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 

Abstract—The background of our study is to apply advanced 

real-time gait analysis to walking interventions in daily-life setting. 

A vast of wearable devices provide gait information but not more 

than pedometer functions such as step counting, displacement and 

velocity. This paper suggests a real-time gait analysis method 

based on a head-worn inertial measurement unit (H-IMU). A novel 

analysis method implements real-time detection of gait events (heel 

strike, toe off, mid stance phase) and immediately provides 

detailed spatiotemporal parameters. The reliability of this method 

was proven by a measurement with over 11000 steps from seven 

participants on a 400 m outdoor track. The advanced gait analysis 

was conducted without any limitation of a fixed reference frame 

(e.g., indoor stage, infrared cameras). The mean absolute error in 

step-counting was 0.24%. Compared to a pedometer, additional 

gait parameters were obtained such as foot-ground contact time 

(CT) and contact time ratio (CTR). The gait monitoring system 

can be used as real-time and long-term feedback, which is 

applicable in the management of the health status and on injury 

prevention. 

 
Index Terms—Biomedical monitoring, Gait analysis, Inertial 

measurement unit, Smart devices, Wearable sensors 

 

I. INTRODUCTION 

AIT analysis is a key feature in consumer health 

monitoring. The number of steps can inform consumers of 

the amount of daily activity and calorie consumption. Gait 

speed is regarded as a vital sign, such as temperature, blood 

pressure and heart-beat rate [1], because of the strong 

correlation between the gait speed and seniors’ motility [2]. In 

addition, information of gait balance can contribute to injury 

prevention. For example, monitoring gait balance control can 

aid the fall prevention of seniors [3] and the management of 

post-concussion [4]. Foot-ground contact time (CT) can be used 

for the rehabilitation after hip replacement [5]. Gait stride time 

variability was suggested as a predictor of overuse injuries 

during loaded and strenuous walking, which can aid the injury 

prevention in military training [6]. Therefore, people can 

benefit from the gait monitoring systems, in terms of the 

management of the health status and the prevention of injuries.  
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In the global market today, smartphones, wearable devices 

and internet of things (IoT) systems can provide gait analysis 

[7–10]. The gait monitoring units can even detect a pathologic 

gait [8, 9], and predict fall injuries [10]. Although most of 

healthcare wearable devices fail to sustain long-term 

engagement for users [11], pedometers have been continuously 

investigated to promote the sustainability of impact for the 

elderly [12] and the young [13, 14]. Interventions that 

encourages more walking benefit from pedometers because of 

the management of habitual activity and daily motivations [12–

14]. Furthermore, wireless earphones have already been 

developed as a commercial health monitoring device [15]. The 

user friendliness and simplicity allows a seamless experience of 

the healthcare devices in everyday life. Virtual and augmented 

reality systems can support navigation applications with 

spatiotemporal gait parameters. A greater number of devices 

with head-worn sensors are expected to emerge in the 

healthcare industry. 

This study demonstrates that the head-worn sensors can 

provide not only step counting like a pedometer, but also more 

spatiotemporal gait parameters that are strongly related to the 

health status. The proposed gait analysis system runs in real-

time, using a wireless head-worn inertial measurement unit (H-

IMU). The heel strike (HS), toe off (TO), and mid-stance phase 

are separately detected, thereby allowing the estimation of gait 

parameters, such as CT and a stride time. The experiment was 

conducted outdoors to demonstrate the applicability on daily 

life settings. In the next section, the previous work is discussed. 

Then, biomechanical terminologies of a gait cycle (the third 

section) and the proposed method for the gait event detection 

(the fourth section) are explained. Additionally, the estimation 

of gait parameters appears in the fifth section. Computations 

based on the measured data are introduced in the sixth section, 

followed by the conclusion.  

II. PREVIOUS WORKS 

A. Previous Systems in Gait Analysis  

Reportedly gait analysis started with Aristotle thousands 
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years ago [16]. A couple of centuries ago, modern technologies 

(e.g., electrophysiology, photography) made innovation in 

measurement of human movement and gait analysis [16]. For 

kinetic analysis, pressure sensors can localize the feet and 

measure their forces [17]. Muscle kinetics is also analyzed with 

electromyography (EMG) [18]. For kinematic analysis, video 

analysis has been implemented [19]. Growing with film 

industry, 3 dimensional (3-D) motion capture technology has so 

far matured to be applied to gait analysis [20] by recording 

comprehensive kinematic information in 3-D space with 

sufficient precision to support gait analysis in different facets 

and even for highly demanding purposes as for stroke 

rehabilitation [21, 22]. 

