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Abstract

Automotive research anddevelopmentpassed throughavast evolutionduringpast decades.
Many passive and active driver assistance systems were developed, increasing the passen-
gers’ safety and comfort. This ongoing process is a main focus in current research and offers
great potential for further systems, especially focusing on the task of autonomous and
cooperative driving in the future. For that reason, information about the current stability in
termsof dynamic behavior andvehicle environment are necessary for the systems toperform
properly. Thus, model-based online state and parameter estimation have become important
throughout the last years using a detailed vehiclemodel and standard sensors, gathering this
information. In this chapter, state and parameter estimation in vehicle dynamics utilizing the
unscented Kalman filter is presented. The estimation runs in real time based on a detailed
vehicle model and standard measurements taken within the car. The results are validated
using a Volkswagen Golf GTE Plug-In Hybrid for various dynamic test maneuvers and
a Genesys Automotive Dynamic Motion Analyzer (ADMA) measurement unit for high-
precision measurements of the vehicle’s states. Online parameter estimation is shown for
friction coefficient estimation performingmaneuvers on different road surfaces.

Keywords: vehicle dynamics, state estimation, parameter estimation, unscented
Kalman filter, dead-time compensation

1. Introduction

In the past decades, enormous developments in automotive research were achieved. Since the

beginning of the twentieth century, a consistent search for solutions increasing vehicle’s safety

and comfort took place. Starting with passive safety systems in the early twentieth century, e.g.,

airbag, safety belt, and deformable zone, a vast improvement of the passenger’s safety was

accomplished. These systems reduce passenger injuries and or even death due to accidents.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Later, starting in the 1960th and 1970th active safety systems or advanced driver assistance

systems (ADAS), preventing the vehicle from accidents by actively influencing the vehicle was

developed. First implementations were traction control (TCS) and antilock braking systems

(ABS), stabilizing the vehicle during longitudinal dynamic maneuvers. In 1995, the superordi-

nate electronic stability control (ESC) was developed, combining stabilization during longitudi-

nal and lateral dynamic maneuvers. Because of its success, ESC is mandatory in modern vehicles

in Europe since the end of 2014. Other ADAS, e.g., adaptive cruise control (ACC), autonomous

emergency braking (AEB), or lane detection system, have been developed in the meantime,

further increasing safety and comfort. Future trends show an enormous potential for advanced

systems, finally leading to the objective of autonomous and cooperative driving.

Many of these ADAS rely on parametric models, describing and predicting the vehicle’s (future)

behavior. Especially information about the vehicle’s stability, characterized by dynamic states, is

necessary. Furthermore, information about the vehicle’s environment, e.g., by changing weather

conditions and therefore changing friction conditions may influence the systems’ performance

drastically. Thus, online estimation of the vehicle’s stability in terms of its dynamic behavior and

online estimation of influential parameters, such as the friction coefficient, are challenging fields

in modern automotive research.

Many methods for state estimation use simple models of vehicle dynamics to reduce the

computational effort, e.g., considering a linear bicycle model [1–3] or a linear planar two-

track model [4]. A further detailed description of the forces acting on the vehicle’s tire is

developed in Ref. [5] and utilized in Ref. [6]. A more detailed model, considering roll dynamics

(cf. Figure 1), is utilized in [7, 8].

Figure 1. Two-track model including roll dynamics of a vehicle performing a left turn.
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Similarly, various methods considering the estimation algorithm are utilized. For linear

models, the Kalman filter serves as an optimal filter. Considering nonlinear models, Kalman

filter derivatives, such as extended and unscented Kalman filters (EKF/UKF), are used. The

EKF is used for tire road force and sideslip angle estimation in Ref. [9] and for sideslip angle

estimation of low friction roads in Ref. [6]. The UKF for vehicle state estimation is presented

in [7, 8].

Simultaneous state and parameter estimation with dual extended Kalman filter is presented in

Ref. [10], estimating the vehicle mass and moment of inertia around the vertical axis. The same

parameters are estimated in Ref. [11] using a joint UKF. Friction coefficient estimation using a

joint UKF is realized in [12–14].

In this chapter, state estimation in vehicle dynamics utilizing an UKF is presented. The

estimation is based on measurements taken with standard sensors, which are implemented

in modern vehicles. Therefore, a nonlinear process and measurement model are introduced.

