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Abstract: Least-squares estimates are trustworthy with
minimal variance if the correct stochastic model is used.
Due to computational burden, diagonal models that ne-
glect correlations are preferred to describe the elevation
dependency of the variance of GPS observations. In this
contribution, an improved stochastic model based on a
parametric function to take correlations between GPS
phase observations into account is presented. Built on
an adapted and �exible Mátern function accounting for
spatiotemporal variabilities, its parameters can be �xed
thanks toMaximumLikelihood Estimation or chosen apri-
ori to model turbulent tropospheric refractivity �uctua-
tions. In this contribution, we will show in which cases
and under which conditions corresponding fully popu-
lated variance covariance matrices (VCM) replace the es-
timation of a tropospheric parameter. For this equiva-
lence “augmented functional versus augmented stochas-
tic model” to hold, the VCM should be made su�ciently
largewhich corresponds to computing small batches of ob-
servations. A case study with observations from amedium
baseline of 80 km divided into batches of 600 s shows im-
provement of up to 100 mm for the 3Drms when fully pop-
ulated VCM are used compared with an elevation depen-
dent diagonal model. It con�rms the strong potential of
such matrices to improve the least-squares solution, par-
ticularly when ambiguities are let �oat.

Keywords: correlations, equivalence stochastic functional
model, GNSS phase measurement, hidden tropospheric
parameter, least-squares, Mátern covariance function,
stochastic model

1 Introduction
Because of an overdetermined system of equations with
more observations than unknowns, GNSS measurements
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are often processed with least-squares estimation meth-
ods. The functional model which describes the relation-
ship between the observations and the parameters to be
estimated is well-known (Hofmann-Wellenhof et al. 2001);
the samecannot be said for the stochasticmodel.However,
the correct modelling of non-deterministic e�ects can be
considered as a prerequisite in order to reach a minimum
variance of the estimates. Heteroscedasticity of GPS resid-
uals (Bischo� et al. 2005) is widely assumed and the ele-
vation dependency of the variance of GNSS observations
is described thanks to cosine, exponential or CNO/SNR
based functions, see exemplarily Vermeer (1997), Wang et
al. (1998) or Luo et al. (2014). Even if many factors act
on correlating the observations, such as the atmosphere
(Schön and Brunner 2008), or the receiver itself (Bona
2000, Amiri-Simkooei and Tiberius 2007), correlations re-
mainmostly disregarded. Besides computational demand-
ing iterative procedures on the residuals (Koch 1999, Te-
unissen and Amiri-Simkooei 2008), empirical models for
correlations between GNSSmeasurements have been con-
cretely used (El-Rabbany 1994, Howind et al. 1999). How-
ever, due to a lack of an accurate and plausible descrip-
tion, correlations are often neglected. Additionally, diag-
onal variance covariance matrices (VCM) are less di�cult
to handle than fully populated VCM accounting for corre-
lations. Since the least-squares solution remains unbiased
even with approximated stochastic models as long as the
residuals are zero-mean, nomain di�erences are expected
at the estimates level in ideal cases. This was con�rmed
for example by Radovanovic (2001). However, when corre-
lations are neglected, the least-squares estimator is less ef-
�cient and signi�cance tests biased (Williams et al. 2003).
The consequences are for example an overoptimistic pre-
cision, aworthier ambiguity resolution or outlier detection
(Kermarrec and Schön 2017, Amiri-Simkooei et al. 2016, Li
et al. 2017 for Beidou). The development of a better and re-
alistic stochastic model is a way to face this issue (Tralli
and Lichten 1990).

Based on a Mátern covariance function and physical
considerations, Kermarrec and Schön (2017) proposed a
new approach to describe elevation dependent correla-
tions in an understandable manner. This function has two
main parameters: the smoothness and a correlation pa-
rameter and thus allows a greater �exibility with respect
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to simpler non elevation dependent functions, such as the
�rst order Gauss Markov model (AR(1)) proposed by El-
Rabbany (1994). Tomodel atmospheric e�ects, the param-
eters can be �xed to given values following Kermarrec and
Schön (2014).

In this contribution,wemathematically derive how in-
tegrating fully populated VCM built with this function in
the least-squares adjustment can impact the least-squares
solution. Indeed, in someparticular cases, not only the test
statistics become more trustworthy and less biased under
such an improved stochastic model but also the estimates
themselves can be impacted. Thus, the structure of the pa-
per is as follows: in the �rst part, we will describe shortly
the proposed correlation model. The second part explains
the concept of the “hidden elevation dependent parame-
ter” to present when such a function can replace a non-
estimable tropospheric parameter. In the third part and
thanks to an example, we will more concretely highlight
the impact on the solution of non-diagonal VCMbuildwith
the proposal. The appendix deals with the problem of pre-
cision and ambiguity resolution.

