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ABSTRACT

Time-continuous measurements are a well-established part and the foun-
dation of many quantum optical experiments. This thesis explores possi-
ble approaches to use homodyne detection of light for the efficient prepa-
ration and verification of nontrivial quantum states in material systems.
In the first part we employ a measurement-based feedback scheme us-
ing interferometric measurements of light and local feedback to generate
an effective many-body interaction with inherent collective dissipation
between N local quantum systems. Our ultimate goal is to use this con-
ceptually simple scheme for the reliable preparation of entangled many-
body states between distant non-interacting quantum systems, which is
a prerequisite for a number of quantum information protocols. To gauge
the feasibility of this endeavor we generalize a known feedback protocol
from a pair to an array of N two-level systems, and show that it deter-
ministically produces entangled many-body states. Another important
application is quantum simulation where an easily accessible system is
used to emulate a desired quantum dynamics that is too difficult to
simulate otherwise. As a proof-of-principle we show how to realize an
effective Ising interaction with arbitrary range and geometry between
an array of two-level systems, and analyze the effect of the resulting
dissipation.

In the second part we show how to use retrodiction, i. e., the inference
of knowledge about the past state from future observations, to inter-
pret a record of continuous observations as an instantaneous Positive-
Operator Valued Measure (POVM) measurement on the initial state of
a monitored system. Repeated POVM measurements on an ensemble of
identical quantum states can be used to reconstruct the underlying den-
sity operator via state tomography. This allows to verify the presence of
nontrivial quantum states given sufficient resolution of the POVM. We
focus our approach on linear systems, derive the cumulant equations
of motion of general quantum states and POVM elements, and show that
stable dynamics cause any operator to collapse to a Gaussian operator in
steady state. We apply retrodiction to an optomechanical system in the
weak-coupling regime. Here we show that large cooperativity, G >1,
and efficient homodyne detection together enable sub-shot noise resolu-
tion of the retrodicted POVMs, just like it enables the conditional prepa-
ration of squeezed states.

Keywords: Measurement-based feedback, entanglement generation,
quantum simulation, quantum state verification, retrodiction



ZUSAMMENFASSUNG

Zeitkontinuierliche Messungen sind ein etablierter Teil und Grundlage
vieler quantenoptischer Experimente. Diese Arbeit untersucht mogliche
Ansitze zur Verwendung von Homodyn-Detektion von Licht fiir die ef-
fiziente Erzeugung und Verifikation von nicht-trivialen Quantenzustan-
den in unterschiedlichen Systemen. Im ersten Teil verwenden wir ein
Feedback-Schema basierend auf der interferometrischen Messung von
Licht und lokalem Feedback, um eine effektive Vielteilchenwechselwir-
kung mit inhdrenter kollektiver Dissipation zwischen N lokalen Quan-
tensystemen zu generieren. Unser oberstes Ziel ist es, dieses konzep-
tuell einfache Schema fiir die zuverldssige Erzeugung von verschrank-
ten Vielteilchenzustidnden zwischen voneinander entfernten, nicht-wech-
selwirkenden Quantensystemen zu nutzen, was die Voraussetzung fiir
eine Reihe von Quanteninformationsprotokollen ist. Um die Machbar-
keit dieses Vorhabens einzuschétzen, verallgemeinern wir ein bekanntes
Feedbackprotokoll von einem Paar auf N Zwei-Level-Systeme und zei-
gen, dass es in der Tat deterministisch verschrankte Vielteilchenzustande
erzeugt. Eine weitere wichtige Anwendung ist Quantensimulation, bei
der ein leicht zugangliches System verwendet wird, um eine gewiinsch-
te Quantendynamik zu emulieren, die sonst nur schwer zu simulieren
ist. Als konkretes Fallbeispiel zeigen wir, wie man eine effektive Ising-
Wechselwirkung mit beliebiger Reichweite und Geometrie zwischen N
Zwei-Level-Systemen realisiert und wir untersuchen den Effekt der re-
sultierenden Dissipation.

Im zweiten Teil zeigen wir, wie man Retrodiktion verwendet, also der
Riickschluss auf Eigenschaften eines vergangenen Zustands aus zukiinf-
tigen Beobachtungen, um eine Aufzeichnung kontinuierlicher Messun-
gen als instantane POVM-Messung des Anfangszustands eines observier-
ten Systems zu interpretieren. Wiederholte POVM-Messungen an einem
Ensemble identischer Quantenzustinde konnen verwendet werden, um
den zugrunde liegenden Dichteoperator mittels Zustands-Tomographie
zu rekonstruieren. Dies erlaubt es, vorliegende nicht-trivialen Quanten-
zustdnde bei ausreichender Auflosung der POVM nachzuweisen. Wir
konzentrieren uns auf lineare Systeme, leiten die Bewegungsgleichun-
gen der Kumulanten von allgemeinen Quantenzustdnden und POVM-
Elementen her und zeigen, dass stabile Dynamik jeden Operator dazu
bringt, im stationdren Zustand zu einem Gaufischen Operator zu wer-
den. Wir wenden die Retrodiktion auf ein optomechanisches System im
Regime der schwachen Kopplung an. Hier zeigen wir, dass grofie Ko-
operativitit, C; > 1, und effiziente Homodyn-Detektion zusammen die
Retrodiktion einer quantenrauschaufgelosten POVM ermoglichen, so wie
sie auch die Erzeugung konditionaler gequetschter Zustinde erlauben.

Schlagwaorter: Messbasiertes Feedback, Verschrankungserzeugung, Quan-
tensimulation, Quantenzustandsverifikation, Retrodiction



If I have seen further it is by standing on the shoulders of Giants.

— Sir Isaac Newton
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INTRODUCTION

Measurements in quantum mechanics are tricky business. In classical
physics measuring a system may change an observer’s state of knowl-
edge, but does not necessarily have an effect on the physical state. In
quantum mechanics measurements are described by the measurement
postulate [1], which prescribes that the measurement of an observable,
given by a Hermitian operator A, projects or collapses the measured sys-
tem into an eigenstate of A. Unless it was already in an eigenstate, this
necessarily changes the state of the system. This measurement back action
is thus inherent to quantum theory.

The projective measurement postulate is in various ways an idealiza-
tion of a physical measurement process. For example, the collapse occurs
instantly whereas any physical measurement device will take some time
to record and output a value. More importantly, the postulate assumes a
direct measurements of the system without specifying how this is done.
In practice the system of interest first needs to couple coherently to some
detector, which then triggers a chain of events that eventually reaches the
observer’s mind. This is called a von Neumann chain [1], and an impor-
tant question is where along this chain we can apply the measurement
postulate and consider the measurement complete, known as Heisenberg
cut [2].

Many physical systems are not directly measurable, but first need to
be coupled to a probe. A highly effective and versatile probe is light.
Optical measurements are well-described by making the Heisenberg cut
at the photodetector, and applying the measurement postulate directly
to the light field. Furthermore, many material systems are amenable to
strong interactions with microwave and optical fields, which has led
to the tremendous success of quantum optics. Nowadays the precision
of measurement and control achieved by using photons has reached
the quantum limit, which recently culminated in the Nobel prize being
awarded jointly to David Wineland [3] and Serge Haroche [4].

An achievement of modern quantum theory is the description of indi-
rect, non-projective measurements by a generalized measurement postu-
late. In place of projection operators one considers general measurement
operators. These allow to describe weak measurements, which only par-
tially collapse the system state, and to include uncertainty in the mea-
surement, for example if an outcome may correspond to different states.
A further generalization was the inclusion of continuous measurements,
realized in the limit of both weak coupling and high repetition rate. This
was made possible by the development of quantum stochastic calculus by
Belavkin [5], and Hudson and Parthasarathy [6].

In recent years it has become possible to probe a range of platforms
efficiently using continuous phase-sensitive measurements [7]. These in-
clude finite-dimensional systems such as superconducting qubits cou-
pled to microwaves [8, 9] and atoms in optical cavities [10, 11], as well
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as continuous-variable systems such as atomic ensembles in Holstein-
Primakoff approximation [12, 13] and mechanical oscillators [14].

These developments have been made possible by the realization of
large values of the cooperativity C,, which captures the relative strength
of the coherent system-light coupling compared to all unobserved dissi-
pation channels. Reaching large C; > 1 signifies that the system couples
mostly to the observed channel, making it the dominant noise source.
This results in entangled states between system and light, and thus be-
tween system and detector, which enables the observation of quantum
features.

This thesis addresses questions that result from these developments.
Our goal is two-fold. First, we use continuous measurements on an array
of local systems to devise a simple feedback protocol, which enables the
preparation of nontrivial quantum many-body states and the simulation
of many-body Hamiltonians. Using only linear optics and homodyne
measurements allows to project an array of non-interacting material sys-
tems into correlated quantum states — in the spirit of massive parallel
entanglement swapping akin to protocols proposed in [15-18]. Subse-
quent application of Wiseman-Milburn Feedback [19, 20] to the systems
generates effective many-body dynamics, which we show to go beyond
Local Operations and Classical Communication (LOCC).

Second, we explore the possibility to use continuous measurements
for the verification and tomography of quantum states. Monitoring a
quantum system to infer knowledge about its past is a field of active
research. Extensive work on this topic has been done by Mankei Tsang
[21—23] who introduced a quantum theory of time-symmetric smoothing,
which uses continuous measurements to estimate the past value of a clas-
sical parameter coupled to a quantum system. Gammelmark, Julsgaard
and Melmer [24] proposed a theory of past quantum states in which the
usual quantum state is complemented by an effect operator E that is condi-
tioned on future observations. In their formalism E provides a Bayesian
update to the measurement probabilities of past observables. This the-
ory was applied successfully to superconducting qubits [25], see also
[26] for a review. Recently, Zhang and Melmer [27] specialized the past
quantum state formalism to Gaussian states in continuous variable sys-
tems. An alternative approach to quantum smoothing was suggested by
Guevara and Wiseman [28]. Instead of applying a Bayesian update to
the probabilities of past measurements as Melmer and co-workers do,
they introduce a smoothed quantum state, where the probabilities of the
density matrix are conditioned.

We aim to complement this previous work on estimation of past states.
Instead of applying a Bayesian update to either measurement results or
density matrix, we interpret the continuous observation of a quantum
system as an instantaneous Positive-Operator Valued Measure (POVM)
measurement on its state in the past. We focus our approach on linear
systems with Gaussian states, and demonstrate its effectiveness by ap-
plying it to the nontrivial example of an optomechanical system in the
weak-coupling regime. We show that one can realize effective POVMs
with sub-shot noise precision provided the cooperativity is sufficiently
large, i.e., Cq > 1.
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Outline

I begin in Chap. 2 with a brief review of the general theory of measure-
ments in quantum mechanics, since these form the basis from which
continuous measurements are derived. I start from the basic projective
measurement postulate, and introduce classical uncertainty in the form
of density matrices. I then show the effect of a projective measurement
on part of a correlated state, composed of system and probe, which leads
me to the general measurement postulate. This chapter is only a review
of material found in standard text books.

Part I of this thesis treats a simple yet versatile feedback setup involv-
ing interferometric measurements and local feedback. It is mostly based
on the article [29] for which I did the majority of the analytical and nu-
merical computations, prepared the larger part of the manuscript, and
most of the figures. Hendrik Weimer contributed to the manuscript, es-
pecially regarding the variational method presented and used in Sec. 4.3
that resulted in part of Fig. 4.4, and to the discussion of the Ising model
in Sec. 5.1. The ideas for this article were developed jointly with Kle-
mens Hammerer who also contributed to the manuscript, and to some
computations.

In Chap. 3 I provide an intuitive derivation of an unconditional (i.e.,
deterministic) master equation for a single quantum system before adding
continuous measurements and feedback to derive a Feedback Master
Equation (FME). I do so while avoiding the use of quantum stochastic
calculus to keep the derivation simple. After generalizing the equation
to an array of N systems, I close with a classification of local operation
and classical communication (LOCC) dynamics by providing a sufficient
criterion for the FME to yield only LOCC dynamics.

Chapters 4 and 5 showcase some applications of the FME. In Chap. 4
I first review a known feedback protocol for a pair of two-level systems
devised in [30], and shown to produce entanglement deterministically.
I then generalize it to an array of N two-level systems, and show that
it produces a steady state which is entangled independent of the num-
ber of involved systems. This is confirmed by the variational method of
Hendrik Weimer.

In Chap. 5 I apply the FME to the problem of quantum simulation by
considering a dissipative Ising model. After engineering a general Ising
Hamiltonian I consider the jump operators that are inevitably part of
the FME. Then I consider a concrete one-dimensional nearest-neighbor
Ising model and investigate whether changing any of the remaining de-
grees of freedom of the FME allows to induce a phase transition. Hendrik
Weimer contributed key ideas to the discussion of the phase transition.

Part II explores the possibility to use continuous measurements for the
verification of quantum states through retrodiction. This is unpublished
material to which I contributed a majority of the analytical computations,
and created all figures. Ideas were developed jointly with Klemens Ham-
merer who also contributed to the calculations.

Chapter 6 begins by extending the derivation from Chap. 3 to con-
ditional quantum states, and results in the general known Stochastic
Master Equation (SME) for an arbitrary number of measurement and dis-
sipation channels. I review the theory of Quantum Channels and POVMs
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before showing that effect operators (POVM elements) satisfy a stochastic
equation adjoint to the SME, and in particular that even the trivial effect
operator £ = 1 will correspond to an effective measurement after con-
ditional backpropagation. This summarizes the work of Gammelmark,
Julsgaard and Melmer [24], but differs from it by interpreting the retrod-
icted effect operator as an effective measurement on an unknown initial
quantum state. I close the chapter by showing that the adjoint effect
equation needs to be interpreted as a backward It6 equation. This was
previously stated by Mankei Tsang [21—23] whose derivation is based on
[31]. Our derivation is novel and only based on a recent result [32] on
nested stochastic integrals.

I begin Chap. 7 with a review of linear systems, quantum characteris-
tic functions, and Gaussian states, before deriving the equations of mo-
tion for the means and covariance matrix of Gaussian quantum states
and Gaussian effect operators. These equations have previously been de-
rived by Zhang and Melmer [27]. I then go on to derive the equations
of motion for cumulants of arbitrary (non-Gaussian) states and effect
operators. In particular I show that in stable systems the unconditional
cumulants decay exponentially, turning any state into a Gaussian state.
I contributed both the derivation and the proof, and I am not aware of
this result having appeared previously.

Chapter 8 presents applications of retrodiction, and opens with the
basic example of a freely decaying cavity. I use this to explore the effects
of different couplings between system and probe on the performance of
retrodiction and conditional state preparation. I then consider the non-
trivial example of an optomechanical system inside a cavity that can
be adiabatically eliminated. This procedure is due to Sebastian Hofer
and has appeared in [33, 34]. Using the resulting conditional mechanical
master equation, I investigate how detecting different sidebands of the
output affects the performance of preparation and retrodictive measure-
ment of the mechanical state. I contributed the analytical computations,
while ideas and discussions were developed jointly with Klemens Ham-
merer.

A FEW WORDS ON NOTATION

I will use hats, such as 4, to distinguish quantum operators from classi-
cal quantities, except the density operator p. Vectors are depicted as bold
lower case letters, r, while matrices are capital letters, M. An exception
are the N x N-dimensional unit and null matrices depicted as 1y and
On. Brackets [A, B = AB — BA denote a commutator, while braces de-
note the anti-commutator, {A, B} = AB + BA. Complex conjugation is
indicated by a star, r*, while Hermitian conjugation of matrices and oper-
ators is indicated by a dagger, and the transpose by a T, so M™ = (M*)T.

ACRONYMS

SME Stochastic Master Equation

CAO Creation and Annihilation Operator



FME Feedback Master Equation
BS Beam Splitter
T™™S Two-Mode Squeezing

POVM Positive-Operator Valued Measure
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MEASUREMENTS IN QUANTUM MECHANICS

In this section we review the theory of general measurements in quan-
tum mechanics of which time-continuous diffusive measurements are a
special case. Most of the material in this section can be found in stan-
dard textbooks [2, 35, 36] and the more comprehensive mathematical
texts [37—40]. We include this review to introduce some notation and
concepts that will be used throughout this thesis. Placing clarity above
rigor, our treatment is bound to be incomplete. In particular we elaborate
only briefly on the intricacies of infinite-dimensional Hilbert spaces.

2.1 PROJECTIVE MEASUREMENTS
2.1.1 Pure states

The state space of a quantum mechanical system S may be represented
as a Hilbert space H, which is a d-dimensional complex vector space
with a scalar product (:|-) : H x H — C. The dimension d may be
finite or infinite and we comment on the difference below. Using Dirac
notation we write elements of H as kets |p) € H. Unless noted otherwise
any ket is a unit vector so |||{)||> = (ip|p) = 1. These represent states
of maximal knowledge of S, also called pure states. The dual of |¢), also
called bra, is a linear map (¢| : H — C that takes any |¢) € H to the
scalar product (i|¢).

Pure states are suited for the description of closed systems. This as-
sumes perfect knowledge of the dynamics, and that all interactions of
S are captured by a Hermitian Hamiltonian operator H : H — H. The
Hamiltonian determines the time evolution of S via the Schrodinger equa-
tion

.d A
4 [W(0) = Hlp(t)), (2.1)
which gives rise to a unitary time-evolution operator

U(to, 1) := exp(—iH(t — to)). (2.2)

This maps pure states to pure states, and propagates arbitrary initial
states |{(to)) to a later time,

[p(t1)) = Ulto, 1) [ (t0)), to <t (2:3)

The evolution of closed systems is reversible. Given some [i(#1)) we can
always retrieve the unique initial state | (to)) = U (¢, t1)|¥(t1))-

2.1.2  Measurement postulate

The abstract state space of S connects to physical reality through the
measurement postulate. This states that an ideal measurement A on S
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is described by a collection {(y, |y)), m € M} of possible (discrete, non-
degenerate) measurement outcomes y € R and orthogonal states |y) which
form a basis of H. Performing the measurement essentially checks which
one of these basis states the system is in. The device will output a result,
y say, after which we will find S in the state [¢y) = |y), even though
previously it was in the arbitrary state |). Which result and state we
obtain is random with probability p(y[y) = [(y|¢) 2 = (p|IL,|p), where
IT, = |y)(y| is a projection operator. Note that this randomness is inherent
to quantum mechanical measurements and not due to uncertainty about

the state. The procedure can also be written as

1L, |y)

y - .
lp) = |¢’y) PA(yWJ)’ (2.4a)
p(yly) = (|11, ]y). (2.4b)

Measurements of this type are called von Neumann measurements [1, Sec. I11.5]
or projective measurements, and the procedure (2.4) is known as Born’s rule.
If we construct a Hermitian observable

y

then the average or expectation value of the measurement A on the state
|¢) can be written as

(A)y = (WlAlp) =Y yp(yly). (2.6)
y

2.1.3 Idealizations of the measurement postulate

There are various ways in which both pure states and the measurement
postulate are an idealization.

Classical uncertainty

In practice we never have perfect knowledge of a physical system, so
pure states are always an idealization. Any physical model focuses only
on some aspects of nature that are deemed relevant while neglecting
others. This turns a closed into an open system, which dissipates into
some environment, i.e., somewhere outside our model. In addition to
technical imprecisions this inevitably lead to reduced certainty about
the system state |¢), but also about the post-measurement state [y)
associated with outcome y of the measurement. Uncertainty about states
can be incorporated into the theory by considering mixed instead of pure
states, which we do in Sec. 2.1.4. But to describe a noisy measurement
process we need to extend the measurement postulate (2.4), see Sec. 2.2.

Instantaneous collapse

The measurement occurs instantly so from one moment to the next the
system collapses to a particular state, [¢) — [¢,). However, any realistic
measurement process, i.e., the reaction of a detection apparatus to a
stimulant, takes a finite amount of time so this assumption can only be
true in an approximate sense.
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Direct measurement

The postulate assumes a direct measurement of the system which is
never the case in practice [1, Sec. VI.1]. For example, consider trying to
measure the internal state of an atom. There is no apparatus that directly
reads out the atomic state. Instead the atom interacts with modes of the
electromagnetic field which are observed through photodetection. Here
a photon is absorbed by the active region of the photodetector, which
causes a current to flow, which triggers a screen to emit more photons,
which impinge on the experimenter’s retina, and so on [2]. At some
point along this chain one has to make a cut, known as Heisenberg’s
cut, to separate the quantum world from the classical and consider the
measurement complete.

It turns out that one obtains quite useful predictions by treating the
atom and light quantum mechanically, and making the cut at the level
of the photodetector. Considering the light to be measured directly and
instantaneously addresses the two previous concerns. The fact that mea-
surements of the electromagnetic field are described so well by the mea-
surement postulate is one of the main reasons for the success of quantum
optics. However, to describe indirect measurements on quantum systems
that can be measured only through interaction with light (or some other
probe) we need to understand how quantum systems are coupled and
to modify Egs. (2.4). We do both in Sec. 2.2.

2.1.4 Mixed states: density matrices

A system S is open if it interacts (i.e., becomes correlated) with some
other system A (called environment, bath or probe) that is not part of our
description. This causes information about the state of S to leak or dissi-
pate into the environment, which reduces our (the “observers”) certainty
about the actual state of the system. To incorporate this uncertainty we
need to replace pure state vectors |¢) € H by density operators p € B(H),
which are bounded operators on H. They are also called density matri-
ces' or mixed states, and they provide a more general description of the
system state than pure states: any |i) can be represented as p = |¢) (¢,
and the dynamics of a closed system with Hamiltonian H are given by

Sot) = il p(1)] = ~i(Hp(t) —p(t)), ()

which is equivalent to the Schrodinger equation (2.1), and gives rise to
unitary time evolution analogous to Egs. (2.2) and (2.3),

o(t1) = U(to, tr)p(to) U (to, tr). (2.8)
However, beyond this p can also be any convex combination of pure
states |¢;),

o =Y. pilej) (¢, (2.9)
j

with p; > 0and }; p; = 1, and in fact any convex combination of density
matrices p; is again a density matrix,

p= Zp]-p]-. (2.10)
)

T Technically it is
not a matrix if
d = co.
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2 For example by
continuously
observing the
environment, see
Chap. 6.

MEASUREMENTS IN QUANTUM MECHANICS

Density matrices are Hermitian positive semi-definite trace class opera-
tors with unit trace

Tr{p} =) (vloly) = 1_pj =1 (2.11)
]

y

It is straightforward to check that the second equality holds regardless
of whether p is of the form (2.9) or (2.10), and that it is independent of
the choice of basis {|y)} as the trace should be [39].

The coefficients p; are probabilities that represent our certainty about
the actual state of the system. As long as all p; < 1 we can, in prin-
ciple, learn more about the system by gathering information®. This is
different from a pure superposition [¢) = }; aj[¢;), which already is a
zero entropy state that corresponds to p = |¢) (| with unit probability.
There is nothing we can do to increase our knowledge about |¢). A good
measure of this classical uncertainty is the purity, defined as

P(p) = Te{p’}. (2.12)

The purity of any state is bounded by d=! < P(p) < 1, with P(p) = 1 if
and only if we have maximal knowledge so p is a pure state, i.e., p; = 1
for some j.

The measurement postulate from Egs. (2.4) can be extended to mixed
states through

I1,pI1
y vPly
= 0y = , (2.13a)
O T ) ’
p(ylp) = Tr{llyp}, (2.13b)
and similarly we obtain averages of observables via
(A)p = Tr{Ap}. (2.14)

2.2 GENERAL MEASUREMENTS

A more general measurement postulate than the one given in Sec. 2.1 is
motivated by the following situation.

2.2.1  Example: indirect measurement

As alluded to in Sec. 2.1.3 many systems can only be measured indi-
rectly by coupling to a probe. Consider a system S (e. g., an atom) and a
probe A (e.g., an incoming field mode) that are described by the tensor
product Hilbert space H54 = HS @ HA. Initially they are not correlated
so their state is a product state 0> (tg) = pS (to) ® pA(to). For simplicity
we assume we have perfect knowledge of the probe, so it starts in a pure
state pA(ty) = |¢)(¢|. We let S and A interact for some time t = t; — tg
via a time-evolution operator [ := exp(—iH54t). This generally pro-
duces an entangled state pS4(t;) = UpSA(ty)U*, which can no longer be
written as a product state. A measurement of local properties of A will
thus be affected by the state of S and vice versa.
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We now measure some probe observable A = Yy yie® fly and assume
the measurement outputs a value y. Applying the projective measure-
ment postulate (2.13) yields the state

piA o 1@ 11,54 (1) (1 @ 11, (2.15)
= [y) | (Gp™A (1)U ) [y) (2.16)
= (WlQIp)o® (to) 910 ) ) @ Iy) (vl (2.17)
= (M,p5 (to)1]) & Iy} (v, (2.18)

with system operator M, = M‘ys := (y|U|¢), and normalization given by
the probability

ploS () = Te{11,p%4 (1) | (2.19)
= Tr{MypS(to)M;} (2.20)
= Tr{I\A/I;]\A/IypS(tO)}. (2.21)

Because the probabilities sum to one,
! TN
L2 L ple® () = Te{ 1, M N10% (o) }, (222)
Y

for any state p°(tg) we can conclude that Yy ]\A/I;;Z\A/Iy = 1. Since we
know both the initial probe state |¢) and the dynamics U, determining
the probabilities p(y]|o°(t1)) = p(y|p®(to)) actually reveals something
about the initial system state. After the measurement S and A are in the
uncorrelated product state (2.18) so we can take a partial trace over the
probe which leaves us with the system state

oy = e oy (223)
Y pyleS(t)) '

2.2.2  General measurement postulate

This example motivates the

General measurement postulate. A general measurement of
a quantum system is described by a collection {(y, My),y €
Y} of possible outcomes y and corresponding measurement
operators M, € B(H). If the system was in state p before
the measurement, and the apparatus outputs a result y, the
post-measurement state will be

My oM}
y yPMy
=0y = — (2.24a)
PR = i) 4
p(ylo) = Tr{ MyM,p}. (2.24b)

Conservation of probability requires }_, ]\A/I;]\A/Iy =1

11
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We retrieve the known projective measurement theory if we measure
an observable with eigenvalues y and each My = fIy is a projection
operator orthogonal to all others. Equation (2.24b) then requires a reso-
lution of the identity, )7, fly = 1. In general, however, the measurement
operators need not be orthogonal.

The formalism can also describe inefficient measurements, for example
if not all (or none) of the probe light is detected or the initial probe state
is mixed. In that case a single result y may correspond to a number of
different post-measurement states of the system and the total state

oy — Zk OMk|prk|y (2.252)
T el
p(ylo) = Te{ X, M, Mgy}, (2:25b)

will be a mixture of these, depending on the number K of different
measurement operators associated with y. The transition to a continuum
of outcomes and measurement operators, replacing sums by integrals, is
straightforward.

2.2.2.1  Positive-operator valued measures

Sometimes we are not interested in the post-measurement state p, =
Mpr but only in the probabilities p(y|p) o Tr{M*Myp} For example
photodetection will always leave us with the vacuum state, but nonethe-
less lets us determine the statistics of the incoming field. In this case
instead of the measurement operators My it suffices to consider the pos-
itive self-adjoint effect operators

Ey = M;;My. (2.26)

In fact, making no reference to the measurement operators at all we de-
fine any collection {£,,y € Y} C B(H) of positive self-adjoint operators
that resolve the identity, }_, Ey = 1, as a Positive-Operator Valued Mea-
sure (POVM) [35, 41]. Note that if we are only given a POVM {Ey, yey}
there is not much sense in considering the post-measurement state since
the decomposition (2.26) of effect operators into measurement operators
is not unique.

2.2.3 Infinite-dimensional Hilbert spaces

If d = oo there are unbounded operators that are defined only on a domain
D ;Cé ‘H which is no longer the whole space H [40]. Some of the state-
ments in this section strictly apply only to finite-dimensional systems.
But given the operational approach of this thesis, these are technicalities
which shall not concern us. Ultimately, any physical system has limited
energy and can thus be approximated arbitrarily well by a finite set of
states.
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STATE PREPARATION THROUGH FEEDBACK

In this part we are going to explore a simple yet versatile
feedback setup involving interferometric measurements and
local feedback operations. It is mostly based on the article
[29] for which I did the majority of the analytical and numeri-
cal computations, prepared the larger part of the manuscript,
and most of the figures. Hendrik Weimer contributed to the
manuscript, especially regarding the variational method pre-
sented and used in Sec. 4.3 that resulted in part of Fig. 4.4,
and to the discussion of the Ising model in Sec. 5.1. The ideas
for this article were developed jointly with Klemens Ham-
merer who also contributed to the manuscript, and to some
computations.






FEEDBACK MASTER EQUATIONS

The description of quantum dynamics under continuous diffusive mea-
surement (that is, in our context, homodyne detection of light) is thor-
oughly described in the formalism of stochastic Schrodinger and mas-
ter equations, as pioneered by Belavkin [5] and Hudson and Parthasa-
rathy [6]. Measurement-based feedback was incorporated by Wiseman
and Milburn [19, 20, 42], and summarized comprehensively in textbooks
of Wiseman and Milburn [2] and Jacobs [36]. This formalism provides
stochastic equations of motion for quantum states conditioned on the mea-
surement result (that is, the photocurrent3). The equation of motion for
the unconditional quantum state can then easily be obtained in the ensem-
ble average over all measurement results, which removes all stochastic
terms. Following [2], we refer to the equation of motion describing un-
conditional, ensemble averaged quantum dynamics under continuous
measurement and feedback as the Feedback Master Equation (FME). In
this section we provide a derivation of the FME which is similar in spirit
to the ones given in [43—45] but avoids the use of stochastic calculus
[46] and quantum Langevin equations [45], and relies only on concepts
from basic quantum mechanics. This necessarily comes at the expense of
mathematical rigor, which we try to make up for by physically motivat-
ing any restrictions we impose. Similar derivations have been presented
before [30, 33]. The following derivation has previously appeared in the
article [29], and was adapted were necessary.

3.1 DERIVATION OF AN UNCONDITIONAL MASTER EQUATION

We first consider the case of a single system coupled to a single light
field in detail, see Fig. 3.1. The generalization to N systems coupled to
M > N beams of light and feedback fields is then straightforward, as
depicted in Fig. 3.2.

3.1.1 Introducing the setup

We consider the setup depicted in Fig. 3.1 comprising a quantum system
S (“the system,” e. g., a cavity mode, an atom, or a mechanical oscillator)
with associated Hilbert space HS, which is coupled to a one-dimensional
continuum of bosonic modes. These are collectively denoted A with
Hilbert space H# and in the following also referred to as “bath.” The
Hamiltonian governing the joint evolution,

H=Hs+ Hg+ Hin, (3.12)

is composed of Hamiltonians for the system, the bath, and their interac-
tion. These are given by

Hy= / dw wit e, (3.1b)
0

3 We also refer to
processed detector
outputs as
“photocurrent,”
such as a
normalized
homodyne signal.
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Homodyne
measurémerit

(Xo)

Classical channel

Figure 3.1: Feedback setup for a single system S, such as an atom in a cavity
(schematic). A one-dimensional light field .A couples to S via Hip, and passes
through a phase plate U = e’?. Subsequently, the transformed field B = UA is
combined with a strong local oscillator (LO) on a beam splitter. Two photode-
tectors measure the incident intensity, and the difference realizes a quadrature
measurement, (X), implicitly depending on 6. This classical signal is transmit-
ted back to the system (dotted line), where it is used to generate Hermitian
feedback (Xg)F.

where 4!, 4, are the usual Creation and Annihilation Operators (CAOs)
of the bath mode with frequency w satisfying the commutation relations
[&w, ZlIJ/] == 5((&) - w/), al'ld

N L[ [K(w) [ an At
Hint = 1/0 dw %(Saz — SJraw), (3.10)

which couples system and bath with strength «(w). This interaction is
quite general because we do not further specify the system operator
S. We do impose the common restriction [45, 47] that Hjy; is linear in
dw, but we will see below that this is satisfied by a number of relevant
systems.

The precise form of the system Hamiltonian is not relevant as we go
to an interaction frame [2] with respect to As+H A, but we do make
the following assumptions. First, the system-light interaction is constant
in some large frequency bandwidth W, that is x(w) = « for w € W
and negligible outside. This is known as the first Markov approximation
and not unreasonable since constant coupling in frequency means the
interaction is strongly localized in space [47]. Second, we assume the sys-
tem operators merely acquire a time-dependent phase 5(t) = Se~/(t—t)
in the interaction picture*, which dominates the evolution. Any further
time dependence is assumed to be negligible on the time scale set by the
interaction Ty, ~ x~!. This assumption is made for simplicity and will
later be dropped, e. g., in Sec. 8.2.

In the rotating frame and using these assumptions we write the inter-
action as

Hini(t) = i/ (0" () - $%a(1)), (3.2)
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Feedback  Systems

- »| FB
----- > FB
----- > FB

Homodyne
Interferometer  detection

( )

Ay

An

alale
:

Figure 3.2: Proposed generalization of the simple feedback setup in Fig. 3.1 to
N systems 8]-, j=1,...,N, with corresponding light fields A]-. After interacting
with the systems, the fields traverse an N-port passive interferometer. Homo-

dyne measurement of each beam yields quadratures (X, ), which together
allow us to control the systems via local feedback.

with time-independent system operators S, and time-dependent field
operators

i(w—0Q)(t—to)

a(t) := \/1277.( /W dwage™ . (3-3)

Provided the bandwidth of constant coupling W is sufficiently large,
and the central frequency () is yet larger compared to W, we can replace
the integration area W by R [2, 43, 45] so the field operators a(t') from
Eq. (3.3) satisfy the commutation relation [a(t'),at(t")] = 5(t' — t").

To illustrate the interaction (3.2) we consider a few examples. First, let
the system be a single cavity mode with annihilation operator 4. In that
case coupling to the outside field is given by S « 4. If the system is a
simple two-level atom with raising and lowering operators ¢+, the usual
dipole coupling is given by S & ¢, 4 ¢, which may simplify to S o &
in the rotating wave approximation [2]. An (effective) spin—% particle,
such as a two-level atom inside a far-detuned cavity with a linearized
field [48], may correspond to $ o ¢, with the usual Pauli operator G-.
Lastly, coupling a mechanical oscillator with position X to light, and lin-
earizing the interaction and field, yields a radiation pressure-interaction
S o % [49]. We will encounter this example again in Sec. 8.2. We em-
phasize that the assumptions leading to Eq. (3.2) hold in a broad range
of systems, making this derivation applicable to a variety of physical
realizations.

3.1.2  Coarse-graining of time

Let us now fix the time t and consider how a combined system-bath
state p°“(t) evolves (in the interaction frame) during a time step t —
t 4 ot. For a perturbative treatment we need 4t to be smaller than all
other time scales which in this frame means 6t/ Tyt ~ 6t < 1. In that
case we can eventually treat 6t — dt as infinitesimal to obtain a time-
continuous master equation for S. For given 6t the perturbative errors
become smaller the weaker system and bath are coupled.

17
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For any 6t > 0 the evolution is governed by an interaction of the
system with a discrete temporal mode of the light of duration Jt (or
spatial mode of length cJt where c is the speed of light). Using t as a
reference we set t,, := t + nét for n € Z. For simplicity we write t instead
of tg, but emphasize again that for now t is fixed. We divide time into
disjoint slices [ty t, + Jt) of length 6t as in Fig. 3.3. To each slice we
associate a coarse-grained operator

_ 1 tn+5tA , ,
Ay = i) a(t'ydt'. (3-4)

These are dimensionless and satisfy the commutation relation

i oat 1 [hatot / tm+0t Hiaf N Aty
(A, At] = E/ dt / de"[a("), at ()]
ty b (3-5)
:anm.

Importantly, the normalization of A, ensures that Eq. (3.5) holds regard-
less of the arbitrary time ét. These operators thus give rise to the afore-
mentioned discrete modes, which we denote A,, and which exist on
Hilbert spaces ;' such that HA = ®,,cz H;'. We introduce the short-
hand A,,~¢ to refer to all modes moving away from S and A, <( for all
modes coming in.