Furthermore, dead times, due to CAN communication, are considered and compensated

using model-based methods. Additionally, simultaneous state and parameter estimation

considering the friction coefficient between tires and road is presented. All methods are

validated online using a Volkswagen Golf GTE Plug-In Hybrid as the test vehicle, equipped

with a Genesys ADMA inertial platform for precise reference measurements. The friction

coefficient estimation is validated on a test track with two different surfaces.

The chapter is organized as follows: in Section 2, the nonlinear process and measurement

models of the vehicle’s longitudinal and lateral dynamics are introduced. Based on this,

Section 3 addresses the state and parameter estimation utilizing the unscented Kalman filter.

Furthermore, dead-time compensation and bounded parameter estimation are introduced. In

Section 4, the estimation results, using this method, are presented. Thus, measurements taken

on a test vehicle using a precise initial measurement unit are presented and discussed. The

chapter is recapped with a Conclusion in Section 5.

2. Modeling

In this section, a detailed parametric model of the vehicle’s dynamics is presented. Deriving

this model for online application, a trade-off between accuracy and computational effort has to

be faced. Starting from the contact patch of tires and road as a predominant source of forces

acting on the vehicle, the full dynamics of the vehicle will be derived. Furthermore, a measure-

ment model describing certain measurements, representing the vehicle’s dynamics taken with

standard sensors is presented. The resulting models form the basis for the later state and

parameter estimation algorithm using the UKF.

2.1. Tire model

First, the vehicle’s tires are considered, representing the contact patch between vehicle and

road, consequently providing forces substantially influencing the vehicle’s dynamics. These

forces arise due to differences in relative motion between tire and road and therefore lead to a
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deformation of the tire due to friction, described by the friction coefficient μ. These differences

in velocity can be expressed as tire slip

λ ¼
ωtrt � vt,x

max ωtrt; vt,xð Þ
, (1)

for longitudinal and tire sideslip angle

α ¼ δt � arctan
vt,y

vt,x

� �

, (2)

for lateral motion, respectively, where ωt represents the rotational velocity of the tire, δt is the

tire steering angle, vt,x,y is the components of the wheel’s velocity vt, and rt is the effective tire

radius, which is considered a constant. The tire steering angle results from the steering wheel

angle δ as δ ¼ istδt, with the assumption of constant steering transition ist. Coming from the

well-known Coulomb friction Ffric ¼ μFz, with normal force Fz, the associated stationary tire

forces in longitudinal and lateral direction, FSx and FSy, are functions of the tire slip and sideslip

angle, respectively, given as

FSx ¼ f x λ;μmax; Fz
� �

h Fy
� �

, (3)

FSy ¼ f y α;μmax; Fz
� �

h Fxð Þ, (4)

assuming identical maximum friction coefficient for longitudinal and lateral forces. The

nonlinear functions f x,y represent the (side)slip dependency of the tire forces by the magic

formula tire model described by

f x,y χ;μmax; Fz
� �

¼ D sin Carctan B
χ

μmax

� E B
χ

μmax

� arctan B
χ

μmax

� �� �� �� �

, (5)

with individual parameters for longitudinal and lateral dynamicsD ¼ μmaxFz, B ¼ CF=CD, and

CF ¼ c1 sin 2arctan Fz=c2ð Þð Þ, while χ represents the slip λ or sideslip α [5]. Using this represen-

tation, the function maximum varies linearly over the (side)slip with changing maximum

friction coefficient (cf. dashed black line in Figure 2). The function f y λ;μmax; Fz
� �

for one set of

parameters C, E, c1, and c2, constant wheel load Fz and changing maximum friction coefficient

μmax, representing dry, wet, and icy conditions can be seen in Figure 2.