B. Previous Motion Capture Systems 

Motion capture systems include optical, non-optical and 

marker-less systems. Optical motion capture systems need 

cameras, markers and the source of optical waves in a certain 

range of spectrum, such as visible light and infrared ray (IR) 

[23]. Surrounding an actor, cameras detect optical wave 

reflected by markers on a suit which the actor is wearing. 

Referring to position information of markers, software 

regenerates the actor’s movement in 3-D space. Although it is 

matured in 3-D animation movies and computer game industry, 

optical motion capture systems have errors from hidden 

markers which are placed behind human body from the view of 

cameras [24]. The use of multiple cameras also causes higher 

costs. Non-optical motion capture systems use inertial sensors 

[25], mechanical sensors or magnetic field. The inertial sensors 

generate kinematic information using inertial parameters such 

as acceleration, angular velocity, whereas mechanical sensors 

use banding angles of wires. In terms of magnetic marker 

systems, level of magnetic field near agents is used. From those 

parameters, systems finally obtain the body segment position or 

joint angle information. However, this technology also needs 

error compensation. For example, inertial motion capture 

systems show error accumulation in position data caused by 

double integration of accelerometer data, which is called drift 

effect. Mechanical motion capture systems lead to a limitation 

of motion because of wires and apparatus. Magnetic motion 

capture systems suffer from magnetic distortion from metal and 

electrical devices. In terms of marker-less systems, they 

animate motions without markers or sensors, which is a vision-

based solution [26]. Using dual vision technology, two cameras 

can get image depth information. It is a handy system with a 

small number of devices and easy to use at home and therefore 

it is very popular in the computer game industry. Cameras, 

however, cannot see behind the body just like optical motion 

capture, and in addition they have much more hidden area so 

that it is called a 2.5-D motion capture system. 

The inertial measurement unit (IMU) is used in this study. 

The accuracy of the inertial sensor units is significantly 

improved because of cutting edge microelectromechanical 

systems (MEMS) technology and sensor fusion with 

magnetometer [27], global positioning system (GPS) [28], or 

camera [29]. The IMU based on a combination of 

magnetometers and inertial sensors (accelerometer, gyroscope) 

can reduce drift effects of inertial sensors. Unlike optical 

motion capture systems, motion capture using an IMU system 

is implemented without fixed reference frames such as stages 

and cameras. This allows the measurement of human motion 

indoors [30] and outdoors [25]. Therefore, with advantages, 

IMU technology has quickly grown in gait analysis as well as 

in entertainment, education and sports industry. 

C. Sensor Placement and Reduced Number of Sensors 

Researchers explorer optimal positions to analyze gait by 

using a much smaller number of sensors than the whole body 

solution. They tested these simpler systems by using foot 

switches or inertial sensors which were fixed onto the foot, the 

tibia, the thigh, and the pelvis [31]. They successfully analyzed 

gait events, knee angle and foot orientation. Real time analysis 

was, however, implemented only when including foot switchers 

in its sensor combination, which are impractical in daily life. 

They also conducted the experiments by using wired devices in 

laboratories and clinics, conditions all together, quite far away 

from everyday life conditions. Nevertheless, it was shown that 

a smart phone can perform walking detection and counting 

steps, even placed in a hand, a backpack, a handback, and 

trouser pockets [7]. This demonstrated that a single sensor unit 

can be applied in gait event detection, independently from its 

placement.  

D. Previous Work Using Head-Worn Sensor 

A head-worn sensor has been implemented to research on 

head stability during walking [32–34]. Researchers have 

analyzed head accelerations to assess coordination with the 

neck and the truck on three axes [32]. They found that head 

accelerations have reliably regular patterns related to gait. 

