results can easily be translated to the situation of distance spaces with idempotent
zero-filter.

There are, however, some differences when D is not idempotent. In a
quasi-uniform space, any bi-Cauchy-filter converges to all of its cluster points.
For distance spaces with non-idempotent zero-filter, it is not even the case that
(v3V3, > )-completeness implies sequential (b, —)-completeness:

EXAMPLE 5.5. Let M = ([0,00],%,0,<) be the p.o.m. of extended non-
negative real numbers with the mutated addition defined by ax 8 := oo
for all o, > 0. Then D := (0,00] is a non-idempotent zero-filter for M.
On X := [—1,1]\ {0} U {a,b}, define a symmetric M-distance function d
by d(a,r) := d(—r,b) := d(a,b) := co and d(—r,a) := d(b,r) := r for all
r >0, and d(z,y) := |z — y| for all z,y € [—1,1]. Then X := (X,d,M, D)
is (¢3V3V,>)- and (£3V3IAV, <)-complete since every net is either frequently
in X_ :=[-1,0) U{a} or eventually in X := {b} U (0,1], and both these
subspaces are uniformly isomorphic to the Euclidean unit interval. But the
sequence ((—2)~") ,, € w is bi-fundamental without having a limit.

EXAMPLE 5.6. The modified quasi-pseudometric d(0,z) := 0, d(z,0) := oo,
and d(z,y) := | —y| for z,y > 0 tutns the interval [0,1] into an (all,«)-
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complete space in which the bi-fundamental sequence (27") ,e., has no cluster
point.

EXAMPLE 5.7.  Even with an idempotent zero-filter, ((3V-V,>)- is not
implied by (bi, <> )-completeness. Since the bi-fundamental nets on R with the
skew-symmetric distance d(z,y) := y — x are the same as those on Ey, this space
is surely bi-complete. Howevet, (—n)pne. is an £3V-V-fundamental sequence
without a cluster point.

Let us consider the 55 completeness properties (C,...) where C' is one of
V3V, v33V, £3VV3, £3V3Y, £3V-V, 33VV, and their duals with ‘r’ instead
of 0.

PROBLEM 5.8.  Which of the following implications are true for general
distance spaces:

(vaAV3, <) == (raV-V,<),  (VAVI, <) = (rIV-V,>),
(OVFIV, ) == (£avva, <),  (VIIV,«) == (£3VV3,-),
(03aVV3, ) == (ev3TVY, <),  (L3VW3I, ) == (VI -),
(0AVV, ) == (£3VIY,<),  (LIVV,«) == (£3avIV,>),
and (bi,) == (£3V-V,<).

This is a sensible choice of questions because these are exactly the weakest
implications not yet decided. If all of them would turn out false, the implication
partial order between the 55 properties would just be the product of the
implication order among the five types of convergence and the dual of the
implication order among the eleven types of fundamentality. However, this is
not the case since the two implications in the second to the last line are in fact
true. More precisely,

OBSERVATION 5.9.  (£3V-V,—)-completeness implies (€IV3V, =) -completeness,
and (03N N, ) -completeness implies (0NN, <) -completeness.

The proof is a variant of that of [KR97], Lemma 1, modified so as to avoid the need
of a choice principle. Assume that X is (/3V-V,—) ot (¢3V-V,—)-complete,
and let x be some /3V3V-fundamental net. On

J:= {((5,n,xi) |6 €D, i>2ne€l, ImVizm: d(z;,z;) < 5},
define a directed quasi-order < by putting (6,n,z) < (g,m,y) ifand only if either
@ (6,n) = (e,m) ot (i) § = e, n < m, and d(z,z;) < ¢ forall 5 = m. Then
Y := () (5,n,2)es is an £3V-V-fundamental net [Let § € D, choose some n € Iy
and z € X with (§,n,z) € J, and assume that ({,r,z) = (e,m,y) = (§,n,x).
Then y = x; for some j > m with d(y,xx) < € forall k > r, and z = =z, for
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some k > r, hence d(y,2) < € < § as required ]. Now let a be a [dual] limit of
y. In order to show that a is a [dual] cluster point of x, let 6 € D and n € I,
and choose some (g,m,y) € J with d[OP](z,a) < 6 forall ({,r,2) = (e,m,y).
Finally, choose some s € I, with d(y,zr) < € forall k > s, and some ({,7,2)
with { = eandr > n,m,s. Then ({,r,z) = (e,m,y) since d(y,zr) < € for all
k > r. Therefore, dlor! (2z,a) < 6, which proves that a is a [dual] cluster point
of x since z = ), forsome k > r > n. O

Updating the set of weakest yet unproved implications, we get:

QUESTION 5.10. Which of these are true for general distance spaces:

(evaV3, =) == (raV-V,<), (evaAV3, ) == (rav-Vv,>),
(VAT ) == (AW3,<),  (VITV, o) == (£3AW3,>),
((AVV3, ) == (v3TV,<),  (£AVW3E, o) == (ev3TV, ),
(03V-¥,—) == (£3vaV, <), (03VV, ) == (£3vaV,>),
(0AV-Y, ) = (£AVAV,—), (LYY, <) == (£3vaV,—),
(03VV,<) == (£3vaV,<), ((AV-V, =) == (£3vav,>),
and (bi, ) == (£3V-V,<).

Distances between nets

The idea behind the completions to be presented in the next section is to define
distances between nets as certain kinds of limits of the distances between the
points which constitute the nets.

Limes superior and inferior.  "The limes superior [limes inferion] of a net a = («a;)ser,
on a conditionally complete lattice is the infimum [supremum] of the set of
suprema [infima] of its principal ends:

]irnsupielaozi = /\{\/{ai|i>n}|nela},
liminf;cr, o = \/{/\{ai|i>n}|nela}.

If the index set is a product I X J of directed sets, one can also write
limsup,c; ;¢ y instead of limsup; 7, ;-

LEMMA 5.11. If o and B are nets on a co-quantale then

limsup,; scop (i +B;) < limsup, ;o +limsup;; Bj,

X
liminfieja,jelﬂ (Cti —+ ,6]) < liminfz-eja (073 —f-limiﬂfje]ﬁ ,Bj.
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The proof is straightforward. O
Now define
nyy(x,y) = hmsup; er o, d(zs,y5),
nva(xy) = limsup, ; liminf;cr d(z;i,y;),
nav(x,y) = liminfiejxlimsupjelyd(aci,yj),
and  nan(xy) = hminf(i,j)elxxly d(xi,yj)'

Whether these functions satisty the requirements for a distance function mainly
depends on the fundamentality properties of the nets one applies them to. This
is not very surprising because the definitions of most of the fundamentality
properties involve 3- resp. V-quantifications over ends of nets, and such
quantifications are strongly related to inequalities of the kind o« < B and
o 2 A\ B, tespectively o < A Band o > \/ B.

LEMMA 5.12. Let M be a co-quantale and 'Y a set of nets on some M -distance space X.
Then, for a,b,x,y € X andx,y € Y:

ﬂ) Nan < Nav < Ny, nAA(X,Z)) = nAv(X,Z)), nyv (X,y) = HVA(X,Q),
Nan < Nva < Ny, nAA(i’,Y) = NVA(ﬂ"?,Y), and n\/v(fb,}’) = Nav (i,}’)~

b) v abways fulfils the triangle inequality, while vy, av, and npp at least satisfy it for
each triple whose second element is €N 33N -, €I -, or bi-fundamental, respectively.

¢) Ahways nyy (x, ) 2 0. Ifx is bi-neary then nvy (x,y) < 0.
Thus, i x is bi-fundamental, n (x,x) = 0.

d) Always nap(x,x) < 0. nya(x,x) < 0 fresp. nay < 0/ i x is £3IVVI- [resp.
ON33V-] fundamental.

¢) If D = 10 then n (x,y) < 0 implies that x is bi-neary andn (,y) < 0 implies
that x —y.

HIfD = F0 then nan(E,y) < O dmplies that © < y.

g x—aandb —y = nyv(xy) < d(a,b),
X aandb <y = nar(x,y) < d(a,b).

b a=<xandy =b = nyy(xy) > d(a,b),
a—xandy —b = nar(xy) = d(a,b).

nvv,va

MAV, VAN
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Proof. a), c), and d) are straightforward. As for b),

nyv (X,Y) + nyv (y,z)

= AVt AV-EA (V4 V)

> /\{\/{d<:ci,yj) t+d(ygnz) i > 5 > m, g > w12 k)
|n€Ix,m,m'€Iy,k€Iz}
> AN{ V@i +dys,2) i > n,5 > m,j > m',1> k)

|nEIX,m,m er,keIZ}

Iy is

dmucd {\/{d(xz,yj) +d(yj,Zl)| > ] k}
|n€Ix,mer,k:eIZ}
> AN{V1d@iz)1i > n 1>k} In€ Lok €L} =nu(y,2).

Moreover, if y is bi-fundamental, then for all € € D there is m. € I, such that

nan(%,y) +€+nan(y,z)

= VA et VA= V(A +et A

lower

NN d@n) + e+ dysnza) 11> 0,5 > m, 5 > ml 1> k)
|n€IX,m,m/€ kEI}
> V{ A fdi,v5) +dlysyin) +dlyzz) 1> n, 5,7 > me, 1> k}

|n€IX,k:eIZ}

> \/{/\{d(mi,zl) li>n,l> k) |n€IX,k:€IZ} = nan(y,2),

hence nan(X,y) +nan(y,z) = nan(y,z) because of lower distributivity. The
remaining two cases are similar.

e) If x is not bi-near y, there is some € € D such that none of the suprema in
lim SUP(; j)erx1, d(z;,y;) is at most €. Since I X I, is directed, the infimum of
all those suprema is a filtered infimum, hence nyy(x,y) € 0 whenever € > 0.
The other implication follows with a).

f) Similatly, naa(x,9) < 0 tesp. nan(&,y) < 0 implies that for all € 3> 0
and all n there is ¢ 2> n such that d(z;,y) < € tesp. d(x,y;) < €.

@) If for each € € D there is (n,m) € I X I, such that

d(zs,y;) < d(zi,a) +d(a,b) +d(by;) <e+d(a,b)+e (%)

lower
for all (4,7) > (n,m), then nyy (x,y) < A(D + d(a,b) + D)"="d(a,b). If, on
the other hand, foralle € D and (n,m) € I, X I, thereis (4,5) = (n,m) such
that (%) holds, then naa (x,y) < A(D 4+ d(a,b) + D) = d(a,b).
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h) If for all e € D and (n,m) € I x I, there is (¢,5) = (n,m) such that
d(a,b) < d(a,zi) + d(zi,y;) + d(y;,0) < € +d(2i,y;) +€ (1), then

d(a,b) < limsup,; jely(e—l—d(xi,yj) +e) <e+nuwixy)+e

foralle € D, thatis, d(a,b) < nyv(xYy). If, on the other hand, for eache € D
there is (n,m) € I X I, such that (1) holds for all (4,5) > (n,m), then

d(a,b) < liminficr, jer, (e +d(zs,y5) +€) < e+ nan(xy) +¢
foralle € D, thatis, d(a,b) < nan(x,y). O

Some completions

A first application of the above is a construction of [Ty] bi-completions for
[To] distance spaces. In contrast to Flagg’s [Fla92] bi-completion for continuity
spaces, the present construction seems far more straightforward and does neither
require complete distributivity nor a zero-filter which equals the long-way-above
set of 0. The intuitive idea is to take all bi-fundamental nets as the points of
the completion space, but since this system of nets always is a proper class, we
restrict our choice to canonical nets.

Canonical nets. A net x on a set X will be called canonical if and only if
each index is a pait (A,a) with a € A C X, and I is quasi-ordered by
(A,a) < (B,b) :<= A D B.

If we are not interested in the index set itself, but only in the end filter of the
net, we can always assume that a net is canonical:

LEMMA 5.13. For any net x on X, the set I, = {({azZ i 2 n}xn)|n € IX} is
up-directed by (A,a) < (B,b) <= A 2 B, and the canonical net X := (@) 4 4)e7,
Sulfils £X = &

The proof is immediate. O

In this sense, the system of all canonical nets on X is a set of representatives
for the class of all nets on X.!

THEOREM 5.14. (Bi-completion). Ler X = (X,d, M, D) be a distance space such
that M is a co-quantale and D is an idempotent ero-filter with a base of elements € for
which N\ <. = €. Let B be the set of all canonical bi-fundamental nets on X. Then
B := (B,nyv, M, D) is a bi-complete distance space, and the map h : X — B, x — &
is a bi-dense exact isometric embedding.

! Although the index sets Iy are not partially ordered in general, there is a similar but slightly
more complicated construction with partially ordered index sets.

canonical
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Progf: By Lemma 5.12 b) and c), nyyv is a distance function on B. The map h

is well-defined since constant nets are always bi-fundamental and principal nets

are canonical, and h is an exact isometric embedding since nyy (£,9) = d(z,y).
If x € B is a bi-fundamental net on X, the net

hx = (Z;)ier,

on B bi-converges to the element x of B [For € € D choose n € I, such that
d(z;,x;) < eforalli,j > n. Then, taking the supremum over j resp. ¢, we find
that nyy (2;,X) < € and nyy(x,2;) < e forall 4,5 > n]. Hence h is bi-dense.
As for bi-completeness, let x = (x;);er be a bi-fundamental net on B
which consists of canonical bi-fundamental nets x; = (24;) e 1, on X. The
set K := D X I becomes a directed set by putting (¢,7) = (6,n) <= ( < 6
and ¢ > n. For each index ({,i) € K, choose some m((,i) € J; such that
d(x;j,xi5) < ¢ forall j, 5" € J; with 7,5 > m((,i), and put y¢; := T m(C,i)
Then y := (y¢i)(¢c,i)ek is a bi-fundamental net on X [For € € D, choose
d € Dwith36 < eand A 5 = J,and choose n € I with nyy (x;,xir) < 9 for
all i, > n. Let ((,1),(¢',i") € K with (¢,4),(¢,3") > (6,n). We will see that
d(yci,ycrir) < €. Since in particular 4,7 > n, the directed infimum nyy (x4,%;7)
is at most 8. Hence, for each a > §, there are k € J; and k' € J; so that
d(z;j,xi) < aforall j > kand j° > k. Because of directedness, there are
indices j € J; and j' € J;» with k,m(¢,4) < jand kK',m(¢’,i") < 45/, hence

d(yCi>yC’i/) = d(JTi,m(c,i),mi/,m((',i'))
S d(Tim(c,i)»Tig) Fd(@ig,@ig) +d(Xirg, Tirm(crir))
<C+Ha+(¢<d+a+d

for all a > §. Consequently, d(yci,¥ycir) < N
because of lower distributivity ].