The function h Fx,y
� �

¼ cos arctan BxyFy,x
� �� �

accounts for the reduced forces in the presence of

both lateral and longitudinal forces, with scaling factor Bxy [15]. Furthermore, the lateral forces

Fy are modeled as PT1-element as

Fy þ
lt
vt,x

_Fy ¼ f y α;μmax; Fz
� �

h Fxð Þ, (6)

with tire-delay constant lt [16].
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The inputs to the system are the drive and break torques Md and Mb, and the steering angle δ

(cf. Figure 3). This leads to the equation of motion for the rotational velocity of one tire ωt

Jt _ωt ¼ Md �Mb �Mres � Fxrt, (7)

with the tire’s moment of inertia Jt, and a moment due to rolling resistance

Mres ¼ Fz cres,1 þ cres,2ωtð Þ, (8)

with constant and velocity dependent part, represented by cres,1 and cres,2, respectively.

2.2. Vehicle body dynamics

Considering a two-track model with additional roll dynamics as displayed in Figures 1 and 4,

the vehicle’s dynamics under disregard of vertical dynamics can be described by the vehicle’s

yaw-rate _ψ, its sideslip angle β, the roll angle and rate κ and _κ, and its center of gravity (c.o.g.)

Figure 2. Schematic visualization of the used vehicle dynamics model.

Figure 3. Torques and forces acting on the tire.
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velocity v. These quantities represent the angular velocity of rotation around the vertical axis,

the angle between the vehicle’s longitudinal axis and its velocity vector, the angle and rate

between the vehicle’s vertical axis and the stationary vertical axis, and the velocity of the center

of gravity, respectively. This leads to the following equations of motion

Jz €ψ ¼ lf Fy1 þ Fy2
� �

cos δtð Þ � lr Fy3 þ Fy4
� �

�
X4

i¼1
Mz, i, (9)

mv _β þ _ψ
� �

¼ Fy1 þ Fy2
� �

cos β� δt
� �

þ Fy3 þ Fy4
� �

cos β
� �

, (10)

m _v ¼ Fx1 þ Fx2ð Þ cos β� δt
� �

þ Fx3 þ Fx4ð Þ cos β
� �

� Fair, (11)

mahray ¼ Jκ €κ þ dκ _κð Þ � cκ κð Þ �maghr sin κ, (12)

with lf, lr being the distance between front and rear axes to the c.o.g., respectively, mass m

being moment of inertia with respect to the vertical axis Jz, velocity and acceleration of the c.o.

g. v, _v, forces due to air resistance Fair, and self-aligning torques Mz, i.

Roll dynamics are represented in analogy to a spring-damper system with gravitational influ-

ence with chassis mass ma, distance between roll axis and c.o.g. hr, moment of inertia with

respect to the roll axis Jκ, gravitational acceleration g, and nonlinear spring and damper

coefficients cκ κð Þ and d _κ _κð Þ, respectively. These characteristics are represented by

cκ κð Þ ¼ cκ,1κþ cκ,2κ
3, (13)

d _κ _κð Þ ¼ d _κ,1 _κ þ d _κ,2tanh _κð Þ: (14)

These constants result from combinations of suspension and stabilization constants cf, r, df, r,
and cst, f, r, respectively (cf. Figure 1). In conclusion, the resulting system state vector can be

expressed as

x ¼ _ψ; β;κ; _κ; Fy, i;ωi; v
� �T

: (15)

Figure 4. Top view of a two-track model including geometrical parameters.
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2.3. Measurement model

Inside the vehicle, standard sensors are implemented to obtain information about the current

driving state. These sensors measure the yaw-rate _ψ, longitudinal and lateral acceleration ax,s
and ay, s, and the four rotational velocities of the vehicle’s tires ωi. This leads to the measure-

ment vector

y ¼ _ψ; ax,s; ay, s;ωt, i

� �T
: (16)

A measurement model representing these sensors is needed for the later implementation of KF

derivatives. Since the measured yaw-rate and wheel velocities are states within the model, they

are obtained directly and no further model is needed. The longitudinal and lateral accelera-

tions in the sensor position ax,s and ay, s, respectively, can be described by

ax, s ¼ _v cos β� v _β þ _ψ
� �

sin β� ly €ψ þ _ψ lz _κ � lx _ψ
� �

, (17)

ay, s ¼ _v sin βþ v _β þ _ψ
� �

cos β� lz €κ þ lx €ψ � ly _κ
2 � ly _ψ

2, (18)

with lx, ly, and lz being the components of the distances from the c.o.g. to the sensor position.