Although acceleration signals were attenuated due to stabilizing 

effect of the neck and the trunk [32–34], researchers have 

referred to the head in analyzing gait patterns [35]. A wireless 

ear-worn sensor was demonstrated for the gait pattern analysis, 

which allowed to recognize pathologic gait [9]. The ear-worn 

sensor can also detect HS in real time. However, it includes 

several cycle delay, and needs a combination with a pressure 

sensing platform in order to deliver the advanced gait 

information [36]. Finally, it was reported that an H-IMU alone 

can detect TO as well as HS in real time, thereby allowing the 

measurement of detailed gait parameters (e.g., CT, stride 

length) [30]. It was conducted in the laboratory but not in an 

outdoor setting shown in this paper. 

III. GAIT CYCLE 

A gait cycle is defined as a specific sequence of repetitive 

events during walking. The gait cycle consists of stance phase 

and swing phase, which are divided by two gait events, HS and 

TO. Stance phase is a time period when the foot contacts the 

ground and the leg supports the body. Swing phase is another 

time period when the foot swings and moves forward. Heel 

strike is the end point of the swing phase and the beginning of 

the stance phase, whereas TO is the end of the stance phase and 
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the beginning of the swing phase. The time points of phases and 

events are important in measuring spatiotemporal gait 

parameters.  

In Fig. 1, a gait cycle is shown with exemplary walking 

motions and its time diagram. The walking motions are from 

the right side view on the sagittal plane. In the time diagram of 

Fig. 1, phases and events are described. The walking cycle starts 

with a right HS, which is the initial point of the right stance 

phase. It is followed by a left TO, that finishes the left stance 

phase and starts the left swing phase. The right foot lies flat on 

the ground (i.e., foot flat) and the mid-stance phase starts, while 

the left foot is in the mid-swing phase. Subsequently, it changes 

from the right stance phase to the terminal stance phase and the 

right heel off occurs. This is followed by the left HS whereby 

the left stance phase starts. Thus, this phase can be described as 

a double support period. The duration from right HS to left HS 

is defined as left step time. After the left HS, another step starts 

in the same order as described before, but the foot has changed 

(right step). At the end of the right stance phase the right TO 

occurs, which finishes the right CT. This is the period between 

the right HS and the right TO, which is a step time plus a double 

support time. The contact time depends on gait velocity but is 

approximately 60% of the stride time. The ratio between the 

contact time to the stride time is called ground contact time ratio 

(CTR). Left foot flat, left heel off, and the right HS are followed 

as a sequence. The duration from left HS to right HS is the right 

step time. This complete sequence is one gait cycle and also 

named a stride time, which is repeated during walking. 

IV. METHODOLOGY OF GAIT DETECTION USING H-IMU 

Gait analysis using a single H-IMU was implemented with 

an IMU system which included a 3-D accelerometer, a 3-D 

gyroscope, and a 3-D magnetometer. This sensor combination 

can generate accurate kinematic data by minimizing error 

accumulation. The system regenerates zero-gravity acceleration 

to detect the impact of the feet. Vertical acceleration of the head 

is processed for peak detection because the impact on the foot 

at HS and TO is transmitted to the head along longitudinal body 

axis, which is identical to the z-axis of the head (see Fig. 4(a)). 

The peak detection algorithm finds peaks in the vertical 

acceleration at HS and TO. A thresholding algorithm eliminates 

the small peaks which are unwanted signals. For instance, peaks 

occur when the head sways, nods, and direct the line of sight 

from one place to another place during walking. White noise 

also makes small peaks. A digital filter reduces noise and makes 

the signal smooth, in order to improve estimation of kinematic 

parameters and spatiotemporal accuracy in gait event detection.  

A. Peak Detection 

Peak detection is one of the most accurate methods in gait 

event detection [7]. It can be implemented on the pelvis, the hip, 

the thigh, the tibia, and the feet [8]. For the single sensor 

solution, it can be realized on the waist and the wrists, as well 

as in the backpack and the handbag [7]. The peak is detected by 

comparison of the derivative before and after a sample point of 

interest. When the signs of these derivatives are different, the 

sample point is a peak. Generally, peaks appear in sensor 

signals over time, so that peaks at gait events must be 

distinguished from irrelevant peaks. At gait events, peaks show 

characteristics which differ depending on the considered body 

part.  