2 Stochastic model: a proposal for
correlations

2.1 Mathematical background

The point positioning problem is usually solved by �rst
linearizing the observation equations w.r.t. the unknown
parameters. Based on approximate parameter values, the
so-called linearized functional model is obtained that de-
scribes the mathematical relationship between the esti-
mates and the observations. After rearranging, the Ob-
served Minus Computed (OMC) term can be computed
which is the di�erence between actual observations and
modelled observations. The corresponding equation is:

y = A∆x + ε (1)

In this contribution, we assume a relative positioning
scenario with GNSS phase observations.We call y the n×1
vector of Observed-Minus-Computed (OMC) double di�er-
ences, ε the n×1 error vector.Weassume that the error term
has zeromean and a normal distribution, E

(
εεT
)
= σ2W0

where W0 is the positive de�nite and fully populated co-
factor matrix of the double di�erences and E the mathe-
matical expectation. σ2 is the apriori variance factor. Deal-
ing with phase measurements is inherently ambiguous,
the ambiguities are estimated in a �rst step as �oat, i.e.
part of the functional model. The design matrix for GNSS

positioning can be thus partitioned as A = [ AC AA ].
The (n, 3) matrix AC and the (n, namb) matrix AA describe
the designmatrices of the coordinates and ambiguities, re-
spectively, where n and namb are the number of double dif-
ferences and the number of double di�erenced ambigui-
ties, respectively. If a tropospheric parameter has to be es-
timated, the design matrix is extended accordingly, as de-
scribed for example in Kermarrec and Schön (2016). Simi-
larly to the design matrix, the correction vector for the un-
known parameters ∆x = [ ∆xC xA ] is divided into a cor-
rection on the estimated coordinates and the �oat ambigu-
ity.

The Generalized Least Squares Estimator (GLSE) reads
∆x̂0 =

(
ATW0

−1A
)−1

ATW0
−1y (Koch 1999). In practise,

W0 is unknown and replaced by an assumption or apri-
ori variance covariance matrix (VCM) which we call Ŵ. As
a consequence, the feasible generalized least-squares so-
lution (FGLSE) is given by:

∆x̂ =
(
ATŴ−1A

)−1
ATŴ−1y (2)

The apriori cofactor matrix of the estimated parame-
ter ∆x̂ is Qx̂=

(
ATŴ−1A

)−1
, partitioned as follows into an

ambiguity and coordinates part:

Qx̂ =
[
QC QCA
QCA QA

]
(3)

Calling v the vector of residuals and n − u the degree
of freedom, the aposteriori variance factor for the FGLSE is
given by

σ̂2W =
(
y − A∆x̂

)TŴ−1 (y − A∆x̂)
n − u = vTŴ−1v

n − u (4)

The least-squares estimator is unbiased, consistent
and e�cient if the least-squares assumptions are not vio-
lated, particularly if the residuals are 0-mean and the cor-
rect stochasticmodel is used (Williams et al. 2003). In case
of GNSS positioning, heteroscedasticity should be taken
into account in the modelling as well as correlations be-
tween measurements, when needed. It is thus of central
importance for a trustworthy positioning to avoidmisspec-
i�cations of the stochastic model and describe the tempo-
ral relationship between observations.
Fixing the ambiguities to integer

For a high accuracy of the solution, the �oat ambi-
guity vector should be �xed to integer. Various strategies
can be used from a simple rounding to more complicated
methods such as the FARA (Erickson 1992) or the Lambda
method (Teunissen 1995). To prevent from a wrong �xing
to integer, the �xed ambiguity vector has to be validated.

Bereitgestellt von | Technische Informationsbibliothek Hannover
Angemeldet

Heruntergeladen am | 08.05.19 08:23



Fully populated VCM or the hidden parameter | 153

This can be done for example thanks to discriminant tests
suchas the ratio test (VerhagenandTeunissen 2013). Even-
tually, a FixedFailure-rateRatio Test (WangandFeng 2013)
or look-up tables (Teunissen and Verhagen 2009) can be
used. When not otherwise mentioned, we made use of the
Lambda method to �x the ambiguity and use a simple ra-
tio test with a threshold of 0.5 (Wei and Schwarz 1995). As
will be shown, the results of this contribution are not im-
pacted by the �xing or validation method. For the sake of
completeness however, a short analysis of the impact of
correlations on the ratio test is proposed in the appendix.

2.1.1 A proposal to model temporal correlations

An adapted version of the model developed by Kermarrec
and Schön (2014) is chosen to describe temporal elevation
dependent correlations of GNSSphasemeasurements. The
reader is referred to Kermarrec and Schön (2017) for more
details on the choice of this function as well as a compar-
ison with existing strategies such as the model from El-
Rabbany (1994) or empirical ARMA processes (Luo et al.
2012).