During every temporal slice the system is presented with a different
bath mode (e.g., Ap from t to t 4 4t) in a “conveyor belt” fashion, as
depicted in Fig. 3.3. A part of the field moves in, interacts with the sys-
tem, and then escapes to infinity, never to return. This corresponds to
the usual Markov approximation [2] where the evolution of the system
does not depend on its history but only on its present state. So while the
A, -0 may be correlated with S they do not affect its future evolution,
and the modes A, <o have not yet interacted with the system. Thus we
can ignore all correlations between system and bath for now, and con-
sider only those arising during [t,t + Jt). In that case, even though the
joint system-bath state pS(t) in principle lives on a large Hilbert space

HEA = HS Q) H;! (36)
nez
:---®Hi‘2®7{i‘1®{H‘9®H5“}®H{‘®..., (3.7)

it suffices to consider only the bracketed part, and we denote this re-
duced state by p5(t) € HS @ Hl.

3.1.3 Interaction between system and bath mode

Initially system and bath are in a product state p5(t) = pS(t) ® pg'
because Ay has just moved in and is not yet correlated with S. This triv-
ially implements the usual Born or weak coupling approximation, which as-
sumes that interaction with the system does not change the state of the
bath: if all incoming A, < are in the same initial state then from the sys-
tem’s point of view the bath is indeed reset after every step. We assume
the system state pS(t) is known and pg' = [0)(0| is in the vacuum state



3.1 DERIVATION OF AN UNCONDITIONAL MASTER EQUATION

of Ay. This does not necessarily mean that there are no photons imping-
ing on the system. For example, the system may be driven by a strong
coherent |a;) (or squeezed) field which can be treated semi-classically
(e.g., [47, Ch. 4], [49]). The effect of the large amplitude « is simply to
displace all bath CAOs. This changes the coupling rates and equilibria of
the joint system, but not the quantum mechanical interaction which is
still fully captured by a (possibly squeezed) vacuum state of the bath.
We now let the interaction (3.2) act on the state

P (1) = p5(t) ©10)(0]. (3.8)
with duration 6. This generates
pit 1= U(t 1+ 865 (DU (8,8 + 61), (3.9)

where U is the usual time-ordered evolution operator,

. b0t
U(t,t+6t) :== Texp(—i/ at’ Hmt(t')>. (3.10)
t

To understand how this operator acts on the vacuum bath we assume
€ := Vkét < 1 is a small parameter to expand U in a power series in €
(see, e. g., [50, Chapter 4.2]),

U(tt+6t) =1+ 00 + T + 058377, (3.11)

with (non-unitary) operators
. t+3t .
a® = —i/ dt1 Hine(t1), (3.11a)
t
) t+0t t . .
@ —— [ dn [ dts At Ain(t2): (3.11b)
t t

Due to the singular nature’ of &(#') and a'(#') we have to consider
the first fwo components of the series to capture all terms of order
ot ~ 62; We rewriteAthe intAegrand of ﬁ(%) using AI:Iint(tl)I:Imt(tz) =
Hint(t1) Hine(t2) /2 + Hine(t2) Hine(t1) /2 + [Hine(t1), Hine(t2)] /2, and we
find that the commutator vanishes on the vacuum state. Being left with
an integrand symmetric in t; and f; we may change the integration
boundaries to obtain

1

a®)oy = ~5
t

t+ot t+6t R )
d, /t dty Hint(t1) Hine (£2)[0). (3.12)

Defining the coarse-grained Hamiltonian

Hint := i(éf_lg — §+Ao> (3.13)
the effect of (I on the vacuum can be written as

U(t, t +6t)]0) = exp(—ieHipn)|0) + O (), (3.14)

Intuitively, in discrete time we have to treat ot as the smallest possible time incre-
ment. Each term of the expansion then goes as a power of v/két: every factor of &
goes as 0t~ 1/2 (since [a(t), 4t (t)] = 6(0) ~ 1/6t [2]) while each integration fot dt ...
contributes a factor of ét, and every Hamiltonian scales as /k.
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which holds if we neglect terms of order O(€3). The evolved system-light
state, normalized to the same order, is then given by

p‘i%t‘l = exp(—ieHint)pgA(t) eXP(ieHint) + 0(63)‘ (3.15)

Again the effect of Hy,; is independent of the step size 6t, like an average.

Due to the interaction the system has built up correlations with the
bath. So if we were to measure Ay we would also obtain some informa-
tion about the state of the system. We will do so in Sec. 3.2.2 to perform
measurement-based feedback on the system, and to track the conditional
system state in Chap. 6. But for now we let .4 simply escape to infinity.

3.1.4 Tracing out the bath

The mode A simply escapes to infinity, has no further effect on the
system, and can be purged from our description. This also means it
takes away any information it may have carried about p°(t). We model
this ignorance by averaging over all possible states of the bath, which is
done by taking a partial trace (see [39, Ch. 2]) over the bath degrees of
freedom. This is denoted as

oS (t+0t) = Tea{ o'} (3.16)

which leaves us with the uncond1t10nal system state p° (t + dt). To eval-
uate this expression we expand p# in the small parameter € = /xot.
We will later see that we need to go to order O(e?) to see nontrivial
behavior, so we need to consider

exp(—i€Hint) = 1 — ieHint — 5 2H12nt +0(€%), (3.17)
and by dropping terms of order O(e ) we obtain

o5 (t+0t) ~ Tea{p§ (1) } — ieTra{ [Hine, 054 ()] |

€? =~ sA (3.18)
+ ETrA{ZHintPO ( ) int — {Hmt/ pO }
with commutator [A,B] = AB — BA and anti-commutator {A,B} =
AB + BA. Computing the trace then yields, for example,
Tea{ps4(H } = Tra{p®(H) @ [0) (0 } (3-19)
= p*(OTea{l0)(0]} = p°(1), (320)

and for the term linear in €,

TrA{ tho } zTrA{< Z+A0) () ® |0><0]} (3.21)
(Zp

= iTra{(2p°(1) @ (A}[0)(0]) } a2
A ) 3.22
—iTrA{(Z+p5(t))®(Ao\0><0\)}
= iZp% (£)Trq AS|0) (0]
. { } (3-23)

—iZ"p%(#)Tr{ Ao|0)(0[}
=0, (3-24)
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where we used that CAOs have vanishing expectation value on the vac-
uum. Similar evaluation of the other terms yields

oS (t+ ) = o5 (1) + ED[S)p5 (1) (3.25)
where we introduced the Lindblad superoperator

~ ~ ~ 1 axa 1 AL A
D[S]p° () := $p°(1)8" — 557805 (1) — 50 ()S'S. (3.26)

The term superoperator is used to distinguish regular operators, which
act on vectors in Hilbert space, from operators that act on those opera-
tors, such as D acting on p. The argument S of the Lindblad operator is
also called a jump operator since in quantum optics S« 64 or S« i often
describes the “jumps” of a system that emits or absorbs photons from
the bath and thus abruptly transitions to a different state. But the name
is also used when $ describes a continuous operation, such as S 0, for
the rotation of a spin.

Equation (3.25) shows that it was indeed necessary to keep terms of
order € = x4t to see nontrivial effects. We find the time-continuous
evolution of p°(t) by considering the increment

55 (1) := p%(t + ) — p°(t) = xD[S]o" () ot (3-27)

Taking the limit of an infinitesimal step, 6t — dt, is straightforward
because all of the operators are independent of Jt. We can then treat
5pS(t) — dpS(t) itself as infinitesimal so

dp® (t) = ¥D[S]p® (t)dt. (3.28)

This equation is indeed the quantum master equation for a system weakly
coupled via S to a heat bath of zero temperature [2, 36, 45, 47]. More gen-
erally, by including an additional system Hamiltonian Hg or by leaving

the rotating frame, we would find

dpS(t) = —i[Hs, % (£)]dt + xD[S]p% (t)dt. (3-29)
3.2 INCLUDING MEASUREMENT-BASED FEEDBACK

3.2.1  Adding phase plate and measurement
Let us return to the joint system-light state 5! after the interaction. In-
stead of letting the light escape we will measure it to obtain information
about S. For greater flexibility in the measurements we can perform, we
let Ap first traverse a passive optical element, which for a single one-
dimensional field simply corresponds to a phase plate (light blue box in
Fig. 3.1 (a)). In later sections we will consider setups involving several
fields in which case the passive element corresponds to a linear inter-
ferometer. We assume that compared to the interaction time 6t both the
optics and measurement act instantaneously (with negligible delay) on
the field.

In order to pave the way for generalization to multiple fields we
give here an overly elaborate description of the action of a phase plate.
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We assume the optics to be independent of frequency in the relevant
bandwidth. The plate then imprints an additional phase 6 on Ay, so
Ag +— UAj with the complex scalar U = e!?. It will be useful to view
this phase-shifted field as a new field B with CAOs given by b(t) := Ua(t)
so the coarse-grained slice By comes with By := UAy. These operators
still satisfy [Bo, Bj] = 1 and have the same vacuum state |0) as 4. Si-
multaneously defining a new system operator

7 :=US =¢"§ (3-30)
allows us to write Hpt = i(ZB(‘; - Z+BO) S0
pie = exp(—ieHin)p§ " (t) exp(ieHine) + O(€%) (3-31)

still holds but with § — Z.

The next step in our scheme is a homodyne quadrature measurement
of the outgoing beam, enclosed in the dark orange box in Fig. 3.1 (a),
and further explained in App. A. The quadrature operators of By are
given by

o . L (5 &t

X = 7 (Bo + B0>, (3-32a)

5 . _ L (g _ gt

Py := 7 (Bo Bo), (3.32b)
with commutation relation [Xg, Py] = i. Without loss of generality we

restrict ourselves to measuring only X since By implicitly depends on 6
so we can always change the quadrature by choosing a different phase.
The Xp-quadrature eigenstates |x) of the field By are defined through
Xo|x) = x|x) for ¥ € R, where the bar emphasizes that these states
correspond to coarse-grained operators X.

Assuming the homodyne detector outputs a specific value, x say, the
light is projected into the corresponding eigenstate, and the state of S
after interaction and measurement is given by

pi(t+0t) == (x|pFF %), (333)

where the subscript indicates that the state is conditioned on the outcome
X. Note that p§(t + 6t) does not have unit trace, denoted by the tilde,
and so is not a density operator in a strict sense. After normalization we
find

1
PR (t+5t) = @Udpﬁfmf (3-342)
p(x) = Trs{ (2loSP1%) | = T{[%) (x1o5F |- (3:34b)

where Trs{...} denotes a partial trace over the system degrees of free-
dom. Equation (3.34b) is important because it tells us that the normaliza-
tion p(¥) is just the probability to measure ¥ given p55.

Obtaining the result X has revealed some information about the state
of §. We can use this knowledge to apply measurement-based feedback
(in Sec. 3.2.2) and to derive a stochastic master equation (in Chap. 6) for

the conditional state. But first we will check for consistency by seeing
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what happens if we simply ignore the measurement result. This corre-
sponds to averaging over all possible conditional states weighted with
their respective probabilities,

pS(t+ot) = [ p(R)pf(t+ ot (5:35)

= [ Gloif %) ax (5:36)

= TrB{P‘iff } (3:37)

where the integral [ dx(%|...|X) = Trp{...} is one possible way to com-

pute the partial trace over the bath. This corresponds precisely to the
expression found in Sec. 3.1.4, but with Z instead of S. Following the
same procedure as before we find the master equation

dp®(t) = ¥D[Z]p® (t)dt = kD[S]p® (£)dt, (3-38)

where we used that Z = €?$ and D[«S] = |«|*D[S] for complex scalars
Q.

3.2.2  Applying feedback

In this section we will use the the measurement result to apply instan-
taneous Markovian feedback to the conditional state p§(t + Jt) from
Eq. (3.34), depicted by the purple box in Fig. 3.1 (a). Instantaneous here
means that all possible delay T4eay is negligible on the time scale dt so
it acts back on the system before the succeeding time step. In particular,
because Tgelay K 6t < Tint this requires the delay to be much smaller
than the interaction time. The feedback is Markovian in the sense that
it depends only on the measured signal at a specific time and not on a
record of previous measurements.

3.2.2.1  Hamiltonian feedback

We aim to keep the feedback simple to alleviate experimental difficul-
ties. To this end we choose Hamiltonian feedback [19, 20] (also known as
Wiseman-Milburn Markovian feedback [36]), which is linear> in the mea-
surement current. It is effected by modifying the Hamiltonian propor-
tional to the unprocessed measurement signal, so in a time-continuous
picture we would naively include

Hpy(t) = /KLY (1) (3-39)

in the evolution where F is some Hermitian operator and Y (t) e« (%(t)) =
(b(t) + bt (t)) //2 s the instantaneous homodyne current, see also App. A.
One has to take care not to violate causality when applying the feedback
since it must act after interaction and measurement. So simply adding
Hg(t) to the original interaction Hin(t) in (3.2) yields nonsensical re-
sults®>. However, in our stroboscopic picture the system evolves sequen-

A rigorous way to add time-continuous feedback is to start with finite delay of the
feedback, deriving a proper equation of motion and then letting the delay go to zero

[19, 20].
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tially anyway so we first complete the measurement of X, with result ¥
to prepare the coarse-grained feedback Hamiltonian

Hy, = V2kFx. (3.40)

Here we rescaled F to replace kg, by 2« in order to obtain a more conve-
nient master equation later on. Applying Hy, to p§ (t + dt) as in Eq. (3.15)
generates (recall € = Vx0t)

P (%) = exp (—iﬁea‘cﬁ) o (t 4 5t) exp (iﬁeicﬁ). (3.41)

We did not further specify F to keep the feedback general. For ex-
ample, the system could be a single mode cavity with CAOs &f,¢. Then
F o &*¢ shifts the frequency of the cavity mode [51], whereas F o i(¢ — &)
affects the cavity drive [42]. Physically, these operations may be realized
by modulating either the refractive index inside the cavity or its transmis-
sion. On the other hand, if the system is a particle with (effective) spin-3,
we may rotate its spin through F o« ¢, with Pauli operator ¢;. This is
realized, for example, for a two-level atom inside a cavity by suitable
external driving fields, e.g., optical pulses or magnetic radio-frequency
fields [48]. Further examples of feedback operators are provided in the
applications in Chaps. 4 and 5 (see, for instance, Egs. (4.4), (4.10), and
(5-3))-

Let us express the conditional system state pfb(a_c) in terms of the ini-
tial states of S and B. Plugging in the definitions of p§ and p3? from
Egs. (3.34) and (3.31) into (3.41), and using the fact that |X) is an eigen-
state of X, we find

Py 1 -1 —iv2eX F iv2eXoF |~
() = gy (e V2o eVl ) (3-42)
_ L sip(sS 2t
= o TR (e (1) 10) (0] R ), (3-43)
where
K := exp(—iv2eXoF) exp(—ieHint). (3-44)

In contrast to coherent feedback, where the output of the quantum sys-
tem is directly fed back, measurement-based feedback does not require
any quantum information to be transmitted, only the measurement re-
sult, which can be processed classically. This may be a practical advan-
tage because it allows for (digital) processing and amplification of the
signal. But it has the great disadvantage that we are restricted to actions
of the form above. The feedback also always has to follow some interac-
tion and measurement procedure which takes additional time compared
to an equivalent coherent scheme [36, Sec. 5.2].

3.2.2.2 Feedback master equation

By definition the feedback, and thus p‘fsb(ic), is conditioned on a partic-
ular measurement result. If we do not want to constantly monitor the
detector output to keep track of the state, we need to understand the
unconditional evolution, i.e., we need to know how the system behaves
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on average. To this end we have to proceed as in Sec. 3.1.4: we sum pfb(ic)
over all possible results x weighted with their respective probabilities

p(x) = Tr{|%)(¥|05B}. Again this gives us a partial trace over the light
field

P50 = [~ dep(@pR ) (545

— TrB{K(pS(t) ® yo><0|)1%*}, (3.46)

which we evaluate by expanding K in powers of € and neglecting terms
of order O(e%). This yields
S S [ iots o0 S
oS (t+6t) = pS(t) — E{(Z 7+ 22)p5(t) +h.c.}
(

+ \/§e<;‘<0>{(2 —iP)eS(t) + h.c.}

(3-47)
+2(X3) { (22 — 2 ZiﬁZ)pS(t)+h.c.}
+26X(X3) (2 — iB)pS (1) (2" +iF),

with system operators F and Z = US = ¢S, and where the expec-

tation value is taken with respect to the vacuum state, e.g., (Xg) =

Trg{X0]0)(0|} = (0|X0|0). We can use the vacuum statistics of X, namely
(0|X0[0) = 0 and (0|X3|0) = 1/2, and € = V6t to obtain the uncondi-
tional system state

oS (t+0t) = pS(t) — éx[ﬁz + 2TE, oS (1)) 0t
+«D[Z — iF]pS (t)ét,

(3-48)

with Lindblad operator D from Eq. (3.26). It is clear that the time scale
of the corresponding quantum dynamics is set by the strength of the
light-matter interaction «. Taking the limit 6t — dt is as straightforward
as in Eq. (3.28) so we find the FME

doS(t) = —%K[ﬁz + ZtE, pS(1)]dt + xD[Z — iF|pS (1)dt  (3.49a)
= —i[H,p%(t)]dt + D[L]p* (t)dt (3.49b)
with Hamiltonian H and jump operator L respectively given by

A:= %K(ﬁz +Z'F), and L:= Vx(Z —iF). (3-49¢)
To check for consistency, we note that without feedback, F= 0, we obtain
the unconditional master equation (3.28), as we should.

We arrived at this important result, Egs. (3.49), using only basic rules
of quantum mechanics, but emphasize that one obtains the same result
[2, 20] by employing stochastic calculus [5] to treat measurement and
feedback rigorously. On an individual system measurement-based feed-
back can be used, for example, to stabilize the output [19], avoid back
action [52] or protect quantum states from decoherence [51]. But if col-
lectively applied to multiple systems it can be used to engineer effective
many-body interactions. To this end we will now generalize the formal-
ism to a collection of quantum systems.
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Figure 3.4: (a) Schematic layout of the feedback scheme for N systems &
through Sy. Each system interacts locally with a single light field Ay via HE ,.
The fields traverse an interferometer given by an N x N unitary matrix U. Ho-

modyne detection of the outgoing fields B, yields the quadratures (X, ). Each
signal is transmitted back to the systems via classical channels (dotted line),

and generates local feedback of the form <X,,C,0>I:“{1 on each S]-. The total feed-
back on §; is generated by YN (Xuo)EL. (b) A different schematic of the same
setup. It emphasizes how each measurement (X, ) is used to generate collective

feedback F, = Zjlil 1:"],,4 on all systems. This represents the same scheme as in
(a) but viewing the feedback as collective simplifies our calculations.

3.2.3  Generalization to multiple systems

Instead of a single system we now consider an array of systems S;,
j=1,...,N, each coupled to a corresponding bath .A; as in Fig. 3.4 (a).
Note that the systems need not be identical, and that there is no direct
interaction between them, so the collective system Hamiltonian decom-

poses into a sum of local terms, Hg = X EIJS

3.2.3.1  Setup and coarse-graining

As in the previous section we assume that the relevant system and light
Hamiltonians allow us to change to an interaction frame in which the
total system-light coupling can be expressed as

N
Hine(t) = Y HL (1) (3.50)
i
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The Hamiltonians ﬁ{m(t) generate the coupling of S to B; and are given
by

Al (1) = ive (8t (1) - $1a;(1)) (3.51)

for every j. We assume here a common coupling strength x for all of the
N systems. Inhomogeneities of the coupling constants can be absorbed
into the the system operators S Each S is a local operator, meaning that
it acts nontrivially only on system Sj, and aj(t) are bosonic annihilation
operators as in Eq. (3.2), obeying the usual relation

[a;(t), ag(t)] = 6 (t — ). (3.52)

As in Sec. 3.1.2, we fix the time t and coarse-grain the evolution by
introducing the discrete time step ét. We can adopt the corresponding
coarse-grained CAO from Eq. (3.4),

_ 1 t,+0t . ,
Ajp = ﬁ t a]-(t )dt, (3.53)

for discrete times t, = t + ndt. These satisfy [A] Akl =6 ikOnm SO each
Aj, corresponds to a discrete bosonic mode A;,, where the first index
labels the systems and the second denotes how far the mode is from the
interaction region. During the considered time step only \A;y contributes
to the system evolution so we drop all others.

As before we assume we know the joint system state pS(t) and have
all incoming light fields in the vacuum state, so pSA(t) = p°(t) ®0)(0],
where [0)(0| is the collective vacuum of all light modes. Thus as in
Eq. (3.15) the combined system-light state after the interaction will be

oot = exp(—ieHine)p A () exp(ieHint) + O(€?) (3.54)

where € = Vkdét and

N —_ A _
Hing =1y, (SjA}L,o - S;FA]',0>- (3-55)
=1

27

For ease of notation we combine the operators A; j0and S j into N-dimensional

vectors Ao and § respectlvely, so Hiy = 1(5 AJr St. Ap) with the dot-
product § - Al = XS S; A

As before, letting the hght escape after the interaction will lead to a
master equation

N
dp® () =k ) D[5;]p% (1)dt (3-56)

for the collective system state, and we see that each S; couples to a local
jump operator S In order to generate nontrivial dynamlcs we thus have
to measure the outgomg modes.
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3.2.3.2 Interferometer and measurement

Before the measurement we send the light through a set of optics. The
simple phase plate from Sec. 3.2.1 is replaced by an interferometer, which
mixes the A;( via a unitary N X N matrix U, depicted as a blue box in
Fig. 3.4 (a). The interferometer yields outgoing fields B, ..., By with
corresponding annihilation operators

N
By:=UAy & Byo:=) UjAjp. (3.57)
j=1

To avoid confusion between the systems S; and incoming fields A,
on one hand, and the measured fields B, on the other we use greek
indices for the latter. Because the passive interferometer does not mix
annihilation and creation operators we find [By o, BE/O] = 04,p- The optics
thus output a combination of the former fields A; o, which make up new
independent bosonic modes B, 9. Changing the system operators in the
same manner, so that

N
Z:=US & Z,:=) UyS, (3-58)
j=1

allows us to rewrite the interaction,
Hint = i(Z- BY — Z" - By). (3-59)

We now perform a homodyne measurement of each B,. As before, we
introduce the coarse-grained quadrature operators

Xo = —(Bo+BY), (3.602)

V2

Pyim ‘\;5 (B0 BY). (3.60b)

Without loss of generality we measure only the X, o-quadratures. Any
other quadrature can be measured by inserting phase plates before the
detectors, which amounts to multiplying U by a diagonal phase matrix,
D = diag (e, ...,e), from the left. Since all X, commute, we may
define common eigenstates |x) := |X1,...,Xy) as usual through

Xu0|%) = %o|X). (3.61)

The conditional system state after the measurement carries over from
Eq. (334),

plt+8t) == s (xS ), (3.622)
p(R) = Trs{ (=055 %) } = Te{ %) (3103F |, (3.62b)

with normalization given by the joint probability density function p(%).
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3.2.3.3 Applying local feedback
As in Eq. (3.41), we apply Hamiltonian feedback to the conditional state,
o5 (%) = exp (—iﬁeé(i))p%(t + 0t) exp (iﬁeé(i)), (3.63)

with some Hermitian generator G(x) acting on the N systems that de-
pends on the measurement outcomes x. It is crucial to specify at this
point the resources which are assumed in the feedback operations: in
order to maintain the assumption that there is no direct physical inter-
action between the systems we restrict ourselves to local feedback oper-
ations, each affecting only individual systems as depicted in Fig. 3. 4 (a).
This means we can write G (%) = Z] Net j(x) with local operators G, i(%)
acting (nontrivially) on S; only. We stlll assume feedback linear in the

measurement signal, so we can write é](k) = YN | %F], where F}, are
local Hermitian operators that use the measurement of B, to produce
feedback on ;. Consequently, the total feedback on all systems yields

N .

G(x) = Y Xo . (3.64)

u,j=1
Our choice of G effects simultaneous action of all feedback operations.
This is justified because, as we will show below Eq. (3.70), different feed-
back operations commute up to O(e?®) due to the independent statistics

of the light fields.
To simplify the notation, let us collect the feedback corresponding to

measurement signal X,

N .
Foi= 2 Fi, (3-65)

as shown in Fig. 34 (b). If we combine all F, into a vector F, we can
write G(%) = % - F to obtain the conditional feedback state

o5 (%) = exp(—i\/ieic : ﬁ)p%(t + ot) exp (i\f2€5c . 1:"). (3.66)

Note that Figs. 3.4 (a) and 3.4 (b) describe the same setup, with only a
slight change in notation and a different view on the feedback.

As in Eq. (3.43), we express pj (¥) in terms of the initial states of
system and light,
1

p(*

PR (R) = o5 (FIR (7(1) 210) (0]) K 5), (3:67)
with

R = exp(~iv2eXo - F) exp(—ieHin). (3.68)

3.2.3.4 Averaging the dynamics

To obtain the unconditional system evolution we average the conditional
state from Eq. (3.67) with respect to all light fields. This yields the famil-
iar expression

pS(t+et) = [ dFi..dEy p(R)R () (5:69)

S
X
:TrB{K(p (t) ®10)(0 \)K*}, (3.70)
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where Trg{...} now denotes a partial trace over all baths. We expand K
and drop terms of order O(€3) to evaluate the trace. Using that operators
of different baths commute, and (0[X,,[0) = 0 and (0|X,,0Xg0|0) =
bx,p/2, yields the density matrix

. N
fwww:fw—QQ]ha+ﬁhwat
M (371)
+x Y D[Zy — iFa]p® (t)ét.

At this point we can justify the choice of simultaneous feedback in
Eq. (3.66). The order in which the feedback is applied is irrelevant for
our purposes, as can be seen as follows: consider two generic feedback
terms, (—:x,,‘FD‘ and exﬁF B The results X, , p are promoted to operators in
the formulation of (3.67). Comparing sequential to simultaneous appli-
cation of the feedback using the Baker-Campbell-Hausdorff formula one
finds

exp(eXu0Fx) exp(€XpoFp)

N A e A oA
= exp <€Xu¢,OFuc + (-TX/;’QF‘B + ?XD(,()X/;,Q [Fa, Fﬁ]) + O(GS)- (3.72)

When taking the partial trace in Eq. (3.70) the additional commutators
Xg,OX B0 [Fo, F g] contribute only vacuum expectation values of the form
(Xa,0Xpp) for a # B. These vanish due to the independence of the fields,
and our choice of simultaneous feedback in Eq. (3.64) is justified.

3.2.3.5 General feedback master equation

As before, combining xdt — 6t into dimensionless time in Eq. (3.71) and
taking the limit 6t — dtf, we can read off the Feedback Master Equation
(FME)

+ N
1 N
de®(t) = —5 Y [FuZa + ZLE, 05 (1)) dt
a=1

2
N (3.73)
+ Y. D[Z, — iFy]pS (t)dt
a=1
N
= —i[H,p5(H)]dt + ) D[LaJo® ()dt, (3-73b)
a=1

with an effective Hamiltonian and jump operators

*Z Fo), and  Lo:=Zy—ifs,  (3.730)

I\)

each comprising sums of local operators6

N»
=

N . R N .
= Z UyjSj, and F, = Z £, (3.73¢)
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The FME (3.73) for N systems under continuous, diffusive, interfero-
metric measurement and local feedback is the main result of this sec-
tion. The resulting open-system many-body dynamics is determined by
a Hamiltonian H and a set of jump operators L,. The Hamiltonian ex-
hibits pairwise interactions of, in principle, arbitrary range. The jump
operators are sums of strictly local terms but comprising, in principle,
operators of each system, and therefore act collectively on all systems.
Thus the FME describes a fairly general class of open and interacting
many-body systems without requiring any direct physical interaction
among them: all interactions are mediated by the interferometric mea-
surement and feedback. These can be engineered almost arbitrarily in
range or geometry by a proper choice of (i) the system-light interactions
characterized by the system operators S j, cf. Eq. (3.51), (ii) the interfer-

ometer U, and (iii) the feedback scheme determined by the operators F},
cf. Eq. (3.64).

Before we identify conditions for achieving nontrivial quantum dy-
namics in Sec. 3.3, and consider possible choices for {§ iU, IE{X} in Chaps. 4
and 5, we perform the useful generalization of the formalism to multiple
baths per system.

3.2.4 Generalization to multiple light modes

As in the previous section, consider N systems S; coupled to baths A;,
and let us denote the feedback dynamics from Eq. (3.73) by a Liouvillian
LA, s0

N
dpS (1) = —i[AA, 5 (1)]dt + Y DILA]PS (1)l (3:74)

=: LA (1). (3.75)

Now assume that each §; can simultaneously interact with a second
field By. These may correspond to different frequencies, polarizations,
or spatial modes. We can construct a second interferometer U? for the
B-fields, and perform additional measurements and feedback to drive
the systems. Turning off the A-fields and considering only the dynamics
generated by the B-fields will generate an analogous feedback master
equation

405 (t) = —ilF1E,pS (D]dt + 3" DIL]S (et (376

a=1
=: LBpS(1). (3.77)
If we take into account both A- and B-fields we find that the Liouvil-
lians simply add up,
dp®(t) = LPp + Lp. (3.78)

The reason for this is the additive structure of the Hamiltonian and jump
operators in Egs. (3.73). To see this combine the system and feedback
operators each into a single vector, § = (§4,88)T and F = (FA, FB)T, as
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i
B

(a) LOCC (b) Still LOCC (c) Possibly non-LOCC

Figure 3.5: (a) Without an interferometer we can perform only local measure-
ments. In combination with local feedback, the scheme will generate only
LOCC dynamics. (b) Local phase plates before an LOCC setup, such as a real
orthogonal interferometer O, will not enable any non-local operations. This is
an example that does not necessarily satisfy Eq. (3.85). (c) Phase plates before
the detectors, on the other hand, change the homodyne measurement basis.
They may enable non-LOCC dynamics, even if the preceding setup is LOCC.

if we had 2N systems. The new system operators after the interferometer
are then given by Z = (Z4,Z5)" := US, with a block diagonal matrix

UA 01

u =
0o Uus

(3-79)

Inserting this into Egs. (3.73) will yield a Hamiltonian A = A4 + A5,
and two sets of jump operators i,’c‘l, ﬁf, which results in the additive
Liouvillians above. Obviously this line of reasoning can be extended to
an arbitrary number of fields.

3.3 PARAMETRIZATION OF LOCC DYNAMICS

Without an interferometer we would measure each mode separately and
then perform local feedback on the systems through classical channels.
Schemes of this type are known to generate only local operations and
classical communication (LOCC) dynamics [35, 53], which may transform,
but not produce any quantum correlations. Thus an interferometer is re-
quired if we wish to create entanglement. However, as we will show in
this chapter, not any setup will do as one might end up in the LOCC
regime even for a nontrivial interferometer.

A setup without interferometer, as in Fig. 3.5a, corresponds to setting
U equal to the N x N identity matrix, U = 1y. The resulting Feedback
Master Equation (FME) from Eq. (3.73) reads

. N N

. 1 A A AL A A S

p=—5 LIESc+StFpl + ) DISk — iFip, (3-80)
k=1 k=1

with local operators S and feedback operators F = YN, ﬁf{. Although
the FME retains its apparently non-local form, we know from the un-
derlying setup that it will generate only LOCC dynamics, as will any
master equation which can be written in this way.
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Now consider the case of a nontrivial interferometer, U # 1y. We can
always rewrite the general FME,
. i N - S N . .
p=—5 ) |Fxli+ Zka,P} + ) DZx —iFdp
2 k=1 k=1

—

[6,8,+516%0] + 3. DIS; — i), (381)
by introducing (generally non-Hermitian) feedback operators

A N A

Gj =) UyjFy, (3.82)

k=1

and using the invariance of Lindblad operators under multiplication by
unitary matrices,

Y Dl = ZD[ZI Uklil}P- (3.83)
P P

If the Gj all happen to be Hermitian, the rewritten master equation
is equivalent to Eq. (3.80), and thus also gives rise to LOCC dynamics.
Hermiticity of G; can be formulated as

_ A At
N A
= Z(uk] - u}tj)Fk
k=1
N[N N
=) | L (Uy — Uy Fy |- (3.84)
1=1 | k=1

Since each term in the sum over / acts on a different system, they are lin-
early independent and must vanish individually. Thus a sufficient con-
dition for LOCC dynamics reads

N
Irn[ukj]ﬁfC =0, foralljl=1,...,N. (3.85)
k=1

In particular, this condition is satisfied for any real orthogonal interfer-
ometer U = O, which mixes beams without introducing a relative phase
shift. The reason is that a general complex U mixes %- and p-quadratures,
which creates non-commuting observables in the outputs, while a real
orthogonal U = O does not.

However, Eq. (3.85) is not a necessary condition for LOCC dynam-
ics. For example, consider the complex diagonal matrix U = A :=
diag (e, ...,e® ), which causes local phase shifts without mixing the
fields, or any real orthogonal matrix O with phases multiplied from the
right, U = OA, see Fig. 3.5b. In both configurations, absolute phases
are imprinted on the incoming fields which can be absorbed into the
system operators Sk They constitute LOCC setups that need not satisfy
Eq. (3.85). In fact, if some unitary matrix Uy fulfills Eq. (3.85) then any
U = UpA will also generate LOCC dynamics even if it does not satisfy

(3-85).
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On the other hand, the seemingly similar case of multiplication of
O with phases from the left, U = AO, depicted in Fig. 3.5¢, actually
changes the homodyne measurement basis. This may facilitate non-LOCC
dynamics, even if the interferometer alone does not. This fact is made
use of in the protocol presented in Sec. 4.1.



DISSIPATIVE STATE PREPARATION

In this chapter we examine the feedback scheme with regard to dissipa-
tive state engineering [54]. Here the goal is to generate nontrivial quan-
tum correlations in the stationary state achieved in the long-time limit of
the general feedback scheme presented in Sec. 3.2. One particular exam-
ple of this kind has been given by Hofer et al. [30, 33, 34] who showed
that it is possible to design a feedback master equation which determinis-
tically drives a pair of two-level-systems (qubits) into an entangled state.
We begin in Sec. 4.1 by reviewing this two-qubit protocol, which serves
as a prime illustration of how we might employ the general Feedback
Master Equation (FME) given in Eq. (3.73). In Sec. 4.2 we extend it to
include more than two qubits, and show in Sec. 4.3 that it can produce
entangled many-body states.

4.1 ENTANGLING TWO-QUBIT PROTOCOL

The two-qubit protocol from [30] is depicted in Fig. 4.1. It comprises
two physical qubits, S; and S, with corresponding light fields, .A; and
Aj, and a balanced beam splitter mixing the beams. Subsequently, a
phase plate shifts the phase of one field by 77/2. Together with ho-
modyne detection this realizes a continuous-variable Bell measurement.
The fields are time-continuously projected into maximally entangled
Einstein-Podolsky-Rosen (EPR) states by measuring the operators X, =

X A+ X A4, and Xz =P A — P 4, in the top and bottom detector, re-
spectively. Here, X A; (P A;) denotes the amplitude (phase) quadrature
of incoming field .A Choosing appropriate feedback operators then
drives the two qub1ts into the state |i(z)) « |00) — z|11). The param-
eter z € (0,1) is chosen beforehand to fix the system-light coupling and
feedback gains, which then determine |¢(z)).

I'A t/2
Al S+ BS H.D. and |2

feedback F +

Ar ' _ H.D. and

feedback | F_
Two-Qubit Protocol (2QP)

Y

A 4

Figure 4.1: Illustratlon of the two-qubit protocol (2QP). Both qubits S; interact
with light fields via S, or 5_ respectively. The fields are superposed on a bal-
anced beam splitter (BS), after which one beam is phase-shifted by /2. We
perform a homodyne measurement (HM) of each field, and apply feedback F
proportional to the measured signal. The qubits will eventually relax into the
steady state |(z)).
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The system-light coupling is generated by the system operators
Sy = sg?i +s_01, S_ = sgr%r s_07%, (4.1)

with s, = 1/z(1+2z) and s_ = /1 — z *. Here, ¢/, denote the standard
Pauli raising and lowering operators acting on the jth qubit. We differ
slightly from the notation of Sec. 3.2.3, replacing the system operators
S and S, with S, and S_ respectively, to more easily include multiple
qubits in the following section.