Due to the sensors’ sampling rate of 100Hz, all later implementations on the control unit will be

running at this frequency. Therefore, the continuous time differential Eqs. (1)–(18) are discretized

using first-order Euler discretization.

Within the model, numerous parameters are utilized. These parameters can either be mea-

sured directly, e.g., geometrical parameters, or need to be identified using an offline identifica-

tion algorithm. Since the model is strongly nonlinear, a particle swarm algorithm (PSO) is

used. Therefore, measurements representing longitudinal and lateral dynamics, driven by a

test vehicle, have to be performed. Hence, a sequential identification can be realized, first

considering longitudinal excitation, neglecting lateral dynamics and subsequently lateral exci-

tation. Further details can be found in Ref. [15].

In summary, the vehicle’s dynamics can be expressedby the discrete time state space representation

xkþ1 ¼ f xk; uk; pð Þ, (19)

ykþ1 ¼ g xkþ1; ukþ1; pð Þ, (20)

at discrete time step k with all parameters included in p. Thereby, x∈R13�1 represents the

system state and y∈R7�1 represents the measurement vector.

3. State and parameter estimation

In this section, a brief overview over the used Kalman filter derivative will be given. At first,

the algorithm for state estimation will be presented. Furthermore, a model-based dead-time
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compensation will be introduced. Secondly, the joint UKF for state and parameter estimation will

be presented. Subsequently, an extension for the estimation of bounded parameters is introduced.

3.1. The unscented Kalman filter for state estimation

The process and measurement model presented in Section 2 are strongly nonlinear, espe-

cially considering the forces acting on the vehicle’s tires (cf. Eq. (5)). Therefore, a Kalman

filter derivative, capable of estimating nonlinear systems, the UKF is utilized. Since no

information about the covariance is available, the additive form of the process and measure-

ment equations

xkþ1 ¼ f xk; uk; pð Þ þwk, (21)

ykþ1 ¼ g xkþ1; ukþ1; pð Þ þ vkþ1, (22)

with wk ∝N 0;Qð Þ, Q∈R
nx�nx and vk ∝N 0;Rð Þ, R∈R

ny�ny representing the process and mea-

surement uncertainties by uncorrelated Gaussian random numbers, is assumed. The system

state and measurement are described by the state and measurement vectors xk ∈R
nx and

yk ∈R
ny with state dimension nx and measurement dimension ny. To initialize the filter, initial

values for the state and covariance estimation, bx0 ∈Rnx and bP0 ∈R
nx�nx , respectively, have to be

set. Following this, the recursive estimation divided in two steps, i.e., the process and mea-

surement update can be realized. Within the process update, an a priori state and covariance

estimation utilizing the process model is executed. Using the unscented transformation [17], a

carefully chosen set of 2nx þ 1 sigma points for time step k∈ 0;…;∞f g

xk,0 ¼ bxk, (23)

xk, i ¼ bxk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q

k

� �

i

for i ¼ 1,…, nx, (24)

xk, i ¼ bx k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q

k

� �

i�nx

for i ¼ iþ 1,…, 2nx, (25)

with bxk and bPk representing the current state and covariance estimation, respectively, are calcu-

lated. Thereby, λukf ¼ αukfnx þ κukf � nx, with scaling parameters αukf and κukf. Furthermore,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q

k

� �

i

is the ith column of the matrix square root, e.g., using Cholesky decomposi-

tion. These sigma points characterize the current probability density function and undergo the

real nonlinear transformation utilizing Eq. (21) to calculate the a priori estimation as

x�kþ1, i ¼ f xk, i; uk; pð Þ, (26)

x�kþ1 ¼
X2nx

i¼0
Wm

i x
�
kþ1, i, (27)

P�
k � ¼

X2nx

i¼0
Wc

i x�kþ1, i � x�kþ1

	 

x�kþ1, i � x�kþ1

	 
T
, (28)

Kalman Filters - Theory for Advanced Applications62



y�kþ1, i ¼ h xkþ1, i; ukþ1; pð Þ, (29)

y�kþ1 ¼
X2nx

i¼0
Wm

i y
�
kþ1, i: (30)

Following this, a measurement ykþ1 is received and the measurement update

Pxy,kþ1 ¼
X2nx

i¼0
Wc

i x�kþ1, i � x�kþ1

	 

y�kþ1, i � y�kþ1

	 
T
, (31)