By Lemmata 5.1 and 5.13, also y is bi-fundamental, in particular, y € B.
Moteovet, the net x on B bi-converges to the element y of B [Fore € D, choose
0 € Dand n € I as above, let i > n, and choose s € J; with d(z;,,z;5) < 0
for all r,57 = s. Then nyy(x;,¥) < \/rgs\/(q,i')g(a,n)d(xiraxi’,m(c,i’))» and
we will see that each of the latter distances is at most €. Let r > s and
(¢,i") = (8,n). Since in particular ¢,i" > n, the directed infimum nyy (x;,x;) is
at most . Hence for each o >> 9, there are again k € J; and k' € J; as above.
Now choose j € J; and j' € J;» with k,s < j and k',m(¢,i") < j', so that

wss(+a+8) =36<e

A(Tir, Tirm(c,i))
L d(xir,@ij) +d(xig,2i50) +d(@ir g, T micir))
<6+a+(<s+a+s
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and finally d(Zir, T m(ciry) < 30 < € by lower distributivity ]. Therefore,
x — y, and the proof of y «— x works dually.

Note that the above bi-completion is only Ty when X is a singleton or empty
[since the canonical bi-fundamental nets & and {({z,y},y), {z},x)} are
different for  # y but have zero distance in B]. Since for a bi-completion of a
Ty space, one usually again requires the T property, one needs to supplement the
above construction with a Tp reflection in that case. In this standard construction,
the set Y of Ty classes of a distance space (B, e, M, D) with partially ordered M
is endowed with the inherited distance €’(A, B) := e(a,b) for (a,b) € A x B,
and thus becomes a T distance space (Y,e’, M, D).

The following example shows that, in contrast, a T distance space need not
in general possess a T bi-completion.

EXAMPLE 5.15. Let X := (0,1] U {a,b} be the extension of the half-open
real interval (0,1] by two distinct points a,b, and define a real distance function
don X by d(z,y) = |r —y|, d(x,a) := d(z,b) := z,and d(a,y) := d(b,y) :=
d(a,b) := d(b,a) := oo for all z,y € (0,1]. Then X is Ty but no Ty extension
of X is (bi, «—)-complete [ The bi-fundamental net (1/n),en which converges
to a and b cannot have a dual limit ¢ in some T; extension of X, because
otherwise a, b, and ¢ would have had to coincide].

Non-symmetric completions. We now turn to the case of weaker fundamentality
properties and see whether we can use a similar completion procedure here, too.
Since any bi-convergent net is bi-fundamental, we will not be able to produce
bi-convergence for weaker kinds of fundamental nets, but only convergence
or dual convergence. Here the situation is as for quasi-uniform spaces: if one
adjoins a new point a to X such that d(x,a) := 0 and d(a,z) := T for all
x € X, one always gets a dense embedding of X into a M ' -distance space X'
in which @/ nets are convergent to a. Moreover, if X is To, then so is X' (while
it is never T1).

Therefore, only the case of Ty completions is interesting. We concentrate
our considerations to (C, —)- and (C, >)-completeness, where C' is some net
selection included in a certain class of fundamental nets. Now we can build a
“universal” completion space from all principal nets and all canonical /V33V-
resp. £¥V3V3I-fundamental nets that have no dual limit resp. no dual cluster point,
and use a limes superior or inferior to define the distances.

If X can be isometrically embedded into X', the latter is called an extension
of X.

To reflection

extension
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LEMMA 5.16. Assume that X = (X,d, M, D) is a Ty distance space such that M is
a co-guantale, and put h(x) = & forall x € X.

Let Z be the set of all canonical €533 ~fundamental nets on X that have no dual linit,
and putY := Z U h[X].

Similarly, let V' be the set of all canonical €5 3N 3-fundamental nets on X that have no
dnal cluster point, and put W .=V U h[X].

Moreover, define two distance functions

0 ifx € Z andy = x

B T ifx € Z andy # x

dy (xy) = limsup; ., d(z,y;) ifx = andy € Z
d(z,y) fx==2andy =7y

0 ifx €V andy = x

_ T ifx € V andy # x

and —dyy (x,y) = liminfjer, d(z,y;) fx =& andy €V
d(z,y) ifx =& andy = .

IfD =10 thenY = (Y,dy,M,D) isa T\ distance space into which X is densely
isometrically embedded by h.

IfD = TO then W .= (W ,dw,M,D) isa’ly distance space into which X is densely
isometrically embedded by h.

Proof: 1t is easily verified that dy and dyy are distance functions since M is lower
distributive. Under the given conditions, they are also T [Let x # y. If both
of them are in h[X] then dy|w(x,y) % 0 because X is Ty; if x € h[X] then
dyw)(xy) =T £ 0;if y ¢ h[X] and x = & then dy (x,y) = nyv(&,y) £ 0
[tesp. dw (X,¥) = nan(&,y) L 0] since x ¢~ y [resp. A y] by Lemma 5.12 ¢)

[D1]-
Finally, h is dense [Let y € Y [resp. W]. For each ¢ € D, choose some

arbitrary n € I, and some i(e) > n corresponding to the definition of (£¥33V)
[tesp. ((V3VI)]. Then define a net x := (z:)cep on X, whete D is up-directed
by the dual order of M, by setting . := y;(c). Then foralle € D thereism € I,
such that d(y;(c),y;) < € forall j > m [resp. Ve Vm 35 > m: d(y;(-),y;) < €.
The latter implies dy (Zc,y) < € [tesp. dw (Ze,y) < €], hence hx — y].

LEMMA 517. Let X, Y, and W be as in Lemma 5.16, and x a canonical net on X.
If x is O3V -fundamental but has no dual limit then hx = x inY .
If x is 3V 3V -fundamental but has no dual limit then hx — x inY .
If x is N3V I-fundamental but has no dual cluster point then hx = x in W.
If x is €3V 3-fundamental but has no dual cluster point then hx — x in W.

The proof is straightforward. O
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LEMMA 5.18. Let X = (X,d, D) be a distance space with idempotent D and some Ty
extension X' = (X', e, E).

A net on X with a limit in X' and a dual cluster point in X has also a limit in X.

A net on X with a cluster point in X " and a dual limit in X bas also a cluster point in X.

Proof Let h : X — X' be the embedding. If z < x — y or z + x > y for some
z € Xandy € X', thend(z,y) < 0,henceeh(z,y) < 0.Nowh(y) =h(z) € X
since X' is Ty, and y = z since h is injective. ]

ByaTi (C,...)~ompletion of X Imeana Ty (C,...)-complete distance space
into which X can be densely isometrically embedded. Now we are ready to
prove a whole class of completion results at once, since whenever X has a T
completion of the desired kind at all, one of the spaces ¥ and W is such a
completion.

THEOREM 5.19. Non-symmetric Ty completions). et X = (X,d, M, D) be
a 11 distance space such that M is a co-guantale and D is idempotent. Define Y and W as
in 5.16, and let C be some net selection.

If C is included in O33N -fundamental’, D = 10, and X has a Ty (C, > )-complete
extension then'Y is a Ty (C, > )-completion of X.

IfC is included in €3NI -fundamental, D = 10, and X has a Ty (C, — )-complete
exctension then' Y is a Tv (C, — )-completion of X..

If C is included in 3NN I-fundamental’, D = fO, and X has a T (C, — )-complete
extension then W is a T1 (C, — )-completion of X.

Proof. Lety be a C-net on Y which is not eventually constant.

In the first case, for all e € D\ {T} and n € I, the index 3 > n whose
existence is stated in the definition of (¢£V33V) is such thaty; € h[X] [otherwise
yi € Z,and there is m € I, with dy (y,,y;) < € < T and thus y; = y; forall
j = m]. The co-restriction y’ of the net y to the set h[X] is thus again a net, say
y' = hx for some net x on X, and both x and X are again £/V33V-fundamental.
If x has no dual limit in X, X is a cluster point of hx by Lemma 5.17. If, on
the other hand, x has a dual limit in X, Lemma 5.18 implies that it has also a
cluster point in X since it has one in some T'; (C, >)-complete extension of X.
Anyway, y' = hx has a cluster point in Y. Since I,/ is co-final in Iy, also y must
have one.

In the second case, foralle € D\ {T}, the index n € I, whose existence is
stated in the definition of (¢3V3V) is such thaty; € h[X] foralli > n [for the
same reason as above ]. Defined as before, x and X are even £3VV3-fundamental
this time, and y’ := hx now has a limit in Y. Since &Y’ = &y, also y has a limit
inY.

The third case can be proved with completely analogous arguments. O

Ty
(c,...)-
completion



6.
FIXED POINTS

While his parents are alive, the son may not go abroad
1o a distance. If be does go abroad, be must bave a fixed
point to which he goes.

Confucius, Analects

Banach: Fixed points of Lipschitz-continuous maps

Using the following generalization of Lipschitz-continuity, Banach’s important

but easily proved fixed point theorem can be reformulated for general distance

spaces. For a filtered monoid (M, D), a map L : M — M will be called /f? or
right right contractive if for all @« € M and § € D, there is n € w such that

contractive

Lia+.---+ L7 o <d or L lat. .+ L <6 forallj>i>n,
respectively, where the sums are considered zero in case of ¢ = j.

PROPOSITION 6.1. ILet X = (X,d,M,D) be a nonempty T1 distance space,
L:M— M, and f: X — XP = (X,d®,D) a continnons map with df < Ld.
Assume that either

(1) X is sequentially (03N N, — ) -complete and L is left contractive, or

(7i) X is sequentially (r3N N, — ) -complete and L is right contractive, or

(i) X is sequentially (bi,— )-complete and L is both left and right contractive.
Then f has a unigue fixed point x € X, and x «— (f"x0)n — x for every zo € X.

The proof is essentially the standard one. (i) For zo € X, put x,, := f™(z0)
and «a := d(zo,z1). Since for all § € D, there is n € w with § > Lo+

110
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s+ L7 > d(z,x5) for all j =i > n, the sequence (xy,)n is £3V-V-
fundamental. By sequential completeness, (5 )n —  for some z € X, so that
f(@) — (f(zn)), = (Zn)n>2 by continuity. Now f(z) < (zn)n — =, hence
d(f(x),z) < 0and f(x) = x because of Tj. Finally, for f(y) =y, we have
d(z,y) = df"(z,y) < L"d(z,y) forall n € w, hence d(z,y) < AD = 0and
x = y again because of T. Parts (ii) and (iii) are strictly analogous. U

Because its proof uses a similar argument, I include here the following
observation:

EXAMPLE 06.2. Possible worlds semantics with completeness. When defined by means
of the betweenness quasi-orders

Y Kyp 2 < zyyz Rgxz,
the counterfactual operator (1)
Ab—»B={zecX|Vwe A3zc ANB:z <}
(compare to Example 2.27) fulfils the rule
Ao—(BNC) C(Ao—B)N(Ao—C)
but #ot in general the intuitively also justified inference rule
(A—»B)N(Ao—C) C Ao—(BnNCQC).

In the following case, however, it does: d > 0, X is sequentially (r3V-V,«)-
complete, M is a commutative and order-cancellative (that is, o + 0 < a+ v =
B < 7) co-quantale, D is idempotent, o+ 6 > o holds for all o € M and
0 € D,and A, B, and C are sequentially 7 (d*, D)-closed.

For the proof, assume that ¢ € (A0— B) N (A0—C) and w = 2y € A,
and define (zn)n inductively: for odd or even n > 1, choose z,, € p—
so that z € B or z € C, respectively. Now (2 )n is r3V-V-fundamental [Put
a:= A\, c,d(z,2zn). For § € D, choose n € w with d(z,z;) < d(z,2,) <
a+0 for all j = n. Then a+d(zi,2;) < d(zzizi25) = d(zz;) < a+06
and thus d(z;,2;) < for all ¢ > j > n]. Then z «— (z,)n — 2z for
some z € ANBNC, and 2z € 7z¢ [for all § € D, there is j > 0 with
d(zzzz0) < d(xzjzjz2252520) < d(z,25) + 26 + d(z5,20) = d(z,20) + 26,
thus d(zzzz0) < d(z,20)].

POINT-FREE GENERALIZATIONS

Let M be a q. 0. m. with zero-filter D, and K : M — M amap. An o € M will
be called K-contractible if for all e € D there is n € w such that K"« < e.

order-
cancellative

contractible
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For the following point-free “fixed point” results, let us adopt a very general
standpoint. Assume that @ is a quoset with a unique smallest element 0, and
d: Q — M is an isotone function with d(0) = 0. For example, @ could be a
frame and d a diameter on @ in the sense of Pultr [Pul84].

Amap h:Q — Q will be called K-Lipschitz if it preserves < and 0, and for
each a € Q thereis b € Q with h(b) > a and d(b) < Kd(a). A filter FF C Q~
is called a Canchy-filter if and only if, for each € € D, it contains some element a
with d(a) < e.

Finally, a map between quosets is said to preserve down-directedness if and only if
the image of each down-directed set is again down-directed.

LEMMA 6.3. Let h be K-Lipschity such that h™" preserves down-directedness, and
a € Q% such that h(a) = a. Then there is a descending sequence (ay,) in Q™ with
ap = a, h(an+41) 2 an 2 any1, and d(ayn) < K"d(a). If d(a) is K-contractible,
this sequence generates a Canchy-filter Fo, in Q™.