The beam splitter and subsequent phase plate are represented by

ot ot 1] 1t ,
U_ﬁlo iH1 —1]_\/§L —i]' 42

so that the new system operators read

1 4 A A

A 1 A A
Z —(5++S5-), Z_=—(5+-5-). .
ﬁ( + ) \ﬁ( - ) 4-3)
We choose the feedback operators
Fy=gi6,+g 07, Fo—g 6y—g:0%, (4-4)

with gain coefficients g+ = z(s_ +5;)/(v/2s15_). The system master
equation that results from plugging these choices into the general FME

(3.73) reads

p=Lo=—5[F 2y +F- 2 +he,pl + D[l Jo+ Dl lp, (45)

with jump operators J+ = Z4 — iF.
The operators F+ and Z+ were chosen such that the master equation
has the unique stationary state

1
V1422

which can be seen as follows. The jump operators in Eq. (4.5) are

¥(2)) = (100) —z[11)), (4.6)

J+ « Ky + A(2)Ky, J- < A(z)Ky — Ky, (4.7)

with Ky = 61 +262 and K, = 62 + 26} for some A(z) € R. It is
straightforward to check that K; and K, have |y(z)) as their common
dark state [54], i.e., as eigenstate with eigenvalue 0, and thus as dark
state of [, and J_. The particular combinations of 7+ and F4 that make
up the jump operators were also chosen such that |[(z)) is an eigenstate
of the Hamiltonian in Eq. (4.5). These two properties place |{(z)) (¥ (z)|
in the kernel of Liouvillian £, and make it a steady state of the system
[54]. Further investigation, e. g., by diagonalizing the Liouvillian, shows
that |(z)) is the only steady state, which entails that regardless of the
initial state the qubits will eventually be driven into |i(z)). In other

How this specific system-light coupling might be achieved experimentally in an atomic
system is outlined in Appendix D of [30].



4.2 EXTENSION TO MULTIPLE QUBITS

words |{(z)) is prepared deterministically after some finite relaxation
time.

In the following we will treat z as a variable rather than as a con-
stant to be fixed at the start. This is justified because when z is changed,
z — z/ say, the qubits will relax into the new steady state |¢(2')). If
the variation of z is sufficiently slow compared to the relaxation time,
we expect the qubits to adiabatically follow the state space trajectory
{ly(2)), z€ [0, 1)}

The interesting result of [30], which also inspired the present work,
was the deterministic preparation of entanglement. Forany 0 < z < 1 we
see that [(z)) is entangled, and will ideally approach the maximally en-
tangled Bell state |®~) o« |00) — |11) as z — 1. This ideal limit can never
be realized exactly since it leads to infinite feedback gains, |g+| — oo.
But using a more realistic description of the dynamics including passive
photon loss [30, 33] (see also App. A.3), the highest possible degree of
entanglement is always obtained for z < 1. Keeping s+ as above while
optimizing ¢+ to maximize the amount of entanglement in the steady
state for every z, the optimal gains ¢+ always remain finite, and one
finds an entangled steady state for up to 50% photon loss.

The opposite limit of z = 0 corresponds to a setup without feedback,
which entails H = 0. With jump operators Ji ~ Sk = 6%, the qubits are
incoherently pumped into the trivial state |00).

4.2 EXTENSION TO MULTIPLE QUBITS

Motivated by this deterministic preparation of a nontrivial quantum
state of qubits, we examined whether and how the scheme could be
extended to generate multipartite entangled states. To begin, consider
a third qubit Sz added to the existing setup, and coupled to &, via a
replica of the original protocol with the same parameter z, shown in
Fig. 4.2. This is realized by letting S, simultaneously interact with two
light fields, A, and By, e. g., different polarizations of the same field or
different spatial modes, as discussed in Sec. 3.2.4.

We now generalize the operators §i and F from the previous section.
Let the index j = 1,2 label the different two-qubit-setups, each coupling
a pair §;S5; 1. The system operators for the jth setup read
éj#r = s+€77+ +s_07, §], = sgrfl S0 A]_H, (4.8)
and are mixed by the beam splitter and phase plate of each setup to
yield

o 1 A A A i A A
Ziv = ﬁ(sﬁ +5i,-), Zj- = \ﬁ(%ﬁ =5-). (49
The feedback is mediated via operators
1 ~ N ~j+1
F]Jr = g+(7y +9-0 /+ , Fj_ = g,aﬁc —g+a§+ . (4.10)

The resulting L1ouv1111an L; ;11 acts on the pair §;5;1 as indicated on
the right in Fig. 4.2. It takes the same form as in Eq. (4.5),

Ion 5 A oA N N
Lijwp = =54 Zjy +Fj-Zj +he,pl + D[Jj o +DlJj o,
(4.11)
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J

Figure 4.2: The Two-Qubit Protocol (2QP) is extended to 3 qubits. This is done
by letting two light fields, A, and B, interact with S;, and using a second
copy of the 2QP. A, interacts via §; _ and then enters the first 2QP with light
coming from S;. This generates feedback F; .. on 818, which gives rise to the
Liouvillian £; ;. Analogously, B; interacts with S, via §2,+ and then enters the
second 2QP together with A3 coming from S3. This results in feedback £5 1 on
5283 and Liouvillian £ 3.

with the proper system and feedback operators, and jump operators
Jij+ = Zj+ —iFj+. The total feedback master equation for all three
qubits then comprises both Liouvillians,

p = Li20+ Loj3p. (4.12)

It is now straightforward to extend the setup and formalism to N
qubits Sy, ..., Sy with corresponding £; ;1 for j = 1,...,N — 1. This
represents an open-ended chain with nearest-neighbor interaction. We
can turn this chain into a ring by also coupling Sy to S via Ly n+1 =
Ly 1. This gives rise to the master equation

N
=13 Ljjp, (4.13)
A

which generates periodic and translationally invariant dynamics. The
steady state should inherit these symmetries.

Recall that the non-periodic two-qubit version of the protocol prepares
the state |(z)) from Eq. (4.6), which goes from a product state for z = 0
to a maximally entangled state as z — 1. It was shown that bipartite en-
tanglement in a system of qubits is monogamous [55, 56]. Consequently,
highly entangling two qubits, S; and S, say, places an upper bound on
the possible entanglement between S, and S3 (and so on). Hence we
expect some competition between the pairwise dynamics generated by
each E]-,]-H, reminiscent of a frustrated spin chain.
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4.3 ANALYSIS OF THE STEADY STATE

The competing Liouvillians £;;,1 give rise to a nontrivial collective
steady state of the qubits. To investigate it we use the Python package
“QuTiP” [57, 58] to obtain exact results for small numbers of systems
(N < 7), and a recently established variational procedure [59] in the
limit of a large number of systems.

The central element of the variational procedure is a variational prin-
ciple for the steady state of an open quantum system. After restricting
the steady state ansatz to a certain variational manifold, the steady state
equation (d/dt)p = 0 can no longer be solved, as the true steady state
will generically lie outside the variational manifold. Therefore, the varia-
tional norm ||(d/dt)p|| is minimized instead to obtain an approximation
for the steady state. Importantly, the choice of the variational norm is not
arbitrary, but has to be the trace norm ||(d/dt)p|; = Te{|(d/dt)p|} [59,
60], i.e., the sum of singular values of (d/dt)p.

Here, we parametrize the density operator according to

P=p0®pPo® - +Y Ppo® - ®Ciiy1®pp- - (4-14)
i

+ZP0®“‘®C1}1‘+1®P0"'®Cj,j+l®P0"'+---
L]

The first term is simply a product state of all qubits being in the state
po- The other terms involve the nearest-neighbor correlation matrices
Cii+1 and allow to describe nonclassical correlations such as entangle-
ment. As the calculation of the exact variational norm is in general still
an intractable problem, we resort to an upper bound to the norm that
can be efficiently calculated, and is given by a sum of three-qubit prob-
lems, |[(d/dt)p|l < X [[(d/dt)pi-1,it1l, where p;_1;41 is the reduced
density operator involving three qubits [59, 60]. As we consider a trans-
lationally invariant problem, minimizing a single three-qubit term mini-
mizes the full sum as well.

Results

As before, turning off the feedback (z = 0) yields the trivial pure state

N
p(z=0)) = ®10); (4.15)
j=1

obtained by incoherent pumping of the individual systems. With feed-
back (z > 0), however, the competing dynamics immediately take ef-
fect. This can be seen in Fig. 4.3, where we plot the purity P(p(z)) =
Tr{(p(z))?} for different values of z. As z grows, p(z) becomes increas-
ingly mixed and approaches the maximally mixed state for z — 1, where
the feedback gains become infinite. Thus we expect to find no quantum
correlations in either of the limits z — 0 or z — 1.

In the regime 0 < z < 1, on the other hand, entanglement does form,
as can be seen in Figs. 4.4 and 4.5. A simple indicator for bipartite entan-
glement is the concurrence C(py(z)) [55, 56, 61], which is related to the
entanglement of formation for two-qubit states. It can be computed for
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Lo Purity of the steady state

0.8

0.4}

Trace of p?(2)

0.2}

Figure 4.3: The purity of the steady state varies with z. Without feedback (z = 0)
all systems are incoherently pumped into |0). As z grows, however, competition
between the pairwise dynamics increasingly mixes the steady state. The maxi-
mally mixed state is approached with P(p) = Tr(p(z))?> — 27N as z — 1. The
curves in the legend are shown from top to bottom in the figure.

arbitrary pairs of qubits S;S after taking the partial trace over all other
systems,

i (z) == Trzs, s,{p(2)}- (4.16)
For the two-qubit state py; the concurrence is then defined as
C(pkl) = max{O, )\1 — /\2 — )\3 — /\4}, (4.17)

where the A; are the square roots of the eigenvalues of py; (0 ® Gy )pj; (Fy ®
) in decreasing order.

Since the dynamics, and hence the steady state, is translationally in-
variant and periodic the concurrence only depends on the distance be-
tween two qubits on the ring. Our analysis revealed that the concurrence
of nearest neighbors is non-zero in the region 0 < z < 0.4, see Fig. 4.4.
Thus the steady state is indeed entangled in this regime. We found that
the concurrence is independent of the number of systems for N < 7,
and qualitatively agrees with the variational results. On the other hand,
the concurrence between non-neighboring qubits vanishes everywhere,
which may be because each Liouvillian £; ;1 acts only on neighboring
pairs.

To better understand the results obtained using the concurrence we
also considered the logarithmic negativity Ey [61-63]. This is defined as

En(pxy) = log, HP/T\ngHL (4.18)

where pyy is the state of a bipartite system X'|), the operation Ty
denotes the partial transpose with respect to subsystem X, and |||y
is trace norm as above. Neither of the subsystems, X or )Y, need to
be qubits, and may each constitute multipartite systems themselves. If
Ex(pxy) is non-zero, systems X and ) are entangled, so it provides a
sufficient (but not necessary [62, 63]) condition for the presence of quan-
tum correlations. The results of our study can be seen in Fig. 4.5. The
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Nearest-neighbor concurrence
T T

— QuTiP, N <7

- — Variational result |

Concurrence C
o
o
D

0.00

0.6 0.8 1.0

Figure 4.4: The concurrence C(pkx+1(z)) of neighboring qubits in the steady
state is non-zero for 0 < z < 0.4, showing the presence of entanglement. We
computed the steady state directly using the Python package QuTiP [57, 58]
for small system size (N < 7 qubits), and found the concurrence to be inde-
pendent of N (solid red line). For large N we analyzed the steady state using a
variational approach [59]. While the variational concurrence (dotted blue line)
takes on slightly different values, it is still in good qualitative agreement with
our exact results. We found the concurrence between non-neighboring qubits
to vanish everywhere.

largest region in which we were able to detect entanglement in this way
was for up to z ~ 0.6. Out of all possible bipartitions, the entanglement
always extended furthest for the “odd|even”-partition with subsystems
X = 515385 ...and J} = 528486 e

It is interesting that the entanglement as measured by Ey not only ex-
tends further but also peaks at larger z than the concurrence. This may
be attributed to the fact that the concurrence is, in a sense, a more lo-
cal quantity since it detects only correlations between two qubits, while
the logarithmic negativity takes into account the collective N-qubit state.
This difference in behavior might indicate that the quantum correlations
are not simply destroyed as z grows, but instead manifest in more com-
plex or long-ranged form, such as true multipartite entanglement [61,
62].

These results settle the question of whether the feedback scheme can
reliably produce entangled many-body states. Both the concurrence and
the logarithmic negativity provide clear evidence for quantum correla-
tions in the steady state, which could not necessarily be expected from
the underlying setup or the master equation alone. Furthermore, the en-
tanglement appears to be present independent of the number of systems,
which is backed by the results of the variational ansatz.

4.4 OUTLOOK ON PREPARATION OF GENERAL STATES

In the previous sections we first designed the dynamics and then checked
for interesting features of the resulting steady state. A complementary
approach is to first choose a state of interest and then tailor the dynam-
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Entanglement in the steady state
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Figure 4.5: The logarithmic negativity En(o(z)) in the steady state for
“odd|even”-bipartitions of setups comprising N = 3,...,7 qubits. Increasing
the system size causes a larger peak negativity. Notably, the entanglement per-
sists for values of around z ~ 0.6, where the concurrence has long vanished.
The curves in the legend are shown from bottom to top in the figure.

ics such that this state is realized as steady state [54]. However, there are
a few pitfalls one has to be aware of.

Without imposing physical or other constraints there are a large num-
ber of (redundant) degrees of freedom in the setup. We can in princi-
ple freely choose the system operators S], the interferometer U, and the
feedback operators . Considering N systems with local Hilbert space
dimension d, each system operator S is determined by 2d? real parame-
ters, the interferometer by N2, and each feedback operator by d2, which
yields a total of N2 + 3Nd? real numbers. Even for the simple case of
three qubits one ostensibly has 45 parameters. Of course these are not
independent. As discussed in Sec. 3.3, the system operators can always
be redefined to absorb phases from the interferometer, and the feed-
back operators can absorb any real matrix. Identifying these redundant
degrees of freedom would be paramount to a complete and efficient
parametrization of the realizable dynamics.

It is an open question to classify, at least partially, the set of reachable
steady states. It is known [64, 65] that to produce a state with entangle-
ment between k parties as the steady state of some dissipative dynamics,
the Liouvillian that generates these dynamics must have at least one
jump term that is at least k-local, i. e., acts irreducibly on k subsystems.
Master equations such as the FME (3.73) are not unique since one can al-
ways redefine the Hamiltonian and jump operators while generating the
same evolution (see, e.g., Eq. (3.83)). Translating the restrictions of the
possible feedback setups into restrictions on the locality of the dynamics
would be quite useful to confine the set of possible steady states.



QUANTUM SIMULATION

We now approach the feedback setup from the perspective of quantum
simulation. It can be difficult to design and control many-body quantum
systems in experiments because of their complex interaction, and it is
often not feasible to simulate them on classical computers due to their
large state space. A full-scale quantum computer might relieve these
issues, but is still out of reach. This gap is filled by quantum simulation
[66—73], where a complex physical many-body system is emulated using
a more easily controllable setup.

Our feedback scheme may prove useful in this regard since it realizes
pairwise interaction and collective dissipation between distant systems,
while using only standard techniques of quantum optics. To gauge its
scope we realize a dissipative Ising spin model with local transverse
fields. Such models are the subject of active research because of their
relation to ultracold Rydberg atoms [74—78].

5.1 OPEN ISING MODEL WITH TRANSVERSE FIELDS

The system we wish to emulate comprises N interacting spin-1/2 parti-
cles with Hamiltonian

N N
Hlsing = Z 5kl&];c&£c - Z Bk‘}lz(/ (5-1)
k#l k=1

where ¢}, (u = x,y,z) denotes a Pauli operator acting on the jth system.
The parameters Jy; € R determine the interaction between systems k
and /, while By € R is the strength of local magnetic fields. If we set
Okk = —By, all parameters can be encoded in a real matrix A = ().
Note that we do not make assumptions about the range or geometry
of the interaction, so Hlsing may apply to, e.g., a chain, a ring, or a d-
dimensional lattice, depending solely on the choice of A.

5.1.1 Engineering the Hamiltonian

To generate this Hamiltonian using our feedback scheme we consider an
ensemble of N two-level systems, Sy, ..., Sy, as in the previous chapter.
Each Sy is coupled to two light fields, Ay and By, as shown in Fig. 5.1.
We choose identical system-light coupling for both fields via system op-
erators

GA— 8B 8, — o, (5.2)
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Figure 5.1: A feedback scheme to realize an open Ising model. Each two-level
system Sy couples to two light fields, Ay (red) and By (blue). The A-fields
traverse an interferometer V, while the B-fields pass the complex conjugate V*.
Homodyne detection of each field then allows for feedback via operators Ey.
This way one can realize the dynamics of a dissipative Ising model.

with some feedback gains G = (gjx) € RN*N_ Note that even though sys-
tem and feedback operators are the same, the setups may still generate
different dynamics if their interferometers U4 and U? are different.

We first neglect the B-fields, and consider only the dynamics gener-
ated by the A-fields. We fix the interferometer U4 to be some N x N
unitary matrix, uA =v. Together with the operators §k and F} chosen
as above, we find the feedback Hamiltonian

A

1 . NAWA
aA= - ) (Re[Kkl]Ué + Im[Kkl]Uly)a];

2 kAl
LN (5.4)
+5 3 Re[K] (1+07),
k=1
where we defined the matrix K = (Ky;) := GV, comprising gains and

interferometer, and Re[-] and Im]-] denote real and imaginary part re-
spectively. The Hamiltonian a4 already resembles I:IIsing from Eq. (5.1),
up to terms creating a 0y0y-interaction. We use the second feedback
setup to eliminate these.

For the moment let us consider only the dynamics generated by the 5-
fields. We choose the second interferometer to be the complex conjugate



5.1 OPEN ISING MODEL WITH TRANSVERSE FIELDS

of the first, U® = V*. Thus we obtain a second feedback Hamiltonian
HE with K* instead of K, so

g 1 . AW
AP = 2 ¥ (Re[Ky]6%, — Im[Ky]a), )%
k£l

Re[Ky] (1 + 6%).
k=1

T3

As explained in Sec. 3.2.4 we obtain the combined evolution of both
schemes by adding their Liouvillians. Thus, the total Hamiltonian H =
H4 + A5 will be

Re[Kie] (1 + 6%). (5.6)

=

H =Y Re[Ky|oke! +
k1 k

1

The interaction and local fields in this model are entirely governed by
the matrix Re[K] = Re[GV] = GRe[V]. Recall that we are free to choose
both the feedback gains G and the interferometer V. Assuming Re[V]
can be inverted, we can realize a given set of couplings A by setting the
gains as

G = ARe[V] L. (5.7)

This will yield the desired Hamiltonian from Eq. (5.1),

N
H =} 00030% — ) Be(o2+1), (58)
) k=1
up to negligible constants.
A generic unitary V is not guaranteed to have a non-singular real part.
However, writing

1 1
= S(V'+V) =V (In+VTV) (5.9)
shows that invertibility of Re[V] is equivalent to that of 1y + VTV. Thus
the necessary and sufficient condition is that all eigenvalues of VTV are
different from —1. Note also that V does not need to reflect the geometry
of the physical model as given by A.

Re[V]

5.1.2  Effect of the dissipation

Recall from the Feedback Master Equation (FME) (3.73) that our scheme
naturally introduces jump operators of the form

N
Zk - iFk = Z UleZ - iFk (5.10)
I=1

for each light field. In this case there will be two sets of jump operators,
corresponding to the A- and B-setup respectively.

As mentioned in Sec. 3.3 a collection of jump operators is always in-
variant under unitary transformations,

Y Dljle = ZD[ZZ uklfl}Pr (5.11)
2 2
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and we use this to define a new set of jump operators,

N N
]k = Z(UJr)kl(Zl —IFZ) — Sk_izul*kFl’ (5‘12)
I=1 I=1

equivalent to the former. These are given by

N N )
=S =iy ViFy =k —i ) Tpél, (5.13)
j=1 =1
A . N . ‘ N .
JE =S —i) Vi =6k —i) T3o%, (5.14)
= j=1

with the complex matrix
I := ARe[V]1V* =2A(1y + VTV) L. (5.15)

Together with the Hamiltonian from Eq. (5.8) these jump operators yield
the dynamics of an open system of interacting spins with master equa-
tion

A N A N A
pzqmﬂ+;9w%+;DWm (5.16)
=1 =1

An important observation is that the coupling matrix A appears in I'
and thus also in the jump operators. Hence, fixing the interaction and
local fields of the physical model encoded in the Hamiltonian (5.8) also
determines the structure and strength of the dissipation. In particular,
both A and V will determine the range of the jump operators, i.e., how
many systems couple to the same bath.

Note that there are degrees of freedom we have not used. One param-
eter we could change is the relative strength of the system-light interac-
tion and feedback. We can change the interaction by a factor r € R, i.e,,
S+ 1§, while inversely changing the feedback, F + F/r. This will not
affect the Hamiltonian since it only comprises products of the form SE.
On the other hand, it will cause either o (for r > 1) or ¢ (for r < 1)
to dominate the jump operators, and also increase the overall strength
of the dissipation compared to H.

Another free parameter is asymmetry of A. Let us set Ay = (A =+
AT)/2 as the symmetric and skew-symmetric part of A = Ay + A_ re-
spectively. The symmetric part is fixed by the physical couplings § and
B in the Hamiltonian from Eq. (5.1). However, A_ does not enter the
Hamiltonian, so we are free to choose it at will. It only affects the jump
operators. For simplicity, we set A_ = 0y in the following example.

5.2 CONCRETE EXAMPLE

To demonstrate how to realize a specific model we consider a transla-
tionally invariant one-dimensional Ising chain with nearest-neighbor in-
teraction and periodic boundary conditions. The corresponding physical
Hamiltonian is

N N

7y Ak Ak+1 A

Hising =6 y_ 050%™ —BY o1, (5.17)
k=1 =1
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with periodicity implemented by setting ¢ +1 = ¢1. We can read off the
interaction matrix A,

A= Bly + g(s + ST), (5.18)

where S = (sy) is the periodic shift matrix with elements sy 1 = s 1 =
1 Vk and s = 0 otherwise, i.e.,

1 0 ... 0
00 1 ...0
S=1: : (5.19)
0 ... 0 1
10 ... 0 0]

We would now like to engineer translationally invariant jump opera-
tors in order not to break the symmetry of the model. To this end we
must choose V such that the coefficient matrix from the jump operators,
I = 2A(1y + VTV) 71, is also translationally invariant. This is the case
if and only if [VTV,S] =0, so VIV and S must be simultaneously diag-
onalizable. We know that the discrete Fourier transform F = (F]-k) [79]
with

_ 1 27l

F]k_\/ﬁ 7

diagonalizes the shift matrix with S = FQF' where Q = diag(wy, ..., wn_1)

j,k=0,...,N—1, (5.20)

and wy = 2™~ . Thus we must choose V such that VTV can be diago-
nalized as

Vv = FA?F? (5.21)

with some diagonal unitary matrix A = diag(Ag, A1, ..., Any—1). The com-
bination VTV is symmetric, which requires Ay = Ay_y for all k. A possi-
ble solution is to set

V = FEAFT, (5.22)

which is also symmetric because A% and A have the same structure. This
leads to the correct expression VIV = V2 = FA?F?. Since 1y + VTV
needs to be non-singular we require that Ay # =i for all Ay (cf. the
discussion around Eq. (5.9)).

The independent eigenvalues Ay can still be used to change the struc-
ture and range of the jump operators. We set

» 1—2icos(27tk/N)

M= + 2icos(2tk/N)’

(5.23)

fork =0,...,N —1, to obtain a tridiagonal matrix

1 -
(1y+VIv) 1 = E(lN +iS +iST). (5.24)
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Recall that A = Bly + $(S + ST) is also tridiagonal, so we find the coef-
ficient matrix of the jump operators to be

T = (B+id)1y + (g + iB) (s + ST) +is (52 (sT)Z). (5.25)

This matrix couples only nearest and next-nearest neighbors, so each
jump operator Ji will act on the five systems Sx_»p,...,Skip for any k.
Nearest-neighbor-only jump operators would require a diagonal VTV,
which in turn implies V = OA for some real orthogonal matrix O and
diagonal phase matrix A = diag (e, ...,eN). This, however, places us
in the LOCC regime discussed in Sec. 3.3, which would erase possible
quantum features from the model.

In addition to restricting the range of the jump operators, we can
change the relative strength of system and feedback operators, as men-
tioned in the previous section. This will leave H invariant but introduce
a parameter € R in the jump operators,

JA = ro* — = Z r kcrx, = rok Z l"*kfrﬂc (5.26)

For large r > 1 the dissipation will be dominated by local ¢ _-decay,
driving each spin into the | |;)-state. In the limit of small r < 1 the
0x-dephasing takes over. Note that the sum

N .
pAEES )3 T 0% (5.27)

may in principle generate interesting quantum states. For instance, when
applied to the trivial state ;| J.); it will create a kind of [W) state
with weights I'. On the other hand in the case of strong dissipation
governed by Zx the systems will likely be driven into a mixed state

since [ZX,Z ] = 0, so the maximally mixed state p = 1 is a dark state,
D[E]1=0
Results

We set ¢ := B/d and « := r/|6|'/? to examine the steady state of the
master equation for different values of ¢ and a. We can distinguish the
following limiting cases.

When ¢ < 1, the Hamiltonian H will be governed by the interaction
term, H ~ Y, 65651, We find that the dominant elements of the jump
operator coefficients I' are of order O(1) when g < 1, so the dissipation
only depends on our choice of a. For a > 1, the local ¢_-decay will
dominate the master equation, and all spins align in the | |)-state. For
x < 1 we expect the 3y-dephasing to generate a highly mixed steady
state.

In the limit of ¢ > 1 and & < 1, the main contribution to the Hamil-
tonian will come from the local fields proportional to g, so H ~ —8 Yk ok.

However, the total master equation will again be dominated by X,-dephasing,

creating a mixed steady state. The reason is that the dominant elements
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Figure 5.2: We plot the spin-up-density in the steady state of the dissipative
Ising model against ¢ = B/J (continuous lines) for N = 5 spins. We consider
different values of the asymmetry parameter « = r/|5|1/2. For comparison we
also plot the results of the purely dissipative steady states obtained by setting

H = 0 in the dynamics (dashed lines). Good agreement between the full and
purely dissipative steady states occurs only when « is close to unity.

of I' are now also of order O(g), which enhances the dissipation rate by
g2 /a? > g

For g, & >> 1 we can distinguish two different cases. When a? > ¢ >> 1,
the jump operators are dominated by a6, since the largest elements of
T are of order O(g) so the ¥,-dephasing goes as g/a < «. Conversely,
for ¢ > a? > 1 the dephasing takes over and creates a mixed steady
state.

Notably, in both limiting cases, « > 1 and a# < 1, the dissipation
dominates the dynamics, independent of g. We expect the Hamiltonian
to play a role only when « is close to unity. To see this effect, we com-
puted the steady state using QuTiP [57, 58] for N = 5 spins. We chose
the density of spins in the up-state | 1),

. 18146
=y L) (529

as an order parameter.

The results of the full dynamics are shown as solid lines in Fig. 5.2.
They behave as expected in the limits we just discussed. The plots also
illustrate the crossover in the intermediate regime for &« ~ 1 and g <
1, where ¢_ and ﬁx compete. To isolate the effect of the Hamiltonian,
we also computed the steady state of the purely dissipative dynamics,
setting H = 0 (dashed lines in Fig. 5.2). As expected, the dissipation is
dominant whenever « is different from unity, and there is only a slight
deviation when a ~ 1.

In the regime g,a > 1, the systems behave qualitatively similar to a
dissipative Rydberg gas [74—78]. This is not entirely surprising: in both
cases, the dissipation breaks the Z, symmetry of the Ising Hamiltonian,
hinting that both models could fall into the same universality class. The
dissipative Rydberg gas exhibits a liquid-gas transition for sufficiently
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strong driving [59], corresponding to the steep increase in Fig. 5.2. How-
ever, as the liquid-gas transition belongs to the universality class of the
classical Ising model [77], we cannot expect to observe a true phase tran-
sition in our 1D simulations.

5.3 CONCLUSION AND OUTLOOK

The aim of this work was to identify the different types of quantum dy-

namics encompassed by the interferometric feedback setup in Chap. 3.

The specific realizations studied in this (and the previous) chapter demon-
strate that the general FME comprises nontrivial dynamics for appropri-
ate choices of system and feedback operators. In particular with regard

to the concrete Ising model considered in the previous section we were

surprised by the (sometimes overwhelming) number of degrees of free-
dom available in the setup. These allow to easily tweak the dynamics,

but also make it difficult to fully gauge the scope of the FME. For exam-
ple, identifying the complete class of physical models that are realizable

by the FME is an outstanding problem.



Part II

STATE VERIFICATION THROUGH
RETRODICTION

In this part we employ continuous measurements to infer
information about a system in the past, known as retrodic-
tion. We explore the possibility to use it for the experimental
verification of quantum states. This is unpublished material
to which I contributed a majority of the analytical computa-
tions, and created all figures. Ideas were developed jointly
with Klemens Hammerer who also contributed to the calcu-
lations.






STOCHASTIC MASTER AND EFFECT EQUATIONS

In this chapter we show that time-continuously monitoring a system can
be used to gain knowledge about its past state. In Sec. 6.1 we are going
to derive the Stochastic Master Equation (SME) of a monitored quan-
tum system, aiming for an intuitive rather than rigorous presentation as
in Chap. 3. SMEs yield states that are conditioned on the measurement
record. In Sec. 6.2 we show that instead of conditioning the state, this
record lets us infer information about the past state of the system. This
is known as retrodiction. We close with a brief introduction to backward
Itd integration, necessary to perform retrodiction, in Sec. 6.3.

6.1 DERIVATION OF A STOCHASTIC MASTER EQUATION

We still consider the generic quantum optical setup from Sec. 3.1 of a
system weakly coupled to a bosonic bath which we observe through
homodyne detection (see App. A). Instead of applying measurement-
based feedback, we are going to use the measurement record in this
section to keep track of the state of the system. The measurement pro-
cess in quantum mechanics is inherently random, and conditioning the
evolution introduces this randomness to the dynamics. Thus a rigorous
treatment of monitored quantum systems, such as in [7, 45], requires the
use of quantum stochastic calculus, as pioneered in [5, 6], which extends
classical stochastic calculus [46] to non-commuting noise processes.

There are a number of excellent texts [2, 7, 36, 43, 47, 80, 81] deriving
stochastic (or conditional) master and Schrodinger equations of quantum
optical systems with varying degrees of rigor. The derivation presented
in this section strives to stay true to the goal of Chap. 3 to be as intu-
itive as possible. We thus make do without the intricacies of quantum
stochastic calculus, which are necessary for a rigorous treatment and can
be found in [5, 6].

6.1.1  Expanding the conditional state

We start our derivation with the state of some system S that has in-
teracted with a light field B. Homodyne detection of the field revealed
outcome X. This lead us to the conditional system state in Eq. (3.33),

pR(t+0t) = (xlpiaf %), (6.12)
with the post-interaction state

oing = exp(—iV/otHin ) o5 (1) exp (iVétHint ) + O(6#/),  (6.1b)

Hine = i($B§ - §'Bo), (6.1¢)

where S is a system operator, By is the annihilation operator of the in-
coming light mode, and ¢t is dimensionless time measured in units of
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the interaction time T = k1. We eventually want to let 6t — dt to
derive a time-continuous equation of motion conditioned on a stream of
measurement results. Assuming 5t < 1 we expand the exponential and
find analogously to Eq. (3.18) the expression

PR (t + 6t) = (x[p5® (1)|%) — V6t (%|[Hine, 3 ° (1)]]7)

) - - _ (6.2)
+ 5 (3] (2B () Fime — {F, 055 (5} ) ),

where we neglected terms of order O(6t%/2). To evaluate the expectation
values we use that the incoming field is in the vacuum state, ,0‘0S Bty =
pS () ®10)(0|. Since By|0) = 0 we can replace

Hin|0) = iv25%0/0),  F3J0) = (88 - 8225 - 1))l0).  (6:9)
With these relations we find
pR(t+t) ~ po(%) (p° (1) + V2OLR(SpS (1) + p° (1)8))

£ 20 ()8p° (08— D (S8, 0° (0} (6.9

+ %iﬂo(ic)(za‘c2 = 1)(8% () +p°(1)(57)?),

where we introduced the probability density

po(x) = |(F]0)? = \/1;

of obtaining a result X by measuring the vacuum directly.

(6.5)

6.1.2  Statistics of the measurement current

To proceed recall that x is the outcome of the homodyne measurement
averaged over [t,t + 6f). As such it is a random variable comprising
a sum of measurement results x; of smaller time slices |7}, T¢11) with
T = t+két/N with k = 0,...,N — 1. We can employ the central limit
theorem [82] which states that the distribution of a sum of N indepen-
dently” distributed random variables (with finite means and variance)
approaches a normal (i.e., Gaussian) distribution as N becomes large.
To find the mean and variance of X we consider the probability to mea-
sure a particular X given by Eq. (3.34b),

p(x) = Te{pf(t +ot)} (6.6)
= po(%) (1 +V25tx(S + 1), + O(ét)) 6.7)

2
x exp (— <5c— ‘/?<§+§+>p> ) + O(5t), (6.8)

where (3) p = Tr{SpS(t)}. We read off that X has mean and variance
given by

Bl# = Y254 8h,, Var[z] = % 6.9)
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To separate the deterministic component (the mean) from stochastic
fluctuations let us define a new random variable

@ = V2% — Vot(S + §+>p (6.10)
such that E[@] = 0 and Var[@] = 1 independent of the measurement

time 6t. Thus to take the limit 6t — dt in a sensible way we need to find
a properly scaled 6w « @ such that 6w — dW yields the right increment.
Note that the origin of @ is the quantum noise of the incoming light,
present even when we measure only vacuum. We assume this to be white
noise [2, 36, 47], and we want the resulting Wiener increment dW to reflect
this by satisfying the white noise statistics

E[dW] =0, Var[dW] = E[dW?] = dt. (6.11)

Thus the proper scaling is 6@ = \/dti, and consequently 6% = /25t —
dY(t) such that

dY(t) = (5 + 8%),dt + dW(t), (6.12)

where we introduced the (homodyne) measurement current Y (t) as contin-
uous limit of the discrete outcomes x. The increment dY (¢) then satisfies

E[dY(t)] = (S + 8%),dt, E[dY(t)?] = dt. (6.13)

The most important property of white noise is that it is independent
from one moment to next,

E[dW(t)dW(t)] = é(t — ')dtdt, (6.14)

so any average over finite time will actually be equivalent to an ensemble
average E[...] [2, App. B]. With this in mind we can take the relations

dw(t)? = dY(t)? = dt, (6.15a)
dW(t)dW(t') =dY(t)dY(H) =0, Vt#t, (6.15b)

to hold without an explicit expectation value. These are called Ito rules,
and they make it necessary to include second order terms in any series
expansion because a second order stochastic increment will yield a first
order time increment.

Let us now return to the conditional state from Eq. (6.4). We subtract
the constant contribution p°(t), and take the limit 6t — dt by making
the aforementioned replacements, in particular 26tx*> — dY(t)? = dt. We
then obtain an unnormalized Conditional or Stochastic Master Equation
(SME) for the system state,

(M) dpe (t) = (5p2 (1) +pS (H)ST)AY (¢)
+8p2 (15"~ 218%8,55 (1)}l
= (SpS (1) +pS(1)8M)AY () + DISIpS ()dt, (6.17)

(6.16)

where the subscript indicates that p. is a conditional state. The (I) in
front of the equation emphasizes that this is a stochastic It6 differential
equation. This is important because standard rules of calculus have to be
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replaced by Ito rules such as (6.15), and standard integrals are replaced
by stochastic Itd integrals, see Sec. 6.3. Conditioning the evolution of the
system on a continuous measurement record is also known as filtering,
see, e.g., [83] and references therein. In the following we will drop the
superscript S, but keep the subscript which indicates that p. is a condi-
tional state.