In Fig. 2, vertical (z-axis) accelerations of four body parts are 

shown. From the top, the left foot, the right foot, the pelvis, and 

the head are arranged in order. Each body part has different 

clues at HS and TO. Considering foot acceleration, the highest 

peak occurs, which is defined as an HS. A stance phase which 

keeps a certain level of acceleration without fluctuation follows, 

and then several peaks occur again. The last negative peak is 

regarded as TO before an abrupt drop in acceleration. In terms 

of pelvic acceleration, the first high peak is assumed as HS and 

the negative peak before the second peak is regarded as TO. For 

head acceleration, the first high peak is defined as HS. From the 

HS, the third peak is regarded as TO.  

In the foot acceleration in Fig. 2, the highest peaks are over 

30 m/s2 at HS and peaks at TO also reach around 10 m/s2, which 

are easily distinguishable. However, other high peaks occur 

 
Fig. 1.  Time diagram of a gait cycle with example pictures at walking gait events which are from the right side view along the sagittal axis. Abbreviations of 
‘HS’ is heel strike, ‘TO’ is toe off, ‘R’ is right, ‘L’ is left, (i) is initial phase, (m) is mid-phase, and (t) is terminal phase.   
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near the peaks at HS and TO as well as during swing phase, 

which reduces accuracy of gait event detection. In addition, a 

foot sensor can aid gait event detection for only one foot, 

whereas a sensor fixed onto the pelvis or the head can detect 

gait events of both feet as shown in Fig. 2. Peak detection with 

the head acceleration has more advantages than the pelvic 

acceleration [30]. Compared to pelvic acceleration, head 

acceleration shows clearly outstanding peaks. Pelvic 

acceleration shows two high peaks at HS and TO, thereby 

causing a confusion in analysis. Head peak acceleration has less 

delay from foot peak acceleration than pelvic acceleration as 

shown in Fig. 2. 

B. Thresholding 

Gait event detection needs thresholding to determine if peaks 

occur due to gait events or noise. The threshold value has to be 

changed depending on gait velocity. This is because an 

increased gait velocity generally results in higher peak 

acceleration at gait events but also in higher noisy peak 

acceleration. To be specific, a higher threshold properly works 

for a higher gait velocity because the impacts at gait events 

generate higher peak acceleration. In contrast, a lower threshold 

is suitable for slower gait, because the peaks are smaller. The 

level of threshold value can be empirically decided. 

Thresholding method is more effective for head acceleration 

than for the other two parts in Fig. 2. The head acceleration 

shows clearly outstanding peaks at HS, whereas noisy peaks 

occur near to HS, TO and the swing phase in foot and pelvic 

acceleration, which causes confusion in setting optimal 

thresholds and increases errors in gait event detection. For head 

acceleration, however, it is easier to find an optimal threshold 

because of less confusing peaks near HS and TO. 

C. Digital Filter 

 To improve the quality of data, an IMU system needs digital 

filters which can reduce noise and eliminate unwanted signals 

[37, 38]. In gait analysis, well-designed digital filters can 

reduce errors of gait parameters such as step length, 

displacement, cadence and the number of steps because of 

reliable sensor data. Digital filters are categorized into two 

classes, a finite impulse response (FIR) filter [37] and an 

infinite impulse response (IIR) filter [38]. Finite impulse 

response filters modulate a finite number of inputs from the past 

to the present, which finally generates present output. High-, 

low- and band-pass filters as well as Gaussian and median 

filters are included in FIR filters which reduce white noise or 

unwanted signals. FIR filter helps in detecting peaks at gait 

events by smoothing unwanted peaks near gait events. On the 

other hand, IIR filters use an infinite number of inputs because 

of recursive function. This means the present output is a 

function of past outputs which are modulated from past inputs. 

The present output is, therefore, related by all past inputs as like 

a feedback loop. Kalman filter represents IIR filters and can 

reduce not only white noise, but also offset errors from sensors 

or systems. Kalman filter is designed from state equation based 

modeling, which is expressed by a set of differential equations. 

Kalman filters with IMU are broadly used in estimation of 

displacement in terms of aerospace, navigation and gait analysis 

[29]. Kalman filters are developed in different practices. 