Pyy,kþ1 ¼
X2nx

i¼0
Wc

i x�kþ1, i � x�kþ1

	 

y�kþ1, i � y�kþ1

	 
T
, (32)

Kkþ1 ¼ Pxy,kþ1P
�1
yy,kþ1, (33)

bxkþ1 ¼ x�kþ1 þ Kkþ1 ykþ1 � y�kþ1

� �
, (34)

bPkþ1 ¼ P�
kþ1 � Kkþ1Pyy,kþ1K

T
kþ1, (35)

with weighting factors Wm,c
i can be executed. This leads to the a posteriori estimations of the

state and covariance, bxkþ1 and bPkþ1, respectively [18].

3.2. Dead-time compensation

When designing online methods for real-time applications, dead times are frequently to face.

Especially, considering vehicular applications, the communication is realized via CAN-Bus,

leading to dead times. In the following, a method to compensate for dead times within state

estimation is presented.

Since the measurement update (Eqs. (31)–(35)) can only be processed, as soon as a measurement

yk is received, dead times td corrupt the UKF severely. Ignoring this dead time may lead to poor

filter performance or even divergence. One solution is to accept the dead time and delay the

estimation by exact this time. Alternatively, the system’s state and covariance can be estimated

by performing the process update (Eqs. (26)–(28)) during the dead time without doing the

measurement update, based on the delayed filter estimation up to time step k, so that the state

estimation at discrete time step kþ ntd , where ntd is the number of discrete time steps due to the

dead time is

for j = 1 to ntd do

xkþj�1,0 ¼ bxkþj�1 (36)

xkþj�1, i ¼ bx
kþj�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q

kþj�1

� �

i

for i ¼ 1,…, nx (37)

xkþj�1, i ¼ bx
kþj�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ λukfð ÞbP

q

kþj�1

� �

i�nx

for i ¼ iþ 1,…, 2nx (38)

x�kþj, i ¼ f xkþj�1; uk�1; p
� �

(39)
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bxkþj ¼

X2nx

i¼0
Wm

i x
�

kþþj, i (40)

bPkþj ¼

X2nx

i¼0
Wc

i x�kþj, i � bx
kþj

	 

x�kþj, i � bx

kþj

	 
T
(41)

end

To reduce computational cost, the update steps can be reduced, so that only the mean is

transformed and therefore no further sigma point needs to be calculated and transformed as

for j=1 to ntd do

bxkþj ¼ f bxkþj�1; uk�1; p
� �

(42)

end

This may lead to reduced performance, depending on the length of the dead time, the process

model complexity, and the uncertainties within the process.

3.3. Parameter estimation

Since parameters may vary within dynamic systems, simultaneous state and parameter esti-

mation is considered. Various methods to solve this task have been developed in the past

decades. In the following, the approach of joint state and parameter estimation is presented.

Therefore, states and parameters are concentrated into one joint state vector as

xk ¼
xk

pest,k

" #

, (43)

with primary state xk ∈R
nx and parameters to be estimated pest,k ∈R

np . The model within the

process update assumes constant parameters, i.e., pest,kþ1 ¼ pest,k. The remaining UKF algo-

rithm stays the same, with only the dimension of the estimated state b~xk ∈Rnxþnp changing.

If some parameters are bounded as ai ≤ pest, i ≤ bi, these are not estimated directly, but using a

substitute parameter psub, i as

pest, i ¼
bi � ai

2
tanh psub, i

	 

þ
ai þ bi

2
: (44)

Using this substitution, the estimated parameter psub, i is not bounded and leads to the real

parameters for pest, i in the intended range.

4. Estimation results

In this section, the results of the vehicle’s states and parameter estimation using an

unscented Kalman filter and the two-track model described Section 2 are presented. At
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first, the test vehicle and the measurement equipment that is necessary for the validation

are introduced. Secondly, the results of the vehicle state estimation and the results by

considering dead time within the estimation are shown. Furthermore, a simultaneous state

and friction estimation are presented that exhibit improved estimation results for varying

road conditions.