6.1.3 Normalization of the state

Equation (6.17) is not trace-preserving so the solution p.(t) will no longer
have unit trace. This can be remedied by explicit normalization of p.(t +
df) = pc(t) +dpc(t), i.e.,

pc(t +dt)
Tr{pc(t+dt)}

After a series expansion of Tr{p.(t +dt)} ! = (1 + Tr{dpc(t)})~! and
using the It6 rules (6.15) one finds

(@) dpc(t) = D[S]pc(t)dt + H[S]pc (H)AW(t) (6.19a)

with the Wiener increment dW () from Eq. (6.12), and the Lindblad and
measurement superoperators

pe(t+dt) = (6.18)

D[S]p := SpSt — %{?@,p}, (6.19b)
H[S]p = (S—(S),)p —HO(L@Jr - <§+>p). (6.19¢)

Note that #[S]p is linear in S but nonlinear in p because of the expec-
tation values. We would like to point out that Egs. (6.17) and (6.19a)
generate equivalent dynamics. One has to decide whether it is more con-
venient to either solve a nonlinear equation with a normalized state at
every step in time, or a linear equation followed by explicit renormaliza-
tion of the final p. Or if the optimal solution is actually a hybrid of both

[84].
6.1.4 Generalization to multiple baths

If we include a system Hamiltonian H, and finite efficiency # € [0,1] of
the homodyne detection (cf. App. A.3), we obtain

(I) dpc(t) = —i[H, pe(t)]dt + D[S)pc(t)dt + /TH[S]oc(H)dW ().
(6.20)

We see that without detections (7 = 0) or by taking an ensemble aver-
age we retrieve the unconditional master equation (3.29)%. We can also
change the measurement by varying the phase 6 of the local oscillator
with respect to the signal, see App. A. This affects the measurement op-
erator C := VT ¢S but not the jump operator L := 5, so a more general
form of the master equation reads

(1) dpe(t) = —i[H, pc(t)]dt + D[L]oe(t)dt + H[Cloc (t)dW (t). oo
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We generalize this further by considering not just a single but N, bosonic
baths B; that couple to S via jump operators ij. We assume that Nc <
N, of these are subject to homodyne detection producing independent
Wiener increments dWg(f) with corresponding measurement operators
Cr. This yields the general SME

NL
(D) dpc(t) = —i[H, pc(t)]dt + Y D[Lj]pc(t)dt
i=1

N ! (6.22)
+ Y H[Clpe (1) AWy (t).
k=1

The equivalent unnormalized SME reads

N

@ dpc(t) = 7i[ﬁrpc(t)]dt + Z D[ij]ﬁc(t)dt
“ = (6.23)

3 (Cepelt) +pe(t)CE ) dvi(h),
k=1

while averaging over all measurement results leads to the corresponding
unconditional master equation

NL

do(t) = —i[H,p(t)]dt + }_ D[Lj]p(t)dt. (6.24)
j=1

If the master equation is derived in a different way than sketched
above (see, e. g., Sec. 8.2), the measurement operators do not need to cor-
respond one-to-one to the jump operators. In fact, in Sec. 8.2 we will see
an example where effectively Nc > N;. However, since any information
recorded by the detectors must have previously leaked from the system
it holds that

NLAA NCAA
Y LIL-Y CiG>o0 (6.25)
j=1 k=1

with equality only for unit detection efficiency.

6.2 BACKWARD EFFECT EQUATIONS

In the previous section we saw that a continuous measurement record
can be used to condition the evolution of the quantum state. In this sec-
tion we are going to show that it can instead also be used to infer infor-
mation about the past state of the system, known as retrodiction. To this
end we need to recall the concept of effect operators from section 2.2.2.1:
an effect operator E,, belonging to some Positive-Operator Valued Mea-
sure (POVM), is a positive Hermitian operator that yields the probability
for some outcome x to be measured on p(t) via p(x|o(t)) = Tr{Ep(t)}.

We will interpret E, = E,(t) itself as a dynamical object. It may seem
odd that E,(t), which is associated with a particular measurement event
at fixed time t, can propagate through time, so let us provide a simple
example. We consider a classical particle moving freely through space at
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velocity v. We measure it at time f to be at position x. Now we know that
if we had measured at some time #' we would have found it at x 4+ v(# —
t), so we find a relation between the possible effects at t and at ' given
by Ex(t) = Exipw—p(t'). Finding a result at one time is equivalent to
finding a different result at a different time. Now in a quantum setting
there is of course uncertainty in our knowledge of both v and x, which
needs to be propagated as well, but the idea remains essentially the
same. Our goal is first to find the relationship between effect operators at
different times, and then to show that continuous measurements actually
improve the resolution of past POVMs.

Let us briefly mention some related work. Barnett, Pegg, and Jeffers
[85-87] considered backpropagation of effect operators in closed and
open quantum systems, but did not treat continuous measurements. To-
gether with work by Yanagisawa [88] on estimation of initial Gaussian
states, this was developed by Mankei Tsang [21-23] into a quantum the-
ory of time-symmetric smoothing. Here, monitoring is used to estimate
the past value of a classical parameter coupled to a quantum system.
More recently [89] he also suggested an alternative approach to weak
value estimation of the past of a quantum observable using subsequent
measurements.

Gammelmark, Julsgaard and Melmer [24] proposed a theory of past
quantum states, in which the state p and effect operator E are condi-
tioned on the past and future observation records, respectively. If p(t)
is considered as a collection of probabilities for measurement outcomes
at time t, then E(t) provides a Bayesian update of these probabilities
which yields more decisive, less entropic distributions. This theory was
specialized to Gaussian states in continuous variable systems by Zhang
and Melmer [27]. An alternative approach to smoothing in quantum sys-
tems was suggested by Guevara and Wiseman [28]. Instead of applying
a Bayesian update to the probabilities of past measurements as Molmer
and co-workers do, they define a smoothed quantum state, where the
probabilities of the density matrix are conditioned on the continuous
measurement results.

Our approach aims to complement this previous work. Instead of pro-
viding a Bayesian update to either measurement results or the density
matrix, we are going to interpret the continuous observation of a quan-
tum system as an effective instantaneous POVM measurement on its state
in the past. To do so we will first recapitulate the concept of quantum
channels j\fto,t in Sec. 6.2.1 because they allow to derive the dynamics of
E. elegantly. In Sec. 6.2.2 we derive the time evolution of effect operators
in arbitrary monitored systems. In Sec. 6.2.3 we provide a brief motiva-
tion for this work before we focus on dynamics generated by a SME in
Sec. 6.2.4.

6.2.1  Quantum channels

Quantum channels constitute a general description of quantum opera-
tions including the types of evolution and measurement described so
far. A quantum channel N : B(H) — B(#) is a linear map that is com-
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pletely positive' and trace-preserving (CPTP). These conditions are nec-
essary to ensure physically meaningful evolution of propagated states
p(t1) = Nigle(to)]. Quantum channels describe Markovian (memory-
less) evolution of closed and open quantum systems. For a more com-
prehensive introduction to quantum channels we refer to [39, 41].

A further generalization are conditional or stochastic quantum channels
M01t1|y’ also called quantum instruments, that describe evolution con-
ditioned on the outcome y of an arbitrary measurement, and produce
conditional states py(t1) = N, 4 |, [o(fo)]. It will be convenient to drop
the trace-preserving condition, and to consider channels N to.t,|y that are
only trace non-increasing, i.e., Te{\ tot [y [ A A} < Tr{A} An important
feature is that if an initial state is propagated, py(t) = N tot[yl0(t0)], its
trace will yield the probability

p(ylo(to)) = Te{Ny 1,1y lo(t0)]} (6.26)

that the operation corresponding to outcome y occurs given p(tp).

An important role in retrodiction is also played by the adjoint chan-
nel Nt which denotes the Hilbert-Schmidt adjoint of A/ defined by the
relation

Tr{BN[A]} = Te{Nt[B]A} VA,Bec B(H). (6.27)

The trace-preserving property of A implies unitality of N'f, which means
that the identity is preserved, A'T[1] = 1. Trace non-increasing channels
yield adjoints with N'T[1] <1

6.2.1.1  Kraus decomposition of arbitrary channels

An important theorem (see, e. g., [41, Thm. 2.1]) connecting the idea of
quantum channels to the general measurement postulate in Sec. 2.2.2 is
that any linear map N, is completely positive if and only if it admits a
Kraus decomposition

NyAl = ) My, AMj, (6.28)
kG’Cy

where the operators I\A/Ik‘y are called Kraus operators, and the set Ky may
depend on the measurement outcome. The Kraus operators satisfy

Y Y MMy, = (6.29)

ykEy

which is equivalent to the condition that ), Ny = N constitutes a trace-
preserving channel. Any completely positive quantum evolution can be
represented in this way, possibly dropping the measurement outcome y,
the sum over k, or both. For example, a closed system would evolve with
a single unitary Kraus operator M = U which obviously satisfies Ut =
1 and thus produces the trivial single-outcome POVM E = 1. On the
other hand, a projective measurement comes with projection operators
My = fIy (so no sum over k).

Complete positivity means that V' ® 1 maps positive operators to positive operators
for all n € INyp. This ensures that systems which are initially entangled with some
auxiliary system still undergo positive evolution if the ancilla is ignored.
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While A/ to,h|y 0] ostensibly describes only discrete evolution where
the state “hops” from ty to t;, quantum channels can also describe in-
finitesimal (and thus continuous) evolution. For example, the SME (6.17)
corresponds to a quantum channel A/ ti+de|dy comprising Kraus opera-
tors [2, 24, 84]

~ 1 Az A ~
Myy (1 — ES*SOU + de>, (6.30)
with normalization to ensure that
/ d(dY) Kty Mgy = 1. (6.31)
R

Note that from conditional channels we can derive both unconditional
channels and POVMs, cf. section 2.2.2.1. Ignoring the result y by averaging
over all possible outcomes yields an unconditional channel N :=
Yy N to.11 |y that is again trace-preserving. On the other hand, ignoring the
output state N/ fo,t1|y[P] still leaves us with effect operators Ey = ]\A/I;Z\A/Iy
that constitute a POVM.

6.2.2 Retrodiction

In this section we will show that continuously monitoring a quantum
system S actually effects an instantaneous POVM measurement on the
initial state. To this end assume that S evolves according to a conditional
quantum channel N to,t1)y from fo to f1 such that

py(t1) = Ny nyle(to)l, (6.32)

which depends on the particular measurement record Y := {Y(s),ty <
s < t1} obtained during a single run of the experiment. This conditional
state py(t) is what we obtain, for example, by integrating a SME such
as Eq. (6.23) with initial condition p(tp) and the particular homodyne
record V. Recall that the trace of the conditional state carries the proba-
bility for ) to have occurred given p(ty), cf. Eq. (6.26),

p(Vlo(to)) = Tr{py(t1)}. (6.33)

Suppose we perform a POVM measurement {Ey|x € X} with outcome
set X and effect operators Ey on the (normalized) state py (t1). We expect
outcome x to occur with conditional probability

3 Tr{Expy(t)}
x|V, p(ty)) = Tr{E t)} = —— (6.34)
Rewriting the conditional probability on the left-hand side as

p(x, Yle(to))
p(Vlp(to))

we find that the joint probability to obtain result x and record ) is given
by a POVM measurement on the unnormalized conditional state,

p(x, Vlp(to)) = Te{Expy(t1)}. (6.36)

p(x|Y,p(to)) = (635)
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If we plug Eq. (6.32) into this expression, we can use the definition of
the adjoint channel A/t to |y tO obtain

p(x, Vlp(to)) = Tr{ BNy lo(t)]}
= T}, 1y [Edo(to) ),

Making the identification
Exy(to) == N7, ylEs], (6.38)

we can rewrite the probability as

p(x, Ylp(to)) = Tr{Exy(to)p(to) }, (639)

which suggests that E, (o) actually plays the role of an effect operator
and {E,y(to)|x € X,Y € 9} constitutes a POVM on the initial state
p(to), where 2) denotes the set of all possible monitoring records. This
shows that a POVM measurement at t; is equivalent to an effective POVM
at some previous time ty. This observation-assisted backpropagation of
effect operators is what we refer to as retrodiction.

An even more profound observation is that this result also holds if
we consider the trivial single-element POVM E(t;) = 1 at ;. This corre-
sponds to making a measurement with only a single possible outcome,
and thus not a measurement at all. In that case we find effect operators

Ey(to) == N} | 1y[1] (6.40)

which depend solely on the measurement record ). In this sense time-
continuously monitoring a quantum system from t to ¢; is equivalent to
performing an instantaneous POVM measurement at the initial time fo. It
does not depend on some final effect operator Ey(t;) to yield nontrivial
effect operators E y(to) in the past. Note that this result crucially depends
on using the unnormalized channel A/t since A/ [1] = 1. Because averag-
ing over (i.e., ignoring) the measurement results always yields a unital
channel, this shows that Yy cq) p(Y|p(t0)) = 1 and thus Y ycq Ey =1,
so {Ey(to)|V € D} really does constitute a POVM.

To anticipate a possible source of confusion we emphasize again that
POVMs are a sub-class of general measurements because they yield prob-
abilities for measurement outcomes but make no statement about the
post-measurement state. This makes sense when the state (i.e., wave
function or density operator) is interpreted simply as a means to com-
pute probabilities for the outcomes of possible measurements one could
make on the system. Since the observation record is used in Eq. (6.39) to
reveal information about a system in the past that has long since moved
on (and possibly does not even exist anymore), there is not much sense
in making statements about the post-measurement state.

(6.37)

6.2.3 One-stop preparation and measurement

One of the main motivations of this work is that continuous measure-
ments are routinely used in various platforms to prepare quantum sys-
tems in nontrivial conditional states. This usually requires large coopera-
tivities (C > 1), i. e., strong coherent coupling to the observed bath mode
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9 This convention
of a
forward-pointing
increment follows
Tsang [21, 22], but
differs from
Molmer et al. [24,

27].
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compared to all other dissipation channels. However, the subsequent
readout of these states remains a challenge, see, e. g., the phenomenolog-
ical approaches in [9o] for massive mechanical oscillators, and in [8, 91]
for superconducting qubits. But as has recently been shown in [9, 25]
for superconducting qubits (see also [26] for a review) retrodiction can
assist in the verification of these states.

A typical situation we have in mind is that a monitored system evolves
conditionally from ¢ to t, producing a record Z := {Y(s),ty < s < t}.
Using filtering this prepares the system in the conditional state pz(t).
To read out this state we let the system evolve further until some time
t; > t, producing another measurement record J := {Y(s),t <s < t;}.
Using the method presented in the previous section this record tells us
that we effectively measured the effect operator £ ; on pz(t). We thus
perform state preparation and verification with the same setup by using
disjoint sets of data.

6.2.4 Time-continuous effect equations

We now consider the special case of a system S governed by SME (6.23),
restricted to a single measurement and jump operator for simplicity,

@) de(t) = _i[H/pC(t)]dt + D[i]ﬁ(:(t)dt

+ (Cpe(t) + pe(H)C)dY (). (6-41)

To derive the effect equation adjoint to this master equation consider
again Eq. (6.37), which can be written as

Tr{E(t1)py(t1)} = Tr{Ey(to)p(to)} (6.42)
= Te{E7()pz(t)}, (6.43)

where we split the measurement record J = Z U J at some arbitrary
time t € (to, t1). In the following we drop the subscripts of p and E and
remember that both are conditioned on respective parts of ). Obviously
the first line does not depend on t, so when we take a variation with
respect to t [24, 85-87] we find

0=dTr{E(t)p(1)} (6.44)

= Tr{E(t +dt)p(t +dt) — E(t)p(t) }. (6.45)

We know that g(f +dt) = p(t) +dp(t) with dp(t) given by Eq. (6.41),
and we similarly assume we can write® E(t) = E(t+ dt) — dE(t + dt).

We determine dE(t + dt) from inserting these relation into the equation
above,

0= Tr{E(t +dt)dp(t) + dE(t +dt)p(t)}. (6.46)

Looking at the first term in conjunction with (6.41), and suppressing the
bulky time dependence of E(t + df) = E for the moment, we see the
trace decomposes into three parts,

Tr{Edp(t)} = (A)dt + (B)dt + (C)dY(t), (6.47)
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for the Hamiltonian, jump, and measurement operators respectively. For
example

(A) = —iTr{E[A,p(1)]} (6.48)
= —iTe{E(Hp(t) — p(t)H)} (6.49)
= —iTr{EHp(t) — HEB(t)} (6.50)
= iTr{[H, Ep ()}, (6.51)

where from the second to third line we made use of the cyclic property of
the trace. Similarly we find for the jump operator with D[L]p = LpLt -
(L*Lp + pL*L)/2 that

(B) = Tr{E (D[L]p(1))} (6.52)
=Te { (D'LIE) A(1) } . (6:53)
with DY[L]E = LYEL — (LYLE 4+ EL*L) /2, and for the measurement term
(C) = Te{E(Cp(t) +ﬁ He)} (6:54)
=Tr{(C'E+ EC)p(t)}. (6.55)

Putting all three contributions together yields

0= Tr{ (dE +i[H, E)dt + DY[L)Edt

(6.56)

+ (CTE+ Eé)dY(t))p(t) }
Note that we made no assumptions about p so this equation has to hold
for arbitrary density operators. Recalling that E = E(t + dt) we shift

the time argument, t 4+ dt — t, to arrive at the backward or adjoint effect
equation

—dE(t) = i[A, E(t)]dt + DY[L]E(t)dt
+ (CYE(t) + E(H)C)dY (t — db).

Comparing the effect equation to the corresponding forward master
equation (6.41) we observe the following differences. The sign of the
Hamiltonian changes which we expect from the usual time-reversal in
closed systems. The Lindblad superoperators D are replaced by their ad-
joint DT which are no longer trace-preserving but vanish when applied
to the identity. Each measurement operator Cy is replaced by its adjoint.

To understand the unusual argument of dY (¢ — dt) note that we started
with a stochastic Itd equation denoted by (I) in Eq. (6.41), but we did not
say how to interpret the effect equation we just obtained. It turns out
that it is a stochastic backward It6 equation, which we denote by (BI). This
just means that when expressing an integral involving dE as a Riemann
sum, the stochastic increment needs to be evaluated at the upper limit of
each subinterval. We will elaborate on this in the following section.

Generalization of the backward equation to N decay channels and
Nc measurement processes is straightforward and yields

(6.57)

(BI) —dE(t) = i[H, E(t)]dt + %D*[Ilj]ﬁ(t)dt
j=1

Ne (6.58)

+ Y (CEE(t) + E(1)Cr)dY(t).

k=1
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In principle Eq. (6.58) can also be normalized to generate nonlinear but
trace-preserving evolution [24], provided the system is finite-dimensional
or E is a trace class operator.

63 BACKWARD ITO INTEGRATION

Because the effect equation for E is a stochastic backward It6 equation,
which is perhaps less common than the Itd equation, we will use this
section to clarify the distinction. For a general introduction to stochastic
differential and integral equations we recommend [46, 92].

Deterministic integrals of integrable functions defined as limits of
Riemann-Stieltjes sums do not depend on whether their integrands are
evaluated at the lower or upper end of their subintervals. The upper
and lower Riemann sums converge in the limit of vanishing subinterval
length. For integrals of stochastic functions this is not the case as the in-
tegrand may fluctuate rapidly [46, 47, 92]. Thus there are different ways
to integrate a random process depending on where one evaluates the
integrand.

A common type in physics is the It6 stochastic integral with the in-
tegrand evaluated at the lower end of each subinterval. Another well-
known type is the Stratonovich integral with evaluation at the mid-point
[46, 92]. A third, lesser known type is the backward It6 integral with the
integrand evaluated at the upper limit of each subinterval [32]. We de-
note Itd integrals and differentials by a prepended (I) and backward Itd
integrals by (BI). Everything to the right of (I) (or (BI)) is an It6 (or back-
ward It0) integral. It is possible to mix different integral types [32]. But
since we never do this it should always be clear which type of integral
is being used.

To clarify the distinction between (I) and (BI) let us recall the definition
of Itd integrals [46, 92]. Consider an interval [ty, t1] and partitions P, =
{7j:j=0,...,n} such that

=<t < <17 =1H. (6.59)
We consider only sequences of P, such that

mesh(P,) := max (7j —7Tj_1) =0 (6.60)
j=1,...n

as n — oo. Provided it exists and is independent of the partition se-
quence, the It0 integral of some function (or stochastic process) f(t) with
respect to a white noise process W;(= W(t)) is defined as the mean-
square limit

t n
) [ FR)dWe = lim ) f(50) Wy~ We ). (661
0 j=1

The corresponding backward It6 integral is defined as

n—00 ¢

(BI) /ttl F(T)dWr := Lim Y~ f(1;) (We, — W), (6.62)
0 i=1
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Given a stochastic process X(t) with It6 equation

(D) dX; = f(Xg, t)dt + (X, t)dWy, (6.63)
the corresponding backward It6 equation reads

(B dX; = [f(X¢, t) — g(Xe, t)g' (Xp, )| dt + g(Xi, £)dW; (6.64)

with ¢/(X¢, t) = (9g(x, t)/0x)|x=x,-

We need backward It6 integrals because they naturally govern the
evolution of the effect operator, as derived in the previous section. Let us
illustrate this by considering a simple It6 stochastic process X(t) driven
only by white noise,

@ dX(t) = M X(t)dW,, (6.65)

with Wiener increment dW; and some linear map M; acting on X(t),
which may itself be scalar-, vector-, matrix- or operator-valued. Integrat-
ing both sides we obtain an equivalent integro-differential equation?,

X(t) = X(to) + (I)/tt M X (7)dWs. (6.66)

If we continue replacing X(7) on the right-hand side by this expression
we find

X(t) = Y M) X(to) (6.67)
n=0

with the operators /\/lm defined recursively via

'L',to

t
M) =1, .M%—mAMMWHmm. (6.68)

We retrieve the Itd equation of X(t) through variation with respect to ¢
since

M) =0, (6.69)

t T Tpy—
d MM = (1) d; /t My, dW, /t My dWa- - /t ' Mg, dWy,
0 0 0

(6.70)

t Ty
— () MdW, / Mey,dWo - - / " My, dWy, (6.71)

to to
= @O MMV dw, (6.72)
so as expected we find
diX(f) = ¥ deMID X (1) (6.73)
n=0
=@ M Y MUV X (ko) dW; (6.74)
n=1

— (1) M X(£)dW. 6.75)

2 Equation (6.66) is actually the proper form of Eq. (6.65), which is often taken as a
short-hand but mathematically ill-defined.
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Now consider a second process E(t) which starts at t; > t and evolves
as the adjoint of X () with respect to some scalar product (-|-), such that

(E(t)IX(0)) = (E(t)| oy MiT) X (fo) ) (676)
= (Lo (M) E) X (1)) (677)
= (E(t0)|X(to)) (6.78)

for arbitrary tg, so
E(t) = Y (M) E(h). (6.79)
n=0

To obtain a differential equation analogous to (6.65) for E(f) we need to
take a derivative with respect to t. It is not immediately clear how to do
this from

n t T
(Mgl,ifE(fl):(I)/t qu/t AW, ...

- (6.80)
n—1
/ dWo, ME Mt MY E(t),
t

since ¢ appears in every integral.

If the integrals were regular deterministic integrals we could simply
re-order the integration boundaries. For example, for an integrable de-
terministic function f(t,s) one finds

/01 dt/otdsf(t,S) = /01 ds /s1 dtf (L s). (6.81)

Here, the left-hand side corresponds to the scheme depicted in Fig. 6.1 (a),
while the right-hand side corresponds to the scheme in Fig. 6.1 (b),

where the arrows indicate the direction of the inner integral. An equiv-

alent result for stochastic integrals was proven by Kuznetsov [32, Ch. 7].

He showed that one can swap the order of integration provided one

simultaneously changes from regular Itd to backward It6 integrals, so

proceeding inductively we find

n 51 T
(MEDTE() = @ [ dWs, [ dWs, ..

- (6.82)
Y T t gt
[ aw i, MM E(h)
f H
:(BI)/ dwfn---/ AWy, %
o, (6.83)
X / AW, MY .. MY ME E(t)
.Tz
hot hos
— (BI) / Mt AWy, - - / M AWy, x
t o (6.84)

ty
x / M dWq E(t)
™

— (BI) /t " MEMPOVAWLE (1), (6.85)

t,T
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where all nested integrals in the last three equations are backward It6
integrals. Taking a variation with respect to the lower limit of an integral
yields a negative sign, so we find

—di(MIDT = B) MM )T, (6.86)
and consequently

—d;E(t) = (BI) M]E(t)dW;. (6.87)

67






LINEAR SYSTEMS AND GAUSSIAN STATES

We are going to apply retrodiction to Gaussian systems, which are lin-
ear systems with Gaussian states. Linear dynamics are ubiquitous in
physics for a number of reasons. Many prototypical physical systems,
such as harmonic oscillators, are linear. These allow for exact and ana-
lytical solutions. Thus even if the actual dynamics are nonlinear (anhar-
monic), a linear approximation may serve as a good starting point for
further studies. Important examples include optical and microwave cav-
ities, mesoscopic mechanical resonators, and any hybrid setup where
these are linearly coupled [2, 47, 49, 93]. Gaussian states in turn are
ubiquitous in linear systems because they remain Gaussian under linear
dynamics, allow for a simple representation in phase space, and in fact
stable linear dynamics cause any initial state to become Gaussian, as we
will show in Sec. 7.5. To set the scene we recall some basic definitions
about linear systems, quantum characteristic functions, and Gaussian
states, which also serves to introduce our notation. We then consider the
evolution of the means and covariance matrix of the filtered state and
retrodicted effect operators.

From now on we always consider bosonic quantum systems with M
modes and 2M associated canonical operators # = (f’j) j=1,..2m- The 7
satisfy canonical commutation relations

iojy = [#), 7], (7.1)

giving rise to a skew-symmetric symplectic matrix ¢ € R**2M_ For
example, the usual choice for a harmonic oscillator would be

?:[&T f;T]Tz[fcl R 3 VIR R faM}T, (7-2)

which entails

c= [OM 1M] : (7:3)
“1y Oy

7.1 LINEAR SYSTEMS

A linear system is a dynamical system whose canonical operators evolve
according to linear Heisenberg equations of motion. We consider dynam-
ics governed by the general Itd Stochastic Master Equation (SME) (6.22),

NL

(I) dp(t) = —i[H,p(t)]dt + Y D[L;]o(t)dt
j=1

Nc

+ 3, HICp(H)dWi(1),
k=1
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as derived in Sec. 6.1. The dWj are independent stochastic Wiener in-
crements, so they are zero-mean Gaussian-distributed random variables
with variance dt satisfying the It6 table

dW;(t)dWi(t) = djdt. (7.5)
They are related to corresponding measurement currents Y;(t) as
dY;(t) = (Cj+ C})pdt + dW(t). (7.6)

In linear systems the Hamiltonian is at most quadratic in the canonical
operators while the jump and measurement operators are at most lin-
ear. In the Hamiltonian we neglect constants and absorb possible linear
terms by redefining the canonical operators. Then H can be expressed
as

1.7, ..
ErTHr, (7.7)

H=
with a symmetric matrix H € R**2M_ The N linear measurement
operators we write as

C = (A+iB)? (7.8)

with A, B € RNc*2M and the Ny jump operators, also linear in 7, can be
written as

L=A% (7.9)
ATA =1 A+iQ, (7.10)

with complex A € CNeX2M and A, Q) € R?2M*2M symmetric and skew-
symmetric respectively. Since any information recorded by the observer
must have previously left the system (cf. Eq. (6.25)) it must hold that

Zj L -y, Cli¢>0 < A-A"A-B'B>0. (7.11)

7.2 QUANTUM CHARACTERISTIC FUNCTIONS

A useful tool in classical probability theory are characteristic functions.
The characteristic function of a random variable R is defined as the (clas-
sical) expectation value x (&) := E[e/®R]. This is well-defined even when
R admits no probability density function pr(r). But if pr(r) does exist
then yx is its Fourier transform. It is normalized as x(0) = E[1] = 1.
The characteristic function is a moment-generating function for R which
means the n" moment y,, is obtained from the n'" derivative of y at the
origin,

a n
o = EIR") = (=155 ) (@)oo (712)

Thus given x one has access to all statistics of R.
In quantum systems operators 7; are random variables whose statistics
are determined by the state p with the classical expectation value E[R]
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replaced by (?;) = Tr{?jp}. An extension of classical probability distri-
butions to continuous-variable quantum systems are phase space quasi-
probability distributions, such as the Wigner function [94]. Its Fourier
transform is the quantum characteristic function [47, 95-97]

Xp(&, 1) = W(8))p = Tr{W(§)p(t) }, (7.13)

which we define as the expectation value of the unitary Weyl operator
[98-100],

W(E) := exp(—igTo?) = exp(i(p"% — 4" P)). (7.14)

Since every mode of the system is associated with two canonical op-
erators we always have an even number of operators 71,...,72p and
phase space variables & = [q1,...,qm,P1,---,pm]T € R?M. Note that
because W(0) = 1, the characteristic function of a normalized state sat-
isfies x,(0) = Tr{p} = 1, but we elaborate on this condition in Sec. 7.2.2.
The characteristic function provides a description of the system state that
is equivalent to p: we can always retrieve the full density matrix from [98,

99]

o= (Zi)M / d*ME X (E)W(=2). (7.15)

7.2.1  Moments and cumulants

Like its classical counterpart, x, allows to calculate arbitrary moments
and cumulants of the canonical operators through appropriate deriva-
tives at the origin. One must take care because the definition of Y, is
not unique: since operators do not commute as in classical probability
theory there are different orderings of x,. Throughout this thesis we
choose symmetric ordering, so all moments we obtain from yx, will also
be symmetrically ordered (see below).
We write the moments as

Moy = (1) (Papg) ™M), (7.16)

where the superscript (s) denotes symmetric ordering, meaning a simple
geometric average over all possible orderings of the operators. Note that
the moments depend on ¢ through p(t), which we suppress for simplicity.
Index m; tells us how often the operator 7; appears in each product. For
example, for a single-mode system with M = 1 and 7; = %, 7, = p this
means

Koo = ()5 = (), (7:17)

oy = @) = 2{2p+ Py, (7.18)

Ky = () = S8 + 22+ pi%), (719)
If we introduce the twisted derivative

2M
= d

0; := Oif = .20
j k; 3, (7.20)
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to take into account the commutation relations, we obtain the moments
from x, via

.”fnl,...,mZM = (_181)7”1 te (_laZM)szXP(g) |é':0' (7'21)
An alternative to moments are cumulants Kﬁqll.meM (see [101, 102] or

[103] and references therein) which we also obtain (symmetrically or-
dered) from x, through

Kgﬁ,...,sz = (_lél)m * (_ZBZM) M h'l XP |(’;' 0 (7‘22)

Hence we can express the characteristic function as [102]

= igp)m™ i¢on) oM
Xp(g) = Z . ( ml)! ( mzz\)/ﬂ I/ffnl ..... oy (7.23)
my,...,Map=

:exp< 5 (iél)ml...(i‘ZZM)MZMKg”MmZM), (24

| |
ool =0 mq: MmMop:

where we introduced ¢&; = j = Lk 0jkCk- Note that the lowest order moment

and cumulant give the normalization, so Vo o = 1land KO o = 0 for
normalized states. We will see in Sec. 7.3 that cumulants play a special
role in the description of Gaussian states since all cumulants of order
greater than two vanish.

7.2.2  Unnormalized characteristic functions

The normalization of the characteristic function follows directly from
the normalization of the density operator since x,(0) = Tr{p} = 1. Thus
if we consider an unnormalized operator E with Tr{E} # 1, the corre-
sponding phase space function

Xe(§) = T{W(@)E} (7.25)

must be explicitly normalized to obtain a proper characteristic function
Xe(§)

=z . .26

Xe®) = 2 0) (7.26)

This is relevant when computing the moments from xg. But using this
expression to obtain the cumulants instead of the moments we see that
all except k5, satisfy

Ky, mzyy = (—101)™0 - (=i020) "M (In[%£ ()] — In[X£(0)])] g
(7-27)
= (—id1)™ ... (—idom) "™ In[¥E (& |€ 0 (7-28)

This shows that at the level of the cumulants the normalization of E is
irrelevant (as long as Y£(0) = Tr{E} exists).
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7.3 GAUSSIAN STATES AND EFFECT OPERATORS
7.3.1  Gaussian quantum states

A Gaussian state [96, 99—101, 104—108] is any quantum state p(t) whose
characteristic function is a Gaussian function,

Xo(t) = exp (—igTvTvpa)oa + if;TaTrp(w) : (7:29)

This implies that all other quasi-probability distributions, such as the
Wigner function, are Gaussian as well, since they are related to one an-
other and to ), via Fourier and Weierstrass transforms, which preserve
their Gaussian form. A Gaussian characteristic function is fully deter-
mined by a vector of means r,(t) € R?*M and a symmetric covariance
matrix V,(t) € R*"*2M_ Since in turn x, fully determines p according
to (7.15), this is a very economical representation of the state. We empha-
size that it is also an exact representation and not an approximation.

Comparing (7.29) to the expression of x, in terms of cumulants, Eq. (7.24),

we can read off that mean and covariance matrix

rf = (Fj)p = Kg,...,l,...,O' (7.30)
1
j
1, . A
Vi = 5= i —=rde = Kg%%o 7:31)
ik

are precisely the cumulants of first and second order. Here the arrows
indicate the position of the respective indices. This is confirmed by plug-
ging (7.29) into Eq. (7.22) to compute the cumulants, which also shows
that all third and higher orders vanish identically. Beside this sparse
representation Gaussian states have the tremendously useful property
to remain Gaussian under linear dynamics, which we will see and use
in Sec. 7.4. Thus the evolution of p(t) is fully determined by the evolu-
tion of 7,(t) and V) (t). These properties make Gaussian states and their
description through cumulants particularly attractive.

Purity of Gaussian states

An important measure of the quality of any state preparation scheme
is the purity P(p) = Tr{p?} < 1 of the prepared state. It quantifies the
amount of classical uncertainty in p. For a Gaussian state it depends only
on the covariance matrix, and for a state of M modes it reads [109]

Plo) = 1//det(2V,) = 1/(2M,/det(vp)). (7.32)

Unobserved dissipation tends to reduce the purity during evolution,
while monitoring the dynamics and conditioning the state increases
the purity. Ideally, perfect detection allows to prepare pure states with
P(p) = 1. The bound P < 1 implies det(V,) > 2~M, which is also im-
posed by Heisenberg’s uncertainty relation, and saturated only by pure
states.
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vacuum |0)
coherent |aq + iay)
squeezed |qo, 1)
thermal py, (1)

Figure 7.1: A plot of Wigner functions of different Gaussian states in phase
space. Dashed lines bound the noise ellipses corresponding to a given covari-
ance matrix V, centered at the means of ¥ and p. Vacuum (blue) and coherent
(red) states have variance 1/2 (shot noise) and thus standard deviation 1/+/2 in
each quadrature. The displaced squeezed (green) state has sub-shot noise vari-
ance in X for an increased variance in p. The centered thermal (unfilled brown)
state has equal variances /71+1/2 in % and p for mean excitation number 7.
Vacuum, coherent and squeezed states are pure, i.e., quantum-limited states,
saturating Heisenberg’s uncertainty relation, while the thermal state is a mixed
state for 77 > 0.

Important Gaussian states, which are depicted for a single mode in
Fig. 7.1, are coherent, squeezed, and thermal states. Coherent states |a)
are pure states with equal variances Vyy = V},, = 1/2 (the shot-noise
limit) and vanishing covariance, and means given by the real and imag-
inary part of a. The vacuum |0) is a special coherent state with vanish-
ing means. Squeezed states [95] are also pure, and have the variance
in one quadrature reduced below shot noise. The conjugate quadrature
is then necessarily anti-squeezed to satisfy Heisenberg’s uncertainty re-
lation. An important class of mixed Gaussian states are thermal states.
These have vanishing means, vanishing covariance, and equal variances
Vix = Vpp = 1 +1/2, where 71 > 0 is the mean number of excitations.
Importantly, P = 1/(27 + 1) decreases as i grows.

7.3.2  Gaussian effect operators

The definition above can of course be extended to arbitrary operators. In
particular, we assume all effect operators E realized through retrodiction
(cf. Sec. 6.2) to be Gaussian operators as done in [27, 110]. Typical exam-
ples of direct Gaussian measurements in quantum optics are homodyne
and heterodyne detection, see also App. A. A homodyne measurement
corresponds to Positive-Operator Valued Measures (POVMs) comprising
projections onto squeezed states that in the ideal limit of infinite squeez-
ing’® measure only a single quadrature, £E; = |x)(x|. Heterodyne de-
tection, on the other hand, yields information about both quadratures
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simultaneously at reduced certainty of each, and thus projects onto co-
herent states, E, = |a) (a|/ 7.