The covariance C between two observations of satel-
lites with PRN i and j at time t and t + τ reads:

Cjt+τit =
ρweightδ

sin (Eli (t)) sin
(
Elj (t + τ)

) (ατ)νKν (ατ) (5)

Eli and Elj are the elevations of the satellite with PRN i
and j respectively, ρweight is a weighting factor modelling
the covariance between di�erent satellites. In this contri-
bution, we choose to �x ρweight = 1 for correlations be-
tween observations from one satellite with itself (i.e. i=j)
and disregard correlations between di�erent satellites, i.e.
ρweight = 0 if i≠j. Although ourmodel allows to account for
cross-correlations based on physical considerations (Ker-
marrec and Schön 2014), it is unnecessary to account for
them for the following derivation about the augmented
stochastic model. δ is a scaling parameter so that the vari-
ance equals 1 for satellites at 90◦ elevation. α is called
the correlation parameter

[
s−1
]
and ν the smoothness. The

modi�ed Bessel function of order ν (Abramowitz and Ste-
gun 1972) is denoted by Kν. Through this contribution, we
will refer to the set [α, ν] as the “Mátern parameters set”.
This covariance function is derived froma rational spectral
density function (Kermarrec and Schön 2014) and thus the
corresponding VCM ŴUD,corr of undi�erenced phase ob-
servations are positive de�nite (Mátern 1960).

The spectral density of theMátern covariance function
is given by:

S (ω) =
2ν−1γΓ

(
ν + d/2

)
α2ν

πd/2
(
ω2 + α2

)ν+d/2 (6)

where ω2 = ω2
1 + ω2

2 + . . . + ω2
d is the angular frequency,

Γ the Gamma function (Abramowitz and Segun 1972). The
dimension of the �eld d is 1 in case of time series of obser-
vations. From Eq. (6), it can be seen that the behaviour of
S (ω) by letting ω → 0 is both in�uenced by the smooth-
ness ν and the correlation parameters α, whereas ν plays
a more important role in �ltering high frequencies (i.e. as
ω →∞).

Since the Mátern covariance function in Eq. (5) is
weighted by an elevation dependent factor, the covariance
is di�erent for each satellite or satellite pairs. The Mátern
parameters can be computed by Maximum Likelihood Es-
timation (Kermarrec andSchön 2017) andare thusdepend-
ing on the observations (L1, L2, eventually P1 or P2) or al-
ternatively �xed. The value ν = 1/2 corresponds for in-
stance to a �rst order Gauss Markov process, i.e. an expo-
nential function as proposed by El-Rabbany (1994). The
values of [α, ν] = [0.008, 5/6] following Kermarrec and
Schön (2014) and Wheelon (2001) were shown to model
tropospheric correlations due to the turbulent variations
of the refractivity index.

Through this contribution, we will make use of the set
[α, ν] = [0.01, 1.05] to model elevation dependent corre-
lations due to atmospheric e�ects. The reasons of this par-
ticular choice are shortly highlighted:
– The mean-square di�erentiability of the �eld is en-

sured (Stein 1999) which is for physical reasons an in-
teresting property of the covariance function. Indeed,
seeing a GPS unit as a combination of resistors, ca-
pacitors and inductors, the di�erentiability of the cur-
rent intensity on time and so the measured quantity
has to be given. The voltage of the inductor is for in-
stance proportional to the time derivative of the cur-
rent which may thus be �nite (Kermarrec et al. 2017).

– By taking a slightly higher smoothness than 5/6 (i.e.
the “tropospheric” value), the correlation parameter α
has tobe reducedmakinguseof thenon-orthogonality
property of theMátern covariance function (Gelfand et
al. 2011). This result was con�rmed by Kermarrec and
Schön (2017).

Both for the sake of numerical stability when invert-
ing fully populated matrices and for modeling additional
white noise, the undi�erenced VCM ŴUD,fully are built as
a linear combination of ŴUD,corr and the identity matrix I
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modelling white noise as follows:

ŴUD,fully = (1 − β)ŴUD,corr − βI (7)

β is a positive noise factor between 0 and 1 which can
be estimated from the OMC or �xed apriori. This pro-
posal corresponds to an elementary model as proposed by
Schwieger (2007). Undi�erencedmatrices ŴUD,fully can be
built for each satellite with Eq. (7) for a chosen number of
epochs ηepoch where the satellite is visible, i.e. the batch
length. The whole matrix is referred to as the FULLY VCM.
The corresponding diagonal VCM ŴUD,elev where only het-
eroscedasticity is taken into account is called the ELEV
model. Its elements are corresponding to the diagonal of
ŴUD,corr, i.e. the commonly used cosine model. Subse-
quently, the cofactor matrix for a relative positioning sce-
nario with double di�erences reads Ŵ = MTŴUDM, where
M is the matrix operator of double di�erencing.

3 The hidden parameter
Dealingwith OMC, we assume that the ionosphere and the
troposphere are �rstly modelled with enough accuracy in
the pre-processing step (Ho�mann and Wellenhof 1999).
In some cases, e.g. for medium-long baselines from ap-
proximately 20 km length, tropospheric e�ects do not can-
cel out by double di�erencing. Thus a di�erential tropo-
spheric parameter is estimated as part of the functional
model. Due to its small variations between epochs, one
value is computed per satellite for session from 1 hour of
observations, i.e. one batch of observations. As the tempo-
ral resolution is restricted as a consequence of the lack of
separability between parameters, particularly with the Up
component, usually no additional parameter is estimated
for shorter sessions. Unfortunately, the e�ect of the tro-
posphere still impacts the coordinates for sessions shorter
than one hour.