In time domain, convolution of FIR filters and input signals 

generate a filtered output signal. Convolution, however, takes 

Θ (N2) of complexity. For faster algorithm, computer programs 

execute convolution in frequency domain after fast Fourier 

transform (FFT). In frequency domain, a convolution is just a 

multiplication and its complexity, thereby, decreases to Θ (N 

log N) the same as the complexity of FFT. After multiplication 

in frequency domain, inverse fast Fourier transform (IFFT) 

returns the data in time domain, which becomes a result of the 

convolution. Discrete wavelet transform (DWT) and inverse 

discrete wavelet transform (IDWT) can reduce unwanted 

frequency components. Thresholding in DWT also efficiently 

reduces noise, which takes the lowest complexity of Θ (N) [9]. 

With FFT/IFFT, however, more variations in filter design are 

allowed for different gait styles and gait velocities. 

V. GAIT PARAMETERS WITH H-IMU 

An H-IMU can provide head acceleration, which is used in 

gait event detection. Spatiotemporal gait parameters can be 

obtained from gait event detection. Head acceleration, velocity, 

and position show a specific pattern for human gait. From the 

patterns, the exact time points at gait events are detected. 

Spatiotemporal gait parameters are calculated from the position 

and the time point at HS and TO. 

 
Fig. 2.  Vertical acceleration of body segments of the left foot, the right foot, 

the pelvis and the head which are measured at 60 Hz. 
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A. Temporal gait parameters 

Temporal gait parameters are obtained from time points of 

HS and TO. As shown in Fig. 2, a head-worn sensor can detect 

gait events of both the right and left foot, and the stance phase 

and the swing phase are calculated by the difference between 

the gait events. 

When detecting HS, an FIR filter and thresholding are used 

as shown in Fig. 3. At HS, peaks on head acceleration is around 

1-sample delayed from peaks on foot acceleration, which is 

around 16.7 ms delay at 60 Hz. An FIR filter can reduce the 

delay between head peak acceleration and foot peak 

acceleration. In addition, double peaks can appear at an HS 

because the second impact occurs at foot flat as strong as at HS; 

however, the FIR filter can change the double peaks to one peak 

by using smoothing effect, which helps in avoiding confusion 

in HS detection. An ideally selected threshold can also enhance 

the accuracy of gait event detection by reducing noise.  

At TO, a foot pushes down the ground and starts hover in the 

air. In foot acceleration, a relatively high peak is observed 

because it is relative to the propulsion force which makes the 

body move forward. The force is transmitted to the head, which 

is observed as a peak on head acceleration. The peak is too 

small to be determined whether it is the peak at TO or not. 

However, the third peak is normally the time point of TO, 

following HS (the first peak) and foot flat (the second peak). In 

case TO is not found with the third peak of acceleration because 

of an exceptional acceleration pattern, the negative peak of head 

velocity is considered as TO. This avoids skipping TO 

detection. 

The accurate time point of gait events provides accurate 

temporal parameters. The period of a stance phase is obtained 

from the time difference from an HS to the following TO of one 

foot, whereas the period of a swing phase is from a TO to the 

following HS of one foot. A step time is from an HS of a foot 

to the next HS of another foot. A stride time is from an HS of a 

foot to the next HS of the same foot. Cadence is defined as the 

number of steps per minute. To get cadence, first of all, the 

number of steps is measured by counting the number of HS. 

This is because the number of HS is the same as that of steps. 

HS detection is the easiest and the most accurate method. 

Second, travel duration is measured by a timer in IMU system. 

When the number of HS is divided by travel duration in 

minutes, cadence is obtained.  

B. Spatial gait parameters 

Spatial gait parameters include step length (SL), stride 

length, and travel distance. A single IMU has a global position 

in 3-D space, which includes the horizontal position of the head 

in x-y Cartesian coordinate system. From the positions, spatial 

gait parameters are obtained during walking as shown in Fig. 4.  

Step length can be measured from the distance between an 

HS position of one foot to the following HS position of the other 

foot. The distance between two feet is measured along the 

walking direction, which means foot positions are measured 

after projected on the vector of walking direction as shown in 

Fig. 4. The head position, however, can provide the average SL. 

The distance between the head position at an HS and at the 

following HS is equivalent to the summation of the latter part 

of an SL and the former part of the next SL, which we call the 

pseudo step length (PSL) [26]. With n = 1, 2, 3, …, the n-th step 

length, SLn, is separated into two parts SLn.a and SLn.b as shown 

in (1). The n-th PSL is sum of SLn.b and SLn+1.a as shown in 

(2). 