Progf. Define (an) inductively: put ap := a and, when a,, is already defined,
choose b such that d(b) < Kd(an) and h(b) = a,. Since also h(ay) = an,
there is an4+1 < an,b such that h(an+1) = an, in particular a,4+1 7# 0. Because
d is isotone, d(an+1) < d(b) < Kd(ay). The Cauchy-property is obvious.

Now assume that M is complete, and Q is a complete lattice L. Define K
inductively for all ordinals v by K" la:= KK"a, and K*a == Npex K" a
for limit ordinals \. Now an o € M is called #ransfinitely K -contractibleif K¥ o < 0
for some ordinal v. Note that simple K-contractibility implies K“a < 0. For
a cardinal v, an a € L is [(7,w)-]co-compact if each down-directed set [of
cardinality at most 7] whose infimum is < « already contains an element < a.
Usually, (w,w)-co-compactness is also called countable co-compactness.

LEMMA 6.4. Let h be K-Lipchitz, and ~y an infinite cardinal.

a) Assume that h(a) = a forsomea € Q*, and h preserves arbitrary infima. Then there is
a descending transfinite sequence ()<~ in Q with ag = a, h(ay) 2 h(av+1) 2
ay 2 apy1, and d(a,) < KVd(a).

b) If, additionally, 0 € L is (~y,w)-co-compact and K" d(a) < 0 then ar € Q™ and
d(a~) =0.

Proof. a) For successors v + 1, choose b as in Lemma 6.3 and put a, 41 := a, A b.
Note that a, 1 # 0 whenever a,, # 0. For limit ordinals, put ax := A av.
Since h preserves infima, h(ax) = A, cy h(ay) = ax. Moreover, d(ax) <
Averd(@n) < Ayex K*d(a) = K d(a).

b) In this case, also each dy with A < v is non-zero [Inductively, it
is an infimum of a chain of cardinality at most v of non-zero elements
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and is therefore also non-zero because 0 is (y,w)-co-compact]. Moreover,
0 < d(a) < K7d(a) < 0.

The above lemmata become fixed-point theorems when @, d, and D ate
sufficiently well-behaved. Following [BP89], define

b<da:<= Jde € DVc € Q (cintersects band d(c) < ¢ = c¢ < a),

and call a filtet F C Q™ regular if and only if for each a € F, there is b € F with
b<a.

Now suppose that @ is a complete lattice L. Then d is a star-prediameter if and
only if d(a V b) < d(a) + d(b) whenever a,b intersect, and

d(aVv\/A) <d(a)+ \/{d(b) + d(c)|b,c € A, b +# c}

whenever a intersects all b € A. Finally, L has the intersection property if and only
if a intersects some b € A whenever a intersects \/ A. Note that, in patticular,
frames have this property.

LEMMA 6.5. Assume that L is a complete lattice with the intersection property, d is a
star-prediameter, D is idempotent, and F C L™ is a Cauchy-filter. Then

F:={a€L|b<afrsmbcF}CF
is a regular Canchy-filter.

Progf. Fis a filter [ It is a non-void upper set since b < \/ L, and ¥’ < b < a <
a = b < d for all a,a’,b,b'. It is also closed under infima: For a,a’ € F,
choose b,b’ € Fwithb <1 a,b’ <1 a’.Choosec € Fwithc < b,b.Sincec <1 a,ad’,
there is e € D with ¢ < a A a’ for all z which intersect ¢ and have d(z) < e.
Hence a Ad' € FJ.

F is Cauchy [For € € D, choose § € D with 3§ < ¢, and b € F with
d(b) < 8. Put

a:= \/{x € L|z intersects b, d(z) < 0}.

Then b < a and thus a € F, and d(a) < d(b) 4+ 26 < € because of the star
property].

F' is regular [For ¢ € F, choose b € F with b < ¢, and choose € € D
such that z < ¢ whenever z intersects b and d(z) < . Choose § € D with
25 < ¢ and define a € F' with b < a as above. We finally see that a <
Whenever y intersects a with d(y) < 0, then, because of the intersection
propetty, y must intersect some x which intersects b with d(x) < 4. Since
then d(z Vy) < 0+ J < € (because d is a prediameter), we have x V y < ¢, in
particular y < c]. O

regular
Star-

prediameter

intersection

property
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Note that still no distributivity of L is needed. When we follow Banaschewski
and Pultr [BP96] in considering regular Cauchy-filters as generalized points, both
Lemma 6.3 and Lemma 6.4 can now be interpreted as fixed point theorems: the
above lemma implies that when Q, d, and D are well-behaved, the Cauchy-filter
F, of Lemma 6.3 resp. the filter F}, := Ta, of Lemma 6.4 leads to a regular
Cauchy-filter F « in which every element intersects its image [forb e F w, there
is a, <1 b, hence h(b) = h(a,) > a,, thatis, b and h(b) intersect].

Sine—Soardi: Fixed points of contractive maps

In [Sin79] and [Soa79], R. Sine and P. M. Soardi independently showed that
when a metric space has finite diameter and is hyperconvex (that is, an intersection
of a family of closed balls z; Bg «, is nonempty whenever d(z;,2;) < a; + o
for all 4,j), every contractive map has a fixed point. In [JMP86], Jahwari,
Misane, and Pouzet generalized this result to positive distance sets in which
d(y,x) = wd(z,y) for an isotone and dually additive function ¢. In this section,
I will weaken the requirement of hyperconvexity and drop the conditions on ¢
to obtain a slightly more general result.

Let X = (X,d,M, D) be a distance space so that M has a largest element T,
and ¢ : M — M an arbitrary map. Then X will be called weakly -hyperconvex if
and only if the following conditions hold: (i) d(y,z) = @d(x,y) forall z,y € X.
(i) For alle € D, all families (z;);c1 of elements of X, and all families (c;)ier
of elements of M that fulfil d(x;,z;) < a; + a; for all i € I, there is some
x € X with d(z;,x) < e+ a; + ¢ forall i € I. In case of a symmetric distance
function, ¢ could be the identity, for example.

Moreover, an element o« € M is @-inaccessible if and only if for all 8 € M,
a < B+ pB implies a < B. In case that M = R" and o = 1d, for instance, the
p-inaccessible elements are exactly all non-positive numbers and oo.

Finally, let us call X @-bounded, it and only if any ¢-inaccessible element
below the diameter of X is already below 0.

THEOREM 6.6. Let X be nonempty, weakly p-hyperconvex, and p-bounded. Then for
each contractive f : X — X, there is a nonempty, weakly p-hyperconvex, and closed subset
S C X with zero diameter and fS] C S.

The proof is almost verbatim as in [JMP86]. Let % be the system of all
nonempty intersections S of balls xBg o with x € X and o« € M, containing
X = xBgq 7. # contains the intersection S of every chain ¥ C # [Assume
that ¢ = {S; = (¢, ¥ijBaa;, | € I}. Then for i,i" € I, either every
TijBao,; (G € Js) includes S;» or every scirjde,ai,j, (j' € J;/) includes
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Si. Thus ;5 Ba,a;; and ;1 Ba,a,,, intersect for all 4,i',7,5', in particular,
d(zij,xi5) < o + pairjr. Then S # () by weak p-hyperconvexity .

Now Zorn’s Lemma gives a minimal element S = ﬂkeK i Bd,q, of . 1n
order to show that the diameter § of S is p-inaccessible, assume that § < 8+ 0.
Since for a,b € Sand k € K, we have d(a,b) < B+ ¢, d(a,zr) < pag, and
d(xg,b) < ak, weak p-hyperconvexity implies that T := SN (),.gaBags is
nonempty.

For all y € T, we have S C yBg, g, hence f[S] C f(y)Ba,,ps since f
is contractive. Putting A := ({B € %#|A C B}, this implies that f[S] C
f(y)Ba.ps. On the other hand, f[S] = S [f[S] C S by definition, hence

f[S] € S. Since this implies f[f[S]] C f[S], the latter is in % and must
therefore equal S by minimality of S]. Now S C f(y)Bg,g3, hence f(y) € T.
This shows that f[T] C T.

Since then T' € 4, it must equal S, too. Now, for z,y € S = T, we have
d(z,y) < B, hence § < 3, which shows that § is yp-inaccessible and thus zero
by ¢-boundedness.

Brouwer: Fixed points of continuous maps

One of the most famous results of 20th century mathematics is Brouwer’s fixed
point theorem: every continnons self-map of [0,1]™ has a fixed point. It is somewhat
surprising that Brouwer, who should become one of the most important
representatives of constructivism, gave only a non-constructive proof of this
result. Only later, a combinatorial lemma of Sperner led to a constructive method
to approximate these fixed points.

The question of whether all continuous self-maps of a topological space
X have a fixed point is of course a purely zopological one, and it is therefore
not surprising that the existence of a very rich additional structure like that
of a normed vector space is not essential to it. Indeed, there are large classes
of quite different topological spaces which also have this continnous fixed point
property (CFPP), for example many lower set topologies of posets: if P is a poset
with least element O in which each chain has a supremum, then every isotone self-map of
P has a fixed point. The proof is very easy and in a sense constructive. The
recursively defined ascending transfinite sequence ag := 0, ay := V¢, f(au)
eventually becomes stationary at a fixed point of f [By transfinite induction,
avt1 = flav) 2V ¢, flan) 2 ay since a1 = f(ao) = 0 = ao. In particular,
(av)y is increasing. Since a,4+1 > a, cannot hold for more than |P| many
ordinals v, the sequence becomes stationary at the latest for v > |P|. Thus
eventually a, = ap41 = f(a,)].

continuons
Joxed point
property



completely
labelled

primitive set

116

The special cases where P is a complete lattice or f preserves suprema of
chains are known as Tarski’s and Scott’s fixed point theorems. It would be quite
promising to know that these and Brouwer’s theorem are instances of a much
more general result on fixed points of continuous maps, and indeed there seems
to be a step in the right direction: using a discrete algorithm by Scarf [Sca73] and
Tuy [Tuy79], van Maaren [vM87, vM91] was able to replace the vector space
structure by a finite set of total quasi-orders on X.

Not much is known about the continuous fixed point property in general.
Only very few of the more familiar properties are implied by it: if X has
the CFPP, it must be Ty [otherwise take two indistinguishable points z # y,
and map z to y and X \ {z} to =] and connected [otherwise map a whole
component C' to a single point in another component and the rest to a single
point in C], but not T; (as Tarski’s and Scott’s theorems show). Moteovet,
the following example shows that CFPP does not imply path-connectedness
(or even convexity), metrical boundedness, completeness, absolute closedness,
countable compactness, or pseudocompactness (see e. g. [Wil70] for definitions).

EXAMPLE 6.7. Define zg := (0,0) and z,. := (r,r"" sin1) for 7 > 0, and
consider the subspace X defined by X := {z,|r € [0,1]} of the Euclidean
space E,. Then X has the CFPP but none of the before-mentioned properties.

For the proof, order X by putting x, < zs <= 7 < s. Assume that
f is a continuous self-map without a fixed point. Since then f(z¢) > o,
continuity implies that there is also some r > 0 with f(z,) > z,. Hence
s:=\V{r e [0,1]|f(zr) >z} = V{r € (0,1]| f(z) > z,} € (0,1]. Note
that x, — —1/r is an ordet-preserving homeomorphism between X \ {zo}
and E; | (_oo 1] By continuity, f(zs) > x. But then f(xs) > x so that, again
by continuity, there must be some r > s with f(z,) > x, —in contradiction to
the choice of s.

On the other hand, one can easily see that X is neither path-connected,
metrically bounded, closed, complete, countably compact, or pseudocompact.

The next theorem generalizes van Maaren’s result to the non-separable case.
Some additional notation will be useful:
Ck(z) = {ye X|y<;zforalli € K},
C(z) = {ye X|y<;azforallie K}.

LEMMA 6.8. [Tuy79] For each finite family (<i)icr of total orders on a finite set F,
and each map £ : ' — 1, there is a completely labelled primitive sez, that is, a subset
U C FuwithU = {\,U\|i € L[U]} for which there is no x € F withx <; \/; U for
alli € L[U].
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THEOREM 06.9. Let (X, T) be a compact topological space, and (<3)ser1 a finite family
of total quasi-orders on X such that, for all i € I, K C I, and x,y € X, the following
three conditions hold:

(1) x <y forsomet € I,
(iz) The principal strictly upper and lower sets x<; and <;x are T-gpen,

(i) If Cc () # {a} then O% () intersects each A C X which contains x and which is
etther a principal strictly lower set or a finite intersection of principal strictly upper sets.

Then each continuous self-map of (X ,T) has a fixed point.

Proof. Let f be the continuous self-map. Because of (i), we find for all z € X
some £(x) € I with f(x) <g(z) x. The system &y X of all finite subsets of X is
an up-directed poset under set inclusion. For each 4 € I, choose some total order
< on X withz <, y <= z <; y forall z,y € X. Then Lemma 6.8 provides
us with a completely labelled primitive set Up C F for each F' € & ¢X. Let
Jp := {[Ufp] and define ap : Jp — X by ap(i) := F; == \/; Up. Now we
have to pass from combinatorics to topology:

In a first step, we use compactness to find a nice “limit” o : J — X of the
ap. Since I has only finitely many subsets and & ¢ X is up-directed, there is
some J C I such that, forall E € & X, thereis ' € &y X with ' D E and
Jg = J. For these F, o := £ o af is a permutation of J, of which there are
also just finitely many. Therefore, there is some permutation o such that, for all
E € Z;X,thereis F € 2 with F D E, where

P ={F e P;X|Jrp=Jandor =0}

In particular, &' is up-directed, hence () pe 5 is a net. This net has a cluster
“point” a : J — X, since with (X, 7) also its finite power (X,7)” is compact.
Letx; := a(i). Because of the “continuity” conditions (i) and (iii), &[J] behaves
like a primitive set as well:

(iv) z; <; z; holds for all 4,j € J [Assume z; <; z;. Put z:= x,,
K :={j}, and A:=2;<; € 7. Then z; # z and z; € Ck(x), so that
(i) implies that a(j) = z; <; y <; © = «a(i) for some y € X. Since both
<,y and y<; are open and « is a cluster point, there is FF € &’ such that
F; =ar(j) <; y <; ar(i) = F;. But F; <; F; contradicts Up’s being a
completely labelled primitive set].