In this section, we will show how a fully populated
VCM computed with Eq. (7) can replace the estimation of a
tropospheric parameter for sessions shorter than one hour
in an elegant way. The mathematical derivation proposed
by Blewitt (1998) is presented and extended to the partic-
ular case of GPS.

3.1 Augmented functional model versus
augmented stochastic model

Augmented functional model

In order to improve the solution of Eq. (1), an addi-
tional parameter ∆z can be taken into account. For theGPS
case, we can consider ∆z to be a di�erential tropospheric
parameter. In that case the augmented model reads:

y = A∆x + B∆z + ϵ (8)

B is the design matrix with dimension ηsat × ηepoch corre-
sponding to ∆z where ηsat is the number of visible satel-
lites. If Eq. (8) is written in terms of partitioned matri-
ces, it can be shown by applying the lemma on matrix
inversions for symmetric matrices that the solution ∆x̂
is given by ∆x̂ = (ATŴ−1PA)−1Ŵ−1Py with P = I −
B(BTŴ−1B)−1BTŴ−1 being a projection operator.

We can thus de�ne a reduced weight matrix as

Ŵ−1
red = Ŵ−1P = Ŵ−1 − Ŵ−1B(BTŴ−1B)−1BTŴ−1 (9)

If the estimates are expressed as ∆x̂ = (ATŴ−1
redA)

−1Ŵ−1
redy,

a parallel with Eq. (2) can be drawn. With the knowledge
of Ŵred, it is thus possible to compute ∆x̂ without having
to compute ∆ẑ. This is exactly what we aim to achieve in
the GPS case for short sessions, due to the lack of separa-
bility between the tropospheric andUp parameters. Unfor-
tunately, the reduced weight matrix Ŵ−1

red is singular. As a
consequence, assessing the stochasticmodelwhichwould
lead to such a VCM and allows for the direct computation
of Ŵred is impossible.
Augmented stochastic model

This di�culty can be overcome by seeing the aug-
mented parameter ∆z as a source of noise, i.e. a “pro-
cess noise”, similarly to what is done in Kalman �lter-
ing. Concretely, we de�ne ϵred as an augmented noise, i.e.
ϵred = B∆z+ ϵ. As a consequence, the augmented stochas-
tic model reads

Ŵ*
red =E(ϵredϵ

T
red)

=E((B∆z + ϵ)(B∆z + ϵ)T)

=E(ϵϵT) + BE(∆z∆zT)BT

=Ŵ + BŴzBT (10)

where Ŵz is the apriori covariancematrix of the additional
parameter. To make a parallel with Eq. (9), Ŵ*

red can be
inverted so that

Ŵ*−1
red = (Ŵ + BŴzBT)−1

= (Ŵ−1 − Ŵ−1B(BTŴ−1B + Ŵ−1
z )−1BTŴ−1) (11)

It can be seen from Eq. (11) that the equivalence be-
tween Ŵ*−1

red and Ŵ−1
red holds only if Ŵ−1

z is made small or
alternatively if Ŵz dominates in Eq. (10). Moreover, Ŵz
should not contain apriori information on the variance of
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theprocess noise (Blewitt 1998)which is already taken into
account in B.
The “hidden” tropospheric parameter

In this section, we aim to present didactically howma-
trices built with Eq. (7) are corresponding to an augmented
stochastic model, i.e. a “hidden” estimation of a tropo-
spheric parameter. This highlights how taking correlations
into account for short batches can replace the estimation
of this additional “non-estimable” parameter.

To this end, we �rst note that thematrixB is �lledwith
the squared root of the elements of ŴUD,elev (Kermarrec
and Schön 2016). Furthermore, in Eq. (10), wemake the as-
sumption that E

(
εεT
)
= I and assume homoscedasticity

of the errors de�ned in Eq. (1).We build E(∆z∆zT) based on
a simpli�ed version of Eq. (5), i.e. Ct+τt = δ(ατ)νKν(ατ) and
choose the Mátern parameters corresponding to a tropo-
spheric modelling with [α, ν] = [0.01, 1.05], thus identi-
cal for all satellites (Kermarrec and Schön 2014). We inten-
tionally disregard the elevation dependency. Therefore Ŵz
is ful�lled under the aforementioned condition to account
for correlations introduced by the data’s dependence on
the process noise with “no prior information on the vari-
ance of the process noise” (Blewitt 1999).