 

... bSLaSLSL nnn   (1) 

... 1 aSLbSLPSL nnn   (2) 

 

From two equations, the relationship between the average of the 

SL and the PSL is defined as   

 

kPSL

PSLbSLaSL
N

PSL

PSL
N

bSLaSL
N

PSL
N

bSLPSLaSL
N

SL
N

SL

N

N

k

kN

N

k

k

N

N

k

k

N

k

k




























][E

]}[E)..{(
1

][E

)
1

1
..(

1

1

1

)..(
11

][E

1

1

1

1

1

1

1

1

1

1

 (3) 

 

where E is the expectation, N is the number of HS and k is a 

constant. As the number of HS increases, k is negligible so that 

E[SL] and E[PSL] are nearly the same. In addition, they have 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 3.  Head vertical acceleration are shown (a) 46 samples near an HS 
depicted with filtering area, (b) with 16 samples before filtering, and (c) 16 

samples after filtering, which are measured at 60 Hz so that intervals between 

samples are 16.7 ms. 



TCE-2018-04-0137 6 

very close values when SL have the similar values in a regular 

gait velocity. If there are the N+1 th SL and the N th PSL, 

 

][E.... 11 PSLPSLbSLaSLbSLaSL NNNN  
 (4) 

 

when all former parts, SLn.a, are similar. In regular gait, one 

PSLN and average PSL are similar as well. The constant k is 

finally close to 0 as shown below: 

 

.0]}[E)..{(
1

1  PSLbSLaSL
N

k N
 (5) 

 

For another estimation, the step length is measured from head 

positions at the mid-stance phase as shown in Fig.4(c). The 

positon of one foot can be measured when the head vertical 

position is the highest. This is because the head vertical positon 

reaches the peaks when the leg is straight and orthogonal 

against the ground. In the side view on the sagittal plane (Fig. 

4(a)), the head is located directly above a foot, which is also 

depicted in the top view as shown in Fig. 4(c). The head 

position, therefore, can be used to estimate not only the foot 

position, but also the SL which we call the estimated step length 

(ESL). The equation of n-th step length, SLn, and n-th estimated 

step length, ESLn, is below: 

 

nnnnnn ESLESLSL   1
 (6) 

 

where n = 1, 2, 3, … and εn is the difference between head 

position and foot position at mid-stance phase. The error 

between SLn and ESLn is ξn. If the left and right step lengths are 

regularly different, the error of SL can be estimated from 

average right foot error, E[ε2n], and average left foot error, E[ε2n-

1]. Estimated error εE is defined as 

 

.]E[]E[ 212 nnnE   
 (7) 

 

From (6) and (7), there are two different equations for the left 

and the right step length as below: 
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where SL2n-1 and SL2n are step lengths for the left and right foot 

and ESL2n-1 and ESL2n are estimated step lengths for the left and 

right foot as well. With difference of even and odd SL, it is 

distinguishable which SL is from the right step or the left step. 

When it is the left-right balanced gait so that εn and εn+1 show a 

small difference, SLn and ESLn are nearly the same.  

The stride length can be calculated from the distance between 

an HS position of one foot and the following HS position of the 

same foot. The average stride length can be twice of the average 

step length. Left stride length starts with the left HS and ends 

with the next left HS, which is equivalent to the sum of right SL 

and left SL in the order. The right stride length is calculated by 

the sum of the left SL and right SL in the order. A stride length 

can be estimated from the sum of the right and the left ESL. 

The travel distance can be obtained by double integration of 

acceleration or the sum of step lengths. Both methods can 

include an error from the trajectory of swayed head which 

makes more travel distance. It is, as a result, needed to project 

the trajectory onto the vector of gait direction. 

VI. RESULTS 

Gait analysis was implemented using an H-IMU from a 

commercial IMU system which was already developed as 

hardware and software packages [39]. For hardware, seventeen 

IMUs and a wireless communication router (base frequency: 

2.4 GHz) are included for the whole body motion capture 

system. The software renders 3-D biomechanical human 

models with the whole body system. The software solution 

 
 

Fig. 4.  The avatar shows (a) the side view of walking avatar depicted with SL, PSL and ESL methods, (b) the top view of walking avatar depicted with SL and 

PSL, and (c) the top view of walking avatar depicted with SL and ESL.  
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supports real-time measurement of acceleration, velocity, 

position, and orientation of IMUs. We carried out data analysis 

by using only head kinematic data. The analysis was 

implemented at a 60 Hz sampling rate.   