4.1. Measurement setup

The estimation results are verified by using a Volkswagen Golf GTE Plug-In Hybrid (Figure 5(a))

equipped with a Genesys ADMA-G-Eco + (Figure 5(b)). This system is developed especially for

vehicle dynamics testing in the automotive sector. This inertial measurement unit (IMU)

corrected by global positioning system (GPS) enables precise measurement of acceleration,

speed, and position of the moving test vehicle in all three-dimensional axes. Furthermore, the

pitch, roll and yaw angles, angular velocities as well as sideslip angle can be obtained. The GPS

antenna is mounted on the roof of the test vehicle, whereas the IMU is placed in the footwell of

the passenger seat. Ideally, the two sensors are placed in the center of gravity; unfortunately, in

praxis, this requirement usually either cannot or can only be fulfilled with very high effort.

Furthermore, it is hardly possible to exactly align the ADMA’s measurement axes with the

vehicle’s axes. The errors caused by the distance between the installation position and the c.o.g

as well as by misalignment angle can be mathematically compensated considering the lever arms

and the angle offsets, respectively. The IMU’s measurements are exclusively provided for the

validation of the Kalman filter application. Additional measurements of the wheel speeds,

accelerations and yaw rate as well as system inputs, i.e., steering angle, engine, and breaking

torque, are taken from the vehicle’s bus system. The onboard measurements are provided for the

measurement update of the real-time Kalman filter application. Furthermore, an ES910

prototyping and interface module provides the connection to the vehicle bus and the computa-

tion of the filter application with system-level behavior.

4.2. Unscented Kalman filter setup

The UKF utilizes a two-track model including roll dynamics as described in Section 2. The

estimator’s state and measurement vector were therefore

Figure 5. Test vehicle and measurement equipment.
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x ¼
_ψ; β;κ; _κ; Fyi ;ωi; vcog

	 
T
, (45)

y ¼
_ψ; ay,s; ax,s;ωi

� �T
: (46)

αUKF determines the spread of the sigma points around the mean bx and is set to 1, the scaling

parameter κUKF is usually set to 0, and βUKF ¼ 2 is an optimal value to approximate distribu-

tion of x as Gaussian distribution. The process and measurement covariances are empirically

determined and set up to

Q ¼ diag 104; 1; 1; 1; 1; 1; 1; 1; 1010; 1010; 1010; 1010; 1
� �

10�15 (47)

R ¼ diag 10�6
; 10�3

; 10�2
; 10�3

; 10�3
; 10�3

; 10�3
� �

: (48)

The initial covariance matrix of the state distribution is initialized with P0 ¼ Q.

4.3. State estimation

In this section, the results of vehicle state estimation are shown. The UKF estimation

results are displayed in light grey, while the reference measurements of the ADMA-G-Eco

+are displayed in black and the vehicle`s onboard measurements are displayed in grey. Each

displayed maneuver is subdivided into eight diagrams. The top line shows yaw-rate and

sideslip angle representing lateral dynamics, and the second line shows roll angle and roll

rate representing roll dynamics. Furthermore, the velocity in the c.o.g. and the wheel

speeds representing longitudinal dynamics are displayed in the third line and at last longi-

tudinal and lateral acceleration in the bottom line. The accelerations in the c.o.g are

displayed with continuous lines and the accelerations measured with onboard acceleration

sensor that is not mounted in the c.o.g. in the dashed lines. The distances of the sensor

position from the c.o.g. are identified with lx ¼ 1:07 m, ly ¼ �0:39 m, and lz ¼ 0:55 m. In

order to demonstrate the estimation quality, Figure 6 shows a steering sweep maneuver

with periodical steering angle input at nearly constant amplitude and increasing fre-

quency and at a constant velocity of 37 km/h Despite the varying frequency, an accurate

estimation of all dynamic states is evident, accompanied by improved estimation of the

vehicles velocity compared to the onboard measurement of the vehicles’ velocity. Only for

the roll angle, a higher deviation can be recognized. This results from varying lateral

inclination of the test road.

A steering sweep maneuver is optimal to validate the filter application and the integrated

vehicle dynamic models, but it is not a practical example, whereas, for example, lane change

maneuvers often occur. In addition, lane change maneuvers enable high lateral acceleration

and high values of tire sideslip angles, which may lead, under certain conditions, to loss of

stability due to nonlinear tire characteristics. Therefore, lane change maneuvers are suitable as

practical driving situation.
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A double-lane change maneuver with moderate lateral acceleration represents a typical

maneuver on highways or freeways occurring by overtaking another slower moving vehicle.