Returning shortly to section 2, we notice that the el-
evation dependent factor in Eq. (5) is based on a cosine
function whose square root is also used to �ll B. Therefore
we can write ŴUD,fully = BŴzBT and express the VCM of
the augmented noise as

Ŵ*
red = I + ŴUD,fully (12)

Condition for the equivalence
We have seen that for the equivalence to hold, Ŵz

should be built to account for correlations, so that the pro-
cess noise dominates in Eq. (11). This can be seen starting
for example from the equivalent diagonalmodel presented
the appendix, where correlations appear to act similarly
to a large weighting factor of the corresponding diagonal
matrix, in this case the identity matrix. If correlations are
neglected, Ŵz = I. Thus the equivalence is much weaker,
besides the fact that it does not correspond anymore to
a covariance matrix for the tropospheric parameter. Sim-
ilarly, if the correlation length is much smaller than the
batch length, the corresponding fully populated VCM are
sparse and nearly correspond to a diagonal VCM, i.e. the
0-value of the covariance is rapidly reached with respect
to the batch length.

Using the proposed Mátern parameter set [α, ν] =
[0.01, 1.05], the corresponding correlation length is ap-
proximately 600 s. As a consequence, we propose to de-
�ne a batch-size limit for the equivalence to hold �xed to

3600 s (1 hour of observations). This is also the often as-
sumed condition whether to estimate a tropospheric pa-
rameter, independently of the data rate. Eventually, it is
possible to decrease α or increase ν to �ll the matrix more
strongly. Besides the fact that it deviates strongly from a
tropospheric correlation model, it has the disadvantage of
impacting also the aposteriori variance factor (Kermarrec
and Schön 2017) and can thus only be used under the con-
trol that no overestimation occurs which will correspond
to an underestimation of the precision (Appendix).
From the reduced matrix to a VCM for GPS phase measure-
ments

We note that in Eq. (12) Ŵ*
red is not corresponding to

a cofactor matrix for GPS, i.e. a value of 1 for the vari-
ance for a satellite at 90◦ is not given anymore. Hence, al-
though the estimates will not be in�uenced by the scaling
(Kutterer 1999), the results of statistical tests such as the
overall model test cannot be compared anymore with the
usually used ELEV model. Thus we use instead a scaled
matrix so that the reduced matrix reads Ŵ*

red = βredI +
(1−βred)ŴUD,fully, βred being a noise parameter between 0
and 1. By doing so, we slightly weaken the equivalence by
decreasing the impact of ŴUD,fully (Kermarrec and Schön
2017). This is unproblematic using the proposed Mátern
parameter set and mentioned batch length limit. Eventu-
ally the weakening could be compensated by decreasing
α from 0.005, using the non-orthogonality of [α, ν] (Stein
1999).

The circle is now complete as the same expression is
obtained as in Eq. (7). As a consequence, when correla-
tions are taken into account with the proposed model of
Eq. (5), we account for a tropospheric parameter without
estimating it explicitly, a “hidden” parameter.

Note that we could have taken E(ϵϵT) = ŴUD,elev
in Eq. (10), which would have corresponded to an eleva-
tion dependent noise following Radovanovic (2001). This
choice is left to the reader. The authors have a preference
for an identity noise matrix to make a parallel with the
Tikhonov regularization.

3.2 An additional interpretation of fully
populated VCM

In the previous section, we have explained how using
fully populated VCM can replace the estimation of a tro-
pospheric parameter, the equivalence being valid as long
as the VCM ismade su�ciently large, i.e. for short batches.

It is worth additionally mentioning that in case of
short batches in GPS positioning, the ideal assumption for
the least-squares estimator to be unbiased are often not
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reached (Rao and Toutenburg 1999, Koch 1999). For ex-
ample, non-normal errors of the residuals may signi�cate
that F-distributions cannot be assumed for the aposteriori
variance factor but either student distribution (Williams
et al. 2013). Moreover, the condition that the residuals are
zero-mean may not be ful�lled, particularly for long base-
lines when observations have drifts due to unmodelled re-
maining e�ects. Fortunately, when fully populated matri-
ces build with Eq. (5) are taken into account in the least-
squares adjustment, a �ltering of such unwanted e�ects
is obtained. This can be seen thanks to Eq. (6), e.g. the
smoothness and the correlation parameter impact the fre-
quency content of the observations. As a consequence, us-
ing FGLSE with the FULLY model instead of the purely di-
agonal ELEV model, a decrease of the error of the least-
squares solution is obtained corresponding to a lower loss
of e�ciency. This leads to amore trustworthypositionwith
an associated non overoptimistic precision and better test
statistics such as overall model, outlier detection tests or
ambiguity validation tests. (see appendix formoredetails).

3.3 Ambiguity �xed

Through thedevelopment of the equivalence,wehave con-
sidered a global model and assumed that the ambiguity is
estimated as �oat together with the position and not �xed
in advance (Eq. (1)). If the integer ambiguities are known
in advance, the equivalence still holds. As it is not made
used of the less biased �oat ambiguity under a more cor-
rect stochasticmodel particularly for short batches, the so-
lution (i.e. coordinates) obtained with di�erent VCM will
be less di�erent.