(v) There is no z € X with ¢ <; x; for all j € J [since by (ii) there would
thenbe F € &' withz <; Fj forall j € J].

In a second step, (ii) and (iii) imply that in fact all z; are equal to one and the
same fixed point of f. Leti € J, L:={j € J|z;, <;j z;}, K:=J\ L, and
A:=({<jz;j|j € L}.Notethatz; € A€ 7by (i), K ={k € J|x; ~p zr}
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by (iv), and C% (z;) N A = 0 by (v) [otherwise = <; z; and & <p, z; ~ Tk
forall j € L, k € K, and some z € X ]. Thus Ck (z;) = {z;} by (iii). But,
forall j € J, z; <k xx ~k x; implies z; € Ck (x;) and thus z; = x; =: z.
Again by (), C%(z) N X = 0, and again by (i), Cy(z) = {z}. Moreover,
f(x) = f(xi) <o@) ©s = x foralli € J [asin (iv), assuming f(x;) >5(;) T4
leads to f(x;) >o() Y >o(i) s for some y € X, so that, by continuity of f,
F(Fi) >0i) Y >o(i) Fi for some F' € 2’| in contradiction to o (i) = £(F;)],
thatis, f(z) € Cj(x), so that finally f(x) = =.

Compared with van Maaren’s original proof, there is one main difference:
in order to be able to work with sequences in X rather than a net in X 7 he
required separability of (X, 7).

In a distance space, a natural way to get quasi-orders is to compare points by
their distances to some reference points z; —just put

<y = d(x,2z;) < d(y,z:).

The set C'x () is then just the intersection of the balls Ng(, .,)z; with i € K.
Moreover, if M is a totally ordered co-quantale, C% (z) is an intersection of
open balls.

COROLLARY 6.10. Ler (X,d,M,D) be a distance space for which M is a totally
ordered co-guantale and T := T (d°, D) is compact, Moreover, let (2;) i 1 be a finite family
of points in X such that, for all i € I, K C I, and x,y € X, the following conditions
hold:

() d(x,z;) < d(y,z:) forsomei € I,
(@) If Cc (x) # {x} then C% () intersects all T-neighbourhoods of x.
Then each T-continnous self-map of X has a fixed point.

Progf. Conditions (i) and (ii) imply conditions (i) and (iii) of the above theorem
by definition of the <;, while condition (ii) of the theorem follows easily from
lower distributivity of M.

EXAMPLE 6.11. Let T = (V,E) be a finite tree, and ¢ : V — R a straight
embedding of T into R?, that is, ¢ is injective, and for each two distinct
edges {v,w},{z,y} € E, the segments ¢(v)p(w) and p(x)e(y) ate disjoint
up to common endpoints. Then the subspace X of E, defined by X :=
U{e@)e(w) |{v,w} € E} has the CFPP. Indeed, with I :=V, z, := ¢(v),
and d the geodesic distance, it fulfils the requirements of the corollary.

A different proof of this fact is [LT89], but it follows already from Ward’s

fixed point theorem for generalized trees [War57].
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Z1

20
Figure 2. Example of a space with the CFPP

22

EXAMPLE 6.12.  Let X be the subspace of the Euclidean complex plane
defined by

X :={z€C|lz| <1}U{re®* % |r €0,3], k € 3},

that is, a closed unit disk with three symmetrically distributed radial arms of
length two. Since their ends zj, := 3¢**™/3 (k € I := 3) fulfil the requirements
of the corollary, X has the CFPP (see Figure 2). This is a special case of an
arcwise connected non-separating plane continuum for which class of spaces
the CFPP was proved in general by Hagopian [Hag71].

However, the obvious generalization of X to an n-dimensional unit ball
with 7 + 1 symmetrically distributed radial arms of length two still fulfils the
requirements of the theorem and does not appear to belong to a class of continua
for which the CFPP has been proved in general yet.

Since most of the distance functions presented so far do not have a totally
ordered monoid, it would be very desirable to get rid of that requirement.

QUESTION 6.13.
Is there a version of Theorem 6.9 for more general quasi-orders?
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VISUALIZATION OF DISTANCES

Schnell wachsende Keine
Welken geschwinde;

Zu lange Béinme
Brechen im Winde.
Schdtz, nach der 1 dnge
Nicht das Entsprungne!
Fest im Gedriinge

Stebt das Gedrungne.

Wilheln Busch, Schein und Sein

Introduction

The question of how distance information might be visualized is of importance
for many sciences including physics, medicine, sociology, and others. Mathe-
maticians have eatly studied the possibility of embedding a finite metric space X
into other, in some sense better spaces like the Euclidean plane or 3-space.
Beginning with Menger [Men28], who gave the precise criteria for X to be
isometrically embeddable (that is, under exact preservation of the distances) into
some Euclidean space, most of them have focused on mappings which map
X into some standard space in a “quantitative” manner. The goal in this field
of research, known under the name metric scaling, is to preserve the values of the
distances as good as possible, that is, to minimize a certain error, known as
“stress” (cf. [She62]).
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The aim of this paper! is to study more “qualitative” kinds of visualization
of distance data. In contrast to metric scaling, we will not be interested in
the actual values of distances but rather in their comparison. Considering only
the linear order among the distances instead of their value, a measure of order
accuracy of a representation is introduced. Unlike stress, order accuracy has an
easy interpretation as a certain probability of correctness. After an experimental
exploration of different types of representations, a lower bound on the possible
accuracy of plane representations will be proved using some clustering method
and a result on maximal cuts in graphs. The experimental methods include
random generation, optimization of accuracy by a rubber-band algorithm, and
automatic proof generation. All results are summarized in Table II.

Order accuracy

Throughout this paper, X = (X,d) is a finite metric space, that is, X is finite,
and d : X* — [0,00] fulfils d(z,y) = d(y,z), d(z,y) + d(y,2z) > d(z,z), and
d(z,y) = 0 if and only if x = y. However, one advantage of the following
approach is that it also applies to any finite, symmetric distance set in the sense of
[Hei98] and [Hei02], which is a far more general type of object than a metric
space. For the sake of simplicity, we will also assume that X equals the set
n = {0,...,n — 1} of non-negative integers, and that the pairwise distances
between the points of X are all different, that is, d(z,y) = d(2’,y’) > 0 implies
{z,y} = {2',y'}. In particular, each = € X has exactly one nearest neighbonr
nn(z) € X and one farthest neighbour fn(x) which fulfil d(z,nn(z)) < d(z,y) <
d(z,fn(z)) forally € X \ {z,nn(z),fn(z)}.

We will be mostly interested in representing the points of X by points of
either some Euclidean space E,,,, that s, the real vector space R™ with Euclidean
distance, or the Li-plane M, that is, the set R? with the “Manhattan”-distance
d(z,y) = |z1 — 1| + |z2 — y2|.

The order accuracy a(f) of a map f from X into some metric space Y = (Y, e)
is defined as the probability that, of two randomly chosen pairs {z,y } and {z,w}
of distinct elements of X, the one with the larger distance in the “representation”
f also has the larger “original” distance. More formally,

a(f) = (@)‘ N Hzwhizwi} € 2(x)
2 #y, 2 #w, {w,y} # {zw}, and
d(e,y) < d(zw) <= e(fa, fy) < e(fz,fw) |

"The text of this additional chapter consists of an article submitted to Experimental Mathematics.
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Table II. Representable fraction of linear orders on Z(n) for different kinds of representations and different spaces (open
intervals show exact bounds, 2 and < denote estimated bounds, the question mark denotes a conjecture)

kind of n (no. of points)

representation space 4 5 6 7 8 9 13 15 any
E, 1 (.538,1) 2 .020

order M, 1 (.652,1)
E, 1 Z.60  2Z.09%5 <1

local E, (.667,1), <.928 < .60 <.21 <.030  <.0022

order M, (.677,1)

extremal neighbours E, (.883,1)

1% & 2™ nearest nbs. E, (.933,1)

two neatest neighbours  E, (.963,1)

nearest neighbour E, 1 .999. .. .998... .997..

nearest neighbour E, 1?7 <1

farthest neighbour E, 1

cluster E, 1
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Note that 2a(f) — 1 is just Kendall’s rank correlation coefficient o between
the two linear orders on the (%) pairs {x,y} that result when these pairs are
compared with respect to either their original or their image distance. Using
a variant of the merge-sort algorithm, ¢ can be computed in linear-times-

logarithmic time, hence a(f) can be computed in O(n*logn) time.

Order and weaker representations

An order representation of X in Y is some map f: X — Y with a(f) =1,
that is, with d(z,y) < d(z,w) <= e(fz, fy) < e(fz, fw). Likewise, an order
representation of a (strict) linear order < on the set #(X) of two-element subsets
of Xisamap f: X — Y with {z,y} < {z,w} <= e(fz, fy) < e(fz, fw).
It will be convenient to identify the metric space X with its associated linear
order < which is given by {z,y} < {z,w} <= d(z,y) < d(z,w) here.

ForY =E,, _,, there is always an order representation of X —there is even
a map f for which e(fz, fy) = d(z,y) + C for some constant C > 0. This
was proved by Cailliez [Cai83]. A random generation of five-element subsets of
E; confirmed this result for n = 5, and a similar experiment showed that all
four-element metric spaces not only have an order representation in E, but also
in M,.

To get a feeling how probable a plane order representation is for a five-element
metric space, 1 also repeatedly drew five-element samples from the uniform
distribution on the unit square and determined the resulting order among the
ten pairwise distances. In this way, of the 10! = 3628 800 lineat orders on A(5),
at least 53.8% [resp. 65.2%] were found to have an order representation in
R? with the Euclidean [resp. “Manhattan”] metric. Moreover, at least 66.7%
[resp. 67.7%) had a local order representation, that is, a map f: X — R? such
that {z,y} < {z,2} <= e(fz, fy) < e(fz, fz) for all x,y,z, where again e
was the Euclidean [resp. “Manhattan”| metric. Judging from these empirical
numbers, order representability seems to be considerably stronger than local
order representability in the Euclidean case, but not in the “Manhattan” case.

Considering only the information coded in the functions nn and fn, it
was also found that at least 88.3% of the 10! orders had a plane extremal
neighbonrs representation, that is, a map f : X — E, such that nn(fz) = f(nn(z))
and fn(fz) = f(fn(z)) for all z € X. Likewise, at least 93.3% allowed for
a map under which both the nearest and second-nearest neighbours were
represented accurately, and another 3% allowed for a map under which at least
the information about which points were the two nearest to & was represented
accurately for all z (see Table II).
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In view of the quickly growing number ()! of orders on #(n) and the
limited space for storing the list of orders already found, such a random
generation did not make much sense for n > 5. It is, however, possible to
estimate some similar lower bounds at least for n € {6,7} from the following
experiment.

Representation by accuracy optimization

Starting with a randomly generated f: X — E,,, an order representation of a
linear order < on A(X) can often be produced by a stepwise maximization
of order accuracy. The following optimization step proved useful: for each pair
{z,y}, {z,w} with {z,y} < {z,w} and e(fz, fy) = e(fz, fw), move z,y
towatds each other by some fixed fraction of e(fz, fy), and move z,w away
from each other by the same fixed fraction of e(fz, fw). I have tested this kind
of rubber-band algorithm in several ways:

(i) When < was taken to be the order that corresponded to 8 or 25
independently uniformly distributed random points in the unit squate, the
algorithm found an order representation of < in E, in about 96% of all cases,
no matter whether 8 or 25 points were taken. For 25 points, the resulting
representations were almost similar to the original sets. More precisely, for each
edge the quotient between its original length and its length in the representation
was determined, and on average the relative difference between maximal and
minimal quotient was less than 5% (compated to 12% for 15 points and over
60% for 8 points).

(i) When < was taken from a uniform distribution of all linear orders on
A(5), the algorithm succeeded in only 45% of the cases. Since, as mentioned
before, more than 53% of the orders actually have an order representation, this
indicates that the algorithm is susceptible to being caught in a local optimum.

However, in both (i) and (ii), the success of the algorithm did not seem to
depend on the initial state: when a cluster representation (see below) instead of
a random initial state was used, only the average number of iterations that were
needed shrinked slightly.

(i) As in (i), but for five points in a 100-dimensional cube. Here the success
rate was about 79%. Such finite subspaces of high-dimensional spaces frequently
occur in multivariate statistics, for example.

(iv) Generating the orders as in (ii), an order representation in [E; of six-point
metric spaces was found in about 65% of 1000 cases, but of seven-point spaces
in only 10.5% of 7000 cases.

The rubber-band algorithm has also been implemented as a Java applet which
can be tested at http://www-ifm.math.uni-hannover.de/~heitzig/distance.
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Despite the algorithm’s lack of optimality, we can use these results to estimate
lower bounds for the fraction of representable orders. As the samples were large
enough, one can use the approximate confidence bound that arises from the
approximation of the actual binomial distribution by a normal distribution (see
[Kre91]). For a sample of size N, s 4+ 1/2 successes, and confidence level 3, it
has the form

s+5—cfs—%+5
N + 2
Taking 8 = 0.995, this leads to the following conjectured bounds:

with c¢=® '(3).

CONJECTURE 6.14. A six- [seven-] element metric space has an order representation in
E; with probability at least 60% [9.5% .

For six points in E,, the same method gives a conjectured lower bound of only
2% (see Table II).

Disproving local order representability

A local order representation can also be characterized as a map that preserves
the order among the three sides of any triangle. More precisely, f: X — Y isa
local order representation if and only if for each three distinct points x,y,z € X
withd(z,y) < d(y,2) < d(z,2),als0 (£, fy) < e(fy, f2) < e(f2 fz). Using
elementary geometry, one sees that, in the Euclidean plane, the latter is equivalent
toLfxfzfy< Zfyfefz< Zfzfyfx *).