However, a double-lane change maneuver with high lateral acceleration represents obstacle

avoidance maneuver. This kind of maneuver is displayed with a high lateral acceleration up to

ay ¼ 7 m=s2 and with nearly constant velocity of v ¼ 37km=h in Figure 7. It can be stated that

also an accurate estimation of all relevant states can be seen over the whole maneuver, and

again particularly an improved velocity estimation compared to onboard measurement can be

emphasized. The higher estimation performance of the velocity can be advantageous for some

control applications, such as collision avoidance.

Figure 6. Vehicle state estimation during steering sweep maneuver.
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4.4. Dead-time compensation

A major problem in control systems is dead time. Dead time may lead either to poor

control results or to unstable control. In case of stability control systems and therefore for

robust car steering, the real-time information of sideslip angle and yaw rate is very

important. As pointed previously, an accurate estimation of this vehicle states can be

realized using UKF with nonlinear two-track model even if vehicles move at its stability

limits. However, the estimated states are not the true vehicle states at this particular time.

They are delayed due to the dead-time-shifted measurement update, which occurs partic-

ularly of the communication on the CAN network. In dependence on the length of dead

time, different arrangements exist for dead-time compensation. In addition, to consider

Figure 7. Vehicle state estimation during double-lane change maneuver.
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the dead time in the controller designing, a further possibility is model-based dead-time

compensation within state estimation. A simple method to predict the system’s state and

covariance during the dead time is to execute only the filter process update without doing

the measurement update as defined in Section 3.2. Alternatively, to reduce computational

cost, the prediction can be executed only considering the mean of the system states by

neglecting further sigma points. During the prediction from time step k to kþ ntd , there are

no further information of the system input. Therefore, the last known system input is used

for the prediction. From this follows a prediction error that decreases with less dynamics

of the system input. A comparison of both possibilities and the quality of the dead-time

compensation within the vehicle state estimation is shown in Figure 8. A step steering

maneuver on dry asphalt at a velocity of approximately 50 km/h with maximum lateral

acceleration of almost ay ¼ 7m=s2 is considered. The top diagram shows the yaw rate and

the next diagram the sideslip angle, while measurements are displayed in black, the

UKF’s state estimation without dead-time compensation in grey, the dead-time compen-

sated state estimation by using all sigma points in dashed light grey, and the dead-time

compensated state estimation by using only the mean in dash-dotted grey. In the present

case, the predominant dead time amounts about 30 ms that corresponds to ntd ¼ 3. The

dead time is determined by comparing redundant measurements that are obtained from

the IMU of the ADMA and the vehicle’s onboard CAN bus.

It is quite obvious that both methods for dead-time compensation do not really differ in the

application of vehicle dynamics; thus, it is at an advantage due to reduced computational costs

only to consider the mean of the state. Furthermore, the UKF results with dead-time-compensated

Figure 8. Dead-time-compensated vehicle state estimation during step steering maneuver.
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states also do not differ from the time-shifted UKF prediction without dead time displayed in

light grey. Therefore, it is possible to include dead-time compensation in the state estimation in a

simple manner and to obtain precise estimation results. However, this method for dead-time

compensation has the restriction that the system does not contain varying dead time and the dead

time is well known.

All previously presented test maneuvers are executed on dry asphalt. Thus, the maximum

friction coefficient between road and tire is well known. Under different road conditions, for

example, wet, snow, and ice and without adaption of the friction coefficient, the accuracy of the

state estimation decreases highly. Hence, for precise state estimation, it is essential to estimate

the maximum friction coefficient as well.