4 A case study
The concept of the hidden parameter is not straightfor-
ward to validate. Indeed as its name indicates, it corre-
sponds to cases where no parameter can be estimated. In
order to overcome this issue, a methodology is proposed
based on decreasing the batch length and comparing the
solution found under fully populated VCM with respect to
a diagonal VCM in cases where the true position is known.

4.1 Observations

Data from the European Permanent Network EPN (Bruyn-
inx et al. 2012) from two stations KRAW and ZYWI are cho-
sen as example for a medium baseline (80km) positioning

scenario. OMC observations are computed with 30s rate
observations and a cut-o� of 3◦. The ionospheric and tro-
pospheric delays are partially estimated in a preprocess-
ing step with the Klobuchar and Hop�eld models, respec-
tively. A relative positioning scenario is considered and the
North East Up (NEU) coordinates are estimated at GPS day
DOY220, year 2015. The starting time is GPS-SOD 6000s
and was taken arbitrarily. It was shown not to impact the
conclusions, i.e. the geometry playing a minor role in the
results of our comparison (Kermarrec and Schön 2017, Ap-
pendix 2). The reference values are the long term station
coordinates from the EPN solution.

4.2 Methodology

We compute the least-squares results given by the FULLY
VCM described in section 3 and the diagonal ELEV ma-
trices. We place ourselves in a case where it is assumed
that no tropospheric parameter can be estimated so that
batches have a length of maximum 100 epochs at 30 s. In
case of longer batches, an additional tropospheric param-
eter should be taken into consideration as the equivalence
does not hold anymore, i.e. the FULLY model does not re-
place the tropospheric parameter. Five batch lengths were
selected to show the in�uence of the fully populated VCM
on the �oat solution when no tropospheric parameter is
estimated:
1. 20 batches with 100 epochs (100-epochs-case,

60000 s)
2. 25 batches with 80 epochs (80-epochs-case, 60000 s)
3. 33 batches with 60 epochs (60-epochs-case, 59400 s)
4. 50 batches with 40 epochs (40-epochs-case, 60000 s)
5. 100 batcheswith 20 epochs (20-epochs-case, 60000 s)

As previouslymentioned, a batch approach is retained, i.e.
one solution is computed for each batch. The aim of this
methodology is to show how decreasing the batch length,
i.e. strengthening the equivalence augmented stochastic
versus functional model, will impact the positioning.

To this end, a global estimator of the least-squares so-
lution is retained. The reference being in our case the 0
vector since the position was known exactly, the 3Drms is
computed for each batch and averaged over all batches for
both stochastic models of consideration. The 3Drms dif-
ference between the ELEV and FULLY is then formed, i.e.∑m

i=1(3DrmsFULLY (i))−
∑m

i=1(3DrmsELEV (i))wherem is the
number of batches corresponding to case 1-5. As the esti-
mation of a tropospheric parameter mainly in�uences the
height component, we similarly compute the rms di�er-
ence for the height component only. For short batches, the
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F-distribution of the ratio σ̂2Ŵ
σ20

may not be given anymore
(Williams et al. 2003, Kermarrec et al. 2017). Thus we only
compute the mean of the aposteriori variance factor over
all batches and compare it with the assumed apriori value
to assess roughly the trustworthiness of the solution. We
took σ0 = 4mm, i.e. a relevant andplausible value for dou-
ble di�erences observations.

We choose to let the ambiguities �oat in order to have
a “global” functional model and make use of the better
estimated �oat ambiguities when improving the stochas-
tic model. Moreover, a comparison of the results with dif-
ferent stochastic models is easier to follow as the �xing
to the correct ambiguities strongly improve the �nal solu-
tion. Fixing the ambiguities in advance in a preprocess-
ing step leads to less strong di�erences between ELEV
and FULLY model following the results of Kermarrec and
Schön (2017). Nevertheless, using fully populated VCM,
more batches can be �xed with respect to the ELEV model
as described in the appendix. As a consequence, the con-
clusions of the case study will not be impacted by this
choice.

For the sakeof completeness andalthoughunrealistic,
we add the results given when an additional tropospheric
parameter is estimated with the ELEV model for the 40-
epochs case.

4.3 Results

The results of the case study are presented in Table 1.
Impact of decreasing the batch length The impact of the
stochastic model on the positioning decreases for longer
batches. For the 100-epochs-case for example, a 3Drms
di�erence of 0.1 mm is obtained which grows to 106 mm
for the 20-epochs-case, highlighting the strong impact of
the FULLY populated VCM. If the di�erence increases,∑m

i=1(3DrmsFULLY (i)) decreases and becomes closer to the
0 value. Asmentioned in section 3, this result gives weight
to the equivalence augmented stochastic – functional
model as soon as the FULLY VCM are “full”. Additionally
and for case 1 for example, the value of E

(
σ̂WFULLY

)
=

4.1 mm is close to the chosen σ0 = 4 mm so that the so-
lution can be considered as trustworthy. This is not the
case for the ELEV VCM where E

(
σ̂WELEV

)
= 6.5 mm high-

lights a model misspeci�cation due to the biased aposte-
riori variance factor. The same conclusions hold true for
the other cases, although the di�erences between ELEV
and FULLY decreased as expected. Improving the stochas-
tic model by means of correlations is thus of main impor-

tance to obtain both less biased test statistics and a better
positioning.