Therefore, the existence of a plane local order representation for some order
< can be disproved by showing that a certain set of inequalities between angles
in the plane has no solution. The advantage of using angles instead of distances
is that the additional equations and inequalities which every n-point subset of
the plane must fulfil are all linear in the angles:

@ ZLabc € [0,7],
(i) ZLabc+ Lbca+ Lcab =,
() ZLaze < ZLazb+ Lbzce,
iv) ZLazb+ Lbzc+ Lcza = 27 if z is in the convex hull of a, b, c,
(v) ZLazc = Lazb+ Lbzcif bis “between” a and c as seen from z.
In search of a local order representation for X, these linear relations together
with those of type (x) enable us, starting with the largest interval [0,7], to

successively narrow down the interval of possible values of each angle. If some
angle’s interval becomes empty, there can be no local order representation of
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TEST OF EDGE ORDER de < ad < ac < ab < ce < be < bc < cd < ae < bd
USING ONLY EXTREMAL NEIGHBOURS INFORMATION

legend: points are labeled a,b,c,d,e
Xy is a segment, xyz is a triangle, x:yz is the angle in xyz at vertex x
X:ywz means that x:yz=x:yw+x:wz
follows
line type proposition from

smallest a:de,b:ad,b:de,c:ad,c:de,d:bc,e:ab,e:ac < 60
dominated a:be,a:ce,b:ac,b:cd,c:ab,d:ab,d:ac,d:be,d:ce,e:ad < 90
largest a:bc,a:bd,a:cd,b:ae,c:ae,c:bd,d:ae,e:bd,e:cd > 60
on bndry a,b,d,e since in fn[X]
tripod a:bd <=a:be+a:de < 90+60= 150
tripod a:cd <=a:ce+a:de < 90+60= 150
tripod b:ae <=b:ad+b:de < 60+60= 120
not ¢ in abd since c:ad+c:bd+c:ab<360
9. not c:abd since c:ad<c:ab+c:bd
10. tripod c:ae <=c:ad+c:de < 60+60= 120
11. larger a:be > (180-b:ae)/2>(180-120)/2= 30

W ~NO U WN -

NR R R RN
B OO KR K K
w N

12. larger a:ce > (180-c:ae)/2>(180-120)/2= 30 10.

13. not a:cbe since a:ce<a:bc+ta:be 2.3.11.
14. not a:bce since a:be<a:ceta:bc 2.12.3.
15. hence a:bec 4.13.14.

CASE ANALYSIS using points a,bcd:

16. (i) ASSUMING a:bcd...
17. sum a:bd =a:bc+a:cd > 60+60= 120 16.

3.3.
18. sum a:bc =a:bd-a:cd < 150-60= 90 16.5.3.
19. tripod a:be >=a:bd-a:de > 120-60= 60 17.1.
20. not a:bec since a:bc<a:ceta:be 18.12.19.
21. hence a in bce 14.13.20.
22. contradiction! 21.4.
23. (ii) ASSUMING a:cbd..
24. sum a:cd =a:bc+a:bd > 60+60= 120 23.3.3.
25. sum a:bc =a:cd-a:bd < 150-60= 90 23.6.3.
26. tripod a:ce >=a:cd-a:de > 120-60= 60 24.1.
27. not a:bec since a:bc<a:beta:ce 25.11.26.
28. hence a in bce 13.14.27.
29. contradiction! 28.4
30. (iii) ASSUMING a:bdc...
31. not d:acb since a:bdc 30.
32. not d:abc since a:bdc 30.
33. hence d:bac 31.4.32.
34. not c:bad since a:bdc 30.
35. hence c:adb 8.9.34.
36. new sum c:abd since ad diag in cabd 30.33.
37. new circ d in abc since a:bdc and c:adb 30.35.
38. contradiction! 37.4.
39. (iv) ASSUMING a in bcd...
40. contradiction! 39.4.

CONTRADICTION in all four cases!

Figure 3. A computer generated non-representability proof.

this order <. This method can also be used to disprove the existence of even
weaker kinds of representations such as extremal neighbours representations.

EXAMPLE 6.15.  Figure 3 shows a computer generated proof that the order
{d,e} < {a,d} < --- < {b,d} (listed on top) cannot occur among the distances
between five points in the plane. Lines 1, 2, and 3 state that certain angles
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are smaller than 60°, smaller than 90°, or larger than 60° because they are the
smallest, second smallest, or largest in their corresponding triangle, respectively.
Line 4 states that only ¢ can be in the convex interior of the five points, since
each of the remaining four is the farthest neighbour of some other. Lines 57
apply the “tripod” inequality (iii), using bounds already known from lines 1 and
2, this dependence being logged at the end of the lines. Line 8 notices a violation
of (iv) so that ¢ cannot be in the convex hull of a,b, d. Similarly, line 9 states that
also b cannot be between a and d as seen from c. In line 11, (ii) is used to derive
a lower bound for a second smallest angle from an upper bound for a largest
angle. This is the only kind of argument the algorithm can use to derive bounds
which are not just multiples of 30°. The rest of the proof shall be cleatr now.

Note that the premises in lines 1—4 already follow from the information
coded in the maps nn and fn alone, hence the order under consideration does
not even have an extremal neighbours representation.

There is a similar example which shows that it may also be impossible in the
plane to accurately represent the set of two nearest neighbours of five points.
Since for disjoint five-element subsets of some mettic space X, the distribution
of the orders that correspond to these subsets are independent, we have:

COROLLARY 06.16. For an n-element metric space, the probability of a plane extremal
neighbonrs representation shrinks exponentially forn — oo.

To get explicit upper bounds for local representability, 1 tested several
thousand randomly generated orders with this algorithm. For five points, 795
out of 10000 orders could be shown to have no plane local order representation
in this way. Using estimated confidence bounds with 8 = .995 again, this
results in an estimated upper bound of .928 for the fraction of plane locally
otder representable orders on #(5). For n = 6,7, 8, and 9, the corresponding
numbers were 4156 out of 10000, 3627 out of 4500, 11690 out of 12000,
and 9990 out of 10000, respectively, resulting in the upper bounds shown in
Table II.

CONJECTURE 6.17. In E,, a six-element metric space has a local order representation
with probability at most 60%.

This fast vanishing of the probability of plane local order representability on the
one hand shows that the above algorithm is quite successful, and on the other
hand motivates the study of even weaker kinds of plane representation.
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Figure 4. A “universal” nearest neighbour graph of nine points in the plane

Nearest and
farthest neighbour representations

The directed graph Gun(X) with vertex set V(G) = X and edge set E(G) =
{(z,nn(x)) : « € X} is known as the nearest neighbonr graph of X. Asymptotic
properties of nearest neighbour graphs of subsets of the plane have been studied
in [EPY97]. The farthest neighbour graph of X is defined similatly. By a down-tree
I mean a finite connected digraph all of whose vertices have out-degree one,
except for a ot vertex with out-degree zero.

PROPOSITION 06.18. A finite digraph G is a nearest [farthest] neighbour graph of a
meetric space if and only if each of its components is a disjoint union of two down-trees whose roots
are joined by a double edge.

Since the proof is easy but quite technical, it is omitted here.

The digraphs characterized by this result will be called bi-rooted forests in the
sequel, and a pair of roots will be called a bi-roof for short. A proper child of a
vertex  in a digraph is a vertex y for which there is an edge (y,z) but no edge

(2,9).

PROPOSITION 06.19. A bi-rooted forest of size at most nine occurs as a nearest neighbour
graph in the plane if and only if no vertex has more than four proper children.

Progf. Let G be a bi-rooted forest with |V(G)| < 9. If some vertex z has five
proper children x1,...,xs, there is no nearest neighbour representation in [E,.
Otherwise, for ¢ # j, the longest side of the triangle z;z ;2 would be x;x;,
hence the angle between the segments z;x and zjx would be larger than /3.
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Likewise, the longest side of the triangle z;x nn(x) is z; nn(x), hence the angle
Zz;znn(x) would also be larger than /3 which is impossible in the plane.
On the other hand, one can verify that all bi-rooted forests with at most
nine vertices and without vertices that have more than four proper children fit
into the “universal” forest sketched in Figure 4. Each of its four components
is constructed from its two roots (joined by a double edge of length 100)
by successively adding children, where the edges originating from children of
otder n have length 100 4+ n and share a mutual angle of (65 + 7 — n)° if they
are neighboured. Since in that figure, each edge points towards the nearest
neighbour, the proposition is proved. d

Using this result, it was possible to calculate the fractions of linear orders on
2 (n) with a plane nearest neighbour representation shown in Table II. Note that
for n = 10, the analogue of the above proposition is false, a counter-example
being the bi-rooted forest consisting of two connected roots with four children
each.

As for nearest neighbour representations in [E;, it was proved by Fejes To6th
[F'T43] that of n points on a unit sphere in Es, at least two must have a distance
of at most

Oy 1= \/4— cosec? nT
n—206
In particular, §14 ~ 0.98, hence there exist no fourteen points on the unit sphere
with pairwise distance larger than one. In other words, of fourteen rays in E;
with a common source, at least two have an angle of at most 60°. Therefore, a bi-
rooted forest with a root that has thirteen children cannot have a representation
in E;. In particular, not all linear orders on Z(15) have a nearest neighbour
representation in E;. However, one may hope that at least all linear orders on
Z(13) have a representation since there exist twelve such points on the sphete.

CONJECTURE 6.20. Every metric space of up to thirteen elements has a nearest neighbour
representation in Es.

Note that 13 ~ 1.014 > 1, and the empirically supported conjecture that there
are no thirteen such points is still unproved—this shows that questions of
representability of larger sets might also be quite difficult.

Surprisingly, a small degree at all vertices of the nearest neighbour graph does
not assure plane nearest neighbour representability: Eppstein, Paterson, and Yao
[EPY97] could show that for a subset X of E,, | X | = O (D(GHH(X))S), where
D(QG) is the depth of G, that is, the maximal length of a path from a vertex
to the nearest root. Using their exact bounds, one can show that for instance

the complete binary bi-rooted tree with 2°° — 2 ~ 10%” vertices does not have a
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nearest neighbour representation in [E,. However, it seems likely that already far
smaller binary trees fail to have one.

Eppstein et al. also showed that the expected number of components
of Gnn(X) is asymptotic to approximately 0.31]|X| if the points of X ate
independently uniformly distributed in the unit square. More precisely, the
probability for a vertex to belong to a bi-root is 67/ (87 + 3v/3) ~ 0.6215 in
that case. From this it is also clear that the expected fraction of elements of X
which are not the nearest neighbour of some other element is at most 0.2785.
However, the smallest exact upper bound on this fraction is far larger:

PROPOSITION 6.21. In any finite subset of By, at most 7/9 of its elements are not a
nearest neighbour of some other element, and this bound is sharp.

Proof. 1t is quite easy to see that the bi-rooted forest consisting of a root with
four and another with three children has a nearest neighbour representation in
E,, hence 7/9 is possible.

On the other hand, let C' be a component of the nearest neighbour graph
of a finite subset of the plane. Then its roots r and ¢ together have k < 7
children, and C can be constructed from these k + 2 vertices by subsequently
adding k; < 4 children to some end vertex, thereby increasing the number of
end vertices by k; — 1 in step ¢. Thus, the final fraction of end vertices in C'is

E Y (ki =1) _ 7

(k4+2)+> ki 9

since7(k+2+> ki) —9(k+>,(ki—1)) =14 -2k +9s =2 . k; > 95—
2-4s > 0, where s is the number of steps needed. a

In view of these facts about nearest neighbour graphs, the following might
be a bit surprising:

THEOREM 6.22.  Ewery finite metric space has a farthest neighbonr representation in E,.

Progf. Let G := Gg,(X) be the cotresponding farthest neighbour graph, D its
depth, and define an infinite bi-rooted forest H as follows. The vertices of
H are labelled aj: and bj¢, where j is a non-negative integer and t runs over
all tuples of at most D non-negative integers, including the empty tuple 0.
The bi-roots are the pairs {a;p,b;p} with non-negative integer j, each vertex
aj(... km)isachildofa;.  ),andeach vertex b;( . x m)isachildof b ).
In other words, H has countably many isomorphic components (numbered by
7), and each vertex has countably many children, up to depth D. This digraph
H contains an isomorphic copy of G, hence it suffices to give a representation
of H. To address points of the plane, it will be convenient to identify R? with
the set C of complex numbers in the usual way.
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For each non-negative integer j, let Cjo and Cj1 be the circles of radius 2

. —i—1__ —j—1 ; .
with centres cjo :=€* "% and ¢j; := et*7 )™ respectively. These curves
can be parametrized using the following functions, where the coefficients A; > 0

will be determined later:
fj()(g) — Cj() + 26(27‘7*14'_)\]‘&)7\'7; aﬂd le(g) — le + 26(1+27j*1+>\J§)7ri‘

In par‘rjcular, fjo(O) == 3Cj0, fj1(0) - 3Cj1, Fjo = fj()[]] g Cjo, and Fjl =
fi1lI] C Cj1, where I = [—2P,2P] C R. Now the coefficients \; are chosen
small enough so that 2P\, < 7/2 and so that the smallest distance between
the sets Fjo and Fji is still larger than the largest distance between a point
in FjoU Fj1 and a point in FjoU Fy for any k # j. This ensures that, for
q € {0,1} and all £ € I, the unique point in |J, Fro U Fj1 which is farthest
away from the point f;4(&) is the point f;1_4(£/2). More generally, given
g € {0,1} and &,8,v € I, we have

|£5a(&) = fi1-a(B) > [£5a(€) = fia-a(M| =18 -€/2| <|v=&/2[ (%)

Using this equivalence, one sees that the following recursive definition results in
a farthest neighbour representation f of H:

Flage) = fiaw (@) and  f(bse) = fii-qm (=€),
where the bi-roots have ¢(0) := 0and £(0) := 0, their children have g((m)) := 1
and 5((m)) := 1427 and all others have q(( ..,k,m)) =1 q(( ,k))
and
E((rorkm) = 26((oosk)) = (1= 27) (E(CosR)) =€k + 1))
= (14+27"™E((. k) + (1 =2"")((....k+1)).