A. Step counting 

Step counting was implemented by head kinematic data 

provided by the H-IMU. Kinematic data of a physiological gait 

pattern were captured with six participants (3 males, 3 females; 

age: 30.2 ±3.7 years; height: 174.3 ±9.0 cm. A commercial 

pedometer placed on the waist was also used for comparison. 

For one trial, participants were asked to walk one round on the 

third lane of a 400 m track plus 25 m in the constant speed. They 

walked between two and four trials as participants’ preference. 

Table I compares step counting from manual count, a 

pedometer, and an H-IMU. In total, 10558 steps are manually 

counted as a ground truth. The pedometer counted 10555 steps, 

whereas the H-IMU counted 10533 steps. The step counting 

error ratio (SCER) of the pedometer and H-IMU were -0.03% 

and -0.24%. Pedometer showed less SCER because it made 

errors with over and skip counting, whereas the H-IMU made 

errors with skip counting. Overall, the H-IMU made less mean 

absolute error as 25 steps than the pedometer’s absolute error 

as 35 steps, which showed H-IMU was more accurate than the 

pedometer. The third male participant (M3) walked three trials 

by 1799 steps. Compared to other male participants, both the 

pedometer and the H-IMU showed accurate results as 1801 

steps (0.11% SCER) and 1796 steps (-0.17% SCER). In terms 

of female participants, the first participant walked four trials 

with 2699 steps. Both devices more accurately counted steps as 

2697 steps (-0.07% SCER) than other female participants. The 

participant M1 had less accuracy than other participants 

because they have high peak at TO, which made both 

measurement devices confused. The participant M2 walked fast 

so that pedometer might have skipped more steps. Participants 

M3 and F2 were older than others and steps were counted more 

accurately. Females’ gait was also detected more accurately 

than males’ gait. Although different participants have different 

gait style, the H-IMU provides data nearly close to the ground 

truth without changing digital filters and threshold values.    

B. Analysis of spatiotemporal parameters  

Temporal parameters of seven participants are shown in 

Table II. Including participant M4, participants’ age was 29.6 

±3.7 years and height was 175.7 ±9.0 cm. Total 11112 steps 

were analyzed for gait parameter. Some parameters were 

calculated with sampled 10454 steps excluding the beginning 

and the end data because of instability. For participants M1 and 

M3, more data were excluded after one point at the middle 

because participants changed their speed abruptly, which is not 

constant speed. The participant M2 had the highest cadence as 

124.4 steps per minute and the shortest CT as 579.8 ±26.4 ms. 

The participant F2, on the other hand, had lowest cadence as 

106.8 steps per min and the longest CT as 676.6 ±33.7 ms. 

Other participants’ cadences were between 112.9 and 117.6 

steps per minute. Participant M4 had the highest CTR as 60.9%, 

whereas participant M1 had the lowest CTR as 60.0%.  

For spatial gait parameters, the step length was measured with 

two methods, PSL and ESL. The PSL was generally higher than 

the ESL except for participant M1. Estimated step length 

showed larger standard deviation because it included difference 

values between left and right step length. From ESL, the 

participant M1 had the longest step length as 768.5 ±105.1 mm. 

The shortest step length was recorded by the participant F1 as 

655.2 ±32.7 mm. Step length tends to correlate with height 

except for M2 and M4. For distance, participants walked along 

the third lane of the 400 m track. participants walked between 

the inside length of the third lane and the fourth lane, which is 

between 415.33 m and 423.0 m for one round according to 

international association of athletics federations (IAAF). For 

one trial, 25 m is added on the distance of one round. This 

means the minimum lengths from one trial to four trials are 

440.33 m, 880.66 m, 1320.99 m, and 1761.32 m. When the error 

between the track length and the measurement result is 0.0 

 
TABLE II 

SPATIOTEMPORAL PARAMETERS COMPUTED BY H-IMU 

Participant 
(Age; year) 

Height 
(cm) 

Sampled steps 
(Total steps) 

Cadence 
(steps/min) 

CT (ms) 
(Avg. ±Std.) 