Using the equivalence and without weakening the
data strength, the Up component is strongly improved by
up to 37 mm for the 20-epochs-case. This highlights the
main importance of using fully populated matrices for
short batches. This di�erence decreases to 10 mm for the
60-epochs-case and is nearly 0 for the 100-epochs case,
i.e. for longer batches the use of fully populated model do
not replace the estimation of an additional parameter.
Estimating a tropospheric parameter for short batches

In case an additional tropospheric parameter is nev-
ertheless estimated - for case 4 for example -, as done
for longer batches, we note that E(σ̂WELEV ) = 7.1 mm.
Thus a model misspeci�cation is guessed using the ELEV
VCM which is con�rmed by the di�erence between the
3Drms FULLY-ELEV which is up to 90 mm higher than
without estimating a parameter. As a consequence, the
FULLY model is without a doubt a better alternative than
the ELEV model.
Fixing the ambiguities to integer

If the ambiguities are �xed in advance in a preprocess-
ing step, the di�erences between themodels decrease. For
the case 1 for example, a 3Drms di�erence of only 7 mm is
obtained. Thus the e�ect of the FULLY model still impacts
the solution but at a lower level. If the ambiguities are es-
timated as �oat and �xed for each batch using the ratio
test with a threshold of 0.5 (Wei and Schwarz 1995), the
�xing to integer can be improved by 5-10% following the
results of the simulation presented in the appendix. As a
consequence, improving the stochastic model will have a
“snowball e�ect” on the 3Drms, the results of test statistics
(ambiguity, outlier detection test, overallmodel test) being
less biased as shown in the appendix for the ambiguity val-
idation test (see also Li et al. 2016). Thus we de�nitively
advice using such models, independently of the strategy
used and particularly for short batches when the tropo-
sphere is expected to in�uence the results.

5 Conclusion
In this contribution, we made use of a weighted Mátern
covariance function to describe the elevation dependent
correlations of GNSS phase observations. For correlations
due to turbulent tropospheric variations of the index of re-
fractivity, the Mátern parameters (smoothness and corre-
lation length) can be �xed apriori based on physical con-
siderations. This function was mathematically shown to
correspond to taking an additional tropospheric parame-
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Table 1: 3Drms di�erences (FULLY-ELEV) model and rms di�erences for the Up component. Five di�erent batch lengths are computed. The
ambiguities are let float.

No trop. Case 1 Case 2 Case 3 Case 4 Case 5
3Drms di�erence
FULLY-ELEV [mm] 0.1 16.9 23.0 32.9 106.0
rms di�erence
Up component
FULLY-ELEV [mm]

−0.4 5 23.1 14.4 37.4

trop. Case 4
3Drms di�erence
FULLY-ELEV [mm] 113.1
rms di�erence
Up component
FULLY-ELEV [mm]

69.6

ter into account without having to estimate it separately.
This equivalence augmented stochastic model-functional
model can be used as soon as the separability between the
tropospheric parameter and the Up component is not en-
sured in the least-squares adjustment. It is thus particu-
larly interesting for estimating the Up component with a
higher trustworthiness in case of short batches of obser-
vations.

In a case study using double di�erenced observations
from a 80 km baseline, this equivalence leads to an im-
provement of up to 10 cm for observations divided in
batches of 20 epochs at 30 s with respect to an elevation
dependent diagonal VCM when using the �oat ambigui-
ties. Taking correlations into account leads thus in a no-
ticeable way to an improvement of the positioning solu-
tion for short batches, particularly when the ambiguities
cannot be �xed to integer with enough reliability and let
�oat. The impact decreases for longer batches and if the
ambiguities are �xed. However, less biased test statistics
and a less overoptimistic precision is still obtainedwith re-
spect to the purely diagonal model. The equivalence holds
as soon as the covariance is made su�ciently large. This
conditionwas translated for the GPS case and shown to be
plausible for batches up to 3600 s length.

Acknowledgement: The authors gratefully acknowledge
the EPN network and corresponding agencies for provid-
ing the data free of cost. The Lambda toolbox is provided
freely by TU Delft.

A Appendix 1
The equivalent diagonal model

In this appendix, some insights on how correlations
act on the apriori cofactor of the estimates (called the
precision) and the ratio test are given. For didactic pur-
poses, we use an AR(1) model for GPS phase correlations
which corresponds to a smoothness of 1/2 in our proposal.
In that particular case, the inverse of the corresponding
VCM can be exactly expressed thanks to the known or es-
timated autocorrelation coe�cient ρAR (Rao and Touten-
burg 1999). In Kermarrec and Schön (2016), it is explained
how correlations can be taken into account thanks to a re-
duced diagonal VCM.