Because of (x), we need only verify that (i) |0 —¢&((m))/2| < [£((k,0)) —
£((m)) /2|, which is true because of £((m)) < 2 < £((k,£)), and that (i)

126((-- k) —&((- - kym))| < [26((.. k£ 1)) = &((....k,m))],

where the left hand side equals (1 — 27" )cwithc = (£((...,k)) — &((....k+
1))), and the right hand side is the absolute value of ¢+ 2(£((...,k £ 1)) —
£((...,k,m))) which is larger than c in the ‘—’ case and smaller than —c in the
‘+’ case. a

Cluster representations,
and lower bounds for accuracy

A important question in applications of finite metric spaces is that of clustering
the elements into homogeneous, mutually heterogeneous groups. Formally,
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a hierarchical clustering of X produces what I will call a custer free here,
which can be formalized as a chain of partitions #,..., %, on X, where
21 = {{z} : @ € X} is the discrete and &,, = {X} the indiscrete partition,
and each P with k < n arises from &2 by joining two clusters, that is,
replacing some A,B € &), by their union AU B. Most common clustering
methods fulfil the following property (x): if k < n, A,B € P, A # B, and
foralla € A,b € B,and z,y € X, either z,y € AU B, or x,y € C for some
C € Py, or d(a,b) < d(z,y), then AU B € Pj11. In other words, when all
distances between members of A and B are smaller than all distances between
points of other clusters, then A and B are joined next. Now, a cluster tree for X
is said to have a duster representation f : X — Y when all clustering methods that
fulfil (x) reproduce this cluster tree when they are applied to the metric space
X' = (X,d) with d'(z,y) := e(fz, fy).

PROPOSITION 06.23.  Every cluster tree P, ..., Py for a finite set X bas a cluster
representation in {0, . .., | (1 +/2)™ /4] } with Enclidean distance.

Progf. Inductively, we construct maps f; : X — Z and integers §; such that f,
is a cluster representation, and each f; is already “correct” for all C € &;. For
C € Z;, the convex hull of f;[C] will be the interval [0,w;(C)]. For A,B € &;
and AU B € &4, the image f;+1[A U B] will be constructed by placing f; [A]
and f;[B] besides each other at a distance ¢; which is larger than the diameter
of any C € &, that is, with §; > w;(C).

We start with fi(a) := 0 forall a € X, so that wi(A) =0 forall A € 7,
and put 61 := 1. For ¢ > 1, let A;,B; € &; be those elements with C; :=
A;UB; € @H»l and min A; < min B;. Now put

fit1(a) = fi(a) foralla € A;,
fit1(z) == fi(z) foralz & C;,

and ;41 := w;4+1(C;) + 1, where, by construction, w; +1(C;) = 6; +w; (A;) +
w; (B;). Then the convex hull of f;41[C;] is [0, w;41(C;)] as proposed. For all
C € P4, different from C;, we have C € &; and thus 6,41 > 0; > w;(C) =
w;4+1(C) as required. In case that ¢ > 2, one of A;, B; is in &7;_1, hence either
’U.}z(Al) = ’LU/L‘_1(AIL‘) or ’LU/L(Bz) = wi_1(B¢). Putting m; = max{wz(A) :
A€ Z;}, this gives m;q1 < 2m; +mi—1 + 1. It is easy to verify that the
corresponding recursive upper bound b; with b;41 = 2b; 4+ b;_1 + 1 and initial
conditions by = 0 and by = 1 is b; = (1 +Vv2)' + (1 —Vv2)")/4—1/2 =
| (14 +/2)%/4]. In particular, w, (X) = m,, < by = [(14+V2)"/4].
Finally, f, is a cluster representation: Let i < n, a € A;, b € B;, A" #
B' € #; with {A',B'} # {A;,B;},and @’ € A', b/ € B’. Then the smallest
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index j for which there is C € 2; with a/,b' € C is at least i+ 1, hence
dfn(a,b) = dfl (a,b) < 5 < (53',1 < dfj (a',b') = dfn(a',b’). O

Finally, this construction can be used to show the following lower bound on
order accuracy for maps into the real line:

THEOREM 6.24.  Forevery n-element metric space X withn = 2F for some integer p, there
isamap f: X — By with order accnracy at least 3/7 — r(n), where r(n) = O(1/n).

Proof: We iteratively define a binary cluster tree. For k < n, &), is constructed
from P41 as follows: Choose some C € P11 of maximal size, and let
we ({z,y}) be the number of pairs {z,w} C C with 0 < d(z,w) < d(z,y).
In [PT86] it was proved that there is a partition of C' into two sets A and B of
equal size such that
1 (\C\)
> welmyh >3- Y welzyh)=5-("27).
©€A, yeB {zy}CC

Let Py := P41\ {C} U{A, B}. Note that we ({z,y}) is now the sum of
wa,B({z,y}), the number of pairs {z,w} C C with 0 < d(z,w) < d(z,y),
z€ Ajandw € B, and ofwiq)B({z,y}), the number of paits {z,w} C C with
0 < d(z,w) < d(z,y) and either z,w € A or z,w € B.

Now we construct a representation as in the previous proposition, except that
we might sometimes use f; (a) := w; (A;) — fi(a) and f;(b) := w; (B;) — fi (b)
instead of f;(a) and f;(b) for the definition of f;14
fi has already been defined and A;, B;, C; are as in the proposition, let v be the
number of quadruples (z,y,z,w) € A; X B; X A; X B; with 0 < d(z,w) <
d(z,y) and fi(w) — fi(2) < fi(y) — fi(x), and let 4/ be the number of
quadruples (z,y,z,w) € A; X B; X A; X B; with 0 < d(z,w) < d(x,y) and
fi(z) — fi(w) < fi(z) — fi(y). These numbers tell how many pairs of edges
between A; and B; will be represented with the correct order of lengths when
either f; or f; is used for the definition of fi11|c;. Now put fiy1(z) := fi(x)
forall z & C;, and either

fiv1(a) = fi(a) foralla € A;, and

fit1(b) = fi(b)+8; +w;(A) forallb € B;
if v > 4/, or otherwise

fir1(a) == fi(a) forala € A;, and

fir1(b) == fi(b) +38; +w;(A) forallb € B;.

This assures that | f41 () — fit1(¥)| > | fi+1(2) — fit1(w)| wheneverx € A;,
y € By, and either z,w € A; or z,w € B;. Moreover, since the sum of y and v/
is (lA"gB"l), their maximum is at least |A;||B;|(|A;i||B;i| — 1)/4. Hence, this

N =

c;- More precisely, when
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step ¢ of the construction contributes to the overall accuracy o a summand «;
with

o (N ¥ wh s (o + ANEI0ANE 2 )

x€A,;, yeB; 4
A || Bs|(JAs]|Bi| =1
x€A;, yeB;
Ail| B |A;||B;|(|As]|Bi| — 1
=Y welmgy - (P A I 4|| |- 1)
T€A;, yEB;
119 B (JAlIB 1) 3 3
>3 (37)- Z = Zlail' voqal).

Finally, all C; are of size n/2? for some ¢ with 0 < g < p, and there are exactly
2% many of this size. Hence the overall accuracy is

n p—1
a=>a;>>» 27 %(1/2(1)4+0(1/n) = g —0(1/n).
i=1 q=0

O

However, this lower bound is very likely not the best possible. The rank
correlation g between two independently chosen linear orders on m elements
is neatly normally distributed with expected value 0 and standard deviation

O(1/+/m) (cf. [KG90]). Hence (o0+ 1)/2 has expected value 1/2, which
motivates the following conjecture.

CONJECTURE 06.25.  Every finite metric space can be mapped into By with accuracy
>1/2
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Proof of Proposition 1.3 on page 11.

1. is trivial.

2. Assume that C is of smallest cardinality among all odd circles, let z,y be
neighbours on C, and let z be the vertex on C' opposite to the edge zy. Then C
contains a shortest path P, joining z and z [ Otherwise C splits into two paths
Py and P, between x and z that are both longer than some shortest path P ..
Since C' is odd, we may assume that also £g(Py.) + £ (Pr) is odd (otherwise
exchange P and P,). But then the closed walk P, + P would contain an
odd circle shorter than C']. Similarly, C' contains a shortest path P, joining
y and z, so that C' splits into the paths P, and Py, and the edge xy. Hence
da(z,z) +da(y,2) +da(z,y) =La(Prz) +€a(Pyz) +1 = £c(C) is odd.

On the other hand, assume that z,y,z minimize dg(z,y) + da(y,2) +
da(z,x) among all triples for which this value is odd. Choose cortesponding
shortest paths Pyy, Py, and P,,. These three paths must have disjoint edges
[Assume that Py, and Py, := P_, ml share an edge vw. At w, Py, splits into
shortest paths Py, and Py, and P, into shortest paths P;w and P, ..
Since £ (Pyw) = ba(PL,,) = da(z,w) > 1, we would have an odd value
da(w,y) +da(y,2) + da(z,w) < dg(z,y) +da(y,z) + da(z,x)]. Hence,
their union is an odd circle.

137
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3. Similatly, assume that z,y,z minimize dg(z,y) + da(y,2) + da(z,x)
among all triples for which the intersection of the three generalized segments
m—de R y_sz ,and Zz9€ is empty. In particular, x,y, z must be distinct. Again, each
triple of corresponding shortest paths Py, Py, and P., must have disjoint
edges [ Assume that P, and P, := P! share an edge vw, and replace = by
w as above, so that dg(w,y) + da (y,2) + dg (z,w) < dg(x,y) + da(y,2) +
dg(z,x). Since then wy?c C Tgec and zwee C zz%¢, the corresponding
intersection of segments would still be empty]. Since z,y,z are distinct, the
three paths unite to a proper circle.

On the other hand, let C' be a smallest circle. (i) If C' is odd, there are
x,y,z for which « := dg(x,y) + da(y,2) + da(z,z) is odd. Then there can
be no ¢ € TS Ngzee Nzze, for otherwise o = Z(dG (z,¢) +da(y,c) +
da (z,c)). @iy If C is even, choose successive vertices x,v,y on C, and
let z be the vertex on C' opposite to v. Note that these four vertices atre
distinct. Again, C' splits into shortest paths Py, Py, and Py = (z,v,y).
Also, dg(z,2) = La(Prz) = da(y,2) = la(Py.) = 2 since £g(C) 2 6. In
particular, z ¢ ZTge¢ [since dg(x,y) = 2], = ¢ 2, and z ¢ 7z [since
x #y but dg(z,z) = da(y,2)]. Assuming that ¢ € Tg?¢ Nyzde Nzzde,
we therefore know that ¢ is distinct from z,y,z. In particular, ¢ cannot be
on both P,. and P,., so we may assume that it is not on P, [otherwise
exchange = and y]. But then there are shortest paths P, and P.. with
e (Pre)+La(Pez) = Lo (Prz) < £a(C)/2 that are not contained in Py ,.
Hence the union of Py, P, and P, ., would contain a circle shorter than C. O

QUOTIENT VECTOR SPACES

Proof of Lenma 1.8 on page 21.

The first equivalence is trivial [torsion-freeness means rz +pM = (r +
pR)(z +pM))pM = r +pR = pR ot x +pM = pM]. If pM # M then
M /pM is not a singleton, hence R/pR cannot have zero-divisors when M /pM
is torsion-free [rs =0 = r(szx) =0=r=0o0rsc =0=r =0 or
s = 0 or z = 0; now choose z # 0]. This is equivalent to p being prime.

On the other hand, let p be prime, R be a principal ideal domain, rx € pM,
andp ¢ pR. Then rz = py for somey € M,and 1 = sp+ tr for some s,t € R,
hence x = spx + tre = spz + tpy = p(sx + ty) € pM. Finally, additivity of
wy, follows from the fact that for an M-prime p, re € p™ M is equivalent to
r € p”Rand x € p" *M for some k € {0,...,n} [ Assume that rozo = p"y.
Inductively, define r; € Rand z; € M withr;z; € p"iiM like this: Whenever
(@) r;—1 € pR, choose r; € R with r;_1 = pr; and put x; := z;_1. Whenever
instead (ii) x;—1 € pM, choose x; € M with ;1 = pz; and put r; := ;1.
Finally, ro = p*r, and zo = p" ¥
was applied]. O

Tn, where k is the number of times case (i)
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Proof of Theoren 1.9 on page 21.

Reflexivity and symmetry of ~ are trivial. Transitivity: sz = ry and ty = sz
imply stx = rty = srz, hence tx = rz since M is torsion-free and s # 0.
Congruence: (y,s) ~ (y',s") implies that rs'(sz + ry) = rs(s'z + ry’), hence
(z,7) + (y,8) ~ (x,r) + (¥',s"). M is not a singleton since pM # M. Since
M is also torsion-free, R cannot have zero-divisors, so that its quotient field
Q exists. The proof that V' is a QQ-vector space is straightforward. That the
valuation w, on V is well-defined is proved just as in the quotient field
case since w, is additive on both M and R and finite on R. Additivity:

wp(55) = (wp(s) + wp(2)) — (wp(t) +wp(r)) = wp($) +wp (). Finally,

(2 +2) = 0 () <yt - 09

rs

> (wp(sz) Awy(ry)) — wp(rs) = wp (%) Aty (Q)

rs
xr
T S

so that dp, is an ultra-metric. d
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Numbers set in boldface refer to pages that contain a term’s definition or
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explanation.