We can also assume any retrodicted effect operators to be Gaussian if
the backward dynamics are stable, which we will explain in Sec. 7.5. Note
that just like the forward dynamics the linear backward dynamics causes
any Gaussian operator (and any Gaussian POVM) to remain Gaussian for
all past times. In case no measurement was performed at t; the natural
POVM to start our backpropagation is E(t;) = 1, which is not Gaussian,
but should collapse to a Gaussian in stable systems. To avoid using the
identity (for example in simulations [110]) one could start with a two-
element POVM {E ﬁ,i —E g}, where

Ep e PH (7.33)

is proportional to a thermal state [95, 106] with inverse temperature g >
0. Letusset E(t;) = E p for arbitrarily small but fixed B. Stable dynamics
cause the long-time evolution to become independent of B, and in fact
independent of the choice of initial POVM altogether. Another way [22,
110], which we did not explore, is the following: the problem with the
identity operator is that it has infinite variances. A possible solution is
to consider instead the information matrix P := V!, which is the inverse
of the covariance matrix that simply vanishes as V' — co.

Restricting ourselves to Gaussian POVMs in this way we find that, just
like p, the effect operator is fully characterized by its means and covari-
ance matrix for all times,

Tr{#E}
.E = 7. = *.—] R
ri =% T{E] (7.34)
1, .
Vii = 5 ({3 =i =i, (7:35)

and we can represent E in phase space through its characteristic function
1 .
X6(6,1) = exp 3T Ve(000E + i (r) ). (7:56

Purity of Gaussian effect operators

The purity of effect operators tells us something about the quality of
the corresponding measurement. Unit purity means a given POVM actu-
ally corresponds to projections onto pure states, constituting a quantum-
limited measurement. Equal variances then belong to projections onto
coherent states, while asymmetric variances indicate projections onto
squeezed states. Reduced purity means additional uncertainty and thus
lower resolution of the measurement.

We will see in the examples in Sections 8.1 and 8.2 that the purity
of retrodicted effect operators decreases quickly when the detection ef-
ficiency is low or there is coupling to unobserved baths. To make this
quantitative consider a system that is continuously measured with rate
I', and is also coupled to further unobserved decay channels at rate -.
We will find that the purity of both the conditional state and the retro-
dicted effect operator depend crucially on the quantum cooperativity
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Cy = I'/~y. We will show in Sec. 8.2 that only in the regime C; > 1 is it
possible to retrodict quantum-limited (i. e., pure) effect operators, and to
prepare quantum-limited conditional states.

7.4 EVOLUTION OF MEANS AND COVARIANCE MATRIX
7.4.1  Gaussian quantum states

A master equation for p can be translated directly into a differential
equation for x, [95]. We only need to replace the canonical operators by
corresponding differential operators on x, as detailed in App. B. For a
general quantum state with arbitrary cumulants we find that the means
evolve as

(1) dro(t) = Qrp(t)dt + (2V, (1) AT — oBT)AW (1), (7.37)
with the drift matrix
Q:=0(H+Q), (7.38)

comprising unitary and dissipative terms. If we reintroduce the actually
measured homodyne signal from Eq. (7.6),

(@) dY(t) = 2Ar,(t)dt + dW(t), (7.39)
we can write

(D) dro(t) = My(t)re(t)dt + (2V,(+) AT — eBT)dY (), (7.40)
with the measurement-enhanced drift matrix

My(t) := Q+20BTA — 4V, (1) AT A. (7.41)

We call it enhanced because the additional measurement matrices A and
B help to stabilize the dynamics. The measurement currents enter the
evolution of the means in Eq. (7.40) only through multiplication with
the measurement matrices. Reducing the detection efficiency, which cor-
responds to A, B — 0, thus causes the stochastic increment to disappear
as it should. Note that the covariance matrix V,(t) twice enters the evolu-
tion, once through the drift matrix M, and once directly coupled to the
photocurrent. A consequence of the latter term is that a large variance,
corresponding to large uncertainty about the state, boosts the effect that
a bit of gathered information has on the evolution of the conditional
means.

Assuming a Gaussian state we show in App. B that the covariance
matrix itself satisfies the deterministic equation

Vo(t) = QV,o(t) + Vo () QT + oAc!

- (ZVp(t)AT - UBT) <2Vp(t)AT - aBT>T 7422)
= (Q +20BTA)V,(t) + V,(t)(Q+20BTA)T
+ Aot — 4V, (1) ATAV,(t) (7.42b)
= Mo(H)Vp(t) + Vo () My (1)
(7-42¢)

+ Aot +4V, (1) ATAV, (1)
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with the diffusion matrix (cf. Eq. (7.11))
A:=A—-B'B>0. (7.42d)

The evolution of V,(t) is deterministic, and independent of the means
rp(t) and all other cumulants, which is a peculiarity of Gaussian dynam-
ics, and not generally true, as we will see in Sec. 7.4.3. However, although
it is independent of the measurement record and not a stochastic equa-
tion, it does depend on the measurement device through matrices A and
B. This is reasonable since the information gained from observations of
the system helps condition the state, reducing the uncertainty in at least
some of its quadratures.

Steady state solution

We assume stable dynamics (see [2, Chapters 6.4, 6.6] and Sec. 7.5.1 for
more details) so the covariance matrix of any initial (Gaussian) state will
collapse to a steady state V;°. We find V;® by solving the algebraic Riccati
equation V, = 0 which implies

MSVS + V(M) = —oAo™ — 4V ATAVSS, (7.43)

where Mp® is the drift matrix M, (t) with V,(t) = V;°. The right-hand
side is negative semi-definite (negative definite if there is some unob-
served dissipation) and the covariance matrix is positive definite for
physical (finitely squeezed) states, so Mp® is stable, i. e., has only eigenval-
ues with non-positive real part. In practice, assuming sub-unit detection
efficiency, Mj° is strictly stable, i.e., has only eigenvalues with negative
real parts.

Now if the experiment has been running sufficiently long for the co-
variance matrix to have collapsed to its fixed point, we can simply plug
VE’S and Mf,s into Eq. (7.40) to find the evolution of the means,

M) ro(t) = M 1005 (1) + / T s AT - oBT)dY (7).
(7-44)

Importantly, because Mp® is stable both the initial condition r,(t) and
the integrand are damped exponentially. Writing Amax for the eigenvalue
of Mp* with largest (still negative) real part, we expect that for times

t —tg > |Re[Amax]| ! the means will be driven only by the measurement
current,

@ ro(t / VSSAT oBh)dY (7). (7.45)

Thus we obtain a conditional state whose shape is fixed, and which
moves around phase space driven by the measurement current.
Temporal mode functions

Note that the means (and thus the whole state) do not depend on the
entire continuous measurement record {Y(s)|typ < s < t}, but only on

77



78

LINEAR SYSTEMS AND GAUSSIAN STATES

an integral of the photocurrent, which is a simple vector of 2M real
numbers. In fact, the 2M x Nc-dimensional integral kernel

Fo(t) = (fi(1) == ™" (2v5°AT — oBT) (7.46)

picks out a set of temporal modes of the monitored fields Y(7) which
then drive the quadratures r(f). Each (unnormalized) temporal mode
function (or filter function) f].’;{(t — T) is convoluted with a corresponding

measurement current Yy (7),

M X;( / 7)dY(T), (7.47)

to enter the evolution of 7;(t). Recall that Y () o (%¢(7)) is the result of a
quadrature measurement of some outgoing light field. Thus integration
with fﬁ( can be interpreted as the measurement of a different quadrature
operator

/ (t — 7)x(T)dT (7.48)

with outcome X;(t). Of course the mode functions fﬁ( are not normalized,
and will generally not be orthogonal.

7.4.2  Gaussian effect operators

Assuming that the effect operators we realize through retrodiction are
Gaussian operators, we can analogously to the previous section derive
a set of differential backward equations for the means and covariance
matrix. Let us recall the unnormalized effect equation Eq. (6.58),

A A A NL A~ A
(BI) —dE(t) = i[H,E(t)]dt+ Y D' [L;]E(t)dt
=1
N : (749)
C A A A
+ Y (CIE(t) + E(1)Cr)dYi (1),
k=1
with the adjoint Lindblad operator
HEp . THRT _ Litrp_ Laptr
D'[LIE := L"EL — EL LE — EEL L. (7.50)

To be able to adapt the results of the previous section we rewrite Eq. (7.49)
as

N,
(BI) —dE(t) = —i[—H,E(t)]dt + Y D[L;]E(t)
j=1
N, R . R R
+ Y (LIE()L; — LE(H)LT)at (7.51)
j=1
Nc
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where the second line compensates for the replacement of Dt by D. We
see that this equation is structurally very similar to the usual unnor-
malized master equation (6.22), so the expressions for dr, and V, in
Egs. (7.40) and (7.42) serve as a good starting point with the follow-
ing changes: (i) Time-reversal requires us to treat them as backward Ito
equations, cf. Sec. 6.3. (i) The sign flip of H causes H — —H and re-
placing the measurement operators C; by their adjoint entails B — —B.
(iif) Working out the change stemming from the sandwich and normal-
ization terms in the second line we find in App. B.6 that it contributes
terms —20Qrg and —2(cQVg + (cQVE)T) to the evolution of the means
and covariance matrix, respectively. Together with H — —H this simply
changes the sign of the unconditional drift matrix Q — —Q. Hence the
backward Itd equation for the means reads

(BI) —drg(t) := re(t —dt) —re(t) (7.52a)
= —Qre(t)dt + (2Ve(t)AT + oBT)dW (t) (7.52b)
= Mg(t)re(t)dt + (2Ve(t)AT + oBT)dY (),  (7.52¢)

with the measurement-enhanced backward drift matrix

MEg(t) == —Q — 20BTA — 4V (1) ATA. (7.53)

The deterministic backward Riccati equation for the covariance matrix is
similar to Eq. (7.42),

— Vg := Vg(t — dt) — Ve (t) (7.54a)
= ME(t)VE(t) + V() ME(t) sab)
+ oho 4+ 4Ve(1) ATAVE(1). 74

We now clearly see the importance of continuous measurements for
retrodiction. Without observations, A = B = 0, the drift matrices would
be equal up to a sign, My(t) = —Mg(t) = Q. At the same time the
quadratic Riccati equations for V, and Vg would turn into linear Lya-
punov equations. Assuming stable forward dynamics with a positive
steady state solution V3* > 0 of Eq. (7.43),

QVS® + VPQT = —oAdT, (7.55)

would preclude stable backward dynamics: there cannot simultaneously
be a steady state V3° > 0 that satisfies

—QVE® — VESQT = —oAol. (7.56)

Only the presence of a sufficiently large quadratic AT A-term in Eq. (7.54),
corresponding to sufficiently efficient measurements, allows us to find
an equilibrium backward covariance matrix V3* > 0. As in the previous
section this implies a stable M} whose eigenvalues have non-positive
real part.

Assuming stable backward dynamics we can plug the steady state
matrices Vp° and My into the equation for the means. As in the forward
case we find the solution

t

(BI) re(t) = e DMEpo (1)) 4+ / "e(TOME (2 AT 1 gBT)dY(T),
t

(7-57)
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where the integral is a backward It6 integral as explained in Sec. 6.3.
Stability of M¥ again implies exponential damping of the final condition
re(t1) and of the integrand.

The backward temporal mode functions defined by the integral kernel
in (7.57) will generally be different from the forward modes, in particular
because the exponential envelope decays in the future, not in the past.
But otherwise the discussion would follow similar lines.

7.4.3 Non-Gaussian operators

In App. B we derive the equations of motion for the cumulants of general
quantum operators under linear dynamics. Since any state that is not
Gaussian automatically has infinitely many non-vanishing cumulants
[101], one obtains an infinite hierarchy of coupled differential equations.
Because the cumulants defined in Eq. (7.22) are more difficult to work
with, we provide an alternative definition. Let us write the cumulants of
Nth order, i.e., of products of N canonical operators, as

N ~ A
Vﬂ(’llf')"/mN = <rm1 M rmN>c' (758)

In this section we drop the superscripts V¢, VE = V of individual el-
ements for better readability. The indices 1 < my < 2M indicate that
operator ?mk is at position k in the cumulant. Since we consider only
symmetrically ordered cumulants the position is actually irrelevant and
the V are symmetric under permutations of indices. At first and second
order these relate to the means and covariance matrix as

=) =v, (7.59)
1, .
Vik = §<{T; =1y, k= 1)) = (7.60)

7.4.3.1  Non-Gaussian quantum state

In App. B.5 we find that the evolution of the means of general states p
is no different from that of Gaussian states, and given by Eq. (7.40). The
covariance matrix, however, generally becomes stochastic and satisfies,

0 dv,2,, = [Mpvp@ + VP M]

Aol + 4V P AT Ay 2 dt
TOAT T+ p }ml,mz (7.61)

+2 Z o (ATdW);.
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The first two lines are the same as Eq. (7.42), but additionally a Wiener
increment is introduced through coupling to the third order cumulants

Vp(?’). The evolution of arbitrary cumulants of order N > 3 is given by

@ avi
= L M v dt

kM 5y,
TESCYCl( ) 7(2) 7(N)

+1 N—n+1
_22 YoV (ATA VT
n=2 peBipart(N
lpl=n

+2v ) (ATdw)y,

-----

with implicit sums over repeated indices j and k. The sum over T €
SYI(N) runs through all cyclic permutations of {1,...,N}, and p €
Bipart(N) with |p| = n are all bipartitions of {1,...,N}, such that one
part contains n elements p(1),...,p(n) while its complement contains
q(1),...,q(N —n). It is interesting to note here that all cumulants couple
to the next higher order only through the stochastic term, and determin-
istically only to lower orders.

7.4.3.2 Non-Gaussian effect operator

In App. B.6 we also compute the backward equations of motion of gen-
eral (non-Gaussian) effect operators. Again the evolution of the means
is the same as for Gaussian operators given by Eq. (7.52). The evolu-
tion of the covariance matrix also only changes by becoming a stochastic
backward Itd equation,

B) —dV, 7, = [MeV? + VP ME

+ oAoT + 4V AT Ay ?) dt
E E i| mq,mmyp (763)

+2 Z L (ATdW),.

where again the first two lines are the same as for Gaussian effect oper-
ators, and higher-order cumulants with N > 3 evolve as

@1 —dv,M

E N
= Z M Vlc(,mi(2>,...,mT(N>dt
cycl (N
TESY ( )
—2 Z Yooy (AT Ay Nt gy
iTh By ) I deg (1) Mg (8 -n)
lpl=n
+2viN T (ATAW),.

(7.64)
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7.5 STABLE DYNAMICS LEADS TO GAUSSIAN OPERATORS
7.5.1  Stability of linear systems

Stability in dynamical systems is the idea that observers with different
initial states of knowledge about the system state but access to the same
measurement record will come to an agreement about the state for suf-
ficiently long observation times [2, Ch. 6]. This requires the state to de-
terministically approach a steady state, which is a notion that needs to be
modified when considering conditional dynamics. Even in equilibrium
the system still experiences quantum fluctuations that make the condi-
tional means move around phase space, cf. (7.45). Only the covariance
matrix, which (for Gaussian states) is not driven by the measurement cur-
rent, may have a stable fixed point V*°. Thus when we refer to a system
in steady state we always mean that the covariance matrix has collapsed
to V5. Linear systems for which the covariance matrix deterministically
collapses to some V*° such that the unconditional means decay to zero
are called (asymptotically) stable [93]. This is the case if and only if the
pair (QT,2A7) is stabilizable [2], which means there exists a real matrix F
such that Q + 2FA has only eigenvalues with negative real parts.

Now the assumption of a Gaussian initial state p(fy) is reasonable
from a physical viewpoint since Gaussian measurements [36, 81, 111]
and Gaussian baths [112] tend to “Gaussify” the state of the system.
Mathematically Gaussification means that if we start with an arbitrary
initial state p(tp), its higher-order cumulants (N > 3) are exponentially
damped by the dynamics, and it collapses to a Gaussian steady state. We
show below that the deterministic parts of the equations of motion cause
such a decay, which leads us to conjecture that this Gaussification indeed
takes place assuming the evolution is stable in the traditional sense. In
other words, if the dynamics are such that arbitrary initial Gaussians col-
lapse to a particular steady state VV*°, which stabilizes the evolution of the
means (makes them decay), then also non-Gaussian states will become
Gaussian and collapse to V*°. Thus in stable systems we can choose t
such that any transient non-Gaussian components have decayed to safely
assume that p(fp) is Gaussian.

An analogous stability criterion applies to effect operators. We con-
jecture that arbitrary E(t;) will become Gaussian as long as the back-
ward dynamics are stable, which is the case if and only if (—Q7,2AT)
is stabilizable. Having both stable forward and backward dynamics re-
quires that one observes the right combination of modes, and that the
observations are sufficiently efficient compared to all other decoherence
channels, cf. the discussion around Eq. (7.55). The decaying cavity con-
sidered in Sec. 8.1 is a basic example of a system with stable forward
dynamics but non-stabilizable backward evolution. This is because only
one of the quadratures is monitored, so uncertainty about the other will
grow indefinitely.
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7.5.2  Gaussification of arbitrary initial states

We now show that in stable systems the deterministic part of the evo-
lution of the cumulants, i.e., with dW = 0, leads to a decay of higher
orders (N > 3). Assuming stable dynamics causes the second cumulants

Vp(z) of any Gaussian state to be driven deterministically into a steady
state V;S, such that the resulting drift matrix Mf;s is stable, i.e., has
only eigenvalues with negative real part (see the discussion surround-

ing Eq. (7.43)). If we consider some non-Gaussian state with VP(S) #£0,

then Vf) itself becomes a random process, which in addition to a de-
terministic drift towards V5* will experience some diffusion induced by

the additive white noise dependent on Vp(g). Thus we expect the second
cumulants to collapse to V;® asymptotically, and then experience stochas-
tic fluctuations about this stable fixed point. In the following we assume
this collapse has already occurred, and show that this also stabilizes the
deterministic evolution of all higher-order cumulants. The relevant part
of their dynamics is given by

+(N) _ SS (N)
le,...,mN - E MmT(l),ka,mT(z),...,mT(N)
T€SYI(N)
N=2 (n+1) T (N-n+1)
_y 1% (ATA) VI .
Z Z mn(l)""’mp(n>’]( )]k k'mq(l)"”'mq(N—H)

n=2 peBipart(N)
lpl=n
(7.65)

so coupling occurs only to orders N and below. In particular, Vp(3) only
couples to itself. We assume for the moment that all cumulants of or-
ders 3,..., N — 1 have decayed to zero, so the second line vanishes. The
evolution is then simply given by

7(N) _ (N)
ler"'/mN - Z M?li(l),kvk,m (271 (N) (766)
TeSYI(N) ‘ ‘

To analyze the stability of this linear dynamical system we assume
that M7® = T~!AT can be diagonalized'! with eigenvalues

A = diag(Aq,..., Aam). (7.67)
We can then consider an equivalent dynamical system comprising

7(N) — (N)

le,...,mN = Tml,m’1 s TmN,m;\] lel,n-,m}\,’ (7.68)

with summation over repeated indices. The Vrﬁﬂv)mN are still symmetric

under permutations of indices, so the equations of motion become

7(N) _ 7(N)
le,,..,mN - Z Am‘r(l)/k k'mr(z)/"'/mT(N) (769)
TESYI(N)
— 7(N)
- Z Ame mT(l),mT(z),...,mT<N) (770)
TESYI(N)

- ()\ml + Amz + e + /\mN)Vngl\j,Lz,...,mN/ (771)

33

™ This corresponds
to switching to the

dynamical modes of

the system [2,

Ch. 6].
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where in the second and third line there are no implicit sums over the m;.
Since the transformation (7.68) is just a change of basis, the eigenvalues
of the dynamical map defined by Eq. (7.66) are the same as those of
Eq. (7.71), which we can read off directly: they are given by vy, ., :
niA1 + - - - + napmAapm where the n; are all possible partitions of N, i.e.,
nj > 0and };;n; = N. Due to the assumed stability, all A; (eigenvalues
of Mf,s) have negative real part, and so do the vy, . n,,, (eigenvalues of
the map (7.66)). More explicitly, let Amax (Amin) denote the eigenvalue of
Mg with largest (smallest) real part. Then the eigenvalue of (7.66) with
the largest (smallest) real part is given by NAmax (NAmin)-

The assumption we made to obtain Eq. (7.66) was that all Vp(n) with
3 < n < N have already vanished. Thus we first note that (7.66) holds

without any assumptions for \7‘,(3) , which consequently decays to zero.
We then proceed inductively to higher orders. This shows that in stable
systems the deterministic evolution of the VP(N) causes exponential decay

to zero.

7.5.3 Gaussification of arbitrary effect operators

As mentioned before, the stability of the backward dynamics can be
analyzed in exactly the same way as the forward evolution. Thus we
conjecture that any initial effect operator will collapse to a Gaussian op-
erator as long as the unconditional backward dynamics are stable in the
sense discussed in Sec. 7.5.1, i. e., that the covariance matrix approaches
a stable fixed point V?* such that the drift matrix

$$ = —Q—20BTA—4V$ATA (7.72)

has only eigenvalues with negative real part.
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To illustrate the usefulness of retrodiction as developed in the previous
chapters, we are going to apply it in two different settings. First we
explore two simple toy models to gauge the fundamental limits of the
method, and then we will apply it to a realistic optomechanical system
in Sec. 8.2.

8.1 BASIC EXAMPLES
8.1.1  Monitoring a decaying cavity

Let us start with the simple example of a decaying cavity undergoing
homodyne detection, depicted in Fig. 8.1. This setup was considered by
Zhang and Molmer [27] who showed that past Gaussian state estimates
are improved when future observations are taken into account. It was
also used by Wiseman [84] to illustrate linear quantum trajectories. He
reproduced the known result that with an ideal detector and infinite ob-
servation time one can perform a projective measurement of the initial
state onto a quadrature eigenstate without ever preparing a squeezed
state of the cavity field. We will confirm this using retrodiction on Gaus-
sian states.

We consider an ideal freely damped cavity in a rotating frame, such
that H = 0, with decay rate I', and we perform homodyne detection
with homodyne angle 6 and efficiency # € [0,1] (cf. App. A). The cor-
responding Stochastic Master Equation (SME) for the conditional cavity
state reads (cf. Sec. 6.1)

(1) dp(t) = TD[alp(t)dt + /nTH[e " alp(t)dW(t), (8.1)
where 4,4 are the cavity Creation and Annihilation Operators (CAOs).
The canonical quadrature operators are & = (2 +4')/v/2and p = —i(a —
a")/+/2, which we collect into a vector # = [%,p]T. Then the Wiener
increment dW (t) is related to the detector output dY(¢) as

dY(t) = /2nT(%&g)pdt +dW(t), (8.2)

with Xy := cos(6)X + sin(0)p. Due to the symmetry of the problem we
choose § = 0 without loss of generality, observing only the X-quadrature
of the cavity.

8.1.1.1 Conditional state evolution

Before we perform retrodiction we consider the monitored evolution of
a Gaussian cavity state. As we showed in Sec. 7.5 assuming a Gaus-
sian state is not a strong restriction as long as the dynamics are stable.
We know this is the case because even without measurements the cav-
ity will decay to the vacuum, which is a Gaussian state. But we can
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to t t

Figure 8.1: Schematic of a freely decaying cavity monitored from time ¢ to #;.
Light leaving the cavity at rate I is superposed on a balanced beam splitter with
a strong local oscillator (LO). Two photodetectors monitor the output ports and
their photocurrents are subtracted to yield a time-continuous homodyne mea-
surement signal Y (). Imperfect detection is modeled as photon loss induced
by a second beam splitter which only transmits a fraction # of the signal light.
See also App. A.

confirm this using the stabilizability criterion of Sec. 7.5.1. Using the for-
malism of Sec. 7.4 we read off the matrices H = 0, for the Hamiltonian,
and A = (I'/2)1; and Q) = (I'/2)c for the dissipation, where ¢ is the
2 x 2 symplectic matrix. The resulting drift matrix Q = ¢(H + Q) =
—(T'/2)1; has only negative eigenvalues, so the dynamics are indeed

trivially stable. The measurement matrices are A = /nI'/2 [1 0} and

B=./nl'/2 [o 1].
Spelling out Egs. (7.37) and (7.42) for dr, and Vp, and dropping the
subscript to improve readability, we find

(0 dx(t) = —xdt 4/ T (2Ve(t) ~ 1AW (), (830)

(0 dp(t) = — pat + ﬁzvxp(t)dW(t), (8.3b)
and

Vix = —(1 = 27)TViy + (1 — n)g —2TV2, (8.42)

Vep = —(1— )TV — 27T Vi Vi, (8.4b)

Vip = —TVpp + g — 29TV, (8.4¢)

The steady state solution to the Riccati equation V = 0 is simply

VE=Vii=5 @ VS=0. (8.5)
Computing the purity P(p) = 1/(24/det(V*%)) = 1 shows that the pre-
pared steady state is a pure coherent state. Plugging V*° into the equa-
tions for the means makes dW drop out, so the long-term forward evolu-

tion does not depend on the monitored output. Both mean values decay
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exponentially, affirming the known result that for long times a decaying
cavity will simply collapse to the vacuum state, pss = |0) (0.

This insight is important. It shows that the covariance matrix alone
does not let us judge the effectiveness of a given preparation (or retro-
diction) scheme. If the unconditional dynamics produce some mixed
steady state we can increase our knowledge by monitoring the out-
put. At long times the conditional dynamics will produce a state with
fixed covariance and measurement-dependent means that moves around
phase space, such that the averaged conditional dynamics agree with
the unconditional dynamics. However, if the unconditional dynamics al-
ready yield a quantum-limited state (such as the vacuum in the present
example) then there is nothing to be gained from observing the output.
These statements apply to both quantum states and effect operators.

While the observations cannot aid the (long-term) state preparation
we will now see that they let us infer information about the initial state
of the cavity.

8.1.1.2 Retrodiction of POVM elements

In [84] Wiseman constructed an explicit effect operator from the (ideal)
continuous measurement record and showed that monitoring the cavity
is equivalent to a quadrature measurement on its initial state. The effect
equation adjoint to Eq. (8.1) reads

(BI) —dE(t) = TD[a]E(t)dt + /T (aYE(t) + E(H)a)dY(t).  (8.6)

Restricting ourselves to Gaussian Positive-Operator Valued Measures
(POVMs) we can directly write down the equations of motion of means
and covariance matrix, Eqs. (7.52) and (7.54). Again we drop the sub-
script E to improve readability, so

(BD) —dx(t) = pxdt + /T (2Via(t) + D)AW(), (87)
r 78
(BI) —dp(t) = 5 pdt + | L2V (AW (), (8.7b)
and
. r
—Vix = (1 - 277)rvxx + (1 - 7’])5 — 217rV3x, (8.8a)
~Vip = (1= 1)TVap — 20T Vix Vs, (8.8b)
—Vpp =TVpp + g — 29TV, (8.8¢)

The equation for V,, is decoupled so we solve Vex = 0 to find
1—
ve =1 (8.9)

which entails constant covariance, pr = 0, independent of its current
value. Note that the X-variance vanishes, V7 — 0, as # — 1 which
shows that the corresponding effect operator measures % with arbitrary
precision. The effect operator will be squeezed in X for any # > 1/2.

87
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On the other hand, V37 — o0 as # — 0 emphasizing that retrodiction
crucially depends on observations. When attempting to solve V,, = 0
we find that there is no solution, st, and V;;, which simultaneously
satisfies V55 > 0 and det[V"5] > 0, which are necessary requirements for

a proper ggvamance matrix. Thus V}, does not have a steady state and
grows beyond all bounds as time runs backwards. This is in line with the
fact that our setup only gathers information about %. Thus, retrodiction
allows to effectively perform a projective measurement of a quadrature
operator on the initial state of the cavity. By changing the homodyne
angle analogous results can be obtained for any quadrature X,. This
agrees with the finding of Wiseman [84] who used an explicit operator
representation to find the effect operator. It is not difficult to check® that
the effect operator constructed in [84] indeed satisfies the equation of
motion (8.6).

We can now also derive the temporal modes which have to be ex-
tracted form the photocurrent. Plugging V% into the equation for x we

find
(B —dx(t) = Jxdt + \/gdwu) (8.10)

r | T

The solution to this equation is given by

(BI) x(t) = e T(1=H/2y \/>/ Fh=1)29y (1), (8.12)

for t < t; so the initial value x(#;) is exponentially damped, and far
into the past the mean %-quadrature of the retrodicted effect operator
will depend only on the integrated measurement current with mode
function

ft) = Le—rt/z. (8.13)

8.1.2  Beam splitter vs. squeezing interaction

We will now examine why we can prepare only a coherent state (the
vacuum) but are able to measure squeezed states. This is due to the
Beam Splitter (BS) coupling between the cavity and the field outside,

HEISE - F(aagut + a+aout>r (8.14)

where &, Cout are the CAOs corresponding to the outgoing mode being
measured. This interaction causes a state swap between the intracavity
and outside fields. To illustrate this further let us replace the BS coupling
by a Two-Mode Squeezing (TMS) interaction,

AIMS _ F(ﬁ*cgut + acout)- (8.15)

int

When computing dE(t) of the effect operator in [84] it is important to reintroduce the
initial time which was set to zero there, and to take the derivative with respect to this
time.
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For our simple cavity this is obviously unrealistic but we will encounter
the TMS interaction again in the optomechanical system of the next sec-
tion, so it is worthwhile understanding the effect this has on the dynam-
ics. The corresponding master equation reads

(D dp(t) = TD[a"lp(t)dt + /4T H[a"|p()dW(#). (8.16)

This yields equations of motion for the means and (co)variances of the
conditional state,

T T
(D) dx() = Sxdt + M%(zvxx(t) +1)dW (), (8.17)
r nl
(M dp(t) = 5 pdt + 1/ 5-2Vep(HAW(1), (8.18)
and
. T
Vie = (1 =2V + (1 - ’7)5 - 277erZx/ (8.19)
VXP =(1- U)vap — 20TV Vip, (8.20)
: T
Vop =TVpp + 5 = 21TV5, (8.21)

which are exactly the same as the backward Egs. (8.7) and (8.8) for the
BS interaction. So we know that Vj, will grow beyond all bounds in
the long time limit, but we can condition the X-quadrature to arbitrary
precision limited only by our detection efficiency 7, meaning we can
prepare arbitrarily squeezed states. Similarly, the situation is reversed
for the backward effect equation, which yields equations for the means
and covariance matrix given by the forward equations Egs. (8.3) and
(8.4). Hence the retrodicted effect operators will become independent of
the photocurrent in the long-time limit and project only on the vacuum
state.

To understand this role reversal note that I—AIE\{IS creates entangled
pairs of photons so detecting the outgoing light will reveal information
about the current state of the cavity (“What is the state?”) while light gen-
erated by the state-swapping BS interaction contains information about
the state of the oscillator before the interaction (“What was the state?”).
The effect each coupling has on the performance of both pre- and retro-
diction is summarized in the following table.

‘ Prediction o Retrodiction E

T™MS | Squeezed Coherent
BS Coherent Squeezed

8.2 CONDITIONAL STATE PREPARATION AND VERIFICATION IN OP-
TOMECHANICS

The illustrative examples studied in the previous sections provide the
background for the application of the formalism to time-continuous mea-
surements of optomechanical systems [49, 113]. The system of interest is
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PBS QWP Membrane
|
Q

Thermal

LO bath 7

Figure 8.2: Schematic of a micromechanical membrane coupled to a driven
cavity with coupling strength g. Before entering the cavity the linearly polar-
ized driving field is transmitted through a polarizing beam splitter (PBS) and
quarter-wave plate (QWP). After interaction with the cavity and membrane the
outgoing light again passes the QWP, such that it becomes orthogonally po-
larized to the incoming light. It is reflected off the PBS and superposed on a
second beam splitter with a strong local oscillator (LO) to perform homodyne
or heterodyne detection with detection efficiency #. The membrane is addition-
ally coupled to a thermal bath with rate v and mean phonon number 7.

a single mode of a mechanical oscillator, such as a membrane depicted
in Fig. 8.2, which couples to the light field inside a resonantly driven
cavity. The cavity output is measured through homodyne or heterodyne
detection, see App. A. We will be interested in the weak coupling limit
of optomechanics, where the cavity can be adiabatically eliminated, and
the time-continuous measurement effectively concerns the mechanical
system only. It is important to note that this weak coupling limit does
not exclude the regime of strong quantum cooperativity where the mea-
surement back action noise process effectively becomes stronger than all
other noise processes acting on the oscillator. Quantum cooperativites on
the order of 100 have been demonstrated in recent optomechanical sys-
tems [14]. It is clear that the tools of quantum state pre- and retrodiction
become especially powerful in such a regime.

The adiabatic limit of the conditional optomechanical master equation
has been treated in great detail in [33, 34]. We summarize here the main
aspects, and then apply it to discuss preparation and verification of the
mechanical state.

8.2.1 Optomechanical setup

We consider a mechanical mode with frequency wn, coupled to a cavity
(w¢), driven by a strong coherent field with frequency wy. We move to a
rotating frame with respect to the drive wp, and assume the intra-cavity
amplitude a. is large so we can linearize the interaction [49], which
yields

Hyn = Ho+ g(a+a") (ac +a}), (8.22a)
Hy = wmi'a — Acala,, (8.22b)

where Hy comprises the local Hamiltonians of cavity and mechanics
with Ac = wp — we, and g o goac is the cavity-enhanced optomechanical
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coupling strength. @ and 4. are the annihilation operators of the mechan-
ical and cavity mode, respectively.

The cavity field leaks out at a full width at half maximum (FWHM)
decay rate x. The (unconditional) master equation of the joint state pmc
of mechanical and cavity mode reads

Pme(t) = —i[ﬁlianmC(t)] + xDlac]pme(t) + LenPme(t), (8.23)

where we have also included a thermal bath,

Linome(t) = v(7 +1)D[a]pmc(t) + 7ﬁD[ﬁ+]pmc(t), (8.24)

with mean phonon number 7 which couples to the mechanical oscillator
at rate v (FWHM of the mechanical mode).

We monitor the field that leaks from the cavity using homodyne or
heterodyne detection, depicted in the bottom left of Fig. 8.2. As com-
pared to the SME (8.1) of the decaying cavity studied in Sec. 8.1, we
consider here a slightly more general setup where the local oscillator
frequency w), may be detuned from the driving frequency wy, captured
by A}, = w), — wp. This realizes a measurement of the outgoing field
quadrature operator doyt(t)e Aot gt | (+)e!P0!=00 where 6, is the
tunable phase of the local oscillator. The relations between the different
frequencies and detunings are visualized in Fig. 8.3. The resulting SME
for cavity and mechanics reads

() dp(t) = —i[Hiin, pme (t)]dt + kD[ac] ome(t)dt
+ Linome(t)dt (8.25)
+ /7H [acelBetBo)t =] o (1AW (1),

where 7 € [0,1] is the detection efficiency.

We would like an effective master equation for the mechanics alone.
To this end one can start from the combined master equation (8.25) and
move to an interaction picture with respect to H. Assuming the cavity
field decays fast on the time scale set by the optomechanical interaction,
g/x < 1, one can adiabatically eliminate the cavity dynamics from the
description. For details of this procedure see [33, 34]. Before we state the
result let us take a closer look at the optomechanical interaction.

8.2.2  Optomechanical interaction

The linearized radiation pressure interaction is given by the last term
in Eq. (8.22). The interaction decomposes into two terms: (i) a Beam
Splitter (BS) coupling

Hgs = g(aai +a*ac), (8.26)
and (ii) a Two-Mode Squeezing (TMS) interaction
At At

HTMS = g(ﬁac +a ac)r (8-27)

which give rise to Stokes and anti-Stokes scattering processes depicted
in Fig. 8.4. If we work in an interaction picture with respect to Hy then

wo

We | I oo

AC A10
Figure 8.3: In-
volved frequencies
and detunings, de-
picted for A, /1, > 0.
Red/blue side-
bands of the drive
at wy + wm.
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We + Wm
TMS BS
We — Wm We We

A

Intensity

1l L

We — Wm we,wy  Frequency we + wm

Figure 8.4: Top: schematic conversion processes occurring in the optomechan-
ical setup depicted in Fig. 8.2, driven on resonance wy = w,. Cavity photons
at frequency w, are scattered into the sidebands while creating or annihilating
a mechanical phonon at frequency wm. Bottom: the spectrum of the outgoing
light (not to scale). As discussed in Sec. 8.2.2 the linearized optomechanical in-
teraction facilitates two processes: The BS interaction converts a cavity photon
into a phonon and an outgoing photon in the lower (red) sideband at we — wm.
TMS combines a cavity photon and a phonon to produce an outgoing photon in
the upper (blue) sideband at we + wm.