The inverse of the equivalent VCM for the VCM from an
AR(1) process reads:

W−1
AR(1)_EQUI =

1
1 − ρ2AR



1 − ρAR 0 0 · · · 0 0

0 (1 − ρAR)2 0
. . . 0 0

0 0 (1 − ρAR)2
. . . 0 0

...
. . .

. . .
. . .

. . . 0

0 0 0
. . . (1 − ρAR)2 0

0 0 0 · · · 0 1 − ρAR


To derive the inverse of the FULLY VCM, we assume low
variations of the satellite elevation. Thus the elevation de-
pendent factor of the covariance matrix derived thanks to
the proposed model can be factorized. As a consequence,
the elements of the corresponding equivalent diagonal
VCM sorted per epochs for one satellite are:
– First and last diagonal values: 1

sin(Eli(t))2
(1 + ρAR)

– All other diagonal values: 1
sin(Eli(t))2

(
1+ρAR
1−ρAR

)
)

As highlighted in Luati and Proietti (2011), the equivalent
VCM thus has two diagonal values -at the beginning and
the end of a batch of observations- that are lower than the
middle diagonal values, all elements being simply propor-
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tional to the ELEV model, i.e. corresponding to a higher
weighting as

(
1+ρAR
1−ρAR

)
> 1.

Precision of the least-squares results using FULLY
This particularity of the equivalentVCM (or its inverse)

has the consequence that when correlations are taken into
account, the impact of the extreme values on the results
is getting negligible for long batches. Thus the matrix
Qx̂FULLY = (ATŴ−1

FULLYA)−1 and Qx̂ELEV = (ATŴ−1
ELEVA)−1

are only linked by a scaling factor depending on the cor-
relation length. This result is derived for an AR(1) model
andmay be slightly di�erent for higher smoothness where
more diagonal entries than only the 2 �rst values are dif-
ferent than the middles values. Luatti and Proietti (2011)
show for example that for an AR(3) model 3 �rst values
were di�erent. Thus, even for short batches, a scaling fac-
tor can linkwith agoodapproximationQx̂FULLY andQx̂ELEV
when our proposed model is used. As a consequence, the
error ellipsoids will have slightly the same orientation in
space and the precision with a FULLY model will be more
realistic, i.e. no overestimation as for diagonal VCM will
occur. The least-squares solution is therefore more trust-
worthy.
Impact on ambiguity resolution of FULLY

The second consequence of this result can be shownat
the ambiguity �xing level. Indeed, when using the Fixed
Failure Rate Ratio Test (FFRT) with a FULLY model to es-
timate an accurate threshold (Wang and Feng 2013), it is
expected that the same value as with an ELEV VCMwill be
found.

Independently of the chosen threshold, the impact of
misspecifying the stochastic model up to neglecting cor-
relations on the ratio test de�ned as R = ||x̂

1
A,�x−x̂A,�oat||QA

||x̂2A,�x−x̂A,�oat||QA
=

d1
d2 ≤ µR (Euler and Scha�rin 1991) can be assessed.We call
x̂1A,�x, x̂

2
A,�x the two vectors of integer candidates that are

corresponding to the two smallest values of the distance
between the �oat and two �xed ambiguity vectors in the
metric of the covariance matrix.

To assess the impact of the FULLY model on the am-
biguity �xing, we make use of Monte Carlo simulations
where time series corresponding to a trueVCMwith [α, ν] =
[0.01, 1] are computed. In order to assess the sensitivity
of the model, the parameters [α, ν] are varied around the
true set where it can be shown from Eq. (6) that increas-
ing corresponds to neglecting correlations. A constellation
of 8 satellites observed during 3000s was taken in con-
sideration and a relative positioning strategy used. To the
10000 simulated time series corresponding to the correla-
tion structure of reference, the same but arbitrary ambigu-
ity vector was added. The following results are indepen-

dent of the constellations or the batch length (Kermarrec
and Schön 2017 Appendix 2).

From Fig. 1, it can be clearly seen that neglecting cor-
relations corresponds to a small increase of the ratio test
by 0.1 and thus to a slight decrease of the probability to �x
the ambiguities for a given similar threshold. This factmay
be ampli�ed in real cases when the least-squares assump-
tion are slightly violated. This e�ect is emphasized when
the correlation parameter is smaller than the reference,
highlighting the importance of non-underestimating. In
the ideal case of simulations, the ambiguities were �xed
correctly with the Lambda method whether correlations
are correctly taken in consideration or neglected. Thismay
not be the case for real cases, particularly for small batches
and thus correlations when present should not be disre-
garded as developed previously. As a consequence, it is ex-
pected that taking correlations into account leads to less
biased ambiguity validation tests and thus allows an in-
crease of the ambiguity success rate with respect to using
a diagonal VCM for an assumed �x threshold.
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