—q,p (net convergence), 61

—a,p (sequential convergence), 49

— p (net convergence in filtered
monoids), 61

— o (sequential convergence), 48

— (material implication in Boolean
lattices), 22

—a.s. (almost sure convergence), 52

—u.a.s. (almost sure uniform
convergence), 53

«— (symmetric distance in Boolean
lattices), 22

«—0— (symmetric counterfactual
operator), 45

O— (counterfactual operator), 45

zy? (segment from x to y), 10

>a,p (cluster point relation), 61

<4 (specialization quasi-order), 12

< (quasi-order), 6

<a.s. (almost sure quasi-order), 53

>4, (specialization of induced
sequential
convergence), 49

> (specialization relation), 57

> ¢ (specialization relation), 49

Ta (upper set), 46

TA (upper sct), 46

T4 A (upper set of the
specialization relation),
57

Symbols

1A (lower set), 46

Lo (lower set), 46

[a,b] (interval of integers), 90

< (uniformly below relation), 113

(xy)" (word with equal syllables),
%0

Aut(X) (group of motions), 28

0 (neutral element of M), 6

(0 (the empty word), a0

2 (two-element p.o.m.), 11

2" (p.o.m. of binary truth values),
1

B (sct of bi-fundamental nets), 105

Bgay (a-ball about ), 55

B,,4,5 (basic entourage of order
n), 8s

PBa,py (ball system about y), 55

PBr(d,D) (base for %y, (d, D)),
85

€ (inclusion of finite subsets), 63

¢(d, D) (induced filter
convergence structure),
58

%4, (neighbourhood filter of a
point), 57

¢ p (filter convergence in filtered
monoids), 61

¢(Z) (induced sequential
convergence), 57

d (general distance function),

(d, M, D) (distance structure), 53

d(x,y) (distance from x to y), 6

d(s) (shorthand notation), 40

d (canonical distance function), 42

d (upper canonical modification),
46

d (lower canonical modification),
46

(d, D) (upper canonical distance
structure), 84

d« (distance in a quoset), 11

d_.,d_ (non-symmetric distances
in co-quantales), 18

d . (symmetric distance in
co-quantales), 18

d’ (positive modification), 10

ddic (multi-pseudometric of
p-adic distances in
modules), 20

dagic (multi-pseudometric of p-adic
distances in rings), 19

dgiv. (distance of symmetric
“division” in factorial
domains), 20



df (initial distance function), 26

dp (two-component distance in
fields), 21

d ¢ (distance in a digraph), 10

dg (skew-symmetric internal
distance in a group), 16

dy (a gauge as a multi-real
distance), 23

d g+ (one-sided Hausdorff
distance), 63

d, (distance in Boolean lattices), 22

d 1, (multi-pseudometric of
LP-metrics), 13

d s (skew-symmetric distance in a
module), 18

d,, (non-symmetric distance for set
functions), 14

d:L (symmetric distance for set
functions), 15

dy (p-adic metric in quotient
fields), 21

dp (p-adic metric on quotient
vector spaces), 21

dy (p-adic pseudometric in rings),
19

dpy. (pointwise
multi-pseudometric),
13

d g (distance for a reflexive
relation), 9

d R (generated canonical distance
function), 42

d® (additive symmetrization), 9

d?® (upper symmetrization), 9

dy (multi-pseudometric of
ordet-unit distances in
ap.o. group), 16

d,, ((order-unit) pseudometric in
abelian partially
ordered groups), 16

dx (finest canonical distance
function), 43

D (positive filter), 49

D7 (set with adjoined top
clement), 51

Dy (generating zero-filter of
(d, D)), sa

A x (diagonal, identity relation), o

e (mostly Euclidean distance), 8

E,, (Buclidean n-space), 8

eq (distance function for
pre-diameter d), 64

E(G) (edge set of a digraph), 10

&S (end filter of a sequence), 57

&x (end filter of a net), 61

F7* (lifted mapping), a1
F —¢ « (filter convergence), 57
Fil(X) (all filters on X)), 57

G x (minimal subsets of generating
quasi-orders), 42

G'% (minimal subsets of positive
generating
quasi-orders), 42

G% (minimal subsets of
symmetric generating
quasi-orders), 42

G% (minimal subsets of positive
and symmetric
generating
quasi-orders), 42

|| (absolute value in an £-group),
15

I, (quasi-ordered index set of a
net), 61

I, (canonical index set), 105

£(s) (length of a word), 9o

A(z, s) (no. of occurrences of a
letter), 90

Z(d, D) (induced sequential
convergence), 49

Z (sequential convergence
structure), 48

liminf (limes inferior), 102

limsup (limes superior), 102

M (quasi-ordered monoid), 6
M7 (q. 0. m. with adjoined top
clement), s1
(M, D) (filtered monoid), s3
Md (lower canonical p. 0. m.), 46
M, (upper canonical p. 0. m.), 46
M | (Alexandroff completion), 46
M, (dual Alexandroff
completion), 46

nav,nan (“distances” between
nets), 103

nyv,nyva (more “distances”
between nets), 103

o (concatenation of words), 40
A° (interior of a set), 68

¢ (modal possibility operator), 45
O (modal necessity operator), 45

+ (addition, possibly
non-commutative), 6

a + B (element-wise addition), 17

A + B (pairwise addition of sets),
46

+ (addition of lower sets), 46

+ (addition of upper sets), 46

£l (LP-norm), 13

[[z|lp (p-adic “norm” in rings), 19

P (X)) (power set), 14
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Hicr D/ (positive filter for the
categorical supremum),
51

R (p.o.m. of reals), 8

RT (p. 0. m. of non-negative reals),
8

RT (p. 0. m. of extended reals), 8

R* T (co-quantale of non-negative
extended reals), 8

(R™)? (multi-real p.o.m.), 13

R g (generating quasi-order of d),
41

R% (smallest generating
quasi-order), 43

~ (symmetric part of <), 6

5 (word s without null syllables), 90

Sq (athletter in §), 90

Sq,b (subword of 8), 90

sa,n (lower symmetrization of d),
10

S, (induced submonoid), 31

sup; ¢ ; d; (categorical supremumy),
51

Sup;re ; di (alternative categorical
supremum), 51

Sup; ¢y (ds, D;) (categorical
supremum), 51

o(xy,s) (no. of occurrences of a
syllable), 90

3 (set of isotone injections
w — w), a9

7 (d, D) (induced topology), s5

u (Cech-closure operator), 60

u A (Cech-closure of a set), 60

[[2]|« ((order-unit) pseudonorm in
abelian partially
ordered groups), 16

Un(d,D) (n-th left
semi-uniformity), 8s

V (G) (vertex set of a digraph), 10

w (set of natural numbers
including zero),

w (co-quantale of extended
natural numbers), 9

wp () (valuation in rings), 19

wp (x) (valuation in modules), 20

wp(x/y) (valuation in quotient
fields), 20

wp (valuation on quotient vector
spaces), 21

W (completion space), 108

W7 (X) (generalized Wijsman
topology),

X A (characteristic function), 11



& (principal ultra-filter), 57

@ (principal (=constant) net), 61

X (canonical net), 105
X (set of “points”), 6
X (distance set or space), 7

(X,d, M, D) (distance space), 53
X* (generating monoid), a1
X 2* (free monoid of words of

even length), 40

Y (completion space), 108

(V -presetving, antitone),
18

\/ -dense, 46

N\ -dense, 46

a-ball, 55

abelian £-group,
15,29,34,35,40

abelian lattice-ordered
group, 15

abelian monoid, 24

absolute continuity, 69

absolute value, 15

absolutely closed, 116

absorbing, 8,21

abstract space, 48

accessibility relation, 4s

acyclic, 9,26

addition

component-wise —,

13,18

additional elements, 9

additive, 21

dually —, 114
additive notation, 6
additive symmetrization,

9
adjoint
left —, 18
lower —, 18
right —, 18

upper —, 18
adjunction, 18
Alexandroff completion,

46
algebra, 22
algebraic, 25
algorithm, 116

clustering —, 13
almost disjoint family, 52
almost sure convergence,

52
analysis, 25

canDISTsy (category of upper
canonical distance

spaces), 84

DISTy, (categories of distance

sets), 82

DISTw (categories of distance
spaces), 82

iDISTsh (subcategory defined by
idempotent

zero-filters), 89

Subject index

classical —, 49,53
functional —, 13
angle

largest —, 8
antisymmetric, 6,9,26,27
antitone, 86
approach space, 23
approach system

uniform —, 23
arbitrarily small, 49
arbitrary intersections, 55
arbitrary unions, 55
archimedean, 32
arrow, 10
ascending transfinite

sequence, 115
Axiom of Choice, 52

ball, 55
ball-dense, s6
ball-open, s5
ball-system, 55
balls

closed —, 114

open —, 117
Banach’s fixed point

theorem, 26

base, s6,85,87

prime —, 20
betweenness, 111
bi-Cauchy filter, 98
bi-completion, 83,107,107
bi-convergent, 99
bi-fundamental net, 97,106
bi-limit, 99
bi-near, 97
bijective, 26
binary intersections, 57
binary supremum, 10,15
binary truth values, 11
bipartite, 11
Boolean lattice, 22
Borel-set, 52

bounded

metrically —, 116
bounded subsets, 17
boundedness

total —, 76

Brouwer’s fixed point
theorem, 115
Brouwerian lattice, 22

(C,...)-completeness

sequential —, 99
(C,...)-completion

T; —, 109
calibration, 32
cancellation law, 17
cancellative, 17
canonical, 42,105
canonical modification,

2

cardinal

infinite —, 76
cardinal product, 29,29
cardinality, 76,112,113
cartesian coordinates, 8
categorical supremum,

51,54
Cauchy
weakly hereditatily
—, 98

Cauchy-filter, 112,112
Cech-closure operator, 60
Cech-Stone compactifica-
tion,
83
chain, 113,115
descending —, 90
characteristic function,

11,55
Choice

Axiom of —, 52
circles

no —, 11

class-indexed source, 82

I,E,O (more morphism classes), 82

QUNIF (category of quasi-uniform

spaces), 89

SH,DU,WU (classes of [dually]

weak space
homometries), 82

S,A,U, T (classes of continuous

maps), 82

W, D, H (classes of [dually] weak set

homometries), 82

class-indexed supremum,
52
closed
absolutely —, 116
closed balls, 114
closed
sequentially —, ss
closure operator, 60
closure system, 14
cluster point, 57,117
common —, 57

dual —, 99
cluster point, 61
clustering

dually —, 99

clustering algorithm, 13
co-domain, 6,23,26
co-frame, 63
co-locale, 63
co-quantale, 17,23,40,111,117
coarset, 41
colouring, 26
combinatorics, 116
common cluster point, 57
common subsequence, 51
common terminology, 12
common types of
convergence,
52
commutative,
6,89,16,17,20,23
commutative group, 15
commutative ring, 20
compact, 70,117

countably —, 112,116
compactification
Cech-Stone —, 83

compactness, 76
comparability, 14
compatible, 86,89
complement opetation, 22
complete, 99,112,116
complete lattice, 112,113,116



completely distributive,
23,63
completely labelled, 116
completely regular, 83
completeness, 17
sequential —, 111
completion
Alexandroff —, 46
dual Alexandroff —,
a6
component, 6,13,87,04
component-wise
addition, 13,18
component-wise order, 14
component-wise set
inclusion, 94
concatenation, 40
conditional sentence, 22
connected, 11,74,116
constant net, 61
constant sequence, 49
constant value, 49
construction, 89
constructive, 115
continuity, 2568
absolute —, 69
Lipschitz —, 26,110
uniform —, 26,69
continuous, 13,61
strongly uniformly
—, 69
continuous fixed point
property,
115,116
continuous functions,
1525
continuous self-map,
115,116
contractible, 112
transfinitely
contractive, 26,29

, 112

right —, 110
convergence, 54
almost sure —, 52
common types of —,
52
pointwise —, 56
convergence structure
left —, s8
right —, s8
sequential —, 48
convergent
dually —, 99
convex, 116
coordinates
cartesian —, 8
countable support, 56
countably compact,
112,116
counterfactual operator,
45,111

cover
open —, 76
cut rule, 22

D-Cauchy, 98

D-ball, s5
dual —, 61
decomposition

prime —, 20
DeMorgan’s laws, 22
descending chain, 90
descending sequence,

94,112
descending transfinite

sequence, 112
determined, 9

diagonal, 9
diameter, 76,112

finite —, 114

zeto —, 20
diameter function, 15,63
digraph, 27

dimension, 8

direct product, 19

directed graph, 10

dissimilarity, 45

distance
Euclidean —, 7
geodesic —, 75
internal —, 15
internal —, 14
multi-mettic —, 56
multi-real —, 18,2355

real —, 8
vector-valued —, 24
zero —, 18

distance equality
preserving, 30
distance equivalence
preserving, 31
distance function
finest —, 89
natural —, 86
distance inequality
preserving, 31
distance set, 7
distance space, 7,53
upper canonical —,
84
distance structure, 53
finest —, 87
upper canonical —,
84
distribution function, 23
distributive
completely —, 23,63
lowet —, 53
upper —, 23
distributive lattice
value —, 23
distributive laws, 22,22

distributivity, 114
lower —, 17,18
upper —, 17
divisibility, 20,86
“division”
symmetric —, 20
domain, 26
factorial —, 20
factorial —, 40
down-directed, 55,112
down-directedness
preservation of —,
112
dual, 12
dual D-ball, 61
dual Alexandroff
completion,
46
dual cluster point, 99
dual limit, 99
dually additive, 114
dually clustering, 99
dually convergent, 99
dually weak homometry,
31
dually weak space
homometry,
72
dwindling
locally —, 70

e-§-criterion, 25
edge, 10
element
additional —, 9
greatest —, 22
least —, 22,24,115
neutral —, 6,2087
non-zero —, 20,113
smallest —, 23,112
top —, 8,21
embedding
isometric —, 26
order-isomorphic —,
27
empty word, 40
end, 56,61
end filter, 57,61
entailment, 22
entourage, 85,87
equation
homometry —, 32
equivalence
material —, 22
equivalent, 41
essential information, 86
Euclidean distance, 7
Euclidean space, 116
even, 11,92,93
eventually, 61
exact homometry, 26,29
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exact isometry, 26
expansive, 26,29
extended metric, 8
extended real numbers, 8
extension, 107