Hgg and Hypg will oscillate at frequencies wm £ A, respectively. For a
red-detuned drive, Ac = —wm, the BS interaction becomes resonant and
is thus enhanced while the TMS interaction oscillates quickly at 2wm
and is suppressed. For a blue-detuned drive, Ac = wm, the situation is
reversed so the TMS interaction is enhanced and the BS interaction sup-
pressed. The entangling and state-swap dynamics corresponding to res-
onant I—AITMS or HBS have been demonstrated experimentally in a circuit
QED setup [114, 115]. For a resonant drive, A. = 0, both processes con-
tribute equally.

As we have seen in the initial example in Sec. 8.1, the entangling
TMS interaction enhances our ability to prepare a conditional mechan-
ical state. Because the outgoing light at wy — wm is entangled with the
mechanics, performing a quantum-limited squeezed detection on that
sideband will also project the oscillator onto a squeezed state. On the
other hand, the BS interaction generates light at wy + wm with the me-
chanical state swapped onto it. Observing it lets us determine what the
state was before the interaction but will not enable the preparation of
squeezed states. For retrodiction the situation is reversed. Extracting in-
formation about the system in the past from BS light produces squeezed
effect operators (sharp measurements) on the past state, while entan-
gled TMS light lets us retrodict coherent effect operators at best. Thus
TMS (blue drive) enhances our ability to prepare while the BS interaction
(red drive) enhances our ability to retrodict.

8.2.3 Mechanical master equation

In [33, 34] the master equation (8.25) is turned into an effective evolution
equation for the mechanical state p, = p through adiabatic elimination
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of the cavity mode. Since the result is not a proper Lindblad master
equation one needs to perform a rotating wave approximation for which
we integrate the dynamics over a short time,

t+ot
So(t) = /t dp(1). (8.28)

We assume wp, is much larger than other system frequencies set by the
optomechanical interaction and decoherence, i.e., wm > gz/ K, fi7y. In
fact, wm is so much larger that we can choose 6t such that wy > 1/6t >
¢%/x, fivy, which allows us to pull p() out of all deterministic time inte-
grals since it is approximately constant on this time scale. We can then
perform the rotating wave approximation by dropping all off-resonant
terms oscillating at £2wy,. Let us set

L —Ac £ wm
0y := arc:’ran(K/2 ) (8.29)

In terms of these we choose the local oscillator phase and rotate to a new
quadrature frame,

Y .
oo = 00, i s Gel(Cs—0-)/2, (8.30)

to find the averaged master equation

(1) dp(t) = T_DIalo(t)t + T+ Da"|o(£)ot + Lanp(1)0t
t+5t

+ f/ \ﬁae_z et~ B10)T (8.31)
+ /Tyt el(@eitAi0) ] o(T)dW (7).
The effective mechanical frequency
Weft 1= wm — V28 (B+ + B-), (8.32a)

Ac £ wm
PL= G727 + (Be + wom)? (832b)

results from a shift of wny, due to the optical spring effect, and the rates

- gx
T = T (At ) (8:33)

are the usual Stokes and anti-Stokes rates known from sideband cooling.
From these we can define two effective cooperativities

2
K
=T = .
Ci :E/’)/ CC1K2+4(_AC:l:wm)21 (834)
in terms of the classical cooperativity
402
Ca =2, (8:35)

Ky
Each C+ compares the rate of the respective (anti-)Stokes process to the
incoherent coupling rate of the thermal bath. In the bad-cavity regime?

We assumed wm > g2/« for the rotating wave approximation which imposes wm /x >
(g/x)%. However, we also used g/x < 1 to eliminate the cavity so (g/x)? is a small pa-
rameter and the derivation holds for a range of linewidths from the sideband-resolved
(r < wm) to the bad-cavity (x > wn) regime.
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K > wm and assuming x > A. the cooperativities reduce to the classical
cooperativity, C4+ ~ C.

To obtain a proper master equation we still need to perform the in-
tegral over the measurement term in Eq. (8.31) which depends on the
choice of Ay,. But Eq. (8.31) already illustrates the point we made in
Sec. 8.2.2: detuning the driving field affects the optomechanical interac-
tion. Driving on resonance, Ac = 0, TMS and BS interaction occur with
equal strength which is reflected by I' ;. = I'_. A blue drive, A. = wm, en-
hances TMS and causes 'y > I'_, while a red drive, A, = —wp,, enhances
the BS interaction and causes I'_ > T',.

8.2.4 Steady state: resonant drive

We begin by exploring in detail the case of a resonantly driven cavity
Ac = 0, so we find weff = wm, equal rates I'y = I'_ =: I', and equal
cooperativities C := C; = C_ with

K2

C=Cq——+—5-
2 1 aw2,

(8.36)

8.2.4.1 Detect on resonance

The first detection scheme we consider is homodyne detection on reso-
nance, Ay, = 0. Plugging this into Eq. (8.31) and using again that we can
pull p(f) out of the integrals we find

(D 6p(t) = Lenp(t) +TDalo(t)ot +TD[a"]p(t )51‘

+ /HTH[R]o(£)dWe(t) + /HTH[plo(t)dWs(t)

with ¥ = (a+ ﬁ*)/ﬁ and p = —i(a — [fr)/ﬁ, and the coarse-grained

Wiener increments

(8.37)

@ SWc(t) := \@/{ﬂr& cos(wmT)dW(T), (8.38a)
() SWs(t) := V2 / T sin(wmT)dW(T). (8.38b)
t

With the usual It6 rules we find that these are approximately normalized,
SW2(t) = 6t(1+ O(wmdt)™) and SW2(t) = 5t(1 + O(wmdt)™!), and
independent §W,(t)6Ws(t) = 6tO(wmdt) L. Thus we can replace ot —
dt, 6p — dp and 6W, /3 — dW, s to obtain the effective system dynamics

(@) do(t) = Lamp(t) + TD[R]p(t)dt + FD[fﬂp( )dt

+ /TH[Z]|dWL(t) + /nTH[p]d

with independent Wiener increments dWc(t) and dWs(t).

(8-39)

Conditional state evolution

Using the notation of Sec. 7.4 we find H = 05, A = (T + Jy (21 +1))1,
and Q) = %’)/0', as well as the measurement matrices A = /y#I'1,, and
B = 0. Again this system is trivially stable as long as there is some
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Figure 8.5: (a) Log-linear plot of the steady state variance Vs from Eq. (8.40)
obtained for homodyne detection on resonance, plotted against detection effi-
ciency 7 and quantum cooperativity C; = C/(7 4 1). We chose a bath occupa-
tion of 7 ~ 10° [14], which entails C ~ 103...10” in the plotted regime. The
exact variance is virtually indistinguishable from its approximate value (8.45)
because the difference goes as ~ 1/C. The plot is also indistinguishable from
the exact and approximate variances Vs of the effect operator in Egs. (8.48) and
(8.49). (b) The purity of the covariance matrix corresponding to the variance in

().

dissipation, but since A « 1, it is also stabilizable. As before we solve
VP = 0 to obtain the steady state covariance matrix V;®. To simplify the
notation we will drop the superscript, and keep in mind that we always
consider states (and later effect operators) in steady state. We thus find
vanishing covariance prp = 0 and equal variances

yh e L

Vo i=Vix = Vpp = 8/C
in terms of the cooperativity (8.36). The purity is simply the inverse
of the variance, P(p) = 1/(2V,) so to judge the effectiveness of the
preparation it suffices to consider V,. Note that as 7 — 0 the variance

<\/1+817C(2C+2ﬁ+1) -1) (8.40)

approaches the usual thermal steady state value V, — 71 + 1+ C, where
C is due to measurement back action noise. From the covariance matrix
we can compute the enhanced drift matrix M, from Eq. (7.41) which
turns out to be diagonal,

M, = Apl, Ao =T\ [1+81C(C+20+1). (8.41)

The degenerate eigenvalue A, is always real, and negative as long as
7 or yI' are non-zero and thus guarantees stable dynamics. We obtain
the mode functions F,(t) from Eq. (7.46) with which dW, and dW;s are
convoluted by evaluating the kernel

_ | fe() A _ oMot T_ _pT
Fy(t) = lf;;c(t) fﬁs(t)] = (2V,A" —0oB"). (8.42)

We find that f{;(t) = f;gc(
0

95
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which shows that the cosine and sine components of the measurement
current each only enter the corresponding (X or p) quadrature.

In the following we assume that 7C > land 77 > 1so i +1 =~ 7i. In
terms of the quantum cooperativity [49]

C C
Cq = R — .
a1 n (8.44)
the variance becomes approximately
1 /C+1 1 1
Vom oy — = 1 , :

(8-46)

Finding equal variances (cf. Eq. (8.40)) and vanishing covariance indi-
cates that we prepared a thermal steady state, which approaches a pure
coherent state as 7 — 1 and C; — oo as we see from the limiting V),
in (8.45) and also from the purity plot in Fig. 8.5 (b). This makes sense
because splitting the measurement current into cosine and sine compo-
nents in Eq. (8.37) allows to measure simultaneously both mechanical
quadratures, like heterodyne detection of the mechanical mode.

The exponent A, determines how fast the mode functions (8.43) decay,
and thereby the “memory time” of the conditional state, i.e., how far
the conditioning extends into the past. In the regime where C; > 1 <
I' > y(n+1) we find A, ~ —2I'/,/77 so the mode function is only
determined by the measurement rate. As I' approaches the time scale of
the evolution the mode function becomes more concentrated at ¢, so the
state follows the measurement almost in real time. However, I' cannot
get too close to wm without violating our coarse-graining assumption.
In the opposite regime of C; < 1 < I < (7 + 1) the exponent is
given by A, =~ —2/Ty(71+1)/2. AsT — 0 the mode function becomes
essentially flat and also goes to zero itself. In this limit, the detection
will yield mostly noise and only little signal, so the evolution becomes
effectively unconditional.

Retrodiction of effect operators

We obtain the backward steady state by solving the Riccati equation
corresponding to Eq. (7.54). Again this yields a vanishing covariance,
pr = 0, and equal variances

V= Ve =V, (8-47)

8;C(\/1+8;7C(2C+2ﬁ+1) +1) (8-48)
1

[Cq+1
~ 2\ e, (8.49)
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so we find effect operators with equal variance, which corresponds to a
POVM realizing a heterodyne measurement.

The backward variance is greater than the forward variance, Vg — V, =
1/(41C). The difference vanishes as C — co so the limits (8.45) and
(8.49) are the same, and the plot in Fig. 8.5 (a) also holds for Vg. As
expected, the exact Vg in Eq. (8.48) diverges without observations: Vg ~
1/(4n1C) as 1 — 0. Otherwise the forward and backward dynamics are
very similar: we find the same drift matrix as in (8.41) with a degenerate
negative eigenvalue A = A,, and the mode function takes the same
form as before,

fe(t) = 2¢/nT Vge M, (8.50)

with the increased variance Vg placing greater weight on the photocur-
rent compared to the forward mode, and pointing to the future instead
of the past. Assuming C,7 > 1, forward and backward mode functions
become identical.

For both preparation and retrodiction we see that we can never mea-
sure or prepare states with sub-shot noise resolution. In fact, in the ideal
limit of perfect detection, 7 — 1, and large cooperativity, C; — oo, both
V, and Vg approach 1/2 so we can at best measure and prepare coher-
ent states. This symmetry is not surprising since detecting on resonance
means both TMS and BS interaction contribute equally to the observed
light. The situation is different when the local oscillator is resonant with
either of the sidebands.

8.2.4.2 Detecting the sidebands

We now detune the local oscillator with respect to the driving laser,
Ay = twm, to resolve the information contained in the sidebands lo-
cated at wc & wpy. Recalling the general coarse-grained SME (8.31), we
see that detecting the blue sideband, A}, = wm, makes the measurement
operator @ resonant while 4" now oscillates at 2wy, (and vice versa on
the red sideband). Thus we expect to better resolve the effect of the BS
interaction on the blue sideband, and of the TMS interaction on the red
sideband.
To evaluate the integrals in the SME (8.31) we introduce

t+ot
(I) SWy(t) := /t dW(T), (8.51a)
D) SWer(t) = V2 /t T s (2wmT)dW (1), (8.51b)
(M) 6Wea(t) == V2 /t T Sin2wmT) AW (D), (8.510)

analogous to Egs. (8.38), which separate the photocurrent oscillating at
twice the mechanical frequency from its DC component (at the given
sideband frequency). As before these are approximately normalized and
independent of one another (up to O(wmét) 1) so we treat them as in-
dependent Wiener increments. Making the replacements ¢t — dt and
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Flgure 8.6: ( ) Linear-logarithmic plot of the approximate steady state variances
Viy and VE, from Egs. (8.54a) and (8.58¢), plotted against detection efficiency
7 and quantum cooperativity C; in the limit of large cooperativity C > 1.
The dashed line denotes the shot noise-limited variance of the vacuum state
at Vyx = 1/2. (b) The purity of the covariance matrices corresponding to the

variances in Egs. (8.54a-b) and (8.58c-d). Squeezing occurs for purities of about
Pp) = 1/2.

oW, — dW, we obtain two coarse-grained master equations depending
on the choice of Ay,. Detecting the red sideband, A}, = —wm, yields

(D) do(t) = Lanp(t) + rDmpu)dt + ID[a)o(t)dt
+ /T H[at]p(t)dWo(t)
\/ H& (£)dWea(t) \/ 7—[ (H)dWs(t),
(8.52)
while detecting the blue sideband, A}, = +wm, results in
(1) do(t) = Lap(t) + FD[A*]p( t)dt + T'Da)o(t)dt
+ /T H[alp(t)dWo(t)
\/ H (£)dWeo (¢ \/ 7-[ (t)dWs2(t).

(8.53)

A more detailed analysis of the Gaussian dynamics resulting from these
equation can be found in App. C. Below we will only state the results.
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Detecting the red sideband

We first consider the local oscillator tuned to the red sideband, A, =
—wm. Analogously to the case of resonant detection we can use the
Gaussian formalism to compute the conditional steady state variances,

1 [3-29)C+3 1

Ve = 3 17—(:[7 % (8.54a)

Vip ~ CZ;’ -+ % (8.54b)

VE ~ % B 2:2? 3, %, (8.540)

VE ~ L C;;; Ll (8.54d)
Considering the ideal limit 7 — 1 and C; — co we find

VE - % Vi, — % (8.55)

for the effect operator, so at best we retrodict POVMs that project onto
coherent states. On the other hand, we find

1
6 7
for the conditional steady state, showing that we can in principle prepare

squeezed states. Necessary conditions for going below shot noise are
C; > Tand 5 > 1/2 since

1 C+n 1 1
Y - ~ — N
V<3 e >R (1 + Cq)’ (8.57)

3
Vi, = = (8.56)

Ve — 5

which is confirmed by the plot of Ve, in Fig. 8.6 (a). Even for = 1
and with one quadrature below shot noise the conditional state will be
mixed as seen in Fig. 8.6 (b), and only asymptotically become pure as
Cq — .

Detecting the blue sideband

Tuning the local oscillator to the blue sideband, for A}, = +wm, we find

Ve~ 3 7Co +2 (8.58a)
Vip ~ CZ;; Lo % (8.58b)
VE ~ % G 2172:”’ 3 % (8.58¢)
Vi CZ(Z ' % (8.58d)
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so the situation is exactly reversed: in the limit  — 1 and C; — oo the
effect operators can in principle project onto squeezed states,

1 3
\@%a ‘%%? (8.59)
while the prepared conditional states are at best coherent,
1 1

Retrodictive squeezing in this regime again requires C; > 1and 7 > 1/2
because
C+a+l 1

1 1
VE - L - -

Since both the limiting X-variances (8.54a) and (8.58¢c) and corresponding
p-variances agree, the plots in Fig. 8.6 also hold for the effect operators
retrodicted by observing the blue sideband.

These results are summarized in Tab. 8.1, which confirms the simple
considerations from Sec. 8.2.2. We showed that in the regime C; > 1t is
possible to prepare conditional states and retrodict effect operators with
sub-shot noise variance by monitoring the sidebands of the cavity drive.

Detuning | Sideband | Preparation p | Retrodiction £

T™S Blue, Red, Squeezed Coherent
Ac = Wm | Do = —wm

BS Red, Blue, Coherent Squeezed
Ac = —wm | Dy =wm

Table 8.1: For a given interaction this table shows the optimal detuning of the
cavity drive to enhance it, the optimal sideband to detect its effects, and the
ideal outcome of conditional preparation and retrodiction. Note that a detuned
drive (A. # 0) is beneficial but not necessary to obtain squeezed states and
effect operators. Detecting sidebands (A}, = +wn), on the other hand, is neces-
sary.

8.2.5 Steady state: detuned drive

Very relevant in experiments is also the case of a detuned drive, A. # 0.
In particular to perform sideband cooling and to stabilize the dynamics,
but also to prepare squeezed mechanical states [33, 34]. In the same way,
non-zero detuning also allows for much richer retrodictive dynamics
since it enables the selective enhancement of the BS and TMS interaction
as is apparent from the master equation (8.31). In App. C we provide
analytical results for the steady state variances and mode functions for
arbitrary detuning of the drive, and for resonant and sideband detection.
As expected we find that the conditional state and retrodicted effect op-
erator are further squeezed if an appropriate detuning (and detection) is
chosen, see Tab. 8.1 for an overview.
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The benefits of adding detuning are of course limited. To see this recall
the cooperativities introduced in Sec. 8.2.3,

2 4 2
cd > - < CCI = i/
K2+ 4(—Ac £ Wi )? Ky

Ce=C (8.62)
which are related to the rates of the TMS and BS interaction. First we note
that a fundamental limit of both cooperativities is set by the classical
cooperativity C., which we cannot overcome with a detuned drive. We
also see that in the bad-cavity regime (e.g., [14]) the Lorentzian goes
to unity, so a detuning of the drive will have no (beneficial) effect on
the dynamics. On the other hand, if we consider the sideband-resolved
regime (e. g., realized in [116]), where wn > k, we see that the difference
between C; and C_ can become appreciable, C; < C_ (or vice versa,
depending on the detuning). This can indeed be used for an enhance-
ment of the steady state squeezing of both preparation and retrodiction.

8.2.6  Conclusion and generalization

We applied the formalism developed in Chap. 7 to an optomechanical
system in the weak-coupling limit. We were able to show that in the
regime of large cooperativity, C; > 1, and sufficiently high detection ef-
ficiency it is possible to prepare conditional states and retrodict effect
operators ideally with arbitrary precision by continuously observing the
sidebands of a properly detuned drive. While optomechanical systems
[14, 90] are ideal for retrodiction because they facilitate large coopera-
tivities, the formalism can in principle be applied to any continuously
measured system.

We can now imagine the following experimental situation to prepare
and measure conditional squeezed states. First the system is driven with
a blue-detuned laser A = wp, to enhance the TMS interaction and aid
preparation. To prepare a conditional squeezed state we need to observe
the red sideband of the laser, A|, = —wm, which for a blue drive is
the cavity resonance. After the preparation is complete, the drive is red-
detuned, A. = —wm, to enhance BS coupling. To retrodict a squeezed ef-
fect operator we need to observe the blue sideband (of the drive), which
again happens to be the cavity resonance.

Although we assume that the system is linear and stable resulting
in Gaussian steady states and effect operators, we can use the scheme
also for the verification of non-steady and thus non-Gaussian states. For
example, one could prepare a mechanical oscillator in its ground state
through sideband or feedback cooling [33, 117-119], then coherently add
excitations to prepare a Fock state (or other non-Gaussian state), and
afterwards perform time-continuous homodyne detection to realize a
quadrature measurement on that state through retrodiction. Creation of
a Fock state could be achieved, e.g., conditionally by photon-counting
as shown in [120], or deterministically as suggested in [121]. Repetition
of the retrodictive POVM measurement on identically prepared initial
states enables reconstruction of the marginals. By changing the mea-
sured quadrature one can reconstruct the full Wigner function of the
state [122]. Of course this requires a POVM with sufficient resolution
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which crucially depends on large quantum cooperativity and high de-
tection efficiency.



CONCLUSION AND OUTLOOK

The goal of this thesis was to explore possible approaches to use con-
tinuous measurements for the preparation and verification of nontrivial
quantum states.

In the first part I consider a simple interferometric feedback scheme
that generates an effective many-body interaction with collective dissipa-
tion between N local quantum systems. By generalizing a known feed-
back protocol to multiple systems in Chap. 4 I was able to show that
the scheme can deterministically generate many-body entangled states.
Since all feedback is local, and the scheme only requires coherent trans-
mission and interferometry of light, it may allow for scalable, robust, and
long-range generation of entangled states of matter. These are a neces-
sity for many quantum information and communication protocols, and
also for building a “quantum internet” [123, 124]. In Chap. 5 I employed
the setup to generate an effective Ising Hamiltonian between an array of
non-interacting qubits. I found that it is indeed possible to simulate an
Ising interaction with arbitrary range and geometry, and inherent collec-
tive dissipation. Doing so showed that the large number of parameters of
the model allow to easily tweak the dynamics, but also make it difficult
to fully gauge the full scope of the Feedback Master Equation (FME). For
example, a lot of the parameters are redundant, which could be avoided
by finding a good parametrization. Another open problem is to identify
the complete class of Liouvillians and corresponding steady states that
are attainable by the setup, which would be beneficial to determine the
limits of both preparation and simulation.

In the second part I investigated the question of how continuous mea-
surements of a system can be used to infer information about its past
state. In Chap. 6 I showed how to interpret a record of continuous mea-
surements of a system as an instantaneous Positive-Operator Valued
Measure (POVM) measurement on its initial state using retrodiction. In
Sec. 8.2 I apply retrodiction to an optomechanical system in the weak-
coupling limit. Here I was able to show that with large cooperativity,
C; > 1, and efficient detection it is possible to retrodict effect operators
with sub-shot noise precision, just like it is possible to prepare condi-
tional squeezed states. This makes it possible to use continuous mea-
surements for state tomography in the usual way [125, 126] to verify the
prepared state. While optomechanical systems facilitate large coopera-
tivities [14, 90], and are thus ideal for retrodiction, the formalism can
in principle be applied to any other continuously measured system. In
Sec. 7.5.1 I was able to show that a stable linear system will make any
initial state collapse to a Gaussian steady state, and that an analogous
result holds for effect operators. However, although I considered only
such stable systems retrodiction can also be used for the verification of
non-steady and thus non-Gaussian states, as I discussed in Sec. 8.2.6.
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I hope these results demonstrate that continuous measurements in
conjunction with local feedback indeed constitute a powerful tool for
the preparation and verification of quantum states.
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HOMODYNE DETECTION

Homodyne detection is a way to extract phase information from an opti-
cal signal. Since it plays an essential role in all schemes presented in this
thesis let us recapitulate how it works.

A.1 INTENSITY VS. QUADRATURE MEASUREMENT

Consider an optical field with time-dependent Creation and Annihila-
tion Operators (CAOs) a'(t),4(t) as defined in Eq. (3.3). The field can be
directly measured using photodetectors that convert incoming photons
into free electrons through the photoelectric effect [127]. By applying
a voltage these electrons generate a current I(t) which is (ideally) pro-
portional to the intensity of the incoming light, I(t) o (at(t)a(t)), i.e.,
the number of incoming photons per unit time'?. The expectation value
(A) = Tr{Ap(t)} is always taken with respect to the state of the field.
This gives us the modulus of the amplitude of the electric field as square
root of the intensity, but no information about its phase.

Homodyne detection instead yields expectation values of quadrature
operators of light [128], i.e., (%) with %y « de " + ate®. The goal of
homodyning is to convert phase fluctuations into intensity fluctuations,
which can be detected using regular photodetectors. This is done by
superposing the incoming light (in the following referred to as signal)
with a strong coherent field of the same frequency (the local oscillator)
on a BS. The intensity of the superposed field then depends on (phase-
dependent) interference between signal and local oscillator. Depending
on the transmittivity T of the BS one can distinguish between balanced
(|t]? = 1/2) and imbalanced (|t|> < 1) homodyne detection. The for-
mer requires only one photodetector while the latter requires two, but
balanced homodyne detection is more robust to technical noise such as
intensity fluctuations of the laser [2]. In the following we consider in

Figure A.1: A homodyne detector. The signal, 41, is combined with a local os-
cillator, a;, on a balanced Beam Splitter (BS). The intensity of both outputs is
measured, and the difference yields the homodyne signal.

2 Note that a(t)

has dimension
s—1/2
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detail only balanced homodyning [7, 128]. A typical setup is depicted in
Fig. A.1 where 4; belongs to the signal mode and a; to the local oscilla-
tor.

A.2 BEAM SPLITTER

To better understand homodyne detection we recall the workings of a
Beam Splitter (BS). It is a passive linear optical element so its outputs are
linear superpositions of its inputs [128]. If two input modes come with
CAOs Zl{,&l and &;,&2 then its output modes will satisfy Bl = Ta1 + riy
and b, = rd; + Tdp, where T = |T|e’r is the transmittivity and r =
|r|e’® is the reflectivity. We assume ideal optics without dissipation or
scattering so energy is conserved. This requires 414, +a}a, = bTby +blbs,
which yields the conditions |7|? + |r|> = 1 and tr* + T*r = 0.

For balanced homodyne detection we assume |t| = |r| = 1/+/2 and
Ag := 0, — 0 = 7/2. The photodetectors measuring the outputs pro-
duce

I () = (B} (£)by (1)) (A.1)
= (Jxl2at(Ban () + [rPad(Das (1)) o
2

+ <T*ra{(t)az(t) + w*a;(t)al(t)>
= 2 (@ Oa (1) + () .
. 3

+ 2 (a1 (0a(t) — (D (t) )
and analogously

B(t) = 3 {4 (V1) + a(n(t)) "
4

i

— (@ (D) —a(Hin(t) ).
Subtracting I from I; removes the individual intensities and yields
Y(1) = h() = L) = =il () = a5 (D (). (A.5)

We consider the case where the local oscillator is in a coherent state with
amplitude & = |ale’®, which is an eigenstate of 4, with d|a), = ala)s,
and 6 is called homodyne angle. Assuming the signal mode is in some
state p; we find the measurement or homodyne current

Y(t) = ~iTe{ (] (Naa() — a5 (O () )1 (D @ ) (e} (A6)

= —ila[Te{ (%4} (1) — e (1) )or (1)} (A7)
= V2a| (25(1)), (A8)
where the quadrature operator
2 1 i(0—7m/2)4 —i(0—71/2) 4
xé(t) = ﬁ (e (® /Z)alr(t) + 10 /Z)al(t)) (A.9)

is defined with respect to the phase of the local oscillator, and both 555 (1)
and the expectation value act only on the signal.
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Heterodyne detection

If the homodyne angle varies periodically with time, i.e., if the local os-
cillator is detuned in frequency from the signal, and if this happens at a
rate much faster than set by the measurement time, it is possible to mea-
sure two conjugate quadratures simultaneously with reduced certainty
of each. This is known as heterodyne detection [2].

Normalization of the measurement current

The homodyne measurement yields a signal I(t) « I(t) — I(t) pro-
portional to the difference of the photodetector outputs. This has to
be normalized Y(t) = I(t)/a so that for vacuum input its increment
0Y(t) = Y(t +dt) — Y(¢) yields the variance of white noise,

ot = 6Y ()2 = 01(t)2/a? = a=+/oI(HZ/5t.  (A.10)

The bar denotes an ensemble average. The short time 6t must be large
enough to justify assuming the noise is white so it should be larger than
physical correlation times of the input. In practice it is bounded from
below by the temporal resolution of the detectors.

A.3 DETECTION EFFICIENCY

In reality not all signal photons lead to the emission of a photoelectron.
This is quantified by the detection efficiency # € [0, 1], which gives the
ratio of signal photons that contribute to the photocurrent compared to
all signal photons. Focusing only on the detector the main factors that
decrease 7 are (i) reflection at the surface of the detector, (ii) recombina-
tion of photoelectron-hole pairs, and (iii) absorption in the bulk instead
of the active region of the detector, which also depends on the wave-
length of the incoming light [127]. The efficiency is further decreased by
unavoidable electronic and optical losses, as well as by “dead time” of
the detector which masks subsequent absorption events. Instead of wor-
rying about so many technical intricacies it has proven useful to assume
ideal lossless detectors, and to model all efficiency-reducing effects by a
single optical loss channel that degrades the signal before the measure-
ment in Fig. A.1. This is done by assuming a virtual BS of transmittivity
1 that scatters a portion of the light out of the signal mode and replaces
it with quantum vacuum. This is depicted in Fig. A.2

We assume the incoming signal is in state psig(t) with corresponding
annihilation operator dsj;. When it traverses the BS in Fig. A.2 these be-
come p1(t) = psig(t) @ |0)(0vac and 41 = |/fisig + /1 — 1iyac, Where
lyvac belongs to the incoming vacuum. Plugging these expressions into
(A.7) leads to the lossy homodyne current

Y(t) = |“|\/ﬁTr{Psig(t)5C0(t)} (A.11)
= [a Vi (235 (1)), (A12)
where the quadrature operator

(1) 1 \}E (ez‘(G—n/Z) g () + e—i<9—ﬂ/2>asig(t)) (A.13)
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Figure A.2: Simple
photon loss model.
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is defined with respect to the local oscillator, and both i;ig(t) and the
expectation value now only refer to the signal mode.



CUMULANT EQUATIONS OF MOTION

We will now derive the cumulant equations of motion for the quantum
state of an arbitrary linear system as described in Chap. 7. We write
Nth-order cumulants, i. e., of products of N canonical operators, as

Vi i 1= (g - P ) (B.1)
where the superscript ¢ stands for cumulant, and the indices 1 < my <
2M indicate that operator 7y, is at position k in the cumulant. We con-
sider only symmetrically ordered cumulants, so the operator position
does not matter, and the V are symmetric under permutations of indices.
These general cumulants relate to the means and covariance matrix from
the main text as

Tj = <1A’]>p = Vj(l), (B.Z)

Vi = %(‘{?’j — T, =Tk} = ng(z). (B.3)
If one is only interested in Gaussian states all cumulants of order N > 3
vanish identically. But for any non-Gaussian state all cumulants have to
be taken into account [101].

Cumulants are obtained from the quantum characteristic function x (&)
with phase space variables & € R?M, introduced in Sec. 7.2. This is de-
fined as the expectation value of the symmetric Weyl operator W(¢) =
exp(—i&To#) [98-100],

x(Z) == W(2))p = Tri{W(Z)p}, (B.4)

where ¢ comprises the canonical commutation relations (7.1). Let us in-
troduce the twisted derivative

5 2M 9 5
0 =) Oix=r, V: =0V, (B.5)
= L :
then x serves as cumulant-generating function via
N 2 x
Vi, = (=i ) - (=10 ) (@)l o (B.6a)

= (=i9m,) .. (—i9my) G (&) |g=0, (B.6b)
with G := In[x] or x = exp(G). The usual approach [95, Appendix

12] is to translate the master (or effect) equation into partial differential
equations for the cumulants via (B.6).