4.5. Maximum friction coefficient estimation

However, not only for improved vehicle state estimation a simultaneous estimation of the

maximum friction coefficient between road and tire is of paricular importance. To ensure a

proper functionality of safety functions not only the knowledge of the driving situation but

also of the driving environment, in particular the road condition, is required. This section

focuses on the road condition classification using a joint unscented Kalman filter approach as

described in Section 3.3. The extended process, covariance matrixQp , for the maximum friction

coefficient estimation is empirically determined and set up to

Qp ¼ diag diag Qð Þ; 10�8
� �

: (49)

Furthermore, the maximum friction coefficient is bounded according to Eq. (37) with a upper

bound of 1.1 and a lower bound of 0.1. The upper bound corresponds to the best traction

potential that may occur when the roads are dry and the tires are in good condition. The lower

bound corresponds to the lowest traction potential that may occur when the roads are icy and

the tires have a low tire profile.

In Figure 9, again a double-lane change maneuver on dry asphalt at a velocity of approx-

imately 43km=h with maximum lateral acceleration of almost ay ¼ 9 m=s2 is considered.

The top diagram shows the measured system input namely the steering angle. The fol-

lowing diagrams show the yaw rate, the lateral acceleration, and the sideslip angle, while

the IMU’s measurements are displayed in black and the onboard measurements in grey,

and the UKF’s estimations in light grey. The bottom diagram shows the estimated maxi-

mum friction coefficient, while the initial value is wrongly set to μmax ¼ 0:4. By using

offline identification algorithms, the reference value for the maximum friction coefficient

was determined at approximately 1. The light red lines show the state estimation without

adaptation of friction coefficient. Obviously, an accurate sideslip and yaw-rate estimation

can only be guaranteed with adaptation of the friction coefficient. However, an adaption

of the friction coefficient is only possible during phases of sufficient excitation. At the

beginning and at the end of the maneuver without steering, no adaption may take place.
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When sufficient excitation exists, the maximum friction coefficient can be estimated within

few seconds.

In Figure 10, the estimation of the maximum friction coefficient on different roads is displayed.

Beginning on dry asphalt, the test vehicle drives a sine steering maneuver and changes over to

wet steel. Wet steel exhibits similar properties regarding traction potential as an icy road.

Because it is much easier to build up a road composed of wet steel than of ice to carry out a

test, in this test, the wet steel represents a road with low traction potential. Over the entire

period of the sine maneuver, a sufficient excitation is existent. Hence, the unscented Kalman

Figure 9. Vehicle state and maximum friction coefficient estimation during double-lane change maneuver on dry asphalt.
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filter estimates while driving over the dry asphalt a maximum friction coefficient of approxi-

mately 1. After changing to wet steel, clearly, a lower friction level with a maximum friction

coefficient of approximately 0.3 is detected. It can be spotted that while sufficient excitation is

existent, different friction levels according to different road conditions can also be clearly

recognized. The last 5 s of the maneuver is without steering and acceleration, and the esti-

mated maximum friction coefficient remains constant. Therefore, due to missing excitation, it

would not be possible to distinguish between dry asphalt and wet steel. Nonsufficient excita-

tion is a major disadvantage of Kalman filter-based approaches for parameter estimation in

general and thus also for friction estimation.

Figure 10. Vehicle state and maximum friction coefficient estimation during sine steering maneuver on dry asphalt and

wet steel.
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Apromising approach to solving this problem is to use further source of information, for example,

optical sensors and to do an information fusion, so that disadvantages of one information can be

compensatedbyadvantages of other information. Information fusion is thenext step for improved

friction estimation and current research.

5. Conclusion

In this chapter, state and parameter estimation in vehicle dynamics using the unscented

Kalman filter is presented. Therefore, a detailed nonlinear process and measurement model of

the vehicle are introduced, representing the vehicle’s stability and the measurements taken

with standard sensors. Dead times, due to CAN communication, are faced and compensated

using model-based prediction. The validation of the introduced methods is realized by using a

Volkswagen Golf GTE Plug-In Hybrid for high dynamic test maneuvers, e.g., double-lane

change. The estimation results are compared with high-precision measurements using a

Genesys ADMA inertial measurement unit. Accurate estimation even in situations with lateral

acceleration above 7 m=s2 can be achieved. Furthermore, real-time estimation, compensated

for dead times can be realized using model-based prediction.

The parameter estimation is presented using the example of friction coefficient estimation

utilizing the joint unscented Kalman filter. Thus, maneuvers with different excitation on

different road surfaces are executed. Again, precise estimation in the presence of sufficient

excitation can be shown.
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