CTR 
(%) 

PSL (mm) 
(Avg. ±Std.) 

ESL (mm) 
(Avg. ±Std.) 

Number 
of trials 

Total 

Distance 

(m) 

Distance 

error per 

triala (m) 

M1 (30) 190 893 (1110) 112.9 645.6 ±53.5 60.0 763.7 ±60.1 768.5 ±105.1  2 853.0 -13.8 

M2 (24) 179 1836 (1857) 124.4 579.8 ±26.4 60.1 729.5 ±44.3 727.9 ±110.2  3 1351.7 10.2 

M3 (34) 177 832 (1189) 117.4 616.6 ±34.0 60.3 754.4 ±42.6 754.2 ±67.3 2 896.7 -2.2 

M4 (26) 184 1162 (1176) 109.5 667.6 ±28.5  60.9 715.2 ±57.5 713.6 ±54.8 2 839.2 -20.8 

F1 (30) 162 2669 (2697) 117.6 618.1 ±20.1 60.6 658.4 ±25.7 655.2 ±32.7  4 1767.1 1.4 

F2 (35) 170 1207 (1221) 106.8 676.6 ±33.7 60.2 720.9 ±61.9 717.6 ±51.1  2 876.2 -2.3 

F3 (28) 168 1841 (1862) 113.0 644.5 ±26.3 60.7 686.6 ±49.0 684.1 ±79.8 3 1273.8 -15.7 

aDistance error per trial is calculated based on distance differences from the inside length of the third lane on 400 m track plus 25 m (ground truth: 440.33 m).  

 
 

 

TABLE I 

COMPARISON OF THREE METHODS IN STEP COUNTING 

Participant 

(Age; year) 

Manual 

count 

Pedometer H-IMU 

Steps 
SCER 

(%) 
Steps 

SCER 

(%) 

M1 (30) 1105 1117 1.09 1100 -0.45 

M2 (24) 1866 1851 -0.80 1857 -0.48 

M3 (34) 1799 1801 0.11 1796 -0.17 

F1 (30) 2699 2697 -0.07 2697 -0.07 

F2 (35) 1221 1223 0.16 1221 -0.00 

F3 (28) 1868 1866 -0.11 1862 -0.32 

Total 10558 10555 -0.03 10533 -0.24 

Mean absolute error 35 0.33 25 0.24 
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m−7.67 m per trial, it might not be regarded as the measurement 

error. When the error is under 0.0 m or over 7.67 m, it might 

result from the measurement error, such as accumulation error 

of IMU systems. The total distance was obtained from 

multiplication of total steps and ESL. Participant M1 and M3 

walked less than two trials so that they show approximate 

results. Their total distances for two trials were 853.0 m (M1) 

and 896.7 m (M3), which had -13.8 m (M1) and -2.2 m (M3) of 

errors per trial. Participants M4 and F2 walked two trials with 

839.2 m and 876.2 m, which had -20.8 m and -2.3 m of errors 

per trial, respectively. Participant M2 and F3 walked three trials 

with 1351.7 m (M2) and 1273.8 m (F3), which had 10.2 m (M2) 

and -15.7 m (F3) of errors per trial. Participant F1 walked four 

trials with 1767.1 m, which 1.4 m error per trial. 

VII. CONCLUSION 

Compared to pedometers, the proposed method can provide a 

large number of spatiotemporal gait parameters (e.g., foot-

ground contact time, contact time ratio, stride time) that are 

strongly related to the daily health status. By using software 

with mobile applications, this method can reach the mass 

market because most wearable devices have IMU sensors, at 

least accelerometers. The data of our system might be 

transformed into acoustic signals to pace Parkinson patients 

[40] and even might initiate multisensory learning effects [41]. 

Issues of health monitoring systems (e.g., security, battery life, 

sustainable engagement for users) should be solved in the 

future. Our study can, nevertheless, contribute to sustainability 

of engagement for end-users, providing a seamless experience 

and motivation for walking. For the future work, advanced 

analysis with H-IMU would be developed to cover various 

types of gait like running and jumping. With head gesture 

recognition, H-IMU can be used in future studies on human-

human interactions in teacher-student and therapist-patient 

dyads in walking settings. 
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