B.1 FROM OPERATOR TO PARTIAL DIFFERENTIAL EQUATION

To find the correspondence between quantum and partial differential
operators, consider the action of V on the Weyl operator. We single out
one (;,

—iglop = —i&; Y oute — i) Ejoutr = Ai+ B (B.7)
k ik
j#i
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SO we can write

W(E) = exp(A; + Bs) (B.8)
— exp(Ar) exp(B.4i) exp (-i[Ai, B#i]> (B.9)
— exp(B.si) exp(Ay) exp <+;[Ai, B#i]) (B.10)
We find
[A;, B] = —ig Zk:(Tika = —ig;(c?);, (B.11)

ki

where we used that ¢ is skew-symmetric and thus zero on the diagonal.
Using this result to apply V to W yields

. . 1 .1
—icVW(Z) = <r - 2§>W(§) =W(?) <r+ 26), (B.12)
This gives us the important relations
. . 1
W(E) = (—Z(TV + 2(’,‘>W(§), (B.13a)
N . 1
W@ = (¥ - 52 )@, (B.13b)
from which we read off the replacement rules
N & 1
pi = (=194 3¢ )x(@) (Basa)
N & 1
o= (=19 - 58)x(@) (B.14b)
The following combinations frequently appear in master equations
7,01 = ~Zx(&), [ 0] = —8"x(2), (B.15)
{#,0} = —2iVx(3), {#1,0} = —2iVTx(5).  (B.16)

B.2 HAMILTONIAN

For a Hamiltonian with quadratic and linear terms,

A 1
A= E?TH? +n'? (B.17)

with symmetric H € R?M*2M and h € R we find

~ 1 1
—i[H,p] = —i<2?TH[?, o] + EW’ o] H# + h'[?, p]). (B.18)
The operator nature of # and p prohibits us from commuting them, but
otherwise we can treat H as a matrix, # as a vector, and pasa scalar,
which greatly simplifies the notation.
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Using the replacement rules from the previous section we obtain

i

(-9~ ig)TH<—§>

i

- 0T (=i9 + 58) - T -0

Xle =
(B.19)

. % (VTHE +ETHY +2i078) x(2). (B.20)

Note that the first term requires use of the product rule since V acts on
both ¢ and x, so to make this explicit we write

(VTHE)x(@) = x(@) (VTHE) + & H(Vx(©)). (B21)
Here we see

VTHE = Y 0i(0TH)jl = Y(0TH)jj = Tr [U’TH] =0, (B.22)
ik j

so the final expression reads
~ilf,p] = (E"HV +ih"¢)x(2). (B.23)

To obtain the equations of motion of the cumulants, one has to take
the derivative of Eq. (B.6), so

[V = (=i, ) - (=i )AIn[1(€)] 20 (B.24)
— (—id,)... (—iémN))lcdxlgo (B.25)
= (—id,) ... (—idy ) C@) (gTHﬁ + ith) eC@|_odt  (B.26)
= (—idm,) ... (—idmy) (gTH(ﬁc(g)) + ihT;‘> |e—odt. (B.27)

The twisted derivatives act on ¢ as éjék = Y1 0j19iCk = Ojk- We thus find,
using the Einstein sum convention,

[dvﬂgl\],),mN]H = 2 (UH)mT(l),kV(

TESYI(N) N (B.28)
+ (oh)m, On1dt

N)

where T runs through all cyclic permutations of 1, ..., N. Inspiration for
this concise expression came from the fact that the covariance matrix
(N = 2) evolves as

[V]g = cHV + (¢HV)T, (B.29)

i.e., a matrix product plus its transpose which is just an exchange of
indices. In (B.28), which is at order N, the matrix product corresponds
to the sum over k and the cyclic permutations reflect N possible trans-
positions (think of rotations about the diagonal of an 2M x 2M ma-
trix for N = 2 or rotations about the diagonal of the corresponding
2M x - - - x 2M-dimensional (hyper-)cube for N > 3).
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B.3 LINDBLAD OPERATORS

For linear jump operators I = A# with ATA =: A +iQ we find the
Lindblad operators

7 * A A 1 ...
ZD[LJ‘]P = ZAjkA]'l (TIPVk - 2{%%9}) (B.30)
j ikl
=#p(ATA)TR - %{fTA*A%,p} (B.31)
1 1
= SFAlp, 7]+ S [, plar
i/ T (B.32)
- 5(? O{p,#} + {# ,p}m)
which becomes
R VA T 1, r.f o 1
1A\T . (B.33)
— (—iﬁ — 2g> av -vTia (—iﬁ + 25) x(&)
= | fa - LTzt Leav
w1 - 1 (B.34)
+2iVIQV + 22OV - 2VTQ§} x(&)
1 -1
— |- 5Eag+ 709+ JTienl @) (B35)
where we used the product rule as in (B.21) to get
vTog = —Tav + Tr[eq). (B.36)

We also used that A is symmetric so —VTAZ + ZTAV = Tr[cA] = 0, and
Q) is skew-symmetric so v1Quv = 0 for any vector v; in particular

viav =o. (B.37)

The contribution to the cumulant evolution will be given by

AV 1L = (—idmy) ... (—idy e G x
- (B.38)
X {—;&TAE +EQv + ;Tr[aﬂ]} eC@dt ?
= (=i0m;) - (=idmy ) X
1 c 1 (B39)
x {—2§TA§ + (EF'QVG(E) + 2Tr[a()}} |z—odt
= (AT ) imymy O 20t + %Tr[ch]cSNlodt
(N) (B.40)

+ Z (UQ)mT(l)rkvk,mTQ),...,mT(N)dt'
TESYI(N)



B4 MEASUREMENT TERMS

B.4 MEASUREMENT TERMS

We assume linear measurement operators, C = (A +iB)#, which yield
terms

M) Y (Crp+oC)AYy = (Co+pCh)TdY (B.41)
k

= (A(fp + p#) + iB(Fo — p?))'dY  (B42)

= (A{#,p} +iB[#,p]) " dY (B.43)

— (D) [dx]c = (—21AV — iBE) dYx(§). (B.44)

Note that due to the stochastic nature of the Itd increment we need to
implement the It6 table dY;dY; = J;df so we keep terms of up to second
order,

(I) [dG]c = [dIn[x]]c (B.45)
1 1/ 1

= ldxlet5 <_x2> [dxlz (B.46)

=: [dG]y + [dG]e. (B.47)

The linear term yields
(D) [dG]y = e ¢@)(—2iAV — iBZ)"TeC@)dy (B.48)
= (—2iAVG(¥) — iBE)"dY, (B.49)
which contributes to the cumulants

M [ Vi) ly = (=)« (i) X

ey MN

CA e . T (B50)
x (=2iAVG(&) —iBg) dY|z—
- <2Ajkvk(,li’l\1ri.1..),mN - Bijmlk5N,1)de (B.51)

= <2V(N+1) AE] - (O’BT)mljéNJ)dY]'. (B52)

my,...,myk

If we replace the measurement signal with a Wiener increment by ex-
tracting the mean,

M dY = (C + CTYdt + dw (B.53)
= 2Ardt +dW = 24VDdt + dW (B.54)

we find

1reeer ml,...,mN,k

D) [AVin iy = (2Vi0 AL = (@B )y o1 ) AW,

(B.55)
I 2(2V(N+1) (ATAr), — (UBTAr)mlcSN,l)dt-

ml,,,.,mN,k

The quadratic It6 correction contributes terms

[dG]ie = —%(—mwc;(g) —iBE) (—2iAV G(Z) — iBE)dt (B.56)

_1

: (4(6@(5))TATAWG(€>>

+"BTBE +43TBTA(VG(2)) ) dt,
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where the derivatives act only on the G right next to them. Evaluating
the last two terms is straightforward and one finds

(—i0my) .. (—i0my ) [ B BE]|z—o = —2(¢B"Bo™ ) ymy0n,0,  (B.58)

and

(=0, - - (—i0my ) [ETBT AV G(8))]]z=0
= Z (UBTA)mm):ka(,ZrX)

Jeee, M :
e STA(N) (@) M (N)

(B.59)

To compute the remaining term we have to apply the product rule multi-
ple times. This results in a sum over all possible sequences of derivatives
acting either on the right or on the left VG, so

(=i0m,) - (=10 )2[(VG(Z))TATA(VG(D))]z-0

_ (n+1) T (N n+1)

- ZnZ(JpeBmZart )V’”pa)wvmpow jAAY Ftg ) Mq(N—m)” (B-60)
lpl=n

where the sum runs over all possible bipartitions of {1,...,N}, such
that one part contains n elements p(1),..., p(n) while its complement
contains g(1),...,q(N —n). We extract the terms withn =0and n = N
from the sum which each contain only one partition,

(D) 4T (N+1) (N+1)
o 2(V] (A A)jkvk,ml,,..,mN + le,..l, ( ) )

—4V( Y (ATAr) (B.61)

mq,...,myn

and we see that this cancels exactly a term from (B.55). Combining the
remaining measurement contributions we find

D) [dVin lc = (2Vi0 (AL = (@B )y on1 ) AW
— 2(0BYAr) O 1dt — (0BTBo™) sy myOn o dt
N
+2Y (0BT A) Vi, dt

]
e ( ) ©(2)rMe(N)

—22 Yy vt ATA) v gy

My (1) oo My ()] N em e o
n=1 peBipart(N) P pim) q(1) q(N—n)

lpl=n
(B.62)



BS COMBINED EVOLUTION

B.5 COMBINED EVOLUTION
We put all terms from the previous sections together and find

@ avi
= L (H D iVinl,

N)dt + (U'h)m] (SN,ldt
T€SYI(N)

1
+ 5 Tr[eQlonedt + (o(A - BYB)o") gm0 2t

+ 21 (OB A Vi A = 2(0BTAR) Ot
TESCYCI( )
_ (n+1) T Ay, y(N-n+1)
2 Z Z Vongay ey 4 A iy ey
n=1 peBipart(N)
lpl=n

+2V N (ATAW)y — (0BTAW) O 1
(B.63)

N
) (Q+z(rBTA(SN#),,%(1),,{1/;,"112 dt
T€SYI(N)

1 ~
+ *TI'{(TQ]éN odt + ((TAUT)mlr@&N,zdt

"D peBivm(ny PO Vi ey
|pl=n
+ (chdt — oBTAW) by 1 + 2V ) (ATAW).
(B.64)
with
Q:=0c(H+Q), A:=A—B'B. (B.65)
Specifically at first order this yields
M drw = dVy) = Qi Mdt +2v2) (ATdW), 566
+ (chdt — cBTdW),, '
which in vector form reads
(D) dry = Qrpdt + ohdt + 2V, AT — 0BT)dW (B.67)
— Myrodt + ohdt + 2V AT — oBT)dY. (B.68)

where we replaced the Wiener increment by the measurement current
dY as in Eq. (B.54), and introduced the drift matrix from Eq. (7.41),

My (f) = Q+20BTA — 4V (1) ATA. (B.69)
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118 CUMULANT EQUATIONS OF MOTION

At second order we find for the (co)variances

2
(I) an(i),mz = Z (Q + 20’BTA)mT(1)/ka(,WZT(2) dt
TGSCyC1(2)
+ (R )yt + 2V (ATAW), (B.70)
(2) T (2)
=2 0 Vi (A AV, 4t
TGSCYCI (2)

=(Q+ 2aBTA)mLka(22dt +(Q+ 2aBTA)m2,ka(iildt

+ (AT mymydt + 2V (ATAW), (B.71)
- 2Vn(121),j(ATA) wVin dt — 2vn(fz?].(ATA) jka(;zldt
which can be written more concisely as
0 dv,2,, = [Mpv,,@) + VP M]
+ oAt + 4Vp(2) ATAVéz)} dt (B.72)

my,msy

(3) T
+ 2le,m2,k(A dW)y,
with an implicit sum over k in the last term, turning Vp(3) from a tensor
into a matrix with the free indices my, m,. The evolution of cumulants
of order N > 3 is given by

..... myN
= 20BTA v dt
Nl (n+1) T (N—n+1)
-2 Z Z Vmp(l)""'mp(n)'j(A A)jkvk’mq(l)""’mq(f\]*n)dt

n=1 peBipart(N)
[pl=n

+ovINHD O ATaw),

my,...,mN,k

(B.73)

_ P (N)
- Z MmT(l),ka,mT(z) ,,,,, mT<N) dt
TESYI(N)

N-2
n=2 peBipart(N) P pn): !
lpl=n

(N+1) T
+ 2Vm1,..,,mN k(A dW)k.

7

(B.74)

It is worthy to note that generally all cumulants couple to the next higher
order through the stochastic term. Thus the unconditional dynamics
with dW averaged to zero will create a hierarchy that can be solved
(e.g., for steady state) recursively from lower to higher orders.



B.6 BACKWARD ADDITION

B.66 BACKWARD ADDITION

To obtain the evolution equations of the cumulants associated with the
effect operator we can compare the unnormalized master equation for p,

NL

(D) dp(t) = —ilfL, p(B)]dt + Y DLjJ(t)dt
j=1

Nc
+ kZ (ékp(f) + P(t)CZ)dYk(t).
=1

(B.75)

to the corresponding equation for E,

Np
(BI) —dE(t) = i[H, E(t)]dt + Y_ DL E(t)dt
= (B.76)

+ Y (CEE() + E()Ci ) dvi(t) (B.77)

We can immediately read off the following changes. The sign flip of H
causes H — —H and replacing the measurement operators Cy by their
adjoint entails B — —B. We only need to work out the change [dXE|bwd
stemming exclusively from the sandwich terms in the last sum. Using
the relations (B.14), (B.36) and (B.37) we obtain

—[dE]pwq = 2iFT QERdt (B.78)
et 1.\ =7 1

> —ldxelowa =20 <97 3¢) 0=+ 2k B

= —Tr[oQ)xpdt — 28TQ(Vxp)dt. (B.80)

So the backward cumulants with N > 1 will have the additional term

N N
Vi lowd = 2 X O Vit (B8D)
T€SYI(N)
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The combined evolution of the backward cumulants thus reads
(BD) —dVin iy

== ¥ (Q+20BTAbN 1)y i Vin dt
TeSYI(N)

1 ~
+ ETr[‘TQ]éN odt + (U’AU’T)mlm25N,2dt

1) T (N—n+1)
—2 }; DA (ATA)V, dt
My (1Y e My (11, JE kg gy, My (N—n
=1 pcBipart(N) p(1) p(n) (1) q(N—n)
lpl=n

— (chdt — oBTdW), oy 1 +2V ) (ATAW).

.,mN,k

(B.82)

Note that the difference between forward and backward equation amounts
to nothing but a change in sign of the first line and of the first-order term
in the last line. Specifically for the means we find

(BI) —drp = —Qrgdt — ohdt + 2V AT + ¢BT)dW (B.83)
= Mgredt — ohdt + 2V 2 AT + oBT)dy, (B.84)
with the backward drift matrix from Eq. (7.53),
MEg(t) := —Q — 20BTA — 4V (1) AT A. (B.85)
For the covariance matrix we find
BD —dV,, = [MeV? + Vi M]
t oA+ 4V§2>ATAVE(2)} dt (B.86)
©) T
+2v,)  (ATdW),
Higher order (N > 3) cumulants evolve as
(BD) —dV,
== ¥ (Q+20BTA), iVin, dt

kit (2)---M(N)

TGSCyd( )
Nl (n+1) T (N n+1)

-2 V A A dt
;12—:1 L Vot A i g
=1 peBipart(N)

lpl=n

+2viV T (ATdW).

(B.87)
= Mh V(N) dt

TeS;d( ) k,mT(z) ..... mT(N)

_5 — V(n+1) AT AY, y(N=n+1) d
Z 2 Mp(1) - Mp(n)] i )ik kitg(q) e Mg(N-n)
n=2 peBipart(N)

lpl=n
+2vi N (ATAW);.

(B.88)



OPTOMECHANICS: STEADY STATE VARIANCES AND
MODE FUNCTIONS

In this chapter we provide some details and results of the calculations
omitted in Sec. 8.2.

C.1 DRIVE ON RESONANCE, DETECT SIDEBANDS
c.1.1  Blue sideband, A, = +wm

On the blue sideband, for A}, = +wm, we find

(D dp(t) = Linp(t) + FD[A*]p( )dt +I'Dlajo(t)dt
+ /T H[a]o(t)dWy(t)

\/>% (AW (t \/>7-t (H)dWe ().

(C.1)

Compared to the case of zero detuning the only difference are new mea-
surement matrices,

2 2
P e TP A IR
0 1 1 0
In steady state we find V) = 0 and
VS = 1<\/1+477C((3—2;7)C+3ﬁ+1)—1> + 1 (C3)
61C 6
V;;—ZW1C<\/1+417C(C+7'1+1)—1) —%. (C.4)
The resulting drift matrix is diagonal Mss = —diag (Ax, Ap) with
A= 2(nC(6VE —1) +1) (&)
- %\/1 +4yC((3—24)C + 37+ 1), (C.6)
Ap = 2 (C(2V55+1) +1) (C7)

=T i+ acc+a+). (C8)
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Computing the mode functions we find

r_
Fxpolt) = \/fe MEVE=1), fp) =0, (C9)
r _,2vs+1
fuealt) =\ G M2 il =0, (C10)
r . 2vy+1
fx\s,Z(t) =0, fp|s,2(f) = %e A,,tPPT'
(C.11)

The backward equations again yield V,?; =0and

(7SS __

L
xx 677C

(\/1+4;7C((3—217)C+3ﬁ+1)+1> —%, (C.12)
1

_ 1
SS __ =
vss = e (\/1+417C(C+n+1)+1> -

The resulting drift matrix is again diagonal, Mg = —diag(Ax, Ap), with

Ao =2 (C(6V +1) 1) (C14)
_ %\/1+417C((3—217)C+3ﬁ+1), (C.15)
A, = %(UC(ZV;; ~1)-1) (C.16)
=2 i+ acc+a+). (C.17)

For the mode functions we find

~ I 5 _ -
fxo(t) = ﬁeAxt(ZVfi +1), fpolt) =0, (C.18)
= r 5,2Ve—1 =
Fuealt) =\ 5 M2 il =0, (C19)
; i} r 2V —1
fx\s,Z(t) =0, fp|s,2(t) = \/ze /\ptPPT'
(C.20)

Interestingly, considering the difference between variances,

_ 1 1 1
Vi —Vir = 3 + 3C Y (C.21)
_ 1

we see that in case of large cooperativity, the backward position is better
conditioned than the forward position while for the momentum it is the
other way around.



C.1 DRIVE ON RESONANCE, DETECT SIDEBANDS

c.1.2 Red sideband, Aj, = —wm

Comparing the master equation obtained by detecting the red sideband,
Ajp = —Wm,

(D) do(t) = Lenp(t) + TD[A*]P(t)dt + I'Dlalp(t)dt

+ /TH[a]p(t)dWo(t)
+\/f%[a] () dWe o (t \/7% (£)dWsa(t),

(C.23)

to the one for the blue sideband, we see that all measurement opera-
tors are replaced by their Hermitian conjugate. This means we have to
replace B — —B. We again find V) = 0 and

1 1
ss . — _ 7 _ _
Vi =G <\/1+417C((3 21)C + 37 +2) 1) o (Cay)
1 1
ss & AR -
Vi = 3 <\/1 +47C(C + 1) 1) +5. (C.25)
The diagonal drift matrix Mg = —diag(Ax, Ap) is strictly stable with
A= 2 (C(6VEE +1) +1) (C.26)
- %\/1 +45C((3 — 24)C + 371 + 2), (C.27)
0%
Ap = 5 (C@V55 = 1) +1) (C.28)
_ =
- 2\/1 +45C(C +7), (C.29)
and the mode functions read
r _
fep(t) = |/ e ™M@V +1), fo(h) =0, (C:30)
I ,,2vs—1
fx|c,2(t) = %e /\thxTr fp|c,2(t) =0, (C31)
T, 2vs—1
fual) =0, fsalt) = e =E—.
(C32)

The backward equations again yield V§§ =0and

_ 1 1
Ve = 6;7C<\/1+417C((3_277)C+3ﬁ+2)+1> +6' (C.33)

_ 1 -

1
2
The resulting drift matrix is again diagonal, Mss = —diag(Ax, Ap), with

A= 2(nC(6V3 = 1) = 1) (C:35)
_ 1\/1 +47C((3 - 24)C + 37+ 2), (C.36)
Ap = (;yC(zx'/;; +1)—-1) (C.37)

- %\/1 +4yC(C+7). (C:38)
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For the mode functions we find
_ T -, _
Feolh) =/ e @7 =1),  fo(H) =0,

2 I 3.2V +1
Fiealt) =/ e =22 fealt) =0,

78

fx\s,Z(t) =0, fp|s,2(t) = 5 e

Considering the difference between variances,
7SS SS
Vxx - Vxx -

(7SS sS __
Vip = Vpp = -1+

(C.39)

(C40)
3,27+
V2
(C41)

(C42)

(C.43)

we see that the situation is reversed compared to the blue sideband.

C.2 SUMMARY

Generally: V75 = 0 and “~” refers to C,71,7C > 1.

C.2.1  Resonant detection, A, = 0

Ves o= VS = VS5

1 -
817<\/1—|—817C(2C+2n—|—1) —1) >
1

1 C+1
T2\ e,
] 1

Vi = 7]C<\/1+817C(2C+2ﬁ+1)+1> >

N~

4C

i _
A== E\/1+8;7c:(2c+2n+1)
C+1

~ r\/g Cq 4

2C+1

(C.44)

(C.45)

(C.46)

> (C.47)

N =

(C48)

(C.49)

(C.50)

At best prediction and retrodiction prepare and measure coherent states.



C.2 SUMMARY

c.2.2 Blue, Ajg = +wm

V= e <\/1+417C((3 217)C + 371 + 1) —1> +% > % (C.51)
%% (32;;7():5‘7+3 %, (C.52)
Vs = 1C<\/1+417C(C+n+1) —1) % > % (C.53)
~ C;; gq o (C:54)
7 = 1<\/1+477C((3—2;7)C+3F1+1) +1> 101 e
61C 6 6
~ % (3_2];756/*3 _ %, (C.56)
V;;—Zﬂc<\/1+4qc(c+n+1)+1)+;>§ (C.57)
~ Cz; s (C.58)

Prediction yields at best coherent states. Retrodictive squeezing requires
C;>landy >1/2:

—_

C+n+1 Cy+1

>SS = _
Ay = Ay = %\/1+417C((3—217)C+3ﬁ+1) (C.60)
3—27)Co+3
~ F\/ﬁ\/(( NG +3 (C.61)
~1, 7\/1 +417C(C+n +1) (C.62)

cq+1
’1

~TVi (C.63)
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c.2.3 Red, A, = —wm

1 1 1
SS ___ _ i _ - —
V= gc <\/1 4 45C((3 — 217)C + 371 + 2) 1) > (Con)
1 [B=2)C+3 1
~3 77—Cq e (C.65)
1 1.3
SS __ 7)) — — —
Vi = e (\/1 +457C(C + 1) 1) +5> 3 (C.66)
C+1 1
s — 1 1+ 41C((3 —2)C+3a+2) +1 1ot ces)
o6nC 6~ 2
1 [G-2p)C+3 1
~T ety (C.69)
] 1 1 1
SS __ 7] — —
%= 3e (\/1 4 45C(C +71) + 1) 5> 5 (C.70)
1 [C+1 1
<5\ e "2 (C71)
Predictive squeezing requires C; > 1 and 7 > 1/2:
1 Cti  Cpt1
ss + ~ ]
Vxx<2 o N> 2C, (C.72)
i -
Ay = Ay = E\/l +447C((3 — 29)C + 37 +2) (C.73)
3_27)C, +3
~Tyi (’Z:)”’ (C.74)
q
Ap =4y =T\/1+amC(C+n) (C.75)
2
Co+1
~T\/1] qc . (C.76)
q

C.3 DRIVE OFF-RESONANTLY

We now consider A, # 0. We start from Eq. (8.31) and again consider
the three cases of resonant detection A;, = 0 and sideband detection
Ay = Fwegs. Since the dissipation qualitatively does not change com-
pared to the case of resonant driving we only consider what happens to
the measurement operators. Recall the definition

(C.77)

2
K
Ty = gy |* = ( E{—A

k/2)%+ ctwm)?’



C3 DRIVE OFF-RESONANTLY

C.3.1 Resonant detection, Aj, = 0

After coarse-graining we again find a sine and cosine component of the
photocurrent, which enter the master equation as

\/ZH [\/ﬁgﬁ n \Ea] AW, + \/Z’H [i\/ﬁzﬁ - iﬁa} dWs.

(C.78)
This yields measurement matrices
A= /1S+1,, B=/1S-0, (C.79)
with
Sy = vI-+yTy Vr+, (C.80)

2

such that 2(S2 +S5%2) =T_ +T; and 45_S, =T_ — T, and in case of
resonant driving (A. — 0) one finds S — 0 and S; — VT. We also
introduce the dimensionless quantities s+ = S+ /,/7. In steady state we
then find V3; = 0 and equal variances

= .01
Vs =V 38

1
=——(—-1—-(1—79y)ds_
sz (1 (s,

+ \/(1 —17)(4s_s4 +1)2+ 15 +8ys? (257 + 271 + 1))
(C.82)

The diagonal drift matrix Mgs = —A1; is strictly stable with

A=T A= ssp + 124y +893 2% +21+1),  (C83)
and the mode functions are frs = f,c = 0 and
Frelt) = Fpu(t) = Ve (25, V55 —5.). (C84)
Backward we find the same results except
v =7 (C85)

1
= 1 1—1n)ds_
87]83_(+( 7])55+

+ \/(1 —17)(4s—sy + 1)+ 17 + 8ys3 (257 + 27 + 1)).

(C.86)
There is obviously no squeezing (symmetric variances) since
1 e U288 4+1 1
Vix = 5 Viz = 453_ > 5 (C.87)
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c.3.2 Blue sideband, A, = +weg

After coarse-graining we again find a resonant as well as sine and cosine
components oscillating at 2w,

" [WTJ} AW, (1)

ry .,
\/ 172+a+] dWeo(t) +H

This yields measurement matrices

+H

(C.88)
i/ ’ﬂ;aﬂ dWi o (t).

Vi 2 0 0 21
A:7 N 0|, B= 0 —yIT{|- (CB89)

0 VIt VIt 0
We introduce dimensionless parameters C+ = I'y /7 which in case of

a resonant drive (A. — 0) become the classical cooperativity. In steady
state we then find V; = 0 and variances

g

1

sS __
Vxx -

(—1 —(1=-2nC-+(1—-n)Cy

(O = O+ 12 4 4y (3 - 20)CCh + 49Co(m +1) + SﬁqC_)

(C.90)
1
V-5 <1c_ +(-n)Cy
(C.91)
+/(Co = Cy +1)2 +4yC(C —i—fz+1)>.

The diagonal drift matrix Mgs = —diag(Ax, Ap) is strictly stable with

7\/ _—Cy+1)2+45(3 —27)C_Cy +45Co (7 +1) + 8715C_,
(C.92)
=J \/ —Cy 124+ 44C (Co + T+ 1), (C.93)

and the mode functions are

Iﬂi - SS
fao®) =/ Eme M @v = 1), f(t) =0, (Co4)
InTy 2V +1
fx‘CZ( ) 772+ /\Xt x\x/i 7 fp‘C,Z(t) = O/ (C-95)
_ _ e 2Vpp 1
fupalt) =0, frpalt) =\ Tyre M

(C.96)



C3 DRIVE OFF-RESONANTLY

Backward we find V3, = 0 and

s 1 . 1

+\/ _—Cy+1)2+47(3—2n)C_Cy +417C+(ﬁ+1)+8ﬁ17C_>
(C.97)

_ 1
V3 = <1 +C_—(1-9y)C
144 277C+ ( ’7) + (C 98)

+ \/(C, —Cy+1)2+45Cy(C +r‘1+1)).

The drift matrix is the same as in the forward case, and the mode func-
tions are

Fool) = /o=@ 4 1), Fyplt) =0 (C99)
fxlc 2(t) = @ _Axtzvj}; 1/ fp\c,z(f) =0, (C.100)
= . ., 2Vvs—1
Frsalt) =0, Fsalt) =\ T5te =t
(C.101)

There is no predictive squeezing since

1 1
Ve, Vi 2 5, (C.102)

but for retrodiction one finds
2+ Cy 1 C_+1

VE Vss
w2 ge 10, oY w3t e

1

> =, (C.103)
2

and we see that a necessary requirement for VE < Jis C_ > 1.

C.3.3 Red sideband, Aj, = —wWeg

After coarse-graining we again find a resonant as well as sine and cosine
components oscillating at 2wy,

H [\/’ﬂilﬂ dWo(t)

(C.104)
\/?] dWea(t) +H —i\/T 4 Wazlt), 4

which are related to the measurement operators of the red detection
scheme through Hermitian conjugation and exchanging I'... We thus
find the measurement matrices

7 V2T 4 0 0 2T
A= - | T_ 0o |, B= 0 JvI_ | . (C.105)
0 VI —/T_ 0

+H

~[g
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In terms of C1 =T’y /vy we find V§§ =0 and

1

ss _ _ = - _ . o _
Vit = 5reraey (<1 - (- me-+ -2

+\/(c, —Cy+1)24+47(3—27)C_Cy +87Cy (A +1) +4ﬁ77C)

(C.106)
1
Vor = anc (—1 —(1—-y)C-+Cy (C.107)
+ \/ —C4+1)2+4n7C_(C4+ + ﬁ)> (C.108)
The diagonal drift matrix Mgs = —diag(Ax, Ap) is strictly stable with
. \/ —Cy +1)2+45(3 — 24)C_Co +85Co (71 + 1) + 7R C_,
(C.109)
Ay = 7\/ —CL+1)2+45C_(Cs + 1), (C.110)
and the mode functions are
r- _
fep() =1/ ”Te MOQVE 1), foolt) =0, (C.111)
Inly 3 2V —1
fx‘cz( ) 172+ /\Xt Ji;i 7 fp‘C,Z(t) = 0/ (C.llz)
. 2Vs—1
foalt) =0, flsalt) = [ Fre M =1
(C.113)

Backward we find Vg, = 0 and

1
zr,<c_+zc+><” (1=m)C- = (1= 27)C4

P (Co = C 12 4y (3 - 20)CCh 4 89C(m 4 1) + 4m7c_>

(7SS __
VXX -

(C.114)
_ 1
V§;_217C <1+(117)C —C4
(C.115)
+co -+ +417C(C++ﬁ)>.
The drift matrix is the same as in the forward case, and the mode func-
tions are
o) =/ IEme MU — 1), fo(t) = 0 C.116
fx\O(t) = 5 € 2V )s fp|0(t) =Y (C.116)
- Iy 5,2V 41 -
Fuealt) = [ 13me ME2m, feat) =0, (Ca17)
i i} r, . 2Vs+1
Fusa(H) =0, Fsalt) = (/e =1

(C.118)



C.4 SUMMARY

For prediction we find

1 1
Ve > >0, Vs > = (C.119)

xx_l—|—C+—|—\/1—|-C+(6—|—C+) pp = o’

with Vg7 < 1/2 whenever 7 > (C; +1)/(2C;"), where C = C.. /. For
retrodiction one finds no squeezing since
1 C_+1

_ 1
VSS > = Z.

VE > (C.120)

XX —

N =

>
C-

N =

C.4 SUMMARY

Generally: V§; = 0 and “~” refers to C+,7,7C+ > 1. Also let =
Ci/(i+1) ~Cyq/n.

C.4.1 Resonant detection, Ay, = 0

Ves i =VR =V (C.121)
1
= —1—(1—n)ds_
sy (1 (s,
2 2 2 = 1
/(1) @ssy +12 47+ 82 (252 +20+1) ) > 5
(C.122)
1

Ves = Sy (1 +(1—1n)ds_s;

1
+ \/(1 —17)(4s—s+ +1)2 + 17+ 8ys? (252 + 27 + 1)> > >
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c.4.2 Blue, Ay = +wnm

SS 1

Viz = M2C_ +Co) <—1 —(1=2y)C + (1 -n)Cy

+ \/(C_ —C++1)24+4y(3—21)C_C+ +4nCr(Ai+1)+ 8ﬁ17C_>,
(C.124)

Vs — (-1—(:_ +A-n)Cs
" (C.125)

+ \/(C, —Cy+1)24+45Cq(C- +ﬁ+1)>,

s 1 B 1
V3= sme Ton (1200 —(1-nc,

/(- = Co 121 49(3— 29)C_Cy + 49 (A1) + 8ﬁ17C_>,

(C.126)
Vs; = 217C+ (1 +C_ — (1 — 1’])C+
(C.127)
+ \/(C, —Cy+1)24+4nCe(Co+n+ 1)).
SS 1 (7SS
Vi > 5 Vi >0, (C.128)
1 _ 1
Vop > 5 Vop > 5 (C.129)

No predictive squeezing and retrodictive squeezing requires C; > 1 and
n > 1/2 with

_ 1 _+a+1 C,+1
VE<r o g it T

> > =5 2, (C.130)
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C.4.3 Red, Ay = —wm

1
SS __ 1 — _ —
(C.131)
1
n \/ i+ 12 +45C_(Cy + ﬁ)), (C.133)
_ 1
SS __ _ —_ —
Vix = 5c 120 <1+ (1—=n)C—(1—27)Cy
+ \/(C_ —Cy+1)24+4y(3—21)C_C+ +8yC (A +1) + 4ﬁ17C_>
(C.134)
— 1
Vop = C <l +(1—-n)C-—Cx+ (C.135)
+ \/(C, —Cy+1)2+4nC_(Cy + r‘z)). (C.136)
_ 1
VE >0, Vx> 5, (C.137)
1 _ 1
Vop = 5 Vi > 5, (C.138)

No retrodictive squeezing and predictive squeezing requires C; > 1and
n > 1/2 with

C++ﬁ_C;—|—1

2C,  2cf (C.139)

1
V,?;<E o on>






BIBLIOGRAPHY

[1]

[2]

(3]

(4]

(5]

[6]

[7]

8]

[9]

[14]

J. von Neumann. Mathematische Grundlagen der Quantenmechanik.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. por: 10 .
1007/978-3-642-61409-5.

H. M. Wiseman and G. J. Milburn. Quantum Measurement and
Control. Cambridge: Cambridge University Press, 2010.

D. J. Wineland. Superposition, entanglement, and raising Schrodin-
ger’s cat. Annalen der Physik 525, 739 (2013). poI: 10.1002/andp.
201300736.

S. Haroche. Nobel Lecture: Controlling photons in a box and exploring
the quantum to classical boundary. Reviews of Modern Physics 85,
1083 (2013). DOIL: 10.1103/RevModPhys.85.1083.

V. P. Belavkin. Quantum stochastic calculus and quantum nonlinear
filtering. Journal of Multivariate Analysis 42, 171 (1992). DOI: 10.
1016/0047-259X(92)90042-E. arXiv: math/0512362.

R. L. Hudson and K. R. Parthasarathy. Quantum Ito’s formula and
stochastic evolutions. Communications in Mathematical Physics 93,
301 (1984). por: 10.1007/BF01258530.

H. M. Wiseman and G. J. Milburn. Quantum theory of field quadra-
ture measurements. Physical Review A 47, 642 (1993).

K. W. Murch et al. Observing single quantum trajectories of a su-
perconducting quantum bit. Nature 502, 211 (2013). DOI: 10.1038/
naturel2539. arXiv: 1305.7270.

N. Roch et al. Observation of Measurement-Induced Entanglement
and Quantum Trajectories of Remote Superconducting Qubits. Physi-
cal Review Letters 112, 170501 (2014). DOI: 10.1103/PhysRevLett.
112.170501.

A. Kubanek et al. Photon-by-photon feedback control of a single-atom
trajectory. Nature 462, 898 (2009). por: 10.1038/nature08563.

E. Bimbard et al. Homodyne Tomography of a Single Photon Retrieved
on Demand from a Cavity-Enhanced Cold Atom Memory. Physical
Review Letters 112, 033601 (2014). DOL: 10.1103/PhysRevlLett .
112.033601. arXiv: 1310.1228.

C. B. Moller et al. Quantum back-action-evading measurement of mo-
tion in a negative mass reference frame. Nature 547, 191 (2017). DOI:
10.1038/nature22980. arXiv: 1608.03613.

H. Krauter et al. Entanglement Generated by Dissipation and Steady
State Entanglement of Two Macroscopic Objects. Physical Review Let-
ters 107, 080503 (2011). DOL: 10.1103/PhysRevLett.107.080503.
arXiv: 1006 .4344.

M. Rossi et al. Measurement-based quantum control of mechanical
motion. 2018. arXiv: 1805.05087. URL: http://arxiv.org/abs/
1805.05087.


https://doi.org/10.1007/978-3-642-61409-5
https://doi.org/10.1007/978-3-642-61409-5
https://doi.org/10.1002/andp.201300736
https://doi.org/10.1002/andp.201300736
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1016/0047-259X(92)90042-E
https://doi.org/10.1016/0047-259X(92)90042-E
https://arxiv.org/abs/math/0512362
https://doi.org/10.1007/BF01258530
https://doi.org/10.1038/nature12539
https://doi.org/10.1038/nature12539
https://arxiv.org/abs/1305.7270
https://doi.org/10.1103/PhysRevLett.112.170501
https://doi.org/10.1103/PhysRevLett.112.170501
https://doi.org/10.1038/nature08563
https://doi.org/10.1103/PhysRevLett.112.033601
https://doi.org/10.1103/PhysRevLett.112.033601
https://arxiv.org/abs/1310.1228
https://doi.org/10.1038/nature22980
https://arxiv.org/abs/1608.03613
https://doi.org/10.1103/PhysRevLett.107.080503
https://arxiv.org/abs/1006.4344
https://arxiv.org/abs/1805.05087
http://arxiv.org/abs/1805.05087
http://arxiv.org/abs/1805.05087

136

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. D. Barrett and P. Kok. Efficient high-fidelity quantum computation
using matter qubits and linear optics. Physical Review A 71, 060310
(2005). DOT: 10 . 1103/ PhysRevA . 71 . 060310. arXiv: quant - ph/
0408040.

Y. L. Lim, A. Beige, and L. C. Kwek. Repeat-until-success linear
optics distributed quantum computing. Physical Review Letters 95,
1 (2005). DOT: 10.1103/PhysRevLett .95.030505. arXiv: quant -
ph/0408043.

Y. L. Lim et al. Repeat-until-success quantum computing using sta-
tionary and flying qubits. Physical Review A 73, 012304 (2006). DOI:
10.1103/PhysRevA.73.012304. arXiv: quant-ph/0508218.

K. G. H. Vollbrecht and ]. I. Cirac. Quantum simulations based on
measurements and feedback control. Physical Review A 79, 042305
(2009). DOIL: 10.1103/PhysRevA.79.042305. arXiv: 0811.1844.

H. M. Wiseman and G. J. Milburn. Quantum theory of optical feed-
back via homodyne detection. Physical Review Letters 70, 548 (1993).
DOI: 10.1103/PhysRevLett.70.548.

H. M. Wiseman. Quantum theory of continuous feedback. Physical
Review A 49, 2133 (1994). DOI: 10.1103/PhysRevA.49.2133.

M. Tsang. Time-Symmetric Quantum Theory of Smoothing. Physical
Review Letters 102, 250403 (2009). DOI: 10 .1103/PhysRevLett.
102.250403. arXiv: 0904.1969.

M. Tsang. Optimal waveform estimation for classical and quantum sys-
tems via time-symmetric smoothing. Physical Review A 80, 033840
(2009). DOIL: 10.1103/PhysRevA.80.033840. arXiv: 0909.2432.

M. Tsang. Optimal waveform estimation for classical and quantum sys-
tems via time-symmetric smoothing. II. Applications to atomic magne-
tometry and Hardy’s paradox. Physical Review A 81, 013824 (2010).
DOT: 10.1103/PhysRevA.81.013824. arXiv: 0909.2432.

S. Gammelmark, B. Julsgaard, and K. Melmer. Past Quantum
States of a Monitored System. Physical Review Letters 111, 160401
(2013). poI: 10.1103/PhysRevLett.111.160401. arXiv: 1305.0681.

D. Tan et al. Prediction and Retrodiction for a Continuously Monitored
Superconducting Qubit. Physical Review Letters 114, 090403 (2015).
DOIL: 10.1103/PhysRevLett.114.090403. arXiv: 1409.0510.

S. J. Weber et al. Quantum trajectories of superconducting qubits.
Comptes Rendus Physique 17, 766 (2016). po1: 10.1016/j . crhy.
2016.07.007.

J. Zhang and K. Melmer. Prediction and retrodiction with contin-
uously monitored Gaussian states. Physical Review A 96, 062131
(2017). DOL: 10.1103/PhysRevA.96.062131. arXiv: 1710.04950.