-hyperconvex

weakly —, 114
p-inaccessible, 114
factorial domain, 20,40
family, 12,19

almost disjoint —, 52
fibre, 84

field, 20
quotient —, 20
filter, 85
bi-Cauchy —, 98
end —, 57,61
finer —, 57
neighbourhood —,
57
positive —, 50,38,85

filter convergence
structure, 57
filter-base on X, 57
filter-base, 87,94
filter-closed, so
filtered, 94
filtered monoid, s3
finer, 41,57,83
finer filter, 57
finest, 86,87,89
finest distance function,
89
finest distance structure,
87
finite, 94
finite diameter, 114
finite infima, 50
finite set, 116
finite system, 90,03
finite unions, 55
fixed point, 115,117
fixed point property
continuous —,
115,116
fixed point theorem, 114
Banach’s —, 26
Brouwet’s —, 115
Scott’s —, 116
Tarski’s —, 116
formal logics, 22
formula, 88
frame, 23,62,113
frame law, 62
free monoid, 40
frequently, 61
function
continuous —, 1525
diameter —, 15,63
distribution —, 23
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characteristic —, 11,55
indicator —, 11
isotone —, 112
M-distance —, 7
measutrable —, 52
real-valued —, 13
set —, 14,27,28
triangle —, 23
function lattice, 23
function space, 13,40
functional analysis, 13
fundamental sequence, 96

gauge, 23
generalized Wijsman
topology, 67
generating quasi-order,
42,86
generating structure, 84
geodesic distance, 75
graph
(undirected) —, 10
directed —, 10
graph homomorphism, 27
graph theory, 10,26
greatest element, 22
Greek letters, 7
group, 25
commutative —, 15
multiplicative —, 21
group of motions, 28

homometry
(set) —, 31
dually weak —, 31
exact —, 26,29
space —, 72
weak —, 31

homometry equation, 32
homomorphism, 25
graph —, 27
ring —, 30
hull system, 55
topological —, 55
hyperconvesx, 114
hyperspace, 62

ideal, 23
principal —, 46
idempotency, 60
idempotent, 62,111,113
idempotent operation, 22
idempotent zero-filter,
86,87
largest —, 87
identity, 17
identity relation, 9
implication, 22
material —, 22
index set, 61
indicator function, 11

induced subgraph, 33
induced submonoid, 31
inequality

triangle —, 16
inference rule, 111
infima, 15,17,112

finite —, 50
preservation of —,
112
infinite

uncountably —, 14
infinite cardinal, 76
information

essential —, 86
injective, 27
integers

positive —, 8593

intervals of —, 90

positive —, 87
intetior, 68
internal distance, 14,15
intersect, 64
intersection property, 113
intersections, 114

arbitrary —, 55

Binary —, 57
interval
unit —, 13

interval of integers, 90
intuitionism, 22
irreflexive, 10
isometric embedding, 26
isometry, 41

exact —, 26
isotone, 6,15,87
isotone function, 112
isotone map, 27
isotone self-map, 115

K -Cauchy
left —, 98
right —, 98

K -contractible, 112
K -Lipschitz, 112
kernel system, ss

A-Lindel6f, 76
A-bounded, 76
£-group
abelian —,
15,29,34,35,40
£-homomorphism, 29
£-isomorphism, 29
£3V-V-fundamental net,
o7
LP-norm, 13
labelled
completely
largest angle, 8
largest idempotent
zero-filter, 87

, 116

largest side, 8

lattice, 22
Boolean —, 22
complete —,

112,113,116
function —, 23
(lattice) continuity spaces,
24
lattice-otder, 17
lattice-ordered group
abelian —, 15
law
cancellation —, 17
frame —, 62
transitive —, 22
laws
DeMorgan’s —, 22
distributive —, 22,22
least element, 2224,115
Lebesgue-measure, 52
left K -Cauchy, 98
left adjoint, 18
left convergence
structure, 58
left module, 18
left semi-uniformity, 85
length, 7,10,90
letters, 40,88
Greek —, 7
Roman —, 7
limes inferior, 102
limes superior, 102
limit
dual —, 99
limit ordinal, 112
limit space, 58
Lindelof, 76
Lipschitz continuity, 26,110
local order representation,
31
local symmetry, 70
locale, 23,62
locally dwindling, 70

logics
formal —, 22
long-way-above relation,

63
long-way-below relation,
63
lower adjoint, 18
lower distributive, 17,1853
lower semi-continuous, 23
lower set topology, 115
lower set, 46,87,94
lower symmetrization, 10

M-distance function, 7
M-homometry, 26
M-initial, 83
M-isometry, 26

M -prime, 21

mapping, 12
map, 25

isotone —, 27

similarity —, 78
material equivalence, 22
material implication, 22
measurable function, 52
measure, 52

probability —, 52

o-additive —, 15
mettic, 8,64

extended —, 8
metric space, 9,25,26,48,85
metrically bounded, 116
modal operators, 44
model-theoretic, 30
modification

canonical —, 42

upper/lower

canonical —,
46

module

left —, 18

totsion-free —, 21
modus ponens, 45

monoid
abelian —, 24
filtered —, 53
free —, 40

quasi-ordered —, 6
value —, 17
morphism, 82
motions, 28
group of —, 28
multi-metric distance, 56
multi-pseudometric,
13,13,14,1524
pointwise Euclidean
—, 56
multi-qp-metric, 13
multi-real, 13
multi-real distance, 18,23,55
multi-real pre-diameter,
68
multi-valued, 13
multiple, 95
multiplication, 26
multiplicative group, 21
multivatiate statistics, 13

natural distance
functions, 86
natural numbers, 9
neighbourhood filter, 57
net, 60,117
bi-fundamental —,

constant —, 61,97
r3V-V-fundamental
—, 97

>
net selection, 99
neutral element, 6,20,87



no circles, 11
non-commutative, 9
non-complete p.o. m.
provided, 18

non-constructive, 115
non-negative, 8,14
non-symmetric, 9
non-zero element, 20,113
norm

order-unit —, 16
“norm”

p-adic —, 19
normed vector space, 115
null-syllable, 43
numbers

natural —, 9

rational —, 19

real —, 6,8,17

odd, 88,91,92
odd prime number, 93
one-way separated, 7
open, 26
open ball, 117
open cover, 76
operation
complement —, 22
symmetric —, 16
operations
idempotent —, 22
operator
Cech-closure —, 60
closure —, 60
counterfactual —,
45,111
modal —, 44
order
component-wise —,
14
total —, 116
order representation, 31
order theory, 10,25
order-cancellative, 111
order-isomorphic
embedding,
27
order-unit norm, 16
ordered
totally
ordinal, 112
limit —, 112

, 834,118

-hyperconvex

weakly —, 114
p-inaccessible, 114
p-adic “norm”, 19
p.o.m,6
p.o.m. provided

non-complete —, 18
pair

successive —, 10

paradigm, 12
parity arguments, 91
partner position, 9o
path-connected, 116
permutation, 117
plane, 7
point
cluster —, 57,61,117
fixed —, 115,117
reference —, 117
point-free, 112
point-free topology, 62
point-symmettic, 70
pointwise, 23
pointwise convergence, 56
pointwise Euclidean
multi-
pseudometric,
56
poset
up-directed —, 116
position, 90
pattner —, 90
positive, 7,13,23,85,114
positive filter, s0,58,85
positive integer, 85,8793
positively semidefinite, 7
pre-diameter
multi-real —, 68
pre-diameter space, 63
pre-topological, 58
preservation
of chain-suprema, 116
of down-
directedness,
112
of infima, 112
of formulae, 30
preserving
distance equality —,
30
distance equivalence
—, 31
distance inequality
—, 31
specialization —, 31
prime, 20,21
prime base, 20
prime decomposition, 20
prime number
odd —, 93
primitive set, 116
principal ideal, 46
principal ultra-filter, 57
probability measure, 52
probability space, 15,1552

probability theory, 52
product, 22
cardinal —, 29,29
direct —, 19

product space, 83

property
intersection —, 113
special —, 7

topological —, 26
propositional calculus, 22
proposition, 44,88
pseudo-topological, s8
pseudocompact, 116
pseudometric, 8,14
pseudonorm, 16

Q-fundamental, 97

Q-near, 97

Q-pair, 97

q. 0. m.-morphism, 31

qp-metric, 8

quantale, 23

quasi-order, 6,11,12,29,49,117
generating —, 42,86
smallest —, 86
specialization —, 86
total —, 116

quasi-ordered monoid, 6

quasi-ordered set, 27

quasi-pseudometric, 8,23

quasi-uniformities, 71,93
systems of —, 90

quasi-uniformity, 86

quoset, 40,112

quotient field, 20

r3V-V-fundamental net,
o7
random vatiable, 52
rational numbers, 19
real distance, 8
real numbers, 6,817
extended —, 8
real-valued, 7
real-valued function, 13
reflection
T|| —, 107
reflexive, 88
reflexive relation,
9——11,26,85
reformulation, 10
regular, 113

completely —, 83
relation

accessibility —, 4s

identity —, 9

[long-]way-above —,
63

[long-]way-below —,
63

reflexive —, 9,26,85
smallest —, 87
specialization —,
49,57
relation-preserving, 26
relationship, 25
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representability, 35
representation

local order —, 31

order —, 31
reverse, 23
right K-Cauchy, 98
right adjoint, 18
right contractive, 110
right convergence

structure, 58

right semi-uniformity, ss
ring, 18,20

commutative —, 20
ring homomorphism, 30
Roman letters, 7
rule

cut —, 22

inference —, 111

o -additive measure, 15
o-algebra, 15,52
Scott’s fixed point
theorem, 116
segment, 8,10
selection
net —, 99
self-map
continuous —, 115,116
isotone —, 115
semi-continuous, 17
lower —, 23
semi-uniformity, 71,8s,89
left —, 8s
right —, 85
semidefinite
positively
semigroup, 17
sentence, 44
conditional —, 22
separated, §,19,20,117
one-way —, 7
two-way —, 7,16
sequence, 48,87,88
constant —, 49
descending —, 94,112
fundamental —, 96
sequential convergence
structure, 48
sequential (C, . . .)-
completeness,
99
sequential completeness,
111
sequentially closed, ss
set

57

distance —, 7
down-directed —, 112
finite —, 116

index —, 61

lower —, 46,8794
primitive —, 116
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quasi-ordered —, 27
underlying —, 25
upper —, 46
up-directed —, 50
set function, 14,2728
(set) homometry, 31
set inclusion
component-wise —,
94
set-theoretic topology, 54
shortest walk, 10
side
largest —, 8
similarity map, 78
skew-field, 19
skew-symmetric, 16,18
small
arbitrarily —, 49
smallest element, 23,112
smallest quasi-order, 86
smallest relation, 87

source

class-indexed —, 82
space, 78,48

abstract —, 48

approach —, 23
distance —, 7,53
Euclidean —, 116
function —, 1340
(lattice) continuity
—, 24
limit —, s8
metric —, 9,25,26,48,85
pre-diameter —, 63
probability —,
14,15,15,52
product —, 83
topological —, 25,115
vector —, 13,15,116
space homometry, 72
[dually] weak —, 72
special properties, 7
specialization, 12,53
specialization preserving,
31
specialization quasi-order,
86
specialization relation,
49,57
stable, 98
star-prediameter, 113
star-shaped, 74
statistics
multivariate —, 13
stochastics, 23
strong law of large
numbers, 52

strongly uniformly
continuous,
69
structure, 6,25
distance —, 53
filter convergence
—, 57
topological —, 48
structures
generating —, 84
topological —, 7
sub-£-group, 29
sub-additive, 15
sub-cover, 76
sub-digraph, 27
subdivision, 33

subgraph
induced —, 33
submonoid
induced —, 31

subsequence, 49,57
common —, 51
subset
bounded —, 17
subword, 90,91,92
successive paif, 10
summand, 87
suppott
countable —, 56
supremum, 10,16,17,115
binary —, 10,15
categorical —, 51,54
class-indexed —, 52
sutjective, 27,29
syllable, 43,91,92
symmetric, 7,9,10,13,86
symmetric “division”, 20
symmetric operation, 16
symmetrization, 22
additive —, o
lower —, 10
upper —, 9,17
symmetry, 8

local —, 70
system
finite —, 90,93
hull —, 55
kernel —, 55
systems of quasi-
uniformities,
90
T(), 7
Ty class, 20
Ty reflection, 107
T1, 7,58,93

T (C,. .. )-completion,
109
T} quasi-uniformity, 89,94
Tarski’s fixed point
theorem, 116
top element, 8,21
topological, 25,58
topological hull system,
55
topological property, 26
topological space, 25,115
compact —, 116
topological structure, 7,48
topology, s5
lower set —, 115
point-free —, 62
set-theoretic —, 54
Wijsman —, 67
torsion-free module, 21
total, 9,14,26
total boundedness, 76
total ordet, 116
total quasi-order, 116
totally ordered, 834,118
transfinite sequence
ascending —, 115
descending —, 112
transfinitely contractible,
112
transfinitely K-
contractible,
112
transitive, 9,10,71
transitive law, 22
tree, 11
triangle function, 23
triangle inequality, 16
triangle-free, 33
truth, 88
truth values
binary —, 11
tuple, 87
two-way separated, 7,16

ultra-M-distance
function, 10
ultra-filter
principal —, s7
ultra-pseudometric, 19
ultra-qp-metric, 11
uncountably infinite, 14
undetlying set, 25
(undirected) graph, 10
uniform approach
system, 23
uniform continuity, 26,69
uniformity, 90

unions
arbitrary —, 55
finite —, 55
uniqueness, 53
unit, 17,19
unit interval, 13
up-directed poset, 116
up-directed set, 50
upper adjoint, 18
upper canonical distance
spaces, 84
upper distributive, 17,23
upper set, 46
upper symmetrization,
9,17
upper/lower canonical
modifica-
tions,
46
Urysohn’s axiom, 52

valuation, 19,20
value
absolute —, 15
constant —, 49
value distributive lattice,
23
value monoid, 17
variable
random —, 52
vector, 12
vector space, 13,15,116
normed —, 115
vector-valued distance, 24
vertex, 10

walk, 10
shortest —, 10
way-above, 55
weak homometry, 31
weak space homometry,
72
weakly ¢p-hyperconvex,
114
weakly hereditatily
Cauchy, 98
Wijsman topology, 67
generalized —, 67
word, 87,8894
empty

5 40

zero diameter, 20

zero distance, 18

zero-divisot, 19,20

zero-filter, 53
idempotent —, 86,87
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