I. Guevara and H. Wiseman. Quantum State Smoothing. Physical
Review Letters 115, 180407 (2015). DOI: 10.1103/PhysRevlLett .
115.180407. arXiv: 1503.02799.


https://doi.org/10.1103/PhysRevA.71.060310
https://arxiv.org/abs/quant-ph/0408040
https://arxiv.org/abs/quant-ph/0408040
https://doi.org/10.1103/PhysRevLett.95.030505
https://arxiv.org/abs/quant-ph/0408043
https://arxiv.org/abs/quant-ph/0408043
https://doi.org/10.1103/PhysRevA.73.012304
https://arxiv.org/abs/quant-ph/0508218
https://doi.org/10.1103/PhysRevA.79.042305
https://arxiv.org/abs/0811.1844
https://doi.org/10.1103/PhysRevLett.70.548
https://doi.org/10.1103/PhysRevA.49.2133
https://doi.org/10.1103/PhysRevLett.102.250403
https://doi.org/10.1103/PhysRevLett.102.250403
https://arxiv.org/abs/0904.1969
https://doi.org/10.1103/PhysRevA.80.033840
https://arxiv.org/abs/0909.2432
https://doi.org/10.1103/PhysRevA.81.013824
https://arxiv.org/abs/0909.2432
https://doi.org/10.1103/PhysRevLett.111.160401
https://arxiv.org/abs/1305.0681
https://doi.org/10.1103/PhysRevLett.114.090403
https://arxiv.org/abs/1409.0510
https://doi.org/10.1016/j.crhy.2016.07.007
https://doi.org/10.1016/j.crhy.2016.07.007
https://doi.org/10.1103/PhysRevA.96.062131
https://arxiv.org/abs/1710.04950
https://doi.org/10.1103/PhysRevLett.115.180407
https://doi.org/10.1103/PhysRevLett.115.180407
https://arxiv.org/abs/1503.02799

[29]

[30]

[36]

(371

[38]

[41]

[42]

[43]

[44]

BIBLIOGRAPHY

J. Lammers, H. Weimer, and K. Hammerer. Open-system many-
body dynamics through interferometric measurements and feedback. Phys-
ical Review A 94, 052120 (2016). DOI: 10 . 1103/ PhysRevA . 94 .
052120. arXiv: 1606.04475.

S. G. Hofer et al. Time-continuous bell measurements. Physical Re-
view Letters 111, 170404 (2013). DOI: 10.1103/PhysRevLett.111.
170404. arXiv: 1303.4976.

E. Pardoux. Equations du filtrage non linéaire de la prédiction et du lis-
sage. Stochastics 6, 193 (1982). DOI: 10.1080/17442508208833204.

D. E. Kuznetsov. Multiple Ito and Stratonovich Stochastic Integrals:
Fourier-Legendre and Trogonometric Expansions, Approximations, For-
mulas. Differential Equations and Control Processes 1 (2017).

S. G. Hofer and K. Hammerer. Entanglement-enhanced time-continuous
quantum control in optomechanics. Physical Review A 91, 033822
(2015). pOI: 10.1103/PhysRevA.91.033822. arXiv: 1411.1337.

S. G. Hofer. Quantum Control of Optomechanical Systems. PhD the-
sis. Universitat Wien [Link], 2015.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge: Cambridge University Press, 2010,
702. DOL: 10.1017/CB09780511976667. arXiv: 1011.1669v3.

K. Jacobs. Quantum Measurement Theory and its Applications. Cam-
bridge: Cambridge University Press, 2014, 554. poI: 10 . 1017/
CB09781139179027.

T. Heinosaari and M. Ziman. Guide to mathematical concepts of
quantum theory. Acta Physica Slovaca. Reviews and Tutorials 58,
188 (2008). DOT: 10.2478/v10155-010-0091-y. arXiv: 0810.3536.

T. Heinosaari and M. Ziman. The Mathematical language of Quan-
tum Theory. Cambridge: Cambridge University Press, 2011. DOI:
10.1017/CB09781139031103.

S. Attal. Lectures in Quantum Noise Theory. Unpublished, available
online [Link], 2018.

B. C. Hall. Quantum Theory for Mathematicians. Vol. 267. Graduate
Texts in Mathematics. New York, NY: Springer New York, 2013.
DOI: 10.1007/978-1-4614-7116-5.

M. M. Wolf. Quantum channels & operations: Guided tour. Lecture
notes; available online [Link] (2012).

H. M. Wiseman and G. J. Milburn. Squeezing via feedback. Physical
Review A 49, 1350 (1994). pOI1: 10.1103/PhysRevA.49.1350.

C. W. Gardiner, A. S. Parkins, and P. Zoller. Wave-function quan-
tum stochastic differential equations and quantum-jump simulation meth-
ods. Physical Review A 46, 4363 (1992). DoI: 10.1103/PhysRevA.
46.4363.

M. J. Collett and C. W. Gardiner. Squeezing of intracavity and traveling-
wave light fields produced in parametric amplification. Physical Re-
view A 30, 1386 (1984). DOL: 10.1103/PhysRevA.30.1386.

137


https://doi.org/10.1103/PhysRevA.94.052120
https://doi.org/10.1103/PhysRevA.94.052120
https://arxiv.org/abs/1606.04475
https://doi.org/10.1103/PhysRevLett.111.170404
https://doi.org/10.1103/PhysRevLett.111.170404
https://arxiv.org/abs/1303.4976
https://doi.org/10.1080/17442508208833204
https://doi.org/10.1103/PhysRevA.91.033822
https://arxiv.org/abs/1411.1337
http://othes.univie.ac.at/38975/
https://doi.org/10.1017/CBO9780511976667
https://arxiv.org/abs/1011.1669v3
https://doi.org/10.1017/CBO9781139179027
https://doi.org/10.1017/CBO9781139179027
https://doi.org/10.2478/v10155-010-0091-y
https://arxiv.org/abs/0810.3536
https://doi.org/10.1017/CBO9781139031103
http://math.univ-lyon1.fr/~attal/chapters.html
https://doi.org/10.1007/978-1-4614-7116-5
https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
https://doi.org/10.1103/PhysRevA.49.1350
https://doi.org/10.1103/PhysRevA.46.4363
https://doi.org/10.1103/PhysRevA.46.4363
https://doi.org/10.1103/PhysRevA.30.1386

138

BIBLIOGRAPHY

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

C. W. Gardiner and M. J. Collett. Input and output in damped quan-
tum systems: Quantum stochastic differential equations and the mas-
ter equation. Physical Review A 31, 3761 (1985). por: 10. 1103/
PhysRevA.31.3761.

C. Gardiner. Stochastic Methods: A Handbook for the Natural and
Social Sciences. 4th ed. Springer-Verlag Berlin Heidelberg, 2009.

C. Gardiner and P. Zoller. Quantum Noise: A Handbook of Marko-
vian and Non-Markovian Quantum Stochastic Methods with Applica-
tions to Quantum Optics. 3rd ed. Springer Series in Synergetics.
Springer, 2004.

L. K. Thomsen, S. Mancini, and H. M. Wiseman. Spin squeezing
via quantum feedback. Physical Review A 65, 618011 (2002). DOI:
10.1103/PhysRevA.65.061801. arXiv: quant-ph/0202028.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt. Cavity op-
tomechanics. Reviews of Modern Physics 86, 1391 (2014). bor: 10.
1103/RevModPhys.86.1391. arXiv: 0712.1618.

M. E. Peskin and D. V. Schroeder. An Introduction To Quantum
Field Theory. Westview Press, 1995.

D. B. Horoshko and S. Y. Kilin. Direct Detection Feedback for Preserv-
ing Quantum Coherence in an Open Cavity. Physical Review Letters
78, 840 (1997). poIL: 10.1103/PhysRevLett.78.840.

H. M. Wiseman. Using feedback to eliminate back-action in quantum
measurements. Physical Review A 51, 2459 (1995). por: 10.1103/
PhysRevA.51.2459.

M. A. Nielsen. Conditions for a class of entanglement transformations.
Physical Review Letters 83, 436 (1999). DOI: 10.1103/PhysRevLett.
83.436. arXiv: quant-ph/9811053.

B. Kraus et al. Preparation of entangled states by quantum Markov
processes. Physical Review A 78, 042307 (2008). por: 10 . 1103/
PhysRevA.78.042307. arXiv: 0803.1463v3.

V. Coffman, J. Kundu, and W. K. Wootters. Distributed entangle-
ment. Physical Review A 61, 52306 (2000). DOI: 10.1103/PhysReVA.
61.052306. arXiv: quant-ph/9907047.

T. ]J. Osborne and F. Verstraete. General monogamy inequality for
bipartite qubit entanglement. Physical Review Letters 96, 1 (2006).
DOT: 10.1103/PhysRevLett.96.220503. arXiv: quant-ph/0502176.

J. R. Johansson, P. D. Nation, and F. Nori. QuTiP: An open-source
Python framework for the dynamics of open quantum systems. Com-
puter Physics Communications 183, 1760 (2012). por: 10.1016/j .
Ccpc.2012.02.021. arXiv: 1211.6518.

J. R. Johansson, P. D. Nation, and F. Nori. QuTiP 2: A Python frame-
work for the dynamics of open quantum systems. Computer Physics
Communications 184, 1234 (2013). po1: 10.1016/j.cpc.2012.11.
019. arXiv: 1211.6518.

H. Weimer. Variational principle for steady states of dissipative quan-
tum many-body systems. Physical Review Letters 114, 040402 (2015).
DOI: 10.1103/PhysRevLett.114.040402. arXiv: 1409.8307.


https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.65.061801
https://arxiv.org/abs/quant-ph/0202028
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://arxiv.org/abs/0712.1618
https://doi.org/10.1103/PhysRevLett.78.840
https://doi.org/10.1103/PhysRevA.51.2459
https://doi.org/10.1103/PhysRevA.51.2459
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1103/PhysRevLett.83.436
https://arxiv.org/abs/quant-ph/9811053
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1103/PhysRevA.78.042307
https://arxiv.org/abs/0803.1463v3
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://arxiv.org/abs/quant-ph/9907047
https://doi.org/10.1103/PhysRevLett.96.220503
https://arxiv.org/abs/quant-ph/0502176
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://arxiv.org/abs/1211.6518
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://arxiv.org/abs/1211.6518
https://doi.org/10.1103/PhysRevLett.114.040402
https://arxiv.org/abs/1409.8307

[60]

[61]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

BIBLIOGRAPHY 139

H. Weimer. Variational analysis of driven-dissipative Rydberg gases.
Physical Review A 91, 063401 (2015). DOI: 10.1103/PhysRevA.91.
063401. arXiv: 1501.07284.

M. B. Plenio and S. S. Virmani. An Introduction to Entanglement
Measures. Quantum Information & Computation 7, 1 (2007). arXiv:
quant-ph/0504163.

G. Vidal and R. F. Werner. Computable measure of entanglement.
Physical Review A 65, 1 (2002). DOI: 10 . 1103 / PhysRevA . 65 .
032314. arXiv: quant-ph/0102117.

M. B. Plenio. Logarithmic negativity: A full entanglement monotone
that is not convex. Physical Review Letters 95, 5 (2005). DOI: 10 .
1103/PhysRevLett.95.090503. arXiv: quant-ph/0505071.

E. Ticozzi and L. Viola. Stabilizing entangled states with quasi-local
quantum dynamical semigroups. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sci-
ences 370, 5259 (2012). DOI: 10 . 1098/ rsta . 2011 . 0485. arXiv:
1112.4860.

E. Ticozzi and L. Viola. Steady-State Entanglement by Engineered
Quasi-Local Markovian Dissipation. 2013. arXiv: 1304 . 4270. URL:
http://arxiv.org/abs/1304.4270.

R. P. Feynman. Simulating physics with computers. International
Journal of Theoretical Physics 21, 467 (1982). bor: 10.1007/BF02650179.
arXiv: quant-ph/9508027.

S. Lloyd. Universal Quantum Simulators. Science 273, 1073 (1996).
DOL: 10.1126/science.279.5354.1113h.

I. Buluta and F. Nori. Quantum Simulators. Science 326, 108 (2009).
DOI: 10.1126/science.1177838.

I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Re-
views of Modern Physics 86, 153 (2014). bor: 10.1103/RevModPhys.
86.153. arXiv: 1308.6253.

A. A. Houck, H. E. Tiireci, and J. Koch. On-chip quantum simu-
lation with superconducting circuits. Nature Physics 8, 292 (2012).
DOI: 10.1038/nphys2251.

B. P. Lanyon et al. Universal Digital Quantum Simulation with Trapped
Ions. Science 334, 57 (2011). por: 10 . 1126 / science . 1208001.
arXiv: 1109.1512.

K. Kim et al. Quantum simulation of frustrated Ising spins with trapped
ions. Nature 465, 590 (2010). DOT: 10.1038/nature09071.

D. Porras and J. L. Cirac. Effective quantum spin systems with trapped
ions. Physical Review Letters 92, 207901 (2004). pOI: 10 . 1103/
PhysRevLett.92.207901. arXiv: quant-ph/0401102.

A.Hu, T. E. Lee, and C. W. Clark. Spatial correlations of one-dimensional
driven-dissipative systems of Rydberg atoms. Physical Review A 88,
053627 (2013). DOL: 10.1103/PhysRevA. 88.053627. arXiv: 1305.
2208.


https://doi.org/10.1103/PhysRevA.91.063401
https://doi.org/10.1103/PhysRevA.91.063401
https://arxiv.org/abs/1501.07284
https://arxiv.org/abs/quant-ph/0504163
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/quant-ph/0102117
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevLett.95.090503
https://arxiv.org/abs/quant-ph/0505071
https://doi.org/10.1098/rsta.2011.0485
https://arxiv.org/abs/1112.4860
https://arxiv.org/abs/1304.4270
http://arxiv.org/abs/1304.4270
https://doi.org/10.1007/BF02650179
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1126/science.279.5354.1113h
https://doi.org/10.1126/science.1177838
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://arxiv.org/abs/1308.6253
https://doi.org/10.1038/nphys2251
https://doi.org/10.1126/science.1208001
https://arxiv.org/abs/1109.1512
https://doi.org/10.1038/nature09071
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1103/PhysRevLett.92.207901
https://arxiv.org/abs/quant-ph/0401102
https://doi.org/10.1103/PhysRevA.88.053627
https://arxiv.org/abs/1305.2208
https://arxiv.org/abs/1305.2208

140

BIBLIOGRAPHY

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

C. Ates et al. Dynamical phases and intermittency of the dissipative
quantum Ising model. Physical Review A 85, 1 (2012). por: 10 .
1103/PhysRevA.85.043620. arXiv: 1112.4273v2.

T. E. Lee, H. Hiffner, and M. C. Cross. Antiferromagnetic phase
transition in a nonequilibrium lattice of Rydberg atoms. Physical Re-
view A 84, 031402 (2011). DOIL: 10. 1103/ PhysRevA . 84 . 031402.
arXiv: 1104.0908.

M. Marcuzzi et al. Universal nonequilibrium properties of dissipative
rydberg gases. Physical Review Letters 113, 210401 (2014). DOI: 10.
1103/PhysRevLett.113.210401. arXiv: 1406.1015.

M. Hoening et al. Antiferromagnetic long-range order in dissipative
Rydberg lattices. Physical Review A 9o, 021603 (2014). DOI: 10 .
1103/PhysRevA.90.021603. arXiv: 1404.1281v1.

M. Idel and M. M. Wolf. Sinkhorn normal form for unitary matrices.
Linear Algebra and Its Applications 471, 76 (2015). DOI: 10.1016/
j.laa.2014.12.031. arXiv: 1408.5728.

P. Zoller and C. W. Gardiner. Quantum Noise in Quantum Optics:
the Stochastic Schrodinger Equation. 1997. arXiv: quant-ph/9702030.
URL: http://arxiv.org/abs/quant-ph/9702030.

K. Jacobs and D. A. Steck. A straightforward introduction to contin-
uous quantum measurement. Contemporary Physics 47, 279 (2006).
DOI: 10.1080/00107510601101934. arXiv: quant-ph/0611067.

P. Athanasios and S. U. Pillai. Probability, Random Variables and
Stochastic Processes. 4th ed. Boston: McGraw-Hill, 2002.

L. Bouten, R. Van Handel, and M. R. James. An Introduction to
Quantum Filtering. SIAM Journal on Control and Optimization
46, 2199 (2007). DOT: 10.1137/060651239. arXiv: math/0601741.

H. M. Wiseman. Quantum trajectories and quantum measurement
theory. Quantum and Semiclassical Optics: Journal of the Euro-
pean Optical Society Part B 8, 205 (1996). por: 16 . 1688/ 1355 -
5111/8/1/015. arXiv: quant-ph/0302080.

S. M. Barnett, D. T. Pegg, and J. Jeffers. Bayes’ theorem and quantum
retrodiction. Journal of Modern Optics 47, 1779 (2000). DOIL: 10 .
1080/09500340008232431. arXiv: quant-ph/0106139.

S. M. Barnett et al. Master Equation for Retrodiction of Quantum
Communication Signals. Physical Review Letters 86, 2455 (2001).
DOI: 10.1103/PhysRevLett.86.2455.

D. T. Pegg, S. M. Barnett, and ]. Jeffers. Quantum retrodiction in
open systems. Physical Review A 66, 022106 (2002). pDoI: 10.1103/
PhysRevA.66.022106. arXiv: quant-ph/0208082.

M. Yanagisawa. Quantum smoothing. 2007. arXiv: 0711.3885. URL:
http://arxiv.org/abs/0711.3885.

M. Tsang. A Bayesian quasi-probability approach to inferring the past
of quantum observables. 2014. arXiv: 1403.3353. URL: http://arxiv.
org/abs/1403.3353.


https://doi.org/10.1103/PhysRevA.85.043620
https://doi.org/10.1103/PhysRevA.85.043620
https://arxiv.org/abs/1112.4273v2
https://doi.org/10.1103/PhysRevA.84.031402
https://arxiv.org/abs/1104.0908
https://doi.org/10.1103/PhysRevLett.113.210401
https://doi.org/10.1103/PhysRevLett.113.210401
https://arxiv.org/abs/1406.1015
https://doi.org/10.1103/PhysRevA.90.021603
https://doi.org/10.1103/PhysRevA.90.021603
https://arxiv.org/abs/1404.1281v1
https://doi.org/10.1016/j.laa.2014.12.031
https://doi.org/10.1016/j.laa.2014.12.031
https://arxiv.org/abs/1408.5728
https://arxiv.org/abs/quant-ph/9702030
http://arxiv.org/abs/quant-ph/9702030
https://doi.org/10.1080/00107510601101934
https://arxiv.org/abs/quant-ph/0611067
https://doi.org/10.1137/060651239
https://arxiv.org/abs/math/0601741
https://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1088/1355-5111/8/1/015
https://arxiv.org/abs/quant-ph/0302080
https://doi.org/10.1080/09500340008232431
https://doi.org/10.1080/09500340008232431
https://arxiv.org/abs/quant-ph/0106139
https://doi.org/10.1103/PhysRevLett.86.2455
https://doi.org/10.1103/PhysRevA.66.022106
https://doi.org/10.1103/PhysRevA.66.022106
https://arxiv.org/abs/quant-ph/0208082
https://arxiv.org/abs/0711.3885
http://arxiv.org/abs/0711.3885
https://arxiv.org/abs/1403.3353
http://arxiv.org/abs/1403.3353
http://arxiv.org/abs/1403.3353

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[101]

[102]

[103]

BIBLIOGRAPHY

C. FE. Ockeloen-Korppi et al. Stabilized entanglement of massive me-
chanical oscillators. Nature 556, 478 (2018). por: 10.1038/541586 -
018-0038-x. arXiv: 1711.01640.

S. J. Weber et al. Mapping the optimal route between two quantum
states. Nature 511, 570 (2014). DOIL: 10.1038/naturel3559. arXiv:
1403.4992.

T. Mikosch. Elementary Stochastic Calculus, With Finance in View.
Vol. 6. Advanced Series on Statistical Science and Applied Prob-
ability. World Scientific Publishing Co. Pte. Ltd., 1998. por1: 10.
1142/9789812386335.

H. I. Nurdin and N. Yamamoto. Linear Dynamical Quantum Sys-
tems. Communications and Control Engineering. Springer Inter-
national Publishing, 2017. por: 160.1007/978-3-319-55201-9.

M. Hillery et al. Distribution functions in physics: Fundamentals.
Physics Reports 106, 121 (1984). DOI: 10.1016/0370 - 1573(84)
90160-1.

S. Barnett and P. Radmore. Methods in Theoretical Quantum Op-
tics. Oxford University Press, 1997. por: 10.1093/acprof:oso/
9780198563617.001.0001.

G. Adesso, S. Ragy, and A. R. Lee. Continuous Variable Quantum
Information: Gaussian States and Beyond. Open Systems & Informa-

tion Dynamics 21, 1440001 (2014). DOI: 10.1142/51230161214400010.

arXiv: 1401.4679.

A. Ferraro, S. Olivares, and M. G. A. Paris. Gaussian states in
continuous variable quantum information. 2005. arXiv: quant - ph/
0503237. URL: http://arxiv.org/abs/quant-ph/0503237.

J. Eisert and M. M. Wolf. Gaussian Quantum Channels. In: Quan-
tum Information with Continuous Variables of Atoms and Light. Pub-
lished by Imperial College Press and distributed by World Scien-
tific Publishing Co., 2007, 23. por: 10.1142/9781860948169_0002.
arXiv: quant-ph/0505151.

X. Wang et al. Quantum information with Gaussian states. Physics
Reports 448, 1 (2007). por: 10.1016/j . physrep . 2007 . 04 . 005.
arXiv: 0801.4604.

T. Heinosaari, A. S. Holevo, and M. M. Wolf. The semigroup struc-
ture of Gaussian channels. Quantum Information and Computation
10, 0619 (2010). arXiv: 0909.0408.

J. S.Ivan, M. S. Kumar, and R. Simon. A measure of non-Gaussianity

for quantum states. Quantum Information Processing 11, 853 (2012).

DOI: 10.1007/511128-011-0314-2. arXiv: 6812.2800.

E. Meeron. Series Expansion of Distribution Functions in Multicom-
ponent Fluid Systems. The Journal of Chemical Physics 27, 1238
(1957). por: 10.1063/1.1743985.

G.-C. Rota and J. Shen. On the Combinatorics of Cumulants. Journal
of Combinatorial Theory, Series A 91, 283 (2000). pOI: 10. 1006/
jcta.1999.3017.

141


https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1038/s41586-018-0038-x
https://arxiv.org/abs/1711.01640
https://doi.org/10.1038/nature13559
https://arxiv.org/abs/1403.4992
https://doi.org/10.1142/9789812386335
https://doi.org/10.1142/9789812386335
https://doi.org/10.1007/978-3-319-55201-9
https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/10.1016/0370-1573(84)90160-1
https://doi.org/10.1093/acprof:oso/9780198563617.001.0001
https://doi.org/10.1093/acprof:oso/9780198563617.001.0001
https://doi.org/10.1142/S1230161214400010
https://arxiv.org/abs/1401.4679
https://arxiv.org/abs/quant-ph/0503237
https://arxiv.org/abs/quant-ph/0503237
http://arxiv.org/abs/quant-ph/0503237
https://doi.org/10.1142/9781860948169_0002
https://arxiv.org/abs/quant-ph/0505151
https://doi.org/10.1016/j.physrep.2007.04.005
https://arxiv.org/abs/0801.4604
https://arxiv.org/abs/0909.0408
https://doi.org/10.1007/s11128-011-0314-2
https://arxiv.org/abs/0812.2800
https://doi.org/10.1063/1.1743985
https://doi.org/10.1006/jcta.1999.3017
https://doi.org/10.1006/jcta.1999.3017

142

BIBLIOGRAPHY

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

S. Olivares. Quantum optics in the phase space. The European Phys-
ical Journal Special Topics 203, 3 (2012). DoL: 10. 1140/ epjst/
€2012-01532-4. arXiv: 1111.0786.

C. Weedbrook et al. Gaussian quantum information. Reviews of
Modern Physics 84, 621 (2012). DOI: 10.1103/RevModPhys.84.621.
arXiv: 1110.3234.

M. G. Genoni, L. Lami, and A. Serafini. Conditional and uncondi-
tional Gaussian quantum dynamics. Contemporary Physics 57, 331
(2016). DOI: 10.1080/00107514.2015.1125624. arXiv: 1607.02619.

D. Grimmer et al. A classification of open Gaussian dynamics. Journal
of Physics A: Mathematical and Theoretical 51, 1 (2018). por: 10.
1088/1751-8121/aac114. arXiv: 1709.07891.

B. L. Schumaker. Quantum mechanical pure states with gaussian
wave functions. Physics Reports 135, 317 (1986). po1: 10 . 1016/
0370-1573(86)90179-1.

M. G. A. Paris et al. Purity of Gaussian states: Measurement schemes
and time evolution in noisy channels. Physical Review A 68, 012314
(2003). pOI: 10.1103/PhysRevA . 68 .012314. arXiv: quant - ph/
0304059.

Z. Huang and M. Sarovar. Smoothing of Gaussian quantum dynam-
ics for force detection. Physical Review A 97, 042106 (2018). DOI:
10.1103/PhysRevA.97.042106. arXiv: 1712.00874.

R. Van Handel. The Stability of Quantum Markov Filters. Infinite
Dimensional Analysis, Quantum Probability and Related Topics
12, 153 (2009). DOI: 10.1142/50219025709003549.

W. H. Zurek, S. Habib, and J. P. Paz. Coherent states via deco-
herence. Physical Review Letters 70, 1187 (1993). po1: 10.1103/
PhysRevlLett.70.1187.

Y. Chen. Macroscopic quantum mechanics: theory and experimental
concepts of optomechanics. Journal of Physics B: Atomic, Molecular
and Optical Physics 46, 104001 (2013). DOI: 10.1088/0953- 4075/
46/10/104001. arXiv: 1302.1924.

T. A. Palomaki et al. Coherent state transfer between itinerant mi-
crowave fields and a mechanical oscillator. Nature 495, 210 (2013).
DOI: 10.1038/naturel1915. arXiv: 1206.5562.

T. A. Palomaki et al. Entangling Mechanical Motion with Microwave
Fields. Science 342, 710 (2013). DOL: 10.1126/science.1244563.

C. F. Ockeloen-Korppi et al. Quantum Backaction Evading Measure-
ment of Collective Mechanical Modes. Physical Review Letters 117,
140401 (2016). DOI: 10 . 1103 /PhysRevLett . 117 . 140401. arXiv:
1608.06152.

A. D. O’Connell et al. Quantum ground state and single-phonon con-
trol of a mechanical resonator. Nature 464, 697 (2010). DOI: 10.1038/
nature08967. arXiv: 1602.03841.

J. D. Teufel et al. Sideband cooling of micromechanical motion to
the quantum ground state. Nature 475, 359 (2011). pOI: 10.1038/
naturel0261. arXiv: 1103.2144.


https://doi.org/10.1140/epjst/e2012-01532-4
https://doi.org/10.1140/epjst/e2012-01532-4
https://arxiv.org/abs/1111.0786
https://doi.org/10.1103/RevModPhys.84.621
https://arxiv.org/abs/1110.3234
https://doi.org/10.1080/00107514.2015.1125624
https://arxiv.org/abs/1607.02619
https://doi.org/10.1088/1751-8121/aac114
https://doi.org/10.1088/1751-8121/aac114
https://arxiv.org/abs/1709.07891
https://doi.org/10.1016/0370-1573(86)90179-1
https://doi.org/10.1016/0370-1573(86)90179-1
https://doi.org/10.1103/PhysRevA.68.012314
https://arxiv.org/abs/quant-ph/0304059
https://arxiv.org/abs/quant-ph/0304059
https://doi.org/10.1103/PhysRevA.97.042106
https://arxiv.org/abs/1712.00874
https://doi.org/10.1142/S0219025709003549
https://doi.org/10.1103/PhysRevLett.70.1187
https://doi.org/10.1103/PhysRevLett.70.1187
https://doi.org/10.1088/0953-4075/46/10/104001
https://doi.org/10.1088/0953-4075/46/10/104001
https://arxiv.org/abs/1302.1924
https://doi.org/10.1038/nature11915
https://arxiv.org/abs/1206.5562
https://doi.org/10.1126/science.1244563
https://doi.org/10.1103/PhysRevLett.117.140401
https://arxiv.org/abs/1608.06152
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://arxiv.org/abs/1602.03841
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://arxiv.org/abs/1103.2144

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

BIBLIOGRAPHY 143

J. Chan et al. Laser cooling of a nanomechanical oscillator into its quan-
tum ground state. Nature 478, 89 (2011). DOI: 10.1038/naturel0461.
arXiv: 1106.3614.

S. Hong et al. Hanbury Brown and Twiss interferometry of single
phonons from an optomechanical resonator. Science 358, 203 (2017).
DOI: 10.1126/science.aan7939. arXiv: 1706.03777.

F. Khalili et al. Preparing a Mechanical Oscillator in Non-Gaussian
Quantum States. Physical Review Letters 105, 070403 (2010). DOI:
10.1103/PhysRevLett.105.070403. arXiv: 1001.3738.

H. Miao et al. Probing macroscopic quantum states with a sub-Heisenberg
accuracy. Physical Review A 81, 012114 (2010). DOIL: 10 . 1103/
PhysRevA.81.012114. arXiv: 0905.3729.

R. J. Schoelkopf and S. M. Girvin. Wiring up quantum systems. Na-
ture 451, 664 (2008). DOT: 10.1038/451664a.

H. J. Kimble. The quantum internet. Nature 453, 1023 (2008). DOL:
10.1038/nature07127. arXiv: 0806.4195.

D.-G. Welsch, W. Vogel, and T. Opatrny. II Homodyne Detection
and Quantum-State Reconstruction. In: Progress in Optics. 1999, 63.
DOI: 10.1016/50079-6638(08)70389-5. arXiv: 0907.1353.

M. Paris and J. Rehacek, eds. Quantum State Estimation. Vol. 649.
Lecture Notes in Physics. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2004. DOI: 10.1007/b98673.

B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics. Wiley
Series in Pure and Applied Optics. New York, USA: John Wiley
& Sons, Inc., 1991. DOT: 10.1002/0471213748.

R. Loudon. The Quantum Theory of Light. 3rd ed. Oxford: Oxford
University Press, 2000.


https://doi.org/10.1038/nature10461
https://arxiv.org/abs/1106.3614
https://doi.org/10.1126/science.aan7939
https://arxiv.org/abs/1706.03777
https://doi.org/10.1103/PhysRevLett.105.070403
https://arxiv.org/abs/1001.3738
https://doi.org/10.1103/PhysRevA.81.012114
https://doi.org/10.1103/PhysRevA.81.012114
https://arxiv.org/abs/0905.3729
https://doi.org/10.1038/451664a
https://doi.org/10.1038/nature07127
https://arxiv.org/abs/0806.4195
https://doi.org/10.1016/S0079-6638(08)70389-5
https://arxiv.org/abs/0907.1353
https://doi.org/10.1007/b98673
https://doi.org/10.1002/0471213748




CURRICULUM VITAE

PERSONAL DATA

Name Jonas Lammers

Born 6 February 1989 in Hannover, Germany

Nationality ~German

Address Podbielskistr. 176, 30177 Hannover

EDUCATION

Since 2013  Ph.D. in Theoretical Physics
Leibniz Universitdat Hannover
Thesis: State Preparation and Verification in Continuously Measured Quantum Systems
Supervisor: Prof. Dr. K. Hammerer

2012—2013 Study Abroad
Department of Applied Mathematics
University of Bristol, UK

2011—2013 M. Sc. Physics
Leibniz Universitdat Hannover
Thesis: Distribution of the Proper Delay Times of an Andreev Quantum Dot
Supervisors: Prof. Dr. R. FE. Werner (Hannover) and Prof. Dr. F. Mezzadri (Bristol)

2008—2011  B.Sc. Physics
Leibniz Universitdat Hannover
Thesis: Zero-Point Energies in Quantum Field Theory and the Cosmological Constant
Supervisor: Prof. Dr. M. Zagermann

2004—2005 Study Abroad
Dondero High School
Royal Oak, Michigan, USA

2000—2007  Abitur, Holty Gymnasium Wunstorf

PUBLICATIONS

[1] J. Lammers and K. Hammerer. Quantum state retrodiction in Gaussian
systems and its application in optomechanics. In preparation (2018).

[2] J. Lammers, H. Weimer, and K. Hammerer. Open-system many-body
dynamics through interferometric measurements and feedback. Physical Re-
view A 94, 052120 (2016). DOI: 10.1103/PhysRevA.94.052120. arXiv: 1606.04475.



	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	2 Measurements in quantum mechanics
	2.1 Projective measurements
	2.1.1 Pure states
	2.1.2 Measurement postulate
	2.1.3 Idealizations of the measurement postulate
	2.1.4 Mixed states: density matrices

	2.2 General measurements
	2.2.1 Example: indirect measurement
	2.2.2 General measurement postulate
	2.2.3 Infinite-dimensional Hilbert spaces


	 State preparation through feedback
	3 Feedback master equations
	3.1 Derivation of an unconditional master equation
	3.1.1 Introducing the setup
	3.1.2 Coarse-graining of time
	3.1.3 Interaction between system and bath mode
	3.1.4 Tracing out the bath

	3.2 Including measurement-based feedback
	3.2.1 Adding phase plate and measurement
	3.2.2 Applying feedback
	3.2.3 Generalization to multiple systems
	3.2.4 Generalization to multiple light modes

	3.3 Parametrization of LOCC dynamics

	4 Dissipative state preparation
	4.1 Entangling two-qubit protocol
	4.2 Extension to multiple qubits
	4.3 Analysis of the steady state
	4.4 Outlook on preparation of general states

	5 Quantum simulation
	5.1 Open Ising model with transverse fields
	5.1.1 Engineering the Hamiltonian
	5.1.2 Effect of the dissipation

	5.2 Concrete example
	5.3 Conclusion and Outlook


	 State verification through retrodiction
	6 Stochastic master and effect equations
	6.1 Derivation of a stochastic master equation
	6.1.1 Expanding the conditional state
	6.1.2 Statistics of the measurement current
	6.1.3 Normalization of the state
	6.1.4 Generalization to multiple baths

	6.2 Backward effect equations
	6.2.1 Quantum channels
	6.2.2 Retrodiction
	6.2.3 One-stop preparation and measurement
	6.2.4 Time-continuous effect equations

	6.3 Backward Itô integration

	7 Linear systems and Gaussian states
	7.1 Linear systems
	7.2 Quantum characteristic functions
	7.2.1 Moments and cumulants
	7.2.2 Unnormalized characteristic functions

	7.3 Gaussian states and effect operators
	7.3.1 Gaussian quantum states
	7.3.2 Gaussian effect operators

	7.4 Evolution of means and covariance matrix
	7.4.1 Gaussian quantum states
	7.4.2 Gaussian effect operators
	7.4.3 Non-Gaussian operators

	7.5 Stable dynamics leads to Gaussian operators
	7.5.1 Stability of linear systems
	7.5.2 Gaussification of arbitrary initial states
	7.5.3 Gaussification of arbitrary effect operators


	8 Applications
	8.1 Basic examples
	8.1.1 Monitoring a decaying cavity
	8.1.2 Beam splitter vs. squeezing interaction

	8.2 Conditional state preparation and verification in optomechanics
	8.2.1 Optomechanical setup
	8.2.2 Optomechanical interaction
	8.2.3 Mechanical master equation
	8.2.4 Steady state: resonant drive
	8.2.5 Steady state: detuned drive
	8.2.6 Conclusion and generalization


	9 Conclusion and outlook

	 Appendix
	A Homodyne detection
	A.1 Intensity vs. quadrature measurement
	A.2 Beam splitter
	A.3 Detection efficiency

	B Cumulant equations of motion
	B.1 From operator to partial differential equation
	B.2 Hamiltonian
	B.3 Lindblad operators
	B.4 Measurement terms
	B.5 Combined evolution
	B.6 Backward addition

	C Optomechanics: steady state variances and mode functions
	C.1 Drive on resonance, detect sidebands
	C.1.1 Blue sideband
	C.1.2 Red sideband

	C.2 Summary
	C.2.1 Resonant detection
	C.2.2 Blue
	C.2.3 Red

	C.3 Drive off-resonantly
	C.3.1 Resonant detection
	C.3.2 Blue sideband
	C.3.3 Red sideband

	C.4 Summary
	C.4.1 Resonant detection
	C.4.2 Blue
	C.4.3 Red


	 Bibliography
	 Curriculum Vitae


